xref: /openbmc/linux/net/packet/af_packet.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #include <linux/ethtool.h>
50 #include <linux/types.h>
51 #include <linux/mm.h>
52 #include <linux/capability.h>
53 #include <linux/fcntl.h>
54 #include <linux/socket.h>
55 #include <linux/in.h>
56 #include <linux/inet.h>
57 #include <linux/netdevice.h>
58 #include <linux/if_packet.h>
59 #include <linux/wireless.h>
60 #include <linux/kernel.h>
61 #include <linux/kmod.h>
62 #include <linux/slab.h>
63 #include <linux/vmalloc.h>
64 #include <net/net_namespace.h>
65 #include <net/ip.h>
66 #include <net/protocol.h>
67 #include <linux/skbuff.h>
68 #include <net/sock.h>
69 #include <linux/errno.h>
70 #include <linux/timer.h>
71 #include <linux/uaccess.h>
72 #include <asm/ioctls.h>
73 #include <asm/page.h>
74 #include <asm/cacheflush.h>
75 #include <asm/io.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/poll.h>
79 #include <linux/module.h>
80 #include <linux/init.h>
81 #include <linux/mutex.h>
82 #include <linux/if_vlan.h>
83 #include <linux/virtio_net.h>
84 #include <linux/errqueue.h>
85 #include <linux/net_tstamp.h>
86 #include <linux/percpu.h>
87 #ifdef CONFIG_INET
88 #include <net/inet_common.h>
89 #endif
90 #include <linux/bpf.h>
91 #include <net/compat.h>
92 
93 #include "internal.h"
94 
95 /*
96    Assumptions:
97    - If the device has no dev->header_ops->create, there is no LL header
98      visible above the device. In this case, its hard_header_len should be 0.
99      The device may prepend its own header internally. In this case, its
100      needed_headroom should be set to the space needed for it to add its
101      internal header.
102      For example, a WiFi driver pretending to be an Ethernet driver should
103      set its hard_header_len to be the Ethernet header length, and set its
104      needed_headroom to be (the real WiFi header length - the fake Ethernet
105      header length).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev_has_header(dev) == true
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev_has_header(dev) == false
121    mac_header -> data
122      However drivers often make it point to the ll header.
123      This is incorrect because the ll header should be invisible to us.
124    data       -> data
125 
126 Outgoing, dev_has_header(dev) == false
127    mac_header -> data. ll header is invisible to us.
128    data       -> data
129 
130 Resume
131   If dev_has_header(dev) == false we are unable to restore the ll header,
132     because it is invisible to us.
133 
134 
135 On transmit:
136 ------------
137 
138 dev_has_header(dev) == true
139    mac_header -> ll header
140    data       -> ll header
141 
142 dev_has_header(dev) == false (ll header is invisible to us)
143    mac_header -> data
144    data       -> data
145 
146    We should set network_header on output to the correct position,
147    packet classifier depends on it.
148  */
149 
150 /* Private packet socket structures. */
151 
152 /* identical to struct packet_mreq except it has
153  * a longer address field.
154  */
155 struct packet_mreq_max {
156 	int		mr_ifindex;
157 	unsigned short	mr_type;
158 	unsigned short	mr_alen;
159 	unsigned char	mr_address[MAX_ADDR_LEN];
160 };
161 
162 union tpacket_uhdr {
163 	struct tpacket_hdr  *h1;
164 	struct tpacket2_hdr *h2;
165 	struct tpacket3_hdr *h3;
166 	void *raw;
167 };
168 
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 		int closing, int tx_ring);
171 
172 #define V3_ALIGNMENT	(8)
173 
174 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175 
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178 
179 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
180 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
181 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
182 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
183 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
184 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
185 
186 struct packet_sock;
187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
188 		       struct packet_type *pt, struct net_device *orig_dev);
189 
190 static void *packet_previous_frame(struct packet_sock *po,
191 		struct packet_ring_buffer *rb,
192 		int status);
193 static void packet_increment_head(struct packet_ring_buffer *buff);
194 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
196 			struct packet_sock *);
197 static void prb_retire_current_block(struct tpacket_kbdq_core *,
198 		struct packet_sock *, unsigned int status);
199 static int prb_queue_frozen(struct tpacket_kbdq_core *);
200 static void prb_open_block(struct tpacket_kbdq_core *,
201 		struct tpacket_block_desc *);
202 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
205 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
206 		struct tpacket3_hdr *);
207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void packet_flush_mclist(struct sock *sk);
210 static u16 packet_pick_tx_queue(struct sk_buff *skb);
211 
212 struct packet_skb_cb {
213 	union {
214 		struct sockaddr_pkt pkt;
215 		union {
216 			/* Trick: alias skb original length with
217 			 * ll.sll_family and ll.protocol in order
218 			 * to save room.
219 			 */
220 			unsigned int origlen;
221 			struct sockaddr_ll ll;
222 		};
223 	} sa;
224 };
225 
226 #define vio_le() virtio_legacy_is_little_endian()
227 
228 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
229 
230 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
231 #define GET_PBLOCK_DESC(x, bid)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
235 #define GET_NEXT_PRB_BLK_NUM(x) \
236 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
237 	((x)->kactive_blk_num+1) : 0)
238 
239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
240 static void __fanout_link(struct sock *sk, struct packet_sock *po);
241 
242 static int packet_direct_xmit(struct sk_buff *skb)
243 {
244 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
245 }
246 
247 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
248 {
249 	struct net_device *dev;
250 
251 	rcu_read_lock();
252 	dev = rcu_dereference(po->cached_dev);
253 	if (likely(dev))
254 		dev_hold(dev);
255 	rcu_read_unlock();
256 
257 	return dev;
258 }
259 
260 static void packet_cached_dev_assign(struct packet_sock *po,
261 				     struct net_device *dev)
262 {
263 	rcu_assign_pointer(po->cached_dev, dev);
264 }
265 
266 static void packet_cached_dev_reset(struct packet_sock *po)
267 {
268 	RCU_INIT_POINTER(po->cached_dev, NULL);
269 }
270 
271 static bool packet_use_direct_xmit(const struct packet_sock *po)
272 {
273 	return po->xmit == packet_direct_xmit;
274 }
275 
276 static u16 packet_pick_tx_queue(struct sk_buff *skb)
277 {
278 	struct net_device *dev = skb->dev;
279 	const struct net_device_ops *ops = dev->netdev_ops;
280 	int cpu = raw_smp_processor_id();
281 	u16 queue_index;
282 
283 #ifdef CONFIG_XPS
284 	skb->sender_cpu = cpu + 1;
285 #endif
286 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
287 	if (ops->ndo_select_queue) {
288 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
289 		queue_index = netdev_cap_txqueue(dev, queue_index);
290 	} else {
291 		queue_index = netdev_pick_tx(dev, skb, NULL);
292 	}
293 
294 	return queue_index;
295 }
296 
297 /* __register_prot_hook must be invoked through register_prot_hook
298  * or from a context in which asynchronous accesses to the packet
299  * socket is not possible (packet_create()).
300  */
301 static void __register_prot_hook(struct sock *sk)
302 {
303 	struct packet_sock *po = pkt_sk(sk);
304 
305 	if (!po->running) {
306 		if (po->fanout)
307 			__fanout_link(sk, po);
308 		else
309 			dev_add_pack(&po->prot_hook);
310 
311 		sock_hold(sk);
312 		po->running = 1;
313 	}
314 }
315 
316 static void register_prot_hook(struct sock *sk)
317 {
318 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
319 	__register_prot_hook(sk);
320 }
321 
322 /* If the sync parameter is true, we will temporarily drop
323  * the po->bind_lock and do a synchronize_net to make sure no
324  * asynchronous packet processing paths still refer to the elements
325  * of po->prot_hook.  If the sync parameter is false, it is the
326  * callers responsibility to take care of this.
327  */
328 static void __unregister_prot_hook(struct sock *sk, bool sync)
329 {
330 	struct packet_sock *po = pkt_sk(sk);
331 
332 	lockdep_assert_held_once(&po->bind_lock);
333 
334 	po->running = 0;
335 
336 	if (po->fanout)
337 		__fanout_unlink(sk, po);
338 	else
339 		__dev_remove_pack(&po->prot_hook);
340 
341 	__sock_put(sk);
342 
343 	if (sync) {
344 		spin_unlock(&po->bind_lock);
345 		synchronize_net();
346 		spin_lock(&po->bind_lock);
347 	}
348 }
349 
350 static void unregister_prot_hook(struct sock *sk, bool sync)
351 {
352 	struct packet_sock *po = pkt_sk(sk);
353 
354 	if (po->running)
355 		__unregister_prot_hook(sk, sync);
356 }
357 
358 static inline struct page * __pure pgv_to_page(void *addr)
359 {
360 	if (is_vmalloc_addr(addr))
361 		return vmalloc_to_page(addr);
362 	return virt_to_page(addr);
363 }
364 
365 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
366 {
367 	union tpacket_uhdr h;
368 
369 	h.raw = frame;
370 	switch (po->tp_version) {
371 	case TPACKET_V1:
372 		h.h1->tp_status = status;
373 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
374 		break;
375 	case TPACKET_V2:
376 		h.h2->tp_status = status;
377 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
378 		break;
379 	case TPACKET_V3:
380 		h.h3->tp_status = status;
381 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
382 		break;
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	smp_wmb();
389 }
390 
391 static int __packet_get_status(const struct packet_sock *po, void *frame)
392 {
393 	union tpacket_uhdr h;
394 
395 	smp_rmb();
396 
397 	h.raw = frame;
398 	switch (po->tp_version) {
399 	case TPACKET_V1:
400 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
401 		return h.h1->tp_status;
402 	case TPACKET_V2:
403 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
404 		return h.h2->tp_status;
405 	case TPACKET_V3:
406 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
407 		return h.h3->tp_status;
408 	default:
409 		WARN(1, "TPACKET version not supported.\n");
410 		BUG();
411 		return 0;
412 	}
413 }
414 
415 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
416 				   unsigned int flags)
417 {
418 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
419 
420 	if (shhwtstamps &&
421 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
422 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
423 		return TP_STATUS_TS_RAW_HARDWARE;
424 
425 	if (ktime_to_timespec64_cond(skb->tstamp, ts))
426 		return TP_STATUS_TS_SOFTWARE;
427 
428 	return 0;
429 }
430 
431 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
432 				    struct sk_buff *skb)
433 {
434 	union tpacket_uhdr h;
435 	struct timespec64 ts;
436 	__u32 ts_status;
437 
438 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
439 		return 0;
440 
441 	h.raw = frame;
442 	/*
443 	 * versions 1 through 3 overflow the timestamps in y2106, since they
444 	 * all store the seconds in a 32-bit unsigned integer.
445 	 * If we create a version 4, that should have a 64-bit timestamp,
446 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
447 	 * nanoseconds.
448 	 */
449 	switch (po->tp_version) {
450 	case TPACKET_V1:
451 		h.h1->tp_sec = ts.tv_sec;
452 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
453 		break;
454 	case TPACKET_V2:
455 		h.h2->tp_sec = ts.tv_sec;
456 		h.h2->tp_nsec = ts.tv_nsec;
457 		break;
458 	case TPACKET_V3:
459 		h.h3->tp_sec = ts.tv_sec;
460 		h.h3->tp_nsec = ts.tv_nsec;
461 		break;
462 	default:
463 		WARN(1, "TPACKET version not supported.\n");
464 		BUG();
465 	}
466 
467 	/* one flush is safe, as both fields always lie on the same cacheline */
468 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
469 	smp_wmb();
470 
471 	return ts_status;
472 }
473 
474 static void *packet_lookup_frame(const struct packet_sock *po,
475 				 const struct packet_ring_buffer *rb,
476 				 unsigned int position,
477 				 int status)
478 {
479 	unsigned int pg_vec_pos, frame_offset;
480 	union tpacket_uhdr h;
481 
482 	pg_vec_pos = position / rb->frames_per_block;
483 	frame_offset = position % rb->frames_per_block;
484 
485 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
486 		(frame_offset * rb->frame_size);
487 
488 	if (status != __packet_get_status(po, h.raw))
489 		return NULL;
490 
491 	return h.raw;
492 }
493 
494 static void *packet_current_frame(struct packet_sock *po,
495 		struct packet_ring_buffer *rb,
496 		int status)
497 {
498 	return packet_lookup_frame(po, rb, rb->head, status);
499 }
500 
501 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
502 {
503 	del_timer_sync(&pkc->retire_blk_timer);
504 }
505 
506 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
507 		struct sk_buff_head *rb_queue)
508 {
509 	struct tpacket_kbdq_core *pkc;
510 
511 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
512 
513 	spin_lock_bh(&rb_queue->lock);
514 	pkc->delete_blk_timer = 1;
515 	spin_unlock_bh(&rb_queue->lock);
516 
517 	prb_del_retire_blk_timer(pkc);
518 }
519 
520 static void prb_setup_retire_blk_timer(struct packet_sock *po)
521 {
522 	struct tpacket_kbdq_core *pkc;
523 
524 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
525 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
526 		    0);
527 	pkc->retire_blk_timer.expires = jiffies;
528 }
529 
530 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
531 				int blk_size_in_bytes)
532 {
533 	struct net_device *dev;
534 	unsigned int mbits, div;
535 	struct ethtool_link_ksettings ecmd;
536 	int err;
537 
538 	rtnl_lock();
539 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
540 	if (unlikely(!dev)) {
541 		rtnl_unlock();
542 		return DEFAULT_PRB_RETIRE_TOV;
543 	}
544 	err = __ethtool_get_link_ksettings(dev, &ecmd);
545 	rtnl_unlock();
546 	if (err)
547 		return DEFAULT_PRB_RETIRE_TOV;
548 
549 	/* If the link speed is so slow you don't really
550 	 * need to worry about perf anyways
551 	 */
552 	if (ecmd.base.speed < SPEED_1000 ||
553 	    ecmd.base.speed == SPEED_UNKNOWN)
554 		return DEFAULT_PRB_RETIRE_TOV;
555 
556 	div = ecmd.base.speed / 1000;
557 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
558 
559 	if (div)
560 		mbits /= div;
561 
562 	if (div)
563 		return mbits + 1;
564 	return mbits;
565 }
566 
567 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
568 			union tpacket_req_u *req_u)
569 {
570 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
571 }
572 
573 static void init_prb_bdqc(struct packet_sock *po,
574 			struct packet_ring_buffer *rb,
575 			struct pgv *pg_vec,
576 			union tpacket_req_u *req_u)
577 {
578 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
579 	struct tpacket_block_desc *pbd;
580 
581 	memset(p1, 0x0, sizeof(*p1));
582 
583 	p1->knxt_seq_num = 1;
584 	p1->pkbdq = pg_vec;
585 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
586 	p1->pkblk_start	= pg_vec[0].buffer;
587 	p1->kblk_size = req_u->req3.tp_block_size;
588 	p1->knum_blocks	= req_u->req3.tp_block_nr;
589 	p1->hdrlen = po->tp_hdrlen;
590 	p1->version = po->tp_version;
591 	p1->last_kactive_blk_num = 0;
592 	po->stats.stats3.tp_freeze_q_cnt = 0;
593 	if (req_u->req3.tp_retire_blk_tov)
594 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
595 	else
596 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
597 						req_u->req3.tp_block_size);
598 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
599 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
600 	rwlock_init(&p1->blk_fill_in_prog_lock);
601 
602 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
603 	prb_init_ft_ops(p1, req_u);
604 	prb_setup_retire_blk_timer(po);
605 	prb_open_block(p1, pbd);
606 }
607 
608 /*  Do NOT update the last_blk_num first.
609  *  Assumes sk_buff_head lock is held.
610  */
611 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
612 {
613 	mod_timer(&pkc->retire_blk_timer,
614 			jiffies + pkc->tov_in_jiffies);
615 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
616 }
617 
618 /*
619  * Timer logic:
620  * 1) We refresh the timer only when we open a block.
621  *    By doing this we don't waste cycles refreshing the timer
622  *	  on packet-by-packet basis.
623  *
624  * With a 1MB block-size, on a 1Gbps line, it will take
625  * i) ~8 ms to fill a block + ii) memcpy etc.
626  * In this cut we are not accounting for the memcpy time.
627  *
628  * So, if the user sets the 'tmo' to 10ms then the timer
629  * will never fire while the block is still getting filled
630  * (which is what we want). However, the user could choose
631  * to close a block early and that's fine.
632  *
633  * But when the timer does fire, we check whether or not to refresh it.
634  * Since the tmo granularity is in msecs, it is not too expensive
635  * to refresh the timer, lets say every '8' msecs.
636  * Either the user can set the 'tmo' or we can derive it based on
637  * a) line-speed and b) block-size.
638  * prb_calc_retire_blk_tmo() calculates the tmo.
639  *
640  */
641 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
642 {
643 	struct packet_sock *po =
644 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
645 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
646 	unsigned int frozen;
647 	struct tpacket_block_desc *pbd;
648 
649 	spin_lock(&po->sk.sk_receive_queue.lock);
650 
651 	frozen = prb_queue_frozen(pkc);
652 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
653 
654 	if (unlikely(pkc->delete_blk_timer))
655 		goto out;
656 
657 	/* We only need to plug the race when the block is partially filled.
658 	 * tpacket_rcv:
659 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
660 	 *		copy_bits() is in progress ...
661 	 *		timer fires on other cpu:
662 	 *		we can't retire the current block because copy_bits
663 	 *		is in progress.
