1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications Inc. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 #include <linux/module.h> 7 #include <linux/netlink.h> 8 #include <linux/qrtr.h> 9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 10 #include <linux/spinlock.h> 11 #include <linux/wait.h> 12 13 #include <net/sock.h> 14 15 #include "qrtr.h" 16 17 #define QRTR_PROTO_VER_1 1 18 #define QRTR_PROTO_VER_2 3 19 20 /* auto-bind range */ 21 #define QRTR_MIN_EPH_SOCKET 0x4000 22 #define QRTR_MAX_EPH_SOCKET 0x7fff 23 #define QRTR_EPH_PORT_RANGE \ 24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET) 25 26 /** 27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1 28 * @version: protocol version 29 * @type: packet type; one of QRTR_TYPE_* 30 * @src_node_id: source node 31 * @src_port_id: source port 32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply 33 * @size: length of packet, excluding this header 34 * @dst_node_id: destination node 35 * @dst_port_id: destination port 36 */ 37 struct qrtr_hdr_v1 { 38 __le32 version; 39 __le32 type; 40 __le32 src_node_id; 41 __le32 src_port_id; 42 __le32 confirm_rx; 43 __le32 size; 44 __le32 dst_node_id; 45 __le32 dst_port_id; 46 } __packed; 47 48 /** 49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions 50 * @version: protocol version 51 * @type: packet type; one of QRTR_TYPE_* 52 * @flags: bitmask of QRTR_FLAGS_* 53 * @optlen: length of optional header data 54 * @size: length of packet, excluding this header and optlen 55 * @src_node_id: source node 56 * @src_port_id: source port 57 * @dst_node_id: destination node 58 * @dst_port_id: destination port 59 */ 60 struct qrtr_hdr_v2 { 61 u8 version; 62 u8 type; 63 u8 flags; 64 u8 optlen; 65 __le32 size; 66 __le16 src_node_id; 67 __le16 src_port_id; 68 __le16 dst_node_id; 69 __le16 dst_port_id; 70 }; 71 72 #define QRTR_FLAGS_CONFIRM_RX BIT(0) 73 74 struct qrtr_cb { 75 u32 src_node; 76 u32 src_port; 77 u32 dst_node; 78 u32 dst_port; 79 80 u8 type; 81 u8 confirm_rx; 82 }; 83 84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \ 85 sizeof(struct qrtr_hdr_v2)) 86 87 struct qrtr_sock { 88 /* WARNING: sk must be the first member */ 89 struct sock sk; 90 struct sockaddr_qrtr us; 91 struct sockaddr_qrtr peer; 92 }; 93 94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk) 95 { 96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); 97 return container_of(sk, struct qrtr_sock, sk); 98 } 99 100 static unsigned int qrtr_local_nid = 1; 101 102 /* for node ids */ 103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC); 104 static DEFINE_SPINLOCK(qrtr_nodes_lock); 105 /* broadcast list */ 106 static LIST_HEAD(qrtr_all_nodes); 107 /* lock for qrtr_all_nodes and node reference */ 108 static DEFINE_MUTEX(qrtr_node_lock); 109 110 /* local port allocation management */ 111 static DEFINE_XARRAY_ALLOC(qrtr_ports); 112 113 /** 114 * struct qrtr_node - endpoint node 115 * @ep_lock: lock for endpoint management and callbacks 116 * @ep: endpoint 117 * @ref: reference count for node 118 * @nid: node id 119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port 120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts 121 * @rx_queue: receive queue 122 * @item: list item for broadcast list 123 */ 124 struct qrtr_node { 125 struct mutex ep_lock; 126 struct qrtr_endpoint *ep; 127 struct kref ref; 128 unsigned int nid; 129 130 struct radix_tree_root qrtr_tx_flow; 131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */ 132 133 struct sk_buff_head rx_queue; 134 struct list_head item; 135 }; 136 137 /** 138 * struct qrtr_tx_flow - tx flow control 139 * @resume_tx: waiters for a resume tx from the remote 140 * @pending: number of waiting senders 141 * @tx_failed: indicates that a message with confirm_rx flag was lost 142 */ 143 struct qrtr_tx_flow { 144 struct wait_queue_head resume_tx; 145 int pending; 146 int tx_failed; 147 }; 148 149 #define QRTR_TX_FLOW_HIGH 10 150 #define QRTR_TX_FLOW_LOW 5 151 152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 153 int type, struct sockaddr_qrtr *from, 154 struct sockaddr_qrtr *to); 155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 156 int type, struct sockaddr_qrtr *from, 157 struct sockaddr_qrtr *to); 158 static struct qrtr_sock *qrtr_port_lookup(int