1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications Inc. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 #include <linux/module.h> 7 #include <linux/netlink.h> 8 #include <linux/qrtr.h> 9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 10 #include <linux/spinlock.h> 11 #include <linux/wait.h> 12 13 #include <net/sock.h> 14 15 #include "qrtr.h" 16 17 #define QRTR_PROTO_VER_1 1 18 #define QRTR_PROTO_VER_2 3 19 20 /* auto-bind range */ 21 #define QRTR_MIN_EPH_SOCKET 0x4000 22 #define QRTR_MAX_EPH_SOCKET 0x7fff 23 #define QRTR_EPH_PORT_RANGE \ 24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET) 25 26 /** 27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1 28 * @version: protocol version 29 * @type: packet type; one of QRTR_TYPE_* 30 * @src_node_id: source node 31 * @src_port_id: source port 32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply 33 * @size: length of packet, excluding this header 34 * @dst_node_id: destination node 35 * @dst_port_id: destination port 36 */ 37 struct qrtr_hdr_v1 { 38 __le32 version; 39 __le32 type; 40 __le32 src_node_id; 41 __le32 src_port_id; 42 __le32 confirm_rx; 43 __le32 size; 44 __le32 dst_node_id; 45 __le32 dst_port_id; 46 } __packed; 47 48 /** 49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions 50 * @version: protocol version 51 * @type: packet type; one of QRTR_TYPE_* 52 * @flags: bitmask of QRTR_FLAGS_* 53 * @optlen: length of optional header data 54 * @size: length of packet, excluding this header and optlen 55 * @src_node_id: source node 56 * @src_port_id: source port 57 * @dst_node_id: destination node 58 * @dst_port_id: destination port 59 */ 60 struct qrtr_hdr_v2 { 61 u8 version; 62 u8 type; 63 u8 flags; 64 u8 optlen; 65 __le32 size; 66 __le16 src_node_id; 67 __le16 src_port_id; 68 __le16 dst_node_id; 69 __le16 dst_port_id; 70 }; 71 72 #define QRTR_FLAGS_CONFIRM_RX BIT(0) 73 74 struct qrtr_cb { 75 u32 src_node; 76 u32 src_port; 77 u32 dst_node; 78 u32 dst_port; 79 80 u8 type; 81 u8 confirm_rx; 82 }; 83 84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \ 85 sizeof(struct qrtr_hdr_v2)) 86 87 struct qrtr_sock { 88 /* WARNING: sk must be the first member */ 89 struct sock sk; 90 struct sockaddr_qrtr us; 91 struct sockaddr_qrtr peer; 92 }; 93 94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk) 95 { 96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); 97 return container_of(sk, struct qrtr_sock, sk); 98 } 99 100 static unsigned int qrtr_local_nid = 1; 101 102 /* for node ids */ 103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC); 104 static DEFINE_SPINLOCK(qrtr_nodes_lock); 105 /* broadcast list */ 106 static LIST_HEAD(qrtr_all_nodes); 107 /* lock for qrtr_all_nodes and node reference */ 108 static DEFINE_MUTEX(qrtr_node_lock); 109 110 /* local port allocation management */ 111 static DEFINE_XARRAY_ALLOC(qrtr_ports); 112 113 /** 114 * struct qrtr_node - endpoint node 115 * @ep_lock: lock for endpoint management and callbacks 116 * @ep: endpoint 117 * @ref: reference count for node 118 * @nid: node id 119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port 120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts 121 * @rx_queue: receive queue 122 * @item: list item for broadcast list 123 */ 124 struct qrtr_node { 125 struct mutex ep_lock; 126 struct qrtr_endpoint *ep; 127 struct kref ref; 128 unsigned int nid; 129 130 struct radix_tree_root qrtr_tx_flow; 131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */ 132 133 struct sk_buff_head rx_queue; 134 struct list_head item; 135 }; 136 137 /** 138 * struct qrtr_tx_flow - tx flow control 139 * @resume_tx: waiters for a resume tx from the remote 140 * @pending: number of waiting senders 141 * @tx_failed: indicates that a message with confirm_rx flag was lost 142 */ 143 struct qrtr_tx_flow { 144 struct wait_queue_head resume_tx; 145 int pending; 146 int tx_failed; 147 }; 148 149 #define QRTR_TX_FLOW_HIGH 10 150 #define QRTR_TX_FLOW_LOW 5 151 152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 153 int type, struct sockaddr_qrtr *from, 154 struct sockaddr_qrtr *to); 155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 156 int type, struct sockaddr_qrtr *from, 157 struct sockaddr_qrtr *to); 158 static struct qrtr_sock *qrtr_port_lookup(int