xref: /openbmc/linux/net/packet/af_packet.c (revision eed183ab)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/ethtool.h>
52 #include <linux/types.h>
53 #include <linux/mm.h>
54 #include <linux/capability.h>
55 #include <linux/fcntl.h>
56 #include <linux/socket.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/if_packet.h>
61 #include <linux/wireless.h>
62 #include <linux/kernel.h>
63 #include <linux/kmod.h>
64 #include <linux/slab.h>
65 #include <linux/vmalloc.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <linux/skbuff.h>
70 #include <net/sock.h>
71 #include <linux/errno.h>
72 #include <linux/timer.h>
73 #include <linux/uaccess.h>
74 #include <asm/ioctls.h>
75 #include <asm/page.h>
76 #include <asm/cacheflush.h>
77 #include <asm/io.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 #include <linux/poll.h>
81 #include <linux/module.h>
82 #include <linux/init.h>
83 #include <linux/mutex.h>
84 #include <linux/if_vlan.h>
85 #include <linux/virtio_net.h>
86 #include <linux/errqueue.h>
87 #include <linux/net_tstamp.h>
88 #include <linux/percpu.h>
89 #ifdef CONFIG_INET
90 #include <net/inet_common.h>
91 #endif
92 #include <linux/bpf.h>
93 #include <net/compat.h>
94 
95 #include "internal.h"
96 
97 /*
98    Assumptions:
99    - If the device has no dev->header_ops->create, there is no LL header
100      visible above the device. In this case, its hard_header_len should be 0.
101      The device may prepend its own header internally. In this case, its
102      needed_headroom should be set to the space needed for it to add its
103      internal header.
104      For example, a WiFi driver pretending to be an Ethernet driver should
105      set its hard_header_len to be the Ethernet header length, and set its
106      needed_headroom to be (the real WiFi header length - the fake Ethernet
107      header length).
108    - packet socket receives packets with pulled ll header,
109      so that SOCK_RAW should push it back.
110 
111 On receive:
112 -----------
113 
114 Incoming, dev_has_header(dev) == true
115    mac_header -> ll header
116    data       -> data
117 
118 Outgoing, dev_has_header(dev) == true
119    mac_header -> ll header
120    data       -> ll header
121 
122 Incoming, dev_has_header(dev) == false
123    mac_header -> data
124      However drivers often make it point to the ll header.
125      This is incorrect because the ll header should be invisible to us.
126    data       -> data
127 
128 Outgoing, dev_has_header(dev) == false
129    mac_header -> data. ll header is invisible to us.
130    data       -> data
131 
132 Resume
133   If dev_has_header(dev) == false we are unable to restore the ll header,
134     because it is invisible to us.
135 
136 
137 On transmit:
138 ------------
139 
140 dev_has_header(dev) == true
141    mac_header -> ll header
142    data       -> ll header
143 
144 dev_has_header(dev) == false (ll header is invisible to us)
145    mac_header -> data
146    data       -> data
147 
148    We should set network_header on output to the correct position,
149    packet classifier depends on it.
150  */
151 
152 /* Private packet socket structures. */
153 
154 /* identical to struct packet_mreq except it has
155  * a longer address field.
156  */
157 struct packet_mreq_max {
158 	int		mr_ifindex;
159 	unsigned short	mr_type;
160 	unsigned short	mr_alen;
161 	unsigned char	mr_address[MAX_ADDR_LEN];
162 };
163 
164 union tpacket_uhdr {
165 	struct tpacket_hdr  *h1;
166 	struct tpacket2_hdr *h2;
167 	struct tpacket3_hdr *h3;
168 	void *raw;
169 };
170 
171 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
172 		int closing, int tx_ring);
173 
174 #define V3_ALIGNMENT	(8)
175 
176 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
177 
178 #define BLK_PLUS_PRIV(sz_of_priv) \
179 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
180 
181 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
182 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
183 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
184 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
185 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
186 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
187 
188 struct packet_sock;
189 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
190 		       struct packet_type *pt, struct net_device *orig_dev);
191 
192 static void *packet_previous_frame(struct packet_sock *po,
193 		struct packet_ring_buffer *rb,
194 		int status);
195 static void packet_increment_head(struct packet_ring_buffer *buff);
196 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
197 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
198 			struct packet_sock *);
199 static void prb_retire_current_block(struct tpacket_kbdq_core *,
200 		struct packet_sock *, unsigned int status);
201 static int prb_queue_frozen(struct tpacket_kbdq_core *);
202 static void prb_open_block(struct tpacket_kbdq_core *,
203 		struct tpacket_block_desc *);
204 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
205 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
206 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
207 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
210 		struct tpacket3_hdr *);
211 static void packet_flush_mclist(struct sock *sk);
212 static u16 packet_pick_tx_queue(struct sk_buff *skb);
213 
214 struct packet_skb_cb {
215 	union {
216 		struct sockaddr_pkt pkt;
217 		union {
218 			/* Trick: alias skb original length with
219 			 * ll.sll_family and ll.protocol in order
220 			 * to save room.
221 			 */
222 			unsigned int origlen;
223 			struct sockaddr_ll ll;
224 		};
225 	} sa;
226 };
227 
228 #define vio_le() virtio_legacy_is_little_endian()
229 
230 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
231 
232 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
233 #define GET_PBLOCK_DESC(x, bid)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
235 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
236 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
237 #define GET_NEXT_PRB_BLK_NUM(x) \
238 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
239 	((x)->kactive_blk_num+1) : 0)
240 
241 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
242 static void __fanout_link(struct sock *sk, struct packet_sock *po);
243 
244 static int packet_direct_xmit(struct sk_buff *skb)
245 {
246 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
247 }
248 
249 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
250 {
251 	struct net_device *dev;
252 
253 	rcu_read_lock();
254 	dev = rcu_dereference(po->cached_dev);
255 	dev_hold(dev);
256 	rcu_read_unlock();
257 
258 	return dev;
259 }
260 
261 static void packet_cached_dev_assign(struct packet_sock *po,
262 				     struct net_device *dev)
263 {
264 	rcu_assign_pointer(po->cached_dev, dev);
265 }
266 
267 static void packet_cached_dev_reset(struct packet_sock *po)
268 {
269 	RCU_INIT_POINTER(po->cached_dev, NULL);
270 }
271 
272 static bool packet_use_direct_xmit(const struct packet_sock *po)
273 {
274 	return po->xmit == packet_direct_xmit;
275 }
276 
277 static u16 packet_pick_tx_queue(struct sk_buff *skb)
278 {
279 	struct net_device *dev = skb->dev;
280 	const struct net_device_ops *ops = dev->netdev_ops;
281 	int cpu = raw_smp_processor_id();
282 	u16 queue_index;
283 
284 #ifdef CONFIG_XPS
285 	skb->sender_cpu = cpu + 1;
286 #endif
287 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
288 	if (ops->ndo_select_queue) {
289 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
290 		queue_index = netdev_cap_txqueue(dev, queue_index);
291 	} else {
292 		queue_index = netdev_pick_tx(dev, skb, NULL);
293 	}
294 
295 	return queue_index;
296 }
297 
298 /* __register_prot_hook must be invoked through register_prot_hook
299  * or from a context in which asynchronous accesses to the packet
300  * socket is not possible (packet_create()).
301  */
302 static void __register_prot_hook(struct sock *sk)
303 {
304 	struct packet_sock *po = pkt_sk(sk);
305 
306 	if (!po->running) {
307 		if (po->fanout)
308 			__fanout_link(sk, po);
309 		else
310 			dev_add_pack(&po->prot_hook);
311 
312 		sock_hold(sk);
313 		po->running = 1;
314 	}
315 }
316 
317 static void register_prot_hook(struct sock *sk)
318 {
319 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
320 	__register_prot_hook(sk);
321 }
322 
323 /* If the sync parameter is true, we will temporarily drop
324  * the po->bind_lock and do a synchronize_net to make sure no
325  * asynchronous packet processing paths still refer to the elements
326  * of po->prot_hook.  If the sync parameter is false, it is the
327  * callers responsibility to take care of this.
328  */
329 static void __unregister_prot_hook(struct sock *sk, bool sync)
330 {
331 	struct packet_sock *po = pkt_sk(sk);
332 
333 	lockdep_assert_held_once(&po->bind_lock);
334 
335 	po->running = 0;
336 
337 	if (po->fanout)
338 		__fanout_unlink(sk, po);
339 	else
340 		__dev_remove_pack(&po->prot_hook);
341 
342 	__sock_put(sk);
343 
344 	if (sync) {
345 		spin_unlock(&po->bind_lock);
346 		synchronize_net();
347 		spin_lock(&po->bind_lock);
348 	}
349 }
350 
351 static void unregister_prot_hook(struct sock *sk, bool sync)
352 {
353 	struct packet_sock *po = pkt_sk(sk);
354 
355 	if (po->running)
356 		__unregister_prot_hook(sk, sync);
357 }
358 
359 static inline struct page * __pure pgv_to_page(void *addr)
360 {
361 	if (is_vmalloc_addr(addr))
362 		return vmalloc_to_page(addr);
363 	return virt_to_page(addr);
364 }
365 
366 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
367 {
368 	union tpacket_uhdr h;
369 
370 	h.raw = frame;
371 	switch (po->tp_version) {
372 	case TPACKET_V1:
373 		h.h1->tp_status = status;
374 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
375 		break;
376 	case TPACKET_V2:
377 		h.h2->tp_status = status;
378 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
379 		break;
380 	case TPACKET_V3:
381 		h.h3->tp_status = status;
382 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
383 		break;
384 	default:
385 		WARN(1, "TPACKET version not supported.\n");
386 		BUG();
387 	}
388 
389 	smp_wmb();
390 }
391 
392 static int __packet_get_status(const struct packet_sock *po, void *frame)
393 {
394 	union tpacket_uhdr h;
395 
396 	smp_rmb();
397 
398 	h.raw = frame;
399 	switch (po->tp_version) {
400 	case TPACKET_V1:
401 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
402 		return h.h1->tp_status;
403 	case TPACKET_V2:
404 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
405 		return h.h2->tp_status;
406 	case TPACKET_V3:
407 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
408 		return h.h3->tp_status;
409 	default:
410 		WARN(1, "TPACKET version not supported.\n");
411 		BUG();
412 		return 0;
413 	}
414 }
415 
416 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
417 				   unsigned int flags)
418 {
419 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
420 
421 	if (shhwtstamps &&
422 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
423 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
424 		return TP_STATUS_TS_RAW_HARDWARE;
425 
426 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
427 	    ktime_to_timespec64_cond(skb->tstamp, ts))
428 		return TP_STATUS_TS_SOFTWARE;
429 
430 	return 0;
431 }
432 
433 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
434 				    struct sk_buff *skb)
435 {
436 	union tpacket_uhdr h;
437 	struct timespec64 ts;
438 	__u32 ts_status;
439 
440 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
441 		return 0;
442 
443 	h.raw = frame;
444 	/*
445 	 * versions 1 through 3 overflow the timestamps in y2106, since they
446 	 * all store the seconds in a 32-bit unsigned integer.
447 	 * If we create a version 4, that should have a 64-bit timestamp,
448 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
449 	 * nanoseconds.
450 	 */
451 	switch (po->tp_version) {
452 	case TPACKET_V1:
453 		h.h1->tp_sec = ts.tv_sec;
454 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
455 		break;
456 	case TPACKET_V2:
457 		h.h2->tp_sec = ts.tv_sec;
458 		h.h2->tp_nsec = ts.tv_nsec;
459 		break;
460 	case TPACKET_V3:
461 		h.h3->tp_sec = ts.tv_sec;
462 		h.h3->tp_nsec = ts.tv_nsec;
463 		break;
464 	default:
465 		WARN(1, "TPACKET version not supported.\n");
466 		BUG();
467 	}
468 
469 	/* one flush is safe, as both fields always lie on the same cacheline */
470 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
471 	smp_wmb();
472 
473 	return ts_status;
474 }
475 
476 static void *packet_lookup_frame(const struct packet_sock *po,
477 				 const struct packet_ring_buffer *rb,
478 				 unsigned int position,
479 				 int status)
480 {
481 	unsigned int pg_vec_pos, frame_offset;
482 	union tpacket_uhdr h;
483 
484 	pg_vec_pos = position / rb->frames_per_block;
485 	frame_offset = position % rb->frames_per_block;
486 
487 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
488 		(frame_offset * rb->frame_size);
489 
490 	if (status != __packet_get_status(po, h.raw))
491 		return NULL;
492 
493 	return h.raw;
494 }
495 
496 static void *packet_current_frame(struct packet_sock *po,
497 		struct packet_ring_buffer *rb,
498 		int status)
499 {
500 	return packet_lookup_frame(po, rb, rb->head, status);
501 }
502 
503 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
504 {
505 	del_timer_sync(&pkc->retire_blk_timer);
506 }
507 
508 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
509 		struct sk_buff_head *rb_queue)
510 {
511 	struct tpacket_kbdq_core *pkc;
512 
513 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
514 
515 	spin_lock_bh(&rb_queue->lock);
516 	pkc->delete_blk_timer = 1;
517 	spin_unlock_bh(&rb_queue->lock);
518 
519 	prb_del_retire_blk_timer(pkc);
520 }
521 
522 static void prb_setup_retire_blk_timer(struct packet_sock *po)
523 {
524 	struct tpacket_kbdq_core *pkc;
525 
526 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
527 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
528 		    0);
529 	pkc->retire_blk_timer.expires = jiffies;
530 }
531 
532 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
533 				int blk_size_in_bytes)
534 {
535 	struct net_device *dev;
536 	unsigned int mbits, div;
537 	struct ethtool_link_ksettings ecmd;
538 	int err;
539 
540 	rtnl_lock();
541 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
542 	if (unlikely(!dev)) {
543 		rtnl_unlock();
544 		return DEFAULT_PRB_RETIRE_TOV;
545 	}
546 	err = __ethtool_get_link_ksettings(dev, &ecmd);
547 	rtnl_unlock();
548 	if (err)
549 		return DEFAULT_PRB_RETIRE_TOV;
550 
551 	/* If the link speed is so slow you don't really
552 	 * need to worry about perf anyways
553 	 */
554 	if (ecmd.base.speed < SPEED_1000 ||
555 	    ecmd.base.speed == SPEED_UNKNOWN)
556 		return DEFAULT_PRB_RETIRE_TOV;
557 
558 	div = ecmd.base.speed / 1000;
559 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
560 
561 	if (div)
562 		mbits /= div;
563 
564 	if (div)
565 		return mbits + 1;
566 	return mbits;
567 }
568 
569 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
570 			union tpacket_req_u *req_u)
571 {
572 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
573 }
574 
575 static void init_prb_bdqc(struct packet_sock *po,
576 			struct packet_ring_buffer *rb,
577 			struct pgv *pg_vec,
578 			union tpacket_req_u *req_u)
579 {
580 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
581 	struct tpacket_block_desc *pbd;
582 
583 	memset(p1, 0x0, sizeof(*p1));
584 
585 	p1->knxt_seq_num = 1;
586 	p1->pkbdq = pg_vec;
587 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
588 	p1->pkblk_start	= pg_vec[0].buffer;
589 	p1->kblk_size = req_u->req3.tp_block_size;
590 	p1->knum_blocks	= req_u->req3.tp_block_nr;
591 	p1->hdrlen = po->tp_hdrlen;
592 	p1->version = po->tp_version;
593 	p1->last_kactive_blk_num = 0;
594 	po->stats.stats3.tp_freeze_q_cnt = 0;
595 	if (req_u->req3.tp_retire_blk_tov)
596 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
597 	else
598 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
599 						req_u->req3.tp_block_size);
600 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
601 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
602 	rwlock_init(&p1->blk_fill_in_prog_lock);
603 
604 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
605 	prb_init_ft_ops(p1, req_u);
606 	prb_setup_retire_blk_timer(po);
607 	prb_open_block(p1, pbd);
608 }
609 
610 /*  Do NOT update the last_blk_num first.
611  *  Assumes sk_buff_head lock is held.
612  */
613 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
614 {
615 	mod_timer(&pkc->retire_blk_timer,
616 			jiffies + pkc->tov_in_jiffies);
617 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
618 }
619 
620 /*
621  * Timer logic:
622  * 1) We refresh the timer only when we open a block.
623  *    By doing this we don't waste cycles refreshing the timer
624  *	  on packet-by-packet basis.
625  *
626  * With a 1MB block-size, on a 1Gbps line, it will take
627  * i) ~8 ms to fill a block + ii) memcpy etc.
628  * In this cut we are not accounting for the memcpy time.
629  *
630  * So, if the user sets the 'tmo' to 10ms then the timer
631  * will never fire while the block is still getting filled
632  * (which is what we want). However, the user could choose
633  * to close a block early and that's fine.
634  *
635  * But when the timer does fire, we check whether or not to refresh it.
636  * Since the tmo granularity is in msecs, it is not too expensive
637  * to refresh the timer, lets say every '8' msecs.
638  * Either the user can set the 'tmo' or we can derive it based on
639  * a) line-speed and b) block-size.
640  * prb_calc_retire_blk_tmo() calculates the tmo.
641  *
642  */
643 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
644 {
645 	struct packet_sock *po =
646 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
647 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
648 	unsigned int frozen;
649 	struct tpacket_block_desc *pbd;
650 
651 	spin_lock(&po->sk.sk_receive_queue.lock);
652 
653 	frozen = prb_queue_frozen(pkc);
654 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
655 
656 	if (unlikely(pkc->delete_blk_timer))
657 		goto out;
658 
659 	/* We only need to plug the race when the block is partially filled.
660 	 * tpacket_rcv:
661 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
662 	 *		copy_bits() is in progress ...
