1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #include <linux/types.h> 50 #include <linux/mm.h> 51 #include <linux/capability.h> 52 #include <linux/fcntl.h> 53 #include <linux/socket.h> 54 #include <linux/in.h> 55 #include <linux/inet.h> 56 #include <linux/netdevice.h> 57 #include <linux/if_packet.h> 58 #include <linux/wireless.h> 59 #include <linux/kernel.h> 60 #include <linux/kmod.h> 61 #include <linux/slab.h> 62 #include <linux/vmalloc.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <linux/skbuff.h> 67 #include <net/sock.h> 68 #include <linux/errno.h> 69 #include <linux/timer.h> 70 #include <linux/uaccess.h> 71 #include <asm/ioctls.h> 72 #include <asm/page.h> 73 #include <asm/cacheflush.h> 74 #include <asm/io.h> 75 #include <linux/proc_fs.h> 76 #include <linux/seq_file.h> 77 #include <linux/poll.h> 78 #include <linux/module.h> 79 #include <linux/init.h> 80 #include <linux/mutex.h> 81 #include <linux/if_vlan.h> 82 #include <linux/virtio_net.h> 83 #include <linux/errqueue.h> 84 #include <linux/net_tstamp.h> 85 #include <linux/percpu.h> 86 #ifdef CONFIG_INET 87 #include <net/inet_common.h> 88 #endif 89 #include <linux/bpf.h> 90 #include <net/compat.h> 91 92 #include "internal.h" 93 94 /* 95 Assumptions: 96 - if device has no dev->hard_header routine, it adds and removes ll header 97 inside itself. In this case ll header is invisible outside of device, 98 but higher levels still should reserve dev->hard_header_len. 99 Some devices are enough clever to reallocate skb, when header 100 will not fit to reserved space (tunnel), another ones are silly 101 (PPP). 102 - packet socket receives packets with pulled ll header, 103 so that SOCK_RAW should push it back. 104 105 On receive: 106 ----------- 107 108 Incoming, dev->hard_header!=NULL 109 mac_header -> ll header 110 data -> data 111 112 Outgoing, dev->hard_header!=NULL 113 mac_header -> ll header 114 data -> ll header 115 116 Incoming, dev->hard_header==NULL 117 mac_header -> UNKNOWN position. It is very likely, that it points to ll 118 header. PPP makes it, that is wrong, because introduce 119 assymetry between rx and tx paths. 120 data -> data 121 122 Outgoing, dev->hard_header==NULL 123 mac_header -> data. ll header is still not built! 124 data -> data 125 126 Resume 127 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 128 129 130 On transmit: 131 ------------ 132 133 dev->hard_header != NULL 134 mac_header -> ll header 135 data -> ll header 136 137 dev->hard_header == NULL (ll header is added by device, we cannot control it) 138 mac_header -> data 139 data -> data 140 141 We should set nh.raw on output to correct posistion, 142 packet classifier depends on it. 143 */ 144 145 /* Private packet socket structures. */ 146 147 /* identical to struct packet_mreq except it has 148 * a longer address field. 149 */ 150 struct packet_mreq_max { 151 int mr_ifindex; 152 unsigned short mr_type; 153 unsigned short mr_alen; 154 unsigned char mr_address[MAX_ADDR_LEN]; 155 }; 156 157 union tpacket_uhdr { 158 struct tpacket_hdr *h1; 159 struct tpacket2_hdr *h2; 160 struct tpacket3_hdr *h3; 161 void *raw; 162 }; 163 164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 165 int closing, int tx_ring); 166 167 #define V3_ALIGNMENT (8) 168 169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 170 171 #define BLK_PLUS_PRIV(sz_of_priv) \ 172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 173 174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 181 182 struct packet_sock; 183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 184 struct packet_type *pt, struct net_device *orig_dev); 185 186 static void *packet_previous_frame(struct packet_sock *po, 187 struct packet_ring_buffer *rb, 188 int status); 189 static void packet_increment_head(struct packet_ring_buffer *buff); 190 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 192 struct packet_sock *); 193 static void prb_retire_current_block(struct tpacket_kbdq_core *, 194 struct packet_sock *, unsigned int status); 195 static int prb_queue_frozen(struct tpacket_kbdq_core *); 196 static void prb_open_block(struct tpacket_kbdq_core *, 197 struct tpacket_block_desc *); 198 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 201 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 202 struct tpacket3_hdr *); 203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 204 struct tpacket3_hdr *); 205 static void packet_flush_mclist(struct sock *sk); 206 static u16 packet_pick_tx_queue(struct sk_buff *skb); 207 208 struct packet_skb_cb { 209 union { 210 struct sockaddr_pkt pkt; 211 union { 212 /* Trick: alias skb original length with 213 * ll.sll_family and ll.protocol in order 214 * to save room. 215 */ 216 unsigned int origlen; 217 struct sockaddr_ll ll; 218 }; 219 } sa; 220 }; 221 222 #define vio_le() virtio_legacy_is_little_endian() 223 224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 225 226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 227 #define GET_PBLOCK_DESC(x, bid) \ 228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 231 #define GET_NEXT_PRB_BLK_NUM(x) \ 232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 233 ((x)->kactive_blk_num+1) : 0) 234 235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 236 static void __fanout_link(struct sock *sk, struct packet_sock *po); 237 238 static int packet_direct_xmit(struct sk_buff *skb) 239 { 240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 241 } 242 243 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 244 { 245 struct net_device *dev; 246 247 rcu_read_lock(); 248 dev = rcu_dereference(po->cached_dev); 249 if (likely(dev)) 250 dev_hold(dev); 251 rcu_read_unlock(); 252 253 return dev; 254 } 255 256 static void packet_cached_dev_assign(struct packet_sock *po, 257 struct net_device *dev) 258 { 259 rcu_assign_pointer(po->cached_dev, dev); 260 } 261 262 static void packet_cached_dev_reset(struct packet_sock *po) 263 { 264 RCU_INIT_POINTER(po->cached_dev, NULL); 265 } 266 267 static bool packet_use_direct_xmit(const struct packet_sock *po) 268 { 269 return po->xmit == packet_direct_xmit; 270 } 271 272 static u16 packet_pick_tx_queue(struct sk_buff *skb) 273 { 274 struct net_device *dev = skb->dev; 275 const struct net_device_ops *ops = dev->netdev_ops; 276 int cpu = raw_smp_processor_id(); 277 u16 queue_index; 278 279 #ifdef CONFIG_XPS 280 skb->sender_cpu = cpu + 1; 281 #endif 282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 283 if (ops->ndo_select_queue) { 284 queue_index = ops->ndo_select_queue(dev, skb, NULL); 285 queue_index = netdev_cap_txqueue(dev, queue_index); 286 } else { 287 queue_index = netdev_pick_tx(dev, skb, NULL); 288 } 289 290 return queue_index; 291 } 292 293 /* __register_prot_hook must be invoked through register_prot_hook 294 * or from a context in which asynchronous accesses to the packet 295 * socket is not possible (packet_create()). 296 */ 297 static void __register_prot_hook(struct sock *sk) 298 { 299 struct packet_sock *po = pkt_sk(sk); 300 301 if (!po->running) { 302 if (po->fanout) 303 __fanout_link(sk, po); 304 else 305 dev_add_pack(&po->prot_hook); 306 307 sock_hold(sk); 308 po->running = 1; 309 } 310 } 311 312 static void register_prot_hook(struct sock *sk) 313 { 314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 315 __register_prot_hook(sk); 316 } 317 318 /* If the sync parameter is true, we will temporarily drop 319 * the po->bind_lock and do a synchronize_net to make sure no 320 * asynchronous packet processing paths still refer to the elements 321 * of po->prot_hook. If the sync parameter is false, it is the 322 * callers responsibility to take care of this. 323 */ 324 static void __unregister_prot_hook(struct sock *sk, bool sync) 325 { 326 struct packet_sock *po = pkt_sk(sk); 327 328 lockdep_assert_held_once(&po->bind_lock); 329 330 po->running = 0; 331 332 if (po->fanout) 333 __fanout_unlink(sk, po); 334 else 335 __dev_remove_pack(&po->prot_hook); 336 337 __sock_put(sk); 338 339 if (sync) { 340 spin_unlock(&po->bind_lock); 341 synchronize_net(); 342 spin_lock(&po->bind_lock); 343 } 344 } 345 346 static void unregister_prot_hook(struct sock *sk, bool sync) 347 { 348 struct packet_sock *po = pkt_sk(sk); 349 350 if (po->running) 351 __unregister_prot_hook(sk, sync); 352 } 353 354 static inline struct page * __pure pgv_to_page(void *addr) 355 { 356 if (is_vmalloc_addr(addr)) 357 return vmalloc_to_page(addr); 358 return virt_to_page(addr); 359 } 360 361 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 362 { 363 union tpacket_uhdr h; 364 365 h.raw = frame; 366 switch (po->tp_version) { 367 case TPACKET_V1: 368 h.h1->tp_status = status; 369 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 370 break; 371 case TPACKET_V2: 372 h.h2->tp_status = status; 373 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 374 break; 375 case TPACKET_V3: 376 h.h3->tp_status = status; 377 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 378 break; 379 default: 380 WARN(1, "TPACKET version not supported.\n"); 381 BUG(); 382 } 383 384 smp_wmb(); 385 } 386 387 static int __packet_get_status(const struct packet_sock *po, void *frame) 388 { 389 union tpacket_uhdr h; 390 391 smp_rmb(); 392 393 h.raw = frame; 394 switch (po->tp_version) { 395 case TPACKET_V1: 396 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 397 return h.h1->tp_status; 398 case TPACKET_V2: 399 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 400 return h.h2->tp_status; 401 case TPACKET_V3: 402 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 403 return h.h3->tp_status; 404 default: 405 WARN(1, "TPACKET version not supported.\n"); 406 BUG(); 407 return 0; 408 } 409 } 410 411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 412 unsigned int flags) 413 { 414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 415 416 if (shhwtstamps && 417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 418 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 419 return TP_STATUS_TS_RAW_HARDWARE; 420 421 if (ktime_to_timespec64_cond(skb->tstamp, ts)) 422 return TP_STATUS_TS_SOFTWARE; 423 424 return 0; 425 } 426 427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 428 struct sk_buff *skb) 429 { 430 union tpacket_uhdr h; 431 struct timespec64 ts; 432 __u32 ts_status; 433 434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 435 return 0; 436 437 h.raw = frame; 438 /* 439 * versions 1 through 3 overflow the timestamps in y2106, since they 440 * all store the seconds in a 32-bit unsigned integer. 441 * If we create a version 4, that should have a 64-bit timestamp, 442 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 443 * nanoseconds. 444 */ 445 switch (po->tp_version) { 446 case TPACKET_V1: 447 h.h1->tp_sec = ts.tv_sec; 448 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 449 break; 450 case TPACKET_V2: 451 h.h2->tp_sec = ts.tv_sec; 452 h.h2->tp_nsec = ts.tv_nsec; 453 break; 454 case TPACKET_V3: 455 h.h3->tp_sec = ts.tv_sec; 456 h.h3->tp_nsec = ts.tv_nsec; 457 break; 458 default: 459 WARN(1, "TPACKET version not supported.\n"); 460 BUG(); 461 } 462 463 /* one flush is safe, as both fields always lie on the same cacheline */ 464 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 465 smp_wmb(); 466 467 return ts_status; 468 } 469 470 static void *packet_lookup_frame(const struct packet_sock *po, 471 const struct packet_ring_buffer *rb, 472 unsigned int position, 473 int status) 474 { 475 unsigned int pg_vec_pos, frame_offset; 476 union tpacket_uhdr h; 477 478 pg_vec_pos = position / rb->frames_per_block; 479 frame_offset = position % rb->frames_per_block; 480 481 h.raw = rb->pg_vec[pg_vec_pos].buffer + 482 (frame_offset * rb->frame_size); 483 484 if (status != __packet_get_status(po, h.raw)) 485 return NULL; 486 487 return h.raw; 488 } 489 490 static void *packet_current_frame(struct packet_sock *po, 491 struct packet_ring_buffer *rb, 492 int status) 493 { 494 return packet_lookup_frame(po, rb, rb->head, status); 495 } 496 497 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 498 { 499 del_timer_sync(&pkc->retire_blk_timer); 500 } 501 502 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 503 struct sk_buff_head *rb_queue) 504 { 505 struct tpacket_kbdq_core *pkc; 506 507 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 508 509 spin_lock_bh(&rb_queue->lock); 510 pkc->delete_blk_timer = 1; 511 spin_unlock_bh(&rb_queue->lock); 512 513 prb_del_retire_blk_timer(pkc); 514 } 515 516 static void prb_setup_retire_blk_timer(struct packet_sock *po) 517 { 518 struct tpacket_kbdq_core *pkc; 519 520 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 521 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 522 0); 523 pkc->retire_blk_timer.expires = jiffies; 524 } 525 526 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 527 int blk_size_in_bytes) 528 { 529 struct net_device *dev; 530 unsigned int mbits, div; 531 struct ethtool_link_ksettings ecmd; 532 int err; 533 534 rtnl_lock(); 535 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 536 if (unlikely(!dev)) { 537 rtnl_unlock(); 538 return DEFAULT_PRB_RETIRE_TOV; 539 } 540 err = __ethtool_get_link_ksettings(dev, &ecmd); 541 rtnl_unlock(); 542 if (err) 543 return DEFAULT_PRB_RETIRE_TOV; 544 545 /* If the link speed is so slow you don't really 546 * need to worry about perf anyways 547 */ 548 if (ecmd.base.speed < SPEED_1000 || 549 ecmd.base.speed == SPEED_UNKNOWN) 550 return DEFAULT_PRB_RETIRE_TOV; 551 552 div = ecmd.base.speed / 1000; 553 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 554 555 if (div) 556 mbits /= div; 557 558 if (div) 559 return mbits + 1; 560 return mbits; 561 } 562 563 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 564 union tpacket_req_u *req_u) 565 { 566 p1->feature_req_word = req_u->req3.tp_feature_req_word; 567 } 568 569 static void init_prb_bdqc(struct packet_sock *po, 570 struct packet_ring_buffer *rb, 571 struct pgv *pg_vec, 572 union tpacket_req_u *req_u) 573 { 574 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 575 struct tpacket_block_desc *pbd; 576 577 memset(p1, 0x0, sizeof(*p1)); 578 579 p1->knxt_seq_num = 1; 580 p1->pkbdq = pg_vec; 581 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 582 p1->pkblk_start = pg_vec[0].buffer; 583 p1->kblk_size = req_u->req3.tp_block_size; 584 p1->knum_blocks = req_u->req3.tp_block_nr; 585 p1->hdrlen = po->tp_hdrlen; 586 p1->version = po->tp_version; 587 p1->last_kactive_blk_num = 0; 588 po->stats.stats3.tp_freeze_q_cnt = 0; 589 if (req_u->req3.tp_retire_blk_tov) 590 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 591 else 592 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 593 req_u->req3.tp_block_size); 594 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 595 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 596 597 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 598 prb_init_ft_ops(p1, req_u); 599 prb_setup_retire_blk_timer(po); 600 prb_open_block(p1, pbd); 601 } 602 603 /* Do NOT update the last_blk_num first. 604 * Assumes sk_buff_head lock is held. 605 */ 606 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 607 { 608 mod_timer(&pkc->retire_blk_timer, 609 jiffies + pkc->tov_in_jiffies); 610 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 611 } 612 613 /* 614 * Timer logic: 615 * 1) We refresh the timer only when we open a block. 