664 	 *
665 	 */
666 	if (BLOCK_NUM_PKTS(pbd)) {
667 		/* Waiting for skb_copy_bits to finish... */
668 		write_lock(&pkc->blk_fill_in_prog_lock);
669 		write_unlock(&pkc->blk_fill_in_prog_lock);
670 	}
671 
672 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
673 		if (!frozen) {
674 			if (!BLOCK_NUM_PKTS(pbd)) {
675 				/* An empty block. Just refresh the timer. */
676 				goto refresh_timer;
677 			}
678 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
679 			if (!prb_dispatch_next_block(pkc, po))
680 				goto refresh_timer;
681 			else
682 				goto out;
683 		} else {
684 			/* Case 1. Queue was frozen because user-space was
685 			 *	   lagging behind.
686 			 */
687 			if (prb_curr_blk_in_use(pbd)) {
688 				/*
689 				 * Ok, user-space is still behind.
690 				 * So just refresh the timer.
691 				 */
692 				goto refresh_timer;
693 			} else {
694 			       /* Case 2. queue was frozen,user-space caught up,
695 				* now the link went idle && the timer fired.
696 				* We don't have a block to close.So we open this
697 				* block and restart the timer.
698 				* opening a block thaws the queue,restarts timer
699 				* Thawing/timer-refresh is a side effect.
700 				*/
701 				prb_open_block(pkc, pbd);
702 				goto out;
703 			}
704 		}
705 	}
706 
707 refresh_timer:
708 	_prb_refresh_rx_retire_blk_timer(pkc);
709 
710 out:
711 	spin_unlock(&po->sk.sk_receive_queue.lock);
712 }
713 
714 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
715 		struct tpacket_block_desc *pbd1, __u32 status)
716 {
717 	/* Flush everything minus the block header */
718 
719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
720 	u8 *start, *end;
721 
722 	start = (u8 *)pbd1;
723 
724 	/* Skip the block header(we know header WILL fit in 4K) */
725 	start += PAGE_SIZE;
726 
727 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
728 	for (; start < end; start += PAGE_SIZE)
729 		flush_dcache_page(pgv_to_page(start));
730 
731 	smp_wmb();
732 #endif
733 
734 	/* Now update the block status. */
735 
736 	BLOCK_STATUS(pbd1) = status;
737 
738 	/* Flush the block header */
739 
740 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
741 	start = (u8 *)pbd1;
742 	flush_dcache_page(pgv_to_page(start));
743 
744 	smp_wmb();
745 #endif
746 }
747 
748 /*
749  * Side effect:
750  *
751  * 1) flush the block
752  * 2) Increment active_blk_num
753  *
754  * Note:We DONT refresh the timer on purpose.
755  *	Because almost always the next block will be opened.
756  */
757 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
758 		struct tpacket_block_desc *pbd1,
759 		struct packet_sock *po, unsigned int stat)
760 {
761 	__u32 status = TP_STATUS_USER | stat;
762 
763 	struct tpacket3_hdr *last_pkt;
764 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
765 	struct sock *sk = &po->sk;
766 
767 	if (atomic_read(&po->tp_drops))
768 		status |= TP_STATUS_LOSING;
769 
770 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
771 	last_pkt->tp_next_offset = 0;
772 
773 	/* Get the ts of the last pkt */
774 	if (BLOCK_NUM_PKTS(pbd1)) {
775 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
776 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
777 	} else {
778 		/* Ok, we tmo'd - so get the current time.
779 		 *
780 		 * It shouldn't really happen as we don't close empty
781 		 * blocks. See prb_retire_rx_blk_timer_expired().
782 		 */
783 		struct timespec64 ts;
784 		ktime_get_real_ts64(&ts);
785 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
786 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
787 	}
788 
789 	smp_wmb();
790 
791 	/* Flush the block */
792 	prb_flush_block(pkc1, pbd1, status);
793 
794 	sk->sk_data_ready(sk);
795 
796 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
797 }
798 
799 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
800 {
801 	pkc->reset_pending_on_curr_blk = 0;
802 }
803 
804 /*
805  * Side effect of opening a block:
806  *
807  * 1) prb_queue is thawed.
808  * 2) retire_blk_timer is refreshed.
809  *
810  */
811 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
812 	struct tpacket_block_desc *pbd1)
813 {
814 	struct timespec64 ts;
815 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
816 
817 	smp_rmb();
818 
819 	/* We could have just memset this but we will lose the
820 	 * flexibility of making the priv area sticky
821 	 */
822 
823 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
824 	BLOCK_NUM_PKTS(pbd1) = 0;
825 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
826 
827 	ktime_get_real_ts64(&ts);
828 
829 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
830 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
831 
832 	pkc1->pkblk_start = (char *)pbd1;
833 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
834 
835 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
836 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
837 
838 	pbd1->version = pkc1->version;
839 	pkc1->prev = pkc1->nxt_offset;
840 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
841 
842 	prb_thaw_queue(pkc1);
843 	_prb_refresh_rx_retire_blk_timer(pkc1);
844 
845 	smp_wmb();
846 }
847 
848 /*
849  * Queue freeze logic:
850  * 1) Assume tp_block_nr = 8 blocks.
851  * 2) At time 't0', user opens Rx ring.
852  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
853  * 4) user-space is either sleeping or processing block '0'.
854  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
855  *    it will close block-7,loop around and try to fill block '0'.
856  *    call-flow:
857  *    __packet_lookup_frame_in_block
858  *      prb_retire_current_block()
859  *      prb_dispatch_next_block()
860  *        |->(BLOCK_STATUS == USER) evaluates to true
861  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
862  * 6) Now there are two cases:
863  *    6.1) Link goes idle right after the queue is frozen.
864  *         But remember, the last open_block() refreshed the timer.
865  *         When this timer expires,it will refresh itself so that we can
866  *         re-open block-0 in near future.
867  *    6.2) Link is busy and keeps on receiving packets. This is a simple
868  *         case and __packet_lookup_frame_in_block will check if block-0
869  *         is free and can now be re-used.
870  */
871 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
872 				  struct packet_sock *po)
873 {
874 	pkc->reset_pending_on_curr_blk = 1;
875 	po->stats.stats3.tp_freeze_q_cnt++;
876 }
877 
878 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
879 
880 /*
881  * If the next block is free then we will dispatch it
882  * and return a good offset.
883  * Else, we will freeze the queue.
884  * So, caller must check the return value.
885  */
886 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
887 		struct packet_sock *po)
888 {
889 	struct tpacket_block_desc *pbd;
890 
891 	smp_rmb();
892 
893 	/* 1. Get current block num */
894 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
895 
896 	/* 2. If this block is currently in_use then freeze the queue */
897 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
898 		prb_freeze_queue(pkc, po);
899 		return NULL;
900 	}
901 
902 	/*
903 	 * 3.
904 	 * open this block and return the offset where the first packet
905 	 * needs to get stored.
906 	 */
907 	prb_open_block(pkc, pbd);
908 	return (void *)pkc->nxt_offset;
909 }
910 
911 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
912 		struct packet_sock *po, unsigned int status)
913 {
914 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
915 
916 	/* retire/close the current block */
917 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
918 		/*
919 		 * Plug the case where copy_bits() is in progress on
920 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
921 		 * have space to copy the pkt in the current block and
922 		 * called prb_retire_current_block()
923 		 *
924 		 * We don't need to worry about the TMO case because
925 		 * the timer-handler already handled this case.
926 		 */
927 		if (!(status & TP_STATUS_BLK_TMO)) {
928 			/* Waiting for skb_copy_bits to finish... */
929 			write_lock(&pkc->blk_fill_in_prog_lock);
930 			write_unlock(&pkc->blk_fill_in_prog_lock);
931 		}
932 		prb_close_block(pkc, pbd, po, status);
933 		return;
934 	}
935 }
936 
937 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
938 {
939 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
940 }
941 
942 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
943 {
944 	return pkc->reset_pending_on_curr_blk;
945 }
946 
947 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
948 	__releases(&pkc->blk_fill_in_prog_lock)
949 {
950 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
951 
952 	read_unlock(&pkc->blk_fill_in_prog_lock);
953 }
954 
955 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
956 			struct tpacket3_hdr *ppd)
957 {
958 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
959 }
960 
961 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
962 			struct tpacket3_hdr *ppd)
963 {
964 	ppd->hv1.tp_rxhash = 0;
965 }
966 
967 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
968 			struct tpacket3_hdr *ppd)
969 {
970 	if (skb_vlan_tag_present(pkc->skb)) {
971 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
972 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
973 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
974 	} else {
975 		ppd->hv1.tp_vlan_tci = 0;
976 		ppd->hv1.tp_vlan_tpid = 0;
977 		ppd->tp_status = TP_STATUS_AVAILABLE;
978 	}
979 }
980 
981 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
982 			struct tpacket3_hdr *ppd)
983 {
984 	ppd->hv1.tp_padding = 0;
985 	prb_fill_vlan_info(pkc, ppd);
986 
987 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
988 		prb_fill_rxhash(pkc, ppd);
989 	else
990 		prb_clear_rxhash(pkc, ppd);
991 }
992 
993 static void prb_fill_curr_block(char *curr,
994 				struct tpacket_kbdq_core *pkc,
995 				struct tpacket_block_desc *pbd,
996 				unsigned int len)
997 	__acquires(&pkc->blk_fill_in_prog_lock)
998 {
999 	struct tpacket3_hdr *ppd;
1000 
1001 	ppd  = (struct tpacket3_hdr *)curr;
1002 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1003 	pkc->prev = curr;
1004 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1006 	BLOCK_NUM_PKTS(pbd) += 1;
1007 	read_lock(&pkc->blk_fill_in_prog_lock);
1008 	prb_run_all_ft_ops(pkc, ppd);
1009 }
1010 
1011 /* Assumes caller has the sk->rx_queue.lock */
1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1013 					    struct sk_buff *skb,
1014 					    unsigned int len
1015 					    )
1016 {
1017 	struct tpacket_kbdq_core *pkc;
1018 	struct tpacket_block_desc *pbd;
1019 	char *curr, *end;
1020 
1021 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1022 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1023 
1024 	/* Queue is frozen when user space is lagging behind */
1025 	if (prb_queue_frozen(pkc)) {
1026 		/*
1027 		 * Check if that last block which caused the queue to freeze,
1028 		 * is still in_use by user-space.
1029 		 */
1030 		if (prb_curr_blk_in_use(pbd)) {
1031 			/* Can't record this packet */
1032 			return NULL;
1033 		} else {
1034 			/*
1035 			 * Ok, the block was released by user-space.
1036 			 * Now let's open that block.
1037 			 * opening a block also thaws the queue.
1038 			 * Thawing is a side effect.
1039 			 */
1040 			prb_open_block(pkc, pbd);
1041 		}
1042 	}
1043 
1044 	smp_mb();
1045 	curr = pkc->nxt_offset;
1046 	pkc->skb = skb;
1047 	end = (char *)pbd + pkc->kblk_size;
1048 
1049 	/* first try the current block */
1050 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1051 		prb_fill_curr_block(curr, pkc, pbd, len);
1052 		return (void *)curr;
1053 	}
1054 
1055 	/* Ok, close the current block */
1056 	prb_retire_current_block(pkc, po, 0);
1057 
1058 	/* Now, try to dispatch the next block */
1059 	curr = (char *)prb_dispatch_next_block(pkc, po);
1060 	if (curr) {
1061 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1062 		prb_fill_curr_block(curr, pkc, pbd, len);
1063 		return (void *)curr;
1064 	}
1065 
1066 	/*
1067 	 * No free blocks are available.user_space hasn't caught up yet.
1068 	 * Queue was just frozen and now this packet will get dropped.
1069 	 */
1070 	return NULL;
1071 }
1072 
1073 static void *packet_current_rx_frame(struct packet_sock *po,
1074 					    struct sk_buff *skb,
1075 					    int status, unsigned int len)
1076 {
1077 	char *curr = NULL;
1078 	switch (po->tp_version) {
1079 	case TPACKET_V1:
1080 	case TPACKET_V2:
1081 		curr = packet_lookup_frame(po, &po->rx_ring,
1082 					po->rx_ring.head, status);
1083 		return curr;
1084 	case TPACKET_V3:
1085 		return __packet_lookup_frame_in_block(po, skb, len);
1086 	default:
1087 		WARN(1, "TPACKET version not supported\n");
1088 		BUG();
1089 		return NULL;
1090 	}
1091 }
1092 
1093 static void *prb_lookup_block(const struct packet_sock *po,
1094 			      const struct packet_ring_buffer *rb,
1095 			      unsigned int idx,
1096 			      int status)
1097 {
1098 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1099 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1100 
1101 	if (status != BLOCK_STATUS(pbd))
1102 		return NULL;
1103 	return pbd;
1104 }
1105 
1106 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1107 {
1108 	unsigned int prev;
1109 	if (rb->prb_bdqc.kactive_blk_num)
1110 		prev = rb->prb_bdqc.kactive_blk_num-1;
1111 	else
1112 		prev = rb->prb_bdqc.knum_blocks-1;
1113 	return prev;
1114 }
1115 
1116 /* Assumes caller has held the rx_queue.lock */
1117 static void *__prb_previous_block(struct packet_sock *po,
1118 					 struct packet_ring_buffer *rb,
1119 					 int status)
1120 {
1121 	unsigned int previous = prb_previous_blk_num(rb);
1122 	return prb_lookup_block(po, rb, previous, status);
1123 }
1124 
1125 static void *packet_previous_rx_frame(struct packet_sock *po,
1126 					     struct packet_ring_buffer *rb,
1127 					     int status)
1128 {
1129 	if (po->tp_version <= TPACKET_V2)
1130 		return packet_previous_frame(po, rb, status);
1131 
1132 	return __prb_previous_block(po, rb, status);
1133 }
1134 
1135 static void packet_increment_rx_head(struct packet_sock *po,
1136 					    struct packet_ring_buffer *rb)
1137 {
1138 	switch (po->tp_version) {
1139 	case TPACKET_V1:
1140 	case TPACKET_V2:
1141 		return packet_increment_head(rb);
1142 	case TPACKET_V3:
1143 	default:
1144 		WARN(1, "TPACKET version not supported.\n");
1145 		BUG();
1146 		return;
1147 	}
1148 }
1149 
1150 static void *packet_previous_frame(struct packet_sock *po,
1151 		struct packet_ring_buffer *rb,
1152 		int status)
1153 {
1154 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1155 	return packet_lookup_frame(po, rb, previous, status);
1156 }
1157 
1158 static void packet_increment_head(struct packet_ring_buffer *buff)
1159 {
1160 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1161 }
1162 
1163 static void packet_inc_pending(struct packet_ring_buffer *rb)
1164 {
1165 	this_cpu_inc(*rb->pending_refcnt);
1166 }
1167 
1168 static void packet_dec_pending(struct packet_ring_buffer *rb)
1169 {
1170 	this_cpu_dec(*rb->pending_refcnt);
1171 }
1172 
1173 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1174 {
1175 	unsigned int refcnt = 0;
1176 	int cpu;
1177 
1178 	/* We don't use pending refcount in rx_ring. */
1179 	if (rb->pending_refcnt == NULL)
1180 		return 0;
1181 
1182 	for_each_possible_cpu(cpu)
1183 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1184 
1185 	return refcnt;
1186 }
1187 
1188 static int packet_alloc_pending(struct packet_sock *po)
1189 {
1190 	po->rx_ring.pending_refcnt = NULL;
1191 
1192 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1193 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1194 		return -ENOBUFS;
1195 
1196 	return 0;
1197 }
1198 
1199 static void packet_free_pending(struct packet_sock *po)
1200 {
1201 	free_percpu(po->tx_ring.pending_refcnt);
1202 }
1203 
1204 #define ROOM_POW_OFF	2
1205 #define ROOM_NONE	0x0
1206 #define ROOM_LOW	0x1
1207 #define ROOM_NORMAL	0x2
1208 
1209 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1210 {
1211 	int idx, len;
1212 
1213 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1214 	idx = READ_ONCE(po->rx_ring.head);
1215 	if (pow_off)
1216 		idx += len >> pow_off;
1217 	if (idx >= len)
1218 		idx -= len;
1219 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1220 }
1221 
1222 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1223 {
1224 	int idx, len;
1225 
1226 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1227 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1228 	if (pow_off)
1229 		idx += len >> pow_off;
1230 	if (idx >= len)
1231 		idx -= len;
1232 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1233 }
1234 
1235 static int __packet_rcv_has_room(const struct packet_sock *po,
1236 				 const struct sk_buff *skb)
1237 {
1238 	const struct sock *sk = &po->sk;
1239 	int ret = ROOM_NONE;
1240 
1241 	if (po->prot_hook.func != tpacket_rcv) {
1242 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1243 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1244 				   - (skb ? skb->truesize : 0);