663 	 *		timer fires on other cpu:
664 	 *		we can't retire the current block because copy_bits
665 	 *		is in progress.
666 	 *
667 	 */
668 	if (BLOCK_NUM_PKTS(pbd)) {
669 		/* Waiting for skb_copy_bits to finish... */
670 		write_lock(&pkc->blk_fill_in_prog_lock);
671 		write_unlock(&pkc->blk_fill_in_prog_lock);
672 	}
673 
674 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
675 		if (!frozen) {
676 			if (!BLOCK_NUM_PKTS(pbd)) {
677 				/* An empty block. Just refresh the timer. */
678 				goto refresh_timer;
679 			}
680 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
681 			if (!prb_dispatch_next_block(pkc, po))
682 				goto refresh_timer;
683 			else
684 				goto out;
685 		} else {
686 			/* Case 1. Queue was frozen because user-space was
687 			 *	   lagging behind.
688 			 */
689 			if (prb_curr_blk_in_use(pbd)) {
690 				/*
691 				 * Ok, user-space is still behind.
692 				 * So just refresh the timer.
693 				 */
694 				goto refresh_timer;
695 			} else {
696 			       /* Case 2. queue was frozen,user-space caught up,
697 				* now the link went idle && the timer fired.
698 				* We don't have a block to close.So we open this
699 				* block and restart the timer.
700 				* opening a block thaws the queue,restarts timer
701 				* Thawing/timer-refresh is a side effect.
702 				*/
703 				prb_open_block(pkc, pbd);
704 				goto out;
705 			}
706 		}
707 	}
708 
709 refresh_timer:
710 	_prb_refresh_rx_retire_blk_timer(pkc);
711 
712 out:
713 	spin_unlock(&po->sk.sk_receive_queue.lock);
714 }
715 
716 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
717 		struct tpacket_block_desc *pbd1, __u32 status)
718 {
719 	/* Flush everything minus the block header */
720 
721 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
722 	u8 *start, *end;
723 
724 	start = (u8 *)pbd1;
725 
726 	/* Skip the block header(we know header WILL fit in 4K) */
727 	start += PAGE_SIZE;
728 
729 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
730 	for (; start < end; start += PAGE_SIZE)
731 		flush_dcache_page(pgv_to_page(start));
732 
733 	smp_wmb();
734 #endif
735 
736 	/* Now update the block status. */
737 
738 	BLOCK_STATUS(pbd1) = status;
739 
740 	/* Flush the block header */
741 
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 	start = (u8 *)pbd1;
744 	flush_dcache_page(pgv_to_page(start));
745 
746 	smp_wmb();
747 #endif
748 }
749 
750 /*
751  * Side effect:
752  *
753  * 1) flush the block
754  * 2) Increment active_blk_num
755  *
756  * Note:We DONT refresh the timer on purpose.
757  *	Because almost always the next block will be opened.
758  */
759 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
760 		struct tpacket_block_desc *pbd1,
761 		struct packet_sock *po, unsigned int stat)
762 {
763 	__u32 status = TP_STATUS_USER | stat;
764 
765 	struct tpacket3_hdr *last_pkt;
766 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
767 	struct sock *sk = &po->sk;
768 
769 	if (atomic_read(&po->tp_drops))
770 		status |= TP_STATUS_LOSING;
771 
772 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
773 	last_pkt->tp_next_offset = 0;
774 
775 	/* Get the ts of the last pkt */
776 	if (BLOCK_NUM_PKTS(pbd1)) {
777 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
778 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
779 	} else {
780 		/* Ok, we tmo'd - so get the current time.
781 		 *
782 		 * It shouldn't really happen as we don't close empty
783 		 * blocks. See prb_retire_rx_blk_timer_expired().
784 		 */
785 		struct timespec64 ts;
786 		ktime_get_real_ts64(&ts);
787 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
788 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
789 	}
790 
791 	smp_wmb();
792 
793 	/* Flush the block */
794 	prb_flush_block(pkc1, pbd1, status);
795 
796 	sk->sk_data_ready(sk);
797 
798 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
799 }
800 
801 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
802 {
803 	pkc->reset_pending_on_curr_blk = 0;
804 }
805 
806 /*
807  * Side effect of opening a block:
808  *
809  * 1) prb_queue is thawed.
810  * 2) retire_blk_timer is refreshed.
811  *
812  */
813 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
814 	struct tpacket_block_desc *pbd1)
815 {
816 	struct timespec64 ts;
817 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
818 
819 	smp_rmb();
820 
821 	/* We could have just memset this but we will lose the
822 	 * flexibility of making the priv area sticky
823 	 */
824 
825 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
826 	BLOCK_NUM_PKTS(pbd1) = 0;
827 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
828 
829 	ktime_get_real_ts64(&ts);
830 
831 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
832 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
833 
834 	pkc1->pkblk_start = (char *)pbd1;
835 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
836 
837 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
838 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
839 
840 	pbd1->version = pkc1->version;
841 	pkc1->prev = pkc1->nxt_offset;
842 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
843 
844 	prb_thaw_queue(pkc1);
845 	_prb_refresh_rx_retire_blk_timer(pkc1);
846 
847 	smp_wmb();
848 }
849 
850 /*
851  * Queue freeze logic:
852  * 1) Assume tp_block_nr = 8 blocks.
853  * 2) At time 't0', user opens Rx ring.
854  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
855  * 4) user-space is either sleeping or processing block '0'.
856  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
857  *    it will close block-7,loop around and try to fill block '0'.
858  *    call-flow:
859  *    __packet_lookup_frame_in_block
860  *      prb_retire_current_block()
861  *      prb_dispatch_next_block()
862  *        |->(BLOCK_STATUS == USER) evaluates to true
863  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
864  * 6) Now there are two cases:
865  *    6.1) Link goes idle right after the queue is frozen.
866  *         But remember, the last open_block() refreshed the timer.
867  *         When this timer expires,it will refresh itself so that we can
868  *         re-open block-0 in near future.
869  *    6.2) Link is busy and keeps on receiving packets. This is a simple
870  *         case and __packet_lookup_frame_in_block will check if block-0
871  *         is free and can now be re-used.
872  */
873 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
874 				  struct packet_sock *po)
875 {
876 	pkc->reset_pending_on_curr_blk = 1;
877 	po->stats.stats3.tp_freeze_q_cnt++;
878 }
879 
880 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
881 
882 /*
883  * If the next block is free then we will dispatch it
884  * and return a good offset.
885  * Else, we will freeze the queue.
886  * So, caller must check the return value.
887  */
888 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
889 		struct packet_sock *po)
890 {
891 	struct tpacket_block_desc *pbd;
892 
893 	smp_rmb();
894 
895 	/* 1. Get current block num */
896 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
897 
898 	/* 2. If this block is currently in_use then freeze the queue */
899 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
900 		prb_freeze_queue(pkc, po);
901 		return NULL;
902 	}
903 
904 	/*
905 	 * 3.
906 	 * open this block and return the offset where the first packet
907 	 * needs to get stored.
908 	 */
909 	prb_open_block(pkc, pbd);
910 	return (void *)pkc->nxt_offset;
911 }
912 
913 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
914 		struct packet_sock *po, unsigned int status)
915 {
916 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
917 
918 	/* retire/close the current block */
919 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
920 		/*
921 		 * Plug the case where copy_bits() is in progress on
922 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
923 		 * have space to copy the pkt in the current block and
924 		 * called prb_retire_current_block()
925 		 *
926 		 * We don't need to worry about the TMO case because
927 		 * the timer-handler already handled this case.
928 		 */
929 		if (!(status & TP_STATUS_BLK_TMO)) {
930 			/* Waiting for skb_copy_bits to finish... */
931 			write_lock(&pkc->blk_fill_in_prog_lock);
932 			write_unlock(&pkc->blk_fill_in_prog_lock);
933 		}
934 		prb_close_block(pkc, pbd, po, status);
935 		return;
936 	}
937 }
938 
939 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
940 {
941 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
942 }
943 
944 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
945 {
946 	return pkc->reset_pending_on_curr_blk;
947 }
948 
949 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
950 	__releases(&pkc->blk_fill_in_prog_lock)
951 {
952 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
953 
954 	read_unlock(&pkc->blk_fill_in_prog_lock);
955 }
956 
957 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
958 			struct tpacket3_hdr *ppd)
959 {
960 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
961 }
962 
963 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
964 			struct tpacket3_hdr *ppd)
965 {
966 	ppd->hv1.tp_rxhash = 0;
967 }
968 
969 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
970 			struct tpacket3_hdr *ppd)
971 {
972 	if (skb_vlan_tag_present(pkc->skb)) {
973 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
974 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
975 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
976 	} else {
977 		ppd->hv1.tp_vlan_tci = 0;
978 		ppd->hv1.tp_vlan_tpid = 0;
979 		ppd->tp_status = TP_STATUS_AVAILABLE;
980 	}
981 }
982 
983 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
984 			struct tpacket3_hdr *ppd)
985 {
986 	ppd->hv1.tp_padding = 0;
987 	prb_fill_vlan_info(pkc, ppd);
988 
989 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
990 		prb_fill_rxhash(pkc, ppd);
991 	else
992 		prb_clear_rxhash(pkc, ppd);
993 }
994 
995 static void prb_fill_curr_block(char *curr,
996 				struct tpacket_kbdq_core *pkc,
997 				struct tpacket_block_desc *pbd,
998 				unsigned int len)
999 	__acquires(&pkc->blk_fill_in_prog_lock)
1000 {
1001 	struct tpacket3_hdr *ppd;
1002 
1003 	ppd  = (struct tpacket3_hdr *)curr;
1004 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	pkc->prev = curr;
1006 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1007 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1008 	BLOCK_NUM_PKTS(pbd) += 1;
1009 	read_lock(&pkc->blk_fill_in_prog_lock);
1010 	prb_run_all_ft_ops(pkc, ppd);
1011 }
1012 
1013 /* Assumes caller has the sk->rx_queue.lock */
1014 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1015 					    struct sk_buff *skb,
1016 					    unsigned int len
1017 					    )
1018 {
1019 	struct tpacket_kbdq_core *pkc;
1020 	struct tpacket_block_desc *pbd;
1021 	char *curr, *end;
1022 
1023 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1024 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1025 
1026 	/* Queue is frozen when user space is lagging behind */
1027 	if (prb_queue_frozen(pkc)) {
1028 		/*
1029 		 * Check if that last block which caused the queue to freeze,
1030 		 * is still in_use by user-space.
1031 		 */
1032 		if (prb_curr_blk_in_use(pbd)) {
1033 			/* Can't record this packet */
1034 			return NULL;
1035 		} else {
1036 			/*
1037 			 * Ok, the block was released by user-space.
1038 			 * Now let's open that block.
1039 			 * opening a block also thaws the queue.
1040 			 * Thawing is a side effect.
1041 			 */
1042 			prb_open_block(pkc, pbd);
1043 		}
1044 	}
1045 
1046 	smp_mb();
1047 	curr = pkc->nxt_offset;
1048 	pkc->skb = skb;
1049 	end = (char *)pbd + pkc->kblk_size;
1050 
1051 	/* first try the current block */
1052 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1053 		prb_fill_curr_block(curr, pkc, pbd, len);
1054 		return (void *)curr;
1055 	}
1056 
1057 	/* Ok, close the current block */
1058 	prb_retire_current_block(pkc, po, 0);
1059 
1060 	/* Now, try to dispatch the next block */
1061 	curr = (char *)prb_dispatch_next_block(pkc, po);
1062 	if (curr) {
1063 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1064 		prb_fill_curr_block(curr, pkc, pbd, len);
1065 		return (void *)curr;
1066 	}
1067 
1068 	/*
1069 	 * No free blocks are available.user_space hasn't caught up yet.
1070 	 * Queue was just frozen and now this packet will get dropped.
1071 	 */
1072 	return NULL;
1073 }
1074 
1075 static void *packet_current_rx_frame(struct packet_sock *po,
1076 					    struct sk_buff *skb,
1077 					    int status, unsigned int len)
1078 {
1079 	char *curr = NULL;
1080 	switch (po->tp_version) {
1081 	case TPACKET_V1:
1082 	case TPACKET_V2:
1083 		curr = packet_lookup_frame(po, &po->rx_ring,
1084 					po->rx_ring.head, status);
1085 		return curr;
1086 	case TPACKET_V3:
1087 		return __packet_lookup_frame_in_block(po, skb, len);
1088 	default:
1089 		WARN(1, "TPACKET version not supported\n");
1090 		BUG();
1091 		return NULL;
1092 	}
1093 }
1094 
1095 static void *prb_lookup_block(const struct packet_sock *po,
1096 			      const struct packet_ring_buffer *rb,
1097 			      unsigned int idx,
1098 			      int status)
1099 {
1100 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1101 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1102 
1103 	if (status != BLOCK_STATUS(pbd))
1104 		return NULL;
1105 	return pbd;
1106 }
1107 
1108 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1109 {
1110 	unsigned int prev;
1111 	if (rb->prb_bdqc.kactive_blk_num)
1112 		prev = rb->prb_bdqc.kactive_blk_num-1;
1113 	else
1114 		prev = rb->prb_bdqc.knum_blocks-1;
1115 	return prev;
1116 }
1117 
1118 /* Assumes caller has held the rx_queue.lock */
1119 static void *__prb_previous_block(struct packet_sock *po,
1120 					 struct packet_ring_buffer *rb,
1121 					 int status)
1122 {
1123 	unsigned int previous = prb_previous_blk_num(rb);
1124 	return prb_lookup_block(po, rb, previous, status);
1125 }
1126 
1127 static void *packet_previous_rx_frame(struct packet_sock *po,
1128 					     struct packet_ring_buffer *rb,
1129 					     int status)
1130 {
1131 	if (po->tp_version <= TPACKET_V2)
1132 		return packet_previous_frame(po, rb, status);
1133 
1134 	return __prb_previous_block(po, rb, status);
1135 }
1136 
1137 static void packet_increment_rx_head(struct packet_sock *po,
1138 					    struct packet_ring_buffer *rb)
1139 {
1140 	switch (po->tp_version) {
1141 	case TPACKET_V1:
1142 	case TPACKET_V2:
1143 		return packet_increment_head(rb);
1144 	case TPACKET_V3:
1145 	default:
1146 		WARN(1, "TPACKET version not supported.\n");
1147 		BUG();
1148 		return;
1149 	}
1150 }
1151 
1152 static void *packet_previous_frame(struct packet_sock *po,
1153 		struct packet_ring_buffer *rb,
1154 		int status)
1155 {
1156 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1157 	return packet_lookup_frame(po, rb, previous, status);
1158 }
1159 
1160 static void packet_increment_head(struct packet_ring_buffer *buff)
1161 {
1162 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1163 }
1164 
1165 static void packet_inc_pending(struct packet_ring_buffer *rb)
1166 {
1167 	this_cpu_inc(*rb->pending_refcnt);
1168 }
1169 
1170 static void packet_dec_pending(struct packet_ring_buffer *rb)
1171 {
1172 	this_cpu_dec(*rb->pending_refcnt);
1173 }
1174 
1175 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1176 {
1177 	unsigned int refcnt = 0;
1178 	int cpu;
1179 
1180 	/* We don't use pending refcount in rx_ring. */
1181 	if (rb->pending_refcnt == NULL)
1182 		return 0;
1183 
1184 	for_each_possible_cpu(cpu)
1185 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1186 
1187 	return refcnt;
1188 }
1189 
1190 static int packet_alloc_pending(struct packet_sock *po)
1191 {
1192 	po->rx_ring.pending_refcnt = NULL;
1193 
1194 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1195 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1196 		return -ENOBUFS;
1197 
1198 	return 0;
1199 }
1200 
1201 static void packet_free_pending(struct packet_sock *po)
1202 {
1203 	free_percpu(po->tx_ring.pending_refcnt);
1204 }
1205 
1206 #define ROOM_POW_OFF	2
1207 #define ROOM_NONE	0x0
1208 #define ROOM_LOW	0x1
1209 #define ROOM_NORMAL	0x2
1210 
1211 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1212 {
1213 	int idx, len;
1214 
1215 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1216 	idx = READ_ONCE(po->rx_ring.head);
1217 	if (pow_off)
1218 		idx += len >> pow_off;
1219 	if (idx >= len)
1220 		idx -= len;
1221 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1222 }
1223 
1224 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1225 {
1226 	int idx, len;
1227 
1228 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1229 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1230 	if (pow_off)
1231 		idx += len >> pow_off;
1232 	if (idx >= len)
1233 		idx -= len;
1234 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1235 }
1236 
1237 static int __packet_rcv_has_room(const struct packet_sock *po,
1238 				 const struct sk_buff *skb)
1239 {
1240 	const struct sock *sk = &po->sk;
1241 	int ret = ROOM_NONE;
1242 
1243 	if (po->prot_hook.func != tpacket_rcv) {
1244 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1245 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1246 				   - (skb ? skb->truesize : 0);
