xref: /openbmc/linux/net/packet/af_packet.c (revision d894fc60)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99    Assumptions:
100    - if device has no dev->hard_header routine, it adds and removes ll header
101      inside itself. In this case ll header is invisible outside of device,
102      but higher levels still should reserve dev->hard_header_len.
103      Some devices are enough clever to reallocate skb, when header
104      will not fit to reserved space (tunnel), another ones are silly
105      (PPP).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev->hard_header!=NULL
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev->hard_header==NULL
121    mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 		 header.  PPP makes it, that is wrong, because introduce
123 		 assymetry between rx and tx paths.
124    data       -> data
125 
126 Outgoing, dev->hard_header==NULL
127    mac_header -> data. ll header is still not built!
128    data       -> data
129 
130 Resume
131   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142    mac_header -> data
143    data       -> data
144 
145    We should set nh.raw on output to correct posistion,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define PGV_FROM_VMALLOC 1
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 		       struct packet_type *pt, struct net_device *orig_dev);
192 
193 static void *packet_previous_frame(struct packet_sock *po,
194 		struct packet_ring_buffer *rb,
195 		int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 			struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 		struct tpacket_kbdq_core *,
210 		void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 		struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 
218 struct packet_skb_cb {
219 	unsigned int origlen;
220 	union {
221 		struct sockaddr_pkt pkt;
222 		struct sockaddr_ll ll;
223 	} sa;
224 };
225 
226 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
227 
228 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid)	\
230 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 	((x)->kactive_blk_num+1) : 0)
236 
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239 
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 	struct net_device *dev = skb->dev;
243 	netdev_features_t features;
244 	struct netdev_queue *txq;
245 	int ret = NETDEV_TX_BUSY;
246 
247 	if (unlikely(!netif_running(dev) ||
248 		     !netif_carrier_ok(dev)))
249 		goto drop;
250 
251 	features = netif_skb_features(skb);
252 	if (skb_needs_linearize(skb, features) &&
253 	    __skb_linearize(skb))
254 		goto drop;
255 
256 	txq = skb_get_tx_queue(dev, skb);
257 
258 	local_bh_disable();
259 
260 	HARD_TX_LOCK(dev, txq, smp_processor_id());
261 	if (!netif_xmit_frozen_or_drv_stopped(txq))
262 		ret = netdev_start_xmit(skb, dev, txq, false);
263 	HARD_TX_UNLOCK(dev, txq);
264 
265 	local_bh_enable();
266 
267 	if (!dev_xmit_complete(ret))
268 		kfree_skb(skb);
269 
270 	return ret;
271 drop:
272 	atomic_long_inc(&dev->tx_dropped);
273 	kfree_skb(skb);
274 	return NET_XMIT_DROP;
275 }
276 
277 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
278 {
279 	struct net_device *dev;
280 
281 	rcu_read_lock();
282 	dev = rcu_dereference(po->cached_dev);
283 	if (likely(dev))
284 		dev_hold(dev);
285 	rcu_read_unlock();
286 
287 	return dev;
288 }
289 
290 static void packet_cached_dev_assign(struct packet_sock *po,
291 				     struct net_device *dev)
292 {
293 	rcu_assign_pointer(po->cached_dev, dev);
294 }
295 
296 static void packet_cached_dev_reset(struct packet_sock *po)
297 {
298 	RCU_INIT_POINTER(po->cached_dev, NULL);
299 }
300 
301 static bool packet_use_direct_xmit(const struct packet_sock *po)
302 {
303 	return po->xmit == packet_direct_xmit;
304 }
305 
306 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
307 {
308 	return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
309 }
310 
311 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 	const struct net_device_ops *ops = dev->netdev_ops;
314 	u16 queue_index;
315 
316 	if (ops->ndo_select_queue) {
317 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
318 						    __packet_pick_tx_queue);
319 		queue_index = netdev_cap_txqueue(dev, queue_index);
320 	} else {
321 		queue_index = __packet_pick_tx_queue(dev, skb);
322 	}
323 
324 	skb_set_queue_mapping(skb, queue_index);
325 }
326 
327 /* register_prot_hook must be invoked with the po->bind_lock held,
328  * or from a context in which asynchronous accesses to the packet
329  * socket is not possible (packet_create()).
330  */
331 static void register_prot_hook(struct sock *sk)
332 {
333 	struct packet_sock *po = pkt_sk(sk);
334 
335 	if (!po->running) {
336 		if (po->fanout)
337 			__fanout_link(sk, po);
338 		else
339 			dev_add_pack(&po->prot_hook);
340 
341 		sock_hold(sk);
342 		po->running = 1;
343 	}
344 }
345 
346 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
347  * held.   If the sync parameter is true, we will temporarily drop
348  * the po->bind_lock and do a synchronize_net to make sure no
349  * asynchronous packet processing paths still refer to the elements
350  * of po->prot_hook.  If the sync parameter is false, it is the
351  * callers responsibility to take care of this.