port); 159 static void qrtr_port_put(struct qrtr_sock *ipc); 160 161 /* Release node resources and free the node. 162 * 163 * Do not call directly, use qrtr_node_release. To be used with 164 * kref_put_mutex. As such, the node mutex is expected to be locked on call. 165 */ 166 static void __qrtr_node_release(struct kref *kref) 167 { 168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); 169 struct radix_tree_iter iter; 170 struct qrtr_tx_flow *flow; 171 unsigned long flags; 172 void __rcu **slot; 173 174 spin_lock_irqsave(&qrtr_nodes_lock, flags); 175 /* If the node is a bridge for other nodes, there are possibly 176 * multiple entries pointing to our released node, delete them all. 177 */ 178 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { 179 if (*slot == node) 180 radix_tree_iter_delete(&qrtr_nodes, &iter, slot); 181 } 182 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 183 184 list_del(&node->item); 185 mutex_unlock(&qrtr_node_lock); 186 187 skb_queue_purge(&node->rx_queue); 188 189 /* Free tx flow counters */ 190 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 191 flow = *slot; 192 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot); 193 kfree(flow); 194 } 195 kfree(node); 196 } 197 198 /* Increment reference to node. */ 199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) 200 { 201 if (node) 202 kref_get(&node->ref); 203 return node; 204 } 205 206 /* Decrement reference to node and release as necessary. */ 207 static void qrtr_node_release(struct qrtr_node *node) 208 { 209 if (!node) 210 return; 211 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock); 212 } 213 214 /** 215 * qrtr_tx_resume() - reset flow control counter 216 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on 217 * @skb: resume_tx packet 218 */ 219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb) 220 { 221 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data; 222 u64 remote_node = le32_to_cpu(pkt->client.node); 223 u32 remote_port = le32_to_cpu(pkt->client.port); 224 struct qrtr_tx_flow *flow; 225 unsigned long key; 226 227 key = remote_node << 32 | remote_port; 228 229 rcu_read_lock(); 230 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 231 rcu_read_unlock(); 232 if (flow) { 233 spin_lock(&flow->resume_tx.lock); 234 flow->pending = 0; 235 spin_unlock(&flow->resume_tx.lock); 236 wake_up_interruptible_all(&flow->resume_tx); 237 } 238 239 consume_skb(skb); 240 } 241 242 /** 243 * qrtr_tx_wait() - flow control for outgoing packets 244 * @node: qrtr_node that the packet is to be send to 245 * @dest_node: node id of the destination 246 * @dest_port: port number of the destination 247 * @type: type of message 248 * 249 * The flow control scheme is based around the low and high "watermarks". When 250 * the low watermark is passed the confirm_rx flag is set on the outgoing 251 * message, which will trigger the remote to send a control message of the type 252 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit 253 * further transmision should be paused. 254 * 255 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure 256 */ 257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port, 258 int type) 259 { 260 unsigned long key = (u64)dest_node << 32 | dest_port; 261 struct qrtr_tx_flow *flow; 262 int confirm_rx = 0; 263 int ret; 264 265 /* Never set confirm_rx on non-data packets */ 266 if (type != QRTR_TYPE_DATA) 267 return 0; 268 269 mutex_lock(&node->qrtr_tx_lock); 270 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 271 if (!flow) { 272 flow = kzalloc(sizeof(*flow), GFP_KERNEL); 273 if (flow) { 274 init_waitqueue_head(&flow->resume_tx); 275 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) { 276 kfree(flow); 277 flow = NULL; 278 } 279 } 280 } 281 mutex_unlock(&node->qrtr_tx_lock); 282 283 /* Set confirm_rx if we where unable to find and allocate a flow */ 284 if (!flow) 285 return 1; 286 287 spin_lock_irq(&flow->resume_tx.lock); 288 ret = wait_event_interruptible_locked_irq(flow->resume_tx, 289 flow->pending < QRTR_TX_FLOW_HIGH || 290 flow->tx_failed || 291 !node->ep); 292 if (ret < 0) { 293 confirm_rx = ret; 294 } else if (!node->ep) { 295 confirm_rx = -EPIPE; 296 } else if (flow->tx_failed) { 297 flow->tx_failed = 0; 298 confirm_rx = 1; 299 } else { 300 flow->pending++; 301 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW; 302 } 303 spin_unlock_irq(&flow->resume_tx.lock); 304 305 return confirm_rx; 306 } 307 308 /** 309 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed 310 * @node: qrtr_node that the packet is to be send to 311 * @dest_node: node id of the destination 312 * @dest_port: port number of the destination 313 * 314 * Signal that the transmission of a message with confirm_rx flag failed. The 315 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH, 316 * at which point transmission would stall forever waiting for the resume TX 317 * message associated with the dropped confirm_rx message. 318 * Work around this by marking the flow as having a failed transmission and 319 * cause the next transmission attempt to be sent with the confirm_rx. 320 */ 321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node, 322 int dest_port) 323 { 324 unsigned long key = (u64)dest_node << 32 | dest_port; 325 struct qrtr_tx_flow *flow; 326 327 rcu_read_lock(); 328 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 329 rcu_read_unlock(); 330 if (flow) { 331 spin_lock_irq(&flow->resume_tx.lock); 332 flow->tx_failed = 1; 333 spin_unlock_irq(&flow->resume_tx.lock); 334 } 335 } 336 337 /* Pass an outgoing packet socket buffer to the endpoint driver. */ 338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb, 339 int type, struct sockaddr_qrtr *from, 340 struct sockaddr_qrtr *to) 341 { 342 struct qrtr_hdr_v1 *hdr; 343 size_t len = skb->len; 344 int rc, confirm_rx; 345 346 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type); 347 if (confirm_rx < 0) { 348 kfree_skb(skb); 349 return confirm_rx; 350 } 351 352 hdr = skb_push(skb, sizeof(*hdr)); 353 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1); 354 hdr->type = cpu_to_le32(type); 355 hdr->src_node_id = cpu_to_le32(from->sq_node); 356 hdr->src_port_id = cpu_to_le32(from->sq_port); 357 if (to->sq_port == QRTR_PORT_CTRL) { 358 hdr->dst_node_id = cpu_to_le32(node->nid); 359 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL); 360 } else { 361 hdr->dst_node_id = cpu_to_le32(to->sq_node); 362 hdr->dst_port_id = cpu_to_le32(to->sq_port); 363 } 364 365 hdr->size = cpu_to_le32(len); 366 hdr->confirm_rx = !!confirm_rx; 367 368 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr)); 369 370 if (!rc) { 371 mutex_lock(&node->ep_lock); 372 rc = -ENODEV; 373 if (node->ep) 374 rc = node->ep->xmit(node->ep, skb); 375 else 376 kfree_skb(skb); 377 mutex_unlock(&node->ep_lock); 378 } 379 /* Need to ensure that a subsequent message carries the otherwise lost 380 * confirm_rx flag if we dropped this one */ 381 if (rc && confirm_rx) 382 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port); 383 384 return rc; 385 } 386 387 /* Lookup node by id. 388 * 389 * callers must release with qrtr_node_release() 390 */ 391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid) 392 { 393 struct qrtr_node *node; 394 unsigned long flags; 395 396 spin_lock_irqsave(&qrtr_nodes_lock, flags); 397 node = radix_tree_lookup(&qrtr_nodes, nid); 398 node = qrtr_node_acquire(node); 399 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 400 401 return node; 402 } 403 404 /* Assign node id to node. 405 * 406 * This is mostly useful for automatic node id assignment, based on 407 * the source id in the incoming packet. 408 */ 409 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) 410 { 411 unsigned long flags; 412 413 if (nid == QRTR_EP_NID_AUTO) 414 return; 415 416 spin_lock_irqsave(&qrtr_nodes_lock, flags); 417 radix_tree_insert(&qrtr_nodes, nid, node); 418 if (node->nid == QRTR_EP_NID_AUTO) 419 node->nid = nid; 420 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 421 } 422 423 /** 424 * qrtr_endpoint_post() - post incoming data 425 * @ep: endpoint handle 426 * @data: data pointer 427 * @len: size of data in bytes 428 * 429 * Return: 0 on success; negative error code on failure 430 */ 431 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) 432 { 433 struct qrtr_node *node = ep->node; 434 const struct qrtr_hdr_v1 *v1; 435 const struct qrtr_hdr_v2 *v2; 436 struct qrtr_sock *ipc; 437 struct sk_buff *skb; 438 struct qrtr_cb *cb; 439 size_t size; 440 unsigned int ver; 441 size_t hdrlen; 442 443 if (len == 0 || len & 3) 444 return -EINVAL; 445 446 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN); 447 if (!skb) 448 return -ENOMEM; 449 450 cb = (struct qrtr_cb *)skb->cb; 451 452 /* Version field in v1 is little endian, so this works for both cases */ 453 ver = *(u8*)data; 454 455 switch (ver) { 456 case QRTR_PROTO_VER_1: 457 if (len < sizeof(*v1)) 458 goto err; 459 v1 = data; 460 hdrlen = sizeof(*v1); 461 462 cb->type = le32_to_cpu(v1->type); 463 cb->src_node = le32_to_cpu(v1->src_node_id); 464 cb->src_port = le32_to_cpu(v1->src_port_id); 465 cb->confirm_rx = !!v1->confirm_rx; 466 cb->dst_node = le32_to_cpu(v1->dst_node_id); 467 cb->dst_port = le32_to_cpu(v1->dst_port_id); 468 469 size = le32_to_cpu(v1->size); 470 break; 471 case QRTR_PROTO_VER_2: 472 if (len < sizeof(*v2)) 473 goto err; 474 v2 = data; 475 hdrlen = sizeof(*v2) + v2->optlen; 476 477 cb->type = v2->type; 478 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX); 479 cb->src_node = le16_to_cpu(v2->src_node_id); 480 cb->src_port = le16_to_cpu(v2->src_port_id); 481 cb->dst_node = le16_to_cpu(v2->dst_node_id); 482 cb->dst_port = le16_to_cpu(v2->dst_port_id); 483 484 if (cb->src_port == (u16)QRTR_PORT_CTRL) 485 cb->src_port = QRTR_PORT_CTRL; 486 if (cb->dst_port == (u16)QRTR_PORT_CTRL) 487 cb->dst_port = QRTR_PORT_CTRL; 488 489 size = le32_to_cpu(v2->size); 490 break; 491 default: 492 pr_err("qrtr: Invalid version %d\n", ver); 493 goto err; 494 } 495 496 if (!size || len != ALIGN(size, 4) + hdrlen) 497 goto err; 498 499 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA && 500 cb->type != QRTR_TYPE_RESUME_TX) 501 goto err; 502 503 skb_put_data(skb, data + hdrlen, size); 504 505 qrtr_node_assign(node, cb->src_node); 506 507 if (cb->type == QRTR_TYPE_NEW_SERVER) { 508 /* Remote node endpoint can bridge other distant nodes */ 509 const struct qrtr_ctrl_pkt *pkt; 510 511 if (size < sizeof(*pkt)) 512 goto err; 513 514 pkt = data + hdrlen; 515 qrtr_node_assign(node, le32_to_cpu(pkt->server.node)); 516 } 517 518 if (cb->type == QRTR_TYPE_RESUME_TX) { 519 qrtr_tx_resume(node, skb); 520 } else { 521 ipc = qrtr_port_lookup(cb->dst_port); 522 if (!ipc) 523 goto err; 524 525 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 526 qrtr_port_put(ipc); 527 goto err; 528 } 529 530 qrtr_port_put(ipc); 531 } 532 533 return 0; 534 535 err: 536 kfree_skb(skb); 537 return -EINVAL; 538 539 } 540 EXPORT_SYMBOL_GPL(qrtr_endpoint_post); 541 542 /** 543 * qrtr_alloc_ctrl_packet() - allocate control packet skb 544 * @pkt: reference to qrtr_ctrl_pkt pointer 545 * @flags: the type of memory to allocate 546 * 547 * Returns newly allocated sk_buff, or NULL on failure 548 * 549 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and 550 * on success returns a reference to the control packet in @pkt. 551 */ 552 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt, 553 gfp_t flags) 554 { 555 const int pkt_len = sizeof(struct qrtr_ctrl_pkt); 556 struct sk_buff *skb; 557 558 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags); 559 if (!skb) 560 return NULL; 561 562 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 563 *pkt = skb_put_zero(skb, pkt_len); 564 565 return skb; 566 } 567 568 /** 569 * qrtr_endpoint_register() - register a new endpoint 570 * @ep: endpoint to register 571 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment 572 * Return: 0 on success; negative error code on failure 573 * 574 * The specified endpoint must have the xmit function pointer set on call. 575 */ 576 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid) 577 { 578 struct qrtr_node *node; 579 580 if (!ep || !ep->xmit) 581 return -EINVAL; 582 583 node = kzalloc(sizeof(*node), GFP_KERNEL); 584 if (!node) 585 return -ENOMEM; 586 587 kref_init(&node->ref); 588 mutex_init(&node->ep_lock); 589 skb_queue_head_init(&node->rx_queue); 590 node->nid = QRTR_EP_NID_AUTO; 591 node->ep = ep; 592 593 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL); 594 mutex_init(&node->qrtr_tx_lock); 595 596 qrtr_node_assign(node, nid); 597 598 mutex_lock(&qrtr_node_lock); 599 list_add(&node->item, &qrtr_all_nodes); 600 mutex_unlock(&qrtr_node_lock); 601 ep->node = node; 602 603 return 0; 604 } 605 EXPORT_SYMBOL_GPL(qrtr_endpoint_register); 606 607 /** 608 * qrtr_endpoint_unregister - unregister endpoint 609 * @ep: endpoint to unregister 610 */ 611 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) 612 { 613 struct qrtr_node *node = ep->node; 614 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL}; 615 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL}; 616 struct radix_tree_iter iter; 617 struct qrtr_ctrl_pkt *pkt; 618 struct qrtr_tx_flow *flow; 619 struct sk_buff *skb; 620 unsigned long flags; 621 void __rcu **slot; 622 623 mutex_lock(&node->ep_lock); 624 node->ep = NULL; 625 mutex_unlock(&node->ep_lock); 626 627 /* Notify the local controller about the event */ 628 spin_lock_irqsave(&qrtr_nodes_lock, flags); 629 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { 630 if (*slot != node) 631 continue; 632 src.sq_node = iter.index; 633 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC); 634 if (skb) { 635 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); 636 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst); 637 } 638 } 639 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 640 641 /* Wake up any transmitters waiting for resume-tx from the node */ 642 mutex_lock(&node->qrtr_tx_lock); 643 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 644 flow = *slot; 645 wake_up_interruptible_all(&flow->resume_tx); 646 } 647 mutex_unlock(&node->qrtr_tx_lock); 648 649 qrtr_node_release(node); 650 ep->node = NULL; 651 } 652 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); 653 654 /* Lookup socket by port. 655 * 656 * Callers must release with qrtr_port_put() 657 */ 658 static struct qrtr_sock *qrtr_port_lookup(int port) 659 { 660 struct qrtr_sock *ipc; 661 662 if (port == QRTR_PORT_CTRL) 663 port = 0; 664 665 rcu_read_lock(); 666 ipc = xa_load(&qrtr_ports, port); 667 if (ipc) 668 sock_hold(&ipc->sk); 669 rcu_read_unlock(); 670 671 return ipc; 672 } 673 674 /* Release acquired socket. */ 675 static void qrtr_port_put(struct qrtr_sock *ipc) 676 { 677 sock_put(&ipc->sk); 678 } 679 680 /* Remove port assignment. */ 681 static void qrtr_port_remove(struct qrtr_sock *ipc) 682 { 683 struct qrtr_ctrl_pkt *pkt; 684 struct sk_buff *skb; 685 int port = ipc->us.sq_port; 686 struct sockaddr_qrtr to; 687 688 to.sq_family = AF_QIPCRTR; 689 to.sq_node = QRTR_NODE_BCAST; 690 to.sq_port = QRTR_PORT_CTRL; 691 692 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); 693 if (skb) { 694 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT); 695 pkt->client.node = cpu_to_le32(ipc->us.sq_node); 696 pkt->client.port = cpu_to_le32(ipc->us.sq_port); 697 698 skb_set_owner_w(skb, &ipc->sk); 699 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us, 700 &to); 701 } 702 703 if (port == QRTR_PORT_CTRL) 704 port = 0; 705 706 __sock_put(&ipc->sk); 707 708 xa_erase(&qrtr_ports, port); 709 710 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we 711 * wait for it to up increment the refcount */ 712 synchronize_rcu(); 713 } 714 715 /* Assign port number to socket. 716 * 717 * Specify port in the integer pointed to by port, and it will be adjusted 718 * on return as necesssary. 719 * 720 * Port may be: 721 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] 722 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN 723 * >QRTR_MIN_EPH_SOCKET: Specified; available to all 724 */ 725 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) 726 { 727 int rc; 728 729 if (!*port) { 730 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE, 731 GFP_KERNEL); 732 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) { 733 rc = -EACCES; 734 } else if (*port == QRTR_PORT_CTRL) { 735 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL); 736 } else { 737 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL); 738 } 739 740 if (rc == -EBUSY) 741 return -EADDRINUSE; 742 else if (rc < 0) 743 return rc; 744 745 sock_hold(&ipc->sk); 746 747 return 0; 748 } 749 750 /* Reset all non-control ports */ 751 static void qrtr_reset_ports(void) 752 { 753 struct qrtr_sock *ipc; 754 unsigned long index; 755 756 rcu_read_lock(); 757 xa_for_each_start(&qrtr_ports, index, ipc, 1) { 758 sock_hold(&ipc->sk); 759 ipc->sk.sk_err = ENETRESET; 760 sk_error_report(&ipc->sk); 761 sock_put(&ipc->sk); 762 } 763 rcu_read_unlock(); 764 } 765 766 /* Bind socket to address. 