616 * By doing this we don't waste cycles refreshing the timer 617 * on packet-by-packet basis. 618 * 619 * With a 1MB block-size, on a 1Gbps line, it will take 620 * i) ~8 ms to fill a block + ii) memcpy etc. 621 * In this cut we are not accounting for the memcpy time. 622 * 623 * So, if the user sets the 'tmo' to 10ms then the timer 624 * will never fire while the block is still getting filled 625 * (which is what we want). However, the user could choose 626 * to close a block early and that's fine. 627 * 628 * But when the timer does fire, we check whether or not to refresh it. 629 * Since the tmo granularity is in msecs, it is not too expensive 630 * to refresh the timer, lets say every '8' msecs. 631 * Either the user can set the 'tmo' or we can derive it based on 632 * a) line-speed and b) block-size. 633 * prb_calc_retire_blk_tmo() calculates the tmo. 634 * 635 */ 636 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 637 { 638 struct packet_sock *po = 639 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 640 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 641 unsigned int frozen; 642 struct tpacket_block_desc *pbd; 643 644 spin_lock(&po->sk.sk_receive_queue.lock); 645 646 frozen = prb_queue_frozen(pkc); 647 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 648 649 if (unlikely(pkc->delete_blk_timer)) 650 goto out; 651 652 /* We only need to plug the race when the block is partially filled. 653 * tpacket_rcv: 654 * lock(); increment BLOCK_NUM_PKTS; unlock() 655 * copy_bits() is in progress ... 656 * timer fires on other cpu: 657 * we can't retire the current block because copy_bits 658 * is in progress. 659 * 660 */ 661 if (BLOCK_NUM_PKTS(pbd)) { 662 while (atomic_read(&pkc->blk_fill_in_prog)) { 663 /* Waiting for skb_copy_bits to finish... */ 664 cpu_relax(); 665 } 666 } 667 668 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 669 if (!frozen) { 670 if (!BLOCK_NUM_PKTS(pbd)) { 671 /* An empty block. Just refresh the timer. */ 672 goto refresh_timer; 673 } 674 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 675 if (!prb_dispatch_next_block(pkc, po)) 676 goto refresh_timer; 677 else 678 goto out; 679 } else { 680 /* Case 1. Queue was frozen because user-space was 681 * lagging behind. 682 */ 683 if (prb_curr_blk_in_use(pbd)) { 684 /* 685 * Ok, user-space is still behind. 686 * So just refresh the timer. 687 */ 688 goto refresh_timer; 689 } else { 690 /* Case 2. queue was frozen,user-space caught up, 691 * now the link went idle && the timer fired. 692 * We don't have a block to close.So we open this 693 * block and restart the timer. 694 * opening a block thaws the queue,restarts timer 695 * Thawing/timer-refresh is a side effect. 696 */ 697 prb_open_block(pkc, pbd); 698 goto out; 699 } 700 } 701 } 702 703 refresh_timer: 704 _prb_refresh_rx_retire_blk_timer(pkc); 705 706 out: 707 spin_unlock(&po->sk.sk_receive_queue.lock); 708 } 709 710 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 711 struct tpacket_block_desc *pbd1, __u32 status) 712 { 713 /* Flush everything minus the block header */ 714 715 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 716 u8 *start, *end; 717 718 start = (u8 *)pbd1; 719 720 /* Skip the block header(we know header WILL fit in 4K) */ 721 start += PAGE_SIZE; 722 723 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 724 for (; start < end; start += PAGE_SIZE) 725 flush_dcache_page(pgv_to_page(start)); 726 727 smp_wmb(); 728 #endif 729 730 /* Now update the block status. */ 731 732 BLOCK_STATUS(pbd1) = status; 733 734 /* Flush the block header */ 735 736 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 737 start = (u8 *)pbd1; 738 flush_dcache_page(pgv_to_page(start)); 739 740 smp_wmb(); 741 #endif 742 } 743 744 /* 745 * Side effect: 746 * 747 * 1) flush the block 748 * 2) Increment active_blk_num 749 * 750 * Note:We DONT refresh the timer on purpose. 751 * Because almost always the next block will be opened. 752 */ 753 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 754 struct tpacket_block_desc *pbd1, 755 struct packet_sock *po, unsigned int stat) 756 { 757 __u32 status = TP_STATUS_USER | stat; 758 759 struct tpacket3_hdr *last_pkt; 760 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 761 struct sock *sk = &po->sk; 762 763 if (atomic_read(&po->tp_drops)) 764 status |= TP_STATUS_LOSING; 765 766 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 767 last_pkt->tp_next_offset = 0; 768 769 /* Get the ts of the last pkt */ 770 if (BLOCK_NUM_PKTS(pbd1)) { 771 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 772 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 773 } else { 774 /* Ok, we tmo'd - so get the current time. 775 * 776 * It shouldn't really happen as we don't close empty 777 * blocks. See prb_retire_rx_blk_timer_expired(). 778 */ 779 struct timespec64 ts; 780 ktime_get_real_ts64(&ts); 781 h1->ts_last_pkt.ts_sec = ts.tv_sec; 782 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 783 } 784 785 smp_wmb(); 786 787 /* Flush the block */ 788 prb_flush_block(pkc1, pbd1, status); 789 790 sk->sk_data_ready(sk); 791 792 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 793 } 794 795 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 796 { 797 pkc->reset_pending_on_curr_blk = 0; 798 } 799 800 /* 801 * Side effect of opening a block: 802 * 803 * 1) prb_queue is thawed. 804 * 2) retire_blk_timer is refreshed. 805 * 806 */ 807 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 808 struct tpacket_block_desc *pbd1) 809 { 810 struct timespec64 ts; 811 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 812 813 smp_rmb(); 814 815 /* We could have just memset this but we will lose the 816 * flexibility of making the priv area sticky 817 */ 818 819 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 820 BLOCK_NUM_PKTS(pbd1) = 0; 821 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 822 823 ktime_get_real_ts64(&ts); 824 825 h1->ts_first_pkt.ts_sec = ts.tv_sec; 826 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 827 828 pkc1->pkblk_start = (char *)pbd1; 829 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 830 831 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 832 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 833 834 pbd1->version = pkc1->version; 835 pkc1->prev = pkc1->nxt_offset; 836 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 837 838 prb_thaw_queue(pkc1); 839 _prb_refresh_rx_retire_blk_timer(pkc1); 840 841 smp_wmb(); 842 } 843 844 /* 845 * Queue freeze logic: 846 * 1) Assume tp_block_nr = 8 blocks. 847 * 2) At time 't0', user opens Rx ring. 848 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 849 * 4) user-space is either sleeping or processing block '0'. 850 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 851 * it will close block-7,loop around and try to fill block '0'. 852 * call-flow: 853 * __packet_lookup_frame_in_block 854 * prb_retire_current_block() 855 * prb_dispatch_next_block() 856 * |->(BLOCK_STATUS == USER) evaluates to true 857 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 858 * 6) Now there are two cases: 859 * 6.1) Link goes idle right after the queue is frozen. 860 * But remember, the last open_block() refreshed the timer. 861 * When this timer expires,it will refresh itself so that we can 862 * re-open block-0 in near future. 863 * 6.2) Link is busy and keeps on receiving packets. This is a simple 864 * case and __packet_lookup_frame_in_block will check if block-0 865 * is free and can now be re-used. 866 */ 867 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 868 struct packet_sock *po) 869 { 870 pkc->reset_pending_on_curr_blk = 1; 871 po->stats.stats3.tp_freeze_q_cnt++; 872 } 873 874 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 875 876 /* 877 * If the next block is free then we will dispatch it 878 * and return a good offset. 879 * Else, we will freeze the queue. 880 * So, caller must check the return value. 881 */ 882 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 883 struct packet_sock *po) 884 { 885 struct tpacket_block_desc *pbd; 886 887 smp_rmb(); 888 889 /* 1. Get current block num */ 890 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 891 892 /* 2. If this block is currently in_use then freeze the queue */ 893 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 894 prb_freeze_queue(pkc, po); 895 return NULL; 896 } 897 898 /* 899 * 3. 900 * open this block and return the offset where the first packet 901 * needs to get stored. 902 */ 903 prb_open_block(pkc, pbd); 904 return (void *)pkc->nxt_offset; 905 } 906 907 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 908 struct packet_sock *po, unsigned int status) 909 { 910 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 911 912 /* retire/close the current block */ 913 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 914 /* 915 * Plug the case where copy_bits() is in progress on 916 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 917 * have space to copy the pkt in the current block and 918 * called prb_retire_current_block() 919 * 920 * We don't need to worry about the TMO case because 921 * the timer-handler already handled this case. 922 */ 923 if (!(status & TP_STATUS_BLK_TMO)) { 924 while (atomic_read(&pkc->blk_fill_in_prog)) { 925 /* Waiting for skb_copy_bits to finish... */ 926 cpu_relax(); 927 } 928 } 929 prb_close_block(pkc, pbd, po, status); 930 return; 931 } 932 } 933 934 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 935 { 936 return TP_STATUS_USER & BLOCK_STATUS(pbd); 937 } 938 939 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 940 { 941 return pkc->reset_pending_on_curr_blk; 942 } 943 944 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 945 { 946 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 947 atomic_dec(&pkc->blk_fill_in_prog); 948 } 949 950 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 951 struct tpacket3_hdr *ppd) 952 { 953 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 954 } 955 956 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 957 struct tpacket3_hdr *ppd) 958 { 959 ppd->hv1.tp_rxhash = 0; 960 } 961 962 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 963 struct tpacket3_hdr *ppd) 964 { 965 if (skb_vlan_tag_present(pkc->skb)) { 966 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 967 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 968 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 969 } else { 970 ppd->hv1.tp_vlan_tci = 0; 971 ppd->hv1.tp_vlan_tpid = 0; 972 ppd->tp_status = TP_STATUS_AVAILABLE; 973 } 974 } 975 976 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 977 struct tpacket3_hdr *ppd) 978 { 979 ppd->hv1.tp_padding = 0; 980 prb_fill_vlan_info(pkc, ppd); 981 982 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 983 prb_fill_rxhash(pkc, ppd); 984 else 985 prb_clear_rxhash(pkc, ppd); 986 } 987 988 static void prb_fill_curr_block(char *curr, 989 struct tpacket_kbdq_core *pkc, 990 struct tpacket_block_desc *pbd, 991 unsigned int len) 992 { 993 struct tpacket3_hdr *ppd; 994 995 ppd = (struct tpacket3_hdr *)curr; 996 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 997 pkc->prev = curr; 998 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 999 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1000 BLOCK_NUM_PKTS(pbd) += 1; 1001 atomic_inc(&pkc->blk_fill_in_prog); 1002 prb_run_all_ft_ops(pkc, ppd); 1003 } 1004 1005 /* Assumes caller has the sk->rx_queue.lock */ 1006 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1007 struct sk_buff *skb, 1008 unsigned int len 1009 ) 1010 { 1011 struct tpacket_kbdq_core *pkc; 1012 struct tpacket_block_desc *pbd; 1013 char *curr, *end; 1014 1015 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1016 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1017 1018 /* Queue is frozen when user space is lagging behind */ 1019 if (prb_queue_frozen(pkc)) { 1020 /* 1021 * Check if that last block which caused the queue to freeze, 1022 * is still in_use by user-space. 1023 */ 1024 if (prb_curr_blk_in_use(pbd)) { 1025 /* Can't record this packet */ 1026 return NULL; 1027 } else { 1028 /* 1029 * Ok, the block was released by user-space. 1030 * Now let's open that block. 1031 * opening a block also thaws the queue. 1032 * Thawing is a side effect. 1033 */ 1034 prb_open_block(pkc, pbd); 1035 } 1036 } 1037 1038 smp_mb(); 1039 curr = pkc->nxt_offset; 1040 pkc->skb = skb; 1041 end = (char *)pbd + pkc->kblk_size; 1042 1043 /* first try the current block */ 1044 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1045 prb_fill_curr_block(curr, pkc, pbd, len); 1046 return (void *)curr; 1047 } 1048 1049 /* Ok, close the current block */ 1050 prb_retire_current_block(pkc, po, 0); 1051 1052 /* Now, try to dispatch the next block */ 1053 curr = (char *)prb_dispatch_next_block(pkc, po); 1054 if (curr) { 1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1056 prb_fill_curr_block(curr, pkc, pbd, len); 1057 return (void *)curr; 1058 } 1059 1060 /* 1061 * No free blocks are available.user_space hasn't caught up yet. 1062 * Queue was just frozen and now this packet will get dropped. 1063 */ 1064 return NULL; 1065 } 1066 1067 static void *packet_current_rx_frame(struct packet_sock *po, 1068 struct sk_buff *skb, 1069 int status, unsigned int len) 1070 { 1071 char *curr = NULL; 1072 switch (po->tp_version) { 1073 case TPACKET_V1: 1074 case TPACKET_V2: 1075 curr = packet_lookup_frame(po, &po->rx_ring, 1076 po->rx_ring.head, status); 1077 return curr; 1078 case TPACKET_V3: 1079 return __packet_lookup_frame_in_block(po, skb, len); 1080 default: 1081 WARN(1, "TPACKET version not supported\n"); 1082 BUG(); 1083 return NULL; 1084 } 1085 } 1086 1087 static void *prb_lookup_block(const struct packet_sock *po, 1088 const struct packet_ring_buffer *rb, 1089 unsigned int idx, 1090 int status) 1091 { 1092 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1093 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1094 1095 if (status != BLOCK_STATUS(pbd)) 1096 return NULL; 1097 return pbd; 1098 } 1099 1100 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1101 { 1102 unsigned int prev; 1103 if (rb->prb_bdqc.kactive_blk_num) 1104 prev = rb->prb_bdqc.kactive_blk_num-1; 1105 else 1106 prev = rb->prb_bdqc.knum_blocks-1; 1107 return prev; 1108 } 1109 1110 /* Assumes caller has held the rx_queue.lock */ 1111 static void *__prb_previous_block(struct packet_sock *po, 1112 struct packet_ring_buffer *rb, 1113 int status) 1114 { 1115 unsigned int previous = prb_previous_blk_num(rb); 1116 return prb_lookup_block(po, rb, previous, status); 1117 } 1118 1119 static void *packet_previous_rx_frame(struct packet_sock *po, 1120 struct packet_ring_buffer *rb, 1121 int status) 1122 { 1123 if (po->tp_version <= TPACKET_V2) 1124 return packet_previous_frame(po, rb, status); 1125 1126 return __prb_previous_block(po, rb, status); 1127 } 1128 1129 static void packet_increment_rx_head(struct packet_sock *po, 1130 struct packet_ring_buffer *rb) 1131 { 1132 switch (po->tp_version) { 1133 case TPACKET_V1: 1134 case TPACKET_V2: 1135 return packet_increment_head(rb); 1136 case TPACKET_V3: 1137 default: 1138 WARN(1, "TPACKET version not supported.