1247 
1248 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1249 			return ROOM_NORMAL;
1250 		else if (avail > 0)
1251 			return ROOM_LOW;
1252 		else
1253 			return ROOM_NONE;
1254 	}
1255 
1256 	if (po->tp_version == TPACKET_V3) {
1257 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1258 			ret = ROOM_NORMAL;
1259 		else if (__tpacket_v3_has_room(po, 0))
1260 			ret = ROOM_LOW;
1261 	} else {
1262 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1263 			ret = ROOM_NORMAL;
1264 		else if (__tpacket_has_room(po, 0))
1265 			ret = ROOM_LOW;
1266 	}
1267 
1268 	return ret;
1269 }
1270 
1271 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1272 {
1273 	int pressure, ret;
1274 
1275 	ret = __packet_rcv_has_room(po, skb);
1276 	pressure = ret != ROOM_NORMAL;
1277 
1278 	if (READ_ONCE(po->pressure) != pressure)
1279 		WRITE_ONCE(po->pressure, pressure);
1280 
1281 	return ret;
1282 }
1283 
1284 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1285 {
1286 	if (READ_ONCE(po->pressure) &&
1287 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1288 		WRITE_ONCE(po->pressure,  0);
1289 }
1290 
1291 static void packet_sock_destruct(struct sock *sk)
1292 {
1293 	skb_queue_purge(&sk->sk_error_queue);
1294 
1295 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1296 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1297 
1298 	if (!sock_flag(sk, SOCK_DEAD)) {
1299 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1300 		return;
1301 	}
1302 
1303 	sk_refcnt_debug_dec(sk);
1304 }
1305 
1306 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1307 {
1308 	u32 *history = po->rollover->history;
1309 	u32 victim, rxhash;
1310 	int i, count = 0;
1311 
1312 	rxhash = skb_get_hash(skb);
1313 	for (i = 0; i < ROLLOVER_HLEN; i++)
1314 		if (READ_ONCE(history[i]) == rxhash)
1315 			count++;
1316 
1317 	victim = prandom_u32() % ROLLOVER_HLEN;
1318 
1319 	/* Avoid dirtying the cache line if possible */
1320 	if (READ_ONCE(history[victim]) != rxhash)
1321 		WRITE_ONCE(history[victim], rxhash);
1322 
1323 	return count > (ROLLOVER_HLEN >> 1);
1324 }
1325 
1326 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1327 				      struct sk_buff *skb,
1328 				      unsigned int num)
1329 {
1330 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1331 }
1332 
1333 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1334 				    struct sk_buff *skb,
1335 				    unsigned int num)
1336 {
1337 	unsigned int val = atomic_inc_return(&f->rr_cur);
1338 
1339 	return val % num;
1340 }
1341 
1342 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1343 				     struct sk_buff *skb,
1344 				     unsigned int num)
1345 {
1346 	return smp_processor_id() % num;
1347 }
1348 
1349 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1350 				     struct sk_buff *skb,
1351 				     unsigned int num)
1352 {
1353 	return prandom_u32_max(num);
1354 }
1355 
1356 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1357 					  struct sk_buff *skb,
1358 					  unsigned int idx, bool try_self,
1359 					  unsigned int num)
1360 {
1361 	struct packet_sock *po, *po_next, *po_skip = NULL;
1362 	unsigned int i, j, room = ROOM_NONE;
1363 
1364 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1365 
1366 	if (try_self) {
1367 		room = packet_rcv_has_room(po, skb);
1368 		if (room == ROOM_NORMAL ||
1369 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1370 			return idx;
1371 		po_skip = po;
1372 	}
1373 
1374 	i = j = min_t(int, po->rollover->sock, num - 1);
1375 	do {
1376 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1377 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1378 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1379 			if (i != j)
1380 				po->rollover->sock = i;
1381 			atomic_long_inc(&po->rollover->num);
1382 			if (room == ROOM_LOW)
1383 				atomic_long_inc(&po->rollover->num_huge);
1384 			return i;
1385 		}
1386 
1387 		if (++i == num)
1388 			i = 0;
1389 	} while (i != j);
1390 
1391 	atomic_long_inc(&po->rollover->num_failed);
1392 	return idx;
1393 }
1394 
1395 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1396 				    struct sk_buff *skb,
1397 				    unsigned int num)
1398 {
1399 	return skb_get_queue_mapping(skb) % num;
1400 }
1401 
1402 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1403 				     struct sk_buff *skb,
1404 				     unsigned int num)
1405 {
1406 	struct bpf_prog *prog;
1407 	unsigned int ret = 0;
1408 
1409 	rcu_read_lock();
1410 	prog = rcu_dereference(f->bpf_prog);
1411 	if (prog)
1412 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1413 	rcu_read_unlock();
1414 
1415 	return ret;
1416 }
1417 
1418 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1419 {
1420 	return f->flags & (flag >> 8);
1421 }
1422 
1423 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1424 			     struct packet_type *pt, struct net_device *orig_dev)
1425 {
1426 	struct packet_fanout *f = pt->af_packet_priv;
1427 	unsigned int num = READ_ONCE(f->num_members);
1428 	struct net *net = read_pnet(&f->net);
1429 	struct packet_sock *po;
1430 	unsigned int idx;
1431 
1432 	if (!net_eq(dev_net(dev), net) || !num) {
1433 		kfree_skb(skb);
1434 		return 0;
1435 	}
1436 
1437 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1438 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1439 		if (!skb)
1440 			return 0;
1441 	}
1442 	switch (f->type) {
1443 	case PACKET_FANOUT_HASH:
1444 	default:
1445 		idx = fanout_demux_hash(f, skb, num);
1446 		break;
1447 	case PACKET_FANOUT_LB:
1448 		idx = fanout_demux_lb(f, skb, num);
1449 		break;
1450 	case PACKET_FANOUT_CPU:
1451 		idx = fanout_demux_cpu(f, skb, num);
1452 		break;
1453 	case PACKET_FANOUT_RND:
1454 		idx = fanout_demux_rnd(f, skb, num);
1455 		break;
1456 	case PACKET_FANOUT_QM:
1457 		idx = fanout_demux_qm(f, skb, num);
1458 		break;
1459 	case PACKET_FANOUT_ROLLOVER:
1460 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1461 		break;
1462 	case PACKET_FANOUT_CBPF:
1463 	case PACKET_FANOUT_EBPF:
1464 		idx = fanout_demux_bpf(f, skb, num);
1465 		break;
1466 	}
1467 
1468 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1469 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1470 
1471 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1472 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1473 }
1474 
1475 DEFINE_MUTEX(fanout_mutex);
1476 EXPORT_SYMBOL_GPL(fanout_mutex);
1477 static LIST_HEAD(fanout_list);
1478 static u16 fanout_next_id;
1479 
1480 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1481 {
1482 	struct packet_fanout *f = po->fanout;
1483 
1484 	spin_lock(&f->lock);
1485 	rcu_assign_pointer(f->arr[f->num_members], sk);
1486 	smp_wmb();
1487 	f->num_members++;
1488 	if (f->num_members == 1)
1489 		dev_add_pack(&f->prot_hook);
1490 	spin_unlock(&f->lock);
1491 }
1492 
1493 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1494 {
1495 	struct packet_fanout *f = po->fanout;
1496 	int i;
1497 
1498 	spin_lock(&f->lock);
1499 	for (i = 0; i < f->num_members; i++) {
1500 		if (rcu_dereference_protected(f->arr[i],
1501 					      lockdep_is_held(&f->lock)) == sk)
1502 			break;
1503 	}
1504 	BUG_ON(i >= f->num_members);
1505 	rcu_assign_pointer(f->arr[i],
1506 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1507 						     lockdep_is_held(&f->lock)));
1508 	f->num_members--;
1509 	if (f->num_members == 0)
1510 		__dev_remove_pack(&f->prot_hook);
1511 	spin_unlock(&f->lock);
1512 }
1513 
1514 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1515 {
1516 	if (sk->sk_family != PF_PACKET)
1517 		return false;
1518 
1519 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1520 }
1521 
1522 static void fanout_init_data(struct packet_fanout *f)
1523 {
1524 	switch (f->type) {
1525 	case PACKET_FANOUT_LB:
1526 		atomic_set(&f->rr_cur, 0);
1527 		break;
1528 	case PACKET_FANOUT_CBPF:
1529 	case PACKET_FANOUT_EBPF:
1530 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1531 		break;
1532 	}
1533 }
1534 
1535 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1536 {
1537 	struct bpf_prog *old;
1538 
1539 	spin_lock(&f->lock);
1540 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1541 	rcu_assign_pointer(f->bpf_prog, new);
1542 	spin_unlock(&f->lock);
1543 
1544 	if (old) {
1545 		synchronize_net();
1546 		bpf_prog_destroy(old);
1547 	}
1548 }
1549 
1550 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1551 				unsigned int len)
1552 {
1553 	struct bpf_prog *new;
1554 	struct sock_fprog fprog;
1555 	int ret;
1556 
1557 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1558 		return -EPERM;
1559 
1560 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1561 	if (ret)
1562 		return ret;
1563 
1564 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1565 	if (ret)
1566 		return ret;
1567 
1568 	__fanout_set_data_bpf(po->fanout, new);
1569 	return 0;
1570 }
1571 
1572 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1573 				unsigned int len)
1574 {
1575 	struct bpf_prog *new;
1576 	u32 fd;
1577 
1578 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1579 		return -EPERM;
1580 	if (len != sizeof(fd))
1581 		return -EINVAL;
1582 	if (copy_from_sockptr(&fd, data, len))
1583 		return -EFAULT;
1584 
1585 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1586 	if (IS_ERR(new))
1587 		return PTR_ERR(new);
1588 
1589 	__fanout_set_data_bpf(po->fanout, new);
1590 	return 0;
1591 }
1592 
1593 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1594 			   unsigned int len)
1595 {
1596 	switch (po->fanout->type) {
1597 	case PACKET_FANOUT_CBPF:
1598 		return fanout_set_data_cbpf(po, data, len);
1599 	case PACKET_FANOUT_EBPF:
1600 		return fanout_set_data_ebpf(po, data, len);
1601 	default:
1602 		return -EINVAL;
1603 	}
1604 }
1605 
1606 static void fanout_release_data(struct packet_fanout *f)
1607 {
1608 	switch (f->type) {
1609 	case PACKET_FANOUT_CBPF:
1610 	case PACKET_FANOUT_EBPF:
1611 		__fanout_set_data_bpf(f, NULL);
1612 	}
1613 }
1614 
1615 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1616 {
1617 	struct packet_fanout *f;
1618 
1619 	list_for_each_entry(f, &fanout_list, list) {
1620 		if (f->id == candidate_id &&
1621 		    read_pnet(&f->net) == sock_net(sk)) {
1622 			return false;
1623 		}
1624 	}
1625 	return true;
1626 }
1627 
1628 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1629 {
1630 	u16 id = fanout_next_id;
1631 
1632 	do {
1633 		if (__fanout_id_is_free(sk, id)) {
1634 			*new_id = id;
1635 			fanout_next_id = id + 1;
1636 			return true;
1637 		}
1638 
1639 		id++;
1640 	} while (id != fanout_next_id);
1641 
1642 	return false;
1643 }
1644 
1645 static int fanout_add(struct sock *sk, struct fanout_args *args)
1646 {
1647 	struct packet_rollover *rollover = NULL;
1648 	struct packet_sock *po = pkt_sk(sk);
1649 	u16 type_flags = args->type_flags;
1650 	struct packet_fanout *f, *match;
1651 	u8 type = type_flags & 0xff;
1652 	u8 flags = type_flags >> 8;
1653 	u16 id = args->id;
1654 	int err;
1655 
1656 	switch (type) {
1657 	case PACKET_FANOUT_ROLLOVER:
1658 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1659 			return -EINVAL;
1660 		break;
1661 	case PACKET_FANOUT_HASH:
1662 	case PACKET_FANOUT_LB:
1663 	case PACKET_FANOUT_CPU:
1664 	case PACKET_FANOUT_RND:
1665 	case PACKET_FANOUT_QM:
1666 	case PACKET_FANOUT_CBPF:
1667 	case PACKET_FANOUT_EBPF:
1668 		break;
1669 	default:
1670 		return -EINVAL;
1671 	}
1672 
1673 	mutex_lock(&fanout_mutex);
1674 
1675 	err = -EALREADY;
1676 	if (po->fanout)
1677 		goto out;
1678 
1679 	if (type == PACKET_FANOUT_ROLLOVER ||
1680 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1681 		err = -ENOMEM;
1682 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1683 		if (!rollover)
1684 			goto out;
1685 		atomic_long_set(&rollover->num, 0);
1686 		atomic_long_set(&rollover->num_huge, 0);
1687 		atomic_long_set(&rollover->num_failed, 0);
1688 	}
1689 
1690 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1691 		if (id != 0) {
1692 			err = -EINVAL;
1693 			goto out;
1694 		}
1695 		if (!fanout_find_new_id(sk, &id)) {
1696 			err = -ENOMEM;
1697 			goto out;
1698 		}
1699 		/* ephemeral flag for the first socket in the group: drop it */
1700 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1701 	}
1702 
1703 	match = NULL;
1704 	list_for_each_entry(f, &fanout_list, list) {
1705 		if (f->id == id &&
1706 		    read_pnet(&f->net) == sock_net(sk)) {
1707 			match = f;
1708 			break;
1709 		}
1710 	}
1711 	err = -EINVAL;
1712 	if (match) {
1713 		if (match->flags != flags)
1714 			goto out;
1715 		if (args->max_num_members &&
1716 		    args->max_num_members != match->max_num_members)
1717 			goto out;
1718 	} else {
1719 		if (args->max_num_members > PACKET_FANOUT_MAX)
1720 			goto out;
1721 		if (!args->max_num_members)
1722 			/* legacy PACKET_FANOUT_MAX */
1723 			args->max_num_members = 256;
1724 		err = -ENOMEM;
1725 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1726 				 GFP_KERNEL);
1727 		if (!match)
1728 			goto out;
1729 		write_pnet(&match->net, sock_net(sk));
1730 		match->id = id;
1731 		match->type = type;
1732 		match->flags = flags;
1733 		INIT_LIST_HEAD(&match->list);
1734 		spin_lock_init(&match->lock);
1735 		refcount_set(&match->sk_ref, 0);
1736 		fanout_init_data(match);
1737 		match->prot_hook.type = po->prot_hook.type;
1738 		match->prot_hook.dev = po->prot_hook.dev;
1739 		match->prot_hook.func = packet_rcv_fanout;
1740 		match->prot_hook.af_packet_priv = match;
1741 		match->prot_hook.id_match = match_fanout_group;
1742 		match->max_num_members = args->max_num_members;
1743 		list_add(&match->list, &fanout_list);
1744 	}
1745 	err = -EINVAL;
1746 
1747 	spin_lock(&po->bind_lock);
1748 	if (po->running &&
1749 	    match->type == type &&
1750 	    match->prot_hook.type == po->prot_hook.type &&
1751 	    match->prot_hook.dev == po->prot_hook.dev) {
1752 		err = -ENOSPC;
1753 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1754 			__dev_remove_pack(&po->prot_hook);
1755 			po->fanout = match;
1756 			po->rollover = rollover;
1757 			rollover = NULL;
1758 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1759 			__fanout_link(sk, po);
1760 			err = 0;
1761 		}
1762 	}
1763 	spin_unlock(&po->bind_lock);
1764 
1765 	if (err && !refcount_read(&match->sk_ref)) {
1766 		list_del(&match->list);
1767 		kvfree(match);
1768 	}
1769 
1770 out:
1771 	kfree(rollover);
1772 	mutex_unlock(&fanout_mutex);
1773 	return err;
1774 }
1775 
1776 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1777  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1778  * It is the responsibility of the caller to call fanout_release_data() and
1779  * free the returned packet_fanout (after synchronize_net())
1780  */
1781 static struct packet_fanout *fanout_release(struct sock *sk)
1782 {
1783 	struct packet_sock *po = pkt_sk(sk);
1784 	struct packet_fanout *f;
1785 
1786 	mutex_lock(&fanout_mutex);
1787 	f = po->fanout;
1788 	if (f) {
1789 		po->fanout = NULL;
1790 
1791 		if (refcount_dec_and_test(&f->sk_ref))
1792 			list_del(&f->list);
1793 		else
1794 			f = NULL;
1795 	}
1796 	mutex_unlock(&fanout_mutex);
1797 
1798 	return f;
1799 }
1800 
1801 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1802 					  struct sk_buff *skb)
1803 {
1804 	/* Earlier code assumed this would be a VLAN pkt, double-check
1805 	 * this now that we have the actual packet in hand. We can only
1806 	 * do this check on Ethernet devices.
1807 	 */
1808 	if (unlikely(dev->type != ARPHRD_ETHER))
1809 		return false;
1810 
1811 	skb_reset_mac_header(skb);
1812 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1813 }
1814 
1815 static const struct proto_ops packet_ops;
1816 
1817 static const struct proto_ops packet_ops_spkt;
1818 
1819 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1820 			   struct packet_type *pt, struct net_device *orig_dev)
1821 {
1822 	struct sock *sk;
1823 	struct sockaddr_pkt *spkt;
1824 
1825 	/*
1826 	 *	When we registered the protocol we saved the socket in the data
1827 	 *	field for just this event.
1828 	 */
1829 
1830 	sk = pt->af_packet_priv;
1831 
1832 	/*
1833 	 *	Yank back the headers [hope the device set this
1834 	 *	right or kerboom...]
1835 	 *
1836 	 *	Incoming packets have ll header pulled,
1837 	 *	push it back.
1838 	 *
1839 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1840 	 *	so that this procedure is noop.
1841 	 */
1842 
1843 	if (skb->pkt_type == PACKET_LOOPBACK)
1844 		goto out;
1845 
1846 	if (!net_eq(dev_net(dev), sock_net(sk)))
1847 		goto out;
1848 
1849 	skb = skb_share_check(skb, GFP_ATOMIC);
1850 	if (skb == NULL)
1851 		goto oom;
1852 
1853 	/* drop any routing info */
1854 	skb_dst_drop(skb);
1855 
1856 	/* drop conntrack reference */
1857 	nf_reset_ct(skb);
1858 
1859 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1860 
1861 	skb_push(skb, skb->data - skb_mac_header(skb));
1862 
1863 	/*
1864 	 *	The SOCK_PACKET socket receives _all_ frames.
1865 	 */
1866 
1867 	spkt->spkt_family = dev->type;
1868 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1869 	spkt->spkt_protocol = skb->protocol;
1870 
1871 	/*
1872 	 *	Charge the memory to the socket. This is done specifically
1873 	 *	to prevent sockets using all the memory up.