767 * 768 * Socket should be locked upon call. 769 */ 770 static int __qrtr_bind(struct socket *sock, 771 const struct sockaddr_qrtr *addr, int zapped) 772 { 773 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 774 struct sock *sk = sock->sk; 775 int port; 776 int rc; 777 778 /* rebinding ok */ 779 if (!zapped && addr->sq_port == ipc->us.sq_port) 780 return 0; 781 782 port = addr->sq_port; 783 rc = qrtr_port_assign(ipc, &port); 784 if (rc) 785 return rc; 786 787 /* unbind previous, if any */ 788 if (!zapped) 789 qrtr_port_remove(ipc); 790 ipc->us.sq_port = port; 791 792 sock_reset_flag(sk, SOCK_ZAPPED); 793 794 /* Notify all open ports about the new controller */ 795 if (port == QRTR_PORT_CTRL) 796 qrtr_reset_ports(); 797 798 return 0; 799 } 800 801 /* Auto bind to an ephemeral port. */ 802 static int qrtr_autobind(struct socket *sock) 803 { 804 struct sock *sk = sock->sk; 805 struct sockaddr_qrtr addr; 806 807 if (!sock_flag(sk, SOCK_ZAPPED)) 808 return 0; 809 810 addr.sq_family = AF_QIPCRTR; 811 addr.sq_node = qrtr_local_nid; 812 addr.sq_port = 0; 813 814 return __qrtr_bind(sock, &addr, 1); 815 } 816 817 /* Bind socket to specified sockaddr. */ 818 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) 819 { 820 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 821 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 822 struct sock *sk = sock->sk; 823 int rc; 824 825 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 826 return -EINVAL; 827 828 if (addr->sq_node != ipc->us.sq_node) 829 return -EINVAL; 830 831 lock_sock(sk); 832 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); 833 release_sock(sk); 834 835 return rc; 836 } 837 838 /* Queue packet to local peer socket. */ 839 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 840 int type, struct sockaddr_qrtr *from, 841 struct sockaddr_qrtr *to) 842 { 843 struct qrtr_sock *ipc; 844 struct qrtr_cb *cb; 845 846 ipc = qrtr_port_lookup(to->sq_port); 847 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ 848 if (ipc) 849 qrtr_port_put(ipc); 850 kfree_skb(skb); 851 return -ENODEV; 852 } 853 854 cb = (struct qrtr_cb *)skb->cb; 855 cb->src_node = from->sq_node; 856 cb->src_port = from->sq_port; 857 858 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 859 qrtr_port_put(ipc); 860 kfree_skb(skb); 861 return -ENOSPC; 862 } 863 864 qrtr_port_put(ipc); 865 866 return 0; 867 } 868 869 /* Queue packet for broadcast. */ 870 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 871 int type, struct sockaddr_qrtr *from, 872 struct sockaddr_qrtr *to) 873 { 874 struct sk_buff *skbn; 875 876 mutex_lock(&qrtr_node_lock); 877 list_for_each_entry(node, &qrtr_all_nodes, item) { 878 skbn = skb_clone(skb, GFP_KERNEL); 879 if (!skbn) 880 break; 881 skb_set_owner_w(skbn, skb->sk); 882 qrtr_node_enqueue(node, skbn, type, from, to); 883 } 884 mutex_unlock(&qrtr_node_lock); 885 886 qrtr_local_enqueue(NULL, skb, type, from, to); 887 888 return 0; 889 } 890 891 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 892 { 893 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 894 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int, 895 struct sockaddr_qrtr *, struct sockaddr_qrtr *); 896 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA); 897 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 898 struct sock *sk = sock->sk; 899 struct qrtr_node *node; 900 struct sk_buff *skb; 901 size_t plen; 902 u32 type; 903 int rc; 904 905 if (msg->msg_flags & ~(MSG_DONTWAIT)) 906 return -EINVAL; 907 908 if (len > 65535) 909 return -EMSGSIZE; 910 911 lock_sock(sk); 912 913 if (addr) { 914 if (msg->msg_namelen < sizeof(*addr)) { 915 release_sock(sk); 916 return -EINVAL; 917 } 918 919 if (addr->sq_family != AF_QIPCRTR) { 920 release_sock(sk); 921 return -EINVAL; 922 } 923 924 rc = qrtr_autobind(sock); 925 if (rc) { 926 release_sock(sk); 927 return rc; 928 } 929 } else if (sk->sk_state == TCP_ESTABLISHED) { 930 addr = &ipc->peer; 931 } else { 932 release_sock(sk); 933 return -ENOTCONN; 934 } 935 936 node = NULL; 937 if (addr->sq_node == QRTR_NODE_BCAST) { 938 if (addr->sq_port != QRTR_PORT_CTRL && 939 qrtr_local_nid != QRTR_NODE_BCAST) { 940 release_sock(sk); 941 return -ENOTCONN; 942 } 943 enqueue_fn = qrtr_bcast_enqueue; 944 } else if (addr->sq_node == ipc->us.sq_node) { 945 