\n"); 1139 BUG(); 1140 return; 1141 } 1142 } 1143 1144 static void *packet_previous_frame(struct packet_sock *po, 1145 struct packet_ring_buffer *rb, 1146 int status) 1147 { 1148 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1149 return packet_lookup_frame(po, rb, previous, status); 1150 } 1151 1152 static void packet_increment_head(struct packet_ring_buffer *buff) 1153 { 1154 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1155 } 1156 1157 static void packet_inc_pending(struct packet_ring_buffer *rb) 1158 { 1159 this_cpu_inc(*rb->pending_refcnt); 1160 } 1161 1162 static void packet_dec_pending(struct packet_ring_buffer *rb) 1163 { 1164 this_cpu_dec(*rb->pending_refcnt); 1165 } 1166 1167 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1168 { 1169 unsigned int refcnt = 0; 1170 int cpu; 1171 1172 /* We don't use pending refcount in rx_ring. */ 1173 if (rb->pending_refcnt == NULL) 1174 return 0; 1175 1176 for_each_possible_cpu(cpu) 1177 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1178 1179 return refcnt; 1180 } 1181 1182 static int packet_alloc_pending(struct packet_sock *po) 1183 { 1184 po->rx_ring.pending_refcnt = NULL; 1185 1186 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1187 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1188 return -ENOBUFS; 1189 1190 return 0; 1191 } 1192 1193 static void packet_free_pending(struct packet_sock *po) 1194 { 1195 free_percpu(po->tx_ring.pending_refcnt); 1196 } 1197 1198 #define ROOM_POW_OFF 2 1199 #define ROOM_NONE 0x0 1200 #define ROOM_LOW 0x1 1201 #define ROOM_NORMAL 0x2 1202 1203 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1204 { 1205 int idx, len; 1206 1207 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1208 idx = READ_ONCE(po->rx_ring.head); 1209 if (pow_off) 1210 idx += len >> pow_off; 1211 if (idx >= len) 1212 idx -= len; 1213 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1214 } 1215 1216 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1217 { 1218 int idx, len; 1219 1220 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1221 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1222 if (pow_off) 1223 idx += len >> pow_off; 1224 if (idx >= len) 1225 idx -= len; 1226 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1227 } 1228 1229 static int __packet_rcv_has_room(const struct packet_sock *po, 1230 const struct sk_buff *skb) 1231 { 1232 const struct sock *sk = &po->sk; 1233 int ret = ROOM_NONE; 1234 1235 if (po->prot_hook.func != tpacket_rcv) { 1236 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1237 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1238 - (skb ? skb->truesize : 0); 1239 1240 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1241 return ROOM_NORMAL; 1242 else if (avail > 0) 1243 return ROOM_LOW; 1244 else 1245 return ROOM_NONE; 1246 } 1247 1248 if (po->tp_version == TPACKET_V3) { 1249 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1250 ret = ROOM_NORMAL; 1251 else if (__tpacket_v3_has_room(po, 0)) 1252 ret = ROOM_LOW; 1253 } else { 1254 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1255 ret = ROOM_NORMAL; 1256 else if (__tpacket_has_room(po, 0)) 1257 ret = ROOM_LOW; 1258 } 1259 1260 return ret; 1261 } 1262 1263 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1264 { 1265 int pressure, ret; 1266 1267 ret = __packet_rcv_has_room(po, skb); 1268 pressure = ret != ROOM_NORMAL; 1269 1270 if (READ_ONCE(po->pressure) != pressure) 1271 WRITE_ONCE(po->pressure, pressure); 1272 1273 return ret; 1274 } 1275 1276 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1277 { 1278 if (READ_ONCE(po->pressure) && 1279 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1280 WRITE_ONCE(po->pressure, 0); 1281 } 1282 1283 static void packet_sock_destruct(struct sock *sk) 1284 { 1285 skb_queue_purge(&sk->sk_error_queue); 1286 1287 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1288 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1289 1290 if (!sock_flag(sk, SOCK_DEAD)) { 1291 pr_err("Attempt to release alive packet socket: %p\n", sk); 1292 return; 1293 } 1294 1295 sk_refcnt_debug_dec(sk); 1296 } 1297 1298 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1299 { 1300 u32 *history = po->rollover->history; 1301 u32 victim, rxhash; 1302 int i, count = 0; 1303 1304 rxhash = skb_get_hash(skb); 1305 for (i = 0; i < ROLLOVER_HLEN; i++) 1306 if (READ_ONCE(history[i]) == rxhash) 1307 count++; 1308 1309 victim = prandom_u32() % ROLLOVER_HLEN; 1310 1311 /* Avoid dirtying the cache line if possible */ 1312 if (READ_ONCE(history[victim]) != rxhash) 1313 WRITE_ONCE(history[victim], rxhash); 1314 1315 return count > (ROLLOVER_HLEN >> 1); 1316 } 1317 1318 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1319 struct sk_buff *skb, 1320 unsigned int num) 1321 { 1322 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1323 } 1324 1325 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1326 struct sk_buff *skb, 1327 unsigned int num) 1328 { 1329 unsigned int val = atomic_inc_return(&f->rr_cur); 1330 1331 return val % num; 1332 } 1333 1334 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1335 struct sk_buff *skb, 1336 unsigned int num) 1337 { 1338 return smp_processor_id() % num; 1339 } 1340 1341 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1342 struct sk_buff *skb, 1343 unsigned int num) 1344 { 1345 return prandom_u32_max(num); 1346 } 1347 1348 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1349 struct sk_buff *skb, 1350 unsigned int idx, bool try_self, 1351 unsigned int num) 1352 { 1353 struct packet_sock *po, *po_next, *po_skip = NULL; 1354 unsigned int i, j, room = ROOM_NONE; 1355 1356 po = pkt_sk(f->arr[idx]); 1357 1358 if (try_self) { 1359 room = packet_rcv_has_room(po, skb); 1360 if (room == ROOM_NORMAL || 1361 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1362 return idx; 1363 po_skip = po; 1364 } 1365 1366 i = j = min_t(int, po->rollover->sock, num - 1); 1367 do { 1368 po_next = pkt_sk(f->arr[i]); 1369 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1370 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1371 if (i != j) 1372 po->rollover->sock = i; 1373 atomic_long_inc(&po->rollover->num); 1374 if (room == ROOM_LOW) 1375 atomic_long_inc(&po->rollover->num_huge); 1376 return i; 1377 } 1378 1379 if (++i == num) 1380 i = 0; 1381 } while (i != j); 1382 1383 atomic_long_inc(&po->rollover->num_failed); 1384 return idx; 1385 } 1386 1387 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1388 struct sk_buff *skb, 1389 unsigned int num) 1390 { 1391 return skb_get_queue_mapping(skb) % num; 1392 } 1393 1394 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1395 struct sk_buff *skb, 1396 unsigned int num) 1397 { 1398 struct bpf_prog *prog; 1399 unsigned int ret = 0; 1400 1401 rcu_read_lock(); 1402 prog = rcu_dereference(f->bpf_prog); 1403 if (prog) 1404 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1405 rcu_read_unlock(); 1406 1407 return ret; 1408 } 1409 1410 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1411 { 1412 return f->flags & (flag >> 8); 1413 } 1414 1415 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1416 struct packet_type *pt, struct net_device *orig_dev) 1417 { 1418 struct packet_fanout *f = pt->af_packet_priv; 1419 unsigned int num = READ_ONCE(f->num_members); 1420 struct net *net = read_pnet(&f->net); 1421 struct packet_sock *po; 1422 unsigned int idx; 1423 1424 if (!net_eq(dev_net(dev), net) || !num) { 1425 kfree_skb(skb); 1426 return 0; 1427 } 1428 1429 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1430 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1431 if (!skb) 1432 return 0; 1433 } 1434 switch (f->type) { 1435 case PACKET_FANOUT_HASH: 1436 default: 1437 idx = fanout_demux_hash(f, skb, num); 1438 break; 1439 case PACKET_FANOUT_LB: 1440 idx = fanout_demux_lb(f, skb, num); 1441 break; 1442 case PACKET_FANOUT_CPU: 1443 idx = fanout_demux_cpu(f, skb, num); 1444 break; 1445 case PACKET_FANOUT_RND: 1446 idx = fanout_demux_rnd(f, skb, num); 1447 break; 1448 case PACKET_FANOUT_QM: 1449 idx = fanout_demux_qm(f, skb, num); 1450 break; 1451 case PACKET_FANOUT_ROLLOVER: 1452 idx = fanout_demux_rollover(f, skb, 0, false, num); 1453 break; 1454 case PACKET_FANOUT_CBPF: 1455 case PACKET_FANOUT_EBPF: 1456 idx = fanout_demux_bpf(f, skb, num); 1457 break; 1458 } 1459 1460 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1461 idx = fanout_demux_rollover(f, skb, idx, true, num); 1462 1463 po = pkt_sk(f->arr[idx]); 1464 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1465 } 1466 1467 DEFINE_MUTEX(fanout_mutex); 1468 EXPORT_SYMBOL_GPL(fanout_mutex); 1469 static LIST_HEAD(fanout_list); 1470 static u16 fanout_next_id; 1471 1472 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1473 { 1474 struct packet_fanout *f = po->fanout; 1475 1476 spin_lock(&f->lock); 1477 f->arr[f->num_members] = sk; 1478 smp_wmb(); 1479 f->num_members++; 1480 if (f->num_members == 1) 1481 dev_add_pack(&f->prot_hook); 1482 spin_unlock(&f->lock); 1483 } 1484 1485 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1486 { 1487 struct packet_fanout *f = po->fanout; 1488 int i; 1489 1490 spin_lock(&f->lock); 1491 for (i = 0; i < f->num_members; i++) { 1492 if (f->arr[i] == sk) 1493 break; 1494 } 1495 BUG_ON(i >= f->num_members); 1496 f->arr[i] = f->arr[f->num_members - 1]; 1497 f->num_members--; 1498 if (f->num_members == 0) 1499 __dev_remove_pack(&f->prot_hook); 1500 spin_unlock(&f->lock); 1501 } 1502 1503 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1504 { 1505 if (sk->sk_family != PF_PACKET) 1506 return false; 1507 1508 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1509 } 1510 1511 static void fanout_init_data(struct packet_fanout *f) 1512 { 1513 switch (f->type) { 1514 case PACKET_FANOUT_LB: 1515 atomic_set(&f->rr_cur, 0); 1516 break; 1517 case PACKET_FANOUT_CBPF: 1518 case PACKET_FANOUT_EBPF: 1519 RCU_INIT_POINTER(f->bpf_prog, NULL); 1520 break; 1521 } 1522 } 1523 1524 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1525 { 1526 struct bpf_prog *old; 1527 1528 spin_lock(&f->lock); 1529 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1530 rcu_assign_pointer(f->bpf_prog, new); 1531 spin_unlock(&f->lock); 1532 1533 if (old) { 1534 synchronize_net(); 1535 bpf_prog_destroy(old); 1536 } 1537 } 1538 1539 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data, 1540 unsigned int len) 1541 { 1542 struct bpf_prog *new; 1543 struct sock_fprog fprog; 1544 int ret; 1545 1546 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1547 return -EPERM; 1548 if (len != sizeof(fprog)) 1549 return -EINVAL; 1550 if (copy_from_user(&fprog, data, len)) 1551 return -EFAULT; 1552 1553 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1554 if (ret) 1555 return ret; 1556 1557 __fanout_set_data_bpf(po->fanout, new); 1558 return 0; 1559 } 1560 1561 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data, 1562 unsigned int len) 1563 { 1564 struct bpf_prog *new; 1565 u32 fd; 1566 1567 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1568 return -EPERM; 1569 if (len != sizeof(fd)) 1570 return -EINVAL; 1571 if (copy_from_user(&fd, data, len)) 1572 return -EFAULT; 1573 1574 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1575 if (IS_ERR(new)) 1576 return PTR_ERR(new); 1577 1578 __fanout_set_data_bpf(po->fanout, new); 1579 return 0; 1580 } 1581 1582 static int fanout_set_data(struct packet_sock *po, char __user *data, 1583 unsigned int len) 1584 { 1585 switch (po->fanout->type) { 1586 case PACKET_FANOUT_CBPF: 1587 return fanout_set_data_cbpf(po, data, len); 1588 case PACKET_FANOUT_EBPF: 1589 return fanout_set_data_ebpf(po, data, len); 1590 default: 1591 return -EINVAL; 1592 } 1593 } 1594 1595 static void fanout_release_data(struct packet_fanout *f) 1596 { 1597 switch (f->type) { 1598 case PACKET_FANOUT_CBPF: 1599 case PACKET_FANOUT_EBPF: 1600 __fanout_set_data_bpf(f, NULL); 1601 } 1602 } 1603 1604 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1605 { 1606 struct packet_fanout *f; 1607 1608 list_for_each_entry(f, &fanout_list, list) { 1609 if (f->id == candidate_id && 1610 read_pnet(&f->net) == sock_net(sk)) { 1611 return false; 1612 } 1613 } 1614 return true; 1615 } 1616 1617 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1618 { 1619 u16 id = fanout_next_id; 1620 1621 do { 1622 if (__fanout_id_is_free(sk, id)) { 1623 *new_id = id; 1624 fanout_next_id = id + 1; 1625 return true; 1626 } 1627 1628 id++; 1629 } while (id != fanout_next_id); 1630 1631 return false; 1632 } 1633 1634 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1635 { 1636 struct packet_rollover *rollover = NULL; 1637 struct packet_sock *po = pkt_sk(sk); 1638 struct packet_fanout *f, *match; 1639 u8 type = type_flags & 0xff; 1640 u8 flags = type_flags >> 8; 1641 int err; 1642 1643 switch (type) { 1644 case PACKET_FANOUT_ROLLOVER: 1645 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1646 return -EINVAL; 1647 case PACKET_FANOUT_HASH: 1648 case PACKET_FANOUT_LB: 1649 case PACKET_FANOUT_CPU: 1650 case PACKET_FANOUT_RND: 1651 case PACKET_FANOUT_QM: 1652 case PACKET_FANOUT_CBPF: 1653 case PACKET_FANOUT_EBPF: 1654 break; 1655 default: 1656 return -EINVAL; 1657 } 1658 1659 mutex_lock(&fanout_mutex); 1660 1661 err = -EALREADY; 1662 if (po->fanout) 1663 goto out; 1664 1665 if (type == PACKET_FANOUT_ROLLOVER || 1666 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1667 err = -ENOMEM; 1668 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1669 if (!rollover) 1670 goto out; 1671 atomic_long_set(&rollover->num, 0); 1672 atomic_long_set(&rollover->num_huge, 0); 1673 atomic_long_set(&rollover->num_failed, 0); 1674 } 1675 1676 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1677 if (id != 0) { 1678 err = -EINVAL; 1679 goto out; 1680 } 1681 if (!fanout_find_new_id(sk, &id)) { 1682 err = -ENOMEM; 1683 goto out; 1684 } 1685 /* ephemeral flag for the first socket in the group: drop it */ 1686 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1687 } 1688 1689 match = NULL; 1690 list_for_each_entry(f, &fanout_list, list) { 1691 if (f->id == id && 1692 read_pnet(&f->net) == sock_net(sk)) { 1693 match = f; 1694 break; 1695 } 1696 } 1697 err = -EINVAL; 1698 if (match && match->flags != flags) 1699 goto out; 1700 if (!match) { 1701 err = -ENOMEM; 1702 match = kzalloc(sizeof(*match), GFP_KERNEL); 1703 if (!match) 1704 goto out; 1705 write_pnet(&match->net, sock_net(sk)); 1706 match->id = id; 1707 match->type = type; 1708 match->flags = flags; 1709 INIT_LIST_HEAD(&match->list); 1710 spin_lock_init(&match->lock); 1711 refcount_set(&match->sk_ref, 0); 1712 fanout_init_data(match); 1713 match->prot_hook.type = po->prot_hook.type; 1714 match->prot_hook.dev = po->prot_hook.dev; 1715 match->prot_hook.func = packet_rcv_fanout; 1716 match->prot_hook.af_packet_priv = match; 1717 match->prot_hook.id_match = match_fanout_group; 1718 list_add(&match->list, &fanout_list); 1719 } 1720 err = -EINVAL; 1721 1722 spin_lock(&po->bind_lock); 1723 if (po->running && 1724 match->type == type && 1725 match->prot_hook.type == po->prot_hook.type && 1726 match->prot_hook.dev == po->prot_hook.dev) { 1727 err = -ENOSPC; 1728 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1729 __dev_remove_pack(&po->prot_hook); 1730 po->fanout = match; 1731 po->rollover = rollover; 1732 rollover = NULL; 1733 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1734 __fanout_link(sk, po); 1735 err = 0; 1736 } 1737 } 1738 spin_unlock(&po->bind_lock); 1739 1740 if (err && !refcount_read(&match->sk_ref)) { 1741 list_del(&match->list); 1742 kfree(match); 1743 } 1744 1745 out: 1746 kfree(rollover); 1747 mutex_unlock(&fanout_mutex); 1748 return err; 1749 } 1750 1751 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1752 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1753 * It is the responsibility of the caller to call fanout_release_data() and 1754 * free the returned packet_fanout (after synchronize_net()) 1755 */ 1756 static struct packet_fanout *fanout_release(struct sock *sk) 1757 { 1758 struct packet_sock *po = pkt_sk(sk); 1759 struct packet_fanout *f; 1760 1761 mutex_lock(&fanout_mutex); 1762 f = po->fanout; 1763 if (f) { 1764 po->fanout = NULL; 1765 1766 if (refcount_dec_and_test(&f->sk_ref)) 1767 list_del(&f->list); 1768 else 1769 f = NULL; 1770 } 1771 mutex_unlock(&fanout_mutex); 1772 1773 return f; 1774 } 1775 1776 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1777 struct sk_buff *skb) 1778 { 1779 /* Earlier code assumed this would be a VLAN pkt, double-check 1780 * this now that we have the actual packet in hand. We can only 1781 * do this check on Ethernet devices. 