352  */
353 static void __unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 	struct packet_sock *po = pkt_sk(sk);
356 
357 	po->running = 0;
358 
359 	if (po->fanout)
360 		__fanout_unlink(sk, po);
361 	else
362 		__dev_remove_pack(&po->prot_hook);
363 
364 	__sock_put(sk);
365 
366 	if (sync) {
367 		spin_unlock(&po->bind_lock);
368 		synchronize_net();
369 		spin_lock(&po->bind_lock);
370 	}
371 }
372 
373 static void unregister_prot_hook(struct sock *sk, bool sync)
374 {
375 	struct packet_sock *po = pkt_sk(sk);
376 
377 	if (po->running)
378 		__unregister_prot_hook(sk, sync);
379 }
380 
381 static inline struct page * __pure pgv_to_page(void *addr)
382 {
383 	if (is_vmalloc_addr(addr))
384 		return vmalloc_to_page(addr);
385 	return virt_to_page(addr);
386 }
387 
388 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
389 {
390 	union tpacket_uhdr h;
391 
392 	h.raw = frame;
393 	switch (po->tp_version) {
394 	case TPACKET_V1:
395 		h.h1->tp_status = status;
396 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 		break;
398 	case TPACKET_V2:
399 		h.h2->tp_status = status;
400 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
401 		break;
402 	case TPACKET_V3:
403 	default:
404 		WARN(1, "TPACKET version not supported.\n");
405 		BUG();
406 	}
407 
408 	smp_wmb();
409 }
410 
411 static int __packet_get_status(struct packet_sock *po, void *frame)
412 {
413 	union tpacket_uhdr h;
414 
415 	smp_rmb();
416 
417 	h.raw = frame;
418 	switch (po->tp_version) {
419 	case TPACKET_V1:
420 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
421 		return h.h1->tp_status;
422 	case TPACKET_V2:
423 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
424 		return h.h2->tp_status;
425 	case TPACKET_V3:
426 	default:
427 		WARN(1, "TPACKET version not supported.\n");
428 		BUG();
429 		return 0;
430 	}
431 }
432 
433 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
434 				   unsigned int flags)
435 {
436 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
437 
438 	if (shhwtstamps &&
439 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
440 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
441 		return TP_STATUS_TS_RAW_HARDWARE;
442 
443 	if (ktime_to_timespec_cond(skb->tstamp, ts))
444 		return TP_STATUS_TS_SOFTWARE;
445 
446 	return 0;
447 }
448 
449 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
450 				    struct sk_buff *skb)
451 {
452 	union tpacket_uhdr h;
453 	struct timespec ts;
454 	__u32 ts_status;
455 
456 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
457 		return 0;
458 
459 	h.raw = frame;
460 	switch (po->tp_version) {
461 	case TPACKET_V1:
462 		h.h1->tp_sec = ts.tv_sec;
463 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
464 		break;
465 	case TPACKET_V2:
466 		h.h2->tp_sec = ts.tv_sec;
467 		h.h2->tp_nsec = ts.tv_nsec;
468 		break;
469 	case TPACKET_V3:
470 	default:
471 		WARN(1, "TPACKET version not supported.\n");
472 		BUG();
473 	}
474 
475 	/* one flush is safe, as both fields always lie on the same cacheline */
476 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
477 	smp_wmb();
478 
479 	return ts_status;
480 }
481 
482 static void *packet_lookup_frame(struct packet_sock *po,
483 		struct packet_ring_buffer *rb,
484 		unsigned int position,
485 		int status)
486 {
487 	unsigned int pg_vec_pos, frame_offset;
488 	union tpacket_uhdr h;
489 
490 	pg_vec_pos = position / rb->frames_per_block;
491 	frame_offset = position % rb->frames_per_block;
492 
493 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
494 		(frame_offset * rb->frame_size);
495 
496 	if (status != __packet_get_status(po, h.raw))
497 		return NULL;
498 
499 	return h.raw;
500 }
501 
502 static void *packet_current_frame(struct packet_sock *po,
503 		struct packet_ring_buffer *rb,
504 		int status)
505 {
506 	return packet_lookup_frame(po, rb, rb->head, status);
507 }
508 
509 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
510 {
511 	del_timer_sync(&pkc->retire_blk_timer);
512 }
513 
514 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
515 		int tx_ring,
516 		struct sk_buff_head *rb_queue)
517 {
518 	struct tpacket_kbdq_core *pkc;
519 
520 	pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
521 			GET_PBDQC_FROM_RB(&po->rx_ring);
522 
523 	spin_lock_bh(&rb_queue->lock);
524 	pkc->delete_blk_timer = 1;
525 	spin_unlock_bh(&rb_queue->lock);
526 
527 	prb_del_retire_blk_timer(pkc);
528 }
529 
530 static void prb_init_blk_timer(struct packet_sock *po,
531 		struct tpacket_kbdq_core *pkc,
532 		void (*func) (unsigned long))
533 {
534 	init_timer(&pkc->retire_blk_timer);
535 	pkc->retire_blk_timer.data = (long)po;
536 	pkc->retire_blk_timer.function = func;
537 	pkc->retire_blk_timer.expires = jiffies;
538 }
539 
540 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
541 {
542 	struct tpacket_kbdq_core *pkc;
543 
544 	if (tx_ring)
545 		BUG();
546 
547 	pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
548 			GET_PBDQC_FROM_RB(&po->rx_ring);
549 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551 
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 				int blk_size_in_bytes)
554 {
555 	struct net_device *dev;
556 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 	struct ethtool_cmd ecmd;
558 	int err;
559 	u32 speed;
560 
561 	rtnl_lock();
562 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 	if (unlikely(!dev)) {
564 		rtnl_unlock();
565 		return DEFAULT_PRB_RETIRE_TOV;
566 	}
567 	err = __ethtool_get_settings(dev, &ecmd);
568 	speed = ethtool_cmd_speed(&ecmd);
569 	rtnl_unlock();
570 	if (!err) {
571 		/*
572 		 * If the link speed is so slow you don't really
573 		 * need to worry about perf anyways
574 		 */
575 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 			return DEFAULT_PRB_RETIRE_TOV;
577 		} else {
578 			msec = 1;
579 			div = speed / 1000;
580 		}
581 	}
582 
583 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584 
585 	if (div)
586 		mbits /= div;
587 
588 	tmo = mbits * msec;
589 
590 	if (div)
591 		return tmo+1;
592 	return tmo;
593 }
594 
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 			union tpacket_req_u *req_u)
597 {
598 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600 
601 static void init_prb_bdqc(struct packet_sock *po,
602 			struct packet_ring_buffer *rb,
603 			struct pgv *pg_vec,
604 			union tpacket_req_u *req_u, int tx_ring)
605 {
606 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 	struct tpacket_block_desc *pbd;
608 
609 	memset(p1, 0x0, sizeof(*p1));
610 
611 	p1->knxt_seq_num = 1;
612 	p1->pkbdq = pg_vec;
613 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 	p1->pkblk_start	= pg_vec[0].buffer;
615 	p1->kblk_size = req_u->req3.tp_block_size;
616 	p1->knum_blocks	= req_u->req3.tp_block_nr;
617 	p1->hdrlen = po->tp_hdrlen;
618 	p1->version = po->tp_version;
619 	p1->last_kactive_blk_num = 0;
620 	po->stats.stats3.tp_freeze_q_cnt = 0;
621 	if (req_u->req3.tp_retire_blk_tov)
622 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 	else
624 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 						req_u->req3.tp_block_size);
626 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628 
629 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 	prb_init_ft_ops(p1, req_u);
631 	prb_setup_retire_blk_timer(po, tx_ring);
632 	prb_open_block(p1, pbd);
633 }
634 
635 /*  Do NOT update the last_blk_num first.