1874 	 */
1875 
1876 	if (sock_queue_rcv_skb(sk, skb) == 0)
1877 		return 0;
1878 
1879 out:
1880 	kfree_skb(skb);
1881 oom:
1882 	return 0;
1883 }
1884 
1885 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1886 {
1887 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1888 	    sock->type == SOCK_RAW) {
1889 		skb_reset_mac_header(skb);
1890 		skb->protocol = dev_parse_header_protocol(skb);
1891 	}
1892 
1893 	skb_probe_transport_header(skb);
1894 }
1895 
1896 /*
1897  *	Output a raw packet to a device layer. This bypasses all the other
1898  *	protocol layers and you must therefore supply it with a complete frame
1899  */
1900 
1901 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1902 			       size_t len)
1903 {
1904 	struct sock *sk = sock->sk;
1905 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1906 	struct sk_buff *skb = NULL;
1907 	struct net_device *dev;
1908 	struct sockcm_cookie sockc;
1909 	__be16 proto = 0;
1910 	int err;
1911 	int extra_len = 0;
1912 
1913 	/*
1914 	 *	Get and verify the address.
1915 	 */
1916 
1917 	if (saddr) {
1918 		if (msg->msg_namelen < sizeof(struct sockaddr))
1919 			return -EINVAL;
1920 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1921 			proto = saddr->spkt_protocol;
1922 	} else
1923 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1924 
1925 	/*
1926 	 *	Find the device first to size check it
1927 	 */
1928 
1929 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1930 retry:
1931 	rcu_read_lock();
1932 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1933 	err = -ENODEV;
1934 	if (dev == NULL)
1935 		goto out_unlock;
1936 
1937 	err = -ENETDOWN;
1938 	if (!(dev->flags & IFF_UP))
1939 		goto out_unlock;
1940 
1941 	/*
1942 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1943 	 * raw protocol and you must do your own fragmentation at this level.
1944 	 */
1945 
1946 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1947 		if (!netif_supports_nofcs(dev)) {
1948 			err = -EPROTONOSUPPORT;
1949 			goto out_unlock;
1950 		}
1951 		extra_len = 4; /* We're doing our own CRC */
1952 	}
1953 
1954 	err = -EMSGSIZE;
1955 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1956 		goto out_unlock;
1957 
1958 	if (!skb) {
1959 		size_t reserved = LL_RESERVED_SPACE(dev);
1960 		int tlen = dev->needed_tailroom;
1961 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1962 
1963 		rcu_read_unlock();
1964 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1965 		if (skb == NULL)
1966 			return -ENOBUFS;
1967 		/* FIXME: Save some space for broken drivers that write a hard
1968 		 * header at transmission time by themselves. PPP is the notable
1969 		 * one here. This should really be fixed at the driver level.
1970 		 */
1971 		skb_reserve(skb, reserved);
1972 		skb_reset_network_header(skb);
1973 
1974 		/* Try to align data part correctly */
1975 		if (hhlen) {
1976 			skb->data -= hhlen;
1977 			skb->tail -= hhlen;
1978 			if (len < hhlen)
1979 				skb_reset_network_header(skb);
1980 		}
1981 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1982 		if (err)
1983 			goto out_free;
1984 		goto retry;
1985 	}
1986 
1987 	if (!dev_validate_header(dev, skb->data, len)) {
1988 		err = -EINVAL;
1989 		goto out_unlock;
1990 	}
1991 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1992 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1993 		err = -EMSGSIZE;
1994 		goto out_unlock;
1995 	}
1996 
1997 	sockcm_init(&sockc, sk);
1998 	if (msg->msg_controllen) {
1999 		err = sock_cmsg_send(sk, msg, &sockc);
2000 		if (unlikely(err))
2001 			goto out_unlock;
2002 	}
2003 
2004 	skb->protocol = proto;
2005 	skb->dev = dev;
2006 	skb->priority = sk->sk_priority;
2007 	skb->mark = sk->sk_mark;
2008 	skb->tstamp = sockc.transmit_time;
2009 
2010 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2011 
2012 	if (unlikely(extra_len == 4))
2013 		skb->no_fcs = 1;
2014 
2015 	packet_parse_headers(skb, sock);
2016 
2017 	dev_queue_xmit(skb);
2018 	rcu_read_unlock();
2019 	return len;
2020 
2021 out_unlock:
2022 	rcu_read_unlock();
2023 out_free:
2024 	kfree_skb(skb);
2025 	return err;
2026 }
2027 
2028 static unsigned int run_filter(struct sk_buff *skb,
2029 			       const struct sock *sk,
2030 			       unsigned int res)
2031 {
2032 	struct sk_filter *filter;
2033 
2034 	rcu_read_lock();
2035 	filter = rcu_dereference(sk->sk_filter);
2036 	if (filter != NULL)
2037 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2038 	rcu_read_unlock();
2039 
2040 	return res;
2041 }
2042 
2043 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2044 			   size_t *len)
2045 {
2046 	struct virtio_net_hdr vnet_hdr;
2047 
2048 	if (*len < sizeof(vnet_hdr))
2049 		return -EINVAL;
2050 	*len -= sizeof(vnet_hdr);
2051 
2052 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2053 		return -EINVAL;
2054 
2055 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2056 }
2057 
2058 /*
2059  * This function makes lazy skb cloning in hope that most of packets
2060  * are discarded by BPF.
2061  *
2062  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2063  * and skb->cb are mangled. It works because (and until) packets
2064  * falling here are owned by current CPU. Output packets are cloned
2065  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2066  * sequentially, so that if we return skb to original state on exit,
2067  * we will not harm anyone.
2068  */
2069 
2070 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2071 		      struct packet_type *pt, struct net_device *orig_dev)
2072 {
2073 	struct sock *sk;
2074 	struct sockaddr_ll *sll;
2075 	struct packet_sock *po;
2076 	u8 *skb_head = skb->data;
2077 	int skb_len = skb->len;
2078 	unsigned int snaplen, res;
2079 	bool is_drop_n_account = false;
2080 
2081 	if (skb->pkt_type == PACKET_LOOPBACK)
2082 		goto drop;
2083 
2084 	sk = pt->af_packet_priv;
2085 	po = pkt_sk(sk);
2086 
2087 	if (!net_eq(dev_net(dev), sock_net(sk)))
2088 		goto drop;
2089 
2090 	skb->dev = dev;
2091 
2092 	if (dev_has_header(dev)) {
2093 		/* The device has an explicit notion of ll header,
2094 		 * exported to higher levels.
2095 		 *
2096 		 * Otherwise, the device hides details of its frame
2097 		 * structure, so that corresponding packet head is
2098 		 * never delivered to user.
2099 		 */
2100 		if (sk->sk_type != SOCK_DGRAM)
2101 			skb_push(skb, skb->data - skb_mac_header(skb));
2102 		else if (skb->pkt_type == PACKET_OUTGOING) {
2103 			/* Special case: outgoing packets have ll header at head */
2104 			skb_pull(skb, skb_network_offset(skb));
2105 		}
2106 	}
2107 
2108 	snaplen = skb->len;
2109 
2110 	res = run_filter(skb, sk, snaplen);
2111 	if (!res)
2112 		goto drop_n_restore;
2113 	if (snaplen > res)
2114 		snaplen = res;
2115 
2116 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2117 		goto drop_n_acct;
2118 
2119 	if (skb_shared(skb)) {
2120 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2121 		if (nskb == NULL)
2122 			goto drop_n_acct;
2123 
2124 		if (skb_head != skb->data) {
2125 			skb->data = skb_head;
2126 			skb->len = skb_len;
2127 		}
2128 		consume_skb(skb);
2129 		skb = nskb;
2130 	}
2131 
2132 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2133 
2134 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2135 	sll->sll_hatype = dev->type;
2136 	sll->sll_pkttype = skb->pkt_type;
2137 	if (unlikely(po->origdev))
2138 		sll->sll_ifindex = orig_dev->ifindex;
2139 	else
2140 		sll->sll_ifindex = dev->ifindex;
2141 
2142 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2143 
2144 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2145 	 * Use their space for storing the original skb length.
2146 	 */
2147 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2148 
2149 	if (pskb_trim(skb, snaplen))
2150 		goto drop_n_acct;
2151 
2152 	skb_set_owner_r(skb, sk);
2153 	skb->dev = NULL;
2154 	skb_dst_drop(skb);
2155 
2156 	/* drop conntrack reference */
2157 	nf_reset_ct(skb);
2158 
2159 	spin_lock(&sk->sk_receive_queue.lock);
2160 	po->stats.stats1.tp_packets++;
2161 	sock_skb_set_dropcount(sk, skb);
2162 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2163 	spin_unlock(&sk->sk_receive_queue.lock);
2164 	sk->sk_data_ready(sk);
2165 	return 0;
2166 
2167 drop_n_acct:
2168 	is_drop_n_account = true;
2169 	atomic_inc(&po->tp_drops);
2170 	atomic_inc(&sk->sk_drops);
2171 
2172 drop_n_restore:
2173 	if (skb_head != skb->data && skb_shared(skb)) {
2174 		skb->data = skb_head;
2175 		skb->len = skb_len;
2176 	}
2177 drop:
2178 	if (!is_drop_n_account)
2179 		consume_skb(skb);
2180 	else
2181 		kfree_skb(skb);
2182 	return 0;
2183 }
2184 
2185 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2186 		       struct packet_type *pt, struct net_device *orig_dev)
2187 {
2188 	struct sock *sk;
2189 	struct packet_sock *po;
2190 	struct sockaddr_ll *sll;
2191 	union tpacket_uhdr h;
2192 	u8 *skb_head = skb->data;
2193 	int skb_len = skb->len;
2194 	unsigned int snaplen, res;
2195 	unsigned long status = TP_STATUS_USER;
2196 	unsigned short macoff, hdrlen;
2197 	unsigned int netoff;
2198 	struct sk_buff *copy_skb = NULL;
2199 	struct timespec64 ts;
2200 	__u32 ts_status;
2201 	bool is_drop_n_account = false;
2202 	unsigned int slot_id = 0;
2203 	bool do_vnet = false;
2204 
2205 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2206 	 * We may add members to them until current aligned size without forcing
2207 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2208 	 */
2209 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2210 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2211 
2212 	if (skb->pkt_type == PACKET_LOOPBACK)
2213 		goto drop;
2214 
2215 	sk = pt->af_packet_priv;
2216 	po = pkt_sk(sk);
2217 
2218 	if (!net_eq(dev_net(dev), sock_net(sk)))
2219 		goto drop;
2220 
2221 	if (dev_has_header(dev)) {
2222 		if (sk->sk_type != SOCK_DGRAM)
2223 			skb_push(skb, skb->data - skb_mac_header(skb));
2224 		else if (skb->pkt_type == PACKET_OUTGOING) {
2225 			/* Special case: outgoing packets have ll header at head */
2226 			skb_pull(skb, skb_network_offset(skb));
2227 		}
2228 	}
2229 
2230 	snaplen = skb->len;
2231 
2232 	res = run_filter(skb, sk, snaplen);
2233 	if (!res)
2234 		goto drop_n_restore;
2235 
2236 	/* If we are flooded, just give up */
2237 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2238 		atomic_inc(&po->tp_drops);
2239 		goto drop_n_restore;
2240 	}
2241 
2242 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2243 		status |= TP_STATUS_CSUMNOTREADY;
2244 	else if (skb->pkt_type != PACKET_OUTGOING &&
2245 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2246 		  skb_csum_unnecessary(skb)))
2247 		status |= TP_STATUS_CSUM_VALID;
2248 
2249 	if (snaplen > res)
2250 		snaplen = res;
2251 
2252 	if (sk->sk_type == SOCK_DGRAM) {
2253 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2254 				  po->tp_reserve;
2255 	} else {
2256 		unsigned int maclen = skb_network_offset(skb);
2257 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2258 				       (maclen < 16 ? 16 : maclen)) +
2259 				       po->tp_reserve;
2260 		if (po->has_vnet_hdr) {
2261 			netoff += sizeof(struct virtio_net_hdr);
2262 			do_vnet = true;
2263 		}
2264 		macoff = netoff - maclen;
2265 	}
2266 	if (netoff > USHRT_MAX) {
2267 		atomic_inc(&po->tp_drops);
2268 		goto drop_n_restore;
2269 	}
2270 	if (po->tp_version <= TPACKET_V2) {
2271 		if (macoff + snaplen > po->rx_ring.frame_size) {
2272 			if (po->copy_thresh &&
2273 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2274 				if (skb_shared(skb)) {
2275 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2276 				} else {
2277 					copy_skb = skb_get(skb);
2278 					skb_head = skb->data;
2279 				}
2280 				if (copy_skb)
2281 					skb_set_owner_r(copy_skb, sk);
2282 			}
2283 			snaplen = po->rx_ring.frame_size - macoff;
2284 			if ((int)snaplen < 0) {
2285 				snaplen = 0;
2286 				do_vnet = false;
2287 			}
2288 		}
2289 	} else if (unlikely(macoff + snaplen >
2290 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2291 		u32 nval;
2292 
2293 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2294 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2295 			    snaplen, nval, macoff);
2296 		snaplen = nval;
2297 		if (unlikely((int)snaplen < 0)) {
2298 			snaplen = 0;
2299 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2300 			do_vnet = false;
2301 		}
2302 	}
2303 	spin_lock(&sk->sk_receive_queue.lock);
2304 	h.raw = packet_current_rx_frame(po, skb,
2305 					TP_STATUS_KERNEL, (macoff+snaplen));
2306 	if (!h.raw)
2307 		goto drop_n_account;
2308 
2309 	if (po->tp_version <= TPACKET_V2) {
2310 		slot_id = po->rx_ring.head;
2311 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2312 			goto drop_n_account;
2313 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2314 	}
2315 
2316 	if (do_vnet &&
2317 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2318 				    sizeof(struct virtio_net_hdr),
2319 				    vio_le(), true, 0)) {
2320 		if (po->tp_version == TPACKET_V3)
2321 			prb_clear_blk_fill_status(&po->rx_ring);
2322 		goto drop_n_account;
2323 	}
2324 
2325 	if (po->tp_version <= TPACKET_V2) {
2326 		packet_increment_rx_head(po, &po->rx_ring);
2327 	/*
2328 	 * LOSING will be reported till you read the stats,
2329 	 * because it's COR - Clear On Read.
2330 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2331 	 * at packet level.
2332 	 */
2333 		if (atomic_read(&po->tp_drops))
2334 			status |= TP_STATUS_LOSING;
2335 	}
2336 
2337 	po->stats.stats1.tp_packets++;
2338 	if (copy_skb) {
2339 		status |= TP_STATUS_COPY;
2340 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2341 	}
2342 	spin_unlock(&sk->sk_receive_queue.lock);
2343 
2344 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2345 
2346 	/* Always timestamp; prefer an existing software timestamp taken
2347 	 * closer to the time of capture.
2348 	 */
2349 	ts_status = tpacket_get_timestamp(skb, &ts,
2350 					  po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE);
2351 	if (!ts_status)
2352 		ktime_get_real_ts64(&ts);
2353 
2354 	status |= ts_status;
2355 
2356 	switch (po->tp_version) {
2357 	case TPACKET_V1:
2358 		h.h1->tp_len = skb->len;
2359 		h.h1->tp_snaplen = snaplen;
2360 		h.h1->tp_mac = macoff;
2361 		h.h1->tp_net = netoff;
2362 		h.h1->tp_sec = ts.tv_sec;
2363 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2364 		hdrlen = sizeof(*h.h1);
2365 		break;
2366 	case TPACKET_V2:
2367 		h.h2->tp_len = skb->len;
2368 		h.h2->tp_snaplen = snaplen;
2369 		h.h2->tp_mac = macoff;
2370 		h.h2->tp_net = netoff;
2371 		h.h2->tp_sec = ts.tv_sec;
2372 		h.h2->tp_nsec = ts.tv_nsec;
2373 		if (skb_vlan_tag_present(skb)) {
2374 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2375 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2376 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2377 		} else {
2378 			h.h2->tp_vlan_tci = 0;
2379 			h.h2->tp_vlan_tpid = 0;
2380 		}
2381 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2382 		hdrlen = sizeof(*h.h2);
2383 		break;
2384 	case TPACKET_V3:
2385 		/* tp_nxt_offset,vlan are already populated above.