1245 
1246 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1247 			return ROOM_NORMAL;
1248 		else if (avail > 0)
1249 			return ROOM_LOW;
1250 		else
1251 			return ROOM_NONE;
1252 	}
1253 
1254 	if (po->tp_version == TPACKET_V3) {
1255 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1256 			ret = ROOM_NORMAL;
1257 		else if (__tpacket_v3_has_room(po, 0))
1258 			ret = ROOM_LOW;
1259 	} else {
1260 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1261 			ret = ROOM_NORMAL;
1262 		else if (__tpacket_has_room(po, 0))
1263 			ret = ROOM_LOW;
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1270 {
1271 	int pressure, ret;
1272 
1273 	ret = __packet_rcv_has_room(po, skb);
1274 	pressure = ret != ROOM_NORMAL;
1275 
1276 	if (READ_ONCE(po->pressure) != pressure)
1277 		WRITE_ONCE(po->pressure, pressure);
1278 
1279 	return ret;
1280 }
1281 
1282 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1283 {
1284 	if (READ_ONCE(po->pressure) &&
1285 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1286 		WRITE_ONCE(po->pressure,  0);
1287 }
1288 
1289 static void packet_sock_destruct(struct sock *sk)
1290 {
1291 	skb_queue_purge(&sk->sk_error_queue);
1292 
1293 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1294 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1295 
1296 	if (!sock_flag(sk, SOCK_DEAD)) {
1297 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1298 		return;
1299 	}
1300 
1301 	sk_refcnt_debug_dec(sk);
1302 }
1303 
1304 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1305 {
1306 	u32 *history = po->rollover->history;
1307 	u32 victim, rxhash;
1308 	int i, count = 0;
1309 
1310 	rxhash = skb_get_hash(skb);
1311 	for (i = 0; i < ROLLOVER_HLEN; i++)
1312 		if (READ_ONCE(history[i]) == rxhash)
1313 			count++;
1314 
1315 	victim = prandom_u32() % ROLLOVER_HLEN;
1316 
1317 	/* Avoid dirtying the cache line if possible */
1318 	if (READ_ONCE(history[victim]) != rxhash)
1319 		WRITE_ONCE(history[victim], rxhash);
1320 
1321 	return count > (ROLLOVER_HLEN >> 1);
1322 }
1323 
1324 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1325 				      struct sk_buff *skb,
1326 				      unsigned int num)
1327 {
1328 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1329 }
1330 
1331 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1332 				    struct sk_buff *skb,
1333 				    unsigned int num)
1334 {
1335 	unsigned int val = atomic_inc_return(&f->rr_cur);
1336 
1337 	return val % num;
1338 }
1339 
1340 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1341 				     struct sk_buff *skb,
1342 				     unsigned int num)
1343 {
1344 	return smp_processor_id() % num;
1345 }
1346 
1347 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1348 				     struct sk_buff *skb,
1349 				     unsigned int num)
1350 {
1351 	return prandom_u32_max(num);
1352 }
1353 
1354 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1355 					  struct sk_buff *skb,
1356 					  unsigned int idx, bool try_self,
1357 					  unsigned int num)
1358 {
1359 	struct packet_sock *po, *po_next, *po_skip = NULL;
1360 	unsigned int i, j, room = ROOM_NONE;
1361 
1362 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1363 
1364 	if (try_self) {
1365 		room = packet_rcv_has_room(po, skb);
1366 		if (room == ROOM_NORMAL ||
1367 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1368 			return idx;
1369 		po_skip = po;
1370 	}
1371 
1372 	i = j = min_t(int, po->rollover->sock, num - 1);
1373 	do {
1374 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1375 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1376 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1377 			if (i != j)
1378 				po->rollover->sock = i;
1379 			atomic_long_inc(&po->rollover->num);
1380 			if (room == ROOM_LOW)
1381 				atomic_long_inc(&po->rollover->num_huge);
1382 			return i;
1383 		}
1384 
1385 		if (++i == num)
1386 			i = 0;
1387 	} while (i != j);
1388 
1389 	atomic_long_inc(&po->rollover->num_failed);
1390 	return idx;
1391 }
1392 
1393 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1394 				    struct sk_buff *skb,
1395 				    unsigned int num)
1396 {
1397 	return skb_get_queue_mapping(skb) % num;
1398 }
1399 
1400 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1401 				     struct sk_buff *skb,
1402 				     unsigned int num)
1403 {
1404 	struct bpf_prog *prog;
1405 	unsigned int ret = 0;
1406 
1407 	rcu_read_lock();
1408 	prog = rcu_dereference(f->bpf_prog);
1409 	if (prog)
1410 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1411 	rcu_read_unlock();
1412 
1413 	return ret;
1414 }
1415 
1416 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1417 {
1418 	return f->flags & (flag >> 8);
1419 }
1420 
1421 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1422 			     struct packet_type *pt, struct net_device *orig_dev)
1423 {
1424 	struct packet_fanout *f = pt->af_packet_priv;
1425 	unsigned int num = READ_ONCE(f->num_members);
1426 	struct net *net = read_pnet(&f->net);
1427 	struct packet_sock *po;
1428 	unsigned int idx;
1429 
1430 	if (!net_eq(dev_net(dev), net) || !num) {
1431 		kfree_skb(skb);
1432 		return 0;
1433 	}
1434 
1435 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1436 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1437 		if (!skb)
1438 			return 0;
1439 	}
1440 	switch (f->type) {
1441 	case PACKET_FANOUT_HASH:
1442 	default:
1443 		idx = fanout_demux_hash(f, skb, num);
1444 		break;
1445 	case PACKET_FANOUT_LB:
1446 		idx = fanout_demux_lb(f, skb, num);
1447 		break;
1448 	case PACKET_FANOUT_CPU:
1449 		idx = fanout_demux_cpu(f, skb, num);
1450 		break;
1451 	case PACKET_FANOUT_RND:
1452 		idx = fanout_demux_rnd(f, skb, num);
1453 		break;
1454 	case PACKET_FANOUT_QM:
1455 		idx = fanout_demux_qm(f, skb, num);
1456 		break;
1457 	case PACKET_FANOUT_ROLLOVER:
1458 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1459 		break;
1460 	case PACKET_FANOUT_CBPF:
1461 	case PACKET_FANOUT_EBPF:
1462 		idx = fanout_demux_bpf(f, skb, num);
1463 		break;
1464 	}
1465 
1466 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1467 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1468 
1469 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1470 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1471 }
1472 
1473 DEFINE_MUTEX(fanout_mutex);
1474 EXPORT_SYMBOL_GPL(fanout_mutex);
1475 static LIST_HEAD(fanout_list);
1476 static u16 fanout_next_id;
1477 
1478 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1479 {
1480 	struct packet_fanout *f = po->fanout;
1481 
1482 	spin_lock(&f->lock);
1483 	rcu_assign_pointer(f->arr[f->num_members], sk);
1484 	smp_wmb();
1485 	f->num_members++;
1486 	if (f->num_members == 1)
1487 		dev_add_pack(&f->prot_hook);
1488 	spin_unlock(&f->lock);
1489 }
1490 
1491 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1492 {
1493 	struct packet_fanout *f = po->fanout;
1494 	int i;
1495 
1496 	spin_lock(&f->lock);
1497 	for (i = 0; i < f->num_members; i++) {
1498 		if (rcu_dereference_protected(f->arr[i],
1499 					      lockdep_is_held(&f->lock)) == sk)
1500 			break;
1501 	}
1502 	BUG_ON(i >= f->num_members);
1503 	rcu_assign_pointer(f->arr[i],
1504 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1505 						     lockdep_is_held(&f->lock)));
1506 	f->num_members--;
1507 	if (f->num_members == 0)
1508 		__dev_remove_pack(&f->prot_hook);
1509 	spin_unlock(&f->lock);
1510 }
1511 
1512 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1513 {
1514 	if (sk->sk_family != PF_PACKET)
1515 		return false;
1516 
1517 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1518 }
1519 
1520 static void fanout_init_data(struct packet_fanout *f)
1521 {
1522 	switch (f->type) {
1523 	case PACKET_FANOUT_LB:
1524 		atomic_set(&f->rr_cur, 0);
1525 		break;
1526 	case PACKET_FANOUT_CBPF:
1527 	case PACKET_FANOUT_EBPF:
1528 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1529 		break;
1530 	}
1531 }
1532 
1533 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1534 {
1535 	struct bpf_prog *old;
1536 
1537 	spin_lock(&f->lock);
1538 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1539 	rcu_assign_pointer(f->bpf_prog, new);
1540 	spin_unlock(&f->lock);
1541 
1542 	if (old) {
1543 		synchronize_net();
1544 		bpf_prog_destroy(old);
1545 	}
1546 }
1547 
1548 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1549 				unsigned int len)
1550 {
1551 	struct bpf_prog *new;
1552 	struct sock_fprog fprog;
1553 	int ret;
1554 
1555 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1556 		return -EPERM;
1557 
1558 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1559 	if (ret)
1560 		return ret;
1561 
1562 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1563 	if (ret)
1564 		return ret;
1565 
1566 	__fanout_set_data_bpf(po->fanout, new);
1567 	return 0;
1568 }
1569 
1570 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1571 				unsigned int len)
1572 {
1573 	struct bpf_prog *new;
1574 	u32 fd;
1575 
1576 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1577 		return -EPERM;
1578 	if (len != sizeof(fd))
1579 		return -EINVAL;
1580 	if (copy_from_sockptr(&fd, data, len))
1581 		return -EFAULT;
1582 
1583 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1584 	if (IS_ERR(new))
1585 		return PTR_ERR(new);
1586 
1587 	__fanout_set_data_bpf(po->fanout, new);
1588 	return 0;
1589 }
1590 
1591 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1592 			   unsigned int len)
1593 {
1594 	switch (po->fanout->type) {
1595 	case PACKET_FANOUT_CBPF:
1596 		return fanout_set_data_cbpf(po, data, len);
1597 	case PACKET_FANOUT_EBPF:
1598 		return fanout_set_data_ebpf(po, data, len);
1599 	default:
1600 		return -EINVAL;
1601 	}
1602 }
1603 
1604 static void fanout_release_data(struct packet_fanout *f)
1605 {
1606 	switch (f->type) {
1607 	case PACKET_FANOUT_CBPF:
1608 	case PACKET_FANOUT_EBPF:
1609 		__fanout_set_data_bpf(f, NULL);
1610 	}
1611 }
1612 
1613 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1614 {
1615 	struct packet_fanout *f;
1616 
1617 	list_for_each_entry(f, &fanout_list, list) {
1618 		if (f->id == candidate_id &&
1619 		    read_pnet(&f->net) == sock_net(sk)) {
1620 			return false;
1621 		}
1622 	}
1623 	return true;
1624 }
1625 
1626 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1627 {
1628 	u16 id = fanout_next_id;
1629 
1630 	do {
1631 		if (__fanout_id_is_free(sk, id)) {
1632 			*new_id = id;
1633 			fanout_next_id = id + 1;
1634 			return true;
1635 		}
1636 
1637 		id++;
1638 	} while (id != fanout_next_id);
1639 
1640 	return false;
1641 }
1642 
1643 static int fanout_add(struct sock *sk, struct fanout_args *args)
1644 {
1645 	struct packet_rollover *rollover = NULL;
1646 	struct packet_sock *po = pkt_sk(sk);
1647 	u16 type_flags = args->type_flags;
1648 	struct packet_fanout *f, *match;
1649 	u8 type = type_flags & 0xff;
1650 	u8 flags = type_flags >> 8;
1651 	u16 id = args->id;
1652 	int err;
1653 
1654 	switch (type) {
1655 	case PACKET_FANOUT_ROLLOVER:
1656 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1657 			return -EINVAL;
1658 	case PACKET_FANOUT_HASH:
1659 	case PACKET_FANOUT_LB:
1660 	case PACKET_FANOUT_CPU:
1661 	case PACKET_FANOUT_RND:
1662 	case PACKET_FANOUT_QM:
1663 	case PACKET_FANOUT_CBPF:
1664 	case PACKET_FANOUT_EBPF:
1665 		break;
1666 	default:
1667 		return -EINVAL;
1668 	}
1669 
1670 	mutex_lock(&fanout_mutex);
1671 
1672 	err = -EALREADY;
1673 	if (po->fanout)
1674 		goto out;
1675 
1676 	if (type == PACKET_FANOUT_ROLLOVER ||
1677 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1678 		err = -ENOMEM;
1679 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1680 		if (!rollover)
1681 			goto out;
1682 		atomic_long_set(&rollover->num, 0);
1683 		atomic_long_set(&rollover->num_huge, 0);
1684 		atomic_long_set(&rollover->num_failed, 0);
1685 	}
1686 
1687 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1688 		if (id != 0) {
1689 			err = -EINVAL;
1690 			goto out;
1691 		}
1692 		if (!fanout_find_new_id(sk, &id)) {
1693 			err = -ENOMEM;
1694 			goto out;
1695 		}
1696 		/* ephemeral flag for the first socket in the group: drop it */
1697 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1698 	}
1699 
1700 	match = NULL;
1701 	list_for_each_entry(f, &fanout_list, list) {
1702 		if (f->id == id &&
1703 		    read_pnet(&f->net) == sock_net(sk)) {
1704 			match = f;
1705 			break;
1706 		}
1707 	}
1708 	err = -EINVAL;
1709 	if (match) {
1710 		if (match->flags != flags)
1711 			goto out;
1712 		if (args->max_num_members &&
1713 		    args->max_num_members != match->max_num_members)
1714 			goto out;
1715 	} else {
1716 		if (args->max_num_members > PACKET_FANOUT_MAX)
1717 			goto out;
1718 		if (!args->max_num_members)
1719 			/* legacy PACKET_FANOUT_MAX */
1720 			args->max_num_members = 256;
1721 		err = -ENOMEM;
1722 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1723 				 GFP_KERNEL);
1724 		if (!match)
1725 			goto out;
1726 		write_pnet(&match->net, sock_net(sk));
1727 		match->id = id;
1728 		match->type = type;
1729 		match->flags = flags;
1730 		INIT_LIST_HEAD(&match->list);
1731 		spin_lock_init(&match->lock);
1732 		refcount_set(&match->sk_ref, 0);
1733 		fanout_init_data(match);
1734 		match->prot_hook.type = po->prot_hook.type;
1735 		match->prot_hook.dev = po->prot_hook.dev;
1736 		match->prot_hook.func = packet_rcv_fanout;
1737 		match->prot_hook.af_packet_priv = match;
1738 		match->prot_hook.id_match = match_fanout_group;
1739 		match->max_num_members = args->max_num_members;
1740 		list_add(&match->list, &fanout_list);
1741 	}
1742 	err = -EINVAL;
1743 
1744 	spin_lock(&po->bind_lock);
1745 	if (po->running &&
1746 	    match->type == type &&
1747 	    match->prot_hook.type == po->prot_hook.type &&
1748 	    match->prot_hook.dev == po->prot_hook.dev) {
1749 		err = -ENOSPC;
1750 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1751 			__dev_remove_pack(&po->prot_hook);
1752 			po->fanout = match;
1753 			po->rollover = rollover;
1754 			rollover = NULL;
1755 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1756 			__fanout_link(sk, po);
1757 			err = 0;
1758 		}
1759 	}
1760 	spin_unlock(&po->bind_lock);
1761 
1762 	if (err && !refcount_read(&match->sk_ref)) {
1763 		list_del(&match->list);
1764 		kvfree(match);
1765 	}
1766 
1767 out:
1768 	kfree(rollover);
1769 	mutex_unlock(&fanout_mutex);
1770 	return err;
1771 }
1772 
1773 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1774  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1775  * It is the responsibility of the caller to call fanout_release_data() and
1776  * free the returned packet_fanout (after synchronize_net())
1777  */
1778 static struct packet_fanout *fanout_release(struct sock *sk)
1779 {
1780 	struct packet_sock *po = pkt_sk(sk);
1781 	struct packet_fanout *f;
1782 
1783 	mutex_lock(&fanout_mutex);
1784 	f = po->fanout;
1785 	if (f) {
1786 		po->fanout = NULL;
1787 
1788 		if (refcount_dec_and_test(&f->sk_ref))
1789 			list_del(&f->list);
1790 		else
1791 			f = NULL;
1792 	}
1793 	mutex_unlock(&fanout_mutex);
1794 
1795 	return f;
1796 }
1797 
1798 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1799 					  struct sk_buff *skb)
1800 {
1801 	/* Earlier code assumed this would be a VLAN pkt, double-check
1802 	 * this now that we have the actual packet in hand. We can only
1803 	 * do this check on Ethernet devices.
1804 	 */
1805 	if (unlikely(dev->type != ARPHRD_ETHER))
1806 		return false;
1807 
1808 	skb_reset_mac_header(skb);
1809 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1810 }
1811 
1812 static const struct proto_ops packet_ops;
1813 
1814 static const struct proto_ops packet_ops_spkt;
1815 
1816 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1817 			   struct packet_type *pt, struct net_device *orig_dev)
1818 {
1819 	struct sock *sk;
1820 	struct sockaddr_pkt *spkt;
1821 
1822 	/*
1823 	 *	When we registered the protocol we saved the socket in the data
1824 	 *	field for just this event.
1825 	 */
1826 
1827 	sk = pt->af_packet_priv;
1828 
1829 	/*
1830 	 *	Yank back the headers [hope the device set this
1831 	 *	right or kerboom...]
1832 	 *
1833 	 *	Incoming packets have ll header pulled,
1834 	 *	push it back.
1835 	 *
1836 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1837 	 *	so that this procedure is noop.
1838 	 */
1839 
1840 	if (skb->pkt_type == PACKET_LOOPBACK)
1841 		goto out;
1842 
1843 	if (!net_eq(dev_net(dev), sock_net(sk)))
1844 		goto out;
1845 
1846 	skb = skb_share_check(skb, GFP_ATOMIC);
1847 	if (skb == NULL)
1848 		goto oom;
1849 
1850 	/* drop any routing info */
1851 	skb_dst_drop(skb);
1852 
1853 	/* drop conntrack reference */
1854 	nf_reset_ct(skb);
1855 
1856 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1857 
1858 	skb_push(skb, skb->data - skb_mac_header(skb));
1859 
1860 	/*
1861 	 *	The SOCK_PACKET socket receives _all_ frames.
1862 	 */
1863 
1864 	spkt->spkt_family = dev->type;
1865 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1866 	spkt->spkt_protocol = skb->protocol;
1867 
1868 	/*
1869 	 *	Charge the memory to the socket. This is done specifically
1870 	 *	to prevent sockets using all the memory up.