636  *  Assumes sk_buff_head lock is held.
637  */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 	mod_timer(&pkc->retire_blk_timer,
641 			jiffies + pkc->tov_in_jiffies);
642 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644 
645 /*
646  * Timer logic:
647  * 1) We refresh the timer only when we open a block.
648  *    By doing this we don't waste cycles refreshing the timer
649  *	  on packet-by-packet basis.
650  *
651  * With a 1MB block-size, on a 1Gbps line, it will take
652  * i) ~8 ms to fill a block + ii) memcpy etc.
653  * In this cut we are not accounting for the memcpy time.
654  *
655  * So, if the user sets the 'tmo' to 10ms then the timer
656  * will never fire while the block is still getting filled
657  * (which is what we want). However, the user could choose
658  * to close a block early and that's fine.
659  *
660  * But when the timer does fire, we check whether or not to refresh it.
661  * Since the tmo granularity is in msecs, it is not too expensive
662  * to refresh the timer, lets say every '8' msecs.
663  * Either the user can set the 'tmo' or we can derive it based on
664  * a) line-speed and b) block-size.
665  * prb_calc_retire_blk_tmo() calculates the tmo.
666  *
667  */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 	struct packet_sock *po = (struct packet_sock *)data;
671 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 	unsigned int frozen;
673 	struct tpacket_block_desc *pbd;
674 
675 	spin_lock(&po->sk.sk_receive_queue.lock);
676 
677 	frozen = prb_queue_frozen(pkc);
678 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679 
680 	if (unlikely(pkc->delete_blk_timer))
681 		goto out;
682 
683 	/* We only need to plug the race when the block is partially filled.
684 	 * tpacket_rcv:
685 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
686 	 *		copy_bits() is in progress ...
687 	 *		timer fires on other cpu:
688 	 *		we can't retire the current block because copy_bits
689 	 *		is in progress.
690 	 *
691 	 */
692 	if (BLOCK_NUM_PKTS(pbd)) {
693 		while (atomic_read(&pkc->blk_fill_in_prog)) {
694 			/* Waiting for skb_copy_bits to finish... */
695 			cpu_relax();
696 		}
697 	}
698 
699 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 		if (!frozen) {
701 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
702 			if (!prb_dispatch_next_block(pkc, po))
703 				goto refresh_timer;
704 			else
705 				goto out;
706 		} else {
707 			/* Case 1. Queue was frozen because user-space was
708 			 *	   lagging behind.
709 			 */
710 			if (prb_curr_blk_in_use(pkc, pbd)) {
711 				/*
712 				 * Ok, user-space is still behind.
713 				 * So just refresh the timer.
714 				 */
715 				goto refresh_timer;
716 			} else {
717 			       /* Case 2. queue was frozen,user-space caught up,
718 				* now the link went idle && the timer fired.
719 				* We don't have a block to close.So we open this
720 				* block and restart the timer.
721 				* opening a block thaws the queue,restarts timer
722 				* Thawing/timer-refresh is a side effect.
723 				*/
724 				prb_open_block(pkc, pbd);
725 				goto out;
726 			}
727 		}
728 	}
729 
730 refresh_timer:
731 	_prb_refresh_rx_retire_blk_timer(pkc);
732 
733 out:
734 	spin_unlock(&po->sk.sk_receive_queue.lock);
735 }
736 
737 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
738 		struct tpacket_block_desc *pbd1, __u32 status)
739 {
740 	/* Flush everything minus the block header */
741 
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 	u8 *start, *end;
744 
745 	start = (u8 *)pbd1;
746 
747 	/* Skip the block header(we know header WILL fit in 4K) */
748 	start += PAGE_SIZE;
749 
750 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
751 	for (; start < end; start += PAGE_SIZE)
752 		flush_dcache_page(pgv_to_page(start));
753 
754 	smp_wmb();
755 #endif
756 
757 	/* Now update the block status. */
758 
759 	BLOCK_STATUS(pbd1) = status;
760 
761 	/* Flush the block header */
762 
763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
764 	start = (u8 *)pbd1;
765 	flush_dcache_page(pgv_to_page(start));
766 
767 	smp_wmb();
768 #endif
769 }
770 
771 /*
772  * Side effect:
773  *
774  * 1) flush the block
775  * 2) Increment active_blk_num
776  *
777  * Note:We DONT refresh the timer on purpose.
778  *	Because almost always the next block will be opened.
779  */
780 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
781 		struct tpacket_block_desc *pbd1,
782 		struct packet_sock *po, unsigned int stat)
783 {
784 	__u32 status = TP_STATUS_USER | stat;
785 
786 	struct tpacket3_hdr *last_pkt;
787 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
788 	struct sock *sk = &po->sk;
789 
790 	if (po->stats.stats3.tp_drops)
791 		status |= TP_STATUS_LOSING;
792 
793 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
794 	last_pkt->tp_next_offset = 0;
795 
796 	/* Get the ts of the last pkt */
797 	if (BLOCK_NUM_PKTS(pbd1)) {
798 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
799 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
800 	} else {
801 		/* Ok, we tmo'd - so get the current time */
802 		struct timespec ts;
803 		getnstimeofday(&ts);
804 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
805 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
806 	}
807 
808 	smp_wmb();
809 
810 	/* Flush the block */
811 	prb_flush_block(pkc1, pbd1, status);
812 
813 	sk->sk_data_ready(sk);
814 
815 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
816 }
817 
818 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
819 {
820 	pkc->reset_pending_on_curr_blk = 0;
821 }
822 
823 /*
824  * Side effect of opening a block:
825  *
826  * 1) prb_queue is thawed.
827  * 2) retire_blk_timer is refreshed.
828  *
829  */
830 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
831 	struct tpacket_block_desc *pbd1)
832 {
833 	struct timespec ts;
834 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
835 
836 	smp_rmb();
837 
838 	/* We could have just memset this but we will lose the
839 	 * flexibility of making the priv area sticky
840 	 */
841 
842 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
843 	BLOCK_NUM_PKTS(pbd1) = 0;
844 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
845 
846 	getnstimeofday(&ts);
847 
848 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
849 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
850 
851 	pkc1->pkblk_start = (char *)pbd1;
852 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
853 
854 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
855 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
856 
857 	pbd1->version = pkc1->version;
858 	pkc1->prev = pkc1->nxt_offset;
859 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
860 
861 	prb_thaw_queue(pkc1);
862 	_prb_refresh_rx_retire_blk_timer(pkc1);
863 
864 	smp_wmb();
865 }
866 
867 /*
868  * Queue freeze logic:
869  * 1) Assume tp_block_nr = 8 blocks.