port); 159 static void qrtr_port_put(struct qrtr_sock *ipc); 160 161 /* Release node resources and free the node. 162 * 163 * Do not call directly, use qrtr_node_release. To be used with 164 * kref_put_mutex. As such, the node mutex is expected to be locked on call. 165 */ 166 static void __qrtr_node_release(struct kref *kref) 167 { 168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); 169 struct radix_tree_iter iter; 170 struct qrtr_tx_flow *flow; 171 unsigned long flags; 172 void __rcu **slot; 173 174 spin_lock_irqsave(&qrtr_nodes_lock, flags); 175 /* If the node is a bridge for other nodes, there are possibly 176 * multiple entries pointing to our released node, delete them all. 177 */ 178 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { 179 if (*slot == node) 180 radix_tree_iter_delete(&qrtr_nodes, &iter, slot); 181 } 182 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 183 184 list_del(&node->item); 185 mutex_unlock(&qrtr_node_lock); 186 187 skb_queue_purge(&node->rx_queue); 188 189 /* Free tx flow counters */ 190 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 191 flow = *slot; 192 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot); 193 kfree(flow); 194 } 195 kfree(node); 196 } 197 198 /* Increment reference to node. */ 199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) 200 { 201 if (node) 202 kref_get(&node->ref); 203 return node; 204 } 205 206 /* Decrement reference to node and release as necessary. */ 207 static void qrtr_node_release(struct qrtr_node *node) 208 { 209 if (!node) 210 return; 211 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock); 212 } 213 214 /** 215 * qrtr_tx_resume() - reset flow control counter 216 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on 217 * @skb: resume_tx packet 218 */ 219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb) 220 { 221 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data; 222 u64 remote_node = le32_to_cpu(pkt->client.node); 223 u32 remote_port = le32_to_cpu(pkt->client.port); 224 struct qrtr_tx_flow *flow; 225 unsigned long key; 226 227 key = remote_node << 32 | remote_port; 228 229 rcu_read_lock(); 230 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 231 rcu_read_unlock(); 232 if (flow) { 233 spin_lock(&flow->resume_tx.lock); 234 flow->pending = 0; 235 spin_unlock(&flow->resume_tx.lock); 236 wake_up_interruptible_all(&flow->resume_tx); 237 } 238 239 consume_skb(skb); 240 } 241 242 /** 243 * qrtr_tx_wait() - flow control for outgoing packets 244 * @node: qrtr_node that the packet is to be send to 245 * @dest_node: node id of the destination 246 * @dest_port: port number of the destination 247 * @type: type of message 248 * 249 * The flow control scheme is based around the low and high "watermarks". When 250 * the low watermark is passed the confirm_rx flag is set on the outgoing 251 * message, which will trigger the remote to send a control message of the type 252 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit 253 * further transmision should be paused. 254 * 255 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure 256 */ 257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port, 258 int type) 259 { 260 unsigned long key = (u64)dest_node << 32 | dest_port; 261 struct qrtr_tx_flow *flow; 262 int confirm_rx = 0; 263 int ret; 264 265 /* Never set confirm_rx on non-data packets */ 266 if (type != QRTR_TYPE_DATA) 267 return 0; 268 269 mutex_lock(&node->qrtr_tx_lock); 270 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 271 if (!flow) { 272 flow = kzalloc(sizeof(*flow), GFP_KERNEL); 273 if (flow) { 274 init_waitqueue_head(&flow->resume_tx); 275 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) { 276 kfree(flow); 277 flow = NULL; 278 } 279 } 280 } 281 mutex_unlock(&node->qrtr_tx_lock); 282 283 /* Set confirm_rx if we where unable to find and allocate a flow */ 284 if (!flow) 285 return 1; 286 287 spin_lock_irq(&flow->resume_tx.lock); 288 ret = wait_event_interruptible_locked_irq(flow->resume_tx, 289 flow->pending < QRTR_TX_FLOW_HIGH || 290 flow->tx_failed || 291 !node->ep); 292 if (ret < 0) { 293 confirm_rx = ret; 294 } else if (!node->ep) { 295 confirm_rx = -EPIPE; 296 } else if (flow->tx_failed) { 297 flow->tx_failed = 0; 298 confirm_rx = 1; 299 } else { 300 