1871 	 */
1872 
1873 	if (sock_queue_rcv_skb(sk, skb) == 0)
1874 		return 0;
1875 
1876 out:
1877 	kfree_skb(skb);
1878 oom:
1879 	return 0;
1880 }
1881 
1882 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1883 {
1884 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1885 	    sock->type == SOCK_RAW) {
1886 		skb_reset_mac_header(skb);
1887 		skb->protocol = dev_parse_header_protocol(skb);
1888 	}
1889 
1890 	skb_probe_transport_header(skb);
1891 }
1892 
1893 /*
1894  *	Output a raw packet to a device layer. This bypasses all the other
1895  *	protocol layers and you must therefore supply it with a complete frame
1896  */
1897 
1898 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1899 			       size_t len)
1900 {
1901 	struct sock *sk = sock->sk;
1902 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1903 	struct sk_buff *skb = NULL;
1904 	struct net_device *dev;
1905 	struct sockcm_cookie sockc;
1906 	__be16 proto = 0;
1907 	int err;
1908 	int extra_len = 0;
1909 
1910 	/*
1911 	 *	Get and verify the address.
1912 	 */
1913 
1914 	if (saddr) {
1915 		if (msg->msg_namelen < sizeof(struct sockaddr))
1916 			return -EINVAL;
1917 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1918 			proto = saddr->spkt_protocol;
1919 	} else
1920 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1921 
1922 	/*
1923 	 *	Find the device first to size check it
1924 	 */
1925 
1926 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1927 retry:
1928 	rcu_read_lock();
1929 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1930 	err = -ENODEV;
1931 	if (dev == NULL)
1932 		goto out_unlock;
1933 
1934 	err = -ENETDOWN;
1935 	if (!(dev->flags & IFF_UP))
1936 		goto out_unlock;
1937 
1938 	/*
1939 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1940 	 * raw protocol and you must do your own fragmentation at this level.
1941 	 */
1942 
1943 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1944 		if (!netif_supports_nofcs(dev)) {
1945 			err = -EPROTONOSUPPORT;
1946 			goto out_unlock;
1947 		}
1948 		extra_len = 4; /* We're doing our own CRC */
1949 	}
1950 
1951 	err = -EMSGSIZE;
1952 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1953 		goto out_unlock;
1954 
1955 	if (!skb) {
1956 		size_t reserved = LL_RESERVED_SPACE(dev);
1957 		int tlen = dev->needed_tailroom;
1958 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1959 
1960 		rcu_read_unlock();
1961 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1962 		if (skb == NULL)
1963 			return -ENOBUFS;
1964 		/* FIXME: Save some space for broken drivers that write a hard
1965 		 * header at transmission time by themselves. PPP is the notable
1966 		 * one here. This should really be fixed at the driver level.
1967 		 */
1968 		skb_reserve(skb, reserved);
1969 		skb_reset_network_header(skb);
1970 
1971 		/* Try to align data part correctly */
1972 		if (hhlen) {
1973 			skb->data -= hhlen;
1974 			skb->tail -= hhlen;
1975 			if (len < hhlen)
1976 				skb_reset_network_header(skb);
1977 		}
1978 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1979 		if (err)
1980 			goto out_free;
1981 		goto retry;
1982 	}
1983 
1984 	if (!dev_validate_header(dev, skb->data, len)) {
1985 		err = -EINVAL;
1986 		goto out_unlock;
1987 	}
1988 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1989 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1990 		err = -EMSGSIZE;
1991 		goto out_unlock;
1992 	}
1993 
1994 	sockcm_init(&sockc, sk);
1995 	if (msg->msg_controllen) {
1996 		err = sock_cmsg_send(sk, msg, &sockc);
1997 		if (unlikely(err))
1998 			goto out_unlock;
1999 	}
2000 
2001 	skb->protocol = proto;
2002 	skb->dev = dev;
2003 	skb->priority = sk->sk_priority;
2004 	skb->mark = sk->sk_mark;
2005 	skb->tstamp = sockc.transmit_time;
2006 
2007 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2008 
2009 	if (unlikely(extra_len == 4))
2010 		skb->no_fcs = 1;
2011 
2012 	packet_parse_headers(skb, sock);
2013 
2014 	dev_queue_xmit(skb);
2015 	rcu_read_unlock();
2016 	return len;
2017 
2018 out_unlock:
2019 	rcu_read_unlock();
2020 out_free:
2021 	kfree_skb(skb);
2022 	return err;
2023 }
2024 
2025 static unsigned int run_filter(struct sk_buff *skb,
2026 			       const struct sock *sk,
2027 			       unsigned int res)
2028 {
2029 	struct sk_filter *filter;
2030 
2031 	rcu_read_lock();
2032 	filter = rcu_dereference(sk->sk_filter);
2033 	if (filter != NULL)
2034 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2035 	rcu_read_unlock();
2036 
2037 	return res;
2038 }
2039 
2040 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2041 			   size_t *len)
2042 {
2043 	struct virtio_net_hdr vnet_hdr;
2044 
2045 	if (*len < sizeof(vnet_hdr))
2046 		return -EINVAL;
2047 	*len -= sizeof(vnet_hdr);
2048 
2049 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2050 		return -EINVAL;
2051 
2052 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2053 }
2054 
2055 /*
2056  * This function makes lazy skb cloning in hope that most of packets
2057  * are discarded by BPF.
2058  *
2059  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2060  * and skb->cb are mangled. It works because (and until) packets
2061  * falling here are owned by current CPU. Output packets are cloned
2062  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2063  * sequentially, so that if we return skb to original state on exit,
2064  * we will not harm anyone.
2065  */
2066 
2067 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2068 		      struct packet_type *pt, struct net_device *orig_dev)
2069 {
2070 	struct sock *sk;
2071 	struct sockaddr_ll *sll;
2072 	struct packet_sock *po;
2073 	u8 *skb_head = skb->data;
2074 	int skb_len = skb->len;
2075 	unsigned int snaplen, res;
2076 	bool is_drop_n_account = false;
2077 
2078 	if (skb->pkt_type == PACKET_LOOPBACK)
2079 		goto drop;
2080 
2081 	sk = pt->af_packet_priv;
2082 	po = pkt_sk(sk);
2083 
2084 	if (!net_eq(dev_net(dev), sock_net(sk)))
2085 		goto drop;
2086 
2087 	skb->dev = dev;
2088 
2089 	if (dev_has_header(dev)) {
2090 		/* The device has an explicit notion of ll header,
2091 		 * exported to higher levels.
2092 		 *
2093 		 * Otherwise, the device hides details of its frame
2094 		 * structure, so that corresponding packet head is
2095 		 * never delivered to user.
2096 		 */
2097 		if (sk->sk_type != SOCK_DGRAM)
2098 			skb_push(skb, skb->data - skb_mac_header(skb));
2099 		else if (skb->pkt_type == PACKET_OUTGOING) {
2100 			/* Special case: outgoing packets have ll header at head */
2101 			skb_pull(skb, skb_network_offset(skb));
2102 		}
2103 	}
2104 
2105 	snaplen = skb->len;
2106 
2107 	res = run_filter(skb, sk, snaplen);
2108 	if (!res)
2109 		goto drop_n_restore;
2110 	if (snaplen > res)
2111 		snaplen = res;
2112 
2113 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2114 		goto drop_n_acct;
2115 
2116 	if (skb_shared(skb)) {
2117 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2118 		if (nskb == NULL)
2119 			goto drop_n_acct;
2120 
2121 		if (skb_head != skb->data) {
2122 			skb->data = skb_head;
2123 			skb->len = skb_len;
2124 		}
2125 		consume_skb(skb);
2126 		skb = nskb;
2127 	}
2128 
2129 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2130 
2131 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2132 	sll->sll_hatype = dev->type;
2133 	sll->sll_pkttype = skb->pkt_type;
2134 	if (unlikely(po->origdev))
2135 		sll->sll_ifindex = orig_dev->ifindex;
2136 	else
2137 		sll->sll_ifindex = dev->ifindex;
2138 
2139 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2140 
2141 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2142 	 * Use their space for storing the original skb length.
2143 	 */
2144 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2145 
2146 	if (pskb_trim(skb, snaplen))
2147 		goto drop_n_acct;
2148 
2149 	skb_set_owner_r(skb, sk);
2150 	skb->dev = NULL;
2151 	skb_dst_drop(skb);
2152 
2153 	/* drop conntrack reference */
2154 	nf_reset_ct(skb);
2155 
2156 	spin_lock(&sk->sk_receive_queue.lock);
2157 	po->stats.stats1.tp_packets++;
2158 	sock_skb_set_dropcount(sk, skb);
2159 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2160 	spin_unlock(&sk->sk_receive_queue.lock);
2161 	sk->sk_data_ready(sk);
2162 	return 0;
2163 
2164 drop_n_acct:
2165 	is_drop_n_account = true;
2166 	atomic_inc(&po->tp_drops);
2167 	atomic_inc(&sk->sk_drops);
2168 
2169 drop_n_restore:
2170 	if (skb_head != skb->data && skb_shared(skb)) {
2171 		skb->data = skb_head;
2172 		skb->len = skb_len;
2173 	}
2174 drop:
2175 	if (!is_drop_n_account)
2176 		consume_skb(skb);
2177 	else
2178 		kfree_skb(skb);
2179 	return 0;
2180 }
2181 
2182 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2183 		       struct packet_type *pt, struct net_device *orig_dev)
2184 {
2185 	struct sock *sk;
2186 	struct packet_sock *po;
2187 	struct sockaddr_ll *sll;
2188 	union tpacket_uhdr h;
2189 	u8 *skb_head = skb->data;
2190 	int skb_len = skb->len;
2191 	unsigned int snaplen, res;
2192 	unsigned long status = TP_STATUS_USER;
2193 	unsigned short macoff, hdrlen;
2194 	unsigned int netoff;
2195 	struct sk_buff *copy_skb = NULL;
2196 	struct timespec64 ts;
2197 	__u32 ts_status;
2198 	bool is_drop_n_account = false;
2199 	unsigned int slot_id = 0;
2200 	bool do_vnet = false;
2201 
2202 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2203 	 * We may add members to them until current aligned size without forcing
2204 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2205 	 */
2206 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2207 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2208 
2209 	if (skb->pkt_type == PACKET_LOOPBACK)
2210 		goto drop;
2211 
2212 	sk = pt->af_packet_priv;
2213 	po = pkt_sk(sk);
2214 
2215 	if (!net_eq(dev_net(dev), sock_net(sk)))
2216 		goto drop;
2217 
2218 	if (dev_has_header(dev)) {
2219 		if (sk->sk_type != SOCK_DGRAM)
2220 			skb_push(skb, skb->data - skb_mac_header(skb));
2221 		else if (skb->pkt_type == PACKET_OUTGOING) {
2222 			/* Special case: outgoing packets have ll header at head */
2223 			skb_pull(skb, skb_network_offset(skb));
2224 		}
2225 	}
2226 
2227 	snaplen = skb->len;
2228 
2229 	res = run_filter(skb, sk, snaplen);
2230 	if (!res)
2231 		goto drop_n_restore;
2232 
2233 	/* If we are flooded, just give up */
2234 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2235 		atomic_inc(&po->tp_drops);
2236 		goto drop_n_restore;
2237 	}
2238 
2239 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2240 		status |= TP_STATUS_CSUMNOTREADY;
2241 	else if (skb->pkt_type != PACKET_OUTGOING &&
2242 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2243 		  skb_csum_unnecessary(skb)))
2244 		status |= TP_STATUS_CSUM_VALID;
2245 
2246 	if (snaplen > res)
2247 		snaplen = res;
2248 
2249 	if (sk->sk_type == SOCK_DGRAM) {
2250 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2251 				  po->tp_reserve;
2252 	} else {
2253 		unsigned int maclen = skb_network_offset(skb);
2254 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2255 				       (maclen < 16 ? 16 : maclen)) +
2256 				       po->tp_reserve;
2257 		if (po->has_vnet_hdr) {
2258 			netoff += sizeof(struct virtio_net_hdr);
2259 			do_vnet = true;
2260 		}
2261 		macoff = netoff - maclen;
2262 	}
2263 	if (netoff > USHRT_MAX) {
2264 		atomic_inc(&po->tp_drops);
2265 		goto drop_n_restore;
2266 	}
2267 	if (po->tp_version <= TPACKET_V2) {
2268 		if (macoff + snaplen > po->rx_ring.frame_size) {
2269 			if (po->copy_thresh &&
2270 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2271 				if (skb_shared(skb)) {
2272 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2273 				} else {
2274 					copy_skb = skb_get(skb);
2275 					skb_head = skb->data;
2276 				}
2277 				if (copy_skb)
2278 					skb_set_owner_r(copy_skb, sk);
2279 			}
2280 			snaplen = po->rx_ring.frame_size - macoff;
2281 			if ((int)snaplen < 0) {
2282 				snaplen = 0;
2283 				do_vnet = false;
2284 			}
2285 		}
2286 	} else if (unlikely(macoff + snaplen >
2287 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2288 		u32 nval;
2289 
2290 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2291 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2292 			    snaplen, nval, macoff);
2293 		snaplen = nval;
2294 		if (unlikely((int)snaplen < 0)) {
2295 			snaplen = 0;
2296 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2297 			do_vnet = false;
2298 		}
2299 	}
2300 	spin_lock(&sk->sk_receive_queue.lock);
2301 	h.raw = packet_current_rx_frame(po, skb,
2302 					TP_STATUS_KERNEL, (macoff+snaplen));
2303 	if (!h.raw)
2304 		goto drop_n_account;
2305 
2306 	if (po->tp_version <= TPACKET_V2) {
2307 		slot_id = po->rx_ring.head;
2308 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2309 			goto drop_n_account;
2310 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2311 	}
2312 
2313 	if (do_vnet &&
2314 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2315 				    sizeof(struct virtio_net_hdr),
2316 				    vio_le(), true, 0)) {
2317 		if (po->tp_version == TPACKET_V3)
2318 			prb_clear_blk_fill_status(&po->rx_ring);
2319 		goto drop_n_account;
2320 	}
2321 
2322 	if (po->tp_version <= TPACKET_V2) {
2323 		packet_increment_rx_head(po, &po->rx_ring);
2324 	/*
2325 	 * LOSING will be reported till you read the stats,
2326 	 * because it's COR - Clear On Read.
2327 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2328 	 * at packet level.
2329 	 */
2330 		if (atomic_read(&po->tp_drops))
2331 			status |= TP_STATUS_LOSING;
2332 	}
2333 
2334 	po->stats.stats1.tp_packets++;
2335 	if (copy_skb) {
2336 		status |= TP_STATUS_COPY;
2337 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2338 	}
2339 	spin_unlock(&sk->sk_receive_queue.lock);
2340 
2341 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2342 
2343 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2344 		ktime_get_real_ts64(&ts);
2345 
2346 	status |= ts_status;
2347 
2348 	switch (po->tp_version) {
2349 	case TPACKET_V1:
2350 		h.h1->tp_len = skb->len;
2351 		h.h1->tp_snaplen = snaplen;
2352 		h.h1->tp_mac = macoff;
2353 		h.h1->tp_net = netoff;
2354 		h.h1->tp_sec = ts.tv_sec;
2355 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2356 		hdrlen = sizeof(*h.h1);
2357 		break;
2358 	case TPACKET_V2:
2359 		h.h2->tp_len = skb->len;
2360 		h.h2->tp_snaplen = snaplen;
2361 		h.h2->tp_mac = macoff;
2362 		h.h2->tp_net = netoff;
2363 		h.h2->tp_sec = ts.tv_sec;
2364 		h.h2->tp_nsec = ts.tv_nsec;
2365 		if (skb_vlan_tag_present(skb)) {
2366 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2367 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2368 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2369 		} else {
2370 			h.h2->tp_vlan_tci = 0;
2371 			h.h2->tp_vlan_tpid = 0;
2372 		}
2373 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2374 		hdrlen = sizeof(*h.h2);
2375 		break;
2376 	case TPACKET_V3:
2377 		/* tp_nxt_offset,vlan are already populated above.