870  * 2) At time 't0', user opens Rx ring.
871  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
872  * 4) user-space is either sleeping or processing block '0'.
873  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
874  *    it will close block-7,loop around and try to fill block '0'.
875  *    call-flow:
876  *    __packet_lookup_frame_in_block
877  *      prb_retire_current_block()
878  *      prb_dispatch_next_block()
879  *        |->(BLOCK_STATUS == USER) evaluates to true
880  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
881  * 6) Now there are two cases:
882  *    6.1) Link goes idle right after the queue is frozen.
883  *         But remember, the last open_block() refreshed the timer.
884  *         When this timer expires,it will refresh itself so that we can
885  *         re-open block-0 in near future.
886  *    6.2) Link is busy and keeps on receiving packets. This is a simple
887  *         case and __packet_lookup_frame_in_block will check if block-0
888  *         is free and can now be re-used.
889  */
890 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
891 				  struct packet_sock *po)
892 {
893 	pkc->reset_pending_on_curr_blk = 1;
894 	po->stats.stats3.tp_freeze_q_cnt++;
895 }
896 
897 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
898 
899 /*
900  * If the next block is free then we will dispatch it
901  * and return a good offset.
902  * Else, we will freeze the queue.
903  * So, caller must check the return value.
904  */
905 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
906 		struct packet_sock *po)
907 {
908 	struct tpacket_block_desc *pbd;
909 
910 	smp_rmb();
911 
912 	/* 1. Get current block num */
913 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
914 
915 	/* 2. If this block is currently in_use then freeze the queue */
916 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
917 		prb_freeze_queue(pkc, po);
918 		return NULL;
919 	}
920 
921 	/*
922 	 * 3.
923 	 * open this block and return the offset where the first packet
924 	 * needs to get stored.
925 	 */
926 	prb_open_block(pkc, pbd);
927 	return (void *)pkc->nxt_offset;
928 }
929 
930 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
931 		struct packet_sock *po, unsigned int status)
932 {
933 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
934 
935 	/* retire/close the current block */
936 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
937 		/*
938 		 * Plug the case where copy_bits() is in progress on
939 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
940 		 * have space to copy the pkt in the current block and
941 		 * called prb_retire_current_block()
942 		 *
943 		 * We don't need to worry about the TMO case because
944 		 * the timer-handler already handled this case.
945 		 */
946 		if (!(status & TP_STATUS_BLK_TMO)) {
947 			while (atomic_read(&pkc->blk_fill_in_prog)) {
948 				/* Waiting for skb_copy_bits to finish... */
949 				cpu_relax();
950 			}
951 		}
952 		prb_close_block(pkc, pbd, po, status);
953 		return;
954 	}
955 }
956 
957 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
958 				      struct tpacket_block_desc *pbd)
959 {
960 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
961 }
962 
963 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
964 {
965 	return pkc->reset_pending_on_curr_blk;
966 }
967 
968 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
969 {
970 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
971 	atomic_dec(&pkc->blk_fill_in_prog);
972 }
973 
974 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
975 			struct tpacket3_hdr *ppd)
976 {
977 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
978 }
979 
980 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
981 			struct tpacket3_hdr *ppd)
982 {
983 	ppd->hv1.tp_rxhash = 0;
984 }
985 
986 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
987 			struct tpacket3_hdr *ppd)
988 {
989 	if (skb_vlan_tag_present(pkc->skb)) {
990 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
991 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
992 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
993 	} else {
994 		ppd->hv1.tp_vlan_tci = 0;
995 		ppd->hv1.tp_vlan_tpid = 0;
996 		ppd->tp_status = TP_STATUS_AVAILABLE;
997 	}
998 }
999 
1000 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1001 			struct tpacket3_hdr *ppd)
1002 {
1003 	ppd->hv1.tp_padding = 0;
1004 	prb_fill_vlan_info(pkc, ppd);
1005 
1006 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1007 		prb_fill_rxhash(pkc, ppd);
1008 	else
1009 		prb_clear_rxhash(pkc, ppd);
1010 }
1011 
1012 static void prb_fill_curr_block(char *curr,
1013 				struct tpacket_kbdq_core *pkc,
1014 				struct tpacket_block_desc *pbd,
1015 				unsigned int len)
1016 {
1017 	struct tpacket3_hdr *ppd;
1018 
1019 	ppd  = (struct tpacket3_hdr *)curr;
1020 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1021 	pkc->prev = curr;
1022 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1023 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1024 	BLOCK_NUM_PKTS(pbd) += 1;
1025 	atomic_inc(&pkc->blk_fill_in_prog);
1026 	prb_run_all_ft_ops(pkc, ppd);
1027 }
1028 
1029 /* Assumes caller has the sk->rx_queue.lock */
1030 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1031 					    struct sk_buff *skb,
1032 						int status,
1033 					    unsigned int len
1034 					    )
1035 {
1036 	struct tpacket_kbdq_core *pkc;
1037 	struct tpacket_block_desc *pbd;
1038 	char *curr, *end;
1039 
1040 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1041 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1042 
1043 	/* Queue is frozen when user space is lagging behind */
1044 	if (prb_queue_frozen(pkc)) {
1045 		/*
1046 		 * Check if that last block which caused the queue to freeze,
1047 		 * is still in_use by user-space.
1048 		 */
1049 		if (prb_curr_blk_in_use(pkc, pbd)) {
1050 			/* Can't record this packet */
1051 			return NULL;
1052 		} else {
1053 			/*
1054 			 * Ok, the block was released by user-space.
1055 			 * Now let's open that block.
1056 			 * opening a block also thaws the queue.
1057 			 * Thawing is a side effect.
1058 			 */
1059 			prb_open_block(pkc, pbd);
1060 		}
1061 	}
1062 
1063 	smp_mb();
1064 	curr = pkc->nxt_offset;
1065 	pkc->skb = skb;
1066 	end = (char *)pbd + pkc->kblk_size;
1067 
1068 	/* first try the current block */
1069 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1070 		prb_fill_curr_block(curr, pkc, pbd, len);
1071 		return (void *)curr;
1072 	}
1073 
1074 	/* Ok, close the current block */
1075 	prb_retire_current_block(pkc, po, 0);
1076 
1077 	/* Now, try to dispatch the next block */
1078 	curr = (char *)prb_dispatch_next_block(pkc, po);
1079 	if (curr) {
1080 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1081 		prb_fill_curr_block(curr, pkc, pbd, len);
1082 		return (void *)curr;
1083 	}
1084 
1085 	/*
1086 	 * No free blocks are available.user_space hasn't caught up yet.