1782 */ 1783 if (unlikely(dev->type != ARPHRD_ETHER)) 1784 return false; 1785 1786 skb_reset_mac_header(skb); 1787 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1788 } 1789 1790 static const struct proto_ops packet_ops; 1791 1792 static const struct proto_ops packet_ops_spkt; 1793 1794 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1795 struct packet_type *pt, struct net_device *orig_dev) 1796 { 1797 struct sock *sk; 1798 struct sockaddr_pkt *spkt; 1799 1800 /* 1801 * When we registered the protocol we saved the socket in the data 1802 * field for just this event. 1803 */ 1804 1805 sk = pt->af_packet_priv; 1806 1807 /* 1808 * Yank back the headers [hope the device set this 1809 * right or kerboom...] 1810 * 1811 * Incoming packets have ll header pulled, 1812 * push it back. 1813 * 1814 * For outgoing ones skb->data == skb_mac_header(skb) 1815 * so that this procedure is noop. 1816 */ 1817 1818 if (skb->pkt_type == PACKET_LOOPBACK) 1819 goto out; 1820 1821 if (!net_eq(dev_net(dev), sock_net(sk))) 1822 goto out; 1823 1824 skb = skb_share_check(skb, GFP_ATOMIC); 1825 if (skb == NULL) 1826 goto oom; 1827 1828 /* drop any routing info */ 1829 skb_dst_drop(skb); 1830 1831 /* drop conntrack reference */ 1832 nf_reset_ct(skb); 1833 1834 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1835 1836 skb_push(skb, skb->data - skb_mac_header(skb)); 1837 1838 /* 1839 * The SOCK_PACKET socket receives _all_ frames. 1840 */ 1841 1842 spkt->spkt_family = dev->type; 1843 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1844 spkt->spkt_protocol = skb->protocol; 1845 1846 /* 1847 * Charge the memory to the socket. This is done specifically 1848 * to prevent sockets using all the memory up. 1849 */ 1850 1851 if (sock_queue_rcv_skb(sk, skb) == 0) 1852 return 0; 1853 1854 out: 1855 kfree_skb(skb); 1856 oom: 1857 return 0; 1858 } 1859 1860 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1861 { 1862 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1863 sock->type == SOCK_RAW) { 1864 skb_reset_mac_header(skb); 1865 skb->protocol = dev_parse_header_protocol(skb); 1866 } 1867 1868 skb_probe_transport_header(skb); 1869 } 1870 1871 /* 1872 * Output a raw packet to a device layer. This bypasses all the other 1873 * protocol layers and you must therefore supply it with a complete frame 1874 */ 1875 1876 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1877 size_t len) 1878 { 1879 struct sock *sk = sock->sk; 1880 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1881 struct sk_buff *skb = NULL; 1882 struct net_device *dev; 1883 struct sockcm_cookie sockc; 1884 __be16 proto = 0; 1885 int err; 1886 int extra_len = 0; 1887 1888 /* 1889 * Get and verify the address. 1890 */ 1891 1892 if (saddr) { 1893 if (msg->msg_namelen < sizeof(struct sockaddr)) 1894 return -EINVAL; 1895 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1896 proto = saddr->spkt_protocol; 1897 } else 1898 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1899 1900 /* 1901 * Find the device first to size check it 1902 */ 1903 1904 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1905 retry: 1906 rcu_read_lock(); 1907 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1908 err = -ENODEV; 1909 if (dev == NULL) 1910 goto out_unlock; 1911 1912 err = -ENETDOWN; 1913 if (!(dev->flags & IFF_UP)) 1914 goto out_unlock; 1915 1916 /* 1917 * You may not queue a frame bigger than the mtu. This is the lowest level 1918 * raw protocol and you must do your own fragmentation at this level. 1919 */ 1920 1921 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1922 if (!netif_supports_nofcs(dev)) { 1923 err = -EPROTONOSUPPORT; 1924 goto out_unlock; 1925 } 1926 extra_len = 4; /* We're doing our own CRC */ 1927 } 1928 1929 err = -EMSGSIZE; 1930 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1931 goto out_unlock; 1932 1933 if (!skb) { 1934 size_t reserved = LL_RESERVED_SPACE(dev); 1935 int tlen = dev->needed_tailroom; 1936 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1937 1938 rcu_read_unlock(); 1939 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1940 if (skb == NULL) 1941 return -ENOBUFS; 1942 /* FIXME: Save some space for broken drivers that write a hard 1943 * header at transmission time by themselves. PPP is the notable 1944 * one here. This should really be fixed at the driver level. 1945 */ 1946 skb_reserve(skb, reserved); 1947 skb_reset_network_header(skb); 1948 1949 /* Try to align data part correctly */ 1950 if (hhlen) { 1951 skb->data -= hhlen; 1952 skb->tail -= hhlen; 1953 if (len < hhlen) 1954 skb_reset_network_header(skb); 1955 } 1956 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1957 if (err) 1958 goto out_free; 1959 goto retry; 1960 } 1961 1962 if (!dev_validate_header(dev, skb->data, len)) { 1963 err = -EINVAL; 1964 goto out_unlock; 1965 } 1966 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1967 !packet_extra_vlan_len_allowed(dev, skb)) { 1968 err = -EMSGSIZE; 1969 goto out_unlock; 1970 } 1971 1972 sockcm_init(&sockc, sk); 1973 if (msg->msg_controllen) { 1974 err = sock_cmsg_send(sk, msg, &sockc); 1975 if (unlikely(err)) 1976 goto out_unlock; 1977 } 1978 1979 skb->protocol = proto; 1980 skb->dev = dev; 1981 skb->priority = sk->sk_priority; 1982 skb->mark = sk->sk_mark; 1983 skb->tstamp = sockc.transmit_time; 1984 1985 skb_setup_tx_timestamp(skb, sockc.tsflags); 1986 1987 if (unlikely(extra_len == 4)) 1988 skb->no_fcs = 1; 1989 1990 packet_parse_headers(skb, sock); 1991 1992 dev_queue_xmit(skb); 1993 rcu_read_unlock(); 1994 return len; 1995 1996 out_unlock: 1997 rcu_read_unlock(); 1998 out_free: 1999 kfree_skb(skb); 2000 return err; 2001 } 2002 2003 static unsigned int run_filter(struct sk_buff *skb, 2004 const struct sock *sk, 2005 unsigned int res) 2006 { 2007 struct sk_filter *filter; 2008 2009 rcu_read_lock(); 2010 filter = rcu_dereference(sk->sk_filter); 2011 if (filter != NULL) 2012 res = bpf_prog_run_clear_cb(filter->prog, skb); 2013 rcu_read_unlock(); 2014 2015 return res; 2016 } 2017 2018 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2019 size_t *len) 2020 { 2021 struct virtio_net_hdr vnet_hdr; 2022 2023 if (*len < sizeof(vnet_hdr)) 2024 return -EINVAL; 2025 *len -= sizeof(vnet_hdr); 2026 2027 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2028 return -EINVAL; 2029 2030 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2031 } 2032 2033 /* 2034 * This function makes lazy skb cloning in hope that most of packets 2035 * are discarded by BPF. 2036 * 2037 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2038 * and skb->cb are mangled. It works because (and until) packets 2039 * falling here are owned by current CPU. Output packets are cloned 2040 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2041 * sequencially, so that if we return skb to original state on exit, 2042 * we will not harm anyone. 2043 */ 2044 2045 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2046 struct packet_type *pt, struct net_device *orig_dev) 2047 { 2048 struct sock *sk; 2049 struct sockaddr_ll *sll; 2050 struct packet_sock *po; 2051 u8 *skb_head = skb->data; 2052 int skb_len = skb->len; 2053 unsigned int snaplen, res; 2054 bool is_drop_n_account = false; 2055 2056 if (skb->pkt_type == PACKET_LOOPBACK) 2057 goto drop; 2058 2059 sk = pt->af_packet_priv; 2060 po = pkt_sk(sk); 2061 2062 if (!net_eq(dev_net(dev), sock_net(sk))) 2063 goto drop; 2064 2065 skb->dev = dev; 2066 2067 if (dev->header_ops) { 2068 /* The device has an explicit notion of ll header, 2069 * exported to higher levels. 2070 * 2071 * Otherwise, the device hides details of its frame 2072 * structure, so that corresponding packet head is 2073 * never delivered to user. 2074 */ 2075 if (sk->sk_type != SOCK_DGRAM) 2076 skb_push(skb, skb->data - skb_mac_header(skb)); 2077 else if (skb->pkt_type == PACKET_OUTGOING) { 2078 /* Special case: outgoing packets have ll header at head */ 2079 skb_pull(skb, skb_network_offset(skb)); 2080 } 2081 } 2082 2083 snaplen = skb->len; 2084 2085 res = run_filter(skb, sk, snaplen); 2086 if (!res) 2087 goto drop_n_restore; 2088 if (snaplen > res) 2089 snaplen = res; 2090 2091 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2092 goto drop_n_acct; 2093 2094 if (skb_shared(skb)) { 2095 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2096 if (nskb == NULL) 2097 goto drop_n_acct; 2098 2099 if (skb_head != skb->data) { 2100 skb->data = skb_head; 2101 skb->len = skb_len; 2102 } 2103 consume_skb(skb); 2104 skb = nskb; 2105 } 2106 2107 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2108 2109 sll = &PACKET_SKB_CB(skb)->sa.ll; 2110 sll->sll_hatype = dev->type; 2111 sll->sll_pkttype = skb->pkt_type; 2112 if (unlikely(po->origdev)) 2113 sll->sll_ifindex = orig_dev->ifindex; 2114 else 2115 sll->sll_ifindex = dev->ifindex; 2116 2117 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2118 2119 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2120 * Use their space for storing the original skb length. 2121 */ 2122 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2123 2124 if (pskb_trim(skb, snaplen)) 2125 goto drop_n_acct; 2126 2127 skb_set_owner_r(skb, sk); 2128 skb->dev = NULL; 2129 skb_dst_drop(skb); 2130 2131 /* drop conntrack reference */ 2132 nf_reset_ct(skb); 2133 2134 spin_lock(&sk->sk_receive_queue.lock); 2135 po->stats.stats1.tp_packets++; 2136 sock_skb_set_dropcount(sk, skb); 2137 __skb_queue_tail(&sk->sk_receive_queue, skb); 2138 spin_unlock(&sk->sk_receive_queue.lock); 2139 sk->sk_data_ready(sk); 2140 return 0; 2141 2142 drop_n_acct: 2143 is_drop_n_account = true; 2144 atomic_inc(&po->tp_drops); 2145 atomic_inc(&sk->sk_drops); 2146 2147 drop_n_restore: 2148 if (skb_head != skb->data && skb_shared(skb)) { 2149 skb->data = skb_head; 2150 skb->len = skb_len; 2151 } 2152 drop: 2153 if (!is_drop_n_account) 2154 consume_skb(skb); 2155 else 2156 kfree_skb(skb); 2157 return 0; 2158 } 2159 2160 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2161 struct packet_type *pt, struct net_device *orig_dev) 2162 { 2163 struct sock *sk; 2164 struct packet_sock *po; 2165 struct sockaddr_ll *sll; 2166 union tpacket_uhdr h; 2167 u8 *skb_head = skb->data; 2168 int skb_len = skb->len; 2169 unsigned int snaplen, res; 2170 unsigned long status = TP_STATUS_USER; 2171 unsigned short macoff, netoff, hdrlen; 2172 struct sk_buff *copy_skb = NULL; 2173 struct timespec64 ts; 2174 __u32 ts_status; 2175 bool is_drop_n_account = false; 2176 bool do_vnet = false; 2177 2178 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2179 * We may add members to them until current aligned size without forcing 2180 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2181 */ 2182 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2183 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2184 2185 if (skb->pkt_type == PACKET_LOOPBACK) 2186 goto drop; 2187 2188 sk = pt->af_packet_priv; 2189 po = pkt_sk(sk); 2190 2191 if (!net_eq(dev_net(dev), sock_net(sk))) 2192 goto drop; 2193 2194 if (dev->header_ops) { 2195 if (sk->sk_type != SOCK_DGRAM) 2196 skb_push(skb, skb->data - skb_mac_header(skb)); 2197 else if (skb->pkt_type == PACKET_OUTGOING) { 2198 /* Special case: outgoing packets have ll header at head */ 2199 skb_pull(skb, skb_network_offset(skb)); 2200 } 2201 } 2202 2203 snaplen = skb->len; 2204 2205 res = run_filter(skb, sk, snaplen); 2206 if (!res) 2207 goto drop_n_restore; 2208 2209 /* If we are flooded, just give up */ 2210 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2211 atomic_inc(&po->tp_drops); 2212 goto drop_n_restore; 2213 } 2214 2215 if (skb->ip_summed == CHECKSUM_PARTIAL) 2216 status |= TP_STATUS_CSUMNOTREADY; 2217 else if (skb->pkt_type != PACKET_OUTGOING && 2218 (skb->ip_summed == CHECKSUM_COMPLETE || 2219 skb_csum_unnecessary(skb))) 2220 status |= TP_STATUS_CSUM_VALID; 2221 2222 if (snaplen > res) 2223 snaplen = res; 2224 2225 if (sk->sk_type == SOCK_DGRAM) { 2226 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2227 po->tp_reserve; 2228 } else { 2229 unsigned int maclen = skb_network_offset(skb); 2230 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2231 (maclen < 16 ? 16 : maclen)) + 2232 po->tp_reserve; 2233 if (po->has_vnet_hdr) { 2234 netoff += sizeof(struct virtio_net_hdr); 2235 do_vnet = true; 2236 } 2237 macoff = netoff - maclen; 2238 } 2239 if (po->tp_version <= TPACKET_V2) { 2240 if (macoff + snaplen > po->rx_ring.frame_size) { 2241 if (po->copy_thresh && 2242 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2243 if (skb_shared(skb)) { 2244 copy_skb = skb_clone(skb, GFP_ATOMIC); 2245 } else { 2246 copy_skb = skb_get(skb); 2247 skb_head = skb->data; 2248 } 2249 if (copy_skb) 2250 skb_set_owner_r(copy_skb, sk); 2251 } 2252 snaplen = po->rx_ring.frame_size - macoff; 2253 if ((int)snaplen < 0) { 2254 snaplen = 0; 2255 do_vnet = false; 2256 } 2257 } 2258 } else if (unlikely(macoff + snaplen > 2259 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2260 u32 nval; 2261 2262 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2263 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2264 snaplen, nval, macoff); 2265 snaplen = nval; 2266 if (unlikely((int)snaplen < 0)) { 2267 snaplen = 0; 2268 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2269 do_vnet = false; 2270 } 2271 } 2272 spin_lock(&sk->sk_receive_queue.lock); 2273 h.raw = packet_current_rx_frame(po, skb, 2274 TP_STATUS_KERNEL, (macoff+snaplen)); 2275 if (!h.raw) 2276 goto drop_n_account; 2277 if (po->tp_version <= TPACKET_V2) { 2278 packet_increment_rx_head(po, &po->rx_ring); 2279 /* 2280 * LOSING will be reported till you read the stats, 2281 * because it's COR - Clear On Read. 2282 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2283 * at packet level. 