2378 		 * So DONT clear those fields here
2379 		 */
2380 		h.h3->tp_status |= status;
2381 		h.h3->tp_len = skb->len;
2382 		h.h3->tp_snaplen = snaplen;
2383 		h.h3->tp_mac = macoff;
2384 		h.h3->tp_net = netoff;
2385 		h.h3->tp_sec  = ts.tv_sec;
2386 		h.h3->tp_nsec = ts.tv_nsec;
2387 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2388 		hdrlen = sizeof(*h.h3);
2389 		break;
2390 	default:
2391 		BUG();
2392 	}
2393 
2394 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2395 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2396 	sll->sll_family = AF_PACKET;
2397 	sll->sll_hatype = dev->type;
2398 	sll->sll_protocol = skb->protocol;
2399 	sll->sll_pkttype = skb->pkt_type;
2400 	if (unlikely(po->origdev))
2401 		sll->sll_ifindex = orig_dev->ifindex;
2402 	else
2403 		sll->sll_ifindex = dev->ifindex;
2404 
2405 	smp_mb();
2406 
2407 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2408 	if (po->tp_version <= TPACKET_V2) {
2409 		u8 *start, *end;
2410 
2411 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2412 					macoff + snaplen);
2413 
2414 		for (start = h.raw; start < end; start += PAGE_SIZE)
2415 			flush_dcache_page(pgv_to_page(start));
2416 	}
2417 	smp_wmb();
2418 #endif
2419 
2420 	if (po->tp_version <= TPACKET_V2) {
2421 		spin_lock(&sk->sk_receive_queue.lock);
2422 		__packet_set_status(po, h.raw, status);
2423 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2424 		spin_unlock(&sk->sk_receive_queue.lock);
2425 		sk->sk_data_ready(sk);
2426 	} else if (po->tp_version == TPACKET_V3) {
2427 		prb_clear_blk_fill_status(&po->rx_ring);
2428 	}
2429 
2430 drop_n_restore:
2431 	if (skb_head != skb->data && skb_shared(skb)) {
2432 		skb->data = skb_head;
2433 		skb->len = skb_len;
2434 	}
2435 drop:
2436 	if (!is_drop_n_account)
2437 		consume_skb(skb);
2438 	else
2439 		kfree_skb(skb);
2440 	return 0;
2441 
2442 drop_n_account:
2443 	spin_unlock(&sk->sk_receive_queue.lock);
2444 	atomic_inc(&po->tp_drops);
2445 	is_drop_n_account = true;
2446 
2447 	sk->sk_data_ready(sk);
2448 	kfree_skb(copy_skb);
2449 	goto drop_n_restore;
2450 }
2451 
2452 static void tpacket_destruct_skb(struct sk_buff *skb)
2453 {
2454 	struct packet_sock *po = pkt_sk(skb->sk);
2455 
2456 	if (likely(po->tx_ring.pg_vec)) {
2457 		void *ph;
2458 		__u32 ts;
2459 
2460 		ph = skb_zcopy_get_nouarg(skb);
2461 		packet_dec_pending(&po->tx_ring);
2462 
2463 		ts = __packet_set_timestamp(po, ph, skb);
2464 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2465 
2466 		if (!packet_read_pending(&po->tx_ring))
2467 			complete(&po->skb_completion);
2468 	}
2469 
2470 	sock_wfree(skb);
2471 }
2472 
2473 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2474 {
2475 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2476 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2477 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2478 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2479 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2480 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2481 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2482 
2483 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2484 		return -EINVAL;
2485 
2486 	return 0;
2487 }
2488 
2489 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2490 				 struct virtio_net_hdr *vnet_hdr)
2491 {
2492 	if (*len < sizeof(*vnet_hdr))
2493 		return -EINVAL;
2494 	*len -= sizeof(*vnet_hdr);
2495 
2496 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2497 		return -EFAULT;
2498 
2499 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2500 }
2501 
2502 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2503 		void *frame, struct net_device *dev, void *data, int tp_len,
2504 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2505 		const struct sockcm_cookie *sockc)
2506 {
2507 	union tpacket_uhdr ph;
2508 	int to_write, offset, len, nr_frags, len_max;
2509 	struct socket *sock = po->sk.sk_socket;
2510 	struct page *page;
2511 	int err;
2512 
2513 	ph.raw = frame;
2514 
2515 	skb->protocol = proto;
2516 	skb->dev = dev;
2517 	skb->priority = po->sk.sk_priority;
2518 	skb->mark = po->sk.sk_mark;
2519 	skb->tstamp = sockc->transmit_time;
2520 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2521 	skb_zcopy_set_nouarg(skb, ph.raw);
2522 
2523 	skb_reserve(skb, hlen);
2524 	skb_reset_network_header(skb);
2525 
2526 	to_write = tp_len;
2527 
2528 	if (sock->type == SOCK_DGRAM) {
2529 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2530 				NULL, tp_len);
2531 		if (unlikely(err < 0))
2532 			return -EINVAL;
2533 	} else if (copylen) {
2534 		int hdrlen = min_t(int, copylen, tp_len);
2535 
2536 		skb_push(skb, dev->hard_header_len);
2537 		skb_put(skb, copylen - dev->hard_header_len);
2538 		err = skb_store_bits(skb, 0, data, hdrlen);
2539 		if (unlikely(err))
2540 			return err;
2541 		if (!dev_validate_header(dev, skb->data, hdrlen))
2542 			return -EINVAL;
2543 
2544 		data += hdrlen;
2545 		to_write -= hdrlen;
2546 	}
2547 
2548 	offset = offset_in_page(data);
2549 	len_max = PAGE_SIZE - offset;
2550 	len = ((to_write > len_max) ? len_max : to_write);
2551 
2552 	skb->data_len = to_write;
2553 	skb->len += to_write;
2554 	skb->truesize += to_write;
2555 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2556 
2557 	while (likely(to_write)) {
2558 		nr_frags = skb_shinfo(skb)->nr_frags;
2559 
2560 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2561 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2562 			       MAX_SKB_FRAGS);
2563 			return -EFAULT;
2564 		}
2565 
2566 		page = pgv_to_page(data);
2567 		data += len;
2568 		flush_dcache_page(page);
2569 		get_page(page);
2570 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2571 		to_write -= len;
2572 		offset = 0;
2573 		len_max = PAGE_SIZE;
2574 		len = ((to_write > len_max) ? len_max : to_write);
2575 	}
2576 
2577 	packet_parse_headers(skb, sock);
2578 
2579 	return tp_len;
2580 }
2581 
2582 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2583 				int size_max, void **data)
2584 {
2585 	union tpacket_uhdr ph;
2586 	int tp_len, off;
2587 
2588 	ph.raw = frame;
2589 
2590 	switch (po->tp_version) {
2591 	case TPACKET_V3:
2592 		if (ph.h3->tp_next_offset != 0) {
2593 			pr_warn_once("variable sized slot not supported");
2594 			return -EINVAL;
2595 		}
2596 		tp_len = ph.h3->tp_len;
2597 		break;
2598 	case TPACKET_V2:
2599 		tp_len = ph.h2->tp_len;
2600 		break;
2601 	default:
2602 		tp_len = ph.h1->tp_len;
2603 		break;
2604 	}
2605 	if (unlikely(tp_len > size_max)) {
2606 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2607 		return -EMSGSIZE;
2608 	}
2609 
2610 	if (unlikely(po->tp_tx_has_off)) {
2611 		int off_min, off_max;
2612 
2613 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2614 		off_max = po->tx_ring.frame_size - tp_len;
2615 		if (po->sk.sk_type == SOCK_DGRAM) {
2616 			switch (po->tp_version) {
2617 			case TPACKET_V3:
2618 				off = ph.h3->tp_net;
2619 				break;
2620 			case TPACKET_V2:
2621 				off = ph.h2->tp_net;
2622 				break;
2623 			default:
2624 				off = ph.h1->tp_net;
2625 				break;
2626 			}
2627 		} else {
2628 			switch (po->tp_version) {
2629 			case TPACKET_V3:
2630 				off = ph.h3->tp_mac;
2631 				break;
2632 			case TPACKET_V2:
2633 				off = ph.h2->tp_mac;
2634 				break;
2635 			default:
2636 				off = ph.h1->tp_mac;
2637 				break;
2638 			}
2639 		}
2640 		if (unlikely((off < off_min) || (off_max < off)))
2641 			return -EINVAL;
2642 	} else {
2643 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2644 	}
2645 
2646 	*data = frame + off;
2647 	return tp_len;
2648 }
2649 
2650 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2651 {
2652 	struct sk_buff *skb = NULL;
2653 	struct net_device *dev;
2654 	struct virtio_net_hdr *vnet_hdr = NULL;
2655 	struct sockcm_cookie sockc;
2656 	__be16 proto;
2657 	int err, reserve = 0;
2658 	void *ph;
2659 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2660 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2661 	unsigned char *addr = NULL;
2662 	int tp_len, size_max;
2663 	void *data;
2664 	int len_sum = 0;
2665 	int status = TP_STATUS_AVAILABLE;
2666 	int hlen, tlen, copylen = 0;
2667 	long timeo = 0;
2668 
2669 	mutex_lock(&po->pg_vec_lock);
2670 
2671 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2672 	 * we need to confirm it under protection of pg_vec_lock.
2673 	 */
2674 	if (unlikely(!po->tx_ring.pg_vec)) {
2675 		err = -EBUSY;
2676 		goto out;
2677 	}
2678 	if (likely(saddr == NULL)) {
2679 		dev	= packet_cached_dev_get(po);
2680 		proto	= po->num;
2681 	} else {
2682 		err = -EINVAL;
2683 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2684 			goto out;
2685 		if (msg->msg_namelen < (saddr->sll_halen
2686 					+ offsetof(struct sockaddr_ll,
2687 						sll_addr)))
2688 			goto out;
2689 		proto	= saddr->sll_protocol;
2690 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2691 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2692 			if (dev && msg->msg_namelen < dev->addr_len +
2693 				   offsetof(struct sockaddr_ll, sll_addr))
2694 				goto out_put;
2695 			addr = saddr->sll_addr;
2696 		}
2697 	}
2698 
2699 	err = -ENXIO;
2700 	if (unlikely(dev == NULL))
2701 		goto out;
2702 	err = -ENETDOWN;
2703 	if (unlikely(!(dev->flags & IFF_UP)))
2704 		goto out_put;
2705 
2706 	sockcm_init(&sockc, &po->sk);
2707 	if (msg->msg_controllen) {
2708 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2709 		if (unlikely(err))
2710 			goto out_put;
2711 	}
2712 
2713 	if (po->sk.sk_socket->type == SOCK_RAW)
2714 		reserve = dev->hard_header_len;
2715 	size_max = po->tx_ring.frame_size
2716 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2717 
2718 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2719 		size_max = dev->mtu + reserve + VLAN_HLEN;
2720 
2721 	reinit_completion(&po->skb_completion);
2722 
2723 	do {
2724 		ph = packet_current_frame(po, &po->tx_ring,
2725 					  TP_STATUS_SEND_REQUEST);
2726 		if (unlikely(ph == NULL)) {
2727 			if (need_wait && skb) {
2728 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2729 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2730 				if (timeo <= 0) {
2731 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2732 					goto out_put;
2733 				}
2734 			}
2735 			/* check for additional frames */
2736 			continue;
2737 		}
2738 
2739 		skb = NULL;
2740 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2741 		if (tp_len < 0)
2742 			goto tpacket_error;
2743 
2744 		status = TP_STATUS_SEND_REQUEST;
2745 		hlen = LL_RESERVED_SPACE(dev);
2746 		tlen = dev->needed_tailroom;
2747 		if (po->has_vnet_hdr) {
2748 			vnet_hdr = data;
2749 			data += sizeof(*vnet_hdr);
2750 			tp_len -= sizeof(*vnet_hdr);
2751 			if (tp_len < 0 ||
2752 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2753 				tp_len = -EINVAL;
2754 				goto tpacket_error;
2755 			}
2756 			copylen = __virtio16_to_cpu(vio_le(),
2757 						    vnet_hdr->hdr_len);
2758 		}
2759 		copylen = max_t(int, copylen, dev->hard_header_len);
2760 		skb = sock_alloc_send_skb(&po->sk,
2761 				hlen + tlen + sizeof(struct sockaddr_ll) +
2762 				(copylen - dev->hard_header_len),
2763 				!need_wait, &err);
2764 
2765 		if (unlikely(skb == NULL)) {
2766 			/* we assume the socket was initially writeable ... */
2767 			if (likely(len_sum > 0))
2768 				err = len_sum;
2769 			goto out_status;
2770 		}
2771 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2772 					  addr, hlen, copylen, &sockc);
2773 		if (likely(tp_len >= 0) &&
2774 		    tp_len > dev->mtu + reserve &&
2775 		    !po->has_vnet_hdr &&
2776 		    !packet_extra_vlan_len_allowed(dev, skb))
2777 			tp_len = -EMSGSIZE;
2778 
2779 		if (unlikely(tp_len < 0)) {
2780 tpacket_error:
2781 			if (po->tp_loss) {
2782 				__packet_set_status(po, ph,
2783 						TP_STATUS_AVAILABLE);
2784 				packet_increment_head(&po->tx_ring);
2785 				kfree_skb(skb);
2786 				continue;
2787 			} else {
2788 				status = TP_STATUS_WRONG_FORMAT;
2789 				err = tp_len;
2790 				goto out_status;
2791 			}
2792 		}
2793 
2794 		if (po->has_vnet_hdr) {
2795 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2796 				tp_len = -EINVAL;
2797 				goto tpacket_error;
2798 			}
2799 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2800 		}
2801 
2802 		skb->destructor = tpacket_destruct_skb;
2803 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2804 		packet_inc_pending(&po->tx_ring);
2805 
2806 		status = TP_STATUS_SEND_REQUEST;
2807 		err = po->xmit(skb);
2808 		if (unlikely(err > 0)) {
2809 			err = net_xmit_errno(err);
2810 			if (err && __packet_get_status(po, ph) ==
2811 				   TP_STATUS_AVAILABLE) {
2812 				/* skb was destructed already */
2813 				skb = NULL;
2814 				goto out_status;
2815 			}
2816 			/*
2817 			 * skb was dropped but not destructed yet;
2818 			 * let's treat it like congestion or err < 0
2819 			 */
2820 			err = 0;
2821 		}
2822 		packet_increment_head(&po->tx_ring);
2823 		len_sum += tp_len;
2824 	} while (likely((ph != NULL) ||
2825 		/* Note: packet_read_pending() might be slow if we have
2826 		 * to call it as it's per_cpu variable, but in fast-path
2827 		 * we already short-circuit the loop with the first
2828 		 * condition, and luckily don't have to go that path
2829 		 * anyway.
2830 		 */
2831 		 (need_wait && packet_read_pending(&po->tx_ring))));
2832 
2833 	err = len_sum;
2834 	goto out_put;
2835 
2836 out_status:
2837 	__packet_set_status(po, ph, status);
2838 	kfree_skb(skb);
2839 out_put:
2840 	dev_put(dev);
2841 out:
2842 	mutex_unlock(&po->pg_vec_lock);
2843 	return err;
2844 }
2845 
2846 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2847 				        size_t reserve, size_t len,
2848 				        size_t linear, int noblock,
2849 				        int *err)
2850 {
2851 	struct sk_buff *skb;
2852 
2853 	/* Under a page?  Don't bother with paged skb. */
2854 	if (prepad + len < PAGE_SIZE || !linear)
2855 		linear = len;
2856 
2857 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2858 				   err, 0);
2859 	if (!skb)
2860 		return NULL;
2861 
2862 	skb_reserve(skb, reserve);
2863 	skb_put(skb, linear);
2864 	skb->data_len = len - linear;
2865 	skb->len += len - linear;
2866 
2867 	return skb;
2868 }
2869 
2870 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2871 {
2872 	struct sock *sk = sock->sk;
2873 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2874 	struct sk_buff *skb;
2875 	struct net_device *dev;
2876 	__be16 proto;
2877 	unsigned char *addr = NULL;
2878 	int err, reserve = 0;
2879 	struct sockcm_cookie sockc;
2880 	struct virtio_net_hdr vnet_hdr = { 0 };
2881 	int offset = 0;
2882 	struct packet_sock *po = pkt_sk(sk);
2883 	bool has_vnet_hdr = false;
2884 	int hlen, tlen, linear;
2885 	int extra_len = 0;
2886 
2887 	/*
2888 	 *	Get and verify the address.
2889 	 */
2890 
2891 	if (likely(saddr == NULL)) {
2892 		dev	= packet_cached_dev_get(po);
2893 		proto	= po->num;
2894 	} else {
2895 		err = -EINVAL;
2896 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2897 			goto out;
2898 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2899 			goto out;
2900 		proto	= saddr->sll_protocol;
2901 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2902 		if (sock->type == SOCK_DGRAM) {
2903 			if (dev && msg->msg_namelen < dev->addr_len +
2904 				   offsetof(struct sockaddr_ll, sll_addr))
2905 				goto out_unlock;
2906 			addr = saddr->sll_addr;
2907 		}
2908 	}
2909 
2910 	err = -ENXIO;
2911 	if (unlikely(dev == NULL))
2912 		goto out_unlock;
2913 	err = -ENETDOWN;
2914 	if (unlikely(!(dev->flags & IFF_UP)))
2915 		goto out_unlock;
2916 
2917 	sockcm_init(&sockc, sk);
2918 	sockc.mark = sk->sk_mark;
2919 	if (msg->msg_controllen) {
2920 		err = sock_cmsg_send(sk, msg, &sockc);
2921 		if (unlikely(err))
2922 			goto out_unlock;
2923 	}
2924 
2925 	if (sock->type == SOCK_RAW)
2926 		reserve = dev->hard_header_len;
2927 	if (po->has_vnet_hdr) {
2928 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2929 		if (err)
2930 			goto out_unlock;
2931 		has_vnet_hdr = true;
2932 	}
2933 
2934 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2935 		if (!netif_supports_nofcs(dev)) {
2936 			err = -EPROTONOSUPPORT;
2937 			goto out_unlock;
2938 		}
2939 		extra_len = 4; /* We're doing our own CRC */
2940 	}
2941 
2942 	err = -EMSGSIZE;
2943 	if (!vnet_hdr.gso_type &&
2944 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2945 		goto out_unlock;
2946 
2947 	err = -ENOBUFS;
2948 	hlen = LL_RESERVED_SPACE(dev);
2949 	tlen = dev->needed_tailroom;
2950 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2951 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2952 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2953 			       msg->msg_flags & MSG_DONTWAIT, &err);
2954 	if (skb == NULL)
2955 		goto out_unlock;
2956 
2957 	skb_reset_network_header(skb);
2958 
2959 	err = -EINVAL;
2960 	if (sock->type == SOCK_DGRAM) {
2961 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2962 		if (unlikely(offset < 0))
2963 			goto out_free;
2964 	} else if (reserve) {
2965 		skb_reserve(skb, -reserve);
2966 		if (len < reserve + sizeof(struct ipv6hdr) &&
2967 		    dev->min_header_len != dev->hard_header_len)
2968 			skb_reset_network_header(skb);
2969 	}
2970 
2971 	/* Returns -EFAULT on error */
2972 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2973 	if (err)
2974 		goto out_free;
2975 
2976 	if (sock->type == SOCK_RAW &&
2977 	    !dev_validate_header(dev, skb->data, len)) {
2978 		err = -EINVAL;
2979 		goto out_free;
2980 	}
2981 
2982 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2983 
2984 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2985 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2986 		err = -EMSGSIZE;
2987 		goto out_free;
2988 	}
2989 
2990 	skb->protocol = proto;
2991 	skb->dev = dev;
2992 	skb->priority = sk->sk_priority;
2993 	skb->mark = sockc.mark;
2994 	skb->tstamp = sockc.transmit_time;
2995 
2996 	if (has_vnet_hdr) {
2997 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2998 		if (err)
2999 			goto out_free;
3000 		len += sizeof(vnet_hdr);
3001 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3002 	}
3003 
3004 	packet_parse_headers(skb, sock);
3005 
3006 	if (unlikely(extra_len == 4))
3007 		skb->no_fcs = 1;
3008 
3009 	err = po->xmit(skb);
3010 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3011 		goto out_unlock;
3012 
3013 	dev_put(dev);
3014 
3015 	return len;
3016 
3017 out_free:
3018 	kfree_skb(skb);
3019 out_unlock:
3020 	if (dev)
3021 		dev_put(dev);
3022 out:
3023 	return err;
3024 }
3025 
3026 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3027 {
3028 	struct sock *sk = sock->sk;
3029 	struct packet_sock *po = pkt_sk(sk);
3030 
3031 	if (po->tx_ring.pg_vec)
3032 		return tpacket_snd(po, msg);
3033 	else
3034 		return packet_snd(sock, msg, len);
3035 }
3036 
3037 /*
3038  *	Close a PACKET socket. This is fairly simple. We immediately go
3039  *	to 'closed' state and remove our protocol entry in the device list.