1087 	 * Queue was just frozen and now this packet will get dropped.
1088 	 */
1089 	return NULL;
1090 }
1091 
1092 static void *packet_current_rx_frame(struct packet_sock *po,
1093 					    struct sk_buff *skb,
1094 					    int status, unsigned int len)
1095 {
1096 	char *curr = NULL;
1097 	switch (po->tp_version) {
1098 	case TPACKET_V1:
1099 	case TPACKET_V2:
1100 		curr = packet_lookup_frame(po, &po->rx_ring,
1101 					po->rx_ring.head, status);
1102 		return curr;
1103 	case TPACKET_V3:
1104 		return __packet_lookup_frame_in_block(po, skb, status, len);
1105 	default:
1106 		WARN(1, "TPACKET version not supported\n");
1107 		BUG();
1108 		return NULL;
1109 	}
1110 }
1111 
1112 static void *prb_lookup_block(struct packet_sock *po,
1113 				     struct packet_ring_buffer *rb,
1114 				     unsigned int idx,
1115 				     int status)
1116 {
1117 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1118 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1119 
1120 	if (status != BLOCK_STATUS(pbd))
1121 		return NULL;
1122 	return pbd;
1123 }
1124 
1125 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1126 {
1127 	unsigned int prev;
1128 	if (rb->prb_bdqc.kactive_blk_num)
1129 		prev = rb->prb_bdqc.kactive_blk_num-1;
1130 	else
1131 		prev = rb->prb_bdqc.knum_blocks-1;
1132 	return prev;
1133 }
1134 
1135 /* Assumes caller has held the rx_queue.lock */
1136 static void *__prb_previous_block(struct packet_sock *po,
1137 					 struct packet_ring_buffer *rb,
1138 					 int status)
1139 {
1140 	unsigned int previous = prb_previous_blk_num(rb);
1141 	return prb_lookup_block(po, rb, previous, status);
1142 }
1143 
1144 static void *packet_previous_rx_frame(struct packet_sock *po,
1145 					     struct packet_ring_buffer *rb,
1146 					     int status)
1147 {
1148 	if (po->tp_version <= TPACKET_V2)
1149 		return packet_previous_frame(po, rb, status);
1150 
1151 	return __prb_previous_block(po, rb, status);
1152 }
1153 
1154 static void packet_increment_rx_head(struct packet_sock *po,
1155 					    struct packet_ring_buffer *rb)
1156 {
1157 	switch (po->tp_version) {
1158 	case TPACKET_V1:
1159 	case TPACKET_V2:
1160 		return packet_increment_head(rb);
1161 	case TPACKET_V3:
1162 	default:
1163 		WARN(1, "TPACKET version not supported.\n");
1164 		BUG();
1165 		return;
1166 	}
1167 }
1168 
1169 static void *packet_previous_frame(struct packet_sock *po,
1170 		struct packet_ring_buffer *rb,
1171 		int status)
1172 {
1173 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1174 	return packet_lookup_frame(po, rb, previous, status);
1175 }
1176 
1177 static void packet_increment_head(struct packet_ring_buffer *buff)
1178 {
1179 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1180 }
1181 
1182 static void packet_inc_pending(struct packet_ring_buffer *rb)
1183 {
1184 	this_cpu_inc(*rb->pending_refcnt);
1185 }
1186 
1187 static void packet_dec_pending(struct packet_ring_buffer *rb)
1188 {
1189 	this_cpu_dec(*rb->pending_refcnt);
1190 }
1191 
1192 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1193 {
1194 	unsigned int refcnt = 0;
1195 	int cpu;
1196 
1197 	/* We don't use pending refcount in rx_ring. */
1198 	if (rb->pending_refcnt == NULL)
1199 		return 0;
1200 
1201 	for_each_possible_cpu(cpu)
1202 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1203 
1204 	return refcnt;
1205 }
1206 
1207 static int packet_alloc_pending(struct packet_sock *po)
1208 {
1209 	po->rx_ring.pending_refcnt = NULL;
1210 
1211 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1212 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1213 		return -ENOBUFS;
1214 
1215 	return 0;
1216 }
1217 
1218 static void packet_free_pending(struct packet_sock *po)
1219 {
1220 	free_percpu(po->tx_ring.pending_refcnt);
1221 }
1222 
1223 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1224 {
1225 	struct sock *sk = &po->sk;
1226 	bool has_room;
1227 
1228 	if (po->prot_hook.func != tpacket_rcv)
1229 		return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1230 			<= sk->sk_rcvbuf;
1231 
1232 	spin_lock(&sk->sk_receive_queue.lock);
1233 	if (po->tp_version == TPACKET_V3)
1234 		has_room = prb_lookup_block(po, &po->rx_ring,
1235 					    po->rx_ring.prb_bdqc.kactive_blk_num,
1236 					    TP_STATUS_KERNEL);
1237 	else
1238 		has_room = packet_lookup_frame(po, &po->rx_ring,
1239 					       po->rx_ring.head,
1240 					       TP_STATUS_KERNEL);
1241 	spin_unlock(&sk->sk_receive_queue.lock);
1242 
1243 	return has_room;
1244 }
1245 
1246 static void packet_sock_destruct(struct sock *sk)
1247 {
1248 	skb_queue_purge(&sk->sk_error_queue);
1249 
1250 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1251 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1252 
1253 	if (!sock_flag(sk, SOCK_DEAD)) {
1254 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1255 		return;
1256 	}
1257 
1258 	sk_refcnt_debug_dec(sk);
1259 }
1260 
1261 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1262 {
1263 	int x = atomic_read(&f->rr_cur) + 1;
1264 
1265 	if (x >= num)
1266 		x = 0;
1267 
1268 	return x;
1269 }
1270 
1271 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1272 				      struct sk_buff *skb,
1273 				      unsigned int num)
1274 {
1275 	return reciprocal_scale(skb_get_hash(skb), num);
1276 }
1277 
1278 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1279 				    struct sk_buff *skb,
1280 				    unsigned int num)
1281 {
1282 	int cur, old;
1283 
1284 	cur = atomic_read(&f->rr_cur);
1285 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1286 				     fanout_rr_next(f, num))) != cur)
1287 		cur = old;
1288 	return cur;
1289 }
1290 
1291 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1292 				     struct sk_buff *skb,
1293 				     unsigned int num)
1294 {
1295 	return smp_processor_id() % num;
1296 }
1297 
1298 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1299 				     struct sk_buff *skb,
1300 				     unsigned int num)
1301 {
1302 	return prandom_u32_max(num);
1303 }
1304 
1305 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1306 					  struct sk_buff *skb,
1307 					  unsigned int idx, unsigned int skip,
1308 					  unsigned int num)
1309 {
1310 	unsigned int i, j;