2284 */ 2285 if (atomic_read(&po->tp_drops)) 2286 status |= TP_STATUS_LOSING; 2287 } 2288 2289 if (do_vnet && 2290 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2291 sizeof(struct virtio_net_hdr), 2292 vio_le(), true, 0)) 2293 goto drop_n_account; 2294 2295 po->stats.stats1.tp_packets++; 2296 if (copy_skb) { 2297 status |= TP_STATUS_COPY; 2298 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2299 } 2300 spin_unlock(&sk->sk_receive_queue.lock); 2301 2302 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2303 2304 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2305 ktime_get_real_ts64(&ts); 2306 2307 status |= ts_status; 2308 2309 switch (po->tp_version) { 2310 case TPACKET_V1: 2311 h.h1->tp_len = skb->len; 2312 h.h1->tp_snaplen = snaplen; 2313 h.h1->tp_mac = macoff; 2314 h.h1->tp_net = netoff; 2315 h.h1->tp_sec = ts.tv_sec; 2316 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2317 hdrlen = sizeof(*h.h1); 2318 break; 2319 case TPACKET_V2: 2320 h.h2->tp_len = skb->len; 2321 h.h2->tp_snaplen = snaplen; 2322 h.h2->tp_mac = macoff; 2323 h.h2->tp_net = netoff; 2324 h.h2->tp_sec = ts.tv_sec; 2325 h.h2->tp_nsec = ts.tv_nsec; 2326 if (skb_vlan_tag_present(skb)) { 2327 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2328 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2329 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2330 } else { 2331 h.h2->tp_vlan_tci = 0; 2332 h.h2->tp_vlan_tpid = 0; 2333 } 2334 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2335 hdrlen = sizeof(*h.h2); 2336 break; 2337 case TPACKET_V3: 2338 /* tp_nxt_offset,vlan are already populated above. 2339 * So DONT clear those fields here 2340 */ 2341 h.h3->tp_status |= status; 2342 h.h3->tp_len = skb->len; 2343 h.h3->tp_snaplen = snaplen; 2344 h.h3->tp_mac = macoff; 2345 h.h3->tp_net = netoff; 2346 h.h3->tp_sec = ts.tv_sec; 2347 h.h3->tp_nsec = ts.tv_nsec; 2348 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2349 hdrlen = sizeof(*h.h3); 2350 break; 2351 default: 2352 BUG(); 2353 } 2354 2355 sll = h.raw + TPACKET_ALIGN(hdrlen); 2356 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2357 sll->sll_family = AF_PACKET; 2358 sll->sll_hatype = dev->type; 2359 sll->sll_protocol = skb->protocol; 2360 sll->sll_pkttype = skb->pkt_type; 2361 if (unlikely(po->origdev)) 2362 sll->sll_ifindex = orig_dev->ifindex; 2363 else 2364 sll->sll_ifindex = dev->ifindex; 2365 2366 smp_mb(); 2367 2368 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2369 if (po->tp_version <= TPACKET_V2) { 2370 u8 *start, *end; 2371 2372 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2373 macoff + snaplen); 2374 2375 for (start = h.raw; start < end; start += PAGE_SIZE) 2376 flush_dcache_page(pgv_to_page(start)); 2377 } 2378 smp_wmb(); 2379 #endif 2380 2381 if (po->tp_version <= TPACKET_V2) { 2382 __packet_set_status(po, h.raw, status); 2383 sk->sk_data_ready(sk); 2384 } else { 2385 prb_clear_blk_fill_status(&po->rx_ring); 2386 } 2387 2388 drop_n_restore: 2389 if (skb_head != skb->data && skb_shared(skb)) { 2390 skb->data = skb_head; 2391 skb->len = skb_len; 2392 } 2393 drop: 2394 if (!is_drop_n_account) 2395 consume_skb(skb); 2396 else 2397 kfree_skb(skb); 2398 return 0; 2399 2400 drop_n_account: 2401 spin_unlock(&sk->sk_receive_queue.lock); 2402 atomic_inc(&po->tp_drops); 2403 is_drop_n_account = true; 2404 2405 sk->sk_data_ready(sk); 2406 kfree_skb(copy_skb); 2407 goto drop_n_restore; 2408 } 2409 2410 static void tpacket_destruct_skb(struct sk_buff *skb) 2411 { 2412 struct packet_sock *po = pkt_sk(skb->sk); 2413 2414 if (likely(po->tx_ring.pg_vec)) { 2415 void *ph; 2416 __u32 ts; 2417 2418 ph = skb_zcopy_get_nouarg(skb); 2419 packet_dec_pending(&po->tx_ring); 2420 2421 ts = __packet_set_timestamp(po, ph, skb); 2422 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2423 2424 if (!packet_read_pending(&po->tx_ring)) 2425 complete(&po->skb_completion); 2426 } 2427 2428 sock_wfree(skb); 2429 } 2430 2431 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2432 { 2433 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2434 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2435 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2436 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2437 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2438 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2439 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2440 2441 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2442 return -EINVAL; 2443 2444 return 0; 2445 } 2446 2447 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2448 struct virtio_net_hdr *vnet_hdr) 2449 { 2450 if (*len < sizeof(*vnet_hdr)) 2451 return -EINVAL; 2452 *len -= sizeof(*vnet_hdr); 2453 2454 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2455 return -EFAULT; 2456 2457 return __packet_snd_vnet_parse(vnet_hdr, *len); 2458 } 2459 2460 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2461 void *frame, struct net_device *dev, void *data, int tp_len, 2462 __be16 proto, unsigned char *addr, int hlen, int copylen, 2463 const struct sockcm_cookie *sockc) 2464 { 2465 union tpacket_uhdr ph; 2466 int to_write, offset, len, nr_frags, len_max; 2467 struct socket *sock = po->sk.sk_socket; 2468 struct page *page; 2469 int err; 2470 2471 ph.raw = frame; 2472 2473 skb->protocol = proto; 2474 skb->dev = dev; 2475 skb->priority = po->sk.sk_priority; 2476 skb->mark = po->sk.sk_mark; 2477 skb->tstamp = sockc->transmit_time; 2478 skb_setup_tx_timestamp(skb, sockc->tsflags); 2479 skb_zcopy_set_nouarg(skb, ph.raw); 2480 2481 skb_reserve(skb, hlen); 2482 skb_reset_network_header(skb); 2483 2484 to_write = tp_len; 2485 2486 if (sock->type == SOCK_DGRAM) { 2487 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2488 NULL, tp_len); 2489 if (unlikely(err < 0)) 2490 return -EINVAL; 2491 } else if (copylen) { 2492 int hdrlen = min_t(int, copylen, tp_len); 2493 2494 skb_push(skb, dev->hard_header_len); 2495 skb_put(skb, copylen - dev->hard_header_len); 2496 err = skb_store_bits(skb, 0, data, hdrlen); 2497 if (unlikely(err)) 2498 return err; 2499 if (!dev_validate_header(dev, skb->data, hdrlen)) 2500 return -EINVAL; 2501 2502 data += hdrlen; 2503 to_write -= hdrlen; 2504 } 2505 2506 offset = offset_in_page(data); 2507 len_max = PAGE_SIZE - offset; 2508 len = ((to_write > len_max) ? len_max : to_write); 2509 2510 skb->data_len = to_write; 2511 skb->len += to_write; 2512 skb->truesize += to_write; 2513 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2514 2515 while (likely(to_write)) { 2516 nr_frags = skb_shinfo(skb)->nr_frags; 2517 2518 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2519 pr_err("Packet exceed the number of skb frags(%lu)\n", 2520 MAX_SKB_FRAGS); 2521 return -EFAULT; 2522 } 2523 2524 page = pgv_to_page(data); 2525 data += len; 2526 flush_dcache_page(page); 2527 get_page(page); 2528 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2529 to_write -= len; 2530 offset = 0; 2531 len_max = PAGE_SIZE; 2532 len = ((to_write > len_max) ? len_max : to_write); 2533 } 2534 2535 packet_parse_headers(skb, sock); 2536 2537 return tp_len; 2538 } 2539 2540 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2541 int size_max, void **data) 2542 { 2543 union tpacket_uhdr ph; 2544 int tp_len, off; 2545 2546 ph.raw = frame; 2547 2548 switch (po->tp_version) { 2549 case TPACKET_V3: 2550 if (ph.h3->tp_next_offset != 0) { 2551 pr_warn_once("variable sized slot not supported"); 2552 return -EINVAL; 2553 } 2554 tp_len = ph.h3->tp_len; 2555 break; 2556 case TPACKET_V2: 2557 tp_len = ph.h2->tp_len; 2558 break; 2559 default: 2560 tp_len = ph.h1->tp_len; 2561 break; 2562 } 2563 if (unlikely(tp_len > size_max)) { 2564 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2565 return -EMSGSIZE; 2566 } 2567 2568 if (unlikely(po->tp_tx_has_off)) { 2569 int off_min, off_max; 2570 2571 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2572 off_max = po->tx_ring.frame_size - tp_len; 2573 if (po->sk.sk_type == SOCK_DGRAM) { 2574 switch (po->tp_version) { 2575 case TPACKET_V3: 2576 off = ph.h3->tp_net; 2577 break; 2578 case TPACKET_V2: 2579 off = ph.h2->tp_net; 2580 break; 2581 default: 2582 off = ph.h1->tp_net; 2583 break; 2584 } 2585 } else { 2586 switch (po->tp_version) { 2587 case TPACKET_V3: 2588 off = ph.h3->tp_mac; 2589 break; 2590 case TPACKET_V2: 2591 off = ph.h2->tp_mac; 2592 break; 2593 default: 2594 off = ph.h1->tp_mac; 2595 break; 2596 } 2597 } 2598 if (unlikely((off < off_min) || (off_max < off))) 2599 return -EINVAL; 2600 } else { 2601 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2602 } 2603 2604 *data = frame + off; 2605 return tp_len; 2606 } 2607 2608 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2609 { 2610 struct sk_buff *skb = NULL; 2611 struct net_device *dev; 2612 struct virtio_net_hdr *vnet_hdr = NULL; 2613 struct sockcm_cookie sockc; 2614 __be16 proto; 2615 int err, reserve = 0; 2616 void *ph; 2617 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2618 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2619 unsigned char *addr = NULL; 2620 int tp_len, size_max; 2621 void *data; 2622 int len_sum = 0; 2623 int status = TP_STATUS_AVAILABLE; 2624 int hlen, tlen, copylen = 0; 2625 long timeo = 0; 2626 2627 mutex_lock(&po->pg_vec_lock); 2628 2629 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2630 * we need to confirm it under protection of pg_vec_lock. 2631 */ 2632 if (unlikely(!po->tx_ring.pg_vec)) { 2633 err = -EBUSY; 2634 goto out; 2635 } 2636 if (likely(saddr == NULL)) { 2637 dev = packet_cached_dev_get(po); 2638 proto = po->num; 2639 } else { 2640 err = -EINVAL; 2641 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2642 goto out; 2643 if (msg->msg_namelen < (saddr->sll_halen 2644 + offsetof(struct sockaddr_ll, 2645 sll_addr))) 2646 goto out; 2647 proto = saddr->sll_protocol; 2648 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2649 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2650 if (dev && msg->msg_namelen < dev->addr_len + 2651 offsetof(struct sockaddr_ll, sll_addr)) 2652 goto out_put; 2653 addr = saddr->sll_addr; 2654 } 2655 } 2656 2657 err = -ENXIO; 2658 if (unlikely(dev == NULL)) 2659 goto out; 2660 err = -ENETDOWN; 2661 if (unlikely(!(dev->flags & IFF_UP))) 2662 goto out_put; 2663 2664 sockcm_init(&sockc, &po->sk); 2665 if (msg->msg_controllen) { 2666 err = sock_cmsg_send(&po->sk, msg, &sockc); 2667 if (unlikely(err)) 2668 goto out_put; 2669 } 2670 2671 if (po->sk.sk_socket->type == SOCK_RAW) 2672 reserve = dev->hard_header_len; 2673 size_max = po->tx_ring.frame_size 2674 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2675 2676 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2677 size_max = dev->mtu + reserve + VLAN_HLEN; 2678 2679 reinit_completion(&po->skb_completion); 2680 2681 do { 2682 ph = packet_current_frame(po, &po->tx_ring, 2683 TP_STATUS_SEND_REQUEST); 2684 if (unlikely(ph == NULL)) { 2685 if (need_wait && skb) { 2686 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2687 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2688 if (timeo <= 0) { 2689 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2690 goto out_put; 2691 } 2692 } 2693 /* check for additional frames */ 2694 continue; 2695 } 2696 2697 skb = NULL; 2698 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2699 if (tp_len < 0) 2700 goto tpacket_error; 2701 2702 status = TP_STATUS_SEND_REQUEST; 2703 hlen = LL_RESERVED_SPACE(dev); 2704 tlen = dev->needed_tailroom; 2705 if (po->has_vnet_hdr) { 2706 vnet_hdr = data; 2707 data += sizeof(*vnet_hdr); 2708 tp_len -= sizeof(*vnet_hdr); 2709 if (tp_len < 0 || 2710 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2711 tp_len = -EINVAL; 2712 goto tpacket_error; 2713 } 2714 copylen = __virtio16_to_cpu(vio_le(), 2715 vnet_hdr->hdr_len); 2716 } 2717 copylen = max_t(int, copylen, dev->hard_header_len); 2718 skb = sock_alloc_send_skb(&po->sk, 2719 hlen + tlen + sizeof(struct sockaddr_ll) + 2720 (copylen - dev->hard_header_len), 2721 !need_wait, &err); 2722 2723 if (unlikely(skb == NULL)) { 2724 /* we assume the socket was initially writeable ... */ 2725 if (likely(len_sum > 0)) 2726 err = len_sum; 2727 goto out_status; 2728 } 2729 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2730 addr, hlen, copylen, &sockc); 2731 if (likely(tp_len >= 0) && 2732 tp_len > dev->mtu + reserve && 2733 !po->has_vnet_hdr && 2734 !packet_extra_vlan_len_allowed(dev, skb)) 2735 tp_len = -EMSGSIZE; 2736 2737 if (unlikely(tp_len < 0)) { 2738 tpacket_error: 2739 if (po->tp_loss) { 2740 __packet_set_status(po, ph, 2741 TP_STATUS_AVAILABLE); 2742 packet_increment_head(&po->tx_ring); 2743 kfree_skb(skb); 2744 continue; 2745 } else { 2746 status = TP_STATUS_WRONG_FORMAT; 2747 err = tp_len; 2748 goto out_status; 2749 } 2750 } 2751 2752 if (po->has_vnet_hdr) { 2753 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2754 tp_len = -EINVAL; 2755 goto tpacket_error; 2756 } 2757 virtio_net_hdr_set_proto(skb, vnet_hdr); 2758 } 2759 2760 skb->destructor = tpacket_destruct_skb; 2761 __packet_set_status(po, ph, TP_STATUS_SENDING); 2762 packet_inc_pending(&po->tx_ring); 2763 2764 status = TP_STATUS_SEND_REQUEST; 2765 err = po->xmit(skb); 2766 if (unlikely(err > 0)) { 2767 err = net_xmit_errno(err); 2768 if (err && __packet_get_status(po, ph) == 2769 TP_STATUS_AVAILABLE) { 2770 /* skb was destructed already */ 2771 skb = NULL; 2772 goto out_status; 2773 } 2774 /* 2775 * skb was dropped but not destructed yet; 2776 * let's treat it like congestion or err < 0 2777 */ 2778 err = 0; 2779 } 2780 packet_increment_head(&po->tx_ring); 2781 len_sum += tp_len; 2782 } while (likely((ph != NULL) || 2783 /* Note: packet_read_pending() might be slow if we have 2784 * to call it as it's per_cpu variable, but in fast-path 2785 * we already short-circuit the loop with the first 2786 * condition, and luckily don't have to go that path 2787 * anyway. 2788 */ 2789 (need_wait && packet_read_pending(&po->tx_ring)))); 2790 2791 err = len_sum; 2792 goto out_put; 2793 2794 out_status: 2795 __packet_set_status(po, ph, status); 2796 kfree_skb(skb); 2797 out_put: 2798 dev_put(dev); 2799 out: 2800 mutex_unlock(&po->pg_vec_lock); 2801 return err; 2802 } 2803 2804 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2805 size_t reserve, size_t len, 2806 size_t linear, int noblock, 2807 int *err) 2808 { 2809 struct sk_buff *skb; 2810 2811 /* Under a page? Don't bother with paged skb. */ 2812 if (prepad + len < PAGE_SIZE || !linear) 2813 linear = len; 2814 2815 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2816 err, 0); 2817 if (!skb) 2818 return NULL; 2819 2820 skb_reserve(skb, reserve); 2821 skb_put(skb, linear); 2822 skb->data_len = len - linear; 2823 skb->len += len - linear; 2824 2825 return skb; 2826 } 2827 2828 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2829 { 2830 struct sock *sk = sock->sk; 2831 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2832 struct sk_buff *skb; 2833 struct net_device *dev; 2834 __be16 proto; 2835 unsigned char *addr = NULL; 2836 int err, reserve = 0; 2837 struct sockcm_cookie sockc; 2838 struct virtio_net_hdr vnet_hdr = { 0 }; 2839 int offset = 0; 2840 struct packet_sock *po = pkt_sk(sk); 2841 bool has_vnet_hdr = false; 2842 int hlen, tlen, linear; 2843 int extra_len = 0; 2844 2845 /* 2846 * Get and verify the address. 