3040  */
3041 
3042 static int packet_release(struct socket *sock)
3043 {
3044 	struct sock *sk = sock->sk;
3045 	struct packet_sock *po;
3046 	struct packet_fanout *f;
3047 	struct net *net;
3048 	union tpacket_req_u req_u;
3049 
3050 	if (!sk)
3051 		return 0;
3052 
3053 	net = sock_net(sk);
3054 	po = pkt_sk(sk);
3055 
3056 	mutex_lock(&net->packet.sklist_lock);
3057 	sk_del_node_init_rcu(sk);
3058 	mutex_unlock(&net->packet.sklist_lock);
3059 
3060 	preempt_disable();
3061 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3062 	preempt_enable();
3063 
3064 	spin_lock(&po->bind_lock);
3065 	unregister_prot_hook(sk, false);
3066 	packet_cached_dev_reset(po);
3067 
3068 	if (po->prot_hook.dev) {
3069 		dev_put(po->prot_hook.dev);
3070 		po->prot_hook.dev = NULL;
3071 	}
3072 	spin_unlock(&po->bind_lock);
3073 
3074 	packet_flush_mclist(sk);
3075 
3076 	lock_sock(sk);
3077 	if (po->rx_ring.pg_vec) {
3078 		memset(&req_u, 0, sizeof(req_u));
3079 		packet_set_ring(sk, &req_u, 1, 0);
3080 	}
3081 
3082 	if (po->tx_ring.pg_vec) {
3083 		memset(&req_u, 0, sizeof(req_u));
3084 		packet_set_ring(sk, &req_u, 1, 1);
3085 	}
3086 	release_sock(sk);
3087 
3088 	f = fanout_release(sk);
3089 
3090 	synchronize_net();
3091 
3092 	kfree(po->rollover);
3093 	if (f) {
3094 		fanout_release_data(f);
3095 		kvfree(f);
3096 	}
3097 	/*
3098 	 *	Now the socket is dead. No more input will appear.
3099 	 */
3100 	sock_orphan(sk);
3101 	sock->sk = NULL;
3102 
3103 	/* Purge queues */
3104 
3105 	skb_queue_purge(&sk->sk_receive_queue);
3106 	packet_free_pending(po);
3107 	sk_refcnt_debug_release(sk);
3108 
3109 	sock_put(sk);
3110 	return 0;
3111 }
3112 
3113 /*
3114  *	Attach a packet hook.
3115  */
3116 
3117 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3118 			  __be16 proto)
3119 {
3120 	struct packet_sock *po = pkt_sk(sk);
3121 	struct net_device *dev_curr;
3122 	__be16 proto_curr;
3123 	bool need_rehook;
3124 	struct net_device *dev = NULL;
3125 	int ret = 0;
3126 	bool unlisted = false;
3127 
3128 	lock_sock(sk);
3129 	spin_lock(&po->bind_lock);
3130 	rcu_read_lock();
3131 
3132 	if (po->fanout) {
3133 		ret = -EINVAL;
3134 		goto out_unlock;
3135 	}
3136 
3137 	if (name) {
3138 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3139 		if (!dev) {
3140 			ret = -ENODEV;
3141 			goto out_unlock;
3142 		}
3143 	} else if (ifindex) {
3144 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3145 		if (!dev) {
3146 			ret = -ENODEV;
3147 			goto out_unlock;
3148 		}
3149 	}
3150 
3151 	if (dev)
3152 		dev_hold(dev);
3153 
3154 	proto_curr = po->prot_hook.type;
3155 	dev_curr = po->prot_hook.dev;
3156 
3157 	need_rehook = proto_curr != proto || dev_curr != dev;
3158 
3159 	if (need_rehook) {
3160 		if (po->running) {
3161 			rcu_read_unlock();
3162 			/* prevents packet_notifier() from calling
3163 			 * register_prot_hook()
3164 			 */
3165 			po->num = 0;
3166 			__unregister_prot_hook(sk, true);
3167 			rcu_read_lock();
3168 			dev_curr = po->prot_hook.dev;
3169 			if (dev)
3170 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3171 								 dev->ifindex);
3172 		}
3173 
3174 		BUG_ON(po->running);
3175 		po->num = proto;
3176 		po->prot_hook.type = proto;
3177 
3178 		if (unlikely(unlisted)) {
3179 			dev_put(dev);
3180 			po->prot_hook.dev = NULL;
3181 			po->ifindex = -1;
3182 			packet_cached_dev_reset(po);
3183 		} else {
3184 			po->prot_hook.dev = dev;
3185 			po->ifindex = dev ? dev->ifindex : 0;
3186 			packet_cached_dev_assign(po, dev);
3187 		}
3188 	}
3189 	if (dev_curr)
3190 		dev_put(dev_curr);
3191 
3192 	if (proto == 0 || !need_rehook)
3193 		goto out_unlock;
3194 
3195 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3196 		register_prot_hook(sk);
3197 	} else {
3198 		sk->sk_err = ENETDOWN;
3199 		if (!sock_flag(sk, SOCK_DEAD))
3200 			sk->sk_error_report(sk);
3201 	}
3202 
3203 out_unlock:
3204 	rcu_read_unlock();
3205 	spin_unlock(&po->bind_lock);
3206 	release_sock(sk);
3207 	return ret;
3208 }
3209 
3210 /*
3211  *	Bind a packet socket to a device
3212  */
3213 
3214 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3215 			    int addr_len)
3216 {
3217 	struct sock *sk = sock->sk;
3218 	char name[sizeof(uaddr->sa_data) + 1];
3219 
3220 	/*
3221 	 *	Check legality
3222 	 */
3223 
3224 	if (addr_len != sizeof(struct sockaddr))
3225 		return -EINVAL;
3226 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3227 	 * zero-terminated.
3228 	 */
3229 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3230 	name[sizeof(uaddr->sa_data)] = 0;
3231 
3232 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3233 }
3234 
3235 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3236 {
3237 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3238 	struct sock *sk = sock->sk;
3239 
3240 	/*
3241 	 *	Check legality
3242 	 */
3243 
3244 	if (addr_len < sizeof(struct sockaddr_ll))
3245 		return -EINVAL;
3246 	if (sll->sll_family != AF_PACKET)
3247 		return -EINVAL;
3248 
3249 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3250 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3251 }
3252 
3253 static struct proto packet_proto = {
3254 	.name	  = "PACKET",
3255 	.owner	  = THIS_MODULE,
3256 	.obj_size = sizeof(struct packet_sock),
3257 };
3258 
3259 /*
3260  *	Create a packet of type SOCK_PACKET.
3261  */
3262 
3263 static int packet_create(struct net *net, struct socket *sock, int protocol,
3264 			 int kern)
3265 {
3266 	struct sock *sk;
3267 	struct packet_sock *po;
3268 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3269 	int err;
3270 
3271 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3272 		return -EPERM;
3273 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3274 	    sock->type != SOCK_PACKET)
3275 		return -ESOCKTNOSUPPORT;
3276 
3277 	sock->state = SS_UNCONNECTED;
3278 
3279 	err = -ENOBUFS;
3280 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3281 	if (sk == NULL)
3282 		goto out;
3283 
3284 	sock->ops = &packet_ops;
3285 	if (sock->type == SOCK_PACKET)
3286 		sock->ops = &packet_ops_spkt;
3287 
3288 	sock_init_data(sock, sk);
3289 
3290 	po = pkt_sk(sk);
3291 	init_completion(&po->skb_completion);
3292 	sk->sk_family = PF_PACKET;
3293 	po->num = proto;
3294 	po->xmit = dev_queue_xmit;
3295 
3296 	err = packet_alloc_pending(po);
3297 	if (err)
3298 		goto out2;
3299 
3300 	packet_cached_dev_reset(po);
3301 
3302 	sk->sk_destruct = packet_sock_destruct;
3303 	sk_refcnt_debug_inc(sk);
3304 
3305 	/*
3306 	 *	Attach a protocol block
3307 	 */
3308 
3309 	spin_lock_init(&po->bind_lock);
3310 	mutex_init(&po->pg_vec_lock);
3311 	po->rollover = NULL;
3312 	po->prot_hook.func = packet_rcv;
3313 
3314 	if (sock->type == SOCK_PACKET)
3315 		po->prot_hook.func = packet_rcv_spkt;
3316 
3317 	po->prot_hook.af_packet_priv = sk;
3318 
3319 	if (proto) {
3320 		po->prot_hook.type = proto;
3321 		__register_prot_hook(sk);
3322 	}
3323 
3324 	mutex_lock(&net->packet.sklist_lock);
3325 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3326 	mutex_unlock(&net->packet.sklist_lock);
3327 
3328 	preempt_disable();
3329 	sock_prot_inuse_add(net, &packet_proto, 1);
3330 	preempt_enable();
3331 
3332 	return 0;
3333 out2:
3334 	sk_free(sk);
3335 out:
3336 	return err;
3337 }
3338 
3339 /*
3340  *	Pull a packet from our receive queue and hand it to the user.
3341  *	If necessary we block.
3342  */
3343 
3344 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3345 			  int flags)
3346 {
3347 	struct sock *sk = sock->sk;
3348 	struct sk_buff *skb;
3349 	int copied, err;
3350 	int vnet_hdr_len = 0;
3351 	unsigned int origlen = 0;
3352 
3353 	err = -EINVAL;
3354 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3355 		goto out;
3356 
3357 #if 0
3358 	/* What error should we return now? EUNATTACH? */
3359 	if (pkt_sk(sk)->ifindex < 0)
3360 		return -ENODEV;
3361 #endif
3362 
3363 	if (flags & MSG_ERRQUEUE) {
3364 		err = sock_recv_errqueue(sk, msg, len,
3365 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3366 		goto out;
3367 	}
3368 
3369 	/*
3370 	 *	Call the generic datagram receiver. This handles all sorts
3371 	 *	of horrible races and re-entrancy so we can forget about it
3372 	 *	in the protocol layers.
3373 	 *
3374 	 *	Now it will return ENETDOWN, if device have just gone down,
3375 	 *	but then it will block.
3376 	 */
3377 
3378 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3379 
3380 	/*
3381 	 *	An error occurred so return it. Because skb_recv_datagram()
3382 	 *	handles the blocking we don't see and worry about blocking
3383 	 *	retries.
3384 	 */
3385 
3386 	if (skb == NULL)
3387 		goto out;
3388 
3389 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3390 
3391 	if (pkt_sk(sk)->has_vnet_hdr) {
3392 		err = packet_rcv_vnet(msg, skb, &len);
3393 		if (err)
3394 			goto out_free;
3395 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3396 	}
3397 
3398 	/* You lose any data beyond the buffer you gave. If it worries
3399 	 * a user program they can ask the device for its MTU
3400 	 * anyway.
3401 	 */
3402 	copied = skb->len;
3403 	if (copied > len) {
3404 		copied = len;
3405 		msg->msg_flags |= MSG_TRUNC;
3406 	}
3407 
3408 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3409 	if (err)
3410 		goto out_free;
3411 
3412 	if (sock->type != SOCK_PACKET) {
3413 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3414 
3415 		/* Original length was stored in sockaddr_ll fields */
3416 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3417 		sll->sll_family = AF_PACKET;
3418 		sll->sll_protocol = skb->protocol;
3419 	}
3420 
3421 	sock_recv_ts_and_drops(msg, sk, skb);
3422 
3423 	if (msg->msg_name) {
3424 		int copy_len;
3425 
3426 		/* If the address length field is there to be filled
3427 		 * in, we fill it in now.
3428 		 */
3429 		if (sock->type == SOCK_PACKET) {
3430 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3431 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3432 			copy_len = msg->msg_namelen;
3433 		} else {
3434 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3435 
3436 			msg->msg_namelen = sll->sll_halen +
3437 				offsetof(struct sockaddr_ll, sll_addr);
3438 			copy_len = msg->msg_namelen;
3439 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3440 				memset(msg->msg_name +
3441 				       offsetof(struct sockaddr_ll, sll_addr),
3442 				       0, sizeof(sll->sll_addr));
3443 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3444 			}
3445 		}
3446 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3447 	}
3448 
3449 	if (pkt_sk(sk)->auxdata) {
3450 		struct tpacket_auxdata aux;
3451 
3452 		aux.tp_status = TP_STATUS_USER;
3453 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3454 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3455 		else if (skb->pkt_type != PACKET_OUTGOING &&
3456 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3457 			  skb_csum_unnecessary(skb)))
3458 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3459 
3460 		aux.tp_len = origlen;
3461 		aux.tp_snaplen = skb->len;
3462 		aux.tp_mac = 0;
3463 		aux.tp_net = skb_network_offset(skb);
3464 		if (skb_vlan_tag_present(skb)) {
3465 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3466 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3467 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3468 		} else {
3469 			aux.tp_vlan_tci = 0;
3470 			aux.tp_vlan_tpid = 0;
3471 		}
3472 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3473 	}
3474 
3475 	/*
3476 	 *	Free or return the buffer as appropriate. Again this
3477 	 *	hides all the races and re-entrancy issues from us.