2386 		 * So DONT clear those fields here
2387 		 */
2388 		h.h3->tp_status |= status;
2389 		h.h3->tp_len = skb->len;
2390 		h.h3->tp_snaplen = snaplen;
2391 		h.h3->tp_mac = macoff;
2392 		h.h3->tp_net = netoff;
2393 		h.h3->tp_sec  = ts.tv_sec;
2394 		h.h3->tp_nsec = ts.tv_nsec;
2395 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2396 		hdrlen = sizeof(*h.h3);
2397 		break;
2398 	default:
2399 		BUG();
2400 	}
2401 
2402 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2403 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2404 	sll->sll_family = AF_PACKET;
2405 	sll->sll_hatype = dev->type;
2406 	sll->sll_protocol = skb->protocol;
2407 	sll->sll_pkttype = skb->pkt_type;
2408 	if (unlikely(po->origdev))
2409 		sll->sll_ifindex = orig_dev->ifindex;
2410 	else
2411 		sll->sll_ifindex = dev->ifindex;
2412 
2413 	smp_mb();
2414 
2415 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2416 	if (po->tp_version <= TPACKET_V2) {
2417 		u8 *start, *end;
2418 
2419 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2420 					macoff + snaplen);
2421 
2422 		for (start = h.raw; start < end; start += PAGE_SIZE)
2423 			flush_dcache_page(pgv_to_page(start));
2424 	}
2425 	smp_wmb();
2426 #endif
2427 
2428 	if (po->tp_version <= TPACKET_V2) {
2429 		spin_lock(&sk->sk_receive_queue.lock);
2430 		__packet_set_status(po, h.raw, status);
2431 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2432 		spin_unlock(&sk->sk_receive_queue.lock);
2433 		sk->sk_data_ready(sk);
2434 	} else if (po->tp_version == TPACKET_V3) {
2435 		prb_clear_blk_fill_status(&po->rx_ring);
2436 	}
2437 
2438 drop_n_restore:
2439 	if (skb_head != skb->data && skb_shared(skb)) {
2440 		skb->data = skb_head;
2441 		skb->len = skb_len;
2442 	}
2443 drop:
2444 	if (!is_drop_n_account)
2445 		consume_skb(skb);
2446 	else
2447 		kfree_skb(skb);
2448 	return 0;
2449 
2450 drop_n_account:
2451 	spin_unlock(&sk->sk_receive_queue.lock);
2452 	atomic_inc(&po->tp_drops);
2453 	is_drop_n_account = true;
2454 
2455 	sk->sk_data_ready(sk);
2456 	kfree_skb(copy_skb);
2457 	goto drop_n_restore;
2458 }
2459 
2460 static void tpacket_destruct_skb(struct sk_buff *skb)
2461 {
2462 	struct packet_sock *po = pkt_sk(skb->sk);
2463 
2464 	if (likely(po->tx_ring.pg_vec)) {
2465 		void *ph;
2466 		__u32 ts;
2467 
2468 		ph = skb_zcopy_get_nouarg(skb);
2469 		packet_dec_pending(&po->tx_ring);
2470 
2471 		ts = __packet_set_timestamp(po, ph, skb);
2472 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2473 
2474 		if (!packet_read_pending(&po->tx_ring))
2475 			complete(&po->skb_completion);
2476 	}
2477 
2478 	sock_wfree(skb);
2479 }
2480 
2481 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2482 {
2483 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2484 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2485 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2486 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2487 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2488 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2489 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2490 
2491 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2492 		return -EINVAL;
2493 
2494 	return 0;
2495 }
2496 
2497 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2498 				 struct virtio_net_hdr *vnet_hdr)
2499 {
2500 	if (*len < sizeof(*vnet_hdr))
2501 		return -EINVAL;
2502 	*len -= sizeof(*vnet_hdr);
2503 
2504 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2505 		return -EFAULT;
2506 
2507 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2508 }
2509 
2510 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2511 		void *frame, struct net_device *dev, void *data, int tp_len,
2512 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2513 		const struct sockcm_cookie *sockc)
2514 {
2515 	union tpacket_uhdr ph;
2516 	int to_write, offset, len, nr_frags, len_max;
2517 	struct socket *sock = po->sk.sk_socket;
2518 	struct page *page;
2519 	int err;
2520 
2521 	ph.raw = frame;
2522 
2523 	skb->protocol = proto;
2524 	skb->dev = dev;
2525 	skb->priority = po->sk.sk_priority;
2526 	skb->mark = po->sk.sk_mark;
2527 	skb->tstamp = sockc->transmit_time;
2528 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2529 	skb_zcopy_set_nouarg(skb, ph.raw);
2530 
2531 	skb_reserve(skb, hlen);
2532 	skb_reset_network_header(skb);
2533 
2534 	to_write = tp_len;
2535 
2536 	if (sock->type == SOCK_DGRAM) {
2537 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2538 				NULL, tp_len);
2539 		if (unlikely(err < 0))
2540 			return -EINVAL;
2541 	} else if (copylen) {
2542 		int hdrlen = min_t(int, copylen, tp_len);
2543 
2544 		skb_push(skb, dev->hard_header_len);
2545 		skb_put(skb, copylen - dev->hard_header_len);
2546 		err = skb_store_bits(skb, 0, data, hdrlen);
2547 		if (unlikely(err))
2548 			return err;
2549 		if (!dev_validate_header(dev, skb->data, hdrlen))
2550 			return -EINVAL;
2551 
2552 		data += hdrlen;
2553 		to_write -= hdrlen;
2554 	}
2555 
2556 	offset = offset_in_page(data);
2557 	len_max = PAGE_SIZE - offset;
2558 	len = ((to_write > len_max) ? len_max : to_write);
2559 
2560 	skb->data_len = to_write;
2561 	skb->len += to_write;
2562 	skb->truesize += to_write;
2563 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2564 
2565 	while (likely(to_write)) {
2566 		nr_frags = skb_shinfo(skb)->nr_frags;
2567 
2568 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2569 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2570 			       MAX_SKB_FRAGS);
2571 			return -EFAULT;
2572 		}
2573 
2574 		page = pgv_to_page(data);
2575 		data += len;
2576 		flush_dcache_page(page);
2577 		get_page(page);
2578 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2579 		to_write -= len;
2580 		offset = 0;
2581 		len_max = PAGE_SIZE;
2582 		len = ((to_write > len_max) ? len_max : to_write);
2583 	}
2584 
2585 	packet_parse_headers(skb, sock);
2586 
2587 	return tp_len;
2588 }
2589 
2590 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2591 				int size_max, void **data)
2592 {
2593 	union tpacket_uhdr ph;
2594 	int tp_len, off;
2595 
2596 	ph.raw = frame;
2597 
2598 	switch (po->tp_version) {
2599 	case TPACKET_V3:
2600 		if (ph.h3->tp_next_offset != 0) {
2601 			pr_warn_once("variable sized slot not supported");
2602 			return -EINVAL;
2603 		}
2604 		tp_len = ph.h3->tp_len;
2605 		break;
2606 	case TPACKET_V2:
2607 		tp_len = ph.h2->tp_len;
2608 		break;
2609 	default:
2610 		tp_len = ph.h1->tp_len;
2611 		break;
2612 	}
2613 	if (unlikely(tp_len > size_max)) {
2614 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2615 		return -EMSGSIZE;
2616 	}
2617 
2618 	if (unlikely(po->tp_tx_has_off)) {
2619 		int off_min, off_max;
2620 
2621 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2622 		off_max = po->tx_ring.frame_size - tp_len;
2623 		if (po->sk.sk_type == SOCK_DGRAM) {
2624 			switch (po->tp_version) {
2625 			case TPACKET_V3:
2626 				off = ph.h3->tp_net;
2627 				break;
2628 			case TPACKET_V2:
2629 				off = ph.h2->tp_net;
2630 				break;
2631 			default:
2632 				off = ph.h1->tp_net;
2633 				break;
2634 			}
2635 		} else {
2636 			switch (po->tp_version) {
2637 			case TPACKET_V3:
2638 				off = ph.h3->tp_mac;
2639 				break;
2640 			case TPACKET_V2:
2641 				off = ph.h2->tp_mac;
2642 				break;
2643 			default:
2644 				off = ph.h1->tp_mac;
2645 				break;
2646 			}
2647 		}
2648 		if (unlikely((off < off_min) || (off_max < off)))
2649 			return -EINVAL;
2650 	} else {
2651 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2652 	}
2653 
2654 	*data = frame + off;
2655 	return tp_len;
2656 }
2657 
2658 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2659 {
2660 	struct sk_buff *skb = NULL;
2661 	struct net_device *dev;
2662 	struct virtio_net_hdr *vnet_hdr = NULL;
2663 	struct sockcm_cookie sockc;
2664 	__be16 proto;
2665 	int err, reserve = 0;
2666 	void *ph;
2667 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2668 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2669 	unsigned char *addr = NULL;
2670 	int tp_len, size_max;
2671 	void *data;
2672 	int len_sum = 0;
2673 	int status = TP_STATUS_AVAILABLE;
2674 	int hlen, tlen, copylen = 0;
2675 	long timeo = 0;
2676 
2677 	mutex_lock(&po->pg_vec_lock);
2678 
2679 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2680 	 * we need to confirm it under protection of pg_vec_lock.
2681 	 */
2682 	if (unlikely(!po->tx_ring.pg_vec)) {
2683 		err = -EBUSY;
2684 		goto out;
2685 	}
2686 	if (likely(saddr == NULL)) {
2687 		dev	= packet_cached_dev_get(po);
2688 		proto	= READ_ONCE(po->num);
2689 	} else {
2690 		err = -EINVAL;
2691 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2692 			goto out;
2693 		if (msg->msg_namelen < (saddr->sll_halen
2694 					+ offsetof(struct sockaddr_ll,
2695 						sll_addr)))
2696 			goto out;
2697 		proto	= saddr->sll_protocol;
2698 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2699 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2700 			if (dev && msg->msg_namelen < dev->addr_len +
2701 				   offsetof(struct sockaddr_ll, sll_addr))
2702 				goto out_put;
2703 			addr = saddr->sll_addr;
2704 		}
2705 	}
2706 
2707 	err = -ENXIO;
2708 	if (unlikely(dev == NULL))
2709 		goto out;
2710 	err = -ENETDOWN;
2711 	if (unlikely(!(dev->flags & IFF_UP)))
2712 		goto out_put;
2713 
2714 	sockcm_init(&sockc, &po->sk);
2715 	if (msg->msg_controllen) {
2716 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2717 		if (unlikely(err))
2718 			goto out_put;
2719 	}
2720 
2721 	if (po->sk.sk_socket->type == SOCK_RAW)
2722 		reserve = dev->hard_header_len;
2723 	size_max = po->tx_ring.frame_size
2724 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2725 
2726 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2727 		size_max = dev->mtu + reserve + VLAN_HLEN;
2728 
2729 	reinit_completion(&po->skb_completion);
2730 
2731 	do {
2732 		ph = packet_current_frame(po, &po->tx_ring,
2733 					  TP_STATUS_SEND_REQUEST);
2734 		if (unlikely(ph == NULL)) {
2735 			if (need_wait && skb) {
2736 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2737 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2738 				if (timeo <= 0) {
2739 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2740 					goto out_put;
2741 				}
2742 			}
2743 			/* check for additional frames */
2744 			continue;
2745 		}
2746 
2747 		skb = NULL;
2748 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2749 		if (tp_len < 0)
2750 			goto tpacket_error;
2751 
2752 		status = TP_STATUS_SEND_REQUEST;
2753 		hlen = LL_RESERVED_SPACE(dev);
2754 		tlen = dev->needed_tailroom;
2755 		if (po->has_vnet_hdr) {
2756 			vnet_hdr = data;
2757 			data += sizeof(*vnet_hdr);
2758 			tp_len -= sizeof(*vnet_hdr);
2759 			if (tp_len < 0 ||
2760 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2761 				tp_len = -EINVAL;
2762 				goto tpacket_error;
2763 			}
2764 			copylen = __virtio16_to_cpu(vio_le(),
2765 						    vnet_hdr->hdr_len);
2766 		}
2767 		copylen = max_t(int, copylen, dev->hard_header_len);
2768 		skb = sock_alloc_send_skb(&po->sk,
2769 				hlen + tlen + sizeof(struct sockaddr_ll) +
2770 				(copylen - dev->hard_header_len),
2771 				!need_wait, &err);
2772 
2773 		if (unlikely(skb == NULL)) {
2774 			/* we assume the socket was initially writeable ... */
2775 			if (likely(len_sum > 0))
2776 				err = len_sum;
2777 			goto out_status;
2778 		}
2779 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2780 					  addr, hlen, copylen, &sockc);
2781 		if (likely(tp_len >= 0) &&
2782 		    tp_len > dev->mtu + reserve &&
2783 		    !po->has_vnet_hdr &&
2784 		    !packet_extra_vlan_len_allowed(dev, skb))
2785 			tp_len = -EMSGSIZE;
2786 
2787 		if (unlikely(tp_len < 0)) {
2788 tpacket_error:
2789 			if (po->tp_loss) {
2790 				__packet_set_status(po, ph,
2791 						TP_STATUS_AVAILABLE);
2792 				packet_increment_head(&po->tx_ring);
2793 				kfree_skb(skb);
2794 				continue;
2795 			} else {
2796 				status = TP_STATUS_WRONG_FORMAT;
2797 				err = tp_len;
2798 				goto out_status;
2799 			}
2800 		}
2801 
2802 		if (po->has_vnet_hdr) {
2803 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2804 				tp_len = -EINVAL;
2805 				goto tpacket_error;
2806 			}
2807 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2808 		}
2809 
2810 		skb->destructor = tpacket_destruct_skb;
2811 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2812 		packet_inc_pending(&po->tx_ring);
2813 
2814 		status = TP_STATUS_SEND_REQUEST;
2815 		err = po->xmit(skb);
2816 		if (unlikely(err > 0)) {
2817 			err = net_xmit_errno(err);
2818 			if (err && __packet_get_status(po, ph) ==
2819 				   TP_STATUS_AVAILABLE) {
2820 				/* skb was destructed already */
2821 				skb = NULL;
2822 				goto out_status;
2823 			}
2824 			/*
2825 			 * skb was dropped but not destructed yet;
2826 			 * let's treat it like congestion or err < 0
2827 			 */
2828 			err = 0;
2829 		}
2830 		packet_increment_head(&po->tx_ring);
2831 		len_sum += tp_len;
2832 	} while (likely((ph != NULL) ||
2833 		/* Note: packet_read_pending() might be slow if we have
2834 		 * to call it as it's per_cpu variable, but in fast-path
2835 		 * we already short-circuit the loop with the first
2836 		 * condition, and luckily don't have to go that path
2837 		 * anyway.
2838 		 */
2839 		 (need_wait && packet_read_pending(&po->tx_ring))));
2840 
2841 	err = len_sum;
2842 	goto out_put;
2843 
2844 out_status:
2845 	__packet_set_status(po, ph, status);
2846 	kfree_skb(skb);
2847 out_put:
2848 	dev_put(dev);
2849 out:
2850 	mutex_unlock(&po->pg_vec_lock);
2851 	return err;
2852 }
2853 
2854 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2855 				        size_t reserve, size_t len,
2856 				        size_t linear, int noblock,
2857 				        int *err)
2858 {
2859 	struct sk_buff *skb;
2860 
2861 	/* Under a page?  Don't bother with paged skb. */
2862 	if (prepad + len < PAGE_SIZE || !linear)
2863 		linear = len;
2864 
2865 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2866 				   err, 0);
2867 	if (!skb)
2868 		return NULL;
2869 
2870 	skb_reserve(skb, reserve);
2871 	skb_put(skb, linear);
2872 	skb->data_len = len - linear;
2873 	skb->len += len - linear;
2874 
2875 	return skb;
2876 }
2877 
2878 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2879 {
2880 	struct sock *sk = sock->sk;
2881 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2882 	struct sk_buff *skb;
2883 	struct net_device *dev;
2884 	__be16 proto;
2885 	unsigned char *addr = NULL;
2886 	int err, reserve = 0;
2887 	struct sockcm_cookie sockc;
2888 	struct virtio_net_hdr vnet_hdr = { 0 };
2889 	int offset = 0;
2890 	struct packet_sock *po = pkt_sk(sk);
2891 	bool has_vnet_hdr = false;
2892 	int hlen, tlen, linear;
2893 	int extra_len = 0;
2894 
2895 	/*
2896 	 *	Get and verify the address.
2897 	 */
2898 
2899 	if (likely(saddr == NULL)) {
2900 		dev	= packet_cached_dev_get(po);
2901 		proto	= READ_ONCE(po->num);
2902 	} else {
2903 		err = -EINVAL;
2904 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2905 			goto out;
2906 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2907 			goto out;
2908 		proto	= saddr->sll_protocol;
2909 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2910 		if (sock->type == SOCK_DGRAM) {
2911 			if (dev && msg->msg_namelen < dev->addr_len +
2912 				   offsetof(struct sockaddr_ll, sll_addr))
2913 				goto out_unlock;
2914 			addr = saddr->sll_addr;
2915 		}
2916 	}
2917 
2918 	err = -ENXIO;
2919 	if (unlikely(dev == NULL))
2920 		goto out_unlock;
2921 	err = -ENETDOWN;
2922 	if (unlikely(!(dev->flags & IFF_UP)))
2923 		goto out_unlock;
2924 
2925 	sockcm_init(&sockc, sk);
2926 	sockc.mark = sk->sk_mark;
2927 	if (msg->msg_controllen) {
2928 		err = sock_cmsg_send(sk, msg, &sockc);
2929 		if (unlikely(err))
2930 			goto out_unlock;
2931 	}
2932 
2933 	if (sock->type == SOCK_RAW)
2934 		reserve = dev->hard_header_len;
2935 	if (po->has_vnet_hdr) {
2936 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2937 		if (err)
2938 			goto out_unlock;
2939 		has_vnet_hdr = true;
2940 	}
2941 
2942 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2943 		if (!netif_supports_nofcs(dev)) {
2944 			err = -EPROTONOSUPPORT;
2945 			goto out_unlock;
2946 		}
2947 		extra_len = 4; /* We're doing our own CRC */
2948 	}
2949 
2950 	err = -EMSGSIZE;
2951 	if (!vnet_hdr.gso_type &&
2952 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2953 		goto out_unlock;
2954 
2955 	err = -ENOBUFS;
2956 	hlen = LL_RESERVED_SPACE(dev);
2957 	tlen = dev->needed_tailroom;
2958 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2959 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2960 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2961 			       msg->msg_flags & MSG_DONTWAIT, &err);
2962 	if (skb == NULL)
2963 		goto out_unlock;
2964 
2965 	skb_reset_network_header(skb);
2966 
2967 	err = -EINVAL;
2968 	if (sock->type == SOCK_DGRAM) {
2969 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2970 		if (unlikely(offset < 0))
2971 			goto out_free;
2972 	} else if (reserve) {
2973 		skb_reserve(skb, -reserve);
2974 		if (len < reserve + sizeof(struct ipv6hdr) &&
2975 		    dev->min_header_len != dev->hard_header_len)
2976 			skb_reset_network_header(skb);
2977 	}
2978 
2979 	/* Returns -EFAULT on error */
2980 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2981 	if (err)
2982 		goto out_free;
2983 
2984 	if (sock->type == SOCK_RAW &&
2985 	    !dev_validate_header(dev, skb->data, len)) {
2986 		err = -EINVAL;
2987 		goto out_free;
2988 	}
2989 
2990 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2991 
2992 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2993 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2994 		err = -EMSGSIZE;
2995 		goto out_free;
2996 	}
2997 
2998 	skb->protocol = proto;
2999 	skb->dev = dev;
3000 	skb->priority = sk->sk_priority;
3001 	skb->mark = sockc.mark;
3002 	skb->tstamp = sockc.transmit_time;
3003 
3004 	if (has_vnet_hdr) {
3005 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3006 		if (err)
3007 			goto out_free;
3008 		len += sizeof(vnet_hdr);
3009 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3010 	}
3011 
3012 	packet_parse_headers(skb, sock);
3013 
3014 	if (unlikely(extra_len == 4))
3015 		skb->no_fcs = 1;
3016 
3017 	err = po->xmit(skb);
3018 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3019 		goto out_unlock;
3020 
3021 	dev_put(dev);
3022 
3023 	return len;
3024 
3025 out_free:
3026 	kfree_skb(skb);
3027 out_unlock:
3028 	dev_put(dev);
3029 out:
3030 	return err;
3031 }
3032 
3033 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3034 {
3035 	struct sock *sk = sock->sk;
3036 	struct packet_sock *po = pkt_sk(sk);
3037 
3038 	/* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3039 	 * tpacket_snd() will redo the check safely.