1311 
1312 	i = j = min_t(int, f->next[idx], num - 1);
1313 	do {
1314 		if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1315 			if (i != j)
1316 				f->next[idx] = i;
1317 			return i;
1318 		}
1319 		if (++i == num)
1320 			i = 0;
1321 	} while (i != j);
1322 
1323 	return idx;
1324 }
1325 
1326 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1327 				    struct sk_buff *skb,
1328 				    unsigned int num)
1329 {
1330 	return skb_get_queue_mapping(skb) % num;
1331 }
1332 
1333 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1334 {
1335 	return f->flags & (flag >> 8);
1336 }
1337 
1338 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1339 			     struct packet_type *pt, struct net_device *orig_dev)
1340 {
1341 	struct packet_fanout *f = pt->af_packet_priv;
1342 	unsigned int num = f->num_members;
1343 	struct packet_sock *po;
1344 	unsigned int idx;
1345 
1346 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1347 	    !num) {
1348 		kfree_skb(skb);
1349 		return 0;
1350 	}
1351 
1352 	switch (f->type) {
1353 	case PACKET_FANOUT_HASH:
1354 	default:
1355 		if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1356 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1357 			if (!skb)
1358 				return 0;
1359 		}
1360 		idx = fanout_demux_hash(f, skb, num);
1361 		break;
1362 	case PACKET_FANOUT_LB:
1363 		idx = fanout_demux_lb(f, skb, num);
1364 		break;
1365 	case PACKET_FANOUT_CPU:
1366 		idx = fanout_demux_cpu(f, skb, num);
1367 		break;
1368 	case PACKET_FANOUT_RND:
1369 		idx = fanout_demux_rnd(f, skb, num);
1370 		break;
1371 	case PACKET_FANOUT_QM:
1372 		idx = fanout_demux_qm(f, skb, num);
1373 		break;
1374 	case PACKET_FANOUT_ROLLOVER:
1375 		idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1376 		break;
1377 	}
1378 
1379 	po = pkt_sk(f->arr[idx]);
1380 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1381 	    unlikely(!packet_rcv_has_room(po, skb))) {
1382 		idx = fanout_demux_rollover(f, skb, idx, idx, num);
1383 		po = pkt_sk(f->arr[idx]);
1384 	}
1385 
1386 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1387 }
1388 
1389 DEFINE_MUTEX(fanout_mutex);
1390 EXPORT_SYMBOL_GPL(fanout_mutex);
1391 static LIST_HEAD(fanout_list);
1392 
1393 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1394 {
1395 	struct packet_fanout *f = po->fanout;
1396 
1397 	spin_lock(&f->lock);
1398 	f->arr[f->num_members] = sk;
1399 	smp_wmb();
1400 	f->num_members++;
1401 	spin_unlock(&f->lock);
1402 }
1403 
1404 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1405 {
1406 	struct packet_fanout *f = po->fanout;
1407 	int i;
1408 
1409 	spin_lock(&f->lock);
1410 	for (i = 0; i < f->num_members; i++) {
1411 		if (f->arr[i] == sk)
1412 			break;
1413 	}
1414 	BUG_ON(i >= f->num_members);
1415 	f->arr[i] = f->arr[f->num_members - 1];
1416 	f->num_members--;
1417 	spin_unlock(&f->lock);
1418 }
1419 
1420 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1421 {
1422 	if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1423 		return true;
1424 
1425 	return false;
1426 }
1427 
1428 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1429 {
1430 	struct packet_sock *po = pkt_sk(sk);
1431 	struct packet_fanout *f, *match;
1432 	u8 type = type_flags & 0xff;
1433 	u8 flags = type_flags >> 8;
1434 	int err;
1435 
1436 	switch (type) {
1437 	case PACKET_FANOUT_ROLLOVER:
1438 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1439 			return -EINVAL;
1440 	case PACKET_FANOUT_HASH:
1441 	case PACKET_FANOUT_LB:
1442 	case PACKET_FANOUT_CPU:
1443 	case PACKET_FANOUT_RND:
1444 	case PACKET_FANOUT_QM:
1445 		break;
1446 	default:
1447 		return -EINVAL;
1448 	}
1449 
1450 	if (!po->running)
1451 		return -EINVAL;
1452 
1453 	if (po->fanout)
1454 		return -EALREADY;
1455 
1456 	mutex_lock(&fanout_mutex);
1457 	match = NULL;
1458 	list_for_each_entry(f, &fanout_list, list) {
1459 		if (f->id == id &&
1460 		    read_pnet(&f->net) == sock_net(sk)) {
1461 			match = f;
1462 			break;
1463 		}
1464 	}
1465 	err = -EINVAL;
1466 	if (match && match->flags != flags)
1467 		goto out;
1468 	if (!match) {
1469 		err = -ENOMEM;
1470 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1471 		if (!match)
1472 			goto out;
1473 		write_pnet(&match->net, sock_net(sk));
1474 		match->id = id;
1475 		match->type = type;
1476 		match->flags = flags;
1477 		atomic_set(&match->rr_cur, 0);
1478 		INIT_LIST_HEAD(&match->list);
1479 		spin_lock_init(&match->lock);
1480 		atomic_set(&match->sk_ref, 0);
1481 		match->prot_hook.type = po->prot_hook.type;
1482 		match->prot_hook.dev = po->prot_hook.dev;
1483 		match->prot_hook.func = packet_rcv_fanout;
1484 		match->prot_hook.af_packet_priv = match;
1485 		match->prot_hook.id_match = match_fanout_group;
1486 		dev_add_pack(&match->prot_hook);
1487 		list_add(&match->list, &fanout_list);
1488 	}
1489 	err = -EINVAL;
1490 	if (match->type == type &&
1491 	    match->prot_hook.type == po->prot_hook.type &&
1492 	    match->prot_hook.dev == po->prot_hook.dev) {
1493 		err = -ENOSPC;
1494 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1495 			__dev_remove_pack(&po->prot_hook);
1496 			po->fanout = match;
1497 			atomic_inc(&match->sk_ref);
1498 			__fanout_link(sk, po);
1499 			err = 0;
1500 		}
1501 	}
1502 out:
1503 	mutex_unlock(&fanout_mutex);
1504 	return err;
1505 }
1506 
1507 static void fanout_release(struct sock *sk)
1508 {
1509 	struct packet_sock *po = pkt_sk(sk);
1510 	struct packet_fanout *f;
1511 
1512 	f = po->fanout;
1513 	if (!f)
1514 		return;
1515 
1516 	mutex_lock(&fanout_mutex);
1517 	po->fanout = NULL;
1518 
1519 	if (atomic_dec_and_test(&f->sk_ref)) {
1520 		list_del(&f->list);
1521 		dev_remove_pack(&f->prot_hook);
1522 		kfree(f);
1523 	}
1524 	mutex_unlock(&fanout_mutex);
1525 }
1526 
1527 static const struct proto_ops packet_ops;
1528 
1529 static const struct proto_ops packet_ops_spkt;
1530 
1531 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1532 			   struct packet_type *pt, struct net_device *orig_dev)
1533 {
1534 	struct sock *sk;
1535 	struct sockaddr_pkt *spkt;
1536 
1537 	/*
1538 	 *	When we registered the protocol we saved the socket in the data
1539 	 *	field for just this event.