enqueue_fn = qrtr_local_enqueue; 946 } else { 947 node = qrtr_node_lookup(addr->sq_node); 948 if (!node) { 949 release_sock(sk); 950 return -ECONNRESET; 951 } 952 enqueue_fn = qrtr_node_enqueue; 953 } 954 955 plen = (len + 3) & ~3; 956 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE, 957 msg->msg_flags & MSG_DONTWAIT, &rc); 958 if (!skb) { 959 rc = -ENOMEM; 960 goto out_node; 961 } 962 963 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 964 965 rc = memcpy_from_msg(skb_put(skb, len), msg, len); 966 if (rc) { 967 kfree_skb(skb); 968 goto out_node; 969 } 970 971 if (ipc->us.sq_port == QRTR_PORT_CTRL) { 972 if (len < 4) { 973 rc = -EINVAL; 974 kfree_skb(skb); 975 goto out_node; 976 } 977 978 /* control messages already require the type as 'command' */ 979 skb_copy_bits(skb, 0, &qrtr_type, 4); 980 } 981 982 type = le32_to_cpu(qrtr_type); 983 rc = enqueue_fn(node, skb, type, &ipc->us, addr); 984 if (rc >= 0) 985 rc = len; 986 987 out_node: 988 qrtr_node_release(node); 989 release_sock(sk); 990 991 return rc; 992 } 993 994 static int qrtr_send_resume_tx(struct qrtr_cb *cb) 995 { 996 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port }; 997 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port }; 998 struct qrtr_ctrl_pkt *pkt; 999 struct qrtr_node *node; 1000 struct sk_buff *skb; 1001 int ret; 1002 1003 node = qrtr_node_lookup(remote.sq_node); 1004 if (!node) 1005 return -EINVAL; 1006 1007 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); 1008 if (!skb) 1009 return -ENOMEM; 1010 1011 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX); 1012 pkt->client.node = cpu_to_le32(cb->dst_node); 1013 pkt->client.port = cpu_to_le32(cb->dst_port); 1014 1015 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote); 1016 1017 qrtr_node_release(node); 1018 1019 return ret; 1020 } 1021 1022 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, 1023 size_t size, int flags) 1024 { 1025 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 1026 struct sock *sk = sock->sk; 1027 struct sk_buff *skb; 1028 struct qrtr_cb *cb; 1029 int copied, rc; 1030 1031 lock_sock(sk); 1032 1033 if (sock_flag(sk, SOCK_ZAPPED)) { 1034 release_sock(sk); 1035 return -EADDRNOTAVAIL; 1036 } 1037 1038 skb = skb_recv_datagram(sk, flags, &rc); 1039 if (!skb) { 1040 release_sock(sk); 1041 return rc; 1042 } 1043 cb = (struct qrtr_cb *)skb->cb; 1044 1045 copied = skb->len; 1046 if (copied > size) { 1047 copied = size; 1048 msg->msg_flags |= MSG_TRUNC; 1049 } 1050 1051 rc = skb_copy_datagram_msg(skb, 0, msg, copied); 1052 if (rc < 0) 1053 goto out; 1054 rc = copied; 1055 1056 if (addr) { 1057 /* There is an anonymous 2-byte hole after sq_family, 1058 * make sure to clear it. 1059 */ 1060 memset(addr, 0, sizeof(*addr)); 1061 1062 addr->sq_family = AF_QIPCRTR; 1063 addr->sq_node = cb->src_node; 1064 addr->sq_port = cb->src_port; 1065 msg->msg_namelen = sizeof(*addr); 1066 } 1067 1068 out: 1069 if (cb->confirm_rx) 1070 qrtr_send_resume_tx(cb); 1071 1072 skb_free_datagram(sk, skb); 1073 release_sock(sk); 1074 1075 return rc; 1076 } 1077 1078 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, 1079 int len, int flags) 1080 { 1081 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 1082 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1083 struct sock *sk = sock->sk; 1084 int rc; 1085 1086 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 1087 return -EINVAL; 1088 1089 lock_sock(sk); 1090 1091 sk->sk_state = TCP_CLOSE; 1092 sock->state = SS_UNCONNECTED; 1093 1094 rc = qrtr_autobind(sock); 1095 if (rc) { 1096 release_sock(sk); 1097 return rc; 1098 } 1099 1100 ipc->peer = *addr; 1101 sock->state = SS_CONNECTED; 1102 sk->sk_state = TCP_ESTABLISHED; 1103 1104 release_sock(sk); 1105 1106 return 0; 1107 } 1108 1109 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, 1110 int peer) 1111 { 1112 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1113 struct sockaddr_qrtr qaddr; 1114 struct sock *sk = sock->sk; 1115 1116 lock_sock(sk); 1117 if (peer) { 1118 if (sk->sk_state != TCP_ESTABLISHED) { 1119 release_sock(sk); 1120 return -ENOTCONN; 1121 } 1122 1123 qaddr = ipc->peer; 1124 } else { 1125 qaddr = ipc->us; 1126 } 1127 release_sock(sk); 1128 1129 qaddr.sq_family = AF_QIPCRTR; 1130 1131 memcpy(saddr, &qaddr, sizeof(qaddr)); 