flow->pending++; 301 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW; 302 } 303 spin_unlock_irq(&flow->resume_tx.lock); 304 305 return confirm_rx; 306 } 307 308 /** 309 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed 310 * @node: qrtr_node that the packet is to be send to 311 * @dest_node: node id of the destination 312 * @dest_port: port number of the destination 313 * 314 * Signal that the transmission of a message with confirm_rx flag failed. The 315 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH, 316 * at which point transmission would stall forever waiting for the resume TX 317 * message associated with the dropped confirm_rx message. 318 * Work around this by marking the flow as having a failed transmission and 319 * cause the next transmission attempt to be sent with the confirm_rx. 320 */ 321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node, 322 int dest_port) 323 { 324 unsigned long key = (u64)dest_node << 32 | dest_port; 325 struct qrtr_tx_flow *flow; 326 327 rcu_read_lock(); 328 flow = radix_tree_lookup(&node->qrtr_tx_flow, key); 329 rcu_read_unlock(); 330 if (flow) { 331 spin_lock_irq(&flow->resume_tx.lock); 332 flow->tx_failed = 1; 333 spin_unlock_irq(&flow->resume_tx.lock); 334 } 335 } 336 337 /* Pass an outgoing packet socket buffer to the endpoint driver. */ 338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb, 339 int type, struct sockaddr_qrtr *from, 340 struct sockaddr_qrtr *to) 341 { 342 struct qrtr_hdr_v1 *hdr; 343 size_t len = skb->len; 344 int rc, confirm_rx; 345 346 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type); 347 if (confirm_rx < 0) { 348 kfree_skb(skb); 349 return confirm_rx; 350 } 351 352 hdr = skb_push(skb, sizeof(*hdr)); 353 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1); 354 hdr->type = cpu_to_le32(type); 355 hdr->src_node_id = cpu_to_le32(from->sq_node); 356 hdr->src_port_id = cpu_to_le32(from->sq_port); 357 if (to->sq_port == QRTR_PORT_CTRL) { 358 hdr->dst_node_id = cpu_to_le32(node->nid); 359 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL); 360 } else { 361 hdr->dst_node_id = cpu_to_le32(to->sq_node); 362 hdr->dst_port_id = cpu_to_le32(to->sq_port); 363 } 364 365 hdr->size = cpu_to_le32(len); 366 hdr->confirm_rx = !!confirm_rx; 367 368 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr)); 369 370 if (!rc) { 371 mutex_lock(&node->ep_lock); 372 rc = -ENODEV; 373 if (node->ep) 374 rc = node->ep->xmit(node->ep, skb); 375 else 376 kfree_skb(skb); 377 mutex_unlock(&node->ep_lock); 378 } 379 /* Need to ensure that a subsequent message carries the otherwise lost 380 * confirm_rx flag if we dropped this one */ 381 if (rc && confirm_rx) 382 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port); 383 384 return rc; 385 } 386 387 /* Lookup node by id. 388 * 389 * callers must release with qrtr_node_release() 390 */ 391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid) 392 { 393 struct qrtr_node *node; 394 unsigned long flags; 395 396 mutex_lock(&qrtr_node_lock); 397 spin_lock_irqsave(&qrtr_nodes_lock, flags); 398 node = radix_tree_lookup(&qrtr_nodes, nid); 399 node = qrtr_node_acquire(node); 400 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 401 mutex_unlock(&qrtr_node_lock); 402 403 return node; 404 } 405 406 /* Assign node id to node. 407 * 408 * This is mostly useful for automatic node id assignment, based on 409 * the source id in the incoming packet. 410 */ 411 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) 412 { 413 unsigned long flags; 414 415 if (nid == QRTR_EP_NID_AUTO) 416 return; 417 418 spin_lock_irqsave(&qrtr_nodes_lock, flags); 419 radix_tree_insert(&qrtr_nodes, nid, node); 420 if (node->nid == QRTR_EP_NID_AUTO) 421 node->nid = nid; 422 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 423 } 424 425 /** 426 * qrtr_endpoint_post() - post incoming data 427 * @ep: endpoint handle 428 * @data: data pointer 429 * @len: size of data in bytes 430 * 431 * Return: 0 on success; negative error code on failure 432 */ 433 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) 434 { 435 struct qrtr_node *node = ep->node; 436 const struct qrtr_hdr_v1 *v1; 437 const struct qrtr_hdr_v2 *v2; 438 struct qrtr_sock *ipc; 439 struct sk_buff *skb; 440 struct qrtr_cb *cb; 441 size_t size; 442 