3478 	 */
3479 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3480 
3481 out_free:
3482 	skb_free_datagram(sk, skb);
3483 out:
3484 	return err;
3485 }
3486 
3487 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3488 			       int peer)
3489 {
3490 	struct net_device *dev;
3491 	struct sock *sk	= sock->sk;
3492 
3493 	if (peer)
3494 		return -EOPNOTSUPP;
3495 
3496 	uaddr->sa_family = AF_PACKET;
3497 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3498 	rcu_read_lock();
3499 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3500 	if (dev)
3501 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3502 	rcu_read_unlock();
3503 
3504 	return sizeof(*uaddr);
3505 }
3506 
3507 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3508 			  int peer)
3509 {
3510 	struct net_device *dev;
3511 	struct sock *sk = sock->sk;
3512 	struct packet_sock *po = pkt_sk(sk);
3513 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3514 
3515 	if (peer)
3516 		return -EOPNOTSUPP;
3517 
3518 	sll->sll_family = AF_PACKET;
3519 	sll->sll_ifindex = po->ifindex;
3520 	sll->sll_protocol = po->num;
3521 	sll->sll_pkttype = 0;
3522 	rcu_read_lock();
3523 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3524 	if (dev) {
3525 		sll->sll_hatype = dev->type;
3526 		sll->sll_halen = dev->addr_len;
3527 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3528 	} else {
3529 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3530 		sll->sll_halen = 0;
3531 	}
3532 	rcu_read_unlock();
3533 
3534 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3535 }
3536 
3537 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3538 			 int what)
3539 {
3540 	switch (i->type) {
3541 	case PACKET_MR_MULTICAST:
3542 		if (i->alen != dev->addr_len)
3543 			return -EINVAL;
3544 		if (what > 0)
3545 			return dev_mc_add(dev, i->addr);
3546 		else
3547 			return dev_mc_del(dev, i->addr);
3548 		break;
3549 	case PACKET_MR_PROMISC:
3550 		return dev_set_promiscuity(dev, what);
3551 	case PACKET_MR_ALLMULTI:
3552 		return dev_set_allmulti(dev, what);
3553 	case PACKET_MR_UNICAST:
3554 		if (i->alen != dev->addr_len)
3555 			return -EINVAL;
3556 		if (what > 0)
3557 			return dev_uc_add(dev, i->addr);
3558 		else
3559 			return dev_uc_del(dev, i->addr);
3560 		break;
3561 	default:
3562 		break;
3563 	}
3564 	return 0;
3565 }
3566 
3567 static void packet_dev_mclist_delete(struct net_device *dev,
3568 				     struct packet_mclist **mlp)
3569 {
3570 	struct packet_mclist *ml;
3571 
3572 	while ((ml = *mlp) != NULL) {
3573 		if (ml->ifindex == dev->ifindex) {
3574 			packet_dev_mc(dev, ml, -1);
3575 			*mlp = ml->next;
3576 			kfree(ml);
3577 		} else
3578 			mlp = &ml->next;
3579 	}
3580 }
3581 
3582 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3583 {
3584 	struct packet_sock *po = pkt_sk(sk);
3585 	struct packet_mclist *ml, *i;
3586 	struct net_device *dev;
3587 	int err;
3588 
3589 	rtnl_lock();
3590 
3591 	err = -ENODEV;
3592 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3593 	if (!dev)
3594 		goto done;
3595 
3596 	err = -EINVAL;
3597 	if (mreq->mr_alen > dev->addr_len)
3598 		goto done;
3599 
3600 	err = -ENOBUFS;
3601 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3602 	if (i == NULL)
3603 		goto done;
3604 
3605 	err = 0;
3606 	for (ml = po->mclist; ml; ml = ml->next) {
3607 		if (ml->ifindex == mreq->mr_ifindex &&
3608 		    ml->type == mreq->mr_type &&
3609 		    ml->alen == mreq->mr_alen &&
3610 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3611 			ml->count++;
3612 			/* Free the new element ... */
3613 			kfree(i);
3614 			goto done;
3615 		}
3616 	}
3617 
3618 	i->type = mreq->mr_type;
3619 	i->ifindex = mreq->mr_ifindex;
3620 	i->alen = mreq->mr_alen;
3621 	memcpy(i->addr, mreq->mr_address, i->alen);
3622 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3623 	i->count = 1;
3624 	i->next = po->mclist;
3625 	po->mclist = i;
3626 	err = packet_dev_mc(dev, i, 1);
3627 	if (err) {
3628 		po->mclist = i->next;
3629 		kfree(i);
3630 	}
3631 
3632 done:
3633 	rtnl_unlock();
3634 	return err;
3635 }
3636 
3637 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3638 {
3639 	struct packet_mclist *ml, **mlp;
3640 
3641 	rtnl_lock();
3642 
3643 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3644 		if (ml->ifindex == mreq->mr_ifindex &&
3645 		    ml->type == mreq->mr_type &&
3646 		    ml->alen == mreq->mr_alen &&
3647 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3648 			if (--ml->count == 0) {
3649 				struct net_device *dev;
3650 				*mlp = ml->next;
3651 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3652 				if (dev)
3653 					packet_dev_mc(dev, ml, -1);
3654 				kfree(ml);
3655 			}
3656 			break;
3657 		}
3658 	}
3659 	rtnl_unlock();
3660 	return 0;
3661 }
3662 
3663 static void packet_flush_mclist(struct sock *sk)
3664 {
3665 	struct packet_sock *po = pkt_sk(sk);
3666 	struct packet_mclist *ml;
3667 
3668 	if (!po->mclist)
3669 		return;
3670 
3671 	rtnl_lock();
3672 	while ((ml = po->mclist) != NULL) {
3673 		struct net_device *dev;
3674 
3675 		po->mclist = ml->next;
3676 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3677 		if (dev != NULL)
3678 			packet_dev_mc(dev, ml, -1);
3679 		kfree(ml);
3680 	}
3681 	rtnl_unlock();
3682 }
3683 
3684 static int
3685 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3686 		  unsigned int optlen)
3687 {
3688 	struct sock *sk = sock->sk;
3689 	struct packet_sock *po = pkt_sk(sk);
3690 	int ret;
3691 
3692 	if (level != SOL_PACKET)
3693 		return -ENOPROTOOPT;
3694 
3695 	switch (optname) {
3696 	case PACKET_ADD_MEMBERSHIP:
3697 	case PACKET_DROP_MEMBERSHIP:
3698 	{
3699 		struct packet_mreq_max mreq;
3700 		int len = optlen;
3701 		memset(&mreq, 0, sizeof(mreq));
3702 		if (len < sizeof(struct packet_mreq))
3703 			return -EINVAL;
3704 		if (len > sizeof(mreq))
3705 			len = sizeof(mreq);
3706 		if (copy_from_sockptr(&mreq, optval, len))
3707 			return -EFAULT;
3708 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3709 			return -EINVAL;
3710 		if (optname == PACKET_ADD_MEMBERSHIP)
3711 			ret = packet_mc_add(sk, &mreq);
3712 		else
3713 			ret = packet_mc_drop(sk, &mreq);
3714 		return ret;
3715 	}
3716 
3717 	case PACKET_RX_RING:
3718 	case PACKET_TX_RING:
3719 	{
3720 		union tpacket_req_u req_u;
3721 		int len;
3722 
3723 		lock_sock(sk);
3724 		switch (po->tp_version) {
3725 		case TPACKET_V1:
3726 		case TPACKET_V2:
3727 			len = sizeof(req_u.req);
3728 			break;
3729 		case TPACKET_V3:
3730 		default:
3731 			len = sizeof(req_u.req3);
3732 			break;
3733 		}
3734 		if (optlen < len) {
3735 			ret = -EINVAL;
3736 		} else {
3737 			if (copy_from_sockptr(&req_u.req, optval, len))
3738 				ret = -EFAULT;
3739 			else
3740 				ret = packet_set_ring(sk, &req_u, 0,
3741 						    optname == PACKET_TX_RING);
3742 		}
3743 		release_sock(sk);
3744 		return ret;
3745 	}
3746 	case PACKET_COPY_THRESH:
3747 	{
3748 		int val;
3749 
3750 		if (optlen != sizeof(val))
3751 			return -EINVAL;
3752 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3753 			return -EFAULT;
3754 
3755 		pkt_sk(sk)->copy_thresh = val;
3756 		return 0;
3757 	}
3758 	case PACKET_VERSION:
3759 	{
3760 		int val;
3761 
3762 		if (optlen != sizeof(val))
3763 			return -EINVAL;
3764 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3765 			return -EFAULT;
3766 		switch (val) {
3767 		case TPACKET_V1:
3768 		case TPACKET_V2:
3769 		case TPACKET_V3:
3770 			break;
3771 		default:
3772 			return -EINVAL;
3773 		}
3774 		lock_sock(sk);
3775 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3776 			ret = -EBUSY;
3777 		} else {
3778 			po->tp_version = val;
3779 			ret = 0;
3780 		}
3781 		release_sock(sk);
3782 		return ret;
3783 	}
3784 	case PACKET_RESERVE:
3785 	{
3786 		unsigned int val;
3787 
3788 		if (optlen != sizeof(val))
3789 			return -EINVAL;
3790 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3791 			return -EFAULT;
3792 		if (val > INT_MAX)
3793 			return -EINVAL;
3794 		lock_sock(sk);
3795 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3796 			ret = -EBUSY;
3797 		} else {
3798 			po->tp_reserve = val;
3799 			ret = 0;
3800 		}
3801 		release_sock(sk);
3802 		return ret;
3803 	}
3804 	case PACKET_LOSS:
3805 	{
3806 		unsigned int val;
3807 
3808 		if (optlen != sizeof(val))
3809 			return -EINVAL;
3810 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3811 			return -EFAULT;
3812 
3813 		lock_sock(sk);
3814 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3815 			ret = -EBUSY;
3816 		} else {
3817 			po->tp_loss = !!val;
3818 			ret = 0;
3819 		}
3820 		release_sock(sk);
3821 		return ret;
3822 	}
3823 	case PACKET_AUXDATA:
3824 	{
3825 		int val;
3826 
3827 		if (optlen < sizeof(val))
3828 			return -EINVAL;
3829 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3830 			return -EFAULT;
3831 
3832 		lock_sock(sk);
3833 		po->auxdata = !!val;
3834 		release_sock(sk);
3835 		return 0;
3836 	}
3837 	case PACKET_ORIGDEV:
3838 	{
3839 		int val;
3840 
3841 		if (optlen < sizeof(val))
3842 			return -EINVAL;
3843 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3844 			return -EFAULT;
3845 
3846 		lock_sock(sk);
3847 		po->origdev = !!val;
3848 		release_sock(sk);
3849 		return 0;
3850 	}
3851 	case PACKET_VNET_HDR:
3852 	{
3853 		int val;
3854 
3855 		if (sock->type != SOCK_RAW)
3856 			return -EINVAL;
3857 		if (optlen < sizeof(val))
3858 			return -EINVAL;
3859 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3860 			return -EFAULT;
3861 
3862 		lock_sock(sk);
3863 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3864 			ret = -EBUSY;
3865 		} else {
3866 			po->has_vnet_hdr = !!val;
3867 			ret = 0;
3868 		}
3869 		release_sock(sk);
3870 		return ret;
3871 	}
3872 	case PACKET_TIMESTAMP:
3873 	{
3874 		int val;
3875 
3876 		if (optlen != sizeof(val))
3877 			return -EINVAL;
3878 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3879 			return -EFAULT;
3880 
3881 		po->tp_tstamp = val;
3882 		return 0;
3883 	}
3884 	case PACKET_FANOUT:
3885 	{
3886 		struct fanout_args args = { 0 };
3887 
3888 		if (optlen != sizeof(int) && optlen != sizeof(args))
3889 			return -EINVAL;
3890 		if (copy_from_sockptr(&args, optval, optlen))
3891 			return -EFAULT;
3892 
3893 		return fanout_add(sk, &args);
3894 	}
3895 	case PACKET_FANOUT_DATA:
3896 	{
3897 		if (!po->fanout)
3898 			return -EINVAL;
3899 
3900 		return fanout_set_data(po, optval, optlen);
3901 	}
3902 	case PACKET_IGNORE_OUTGOING:
3903 	{
3904 		int val;
3905 
3906 		if (optlen != sizeof(val))
3907 			return -EINVAL;
3908 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3909 			return -EFAULT;
3910 		if (val < 0 || val > 1)
3911 			return -EINVAL;
3912 
3913 		po->prot_hook.ignore_outgoing = !!val;
3914 		return 0;
3915 	}
3916 	case PACKET_TX_HAS_OFF:
3917 	{
3918 		unsigned int val;
3919 
3920 		if (optlen != sizeof(val))
3921 			return -EINVAL;
3922 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3923 			return -EFAULT;
3924 
3925 		lock_sock(sk);
3926 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3927 			ret = -EBUSY;
3928 		} else {
3929 			po->tp_tx_has_off = !!val;
3930 			ret = 0;
3931 		}
3932 		release_sock(sk);
3933 		return 0;
3934 	}
3935 	case PACKET_QDISC_BYPASS:
3936 	{
3937 		int val;
3938 
3939 		if (optlen != sizeof(val))
3940 			return -EINVAL;
3941 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3942 			return -EFAULT;
3943 
3944 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3945 		return 0;
3946 	}
3947 	default:
3948 		return -ENOPROTOOPT;
3949 	}
3950 }
3951 
3952 static int packet_getsockopt(struct socket *sock, int level, int optname,
3953 			     char __user *optval, int __user *optlen)
3954 {
3955 	int len;
3956 	int val, lv = sizeof(val);
3957 	struct sock *sk = sock->sk;
3958 	struct packet_sock *po = pkt_sk(sk);
3959 	void *data = &val;
3960 	union tpacket_stats_u st;
3961 	struct tpacket_rollover_stats rstats;
3962 	int drops;
3963 
3964 	if (level != SOL_PACKET)
3965 		return -ENOPROTOOPT;
3966 
3967 	if (get_user(len, optlen))
3968 		return -EFAULT;
3969 
3970 	if (len < 0)
3971 		return -EINVAL;
3972 
3973 	switch (optname) {
3974 	case PACKET_STATISTICS:
3975 		spin_lock_bh(&sk->sk_receive_queue.lock);
3976 		memcpy(&st, &po->stats, sizeof(st));
3977 		memset(&po->stats, 0, sizeof(po->stats));
3978 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3979 		drops = atomic_xchg(&po->tp_drops, 0);
3980 
3981 		if (po->tp_version == TPACKET_V3) {
3982 			lv = sizeof(struct tpacket_stats_v3);
3983 			st.stats3.tp_drops = drops;
3984 			st.stats3.tp_packets += drops;
3985 			data = &st.stats3;
3986 		} else {
3987 			lv = sizeof(struct tpacket_stats);
3988 			st.stats1.tp_drops = drops;
3989 			st.stats1.tp_packets += drops;
3990 			data = &st.stats1;
3991 		}
3992 
3993 		break;
3994 	case PACKET_AUXDATA:
3995 		val = po->auxdata;
3996 		break;
3997 	case PACKET_ORIGDEV:
3998 		val = po->origdev;
3999 		break;
4000 	case PACKET_VNET_HDR:
4001 		val = po->has_vnet_hdr;
4002 		break;
4003 	case PACKET_VERSION:
4004 		val = po->tp_version;
4005 		break;
4006 	case PACKET_HDRLEN:
4007 		if (len > sizeof(int))
4008 			len = sizeof(int);
4009 		if (len < sizeof(int))
4010 			return -EINVAL;
4011 		if (copy_from_user(&val, optval, len))
4012 			return -EFAULT;
4013 		switch (val) {
4014 		case TPACKET_V1:
4015 			val = sizeof(struct tpacket_hdr);
4016 			break;
4017 		case TPACKET_V2:
4018 			val = sizeof(struct tpacket2_hdr);
4019 			break;
4020 		case TPACKET_V3:
4021 			val = sizeof(struct tpacket3_hdr);
4022 			break;
4023 		default:
4024 			return -EINVAL;
4025 		}
4026 		break;
4027 	case PACKET_RESERVE:
4028 		val = po->tp_reserve;
4029 		break;
4030 	case PACKET_LOSS:
4031 		val = po->tp_loss;
4032 		break;
4033 	case PACKET_TIMESTAMP:
4034 		val = po->tp_tstamp;
4035 		break;
4036 	case PACKET_FANOUT:
4037 		val = (po->fanout ?
4038 		       ((u32)po->fanout->id |
4039 			((u32)po->fanout->type << 16) |
4040 			((u32)po->fanout->flags << 24)) :
4041 		       0);
4042 		break;
4043 	case PACKET_IGNORE_OUTGOING:
4044 		val = po->prot_hook.ignore_outgoing;
4045 		break;
4046 	case PACKET_ROLLOVER_STATS:
4047 		if (!po->rollover)
4048 			return -EINVAL;
4049 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4050 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4051 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4052 		data = &rstats;
4053 		lv = sizeof(rstats);
4054 		break;
4055 	case PACKET_TX_HAS_OFF:
4056 		val = po->tp_tx_has_off;
4057 		break;
4058 	case PACKET_QDISC_BYPASS:
4059 		val = packet_use_direct_xmit(po);
4060 		break;
4061 	default:
4062 		return -ENOPROTOOPT;
4063 	}
4064 
4065 	if (len > lv)
4066 		len = lv;
4067 	if (put_user(len, optlen))
4068 		return -EFAULT;
4069 	if (copy_to_user(optval, data, len))
4070 		return -EFAULT;
4071 	return 0;
4072 }
4073 
4074 static int packet_notifier(struct notifier_block *this,
4075 			   unsigned long msg, void *ptr)
4076 {
4077 	struct sock *sk;
4078 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4079 	struct net *net = dev_net(dev);
4080 
4081 	rcu_read_lock();
4082 	sk_for_each_rcu(sk, &net->packet.sklist) {
4083 		struct packet_sock *po = pkt_sk(sk);
4084 
4085 		switch (msg) {
4086 		case NETDEV_UNREGISTER:
4087 			if (po->mclist)
4088 				packet_dev_mclist_delete(dev, &po->mclist);
4089 			fallthrough;
4090 
4091 		case NETDEV_DOWN:
4092 			if (dev->ifindex == po->ifindex) {
4093 				spin_lock(&po->bind_lock);
4094 				if (po->running) {
4095 					__unregister_prot_hook(sk, false);
4096 					sk->sk_err = ENETDOWN;
4097 					if (!sock_flag(sk, SOCK_DEAD))
4098 						sk->sk_error_report(sk);
4099 				}
4100 				if (msg == NETDEV_UNREGISTER) {
4101 					packet_cached_dev_reset(po);
4102 					po->ifindex = -1;
4103 					if (po->prot_hook.dev)
4104 						dev_put(po->prot_hook.dev);
4105 					po->prot_hook.dev = NULL;
4106 				}
4107 				spin_unlock(&po->bind_lock);
4108 			}
4109 			break;
4110 		case NETDEV_UP:
4111 			if (dev->ifindex == po->ifindex) {
4112 				spin_lock(&po->bind_lock);
4113 				if (po->num)
4114 					register_prot_hook(sk);
4115 				spin_unlock(&po->bind_lock);
4116 			}
4117 			break;
4118 		}
4119 	}
4120 	rcu_read_unlock();
4121 	return NOTIFY_DONE;
4122 }
4123 
4124 
4125 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4126 			unsigned long arg)
4127 {
4128 	struct sock *sk = sock->sk;
4129 
4130 	switch (cmd) {
4131 	case SIOCOUTQ:
4132 	{
4133 		int amount = sk_wmem_alloc_get(sk);
4134 
4135 		return put_user(amount, (int __user *)arg);
4136 	}
4137 	case SIOCINQ:
4138 	{
4139 		struct sk_buff *skb;
4140 		int amount = 0;
4141 
4142 		spin_lock_bh(&sk->sk_receive_queue.lock);
4143 		skb = skb_peek(&sk->sk_receive_queue);
4144 		if (skb)
4145 			amount = skb->len;
4146 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4147 		return put_user(amount, (int __user *)arg);
4148 	}
4149 #ifdef CONFIG_INET
4150 	case SIOCADDRT:
4151 	case SIOCDELRT:
4152 	case SIOCDARP:
4153 	case SIOCGARP:
4154 	case SIOCSARP:
4155 	case SIOCGIFADDR:
4156 	case SIOCSIFADDR:
4157 	case SIOCGIFBRDADDR:
4158 	case SIOCSIFBRDADDR:
4159 	case SIOCGIFNETMASK:
4160 	case SIOCSIFNETMASK:
4161 	case SIOCGIFDSTADDR:
4162 	case SIOCSIFDSTADDR:
4163 	case SIOCSIFFLAGS:
4164 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4165 #endif
4166 
4167 	default:
4168 		return -ENOIOCTLCMD;
4169 	}
4170 	return 0;
4171 }
4172 
4173 static __poll_t packet_poll(struct file *file, struct socket *sock,
4174 				poll_table *wait)
4175 {
4176 	struct sock *sk = sock->sk;
4177 	struct packet_sock *po = pkt_sk(sk);
4178 	__poll_t mask = datagram_poll(file, sock, wait);
4179 
4180 	spin_lock_bh(&sk->sk_receive_queue.lock);
4181 	if (po->rx_ring.pg_vec) {
4182 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4183 			TP_STATUS_KERNEL))
4184 			mask |= EPOLLIN | EPOLLRDNORM;
4185 	}
4186 	packet_rcv_try_clear_pressure(po);
4187 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4188 	spin_lock_bh(&sk->sk_write_queue.lock);
4189 	if (po->tx_ring.pg_vec) {
4190 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4191 			mask |= EPOLLOUT | EPOLLWRNORM;
4192 	}
4193 	spin_unlock_bh(&sk->sk_write_queue.lock);
4194 	return mask;
4195 }
4196 
4197 
4198 /* Dirty? Well, I still did not learn better way to account
4199  * for user mmaps.