3040 	 */
3041 	if (data_race(po->tx_ring.pg_vec))
3042 		return tpacket_snd(po, msg);
3043 
3044 	return packet_snd(sock, msg, len);
3045 }
3046 
3047 /*
3048  *	Close a PACKET socket. This is fairly simple. We immediately go
3049  *	to 'closed' state and remove our protocol entry in the device list.
3050  */
3051 
3052 static int packet_release(struct socket *sock)
3053 {
3054 	struct sock *sk = sock->sk;
3055 	struct packet_sock *po;
3056 	struct packet_fanout *f;
3057 	struct net *net;
3058 	union tpacket_req_u req_u;
3059 
3060 	if (!sk)
3061 		return 0;
3062 
3063 	net = sock_net(sk);
3064 	po = pkt_sk(sk);
3065 
3066 	mutex_lock(&net->packet.sklist_lock);
3067 	sk_del_node_init_rcu(sk);
3068 	mutex_unlock(&net->packet.sklist_lock);
3069 
3070 	preempt_disable();
3071 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3072 	preempt_enable();
3073 
3074 	spin_lock(&po->bind_lock);
3075 	unregister_prot_hook(sk, false);
3076 	packet_cached_dev_reset(po);
3077 
3078 	if (po->prot_hook.dev) {
3079 		dev_put(po->prot_hook.dev);
3080 		po->prot_hook.dev = NULL;
3081 	}
3082 	spin_unlock(&po->bind_lock);
3083 
3084 	packet_flush_mclist(sk);
3085 
3086 	lock_sock(sk);
3087 	if (po->rx_ring.pg_vec) {
3088 		memset(&req_u, 0, sizeof(req_u));
3089 		packet_set_ring(sk, &req_u, 1, 0);
3090 	}
3091 
3092 	if (po->tx_ring.pg_vec) {
3093 		memset(&req_u, 0, sizeof(req_u));
3094 		packet_set_ring(sk, &req_u, 1, 1);
3095 	}
3096 	release_sock(sk);
3097 
3098 	f = fanout_release(sk);
3099 
3100 	synchronize_net();
3101 
3102 	kfree(po->rollover);
3103 	if (f) {
3104 		fanout_release_data(f);
3105 		kvfree(f);
3106 	}
3107 	/*
3108 	 *	Now the socket is dead. No more input will appear.
3109 	 */
3110 	sock_orphan(sk);
3111 	sock->sk = NULL;
3112 
3113 	/* Purge queues */
3114 
3115 	skb_queue_purge(&sk->sk_receive_queue);
3116 	packet_free_pending(po);
3117 	sk_refcnt_debug_release(sk);
3118 
3119 	sock_put(sk);
3120 	return 0;
3121 }
3122 
3123 /*
3124  *	Attach a packet hook.
3125  */
3126 
3127 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3128 			  __be16 proto)
3129 {
3130 	struct packet_sock *po = pkt_sk(sk);
3131 	struct net_device *dev_curr;
3132 	__be16 proto_curr;
3133 	bool need_rehook;
3134 	struct net_device *dev = NULL;
3135 	int ret = 0;
3136 	bool unlisted = false;
3137 
3138 	lock_sock(sk);
3139 	spin_lock(&po->bind_lock);
3140 	rcu_read_lock();
3141 
3142 	if (po->fanout) {
3143 		ret = -EINVAL;
3144 		goto out_unlock;
3145 	}
3146 
3147 	if (name) {
3148 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3149 		if (!dev) {
3150 			ret = -ENODEV;
3151 			goto out_unlock;
3152 		}
3153 	} else if (ifindex) {
3154 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3155 		if (!dev) {
3156 			ret = -ENODEV;
3157 			goto out_unlock;
3158 		}
3159 	}
3160 
3161 	dev_hold(dev);
3162 
3163 	proto_curr = po->prot_hook.type;
3164 	dev_curr = po->prot_hook.dev;
3165 
3166 	need_rehook = proto_curr != proto || dev_curr != dev;
3167 
3168 	if (need_rehook) {
3169 		if (po->running) {
3170 			rcu_read_unlock();
3171 			/* prevents packet_notifier() from calling
3172 			 * register_prot_hook()
3173 			 */
3174 			WRITE_ONCE(po->num, 0);
3175 			__unregister_prot_hook(sk, true);
3176 			rcu_read_lock();
3177 			dev_curr = po->prot_hook.dev;
3178 			if (dev)
3179 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3180 								 dev->ifindex);
3181 		}
3182 
3183 		BUG_ON(po->running);
3184 		WRITE_ONCE(po->num, proto);
3185 		po->prot_hook.type = proto;
3186 
3187 		if (unlikely(unlisted)) {
3188 			dev_put(dev);
3189 			po->prot_hook.dev = NULL;
3190 			WRITE_ONCE(po->ifindex, -1);
3191 			packet_cached_dev_reset(po);
3192 		} else {
3193 			po->prot_hook.dev = dev;
3194 			WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3195 			packet_cached_dev_assign(po, dev);
3196 		}
3197 	}
3198 	dev_put(dev_curr);
3199 
3200 	if (proto == 0 || !need_rehook)
3201 		goto out_unlock;
3202 
3203 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3204 		register_prot_hook(sk);
3205 	} else {
3206 		sk->sk_err = ENETDOWN;
3207 		if (!sock_flag(sk, SOCK_DEAD))
3208 			sk_error_report(sk);
3209 	}
3210 
3211 out_unlock:
3212 	rcu_read_unlock();
3213 	spin_unlock(&po->bind_lock);
3214 	release_sock(sk);
3215 	return ret;
3216 }
3217 
3218 /*
3219  *	Bind a packet socket to a device
3220  */
3221 
3222 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3223 			    int addr_len)
3224 {
3225 	struct sock *sk = sock->sk;
3226 	char name[sizeof(uaddr->sa_data) + 1];
3227 
3228 	/*
3229 	 *	Check legality
3230 	 */
3231 
3232 	if (addr_len != sizeof(struct sockaddr))
3233 		return -EINVAL;
3234 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3235 	 * zero-terminated.
3236 	 */
3237 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3238 	name[sizeof(uaddr->sa_data)] = 0;
3239 
3240 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3241 }
3242 
3243 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3244 {
3245 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3246 	struct sock *sk = sock->sk;
3247 
3248 	/*
3249 	 *	Check legality
3250 	 */
3251 
3252 	if (addr_len < sizeof(struct sockaddr_ll))
3253 		return -EINVAL;
3254 	if (sll->sll_family != AF_PACKET)
3255 		return -EINVAL;
3256 
3257 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3258 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3259 }
3260 
3261 static struct proto packet_proto = {
3262 	.name	  = "PACKET",
3263 	.owner	  = THIS_MODULE,
3264 	.obj_size = sizeof(struct packet_sock),
3265 };
3266 
3267 /*
3268  *	Create a packet of type SOCK_PACKET.
3269  */
3270 
3271 static int packet_create(struct net *net, struct socket *sock, int protocol,
3272 			 int kern)
3273 {
3274 	struct sock *sk;
3275 	struct packet_sock *po;
3276 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3277 	int err;
3278 
3279 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3280 		return -EPERM;
3281 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3282 	    sock->type != SOCK_PACKET)
3283 		return -ESOCKTNOSUPPORT;
3284 
3285 	sock->state = SS_UNCONNECTED;
3286 
3287 	err = -ENOBUFS;
3288 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3289 	if (sk == NULL)
3290 		goto out;
3291 
3292 	sock->ops = &packet_ops;
3293 	if (sock->type == SOCK_PACKET)
3294 		sock->ops = &packet_ops_spkt;
3295 
3296 	sock_init_data(sock, sk);
3297 
3298 	po = pkt_sk(sk);
3299 	init_completion(&po->skb_completion);
3300 	sk->sk_family = PF_PACKET;
3301 	po->num = proto;
3302 	po->xmit = dev_queue_xmit;
3303 
3304 	err = packet_alloc_pending(po);
3305 	if (err)
3306 		goto out2;
3307 
3308 	packet_cached_dev_reset(po);
3309 
3310 	sk->sk_destruct = packet_sock_destruct;
3311 	sk_refcnt_debug_inc(sk);
3312 
3313 	/*
3314 	 *	Attach a protocol block
3315 	 */
3316 
3317 	spin_lock_init(&po->bind_lock);
3318 	mutex_init(&po->pg_vec_lock);
3319 	po->rollover = NULL;
3320 	po->prot_hook.func = packet_rcv;
3321 
3322 	if (sock->type == SOCK_PACKET)
3323 		po->prot_hook.func = packet_rcv_spkt;
3324 
3325 	po->prot_hook.af_packet_priv = sk;
3326 
3327 	if (proto) {
3328 		po->prot_hook.type = proto;
3329 		__register_prot_hook(sk);
3330 	}
3331 
3332 	mutex_lock(&net->packet.sklist_lock);
3333 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3334 	mutex_unlock(&net->packet.sklist_lock);
3335 
3336 	preempt_disable();
3337 	sock_prot_inuse_add(net, &packet_proto, 1);
3338 	preempt_enable();
3339 
3340 	return 0;
3341 out2:
3342 	sk_free(sk);
3343 out:
3344 	return err;
3345 }
3346 
3347 /*
3348  *	Pull a packet from our receive queue and hand it to the user.
3349  *	If necessary we block.
3350  */
3351 
3352 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3353 			  int flags)
3354 {
3355 	struct sock *sk = sock->sk;
3356 	struct sk_buff *skb;
3357 	int copied, err;
3358 	int vnet_hdr_len = 0;
3359 	unsigned int origlen = 0;
3360 
3361 	err = -EINVAL;
3362 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3363 		goto out;
3364 
3365 #if 0
3366 	/* What error should we return now? EUNATTACH? */
3367 	if (pkt_sk(sk)->ifindex < 0)
3368 		return -ENODEV;
3369 #endif
3370 
3371 	if (flags & MSG_ERRQUEUE) {
3372 		err = sock_recv_errqueue(sk, msg, len,
3373 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3374 		goto out;
3375 	}
3376 
3377 	/*
3378 	 *	Call the generic datagram receiver. This handles all sorts
3379 	 *	of horrible races and re-entrancy so we can forget about it
3380 	 *	in the protocol layers.
3381 	 *
3382 	 *	Now it will return ENETDOWN, if device have just gone down,
3383 	 *	but then it will block.
3384 	 */
3385 
3386 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3387 
3388 	/*
3389 	 *	An error occurred so return it. Because skb_recv_datagram()
3390 	 *	handles the blocking we don't see and worry about blocking
3391 	 *	retries.
3392 	 */
3393 
3394 	if (skb == NULL)
3395 		goto out;
3396 
3397 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3398 
3399 	if (pkt_sk(sk)->has_vnet_hdr) {
3400 		err = packet_rcv_vnet(msg, skb, &len);
3401 		if (err)
3402 			goto out_free;
3403 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3404 	}
3405 
3406 	/* You lose any data beyond the buffer you gave. If it worries
3407 	 * a user program they can ask the device for its MTU
3408 	 * anyway.
3409 	 */
3410 	copied = skb->len;
3411 	if (copied > len) {
3412 		copied = len;
3413 		msg->msg_flags |= MSG_TRUNC;
3414 	}
3415 
3416 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3417 	if (err)
3418 		goto out_free;
3419 
3420 	if (sock->type != SOCK_PACKET) {
3421 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3422 
3423 		/* Original length was stored in sockaddr_ll fields */
3424 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3425 		sll->sll_family = AF_PACKET;
3426 		sll->sll_protocol = skb->protocol;
3427 	}
3428 
3429 	sock_recv_ts_and_drops(msg, sk, skb);
3430 
3431 	if (msg->msg_name) {
3432 		int copy_len;
3433 
3434 		/* If the address length field is there to be filled
3435 		 * in, we fill it in now.
3436 		 */
3437 		if (sock->type == SOCK_PACKET) {
3438 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3439 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3440 			copy_len = msg->msg_namelen;
3441 		} else {
3442 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3443 
3444 			msg->msg_namelen = sll->sll_halen +
3445 				offsetof(struct sockaddr_ll, sll_addr);
3446 			copy_len = msg->msg_namelen;
3447 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3448 				memset(msg->msg_name +
3449 				       offsetof(struct sockaddr_ll, sll_addr),
3450 				       0, sizeof(sll->sll_addr));
3451 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3452 			}
3453 		}
3454 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3455 	}
3456 
3457 	if (pkt_sk(sk)->auxdata) {
3458 		struct tpacket_auxdata aux;
3459 
3460 		aux.tp_status = TP_STATUS_USER;
3461 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3462 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3463 		else if (skb->pkt_type != PACKET_OUTGOING &&
3464 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3465 			  skb_csum_unnecessary(skb)))
3466 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3467 
3468 		aux.tp_len = origlen;
3469 		aux.tp_snaplen = skb->len;
3470 		aux.tp_mac = 0;
3471 		aux.tp_net = skb_network_offset(skb);
3472 		if (skb_vlan_tag_present(skb)) {
3473 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3474 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3475 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3476 		} else {
3477 			aux.tp_vlan_tci = 0;
3478 			aux.tp_vlan_tpid = 0;
3479 		}
3480 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3481 	}
3482 
3483 	/*
3484 	 *	Free or return the buffer as appropriate. Again this
3485 	 *	hides all the races and re-entrancy issues from us.