unsigned int ver; 443 size_t hdrlen; 444 445 if (len == 0 || len & 3) 446 return -EINVAL; 447 448 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN); 449 if (!skb) 450 return -ENOMEM; 451 452 cb = (struct qrtr_cb *)skb->cb; 453 454 /* Version field in v1 is little endian, so this works for both cases */ 455 ver = *(u8*)data; 456 457 switch (ver) { 458 case QRTR_PROTO_VER_1: 459 if (len < sizeof(*v1)) 460 goto err; 461 v1 = data; 462 hdrlen = sizeof(*v1); 463 464 cb->type = le32_to_cpu(v1->type); 465 cb->src_node = le32_to_cpu(v1->src_node_id); 466 cb->src_port = le32_to_cpu(v1->src_port_id); 467 cb->confirm_rx = !!v1->confirm_rx; 468 cb->dst_node = le32_to_cpu(v1->dst_node_id); 469 cb->dst_port = le32_to_cpu(v1->dst_port_id); 470 471 size = le32_to_cpu(v1->size); 472 break; 473 case QRTR_PROTO_VER_2: 474 if (len < sizeof(*v2)) 475 goto err; 476 v2 = data; 477 hdrlen = sizeof(*v2) + v2->optlen; 478 479 cb->type = v2->type; 480 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX); 481 cb->src_node = le16_to_cpu(v2->src_node_id); 482 cb->src_port = le16_to_cpu(v2->src_port_id); 483 cb->dst_node = le16_to_cpu(v2->dst_node_id); 484 cb->dst_port = le16_to_cpu(v2->dst_port_id); 485 486 if (cb->src_port == (u16)QRTR_PORT_CTRL) 487 cb->src_port = QRTR_PORT_CTRL; 488 if (cb->dst_port == (u16)QRTR_PORT_CTRL) 489 cb->dst_port = QRTR_PORT_CTRL; 490 491 size = le32_to_cpu(v2->size); 492 break; 493 default: 494 pr_err("qrtr: Invalid version %d\n", ver); 495 goto err; 496 } 497 498 if (!size || len != ALIGN(size, 4) + hdrlen) 499 goto err; 500 501 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA && 502 cb->type != QRTR_TYPE_RESUME_TX) 503 goto err; 504 505 skb_put_data(skb, data + hdrlen, size); 506 507 qrtr_node_assign(node, cb->src_node); 508 509 if (cb->type == QRTR_TYPE_NEW_SERVER) { 510 /* Remote node endpoint can bridge other distant nodes */ 511 const struct qrtr_ctrl_pkt *pkt; 512 513 if (size < sizeof(*pkt)) 514 goto err; 515 516 pkt = data + hdrlen; 517 qrtr_node_assign(node, le32_to_cpu(pkt->server.node)); 518 } 519 520 if (cb->type == QRTR_TYPE_RESUME_TX) { 521 qrtr_tx_resume(node, skb); 522 } else { 523 ipc = qrtr_port_lookup(cb->dst_port); 524 if (!ipc) 525 goto err; 526 527 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 528 qrtr_port_put(ipc); 529 goto err; 530 } 531 532 qrtr_port_put(ipc); 533 } 534 535 return 0; 536 537 err: 538 kfree_skb(skb); 539 return -EINVAL; 540 541 } 542 EXPORT_SYMBOL_GPL(qrtr_endpoint_post); 543 544 /** 545 * qrtr_alloc_ctrl_packet() - allocate control packet skb 546 * @pkt: reference to qrtr_ctrl_pkt pointer 547 * @flags: the type of memory to allocate 548 * 549 * Returns newly allocated sk_buff, or NULL on failure 550 * 551 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and 552 * on success returns a reference to the control packet in @pkt. 553 */ 554 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt, 555 gfp_t flags) 556 { 557 const int pkt_len = sizeof(struct qrtr_ctrl_pkt); 558 struct sk_buff *skb; 559 560 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags); 561 if (!skb) 562 return NULL; 563 564 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 565 *pkt = skb_put_zero(skb, pkt_len); 566 567 return skb; 568 } 569 570 /** 571 * qrtr_endpoint_register() - register a new endpoint 572 * @ep: endpoint to register 573 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment 574 * Return: 0 on success; negative error code on failure 575 * 576 * The specified endpoint must have the xmit function pointer set on call. 577 */ 578 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid) 579 { 580 struct qrtr_node *node; 581 582 if (!ep || !ep->xmit) 583 return -EINVAL; 584 585 node = kzalloc(sizeof(*node), GFP_KERNEL); 586 if (!node) 587 return -ENOMEM; 588 589 kref_init(&node->ref); 590 mutex_init(&node->ep_lock); 591 skb_queue_head_init(&node->rx_queue); 592 node->nid = QRTR_EP_NID_AUTO; 593 node->ep = ep; 594 595 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL); 596 mutex_init(&node->qrtr_tx_lock); 597 598 qrtr_node_assign(node, nid); 599 600 mutex_lock(&qrtr_node_lock); 601 list_add(&node->item, &qrtr_all_nodes); 602 mutex_unlock(&qrtr_node_lock); 603 ep->node = node; 604 605 return 0; 606 } 607 EXPORT_SYMBOL_GPL(qrtr_endpoint_register); 