4200  */
4201 
4202 static void packet_mm_open(struct vm_area_struct *vma)
4203 {
4204 	struct file *file = vma->vm_file;
4205 	struct socket *sock = file->private_data;
4206 	struct sock *sk = sock->sk;
4207 
4208 	if (sk)
4209 		atomic_inc(&pkt_sk(sk)->mapped);
4210 }
4211 
4212 static void packet_mm_close(struct vm_area_struct *vma)
4213 {
4214 	struct file *file = vma->vm_file;
4215 	struct socket *sock = file->private_data;
4216 	struct sock *sk = sock->sk;
4217 
4218 	if (sk)
4219 		atomic_dec(&pkt_sk(sk)->mapped);
4220 }
4221 
4222 static const struct vm_operations_struct packet_mmap_ops = {
4223 	.open	=	packet_mm_open,
4224 	.close	=	packet_mm_close,
4225 };
4226 
4227 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4228 			unsigned int len)
4229 {
4230 	int i;
4231 
4232 	for (i = 0; i < len; i++) {
4233 		if (likely(pg_vec[i].buffer)) {
4234 			if (is_vmalloc_addr(pg_vec[i].buffer))
4235 				vfree(pg_vec[i].buffer);
4236 			else
4237 				free_pages((unsigned long)pg_vec[i].buffer,
4238 					   order);
4239 			pg_vec[i].buffer = NULL;
4240 		}
4241 	}
4242 	kfree(pg_vec);
4243 }
4244 
4245 static char *alloc_one_pg_vec_page(unsigned long order)
4246 {
4247 	char *buffer;
4248 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4249 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4250 
4251 	buffer = (char *) __get_free_pages(gfp_flags, order);
4252 	if (buffer)
4253 		return buffer;
4254 
4255 	/* __get_free_pages failed, fall back to vmalloc */
4256 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4257 	if (buffer)
4258 		return buffer;
4259 
4260 	/* vmalloc failed, lets dig into swap here */
4261 	gfp_flags &= ~__GFP_NORETRY;
4262 	buffer = (char *) __get_free_pages(gfp_flags, order);
4263 	if (buffer)
4264 		return buffer;
4265 
4266 	/* complete and utter failure */
4267 	return NULL;
4268 }
4269 
4270 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4271 {
4272 	unsigned int block_nr = req->tp_block_nr;
4273 	struct pgv *pg_vec;
4274 	int i;
4275 
4276 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4277 	if (unlikely(!pg_vec))
4278 		goto out;
4279 
4280 	for (i = 0; i < block_nr; i++) {
4281 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4282 		if (unlikely(!pg_vec[i].buffer))
4283 			goto out_free_pgvec;
4284 	}
4285 
4286 out:
4287 	return pg_vec;
4288 
4289 out_free_pgvec:
4290 	free_pg_vec(pg_vec, order, block_nr);
4291 	pg_vec = NULL;
4292 	goto out;
4293 }
4294 
4295 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4296 		int closing, int tx_ring)
4297 {
4298 	struct pgv *pg_vec = NULL;
4299 	struct packet_sock *po = pkt_sk(sk);
4300 	unsigned long *rx_owner_map = NULL;
4301 	int was_running, order = 0;
4302 	struct packet_ring_buffer *rb;
4303 	struct sk_buff_head *rb_queue;
4304 	__be16 num;
4305 	int err;
4306 	/* Added to avoid minimal code churn */
4307 	struct tpacket_req *req = &req_u->req;
4308 
4309 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4310 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4311 
4312 	err = -EBUSY;
4313 	if (!closing) {
4314 		if (atomic_read(&po->mapped))
4315 			goto out;
4316 		if (packet_read_pending(rb))
4317 			goto out;
4318 	}
4319 
4320 	if (req->tp_block_nr) {
4321 		unsigned int min_frame_size;
4322 
4323 		/* Sanity tests and some calculations */
4324 		err = -EBUSY;
4325 		if (unlikely(rb->pg_vec))
4326 			goto out;
4327 
4328 		switch (po->tp_version) {
4329 		case TPACKET_V1:
4330 			po->tp_hdrlen = TPACKET_HDRLEN;
4331 			break;
4332 		case TPACKET_V2:
4333 			po->tp_hdrlen = TPACKET2_HDRLEN;
4334 			break;
4335 		case TPACKET_V3:
4336 			po->tp_hdrlen = TPACKET3_HDRLEN;
4337 			break;
4338 		}
4339 
4340 		err = -EINVAL;
4341 		if (unlikely((int)req->tp_block_size <= 0))
4342 			goto out;
4343 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4344 			goto out;
4345 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4346 		if (po->tp_version >= TPACKET_V3 &&
4347 		    req->tp_block_size <
4348 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4349 			goto out;
4350 		if (unlikely(req->tp_frame_size < min_frame_size))
4351 			goto out;
4352 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4353 			goto out;
4354 
4355 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4356 		if (unlikely(rb->frames_per_block == 0))
4357 			goto out;
4358 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4359 			goto out;
4360 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4361 					req->tp_frame_nr))
4362 			goto out;
4363 
4364 		err = -ENOMEM;
4365 		order = get_order(req->tp_block_size);
4366 		pg_vec = alloc_pg_vec(req, order);
4367 		if (unlikely(!pg_vec))
4368 			goto out;
4369 		switch (po->tp_version) {
4370 		case TPACKET_V3:
4371 			/* Block transmit is not supported yet */
4372 			if (!tx_ring) {
4373 				init_prb_bdqc(po, rb, pg_vec, req_u);
4374 			} else {
4375 				struct tpacket_req3 *req3 = &req_u->req3;
4376 
4377 				if (req3->tp_retire_blk_tov ||
4378 				    req3->tp_sizeof_priv ||
4379 				    req3->tp_feature_req_word) {
4380 					err = -EINVAL;
4381 					goto out_free_pg_vec;
4382 				}
4383 			}
4384 			break;
4385 		default:
4386 			if (!tx_ring) {
4387 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4388 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4389 				if (!rx_owner_map)
4390 					goto out_free_pg_vec;
4391 			}
4392 			break;
4393 		}
4394 	}
4395 	/* Done */
4396 	else {
4397 		err = -EINVAL;
4398 		if (unlikely(req->tp_frame_nr))
4399 			goto out;
4400 	}
4401 
4402 
4403 	/* Detach socket from network */
4404 	spin_lock(&po->bind_lock);
4405 	was_running = po->running;
4406 	num = po->num;
4407 	if (was_running) {
4408 		po->num = 0;
4409 		__unregister_prot_hook(sk, false);
4410 	}
4411 	spin_unlock(&po->bind_lock);
4412 
4413 	synchronize_net();
4414 
4415 	err = -EBUSY;
4416 	mutex_lock(&po->pg_vec_lock);
4417 	if (closing || atomic_read(&po->mapped) == 0) {
4418 		err = 0;
4419 		spin_lock_bh(&rb_queue->lock);
4420 		swap(rb->pg_vec, pg_vec);
4421 		if (po->tp_version <= TPACKET_V2)
4422 			swap(rb->rx_owner_map, rx_owner_map);
4423 		rb->frame_max = (req->tp_frame_nr - 1);
4424 		rb->head = 0;
4425 		rb->frame_size = req->tp_frame_size;
4426 		spin_unlock_bh(&rb_queue->lock);
4427 
4428 		swap(rb->pg_vec_order, order);
4429 		swap(rb->pg_vec_len, req->tp_block_nr);
4430 
4431 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4432 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4433 						tpacket_rcv : packet_rcv;
4434 		skb_queue_purge(rb_queue);
4435 		if (atomic_read(&po->mapped))
4436 			pr_err("packet_mmap: vma is busy: %d\n",
4437 			       atomic_read(&po->mapped));
4438 	}
4439 	mutex_unlock(&po->pg_vec_lock);
4440 
4441 	spin_lock(&po->bind_lock);
4442 	if (was_running) {
4443 		po->num = num;
4444 		register_prot_hook(sk);
4445 	}
4446 	spin_unlock(&po->bind_lock);
4447 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4448 		/* Because we don't support block-based V3 on tx-ring */
4449 		if (!tx_ring)
4450 			prb_shutdown_retire_blk_timer(po, rb_queue);
4451 	}
4452 
4453 out_free_pg_vec:
4454 	bitmap_free(rx_owner_map);
4455 	if (pg_vec)
4456 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4457 out:
4458 	return err;
4459 }
4460 
4461 static int packet_mmap(struct file *file, struct socket *sock,
4462 		struct vm_area_struct *vma)
4463 {
4464 	struct sock *sk = sock->sk;
4465 	struct packet_sock *po = pkt_sk(sk);
4466 	unsigned long size, expected_size;
4467 	struct packet_ring_buffer *rb;
4468 	unsigned long start;
4469 	int err = -EINVAL;
4470 	int i;
4471 
4472 	if (vma->vm_pgoff)
4473 		return -EINVAL;
4474 
4475 	mutex_lock(&po->pg_vec_lock);
4476 
4477 	expected_size = 0;
4478 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4479 		if (rb->pg_vec) {
4480 			expected_size += rb->pg_vec_len
4481 						* rb->pg_vec_pages
4482 						* PAGE_SIZE;
4483 		}
4484 	}
4485 
4486 	if (expected_size == 0)
4487 		goto out;
4488 
4489 	size = vma->vm_end - vma->vm_start;
4490 	if (size != expected_size)
4491 		goto out;
4492 
4493 	start = vma->vm_start;
4494 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4495 		if (rb->pg_vec == NULL)
4496 			continue;
4497 
4498 		for (i = 0; i < rb->pg_vec_len; i++) {
4499 			struct page *page;
4500 			void *kaddr = rb->pg_vec[i].buffer;
4501 			int pg_num;
4502 
4503 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4504 				page = pgv_to_page(kaddr);
4505 				err = vm_insert_page(vma, start, page);
4506 				if (unlikely(err))
4507 					goto out;
4508 				start += PAGE_SIZE;
4509 				kaddr += PAGE_SIZE;
4510 			}
4511 		}
4512 	}
4513 
4514 	atomic_inc(&po->mapped);
4515 	vma->vm_ops = &packet_mmap_ops;
4516 	err = 0;
4517 
4518 out:
4519 	mutex_unlock(&po->pg_vec_lock);
4520 	return err;
4521 }
4522 
4523 static const struct proto_ops packet_ops_spkt = {
4524 	.family =	PF_PACKET,
4525 	.owner =	THIS_MODULE,
4526 	.release =	packet_release,
4527 	.bind =		packet_bind_spkt,
4528 	.connect =	sock_no_connect,
4529 	.socketpair =	sock_no_socketpair,
4530 	.accept =	sock_no_accept,
4531 	.getname =	packet_getname_spkt,
4532 	.poll =		datagram_poll,
4533 	.ioctl =	packet_ioctl,
4534 	.gettstamp =	sock_gettstamp,
4535 	.listen =	sock_no_listen,
4536 	.shutdown =	sock_no_shutdown,
4537 	.sendmsg =	packet_sendmsg_spkt,
4538 	.recvmsg =	packet_recvmsg,
4539 	.mmap =		sock_no_mmap,
4540 	.sendpage =	sock_no_sendpage,
4541 };
4542 
4543 static const struct proto_ops packet_ops = {
4544 	.family =	PF_PACKET,
4545 	.owner =	THIS_MODULE,
4546 	.release =	packet_release,
4547 	.bind =		packet_bind,
4548 	.connect =	sock_no_connect,
4549 	.socketpair =	sock_no_socketpair,
4550 	.accept =	sock_no_accept,
4551 	.getname =	packet_getname,
4552 	.poll =		packet_poll,
4553 	.ioctl =	packet_ioctl,
4554 	.gettstamp =	sock_gettstamp,
4555 	.listen =	sock_no_listen,
4556 	.shutdown =	sock_no_shutdown,
4557 	.setsockopt =	packet_setsockopt,
4558 	.getsockopt =	packet_getsockopt,
4559 	.sendmsg =	packet_sendmsg,
4560 	.recvmsg =	packet_recvmsg,
4561 	.mmap =		packet_mmap,
4562 	.sendpage =	sock_no_sendpage,
4563 };
4564 
4565 static const struct net_proto_family packet_family_ops = {
4566 	.family =	PF_PACKET,
4567 	.create =	packet_create,
4568 	.owner	=	THIS_MODULE,
4569 };
4570 
4571 static struct notifier_block packet_netdev_notifier = {
4572 	.notifier_call =	packet_notifier,
4573 };
4574 
4575 #ifdef CONFIG_PROC_FS
4576 
4577 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4578 	__acquires(RCU)
4579 {
4580 	struct net *net = seq_file_net(seq);
4581 
4582 	rcu_read_lock();
4583 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4584 }
4585 
4586 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4587 {
4588 	struct net *net = seq_file_net(seq);
4589 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4590 }
4591 
4592 static void packet_seq_stop(struct seq_file *seq, void *v)
4593 	__releases(RCU)
4594 {
4595 	rcu_read_unlock();
4596 }
4597 
4598 static int packet_seq_show(struct seq_file *seq, void *v)
4599 {
4600 	if (v == SEQ_START_TOKEN)
4601 		seq_printf(seq,
4602 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4603 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4604 	else {
4605 		struct sock *s = sk_entry(v);
4606 		const struct packet_sock *po = pkt_sk(s);
4607 
4608 		seq_printf(seq,
4609 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4610 			   s,
4611 			   refcount_read(&s->sk_refcnt),
4612 			   s->sk_type,
4613 			   ntohs(po->num),
4614 			   po->ifindex,
4615 			   po->running,
4616 			   atomic_read(&s->sk_rmem_alloc),
4617 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4618 			   sock_i_ino(s));
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 static const struct seq_operations packet_seq_ops = {
4625 	.start	= packet_seq_start,
4626 	.next	= packet_seq_next,
4627 	.stop	= packet_seq_stop,
4628 	.show	= packet_seq_show,
4629 };
4630 #endif
4631 
4632 static int __net_init packet_net_init(struct net *net)
4633 {
4634 	mutex_init(&net->packet.sklist_lock);
4635 	INIT_HLIST_HEAD(&net->packet.sklist);
4636 
4637 #ifdef CONFIG_PROC_FS
4638 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4639 			sizeof(struct seq_net_private)))
4640 		return -ENOMEM;
4641 #endif /* CONFIG_PROC_FS */
4642 
4643 	return 0;
4644 }
4645 
4646 static void __net_exit packet_net_exit(struct net *net)
4647 {
4648 	remove_proc_entry("packet", net->proc_net);
4649 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4650 }
4651 
4652 static struct pernet_operations packet_net_ops = {
4653 	.init = packet_net_init,
4654 	.exit = packet_net_exit,
4655 };
4656 
4657 
4658 static void __exit packet_exit(void)
4659 {
4660 	unregister_netdevice_notifier(&packet_netdev_notifier);
4661 	unregister_pernet_subsys(&packet_net_ops);
4662 	sock_unregister(PF_PACKET);
4663 	proto_unregister(&packet_proto);
4664 }
4665 
4666 static int __init packet_init(void)
4667 {
4668 	int rc;
4669 
4670 	rc = proto_register(&packet_proto, 0);
4671 	if (rc)
4672 		goto out;
4673 	rc = sock_register(&packet_family_ops);
4674 	if (rc)
4675 		goto out_proto;
4676 	rc = register_pernet_subsys(&packet_net_ops);
4677 	if (rc)
4678 		goto out_sock;
4679 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4680 	if (rc)
4681 		goto out_pernet;
4682 
4683 	return 0;
4684 
4685 out_pernet:
4686 	unregister_pernet_subsys(&packet_net_ops);
4687 out_sock:
4688 	sock_unregister(PF_PACKET);
4689 out_proto:
4690 	proto_unregister(&packet_proto);
4691 out:
4692 	return rc;
4693 }
4694 
4695 module_init(packet_init);
4696 module_exit(packet_exit);
4697 MODULE_LICENSE("GPL");
4698 MODULE_ALIAS_NETPROTO(PF_PACKET);
4699