1540 	 */
1541 
1542 	sk = pt->af_packet_priv;
1543 
1544 	/*
1545 	 *	Yank back the headers [hope the device set this
1546 	 *	right or kerboom...]
1547 	 *
1548 	 *	Incoming packets have ll header pulled,
1549 	 *	push it back.
1550 	 *
1551 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1552 	 *	so that this procedure is noop.
1553 	 */
1554 
1555 	if (skb->pkt_type == PACKET_LOOPBACK)
1556 		goto out;
1557 
1558 	if (!net_eq(dev_net(dev), sock_net(sk)))
1559 		goto out;
1560 
1561 	skb = skb_share_check(skb, GFP_ATOMIC);
1562 	if (skb == NULL)
1563 		goto oom;
1564 
1565 	/* drop any routing info */
1566 	skb_dst_drop(skb);
1567 
1568 	/* drop conntrack reference */
1569 	nf_reset(skb);
1570 
1571 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1572 
1573 	skb_push(skb, skb->data - skb_mac_header(skb));
1574 
1575 	/*
1576 	 *	The SOCK_PACKET socket receives _all_ frames.
1577 	 */
1578 
1579 	spkt->spkt_family = dev->type;
1580 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1581 	spkt->spkt_protocol = skb->protocol;
1582 
1583 	/*
1584 	 *	Charge the memory to the socket. This is done specifically
1585 	 *	to prevent sockets using all the memory up.
1586 	 */
1587 
1588 	if (sock_queue_rcv_skb(sk, skb) == 0)
1589 		return 0;
1590 
1591 out:
1592 	kfree_skb(skb);
1593 oom:
1594 	return 0;
1595 }
1596 
1597 
1598 /*
1599  *	Output a raw packet to a device layer. This bypasses all the other
1600  *	protocol layers and you must therefore supply it with a complete frame
1601  */
1602 
1603 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1604 			       struct msghdr *msg, size_t len)
1605 {
1606 	struct sock *sk = sock->sk;
1607 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1608 	struct sk_buff *skb = NULL;
1609 	struct net_device *dev;
1610 	__be16 proto = 0;
1611 	int err;
1612 	int extra_len = 0;
1613 
1614 	/*
1615 	 *	Get and verify the address.
1616 	 */
1617 
1618 	if (saddr) {
1619 		if (msg->msg_namelen < sizeof(struct sockaddr))
1620 			return -EINVAL;
1621 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1622 			proto = saddr->spkt_protocol;
1623 	} else
1624 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1625 
1626 	/*
1627 	 *	Find the device first to size check it
1628 	 */
1629 
1630 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1631 retry:
1632 	rcu_read_lock();
1633 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1634 	err = -ENODEV;
1635 	if (dev == NULL)
1636 		goto out_unlock;
1637 
1638 	err = -ENETDOWN;
1639 	if (!(dev->flags & IFF_UP))
1640 		goto out_unlock;
1641 
1642 	/*
1643 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1644 	 * raw protocol and you must do your own fragmentation at this level.
1645 	 */
1646 
1647 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1648 		if (!netif_supports_nofcs(dev)) {
1649 			err = -EPROTONOSUPPORT;
1650 			goto out_unlock;
1651 		}
1652 		extra_len = 4; /* We're doing our own CRC */
1653 	}
1654 
1655 	err = -EMSGSIZE;
1656 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1657 		goto out_unlock;
1658 
1659 	if (!skb) {
1660 		size_t reserved = LL_RESERVED_SPACE(dev);
1661 		int tlen = dev->needed_tailroom;
1662 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1663 
1664 		rcu_read_unlock();
1665 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1666 		if (skb == NULL)
1667 			return -ENOBUFS;
1668 		/* FIXME: Save some space for broken drivers that write a hard
1669 		 * header at transmission time by themselves. PPP is the notable
1670 		 * one here. This should really be fixed at the driver level.
1671 		 */
1672 		skb_reserve(skb, reserved);
1673 		skb_reset_network_header(skb);
1674 
1675 		/* Try to align data part correctly */
1676 		if (hhlen) {
1677 			skb->data -= hhlen;
1678 			skb->tail -= hhlen;
1679 			if (len < hhlen)
1680 				skb_reset_network_header(skb);
1681 		}
1682 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1683 		if (err)
1684 			goto out_free;
1685 		goto retry;
1686 	}
1687 
1688 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1689 		/* Earlier code assumed this would be a VLAN pkt,
1690 		 * double-check this now that we have the actual
1691 		 * packet in hand.