1132 1133 return sizeof(qaddr); 1134 } 1135 1136 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1137 { 1138 void __user *argp = (void __user *)arg; 1139 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1140 struct sock *sk = sock->sk; 1141 struct sockaddr_qrtr *sq; 1142 struct sk_buff *skb; 1143 struct ifreq ifr; 1144 long len = 0; 1145 int rc = 0; 1146 1147 lock_sock(sk); 1148 1149 switch (cmd) { 1150 case TIOCOUTQ: 1151 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1152 if (len < 0) 1153 len = 0; 1154 rc = put_user(len, (int __user *)argp); 1155 break; 1156 case TIOCINQ: 1157 skb = skb_peek(&sk->sk_receive_queue); 1158 if (skb) 1159 len = skb->len; 1160 rc = put_user(len, (int __user *)argp); 1161 break; 1162 case SIOCGIFADDR: 1163 if (get_user_ifreq(&ifr, NULL, argp)) { 1164 rc = -EFAULT; 1165 break; 1166 } 1167 1168 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; 1169 *sq = ipc->us; 1170 if (put_user_ifreq(&ifr, argp)) { 1171 rc = -EFAULT; 1172 break; 1173 } 1174 break; 1175 case SIOCADDRT: 1176 case SIOCDELRT: 1177 case SIOCSIFADDR: 1178 case SIOCGIFDSTADDR: 1179 case SIOCSIFDSTADDR: 1180 case SIOCGIFBRDADDR: 1181 case SIOCSIFBRDADDR: 1182 case SIOCGIFNETMASK: 1183 case SIOCSIFNETMASK: 1184 rc = -EINVAL; 1185 break; 1186 default: 1187 rc = -ENOIOCTLCMD; 1188 break; 1189 } 1190 1191 release_sock(sk); 1192 1193 return rc; 1194 } 1195 1196 static int qrtr_release(struct socket *sock) 1197 { 1198 struct sock *sk = sock->sk; 1199 struct qrtr_sock *ipc; 1200 1201 if (!sk) 1202 return 0; 1203 1204 lock_sock(sk); 1205 1206 ipc = qrtr_sk(sk); 1207 sk->sk_shutdown = SHUTDOWN_MASK; 1208 if (!sock_flag(sk, SOCK_DEAD)) 1209 sk->sk_state_change(sk); 1210 1211 sock_set_flag(sk, SOCK_DEAD); 1212 sock_orphan(sk); 1213 sock->sk = NULL; 1214 1215 if (!sock_flag(sk, SOCK_ZAPPED)) 1216 qrtr_port_remove(ipc); 1217 1218 skb_queue_purge(&sk->sk_receive_queue); 1219 1220 release_sock(sk); 1221 sock_put(sk); 1222 1223 return 0; 1224 } 1225 1226 static const struct proto_ops qrtr_proto_ops = { 1227 .owner = THIS_MODULE, 1228 .family = AF_QIPCRTR, 1229 .bind = qrtr_bind, 1230 .connect = qrtr_connect, 1231 .socketpair = sock_no_socketpair, 1232 .accept = sock_no_accept, 1233 .listen = sock_no_listen, 1234 .sendmsg = qrtr_sendmsg, 1235 .recvmsg = qrtr_recvmsg, 1236 .getname = qrtr_getname, 1237 .ioctl = qrtr_ioctl, 1238 .gettstamp = sock_gettstamp, 1239 .poll = datagram_poll, 1240 .shutdown = sock_no_shutdown, 1241 .release = qrtr_release, 1242 .mmap = sock_no_mmap, 1243 .sendpage = sock_no_sendpage, 1244 }; 1245 1246 static struct proto qrtr_proto = { 1247 .name = "QIPCRTR", 1248 .owner = THIS_MODULE, 1249 .obj_size = sizeof(struct qrtr_sock), 1250 }; 1251 1252 static int qrtr_create(struct net *net, struct socket *sock, 1253 int protocol, int kern) 1254 { 1255 struct qrtr_sock *ipc; 1256 struct sock *sk; 1257 1258 if (sock->type != SOCK_DGRAM) 1259 return -EPROTOTYPE; 1260 1261 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); 1262 if (!sk) 1263 return -ENOMEM; 1264 1265 sock_set_flag(sk, SOCK_ZAPPED); 1266 1267 sock_init_data(sock, sk); 1268 sock->ops = &qrtr_proto_ops; 1269 1270 ipc = qrtr_sk(sk); 1271 ipc->us.sq_family = AF_QIPCRTR; 1272 ipc->us.sq_node = qrtr_local_nid; 1273 ipc->us.sq_port = 0; 1274 1275 return 0; 1276 } 1277 1278 static const struct net_proto_family qrtr_family = { 1279 .owner = THIS_MODULE, 1280 .family = AF_QIPCRTR, 1281 .create = qrtr_create, 1282 }; 1283 1284 static int __init qrtr_proto_init(void) 1285 { 1286 int rc; 1287 1288 rc = proto_register(&qrtr_proto, 1); 1289 if (rc) 1290 return rc; 1291 1292 rc = sock_register(&qrtr_family); 1293 if (rc) 1294 goto err_proto; 1295 1296 rc = qrtr_ns_init(); 1297 if (rc) 1298 goto err_sock; 1299 1300 return 0; 1301 1302 err_sock: 1303 sock_unregister(qrtr_family.family); 1304 err_proto: 1305 proto_unregister(&qrtr_proto); 1306 return rc; 1307 } 1308 postcore_initcall(qrtr_proto_init); 1309 1310 static void __exit qrtr_proto_fini(void) 1311 { 1312 qrtr_ns_remove(); 1313 sock_unregister(qrtr_family.family); 1314 proto_unregister(&qrtr_proto); 1315 } 1316 module_exit(qrtr_proto_fini); 1317 1318 MODULE_DESCRIPTION("Qualcomm IPC-router driver"); 1319 MODULE_LICENSE("GPL v2"); 1320 MODULE_ALIAS_NETPROTO(PF_QIPCRTR); 1321