2847 */ 2848 2849 if (likely(saddr == NULL)) { 2850 dev = packet_cached_dev_get(po); 2851 proto = po->num; 2852 } else { 2853 err = -EINVAL; 2854 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2855 goto out; 2856 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2857 goto out; 2858 proto = saddr->sll_protocol; 2859 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2860 if (sock->type == SOCK_DGRAM) { 2861 if (dev && msg->msg_namelen < dev->addr_len + 2862 offsetof(struct sockaddr_ll, sll_addr)) 2863 goto out_unlock; 2864 addr = saddr->sll_addr; 2865 } 2866 } 2867 2868 err = -ENXIO; 2869 if (unlikely(dev == NULL)) 2870 goto out_unlock; 2871 err = -ENETDOWN; 2872 if (unlikely(!(dev->flags & IFF_UP))) 2873 goto out_unlock; 2874 2875 sockcm_init(&sockc, sk); 2876 sockc.mark = sk->sk_mark; 2877 if (msg->msg_controllen) { 2878 err = sock_cmsg_send(sk, msg, &sockc); 2879 if (unlikely(err)) 2880 goto out_unlock; 2881 } 2882 2883 if (sock->type == SOCK_RAW) 2884 reserve = dev->hard_header_len; 2885 if (po->has_vnet_hdr) { 2886 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2887 if (err) 2888 goto out_unlock; 2889 has_vnet_hdr = true; 2890 } 2891 2892 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2893 if (!netif_supports_nofcs(dev)) { 2894 err = -EPROTONOSUPPORT; 2895 goto out_unlock; 2896 } 2897 extra_len = 4; /* We're doing our own CRC */ 2898 } 2899 2900 err = -EMSGSIZE; 2901 if (!vnet_hdr.gso_type && 2902 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2903 goto out_unlock; 2904 2905 err = -ENOBUFS; 2906 hlen = LL_RESERVED_SPACE(dev); 2907 tlen = dev->needed_tailroom; 2908 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2909 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2910 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2911 msg->msg_flags & MSG_DONTWAIT, &err); 2912 if (skb == NULL) 2913 goto out_unlock; 2914 2915 skb_reset_network_header(skb); 2916 2917 err = -EINVAL; 2918 if (sock->type == SOCK_DGRAM) { 2919 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2920 if (unlikely(offset < 0)) 2921 goto out_free; 2922 } else if (reserve) { 2923 skb_reserve(skb, -reserve); 2924 if (len < reserve + sizeof(struct ipv6hdr) && 2925 dev->min_header_len != dev->hard_header_len) 2926 skb_reset_network_header(skb); 2927 } 2928 2929 /* Returns -EFAULT on error */ 2930 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2931 if (err) 2932 goto out_free; 2933 2934 if (sock->type == SOCK_RAW && 2935 !dev_validate_header(dev, skb->data, len)) { 2936 err = -EINVAL; 2937 goto out_free; 2938 } 2939 2940 skb_setup_tx_timestamp(skb, sockc.tsflags); 2941 2942 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2943 !packet_extra_vlan_len_allowed(dev, skb)) { 2944 err = -EMSGSIZE; 2945 goto out_free; 2946 } 2947 2948 skb->protocol = proto; 2949 skb->dev = dev; 2950 skb->priority = sk->sk_priority; 2951 skb->mark = sockc.mark; 2952 skb->tstamp = sockc.transmit_time; 2953 2954 if (has_vnet_hdr) { 2955 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 2956 if (err) 2957 goto out_free; 2958 len += sizeof(vnet_hdr); 2959 virtio_net_hdr_set_proto(skb, &vnet_hdr); 2960 } 2961 2962 packet_parse_headers(skb, sock); 2963 2964 if (unlikely(extra_len == 4)) 2965 skb->no_fcs = 1; 2966 2967 err = po->xmit(skb); 2968 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2969 goto out_unlock; 2970 2971 dev_put(dev); 2972 2973 return len; 2974 2975 out_free: 2976 kfree_skb(skb); 2977 out_unlock: 2978 if (dev) 2979 dev_put(dev); 2980 out: 2981 return err; 2982 } 2983 2984 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2985 { 2986 struct sock *sk = sock->sk; 2987 struct packet_sock *po = pkt_sk(sk); 2988 2989 if (po->tx_ring.pg_vec) 2990 return tpacket_snd(po, msg); 2991 else 2992 return packet_snd(sock, msg, len); 2993 } 2994 2995 /* 2996 * Close a PACKET socket. This is fairly simple. We immediately go 2997 * to 'closed' state and remove our protocol entry in the device list. 2998 */ 2999 3000 static int packet_release(struct socket *sock) 3001 { 3002 struct sock *sk = sock->sk; 3003 struct packet_sock *po; 3004 struct packet_fanout *f; 3005 struct net *net; 3006 union tpacket_req_u req_u; 3007 3008 if (!sk) 3009 return 0; 3010 3011 net = sock_net(sk); 3012 po = pkt_sk(sk); 3013 3014 mutex_lock(&net->packet.sklist_lock); 3015 sk_del_node_init_rcu(sk); 3016 mutex_unlock(&net->packet.sklist_lock); 3017 3018 preempt_disable(); 3019 sock_prot_inuse_add(net, sk->sk_prot, -1); 3020 preempt_enable(); 3021 3022 spin_lock(&po->bind_lock); 3023 unregister_prot_hook(sk, false); 3024 packet_cached_dev_reset(po); 3025 3026 if (po->prot_hook.dev) { 3027 dev_put(po->prot_hook.dev); 3028 po->prot_hook.dev = NULL; 3029 } 3030 spin_unlock(&po->bind_lock); 3031 3032 packet_flush_mclist(sk); 3033 3034 lock_sock(sk); 3035 if (po->rx_ring.pg_vec) { 3036 memset(&req_u, 0, sizeof(req_u)); 3037 packet_set_ring(sk, &req_u, 1, 0); 3038 } 3039 3040 if (po->tx_ring.pg_vec) { 3041 memset(&req_u, 0, sizeof(req_u)); 3042 packet_set_ring(sk, &req_u, 1, 1); 3043 } 3044 release_sock(sk); 3045 3046 f = fanout_release(sk); 3047 3048 synchronize_net(); 3049 3050 kfree(po->rollover); 3051 if (f) { 3052 fanout_release_data(f); 3053 kfree(f); 3054 } 3055 /* 3056 * Now the socket is dead. No more input will appear. 3057 */ 3058 sock_orphan(sk); 3059 sock->sk = NULL; 3060 3061 /* Purge queues */ 3062 3063 skb_queue_purge(&sk->sk_receive_queue); 3064 packet_free_pending(po); 3065 sk_refcnt_debug_release(sk); 3066 3067 sock_put(sk); 3068 return 0; 3069 } 3070 3071 /* 3072 * Attach a packet hook. 3073 */ 3074 3075 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3076 __be16 proto) 3077 { 3078 struct packet_sock *po = pkt_sk(sk); 3079 struct net_device *dev_curr; 3080 __be16 proto_curr; 3081 bool need_rehook; 3082 struct net_device *dev = NULL; 3083 int ret = 0; 3084 bool unlisted = false; 3085 3086 lock_sock(sk); 3087 spin_lock(&po->bind_lock); 3088 rcu_read_lock(); 3089 3090 if (po->fanout) { 3091 ret = -EINVAL; 3092 goto out_unlock; 3093 } 3094 3095 if (name) { 3096 dev = dev_get_by_name_rcu(sock_net(sk), name); 3097 if (!dev) { 3098 ret = -ENODEV; 3099 goto out_unlock; 3100 } 3101 } else if (ifindex) { 3102 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3103 if (!dev) { 3104 ret = -ENODEV; 3105 goto out_unlock; 3106 } 3107 } 3108 3109 if (dev) 3110 dev_hold(dev); 3111 3112 proto_curr = po->prot_hook.type; 3113 dev_curr = po->prot_hook.dev; 3114 3115 need_rehook = proto_curr != proto || dev_curr != dev; 3116 3117 if (need_rehook) { 3118 if (po->running) { 3119 rcu_read_unlock(); 3120 /* prevents packet_notifier() from calling 3121 * register_prot_hook() 3122 */ 3123 po->num = 0; 3124 __unregister_prot_hook(sk, true); 3125 rcu_read_lock(); 3126 dev_curr = po->prot_hook.dev; 3127 if (dev) 3128 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3129 dev->ifindex); 3130 } 3131 3132 BUG_ON(po->running); 3133 po->num = proto; 3134 po->prot_hook.type = proto; 3135 3136 if (unlikely(unlisted)) { 3137 dev_put(dev); 3138 po->prot_hook.dev = NULL; 3139 po->ifindex = -1; 3140 packet_cached_dev_reset(po); 3141 } else { 3142 po->prot_hook.dev = dev; 3143 po->ifindex = dev ? dev->ifindex : 0; 3144 packet_cached_dev_assign(po, dev); 3145 } 3146 } 3147 if (dev_curr) 3148 dev_put(dev_curr); 3149 3150 if (proto == 0 || !need_rehook) 3151 goto out_unlock; 3152 3153 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3154 register_prot_hook(sk); 3155 } else { 3156 sk->sk_err = ENETDOWN; 3157 if (!sock_flag(sk, SOCK_DEAD)) 3158 sk->sk_error_report(sk); 3159 } 3160 3161 out_unlock: 3162 rcu_read_unlock(); 3163 spin_unlock(&po->bind_lock); 3164 release_sock(sk); 3165 return ret; 3166 } 3167 3168 /* 3169 * Bind a packet socket to a device 3170 */ 3171 3172 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3173 int addr_len) 3174 { 3175 struct sock *sk = sock->sk; 3176 char name[sizeof(uaddr->sa_data) + 1]; 3177 3178 /* 3179 * Check legality 3180 */ 3181 3182 if (addr_len != sizeof(struct sockaddr)) 3183 return -EINVAL; 3184 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3185 * zero-terminated. 3186 */ 3187 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3188 name[sizeof(uaddr->sa_data)] = 0; 3189 3190 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3191 } 3192 3193 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3194 { 3195 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3196 struct sock *sk = sock->sk; 3197 3198 /* 3199 * Check legality 3200 */ 3201 3202 if (addr_len < sizeof(struct sockaddr_ll)) 3203 return -EINVAL; 3204 if (sll->sll_family != AF_PACKET) 3205 return -EINVAL; 3206 3207 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3208 sll->sll_protocol ? : pkt_sk(sk)->num); 3209 } 3210 3211 static struct proto packet_proto = { 3212 .name = "PACKET", 3213 .owner = THIS_MODULE, 3214 .obj_size = sizeof(struct packet_sock), 3215 }; 3216 3217 /* 3218 * Create a packet of type SOCK_PACKET. 3219 */ 3220 3221 static int packet_create(struct net *net, struct socket *sock, int protocol, 3222 int kern) 3223 { 3224 struct sock *sk; 3225 struct packet_sock *po; 3226 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3227 int err; 3228 3229 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3230 return -EPERM; 3231 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3232 sock->type != SOCK_PACKET) 3233 return -ESOCKTNOSUPPORT; 3234 3235 sock->state = SS_UNCONNECTED; 3236 3237 err = -ENOBUFS; 3238 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3239 if (sk == NULL) 3240 goto out; 3241 3242 sock->ops = &packet_ops; 3243 if (sock->type == SOCK_PACKET) 3244 sock->ops = &packet_ops_spkt; 3245 3246 sock_init_data(sock, sk); 3247 3248 po = pkt_sk(sk); 3249 init_completion(&po->skb_completion); 3250 sk->sk_family = PF_PACKET; 3251 po->num = proto; 3252 po->xmit = dev_queue_xmit; 3253 3254 err = packet_alloc_pending(po); 3255 if (err) 3256 goto out2; 3257 3258 packet_cached_dev_reset(po); 3259 3260 sk->sk_destruct = packet_sock_destruct; 3261 sk_refcnt_debug_inc(sk); 3262 3263 /* 3264 * Attach a protocol block 3265 */ 3266 3267 spin_lock_init(&po->bind_lock); 3268 mutex_init(&po->pg_vec_lock); 3269 po->rollover = NULL; 3270 po->prot_hook.func = packet_rcv; 3271 3272 if (sock->type == SOCK_PACKET) 3273 po->prot_hook.func = packet_rcv_spkt; 3274 3275 po->prot_hook.af_packet_priv = sk; 3276 3277 if (proto) { 3278 po->prot_hook.type = proto; 3279 __register_prot_hook(sk); 3280 } 3281 3282 mutex_lock(&net->packet.sklist_lock); 3283 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3284 mutex_unlock(&net->packet.sklist_lock); 3285 3286 preempt_disable(); 3287 sock_prot_inuse_add(net, &packet_proto, 1); 3288 preempt_enable(); 3289 3290 return 0; 3291 out2: 3292 sk_free(sk); 3293 out: 3294 return err; 3295 } 3296 3297 /* 3298 * Pull a packet from our receive queue and hand it to the user. 3299 * If necessary we block. 3300 */ 3301 3302 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3303 int flags) 3304 { 3305 struct sock *sk = sock->sk; 3306 struct sk_buff *skb; 3307 int copied, err; 3308 int vnet_hdr_len = 0; 3309 unsigned int origlen = 0; 3310 3311 err = -EINVAL; 3312 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3313 goto out; 3314 3315 #if 0 3316 /* What error should we return now? EUNATTACH? */ 3317 if (pkt_sk(sk)->ifindex < 0) 3318 return -ENODEV; 3319 #endif 3320 3321 if (flags & MSG_ERRQUEUE) { 3322 err = sock_recv_errqueue(sk, msg, len, 3323 SOL_PACKET, PACKET_TX_TIMESTAMP); 3324 goto out; 3325 } 3326 3327 /* 3328 * Call the generic datagram receiver. This handles all sorts 3329 * of horrible races and re-entrancy so we can forget about it 3330 * in the protocol layers. 3331 * 3332 * Now it will return ENETDOWN, if device have just gone down, 3333 * but then it will block. 3334 */ 3335 3336 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3337 3338 /* 3339 * An error occurred so return it. Because skb_recv_datagram() 3340 * handles the blocking we don't see and worry about blocking 3341 * retries. 3342 */ 3343 3344 if (skb == NULL) 3345 goto out; 3346 3347 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3348 3349 if (pkt_sk(sk)->has_vnet_hdr) { 3350 err = packet_rcv_vnet(msg, skb, &len); 3351 if (err) 3352 goto out_free; 3353 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3354 } 3355 3356 /* You lose any data beyond the buffer you gave. If it worries 3357 * a user program they can ask the device for its MTU 3358 * anyway. 3359 */ 3360 copied = skb->len; 3361 if (copied > len) { 3362 copied = len; 3363 msg->msg_flags |= MSG_TRUNC; 3364 } 3365 3366 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3367 if (err) 3368 goto out_free; 3369 3370 if (sock->type != SOCK_PACKET) { 3371 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3372 3373 /* Original length was stored in sockaddr_ll fields */ 3374 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3375 sll->sll_family = AF_PACKET; 3376 sll->sll_protocol = skb->protocol; 3377 } 3378 3379 sock_recv_ts_and_drops(msg, sk, skb); 3380 3381 if (msg->msg_name) { 3382 int copy_len; 3383 3384 /* If the address length field is there to be filled 3385 * in, we fill it in now. 3386 */ 3387 if (sock->type == SOCK_PACKET) { 3388 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3389 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3390 copy_len = msg->msg_namelen; 3391 } else { 3392 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3393 3394 msg->msg_namelen = sll->sll_halen + 3395 offsetof(struct sockaddr_ll, sll_addr); 3396 copy_len = msg->msg_namelen; 3397 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3398 memset(msg->msg_name + 3399 offsetof(struct sockaddr_ll, sll_addr), 3400 0, sizeof(sll->sll_addr)); 3401 msg->msg_namelen = sizeof(struct sockaddr_ll); 3402 } 3403 } 3404 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3405 } 3406 3407 if (pkt_sk(sk)->auxdata) { 3408 struct tpacket_auxdata aux; 3409 3410 aux.tp_status = TP_STATUS_USER; 3411 if (skb->ip_summed == CHECKSUM_PARTIAL) 3412 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3413 else if (skb->pkt_type != PACKET_OUTGOING && 3414 (skb->ip_summed == CHECKSUM_COMPLETE || 3415 skb_csum_unnecessary(skb))) 3416 aux.tp_status |= TP_STATUS_CSUM_VALID; 3417 3418 aux.tp_len = origlen; 3419 aux.tp_snaplen = skb->len; 3420 aux.tp_mac = 0; 3421 aux.tp_net = skb_network_offset(skb); 3422 if (skb_vlan_tag_present(skb)) { 3423 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3424 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3425 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3426 } else { 3427 aux.tp_vlan_tci = 0; 3428 aux.tp_vlan_tpid = 0; 3429 } 3430 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3431 } 3432 3433 /* 3434 * Free or return the buffer