608 609 /** 610 * qrtr_endpoint_unregister - unregister endpoint 611 * @ep: endpoint to unregister 612 */ 613 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) 614 { 615 struct qrtr_node *node = ep->node; 616 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL}; 617 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL}; 618 struct radix_tree_iter iter; 619 struct qrtr_ctrl_pkt *pkt; 620 struct qrtr_tx_flow *flow; 621 struct sk_buff *skb; 622 unsigned long flags; 623 void __rcu **slot; 624 625 mutex_lock(&node->ep_lock); 626 node->ep = NULL; 627 mutex_unlock(&node->ep_lock); 628 629 /* Notify the local controller about the event */ 630 spin_lock_irqsave(&qrtr_nodes_lock, flags); 631 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { 632 if (*slot != node) 633 continue; 634 src.sq_node = iter.index; 635 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC); 636 if (skb) { 637 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); 638 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst); 639 } 640 } 641 spin_unlock_irqrestore(&qrtr_nodes_lock, flags); 642 643 /* Wake up any transmitters waiting for resume-tx from the node */ 644 mutex_lock(&node->qrtr_tx_lock); 645 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { 646 flow = *slot; 647 wake_up_interruptible_all(&flow->resume_tx); 648 } 649 mutex_unlock(&node->qrtr_tx_lock); 650 651 qrtr_node_release(node); 652 ep->node = NULL; 653 } 654 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); 655 656 /* Lookup socket by port. 657 * 658 * Callers must release with qrtr_port_put() 659 */ 660 static struct qrtr_sock *qrtr_port_lookup(int port) 661 { 662 struct qrtr_sock *ipc; 663 664 if (port == QRTR_PORT_CTRL) 665 port = 0; 666 667 rcu_read_lock(); 668 ipc = xa_load(&qrtr_ports, port); 669 if (ipc) 670 sock_hold(&ipc->sk); 671 rcu_read_unlock(); 672 673 return ipc; 674 } 675 676 /* Release acquired socket. */ 677 static void qrtr_port_put(struct qrtr_sock *ipc) 678 { 679 sock_put(&ipc->sk); 680 } 681 682 /* Remove port assignment. */ 683 static void qrtr_port_remove(struct qrtr_sock *ipc) 684 { 685 struct qrtr_ctrl_pkt *pkt; 686 struct sk_buff *skb; 687 int port = ipc->us.sq_port; 688 struct sockaddr_qrtr to; 689 690 to.sq_family = AF_QIPCRTR; 691 to.sq_node = QRTR_NODE_BCAST; 692 to.sq_port = QRTR_PORT_CTRL; 693 694 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); 695 if (skb) { 696 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT); 697 pkt->client.node = cpu_to_le32(ipc->us.sq_node); 698 pkt->client.port = cpu_to_le32(ipc->us.sq_port); 699 700 skb_set_owner_w(skb, &ipc->sk); 701 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us, 702 &to); 703 } 704 705 if (port == QRTR_PORT_CTRL) 706 port = 0; 707 708 __sock_put(&ipc->sk); 709 710 xa_erase(&qrtr_ports, port); 711 712 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we 713 * wait for it to up increment the refcount */ 714 synchronize_rcu(); 715 } 716 717 /* Assign port number to socket. 718 * 719 * Specify port in the integer pointed to by port, and it will be adjusted 720 * on return as necesssary. 721 * 722 * Port may be: 723 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] 724 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN 725 * >QRTR_MIN_EPH_SOCKET: Specified; available to all 726 */ 727 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) 728 { 729 int rc; 730 731 if (!*port) { 732 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE, 733 GFP_KERNEL); 734 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) { 735 rc = -EACCES; 736 } else if (*port == QRTR_PORT_CTRL) { 737 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL); 738 } else { 739 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL); 740 } 741 742 if (rc == -EBUSY) 743 return -EADDRINUSE; 744 else if (rc < 0) 745 return rc; 746 747 sock_hold(&ipc->sk); 748 749 return 0; 750 } 751 752 /* Reset all non-control ports */ 753 static void qrtr_reset_ports(void) 754 { 755 struct qrtr_sock *ipc; 756 unsigned long index; 757 758 rcu_read_lock(); 759 xa_for_each_start(&qrtr_ports, index, ipc, 1) { 760 sock_hold(&ipc->sk); 761 ipc->sk.sk_err = ENETRESET; 762 sk_error_report(&ipc->sk); 763 sock_put(&ipc->sk); 764 } 765 rcu_read_unlock(); 766 } 767 768 /* Bind socket to address. 