3486 	 */
3487 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3488 
3489 out_free:
3490 	skb_free_datagram(sk, skb);
3491 out:
3492 	return err;
3493 }
3494 
3495 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3496 			       int peer)
3497 {
3498 	struct net_device *dev;
3499 	struct sock *sk	= sock->sk;
3500 
3501 	if (peer)
3502 		return -EOPNOTSUPP;
3503 
3504 	uaddr->sa_family = AF_PACKET;
3505 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3506 	rcu_read_lock();
3507 	dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3508 	if (dev)
3509 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3510 	rcu_read_unlock();
3511 
3512 	return sizeof(*uaddr);
3513 }
3514 
3515 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3516 			  int peer)
3517 {
3518 	struct net_device *dev;
3519 	struct sock *sk = sock->sk;
3520 	struct packet_sock *po = pkt_sk(sk);
3521 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3522 	int ifindex;
3523 
3524 	if (peer)
3525 		return -EOPNOTSUPP;
3526 
3527 	ifindex = READ_ONCE(po->ifindex);
3528 	sll->sll_family = AF_PACKET;
3529 	sll->sll_ifindex = ifindex;
3530 	sll->sll_protocol = READ_ONCE(po->num);
3531 	sll->sll_pkttype = 0;
3532 	rcu_read_lock();
3533 	dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3534 	if (dev) {
3535 		sll->sll_hatype = dev->type;
3536 		sll->sll_halen = dev->addr_len;
3537 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3538 	} else {
3539 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3540 		sll->sll_halen = 0;
3541 	}
3542 	rcu_read_unlock();
3543 
3544 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3545 }
3546 
3547 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3548 			 int what)
3549 {
3550 	switch (i->type) {
3551 	case PACKET_MR_MULTICAST:
3552 		if (i->alen != dev->addr_len)
3553 			return -EINVAL;
3554 		if (what > 0)
3555 			return dev_mc_add(dev, i->addr);
3556 		else
3557 			return dev_mc_del(dev, i->addr);
3558 		break;
3559 	case PACKET_MR_PROMISC:
3560 		return dev_set_promiscuity(dev, what);
3561 	case PACKET_MR_ALLMULTI:
3562 		return dev_set_allmulti(dev, what);
3563 	case PACKET_MR_UNICAST:
3564 		if (i->alen != dev->addr_len)
3565 			return -EINVAL;
3566 		if (what > 0)
3567 			return dev_uc_add(dev, i->addr);
3568 		else
3569 			return dev_uc_del(dev, i->addr);
3570 		break;
3571 	default:
3572 		break;
3573 	}
3574 	return 0;
3575 }
3576 
3577 static void packet_dev_mclist_delete(struct net_device *dev,
3578 				     struct packet_mclist **mlp)
3579 {
3580 	struct packet_mclist *ml;
3581 
3582 	while ((ml = *mlp) != NULL) {
3583 		if (ml->ifindex == dev->ifindex) {
3584 			packet_dev_mc(dev, ml, -1);
3585 			*mlp = ml->next;
3586 			kfree(ml);
3587 		} else
3588 			mlp = &ml->next;
3589 	}
3590 }
3591 
3592 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3593 {
3594 	struct packet_sock *po = pkt_sk(sk);
3595 	struct packet_mclist *ml, *i;
3596 	struct net_device *dev;
3597 	int err;
3598 
3599 	rtnl_lock();
3600 
3601 	err = -ENODEV;
3602 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3603 	if (!dev)
3604 		goto done;
3605 
3606 	err = -EINVAL;
3607 	if (mreq->mr_alen > dev->addr_len)
3608 		goto done;
3609 
3610 	err = -ENOBUFS;
3611 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3612 	if (i == NULL)
3613 		goto done;
3614 
3615 	err = 0;
3616 	for (ml = po->mclist; ml; ml = ml->next) {
3617 		if (ml->ifindex == mreq->mr_ifindex &&
3618 		    ml->type == mreq->mr_type &&
3619 		    ml->alen == mreq->mr_alen &&
3620 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3621 			ml->count++;
3622 			/* Free the new element ... */
3623 			kfree(i);
3624 			goto done;
3625 		}
3626 	}
3627 
3628 	i->type = mreq->mr_type;
3629 	i->ifindex = mreq->mr_ifindex;
3630 	i->alen = mreq->mr_alen;
3631 	memcpy(i->addr, mreq->mr_address, i->alen);
3632 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3633 	i->count = 1;
3634 	i->next = po->mclist;
3635 	po->mclist = i;
3636 	err = packet_dev_mc(dev, i, 1);
3637 	if (err) {
3638 		po->mclist = i->next;
3639 		kfree(i);
3640 	}
3641 
3642 done:
3643 	rtnl_unlock();
3644 	return err;
3645 }
3646 
3647 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3648 {
3649 	struct packet_mclist *ml, **mlp;
3650 
3651 	rtnl_lock();
3652 
3653 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3654 		if (ml->ifindex == mreq->mr_ifindex &&
3655 		    ml->type == mreq->mr_type &&
3656 		    ml->alen == mreq->mr_alen &&
3657 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3658 			if (--ml->count == 0) {
3659 				struct net_device *dev;
3660 				*mlp = ml->next;
3661 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3662 				if (dev)
3663 					packet_dev_mc(dev, ml, -1);
3664 				kfree(ml);
3665 			}
3666 			break;
3667 		}
3668 	}
3669 	rtnl_unlock();
3670 	return 0;
3671 }
3672 
3673 static void packet_flush_mclist(struct sock *sk)
3674 {
3675 	struct packet_sock *po = pkt_sk(sk);
3676 	struct packet_mclist *ml;
3677 
3678 	if (!po->mclist)
3679 		return;
3680 
3681 	rtnl_lock();
3682 	while ((ml = po->mclist) != NULL) {
3683 		struct net_device *dev;
3684 
3685 		po->mclist = ml->next;
3686 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3687 		if (dev != NULL)
3688 			packet_dev_mc(dev, ml, -1);
3689 		kfree(ml);
3690 	}
3691 	rtnl_unlock();
3692 }
3693 
3694 static int
3695 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3696 		  unsigned int optlen)
3697 {
3698 	struct sock *sk = sock->sk;
3699 	struct packet_sock *po = pkt_sk(sk);
3700 	int ret;
3701 
3702 	if (level != SOL_PACKET)
3703 		return -ENOPROTOOPT;
3704 
3705 	switch (optname) {
3706 	case PACKET_ADD_MEMBERSHIP:
3707 	case PACKET_DROP_MEMBERSHIP:
3708 	{
3709 		struct packet_mreq_max mreq;
3710 		int len = optlen;
3711 		memset(&mreq, 0, sizeof(mreq));
3712 		if (len < sizeof(struct packet_mreq))
3713 			return -EINVAL;
3714 		if (len > sizeof(mreq))
3715 			len = sizeof(mreq);
3716 		if (copy_from_sockptr(&mreq, optval, len))
3717 			return -EFAULT;
3718 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3719 			return -EINVAL;
3720 		if (optname == PACKET_ADD_MEMBERSHIP)
3721 			ret = packet_mc_add(sk, &mreq);
3722 		else
3723 			ret = packet_mc_drop(sk, &mreq);
3724 		return ret;
3725 	}
3726 
3727 	case PACKET_RX_RING:
3728 	case PACKET_TX_RING:
3729 	{
3730 		union tpacket_req_u req_u;
3731 		int len;
3732 
3733 		lock_sock(sk);
3734 		switch (po->tp_version) {
3735 		case TPACKET_V1:
3736 		case TPACKET_V2:
3737 			len = sizeof(req_u.req);
3738 			break;
3739 		case TPACKET_V3:
3740 		default:
3741 			len = sizeof(req_u.req3);
3742 			break;
3743 		}
3744 		if (optlen < len) {
3745 			ret = -EINVAL;
3746 		} else {
3747 			if (copy_from_sockptr(&req_u.req, optval, len))
3748 				ret = -EFAULT;
3749 			else
3750 				ret = packet_set_ring(sk, &req_u, 0,
3751 						    optname == PACKET_TX_RING);
3752 		}
3753 		release_sock(sk);
3754 		return ret;
3755 	}
3756 	case PACKET_COPY_THRESH:
3757 	{
3758 		int val;
3759 
3760 		if (optlen != sizeof(val))
3761 			return -EINVAL;
3762 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3763 			return -EFAULT;
3764 
3765 		pkt_sk(sk)->copy_thresh = val;
3766 		return 0;
3767 	}
3768 	case PACKET_VERSION:
3769 	{
3770 		int val;
3771 
3772 		if (optlen != sizeof(val))
3773 			return -EINVAL;
3774 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3775 			return -EFAULT;
3776 		switch (val) {
3777 		case TPACKET_V1:
3778 		case TPACKET_V2:
3779 		case TPACKET_V3:
3780 			break;
3781 		default:
3782 			return -EINVAL;
3783 		}
3784 		lock_sock(sk);
3785 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3786 			ret = -EBUSY;
3787 		} else {
3788 			po->tp_version = val;
3789 			ret = 0;
3790 		}
3791 		release_sock(sk);
3792 		return ret;
3793 	}
3794 	case PACKET_RESERVE:
3795 	{
3796 		unsigned int val;
3797 
3798 		if (optlen != sizeof(val))
3799 			return -EINVAL;
3800 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3801 			return -EFAULT;
3802 		if (val > INT_MAX)
3803 			return -EINVAL;
3804 		lock_sock(sk);
3805 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3806 			ret = -EBUSY;
3807 		} else {
3808 			po->tp_reserve = val;
3809 			ret = 0;
3810 		}
3811 		release_sock(sk);
3812 		return ret;
3813 	}
3814 	case PACKET_LOSS:
3815 	{
3816 		unsigned int val;
3817 
3818 		if (optlen != sizeof(val))
3819 			return -EINVAL;
3820 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3821 			return -EFAULT;
3822 
3823 		lock_sock(sk);
3824 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3825 			ret = -EBUSY;
3826 		} else {
3827 			po->tp_loss = !!val;
3828 			ret = 0;
3829 		}
3830 		release_sock(sk);
3831 		return ret;
3832 	}
3833 	case PACKET_AUXDATA:
3834 	{
3835 		int val;
3836 
3837 		if (optlen < sizeof(val))
3838 			return -EINVAL;
3839 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3840 			return -EFAULT;
3841 
3842 		lock_sock(sk);
3843 		po->auxdata = !!val;
3844 		release_sock(sk);
3845 		return 0;
3846 	}
3847 	case PACKET_ORIGDEV:
3848 	{
3849 		int val;
3850 
3851 		if (optlen < sizeof(val))
3852 			return -EINVAL;
3853 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3854 			return -EFAULT;
3855 
3856 		lock_sock(sk);
3857 		po->origdev = !!val;
3858 		release_sock(sk);
3859 		return 0;
3860 	}
3861 	case PACKET_VNET_HDR:
3862 	{
3863 		int val;
3864 
3865 		if (sock->type != SOCK_RAW)
3866 			return -EINVAL;
3867 		if (optlen < sizeof(val))
3868 			return -EINVAL;
3869 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3870 			return -EFAULT;
3871 
3872 		lock_sock(sk);
3873 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3874 			ret = -EBUSY;
3875 		} else {
3876 			po->has_vnet_hdr = !!val;
3877 			ret = 0;
3878 		}
3879 		release_sock(sk);
3880 		return ret;
3881 	}
3882 	case PACKET_TIMESTAMP:
3883 	{
3884 		int val;
3885 
3886 		if (optlen != sizeof(val))
3887 			return -EINVAL;
3888 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3889 			return -EFAULT;
3890 
3891 		po->tp_tstamp = val;
3892 		return 0;
3893 	}
3894 	case PACKET_FANOUT:
3895 	{
3896 		struct fanout_args args = { 0 };
3897 
3898 		if (optlen != sizeof(int) && optlen != sizeof(args))
3899 			return -EINVAL;
3900 		if (copy_from_sockptr(&args, optval, optlen))
3901 			return -EFAULT;
3902 
3903 		return fanout_add(sk, &args);
3904 	}
3905 	case PACKET_FANOUT_DATA:
3906 	{
3907 		if (!po->fanout)
3908 			return -EINVAL;
3909 
3910 		return fanout_set_data(po, optval, optlen);
3911 	}
3912 	case PACKET_IGNORE_OUTGOING:
3913 	{
3914 		int val;
3915 
3916 		if (optlen != sizeof(val))
3917 			return -EINVAL;
3918 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3919 			return -EFAULT;
3920 		if (val < 0 || val > 1)
3921 			return -EINVAL;
3922 
3923 		po->prot_hook.ignore_outgoing = !!val;
3924 		return 0;
3925 	}
3926 	case PACKET_TX_HAS_OFF:
3927 	{
3928 		unsigned int val;
3929 
3930 		if (optlen != sizeof(val))
3931 			return -EINVAL;
3932 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3933 			return -EFAULT;
3934 
3935 		lock_sock(sk);
3936 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
3937 			po->tp_tx_has_off = !!val;
3938 
3939 		release_sock(sk);
3940 		return 0;
3941 	}
3942 	case PACKET_QDISC_BYPASS:
3943 	{
3944 		int val;
3945 
3946 		if (optlen != sizeof(val))
3947 			return -EINVAL;
3948 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3949 			return -EFAULT;
3950 
3951 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3952 		return 0;
3953 	}
3954 	default:
3955 		return -ENOPROTOOPT;
3956 	}
3957 }
3958 
3959 static int packet_getsockopt(struct socket *sock, int level, int optname,
3960 			     char __user *optval, int __user *optlen)
3961 {
3962 	int len;
3963 	int val, lv = sizeof(val);
3964 	struct sock *sk = sock->sk;
3965 	struct packet_sock *po = pkt_sk(sk);
3966 	void *data = &val;
3967 	union tpacket_stats_u st;
3968 	struct tpacket_rollover_stats rstats;
3969 	int drops;
3970 
3971 	if (level != SOL_PACKET)
3972 		return -ENOPROTOOPT;
3973 
3974 	if (get_user(len, optlen))
3975 		return -EFAULT;
3976 
3977 	if (len < 0)
3978 		return -EINVAL;
3979 
3980 	switch (optname) {
3981 	case PACKET_STATISTICS:
3982 		spin_lock_bh(&sk->sk_receive_queue.lock);
3983 		memcpy(&st, &po->stats, sizeof(st));
3984 		memset(&po->stats, 0, sizeof(po->stats));
3985 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3986 		drops = atomic_xchg(&po->tp_drops, 0);
3987 
3988 		if (po->tp_version == TPACKET_V3) {
3989 			lv = sizeof(struct tpacket_stats_v3);
3990 			st.stats3.tp_drops = drops;
3991 			st.stats3.tp_packets += drops;
3992 			data = &st.stats3;
3993 		} else {
3994 			lv = sizeof(struct tpacket_stats);
3995 			st.stats1.tp_drops = drops;
3996 			st.stats1.tp_packets += drops;
3997 			data = &st.stats1;
3998 		}
3999 
4000 		break;
4001 	case PACKET_AUXDATA:
4002 		val = po->auxdata;
4003 		break;
4004 	case PACKET_ORIGDEV:
4005 		val = po->origdev;
4006 		break;
4007 	case PACKET_VNET_HDR:
4008 		val = po->has_vnet_hdr;
4009 		break;
4010 	case PACKET_VERSION:
4011 		val = po->tp_version;
4012 		break;
4013 	case PACKET_HDRLEN:
4014 		if (len > sizeof(int))
4015 			len = sizeof(int);
4016 		if (len < sizeof(int))
4017 			return -EINVAL;
4018 		if (copy_from_user(&val, optval, len))
4019 			return -EFAULT;
4020 		switch (val) {
4021 		case TPACKET_V1:
4022 			val = sizeof(struct tpacket_hdr);
4023 			break;
4024 		case TPACKET_V2:
4025 			val = sizeof(struct tpacket2_hdr);
4026 			break;
4027 		case TPACKET_V3:
4028 			val = sizeof(struct tpacket3_hdr);
4029 			break;
4030 		default:
4031 			return -EINVAL;
4032 		}
4033 		break;
4034 	case PACKET_RESERVE:
4035 		val = po->tp_reserve;
4036 		break;
4037 	case PACKET_LOSS:
4038 		val = po->tp_loss;
4039 		break;
4040 	case PACKET_TIMESTAMP:
4041 		val = po->tp_tstamp;
4042 		break;
4043 	case PACKET_FANOUT:
4044 		val = (po->fanout ?
4045 		       ((u32)po->fanout->id |
4046 			((u32)po->fanout->type << 16) |
4047 			((u32)po->fanout->flags << 24)) :
4048 		       0);
4049 		break;
4050 	case PACKET_IGNORE_OUTGOING:
4051 		val = po->prot_hook.ignore_outgoing;
4052 		break;
4053 	case PACKET_ROLLOVER_STATS:
4054 		if (!po->rollover)
4055 			return -EINVAL;
4056 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4057 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4058 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4059 		data = &rstats;
4060 		lv = sizeof(rstats);
4061 		break;
4062 	case PACKET_TX_HAS_OFF:
4063 		val = po->tp_tx_has_off;
4064 		break;
4065 	case PACKET_QDISC_BYPASS:
4066 		val = packet_use_direct_xmit(po);
4067 		break;
4068 	default:
4069 		return -ENOPROTOOPT;
4070 	}
4071 
4072 	if (len > lv)
4073 		len = lv;
4074 	if (put_user(len, optlen))
4075 		return -EFAULT;
4076 	if (copy_to_user(optval, data, len))
4077 		return -EFAULT;
4078 	return 0;
4079 }
4080 
4081 static int packet_notifier(struct notifier_block *this,
4082 			   unsigned long msg, void *ptr)
4083 {
4084 	struct sock *sk;
4085 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4086 	struct net *net = dev_net(dev);
4087 
4088 	rcu_read_lock();
4089 	sk_for_each_rcu(sk, &net->packet.sklist) {
4090 		struct packet_sock *po = pkt_sk(sk);
4091 
4092 		switch (msg) {
4093 		case NETDEV_UNREGISTER:
4094 			if (po->mclist)
4095 				packet_dev_mclist_delete(dev, &po->mclist);
4096 			fallthrough;
4097 
4098 		case NETDEV_DOWN:
4099 			if (dev->ifindex == po->ifindex) {
4100 				spin_lock(&po->bind_lock);
4101 				if (po->running) {
4102 					__unregister_prot_hook(sk, false);
4103 					sk->sk_err = ENETDOWN;
4104 					if (!sock_flag(sk, SOCK_DEAD))
4105 						sk_error_report(sk);
4106 				}
4107 				if (msg == NETDEV_UNREGISTER) {
4108 					packet_cached_dev_reset(po);
4109 					WRITE_ONCE(po->ifindex, -1);
4110 					dev_put(po->prot_hook.dev);
4111 					po->prot_hook.dev = NULL;
4112 				}
4113 				spin_unlock(&po->bind_lock);
4114 			}
4115 			break;
4116 		case NETDEV_UP:
4117 			if (dev->ifindex == po->ifindex) {
4118 				spin_lock(&po->bind_lock);
4119 				if (po->num)
4120 					register_prot_hook(sk);
4121 				spin_unlock(&po->bind_lock);
4122 			}
4123 			break;
4124 		}
4125 	}
4126 	rcu_read_unlock();
4127 	return NOTIFY_DONE;
4128 }
4129 
4130 
4131 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4132 			unsigned long arg)
4133 {
4134 	struct sock *sk = sock->sk;
4135 
4136 	switch (cmd) {
4137 	case SIOCOUTQ:
4138 	{
4139 		int amount = sk_wmem_alloc_get(sk);
4140 
4141 		return put_user(amount, (int __user *)arg);
4142 	}
4143 	case SIOCINQ:
4144 	{
4145 		struct sk_buff *skb;
4146 		int amount = 0;
4147 
4148 		spin_lock_bh(&sk->sk_receive_queue.lock);
4149 		skb = skb_peek(&sk->sk_receive_queue);
4150 		if (skb)
4151 			amount = skb->len;
4152 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4153 		return put_user(amount, (int __user *)arg);
4154 	}
4155 #ifdef CONFIG_INET
4156 	case SIOCADDRT:
4157 	case SIOCDELRT:
4158 	case SIOCDARP:
4159 	case SIOCGARP:
4160 	case SIOCSARP:
4161 	case SIOCGIFADDR:
4162 	case SIOCSIFADDR:
4163 	case SIOCGIFBRDADDR:
4164 	case SIOCSIFBRDADDR:
4165 	case SIOCGIFNETMASK:
4166 	case SIOCSIFNETMASK:
4167 	case SIOCGIFDSTADDR:
4168 	case SIOCSIFDSTADDR:
4169 	case SIOCSIFFLAGS:
4170 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4171 #endif
4172 
4173 	default:
4174 		return -ENOIOCTLCMD;
4175 	}
4176 	return 0;
4177 }
4178 
4179 static __poll_t packet_poll(struct file *file, struct socket *sock,
4180 				poll_table *wait)
4181 {
4182 	struct sock *sk = sock->sk;
4183 	struct packet_sock *po = pkt_sk(sk);
4184 	__poll_t mask = datagram_poll(file, sock, wait);
4185 
4186 	spin_lock_bh(&sk->sk_receive_queue.lock);
4187 	if (po->rx_ring.pg_vec) {
4188 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4189 			TP_STATUS_KERNEL))
4190 			mask |= EPOLLIN | EPOLLRDNORM;
4191 	}
4192 	packet_rcv_try_clear_pressure(po);
4193 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4194 	spin_lock_bh(&sk->sk_write_queue.lock);
4195 	if (po->tx_ring.pg_vec) {
4196 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4197 			mask |= EPOLLOUT | EPOLLWRNORM;
4198 	}
4199 	spin_unlock_bh(&sk->sk_write_queue.lock);
4200 	return mask;
4201 }
4202 
4203 
4204 /* Dirty? Well, I still did not learn better way to account
4205  * for user mmaps.