as appropriate. Again this 3435 * hides all the races and re-entrancy issues from us. 3436 */ 3437 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3438 3439 out_free: 3440 skb_free_datagram(sk, skb); 3441 out: 3442 return err; 3443 } 3444 3445 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3446 int peer) 3447 { 3448 struct net_device *dev; 3449 struct sock *sk = sock->sk; 3450 3451 if (peer) 3452 return -EOPNOTSUPP; 3453 3454 uaddr->sa_family = AF_PACKET; 3455 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3456 rcu_read_lock(); 3457 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3458 if (dev) 3459 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3460 rcu_read_unlock(); 3461 3462 return sizeof(*uaddr); 3463 } 3464 3465 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3466 int peer) 3467 { 3468 struct net_device *dev; 3469 struct sock *sk = sock->sk; 3470 struct packet_sock *po = pkt_sk(sk); 3471 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3472 3473 if (peer) 3474 return -EOPNOTSUPP; 3475 3476 sll->sll_family = AF_PACKET; 3477 sll->sll_ifindex = po->ifindex; 3478 sll->sll_protocol = po->num; 3479 sll->sll_pkttype = 0; 3480 rcu_read_lock(); 3481 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3482 if (dev) { 3483 sll->sll_hatype = dev->type; 3484 sll->sll_halen = dev->addr_len; 3485 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3486 } else { 3487 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3488 sll->sll_halen = 0; 3489 } 3490 rcu_read_unlock(); 3491 3492 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3493 } 3494 3495 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3496 int what) 3497 { 3498 switch (i->type) { 3499 case PACKET_MR_MULTICAST: 3500 if (i->alen != dev->addr_len) 3501 return -EINVAL; 3502 if (what > 0) 3503 return dev_mc_add(dev, i->addr); 3504 else 3505 return dev_mc_del(dev, i->addr); 3506 break; 3507 case PACKET_MR_PROMISC: 3508 return dev_set_promiscuity(dev, what); 3509 case PACKET_MR_ALLMULTI: 3510 return dev_set_allmulti(dev, what); 3511 case PACKET_MR_UNICAST: 3512 if (i->alen != dev->addr_len) 3513 return -EINVAL; 3514 if (what > 0) 3515 return dev_uc_add(dev, i->addr); 3516 else 3517 return dev_uc_del(dev, i->addr); 3518 break; 3519 default: 3520 break; 3521 } 3522 return 0; 3523 } 3524 3525 static void packet_dev_mclist_delete(struct net_device *dev, 3526 struct packet_mclist **mlp) 3527 { 3528 struct packet_mclist *ml; 3529 3530 while ((ml = *mlp) != NULL) { 3531 if (ml->ifindex == dev->ifindex) { 3532 packet_dev_mc(dev, ml, -1); 3533 *mlp = ml->next; 3534 kfree(ml); 3535 } else 3536 mlp = &ml->next; 3537 } 3538 } 3539 3540 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3541 { 3542 struct packet_sock *po = pkt_sk(sk); 3543 struct packet_mclist *ml, *i; 3544 struct net_device *dev; 3545 int err; 3546 3547 rtnl_lock(); 3548 3549 err = -ENODEV; 3550 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3551 if (!dev) 3552 goto done; 3553 3554 err = -EINVAL; 3555 if (mreq->mr_alen > dev->addr_len) 3556 goto done; 3557 3558 err = -ENOBUFS; 3559 i = kmalloc(sizeof(*i), GFP_KERNEL); 3560 if (i == NULL) 3561 goto done; 3562 3563 err = 0; 3564 for (ml = po->mclist; ml; ml = ml->next) { 3565 if (ml->ifindex == mreq->mr_ifindex && 3566 ml->type == mreq->mr_type && 3567 ml->alen == mreq->mr_alen && 3568 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3569 ml->count++; 3570 /* Free the new element ... */ 3571 kfree(i); 3572 goto done; 3573 } 3574 } 3575 3576 i->type = mreq->mr_type; 3577 i->ifindex = mreq->mr_ifindex; 3578 i->alen = mreq->mr_alen; 3579 memcpy(i->addr, mreq->mr_address, i->alen); 3580 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3581 i->count = 1; 3582 i->next = po->mclist; 3583 po->mclist = i; 3584 err = packet_dev_mc(dev, i, 1); 3585 if (err) { 3586 po->mclist = i->next; 3587 kfree(i); 3588 } 3589 3590 done: 3591 rtnl_unlock(); 3592 return err; 3593 } 3594 3595 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3596 { 3597 struct packet_mclist *ml, **mlp; 3598 3599 rtnl_lock(); 3600 3601 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3602 if (ml->ifindex == mreq->mr_ifindex && 3603 ml->type == mreq->mr_type && 3604 ml->alen == mreq->mr_alen && 3605 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3606 if (--ml->count == 0) { 3607 struct net_device *dev; 3608 *mlp = ml->next; 3609 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3610 if (dev) 3611 packet_dev_mc(dev, ml, -1); 3612 kfree(ml); 3613 } 3614 break; 3615 } 3616 } 3617 rtnl_unlock(); 3618 return 0; 3619 } 3620 3621 static void packet_flush_mclist(struct sock *sk) 3622 { 3623 struct packet_sock *po = pkt_sk(sk); 3624 struct packet_mclist *ml; 3625 3626 if (!po->mclist) 3627 return; 3628 3629 rtnl_lock(); 3630 while ((ml = po->mclist) != NULL) { 3631 struct net_device *dev; 3632 3633 po->mclist = ml->next; 3634 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3635 if (dev != NULL) 3636 packet_dev_mc(dev, ml, -1); 3637 kfree(ml); 3638 } 3639 rtnl_unlock(); 3640 } 3641 3642 static int 3643 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3644 { 3645 struct sock *sk = sock->sk; 3646 struct packet_sock *po = pkt_sk(sk); 3647 int ret; 3648 3649 if (level != SOL_PACKET) 3650 return -ENOPROTOOPT; 3651 3652 switch (optname) { 3653 case PACKET_ADD_MEMBERSHIP: 3654 case PACKET_DROP_MEMBERSHIP: 3655 { 3656 struct packet_mreq_max mreq; 3657 int len = optlen; 3658 memset(&mreq, 0, sizeof(mreq)); 3659 if (len < sizeof(struct packet_mreq)) 3660 return -EINVAL; 3661 if (len > sizeof(mreq)) 3662 len = sizeof(mreq); 3663 if (copy_from_user(&mreq, optval, len)) 3664 return -EFAULT; 3665 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3666 return -EINVAL; 3667 if (optname == PACKET_ADD_MEMBERSHIP) 3668 ret = packet_mc_add(sk, &mreq); 3669 else 3670 ret = packet_mc_drop(sk, &mreq); 3671 return ret; 3672 } 3673 3674 case PACKET_RX_RING: 3675 case PACKET_TX_RING: 3676 { 3677 union tpacket_req_u req_u; 3678 int len; 3679 3680 lock_sock(sk); 3681 switch (po->tp_version) { 3682 case TPACKET_V1: 3683 case TPACKET_V2: 3684 len = sizeof(req_u.req); 3685 break; 3686 case TPACKET_V3: 3687 default: 3688 len = sizeof(req_u.req3); 3689 break; 3690 } 3691 if (optlen < len) { 3692 ret = -EINVAL; 3693 } else { 3694 if (copy_from_user(&req_u.req, optval, len)) 3695 ret = -EFAULT; 3696 else 3697 ret = packet_set_ring(sk, &req_u, 0, 3698 optname == PACKET_TX_RING); 3699 } 3700 release_sock(sk); 3701 return ret; 3702 } 3703 case PACKET_COPY_THRESH: 3704 { 3705 int val; 3706 3707 if (optlen != sizeof(val)) 3708 return -EINVAL; 3709 if (copy_from_user(&val, optval, sizeof(val))) 3710 return -EFAULT; 3711 3712 pkt_sk(sk)->copy_thresh = val; 3713 return 0; 3714 } 3715 case PACKET_VERSION: 3716 { 3717 int val; 3718 3719 if (optlen != sizeof(val)) 3720 return -EINVAL; 3721 if (copy_from_user(&val, optval, sizeof(val))) 3722 return -EFAULT; 3723 switch (val) { 3724 case TPACKET_V1: 3725 case TPACKET_V2: 3726 case TPACKET_V3: 3727 break; 3728 default: 3729 return -EINVAL; 3730 } 3731 lock_sock(sk); 3732 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3733 ret = -EBUSY; 3734 } else { 3735 po->tp_version = val; 3736 ret = 0; 3737 } 3738 release_sock(sk); 3739 return ret; 3740 } 3741 case PACKET_RESERVE: 3742 { 3743 unsigned int val; 3744 3745 if (optlen != sizeof(val)) 3746 return -EINVAL; 3747 if (copy_from_user(&val, optval, sizeof(val))) 3748 return -EFAULT; 3749 if (val > INT_MAX) 3750 return -EINVAL; 3751 lock_sock(sk); 3752 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3753 ret = -EBUSY; 3754 } else { 3755 po->tp_reserve = val; 3756 ret = 0; 3757 } 3758 release_sock(sk); 3759 return ret; 3760 } 3761 case PACKET_LOSS: 3762 { 3763 unsigned int val; 3764 3765 if (optlen != sizeof(val)) 3766 return -EINVAL; 3767 if (copy_from_user(&val, optval, sizeof(val))) 3768 return -EFAULT; 3769 3770 lock_sock(sk); 3771 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3772 ret = -EBUSY; 3773 } else { 3774 po->tp_loss = !!val; 3775 ret = 0; 3776 } 3777 release_sock(sk); 3778 return ret; 3779 } 3780 case PACKET_AUXDATA: 3781 { 3782 int val; 3783 3784 if (optlen < sizeof(val)) 3785 return -EINVAL; 3786 if (copy_from_user(&val, optval, sizeof(val))) 3787 return -EFAULT; 3788 3789 lock_sock(sk); 3790 po->auxdata = !!val; 3791 release_sock(sk); 3792 return 0; 3793 } 3794 case PACKET_ORIGDEV: 3795 { 3796 int val; 3797 3798 if (optlen < sizeof(val)) 3799 return -EINVAL; 3800 if (copy_from_user(&val, optval, sizeof(val))) 3801 return -EFAULT; 3802 3803 lock_sock(sk); 3804 po->origdev = !!val; 3805 release_sock(sk); 3806 return 0; 3807 } 3808 case PACKET_VNET_HDR: 3809 { 3810 int val; 3811 3812 if (sock->type != SOCK_RAW) 3813 return -EINVAL; 3814 if (optlen < sizeof(val)) 3815 return -EINVAL; 3816 if (copy_from_user(&val, optval, sizeof(val))) 3817 return -EFAULT; 3818 3819 lock_sock(sk); 3820 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3821 ret = -EBUSY; 3822 } else { 3823 po->has_vnet_hdr = !!val; 3824 ret = 0; 3825 } 3826 release_sock(sk); 3827 return ret; 3828 } 3829 case PACKET_TIMESTAMP: 3830 { 3831 int val; 3832 3833 if (optlen != sizeof(val)) 3834 return -EINVAL; 3835 if (copy_from_user(&val, optval, sizeof(val))) 3836 return -EFAULT; 3837 3838 po->tp_tstamp = val; 3839 return 0; 3840 } 3841 case PACKET_FANOUT: 3842 { 3843 int val; 3844 3845 if (optlen != sizeof(val)) 3846 return -EINVAL; 3847 if (copy_from_user(&val, optval, sizeof(val))) 3848 return -EFAULT; 3849 3850 return fanout_add(sk, val & 0xffff, val >> 16); 3851 } 3852 case PACKET_FANOUT_DATA: 3853 { 3854 if (!po->fanout) 3855 return -EINVAL; 3856 3857 return fanout_set_data(po, optval, optlen); 3858 } 3859 case PACKET_IGNORE_OUTGOING: 3860 { 3861 int val; 3862 3863 if (optlen != sizeof(val)) 3864 return -EINVAL; 3865 if (copy_from_user(&val, optval, sizeof(val))) 3866 return -EFAULT; 3867 if (val < 0 || val > 1) 3868 return -EINVAL; 3869 3870 po->prot_hook.ignore_outgoing = !!val; 3871 return 0; 3872 } 3873 case PACKET_TX_HAS_OFF: 3874 { 3875 unsigned int val; 3876 3877 if (optlen != sizeof(val)) 3878 return -EINVAL; 3879 if (copy_from_user(&val, optval, sizeof(val))) 3880 return -EFAULT; 3881 3882 lock_sock(sk); 3883 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3884 ret = -EBUSY; 3885 } else { 3886 po->tp_tx_has_off = !!val; 3887 ret = 0; 3888 } 3889 release_sock(sk); 3890 return 0; 3891 } 3892 case PACKET_QDISC_BYPASS: 3893 { 3894 int val; 3895 3896 if (optlen != sizeof(val)) 3897 return -EINVAL; 3898 if (copy_from_user(&val, optval, sizeof(val))) 3899 return -EFAULT; 3900 3901 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3902 return 0; 3903 } 3904 default: 3905 return -ENOPROTOOPT; 3906 } 3907 } 3908 3909 static int packet_getsockopt(struct socket *sock, int level, int optname, 3910 char __user *optval, int __user *optlen) 3911 { 3912 int len; 3913 int val, lv = sizeof(val); 3914 struct sock *sk = sock->sk; 3915 struct packet_sock *po = pkt_sk(sk); 3916 void *data = &val; 3917 union tpacket_stats_u st; 3918 struct tpacket_rollover_stats rstats; 3919 int drops; 3920 3921 if (level != SOL_PACKET) 3922 return -ENOPROTOOPT; 3923 3924 if (get_user(len, optlen)) 3925 return -EFAULT; 3926 3927 if (len < 0) 3928 return -EINVAL; 3929 3930 switch (optname) { 3931 case PACKET_STATISTICS: 3932 spin_lock_bh(&sk->sk_receive_queue.lock); 3933 memcpy(&st, &po->stats, sizeof(st)); 3934 memset(&po->stats, 0, sizeof(po->stats)); 3935 spin_unlock_bh(&sk->sk_receive_queue.lock); 3936 drops = atomic_xchg(&po->tp_drops, 0); 3937 3938 if (po->tp_version == TPACKET_V3) { 3939 lv = sizeof(struct tpacket_stats_v3); 3940 st.stats3.tp_drops = drops; 3941 st.stats3.tp_packets += drops; 3942 data = &st.stats3; 3943 } else { 3944 lv = sizeof(struct tpacket_stats); 3945 st.stats1.tp_drops = drops; 3946 st.stats1.tp_packets += drops; 3947 data = &st.stats1; 3948 } 3949 3950 break; 3951 case PACKET_AUXDATA: 3952 val = po->auxdata; 3953 break; 3954 case PACKET_ORIGDEV: 3955 val = po->origdev; 3956 break; 3957 case PACKET_VNET_HDR: 3958 val = po->has_vnet_hdr; 3959 break; 3960 case PACKET_VERSION: 3961 val = po->tp_version; 3962 break; 3963 case PACKET_HDRLEN: 3964 if (len > sizeof(int)) 3965 len = sizeof(int); 3966 if (len < sizeof(int)) 3967 return -EINVAL; 3968 if (copy_from_user(&val, optval, len)) 3969 return -EFAULT; 3970 switch (val) { 3971 case TPACKET_V1: 3972 val = sizeof(struct tpacket_hdr); 3973 break; 3974 case TPACKET_V2: 3975 val = sizeof(struct tpacket2_hdr); 3976 break; 3977 case TPACKET_V3: 3978 val = sizeof(struct tpacket3_hdr); 3979 break; 3980 default: 3981 return -EINVAL; 3982 } 3983 break; 3984 case PACKET_RESERVE: 3985 val = po->tp_reserve; 3986 break; 3987 case PACKET_LOSS: 3988 val = po->tp_loss; 3989 break; 3990 case PACKET_TIMESTAMP: 3991 val = po->tp_tstamp; 3992 break; 3993 case PACKET_FANOUT: 3994 val = (po->fanout ? 