769 * 770 * Socket should be locked upon call. 771 */ 772 static int __qrtr_bind(struct socket *sock, 773 const struct sockaddr_qrtr *addr, int zapped) 774 { 775 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 776 struct sock *sk = sock->sk; 777 int port; 778 int rc; 779 780 /* rebinding ok */ 781 if (!zapped && addr->sq_port == ipc->us.sq_port) 782 return 0; 783 784 port = addr->sq_port; 785 rc = qrtr_port_assign(ipc, &port); 786 if (rc) 787 return rc; 788 789 /* unbind previous, if any */ 790 if (!zapped) 791 qrtr_port_remove(ipc); 792 ipc->us.sq_port = port; 793 794 sock_reset_flag(sk, SOCK_ZAPPED); 795 796 /* Notify all open ports about the new controller */ 797 if (port == QRTR_PORT_CTRL) 798 qrtr_reset_ports(); 799 800 return 0; 801 } 802 803 /* Auto bind to an ephemeral port. */ 804 static int qrtr_autobind(struct socket *sock) 805 { 806 struct sock *sk = sock->sk; 807 struct sockaddr_qrtr addr; 808 809 if (!sock_flag(sk, SOCK_ZAPPED)) 810 return 0; 811 812 addr.sq_family = AF_QIPCRTR; 813 addr.sq_node = qrtr_local_nid; 814 addr.sq_port = 0; 815 816 return __qrtr_bind(sock, &addr, 1); 817 } 818 819 /* Bind socket to specified sockaddr. */ 820 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) 821 { 822 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 823 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 824 struct sock *sk = sock->sk; 825 int rc; 826 827 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 828 return -EINVAL; 829 830 if (addr->sq_node != ipc->us.sq_node) 831 return -EINVAL; 832 833 lock_sock(sk); 834 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); 835 release_sock(sk); 836 837 return rc; 838 } 839 840 /* Queue packet to local peer socket. */ 841 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, 842 int type, struct sockaddr_qrtr *from, 843 struct sockaddr_qrtr *to) 844 { 845 struct qrtr_sock *ipc; 846 struct qrtr_cb *cb; 847 848 ipc = qrtr_port_lookup(to->sq_port); 849 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ 850 if (ipc) 851 qrtr_port_put(ipc); 852 kfree_skb(skb); 853 return -ENODEV; 854 } 855 856 cb = (struct qrtr_cb *)skb->cb; 857 cb->src_node = from->sq_node; 858 cb->src_port = from->sq_port; 859 860 if (sock_queue_rcv_skb(&ipc->sk, skb)) { 861 qrtr_port_put(ipc); 862 kfree_skb(skb); 863 return -ENOSPC; 864 } 865 866 qrtr_port_put(ipc); 867 868 return 0; 869 } 870 871 /* Queue packet for broadcast. */ 872 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, 873 int type, struct sockaddr_qrtr *from, 874 struct sockaddr_qrtr *to) 875 { 876 struct sk_buff *skbn; 877 878 mutex_lock(&qrtr_node_lock); 879 list_for_each_entry(node, &qrtr_all_nodes, item) { 880 skbn = skb_clone(skb, GFP_KERNEL); 881 if (!skbn) 882 break; 883 skb_set_owner_w(skbn, skb->sk); 884 qrtr_node_enqueue(node, skbn, type, from, to); 885 } 886 mutex_unlock(&qrtr_node_lock); 887 888 qrtr_local_enqueue(NULL, skb, type, from, to); 889 890 return 0; 891 } 892 893 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 894 { 895 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 896 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int, 897 struct sockaddr_qrtr *, struct sockaddr_qrtr *); 898 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA); 899 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 900 struct sock *sk = sock->sk; 901 struct qrtr_node *node; 902 struct sk_buff *skb; 903 size_t plen; 904 u32 type; 905 int rc; 906 907 if (msg->msg_flags & ~(MSG_DONTWAIT)) 908 return -EINVAL; 909 910 if (len > 65535) 911 return -EMSGSIZE; 912 913 lock_sock(sk); 914 915 if (addr) { 916 if (msg->msg_namelen < sizeof(*addr)) { 917 release_sock(sk); 918 return -EINVAL; 919 } 920 921 if (addr->sq_family != AF_QIPCRTR) { 922 release_sock(sk); 923 return -EINVAL; 924 } 925 926 rc = qrtr_autobind(sock); 927 if (rc) { 928 release_sock(sk); 929 return rc; 930 } 931 } else if (sk->sk_state == TCP_ESTABLISHED) { 932 addr = &ipc->peer; 933 } else { 934 release_sock(sk); 935 return -ENOTCONN; 936 } 937 938 node = NULL; 939 if (addr->sq_node == QRTR_NODE_BCAST) { 940 if (addr->sq_port != QRTR_PORT_CTRL && 941 qrtr_local_nid != QRTR_NODE_BCAST) { 942 release_sock(sk); 943 return -ENOTCONN; 944 } 945 enqueue_fn = qrtr_bcast_enqueue; 946 } else if (addr->sq_node == ipc->us.sq_node) { 947 enqueue_fn = qrtr_local_enqueue; 948 } else { 949 node = qrtr_node_lookup(addr->sq_node); 950 if (!node) { 951 release_sock(sk); 952 return -ECONNRESET; 953 } 954 enqueue_fn = qrtr_node_enqueue; 955 } 956 957 plen = (len + 3) & ~3; 958 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE, 959 msg->msg_flags & MSG_DONTWAIT, &rc); 960 if (!skb) { 961 rc = -ENOMEM; 962 goto out_node; 963 } 964 965 skb_reserve(skb, QRTR_HDR_MAX_SIZE); 966 967 rc = memcpy_from_msg(skb_put(skb, len), msg, len); 968 if (rc) { 969 kfree_skb(skb); 970 goto out_node; 971 } 972 973 if (ipc->us.sq_port == QRTR_PORT_CTRL) { 974 if (len < 4) { 975 rc = -EINVAL; 976 kfree_skb(skb); 977 goto out_node; 978 } 979 980 /* control messages already require the type as 'command' */ 981 skb_copy_bits(skb, 0, &qrtr_type, 4); 982 } 983 984 type = le32_to_cpu(qrtr_type); 985 rc = enqueue_fn(node, skb, type, &ipc->us, addr); 986 if (rc >= 0) 987 rc = len; 988 989 out_node: 990 qrtr_node_release(node); 991 release_sock(sk); 992 993 return rc; 994 } 995 996 static int qrtr_send_resume_tx(struct qrtr_cb *cb) 997 { 998 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port }; 999 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port }; 1000 struct qrtr_ctrl_pkt *pkt; 1001 struct qrtr_node *node; 1002 struct sk_buff *skb; 1003 int ret; 1004 1005 node = qrtr_node_lookup(remote.sq_node); 1006 if (!node) 1007 return -EINVAL; 1008 1009 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); 1010 if (!skb) 1011 return -ENOMEM; 1012 1013 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX); 1014 pkt->client.node = cpu_to_le32(cb->dst_node); 1015 pkt->client.port = cpu_to_le32(cb->dst_port); 1016 1017 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote); 1018 1019 qrtr_node_release(node); 1020 1021 return ret; 1022 } 1023 1024 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, 1025 size_t size, int flags) 1026 { 1027 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); 1028 struct sock *sk = sock->sk; 1029 struct sk_buff *skb; 1030 struct qrtr_cb *cb; 1031 int copied, rc; 1032 1033 lock_sock(sk); 1034 1035 if (sock_flag(sk, SOCK_ZAPPED)) { 1036 release_sock(sk); 1037 return -EADDRNOTAVAIL; 1038 } 1039 1040 skb = skb_recv_datagram(sk, flags, &rc); 1041 if (!skb) { 1042 release_sock(sk); 1043 return rc; 1044 } 1045 cb = (struct qrtr_cb *)skb->cb; 1046 1047 copied = skb->len; 1048 if (copied > size) { 1049 copied = size; 1050 msg->msg_flags |= MSG_TRUNC; 1051 } 1052 1053 rc = skb_copy_datagram_msg(skb, 0, msg, copied); 1054 if (rc < 0) 1055 goto out; 1056 rc = copied; 1057 1058 if (addr) { 1059 /* There is an anonymous 2-byte hole after sq_family, 1060 * make sure to clear it. 1061 */ 1062 memset(addr, 0, sizeof(*addr)); 1063 1064 addr->sq_family = AF_QIPCRTR; 1065 addr->sq_node = cb->src_node; 1066 addr->sq_port = cb->src_port; 1067 msg->msg_namelen = sizeof(*addr); 1068 } 1069 1070 out: 1071 if (cb->confirm_rx) 1072 qrtr_send_resume_tx(cb); 1073 1074 skb_free_datagram(sk, skb); 1075 release_sock(sk); 1076 1077 return rc; 1078 } 1079 1080 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, 1081 int len, int flags) 1082 { 1083 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); 1084 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1085 struct sock *sk = sock->sk; 1086 int rc; 1087 1088 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) 1089 return -EINVAL; 1090 1091 lock_sock(sk); 1092 1093 sk->sk_state = TCP_CLOSE; 1094 sock->state = SS_UNCONNECTED; 1095 1096 rc = qrtr_autobind(sock); 1097 if (rc) { 1098 release_sock(sk); 1099 return rc; 1100 } 1101 1102 ipc->peer = *addr; 1103 sock->state = SS_CONNECTED; 1104 sk->sk_state = TCP_ESTABLISHED; 1105 1106 release_sock(sk); 1107 1108 return 0; 1109 } 1110 1111 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, 1112 int peer) 1113 { 1114 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1115 struct sockaddr_qrtr qaddr; 1116 struct sock *sk = sock->sk; 1117 1118 lock_sock(sk); 1119 if (peer) { 1120 if (sk->sk_state != TCP_ESTABLISHED) { 1121 release_sock(sk); 1122 return -ENOTCONN; 1123 } 1124 1125 qaddr = ipc->peer; 1126 } else { 1127 qaddr = ipc->us; 1128 } 1129 release_sock(sk); 1130 1131 qaddr.sq_family = AF_QIPCRTR; 1132 1133 