4206  */
4207 
4208 static void packet_mm_open(struct vm_area_struct *vma)
4209 {
4210 	struct file *file = vma->vm_file;
4211 	struct socket *sock = file->private_data;
4212 	struct sock *sk = sock->sk;
4213 
4214 	if (sk)
4215 		atomic_inc(&pkt_sk(sk)->mapped);
4216 }
4217 
4218 static void packet_mm_close(struct vm_area_struct *vma)
4219 {
4220 	struct file *file = vma->vm_file;
4221 	struct socket *sock = file->private_data;
4222 	struct sock *sk = sock->sk;
4223 
4224 	if (sk)
4225 		atomic_dec(&pkt_sk(sk)->mapped);
4226 }
4227 
4228 static const struct vm_operations_struct packet_mmap_ops = {
4229 	.open	=	packet_mm_open,
4230 	.close	=	packet_mm_close,
4231 };
4232 
4233 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4234 			unsigned int len)
4235 {
4236 	int i;
4237 
4238 	for (i = 0; i < len; i++) {
4239 		if (likely(pg_vec[i].buffer)) {
4240 			if (is_vmalloc_addr(pg_vec[i].buffer))
4241 				vfree(pg_vec[i].buffer);
4242 			else
4243 				free_pages((unsigned long)pg_vec[i].buffer,
4244 					   order);
4245 			pg_vec[i].buffer = NULL;
4246 		}
4247 	}
4248 	kfree(pg_vec);
4249 }
4250 
4251 static char *alloc_one_pg_vec_page(unsigned long order)
4252 {
4253 	char *buffer;
4254 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4255 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4256 
4257 	buffer = (char *) __get_free_pages(gfp_flags, order);
4258 	if (buffer)
4259 		return buffer;
4260 
4261 	/* __get_free_pages failed, fall back to vmalloc */
4262 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4263 	if (buffer)
4264 		return buffer;
4265 
4266 	/* vmalloc failed, lets dig into swap here */
4267 	gfp_flags &= ~__GFP_NORETRY;
4268 	buffer = (char *) __get_free_pages(gfp_flags, order);
4269 	if (buffer)
4270 		return buffer;
4271 
4272 	/* complete and utter failure */
4273 	return NULL;
4274 }
4275 
4276 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4277 {
4278 	unsigned int block_nr = req->tp_block_nr;
4279 	struct pgv *pg_vec;
4280 	int i;
4281 
4282 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4283 	if (unlikely(!pg_vec))
4284 		goto out;
4285 
4286 	for (i = 0; i < block_nr; i++) {
4287 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4288 		if (unlikely(!pg_vec[i].buffer))
4289 			goto out_free_pgvec;
4290 	}
4291 
4292 out:
4293 	return pg_vec;
4294 
4295 out_free_pgvec:
4296 	free_pg_vec(pg_vec, order, block_nr);
4297 	pg_vec = NULL;
4298 	goto out;
4299 }
4300 
4301 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4302 		int closing, int tx_ring)
4303 {
4304 	struct pgv *pg_vec = NULL;
4305 	struct packet_sock *po = pkt_sk(sk);
4306 	unsigned long *rx_owner_map = NULL;
4307 	int was_running, order = 0;
4308 	struct packet_ring_buffer *rb;
4309 	struct sk_buff_head *rb_queue;
4310 	__be16 num;
4311 	int err;
4312 	/* Added to avoid minimal code churn */
4313 	struct tpacket_req *req = &req_u->req;
4314 
4315 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4316 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4317 
4318 	err = -EBUSY;
4319 	if (!closing) {
4320 		if (atomic_read(&po->mapped))
4321 			goto out;
4322 		if (packet_read_pending(rb))
4323 			goto out;
4324 	}
4325 
4326 	if (req->tp_block_nr) {
4327 		unsigned int min_frame_size;
4328 
4329 		/* Sanity tests and some calculations */
4330 		err = -EBUSY;
4331 		if (unlikely(rb->pg_vec))
4332 			goto out;
4333 
4334 		switch (po->tp_version) {
4335 		case TPACKET_V1:
4336 			po->tp_hdrlen = TPACKET_HDRLEN;
4337 			break;
4338 		case TPACKET_V2:
4339 			po->tp_hdrlen = TPACKET2_HDRLEN;
4340 			break;
4341 		case TPACKET_V3:
4342 			po->tp_hdrlen = TPACKET3_HDRLEN;
4343 			break;
4344 		}
4345 
4346 		err = -EINVAL;
4347 		if (unlikely((int)req->tp_block_size <= 0))
4348 			goto out;
4349 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4350 			goto out;
4351 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4352 		if (po->tp_version >= TPACKET_V3 &&
4353 		    req->tp_block_size <
4354 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4355 			goto out;
4356 		if (unlikely(req->tp_frame_size < min_frame_size))
4357 			goto out;
4358 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4359 			goto out;
4360 
4361 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4362 		if (unlikely(rb->frames_per_block == 0))
4363 			goto out;
4364 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4365 			goto out;
4366 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4367 					req->tp_frame_nr))
4368 			goto out;
4369 
4370 		err = -ENOMEM;
4371 		order = get_order(req->tp_block_size);
4372 		pg_vec = alloc_pg_vec(req, order);
4373 		if (unlikely(!pg_vec))
4374 			goto out;
4375 		switch (po->tp_version) {
4376 		case TPACKET_V3:
4377 			/* Block transmit is not supported yet */
4378 			if (!tx_ring) {
4379 				init_prb_bdqc(po, rb, pg_vec, req_u);
4380 			} else {
4381 				struct tpacket_req3 *req3 = &req_u->req3;
4382 
4383 				if (req3->tp_retire_blk_tov ||
4384 				    req3->tp_sizeof_priv ||
4385 				    req3->tp_feature_req_word) {
4386 					err = -EINVAL;
4387 					goto out_free_pg_vec;
4388 				}
4389 			}
4390 			break;
4391 		default:
4392 			if (!tx_ring) {
4393 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4394 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4395 				if (!rx_owner_map)
4396 					goto out_free_pg_vec;
4397 			}
4398 			break;
4399 		}
4400 	}
4401 	/* Done */
4402 	else {
4403 		err = -EINVAL;
4404 		if (unlikely(req->tp_frame_nr))
4405 			goto out;
4406 	}
4407 
4408 
4409 	/* Detach socket from network */
4410 	spin_lock(&po->bind_lock);
4411 	was_running = po->running;
4412 	num = po->num;
4413 	if (was_running) {
4414 		WRITE_ONCE(po->num, 0);
4415 		__unregister_prot_hook(sk, false);
4416 	}
4417 	spin_unlock(&po->bind_lock);
4418 
4419 	synchronize_net();
4420 
4421 	err = -EBUSY;
4422 	mutex_lock(&po->pg_vec_lock);
4423 	if (closing || atomic_read(&po->mapped) == 0) {
4424 		err = 0;
4425 		spin_lock_bh(&rb_queue->lock);
4426 		swap(rb->pg_vec, pg_vec);
4427 		if (po->tp_version <= TPACKET_V2)
4428 			swap(rb->rx_owner_map, rx_owner_map);
4429 		rb->frame_max = (req->tp_frame_nr - 1);
4430 		rb->head = 0;
4431 		rb->frame_size = req->tp_frame_size;
4432 		spin_unlock_bh(&rb_queue->lock);
4433 
4434 		swap(rb->pg_vec_order, order);
4435 		swap(rb->pg_vec_len, req->tp_block_nr);
4436 
4437 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4438 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4439 						tpacket_rcv : packet_rcv;
4440 		skb_queue_purge(rb_queue);
4441 		if (atomic_read(&po->mapped))
4442 			pr_err("packet_mmap: vma is busy: %d\n",
4443 			       atomic_read(&po->mapped));
4444 	}
4445 	mutex_unlock(&po->pg_vec_lock);
4446 
4447 	spin_lock(&po->bind_lock);
4448 	if (was_running) {
4449 		WRITE_ONCE(po->num, num);
4450 		register_prot_hook(sk);
4451 	}
4452 	spin_unlock(&po->bind_lock);
4453 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4454 		/* Because we don't support block-based V3 on tx-ring */
4455 		if (!tx_ring)
4456 			prb_shutdown_retire_blk_timer(po, rb_queue);
4457 	}
4458 
4459 out_free_pg_vec:
4460 	bitmap_free(rx_owner_map);
4461 	if (pg_vec)
4462 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4463 out:
4464 	return err;
4465 }
4466 
4467 static int packet_mmap(struct file *file, struct socket *sock,
4468 		struct vm_area_struct *vma)
4469 {
4470 	struct sock *sk = sock->sk;
4471 	struct packet_sock *po = pkt_sk(sk);
4472 	unsigned long size, expected_size;
4473 	struct packet_ring_buffer *rb;
4474 	unsigned long start;
4475 	int err = -EINVAL;
4476 	int i;
4477 
4478 	if (vma->vm_pgoff)
4479 		return -EINVAL;
4480 
4481 	mutex_lock(&po->pg_vec_lock);
4482 
4483 	expected_size = 0;
4484 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4485 		if (rb->pg_vec) {
4486 			expected_size += rb->pg_vec_len
4487 						* rb->pg_vec_pages
4488 						* PAGE_SIZE;
4489 		}
4490 	}
4491 
4492 	if (expected_size == 0)
4493 		goto out;
4494 
4495 	size = vma->vm_end - vma->vm_start;
4496 	if (size != expected_size)
4497 		goto out;
4498 
4499 	start = vma->vm_start;
4500 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4501 		if (rb->pg_vec == NULL)
4502 			continue;
4503 
4504 		for (i = 0; i < rb->pg_vec_len; i++) {
4505 			struct page *page;
4506 			void *kaddr = rb->pg_vec[i].buffer;
4507 			int pg_num;
4508 
4509 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4510 				page = pgv_to_page(kaddr);
4511 				err = vm_insert_page(vma, start, page);
4512 				if (unlikely(err))
4513 					goto out;
4514 				start += PAGE_SIZE;
4515 				kaddr += PAGE_SIZE;
4516 			}
4517 		}
4518 	}
4519 
4520 	atomic_inc(&po->mapped);
4521 	vma->vm_ops = &packet_mmap_ops;
4522 	err = 0;
4523 
4524 out:
4525 	mutex_unlock(&po->pg_vec_lock);
4526 	return err;
4527 }
4528 
4529 static const struct proto_ops packet_ops_spkt = {
4530 	.family =	PF_PACKET,
4531 	.owner =	THIS_MODULE,
4532 	.release =	packet_release,
4533 	.bind =		packet_bind_spkt,
4534 	.connect =	sock_no_connect,
4535 	.socketpair =	sock_no_socketpair,
4536 	.accept =	sock_no_accept,
4537 	.getname =	packet_getname_spkt,
4538 	.poll =		datagram_poll,
4539 	.ioctl =	packet_ioctl,
4540 	.gettstamp =	sock_gettstamp,
4541 	.listen =	sock_no_listen,
4542 	.shutdown =	sock_no_shutdown,
4543 	.sendmsg =	packet_sendmsg_spkt,
4544 	.recvmsg =	packet_recvmsg,
4545 	.mmap =		sock_no_mmap,
4546 	.sendpage =	sock_no_sendpage,
4547 };
4548 
4549 static const struct proto_ops packet_ops = {
4550 	.family =	PF_PACKET,
4551 	.owner =	THIS_MODULE,
4552 	.release =	packet_release,
4553 	.bind =		packet_bind,
4554 	.connect =	sock_no_connect,
4555 	.socketpair =	sock_no_socketpair,
4556 	.accept =	sock_no_accept,
4557 	.getname =	packet_getname,
4558 	.poll =		packet_poll,
4559 	.ioctl =	packet_ioctl,
4560 	.gettstamp =	sock_gettstamp,
4561 	.listen =	sock_no_listen,
4562 	.shutdown =	sock_no_shutdown,
4563 	.setsockopt =	packet_setsockopt,
4564 	.getsockopt =	packet_getsockopt,
4565 	.sendmsg =	packet_sendmsg,
4566 	.recvmsg =	packet_recvmsg,
4567 	.mmap =		packet_mmap,
4568 	.sendpage =	sock_no_sendpage,
4569 };
4570 
4571 static const struct net_proto_family packet_family_ops = {
4572 	.family =	PF_PACKET,
4573 	.create =	packet_create,
4574 	.owner	=	THIS_MODULE,
4575 };
4576 
4577 static struct notifier_block packet_netdev_notifier = {
4578 	.notifier_call =	packet_notifier,
4579 };
4580 
4581 #ifdef CONFIG_PROC_FS
4582 
4583 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4584 	__acquires(RCU)
4585 {
4586 	struct net *net = seq_file_net(seq);
4587 
4588 	rcu_read_lock();
4589 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4590 }
4591 
4592 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4593 {
4594 	struct net *net = seq_file_net(seq);
4595 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4596 }
4597 
4598 static void packet_seq_stop(struct seq_file *seq, void *v)
4599 	__releases(RCU)
4600 {
4601 	rcu_read_unlock();
4602 }
4603 
4604 static int packet_seq_show(struct seq_file *seq, void *v)
4605 {
4606 	if (v == SEQ_START_TOKEN)
4607 		seq_printf(seq,
4608 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4609 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4610 	else {
4611 		struct sock *s = sk_entry(v);
4612 		const struct packet_sock *po = pkt_sk(s);
4613 
4614 		seq_printf(seq,
4615 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4616 			   s,
4617 			   refcount_read(&s->sk_refcnt),
4618 			   s->sk_type,
4619 			   ntohs(READ_ONCE(po->num)),
4620 			   READ_ONCE(po->ifindex),
4621 			   po->running,
4622 			   atomic_read(&s->sk_rmem_alloc),
4623 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4624 			   sock_i_ino(s));
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 static const struct seq_operations packet_seq_ops = {
4631 	.start	= packet_seq_start,
4632 	.next	= packet_seq_next,
4633 	.stop	= packet_seq_stop,
4634 	.show	= packet_seq_show,
4635 };
4636 #endif
4637 
4638 static int __net_init packet_net_init(struct net *net)
4639 {
4640 	mutex_init(&net->packet.sklist_lock);
4641 	INIT_HLIST_HEAD(&net->packet.sklist);
4642 
4643 #ifdef CONFIG_PROC_FS
4644 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4645 			sizeof(struct seq_net_private)))
4646 		return -ENOMEM;
4647 #endif /* CONFIG_PROC_FS */
4648 
4649 	return 0;
4650 }
4651 
4652 static void __net_exit packet_net_exit(struct net *net)
4653 {
4654 	remove_proc_entry("packet", net->proc_net);
4655 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4656 }
4657 
4658 static struct pernet_operations packet_net_ops = {
4659 	.init = packet_net_init,
4660 	.exit = packet_net_exit,
4661 };
4662 
4663 
4664 static void __exit packet_exit(void)
4665 {
4666 	unregister_netdevice_notifier(&packet_netdev_notifier);
4667 	unregister_pernet_subsys(&packet_net_ops);
4668 	sock_unregister(PF_PACKET);
4669 	proto_unregister(&packet_proto);
4670 }
4671 
4672 static int __init packet_init(void)
4673 {
4674 	int rc;
4675 
4676 	rc = proto_register(&packet_proto, 0);
4677 	if (rc)
4678 		goto out;
4679 	rc = sock_register(&packet_family_ops);
4680 	if (rc)
4681 		goto out_proto;
4682 	rc = register_pernet_subsys(&packet_net_ops);
4683 	if (rc)
4684 		goto out_sock;
4685 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4686 	if (rc)
4687 		goto out_pernet;
4688 
4689 	return 0;
4690 
4691 out_pernet:
4692 	unregister_pernet_subsys(&packet_net_ops);
4693 out_sock:
4694 	sock_unregister(PF_PACKET);
4695 out_proto:
4696 	proto_unregister(&packet_proto);
4697 out:
4698 	return rc;
4699 }
4700 
4701 module_init(packet_init);
4702 module_exit(packet_exit);
4703 MODULE_LICENSE("GPL");
4704 MODULE_ALIAS_NETPROTO(PF_PACKET);
4705