3995 ((u32)po->fanout->id | 3996 ((u32)po->fanout->type << 16) | 3997 ((u32)po->fanout->flags << 24)) : 3998 0); 3999 break; 4000 case PACKET_IGNORE_OUTGOING: 4001 val = po->prot_hook.ignore_outgoing; 4002 break; 4003 case PACKET_ROLLOVER_STATS: 4004 if (!po->rollover) 4005 return -EINVAL; 4006 rstats.tp_all = atomic_long_read(&po->rollover->num); 4007 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4008 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4009 data = &rstats; 4010 lv = sizeof(rstats); 4011 break; 4012 case PACKET_TX_HAS_OFF: 4013 val = po->tp_tx_has_off; 4014 break; 4015 case PACKET_QDISC_BYPASS: 4016 val = packet_use_direct_xmit(po); 4017 break; 4018 default: 4019 return -ENOPROTOOPT; 4020 } 4021 4022 if (len > lv) 4023 len = lv; 4024 if (put_user(len, optlen)) 4025 return -EFAULT; 4026 if (copy_to_user(optval, data, len)) 4027 return -EFAULT; 4028 return 0; 4029 } 4030 4031 4032 #ifdef CONFIG_COMPAT 4033 static int compat_packet_setsockopt(struct socket *sock, int level, int optname, 4034 char __user *optval, unsigned int optlen) 4035 { 4036 struct packet_sock *po = pkt_sk(sock->sk); 4037 4038 if (level != SOL_PACKET) 4039 return -ENOPROTOOPT; 4040 4041 if (optname == PACKET_FANOUT_DATA && 4042 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) { 4043 optval = (char __user *)get_compat_bpf_fprog(optval); 4044 if (!optval) 4045 return -EFAULT; 4046 optlen = sizeof(struct sock_fprog); 4047 } 4048 4049 return packet_setsockopt(sock, level, optname, optval, optlen); 4050 } 4051 #endif 4052 4053 static int packet_notifier(struct notifier_block *this, 4054 unsigned long msg, void *ptr) 4055 { 4056 struct sock *sk; 4057 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4058 struct net *net = dev_net(dev); 4059 4060 rcu_read_lock(); 4061 sk_for_each_rcu(sk, &net->packet.sklist) { 4062 struct packet_sock *po = pkt_sk(sk); 4063 4064 switch (msg) { 4065 case NETDEV_UNREGISTER: 4066 if (po->mclist) 4067 packet_dev_mclist_delete(dev, &po->mclist); 4068 /* fallthrough */ 4069 4070 case NETDEV_DOWN: 4071 if (dev->ifindex == po->ifindex) { 4072 spin_lock(&po->bind_lock); 4073 if (po->running) { 4074 __unregister_prot_hook(sk, false); 4075 sk->sk_err = ENETDOWN; 4076 if (!sock_flag(sk, SOCK_DEAD)) 4077 sk->sk_error_report(sk); 4078 } 4079 if (msg == NETDEV_UNREGISTER) { 4080 packet_cached_dev_reset(po); 4081 po->ifindex = -1; 4082 if (po->prot_hook.dev) 4083 dev_put(po->prot_hook.dev); 4084 po->prot_hook.dev = NULL; 4085 } 4086 spin_unlock(&po->bind_lock); 4087 } 4088 break; 4089 case NETDEV_UP: 4090 if (dev->ifindex == po->ifindex) { 4091 spin_lock(&po->bind_lock); 4092 if (po->num) 4093 register_prot_hook(sk); 4094 spin_unlock(&po->bind_lock); 4095 } 4096 break; 4097 } 4098 } 4099 rcu_read_unlock(); 4100 return NOTIFY_DONE; 4101 } 4102 4103 4104 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4105 unsigned long arg) 4106 { 4107 struct sock *sk = sock->sk; 4108 4109 switch (cmd) { 4110 case SIOCOUTQ: 4111 { 4112 int amount = sk_wmem_alloc_get(sk); 4113 4114 return put_user(amount, (int __user *)arg); 4115 } 4116 case SIOCINQ: 4117 { 4118 struct sk_buff *skb; 4119 int amount = 0; 4120 4121 spin_lock_bh(&sk->sk_receive_queue.lock); 4122 skb = skb_peek(&sk->sk_receive_queue); 4123 if (skb) 4124 amount = skb->len; 4125 spin_unlock_bh(&sk->sk_receive_queue.lock); 4126 return put_user(amount, (int __user *)arg); 4127 } 4128 #ifdef CONFIG_INET 4129 case SIOCADDRT: 4130 case SIOCDELRT: 4131 case SIOCDARP: 4132 case SIOCGARP: 4133 case SIOCSARP: 4134 case SIOCGIFADDR: 4135 case SIOCSIFADDR: 4136 case SIOCGIFBRDADDR: 4137 case SIOCSIFBRDADDR: 4138 case SIOCGIFNETMASK: 4139 case SIOCSIFNETMASK: 4140 case SIOCGIFDSTADDR: 4141 case SIOCSIFDSTADDR: 4142 case SIOCSIFFLAGS: 4143 return inet_dgram_ops.ioctl(sock, cmd, arg); 4144 #endif 4145 4146 default: 4147 return -ENOIOCTLCMD; 4148 } 4149 return 0; 4150 } 4151 4152 static __poll_t packet_poll(struct file *file, struct socket *sock, 4153 poll_table *wait) 4154 { 4155 struct sock *sk = sock->sk; 4156 struct packet_sock *po = pkt_sk(sk); 4157 __poll_t mask = datagram_poll(file, sock, wait); 4158 4159 spin_lock_bh(&sk->sk_receive_queue.lock); 4160 if (po->rx_ring.pg_vec) { 4161 if (!packet_previous_rx_frame(po, &po->rx_ring, 4162 TP_STATUS_KERNEL)) 4163 mask |= EPOLLIN | EPOLLRDNORM; 4164 } 4165 packet_rcv_try_clear_pressure(po); 4166 spin_unlock_bh(&sk->sk_receive_queue.lock); 4167 spin_lock_bh(&sk->sk_write_queue.lock); 4168 if (po->tx_ring.pg_vec) { 4169 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4170 mask |= EPOLLOUT | EPOLLWRNORM; 4171 } 4172 spin_unlock_bh(&sk->sk_write_queue.lock); 4173 return mask; 4174 } 4175 4176 4177 /* Dirty? Well, I still did not learn better way to account 4178 * for user mmaps. 4179 */ 4180 4181 static void packet_mm_open(struct vm_area_struct *vma) 4182 { 4183 struct file *file = vma->vm_file; 4184 struct socket *sock = file->private_data; 4185 struct sock *sk = sock->sk; 4186 4187 if (sk) 4188 atomic_inc(&pkt_sk(sk)->mapped); 4189 } 4190 4191 static void packet_mm_close(struct vm_area_struct *vma) 4192 { 4193 struct file *file = vma->vm_file; 4194 struct socket *sock = file->private_data; 4195 struct sock *sk = sock->sk; 4196 4197 if (sk) 4198 atomic_dec(&pkt_sk(sk)->mapped); 4199 } 4200 4201 static const struct vm_operations_struct packet_mmap_ops = { 4202 .open = packet_mm_open, 4203 .close = packet_mm_close, 4204 }; 4205 4206 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4207 unsigned int len) 4208 { 4209 int i; 4210 4211 for (i = 0; i < len; i++) { 4212 if (likely(pg_vec[i].buffer)) { 4213 if (is_vmalloc_addr(pg_vec[i].buffer)) 4214 vfree(pg_vec[i].buffer); 4215 else 4216 free_pages((unsigned long)pg_vec[i].buffer, 4217 order); 4218 pg_vec[i].buffer = NULL; 4219 } 4220 } 4221 kfree(pg_vec); 4222 } 4223 4224 static char *alloc_one_pg_vec_page(unsigned long order) 4225 { 4226 char *buffer; 4227 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4228 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4229 4230 buffer = (char *) __get_free_pages(gfp_flags, order); 4231 if (buffer) 4232 return buffer; 4233 4234 /* __get_free_pages failed, fall back to vmalloc */ 4235 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4236 if (buffer) 4237 return buffer; 4238 4239 /* vmalloc failed, lets dig into swap here */ 4240 gfp_flags &= ~__GFP_NORETRY; 4241 buffer = (char *) __get_free_pages(gfp_flags, order); 4242 if (buffer) 4243 return buffer; 4244 4245 /* complete and utter failure */ 4246 return NULL; 4247 } 4248 4249 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4250 { 4251 unsigned int block_nr = req->tp_block_nr; 4252 struct pgv *pg_vec; 4253 int i; 4254 4255 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4256 if (unlikely(!pg_vec)) 4257 goto out; 4258 4259 for (i = 0; i < block_nr; i++) { 4260 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4261 if (unlikely(!pg_vec[i].buffer)) 4262 goto out_free_pgvec; 4263 } 4264 4265 out: 4266 return pg_vec; 4267 4268 out_free_pgvec: 4269 free_pg_vec(pg_vec, order, block_nr); 4270 pg_vec = NULL; 4271 goto out; 4272 } 4273 4274 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4275 int closing, int tx_ring) 4276 { 4277 struct pgv *pg_vec = NULL; 4278 struct packet_sock *po = pkt_sk(sk); 4279 int was_running, order = 0; 4280 struct packet_ring_buffer *rb; 4281 struct sk_buff_head *rb_queue; 4282 __be16 num; 4283 int err = -EINVAL; 4284 /* Added to avoid minimal code churn */ 4285 struct tpacket_req *req = &req_u->req; 4286 4287 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4288 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4289 4290 err = -EBUSY; 4291 if (!closing) { 4292 if (atomic_read(&po->mapped)) 4293 goto out; 4294 if (packet_read_pending(rb)) 4295 goto out; 4296 } 4297 4298 if (req->tp_block_nr) { 4299 unsigned int min_frame_size; 4300 4301 /* Sanity tests and some calculations */ 4302 err = -EBUSY; 4303 if (unlikely(rb->pg_vec)) 4304 goto out; 4305 4306 switch (po->tp_version) { 4307 case TPACKET_V1: 4308 po->tp_hdrlen = TPACKET_HDRLEN; 4309 break; 4310 case TPACKET_V2: 4311 po->tp_hdrlen = TPACKET2_HDRLEN; 4312 break; 4313 case TPACKET_V3: 4314 po->tp_hdrlen = TPACKET3_HDRLEN; 4315 break; 4316 } 4317 4318 err = -EINVAL; 4319 if (unlikely((int)req->tp_block_size <= 0)) 4320 goto out; 4321 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4322 goto out; 4323 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4324 if (po->tp_version >= TPACKET_V3 && 4325 req->tp_block_size < 4326 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4327 goto out; 4328 if (unlikely(req->tp_frame_size < min_frame_size)) 4329 goto out; 4330 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4331 goto out; 4332 4333 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4334 if (unlikely(rb->frames_per_block == 0)) 4335 goto out; 4336 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4337 goto out; 4338 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4339 req->tp_frame_nr)) 4340 goto out; 4341 4342 err = -ENOMEM; 4343 order = get_order(req->tp_block_size); 4344 pg_vec = alloc_pg_vec(req, order); 4345 if (unlikely(!pg_vec)) 4346 goto out; 4347 switch (po->tp_version) { 4348 case TPACKET_V3: 4349 /* Block transmit is not supported yet */ 4350 if (!tx_ring) { 4351 init_prb_bdqc(po, rb, pg_vec, req_u); 4352 } else { 4353 struct tpacket_req3 *req3 = &req_u->req3; 4354 4355 if (req3->tp_retire_blk_tov || 4356 req3->tp_sizeof_priv || 4357 req3->tp_feature_req_word) { 4358 err = -EINVAL; 4359 goto out_free_pg_vec; 4360 } 4361 } 4362 break; 4363 default: 4364 break; 4365 } 4366 } 4367 /* Done */ 4368 else { 4369 err = -EINVAL; 4370 if (unlikely(req->tp_frame_nr)) 4371 goto out; 4372 } 4373 4374 4375 /* Detach socket from network */ 4376 spin_lock(&po->bind_lock); 4377 was_running = po->running; 4378 num = po->num; 4379 if (was_running) { 4380 po->num = 0; 4381 __unregister_prot_hook(sk, false); 4382 } 4383 spin_unlock(&po->bind_lock); 4384 4385 synchronize_net(); 4386 4387 err = -EBUSY; 4388 mutex_lock(&po->pg_vec_lock); 4389 if (closing || atomic_read(&po->mapped) == 0) { 4390 err = 0; 4391 spin_lock_bh(&rb_queue->lock); 4392 swap(rb->pg_vec, pg_vec); 4393 rb->frame_max = (req->tp_frame_nr - 1); 4394 rb->head = 0; 4395 rb->frame_size = req->tp_frame_size; 4396 spin_unlock_bh(&rb_queue->lock); 4397 4398 swap(rb->pg_vec_order, order); 4399 swap(rb->pg_vec_len, req->tp_block_nr); 4400 4401 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4402 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4403 tpacket_rcv : packet_rcv; 4404 skb_queue_purge(rb_queue); 4405 if (atomic_read(&po->mapped)) 4406 pr_err("packet_mmap: vma is busy: %d\n", 4407 atomic_read(&po->mapped)); 4408 } 4409 mutex_unlock(&po->pg_vec_lock); 4410 4411 spin_lock(&po->bind_lock); 4412 if (was_running) { 4413 po->num = num; 4414 register_prot_hook(sk); 4415 } 4416 spin_unlock(&po->bind_lock); 4417 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4418 /* Because we don't support block-based V3 on tx-ring */ 4419 if (!tx_ring) 4420 prb_shutdown_retire_blk_timer(po, rb_queue); 4421 } 4422 4423 out_free_pg_vec: 4424 if (pg_vec) 4425 free_pg_vec(pg_vec, order, req->tp_block_nr); 4426 out: 4427 return err; 4428 } 4429 4430 static int packet_mmap(struct file *file, struct socket *sock, 4431 struct vm_area_struct *vma) 4432 { 4433 struct sock *sk = sock->sk; 4434 struct packet_sock *po = pkt_sk(sk); 4435 unsigned long size, expected_size; 4436 struct packet_ring_buffer *rb; 4437 unsigned long start; 4438 int err = -EINVAL; 4439 int i; 4440 4441 if (vma->vm_pgoff) 4442 return -EINVAL; 4443 4444 mutex_lock(&po->pg_vec_lock); 4445 4446 expected_size = 0; 4447 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4448 if (rb->pg_vec) { 4449 expected_size += rb->pg_vec_len 4450 * rb->pg_vec_pages 4451 * PAGE_SIZE; 4452 } 4453 } 4454 4455 if (expected_size == 0) 4456 goto out; 4457 4458 size = vma->vm_end - vma->vm_start; 4459 if (size != expected_size) 4460 goto out; 4461 4462 start = vma->vm_start; 4463 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4464 if (rb->pg_vec == NULL) 4465 continue; 4466 4467 for (i = 0; i < rb->pg_vec_len; i++) { 4468 struct page *page; 4469 void *kaddr = rb->pg_vec[i].buffer; 4470 int pg_num; 4471 4472 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4473 page = pgv_to_page(kaddr); 4474 err = vm_insert_page(vma, start, page); 4475 if (unlikely(err)) 4476 goto out; 4477 start += PAGE_SIZE; 4478 kaddr += PAGE_SIZE; 4479 } 4480 } 4481 } 4482 4483 atomic_inc(&po->mapped); 4484 vma->vm_ops = &packet_mmap_ops; 4485 err = 0; 4486 4487 out: 4488 mutex_unlock(&po->pg_vec_lock); 4489 return err; 4490 } 4491 4492 static const struct proto_ops packet_ops_spkt = { 4493 .family = PF_PACKET, 4494 .owner = THIS_MODULE, 4495 .release = packet_release, 4496 .bind = packet_bind_spkt, 4497 .connect = sock_no_connect, 4498 .socketpair = sock_no_socketpair, 4499 .accept = sock_no_accept, 4500 .getname = packet_getname_spkt, 4501 .poll = datagram_poll, 4502 .ioctl = packet_ioctl, 4503 .gettstamp = sock_gettstamp, 4504 .listen = sock_no_listen, 4505 .shutdown = sock_no_shutdown, 4506 .setsockopt = sock_no_setsockopt, 4507 .getsockopt = sock_no_getsockopt, 4508 .sendmsg = packet_sendmsg_spkt, 4509 .recvmsg = packet_recvmsg, 4510 .mmap = sock_no_mmap, 4511 .sendpage = sock_no_sendpage, 4512 }; 4513 4514 static const struct proto_ops packet_ops = { 4515 .family = PF_PACKET, 4516 .owner = THIS_MODULE, 4517 .release = packet_release, 4518 .bind = packet_bind, 4519 .connect = sock_no_connect, 4520 .socketpair = sock_no_socketpair, 4521 .accept = sock_no_accept, 4522 .getname = packet_getname, 4523 .poll = packet_poll, 4524 .ioctl = packet_ioctl, 4525 .gettstamp = sock_gettstamp, 4526 .listen = sock_no_listen, 4527 .shutdown = sock_no_shutdown, 4528 .setsockopt = packet_setsockopt, 4529 .getsockopt = packet_getsockopt, 4530 #ifdef CONFIG_COMPAT 4531 .compat_setsockopt = compat_packet_setsockopt, 4532 #endif 4533 .sendmsg = packet_sendmsg, 4534 .recvmsg = packet_recvmsg, 4535 .mmap = packet_mmap, 4536 .sendpage = sock_no_sendpage, 4537 }; 4538 4539 static const struct net_proto_family packet_family_ops = { 4540 .family = PF_PACKET, 4541 .create = packet_create, 4542 .owner = THIS_MODULE, 4543 }; 4544 4545 static struct notifier_block packet_netdev_notifier = { 4546 .notifier_call = packet_notifier, 4547 }; 4548 4549 #ifdef CONFIG_PROC_FS 4550 4551 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4552 __acquires(RCU) 4553 { 4554 struct net *net = seq_file_net(seq); 4555 4556 rcu_read_lock(); 4557 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4558 } 4559 4560 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4561 { 4562 struct net *net = seq_file_net(seq); 4563 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4564 } 4565 4566 static void packet_seq_stop(struct seq_file *seq, void *v) 4567 __releases(RCU) 4568 { 4569 rcu_read_unlock(); 4570 } 4571 4572 static int packet_seq_show(struct seq_file *seq, void *v) 4573 { 4574 if (v == SEQ_START_TOKEN) 4575 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4576 else { 4577 struct sock *s = sk_entry(v); 4578 const struct packet_sock *po = pkt_sk(s); 4579 4580 seq_printf(seq, 4581 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4582 s, 4583 refcount_read(&s->sk_refcnt), 4584 s->sk_type, 4585 ntohs(po->num), 4586 po->ifindex, 4587 po->running, 4588 atomic_read(&s->sk_rmem_alloc), 4589 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4590 sock_i_ino(s)); 4591 } 4592 4593 return 0; 4594 } 4595 4596 static const struct seq_operations packet_seq_ops = { 4597 .start = packet_seq_start, 4598 .next = packet_seq_next, 4599 .stop = packet_seq_stop, 4600 .show = packet_seq_show, 4601 }; 4602 #endif 4603 4604 static int __net_init packet_net_init(struct net *net) 4605 { 4606 mutex_init(&net->packet.sklist_lock); 4607 INIT_HLIST_HEAD(&net->packet.sklist); 4608 4609 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4610 sizeof(struct seq_net_private))) 4611 return -ENOMEM; 4612 4613 return 0; 4614 } 4615 4616 static void __net_exit packet_net_exit(struct net *net) 4617 { 4618 remove_proc_entry("packet", net->proc_net); 4619 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4620 } 4621 4622 static struct pernet_operations packet_net_ops = { 4623 .init = packet_net_init, 4624 .exit = packet_net_exit, 4625 }; 4626 4627 4628 static void __exit packet_exit(void) 4629 { 4630 unregister_netdevice_notifier(&packet_netdev_notifier); 4631 unregister_pernet_subsys(&packet_net_ops); 4632 sock_unregister(PF_PACKET); 4633 proto_unregister(&packet_proto); 4634 } 4635 4636 static int __init packet_init(void) 4637 { 4638 int rc; 4639 4640 rc = proto_register(&packet_proto, 0); 4641 if (rc) 4642 goto out; 4643 rc = sock_register(&packet_family_ops); 4644 if (rc) 4645 goto out_proto; 4646 rc = register_pernet_subsys(&packet_net_ops); 4647 if (rc) 4648 goto out_sock; 4649 rc = register_netdevice_notifier(&packet_netdev_notifier); 4650 if (rc) 4651 goto out_pernet; 4652 4653 return 0; 4654 4655 out_pernet: 4656 unregister_pernet_subsys(&packet_net_ops); 4657 out_sock: 4658 sock_unregister(PF_PACKET); 4659 out_proto: 4660 proto_unregister(&packet_proto); 4661 out: 4662 return rc; 4663 } 4664 4665 module_init(packet_init); 4666 module_exit(packet_exit); 4667 MODULE_LICENSE("GPL"); 4668 MODULE_ALIAS_NETPROTO(PF_PACKET); 4669