memcpy(saddr, &qaddr, sizeof(qaddr)); 1134 1135 return sizeof(qaddr); 1136 } 1137 1138 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1139 { 1140 void __user *argp = (void __user *)arg; 1141 struct qrtr_sock *ipc = qrtr_sk(sock->sk); 1142 struct sock *sk = sock->sk; 1143 struct sockaddr_qrtr *sq; 1144 struct sk_buff *skb; 1145 struct ifreq ifr; 1146 long len = 0; 1147 int rc = 0; 1148 1149 lock_sock(sk); 1150 1151 switch (cmd) { 1152 case TIOCOUTQ: 1153 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1154 if (len < 0) 1155 len = 0; 1156 rc = put_user(len, (int __user *)argp); 1157 break; 1158 case TIOCINQ: 1159 skb = skb_peek(&sk->sk_receive_queue); 1160 if (skb) 1161 len = skb->len; 1162 rc = put_user(len, (int __user *)argp); 1163 break; 1164 case SIOCGIFADDR: 1165 if (get_user_ifreq(&ifr, NULL, argp)) { 1166 rc = -EFAULT; 1167 break; 1168 } 1169 1170 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; 1171 *sq = ipc->us; 1172 if (put_user_ifreq(&ifr, argp)) { 1173 rc = -EFAULT; 1174 break; 1175 } 1176 break; 1177 case SIOCADDRT: 1178 case SIOCDELRT: 1179 case SIOCSIFADDR: 1180 case SIOCGIFDSTADDR: 1181 case SIOCSIFDSTADDR: 1182 case SIOCGIFBRDADDR: 1183 case SIOCSIFBRDADDR: 1184 case SIOCGIFNETMASK: 1185 case SIOCSIFNETMASK: 1186 rc = -EINVAL; 1187 break; 1188 default: 1189 rc = -ENOIOCTLCMD; 1190 break; 1191 } 1192 1193 release_sock(sk); 1194 1195 return rc; 1196 } 1197 1198 static int qrtr_release(struct socket *sock) 1199 { 1200 struct sock *sk = sock->sk; 1201 struct qrtr_sock *ipc; 1202 1203 if (!sk) 1204 return 0; 1205 1206 lock_sock(sk); 1207 1208 ipc = qrtr_sk(sk); 1209 sk->sk_shutdown = SHUTDOWN_MASK; 1210 if (!sock_flag(sk, SOCK_DEAD)) 1211 sk->sk_state_change(sk); 1212 1213 sock_set_flag(sk, SOCK_DEAD); 1214 sock_orphan(sk); 1215 sock->sk = NULL; 1216 1217 if (!sock_flag(sk, SOCK_ZAPPED)) 1218 qrtr_port_remove(ipc); 1219 1220 skb_queue_purge(&sk->sk_receive_queue); 1221 1222 release_sock(sk); 1223 sock_put(sk); 1224 1225 return 0; 1226 } 1227 1228 static const struct proto_ops qrtr_proto_ops = { 1229 .owner = THIS_MODULE, 1230 .family = AF_QIPCRTR, 1231 .bind = qrtr_bind, 1232 .connect = qrtr_connect, 1233 .socketpair = sock_no_socketpair, 1234 .accept = sock_no_accept, 1235 .listen = sock_no_listen, 1236 .sendmsg = qrtr_sendmsg, 1237 .recvmsg = qrtr_recvmsg, 1238 .getname = qrtr_getname, 1239 .ioctl = qrtr_ioctl, 1240 .gettstamp = sock_gettstamp, 1241 .poll = datagram_poll, 1242 .shutdown = sock_no_shutdown, 1243 .release = qrtr_release, 1244 .mmap = sock_no_mmap, 1245 .sendpage = sock_no_sendpage, 1246 }; 1247 1248 static struct proto qrtr_proto = { 1249 .name = "QIPCRTR", 1250 .owner = THIS_MODULE, 1251 .obj_size = sizeof(struct qrtr_sock), 1252 }; 1253 1254 static int qrtr_create(struct net *net, struct socket *sock, 1255 int protocol, int kern) 1256 { 1257 struct qrtr_sock *ipc; 1258 struct sock *sk; 1259 1260 if (sock->type != SOCK_DGRAM) 1261 return -EPROTOTYPE; 1262 1263 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); 1264 if (!sk) 1265 return -ENOMEM; 1266 1267 sock_set_flag(sk, SOCK_ZAPPED); 1268 1269 sock_init_data(sock, sk); 1270 sock->ops = &qrtr_proto_ops; 1271 1272 ipc = qrtr_sk(sk); 1273 ipc->us.sq_family = AF_QIPCRTR; 1274 ipc->us.sq_node = qrtr_local_nid; 1275 ipc->us.sq_port = 0; 1276 1277 return 0; 1278 } 1279 1280 static const struct net_proto_family qrtr_family = { 1281 .owner = THIS_MODULE, 1282 .family = AF_QIPCRTR, 1283 .create = qrtr_create, 1284 }; 1285 1286 static int __init qrtr_proto_init(void) 1287 { 1288 int rc; 1289 1290 rc = proto_register(&qrtr_proto, 1); 1291 if (rc) 1292 return rc; 1293 1294 rc = sock_register(&qrtr_family); 1295 if (rc) 1296 goto err_proto; 1297 1298 rc = qrtr_ns_init(); 1299 if (rc) 1300 goto err_sock; 1301 1302 return 0; 1303 1304 err_sock: 1305 sock_unregister(qrtr_family.family); 1306 err_proto: 1307 proto_unregister(&qrtr_proto); 1308 return rc; 1309 } 1310 postcore_initcall(qrtr_proto_init); 1311 1312 static void __exit qrtr_proto_fini(void) 1313 { 1314 qrtr_ns_remove(); 1315 sock_unregister(qrtr_family.family); 1316 proto_unregister(&qrtr_proto); 1317 } 1318 module_exit(qrtr_proto_fini); 1319 1320 MODULE_DESCRIPTION("Qualcomm IPC-router driver"); 1321 MODULE_LICENSE("GPL v2"); 1322 MODULE_ALIAS_NETPROTO(PF_QIPCRTR); 1323