1692 		 */
1693 		struct ethhdr *ehdr;
1694 		skb_reset_mac_header(skb);
1695 		ehdr = eth_hdr(skb);
1696 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1697 			err = -EMSGSIZE;
1698 			goto out_unlock;
1699 		}
1700 	}
1701 
1702 	skb->protocol = proto;
1703 	skb->dev = dev;
1704 	skb->priority = sk->sk_priority;
1705 	skb->mark = sk->sk_mark;
1706 
1707 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1708 
1709 	if (unlikely(extra_len == 4))
1710 		skb->no_fcs = 1;
1711 
1712 	skb_probe_transport_header(skb, 0);
1713 
1714 	dev_queue_xmit(skb);
1715 	rcu_read_unlock();
1716 	return len;
1717 
1718 out_unlock:
1719 	rcu_read_unlock();
1720 out_free:
1721 	kfree_skb(skb);
1722 	return err;
1723 }
1724 
1725 static unsigned int run_filter(const struct sk_buff *skb,
1726 				      const struct sock *sk,
1727 				      unsigned int res)
1728 {
1729 	struct sk_filter *filter;
1730 
1731 	rcu_read_lock();
1732 	filter = rcu_dereference(sk->sk_filter);
1733 	if (filter != NULL)
1734 		res = SK_RUN_FILTER(filter, skb);
1735 	rcu_read_unlock();
1736 
1737 	return res;
1738 }
1739 
1740 /*
1741  * This function makes lazy skb cloning in hope that most of packets
1742  * are discarded by BPF.
1743  *
1744  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1745  * and skb->cb are mangled. It works because (and until) packets
1746  * falling here are owned by current CPU. Output packets are cloned
1747  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1748  * sequencially, so that if we return skb to original state on exit,
1749  * we will not harm anyone.
1750  */
1751 
1752 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1753 		      struct packet_type *pt, struct net_device *orig_dev)
1754 {
1755 	struct sock *sk;
1756 	struct sockaddr_ll *sll;
1757 	struct packet_sock *po;
1758 	u8 *skb_head = skb->data;
1759 	int skb_len = skb->len;
1760 	unsigned int snaplen, res;
1761 
1762 	if (skb->pkt_type == PACKET_LOOPBACK)
1763 		goto drop;
1764 
1765 	sk = pt->af_packet_priv;
1766 	po = pkt_sk(sk);
1767 
1768 	if (!net_eq(dev_net(dev), sock_net(sk)))
1769 		goto drop;
1770 
1771 	skb->dev = dev;
1772 
1773 	if (dev->header_ops) {
1774 		/* The device has an explicit notion of ll header,
1775 		 * exported to higher levels.
1776 		 *
1777 		 * Otherwise, the device hides details of its frame
1778 		 * structure, so that corresponding packet head is
1779 		 * never delivered to user.
1780 		 */
1781 		if (sk->sk_type != SOCK_DGRAM)
1782 			skb_push(skb, skb->data - skb_mac_header(skb));
1783 		else if (skb->pkt_type == PACKET_OUTGOING) {
1784 			/* Special case: outgoing packets have ll header at head */
1785 			skb_pull(skb, skb_network_offset(skb));
1786 		}
1787 	}
1788 
1789 	snaplen = skb->len;
1790 
1791 	res = run_filter(skb, sk, snaplen);
1792 	if (!res)
1793 		goto drop_n_restore;
1794 	if (snaplen > res)
1795 		snaplen = res;
1796 
1797 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1798 		goto drop_n_acct;
1799 
1800 	if (skb_shared(skb)) {
1801 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1802 		if (nskb == NULL)
1803 			goto drop_n_acct;
1804 
1805 		if (skb_head != skb->data) {
1806 			skb->data = skb_head;
1807 			skb->len = skb_len;
1808 		}
1809 		consume_skb(skb);
1810 		skb = nskb;
1811 	}
1812 
1813 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1814 		     sizeof(skb->cb));
1815 
1816 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1817 	sll->sll_family = AF_PACKET;
1818 	sll->sll_hatype = dev->type;
1819 	sll->sll_protocol = skb->protocol;
1820 	sll->sll_pkttype = skb->pkt_type;
1821 	if (unlikely(po->origdev))
1822 		sll->sll_ifindex = orig_dev->ifindex;
1823 	else
1824 		sll->sll_ifindex = dev->ifindex;
1825 
1826 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1827 
1828 	PACKET_SKB_CB(skb)->origlen = skb->len;
1829 
1830 	if (pskb_trim(skb, snaplen))
1831 		goto drop_n_acct;
1832 
1833 	skb_set_owner_r(skb, sk);
1834 	skb->dev = NULL;
1835 	skb_dst_drop(skb);
1836 
1837 	/* drop conntrack reference */
1838 	nf_reset(skb);
1839 
1840 	spin_lock(&sk->sk_receive_queue.lock);
1841 	po->stats.stats1.tp_packets++;
1842 	skb->dropcount = atomic_read(&sk->sk_drops);
1843 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1844 	spin_unlock(&sk->sk_receive_queue.lock);
1845 	sk->sk_data_ready(sk);
1846 	return 0;
1847 
1848 drop_n_acct:
1849 	spin_lock(&sk->sk_receive_queue.lock);
1850 	po->stats.stats1.tp_drops++;
1851 	atomic_inc(&sk->sk_drops);
1852 	spin_unlock(&sk->sk_receive_queue.lock);
1853 
1854 drop_n_restore:
1855 	if (skb_head != skb->data && skb_shared(skb)) {
1856 		skb->data = skb_head;
1857 		skb->len = skb_len;
1858 	}
1859 drop:
1860 	consume_skb(skb);
1861 	return 0;
1862 }
1863 
1864 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1865 		       struct packet_type *pt, struct net_device *orig_dev)
1866 {
1867 	struct sock *sk;
1868 	struct packet_sock *po;
1869 	struct sockaddr_ll *sll;
1870 	union tpacket_uhdr h;
1871 	u8 *skb_head = skb->data;
1872 	int skb_len = skb->len;
1873 	unsigned int snaplen, res;
1874 	unsigned long status = TP_STATUS_USER;
1875 	unsigned short macoff, netoff, hdrlen;
1876 	struct sk_buff *copy_skb = NULL;
1877 	struct timespec ts;
1878 	__u32 ts_status;
1879 
1880 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1881 	 * We may add members to them until current aligned size without forcing
1882 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1883 	 */
1884 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1885 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1886 
1887 	if (skb->pkt_type == PACKET_LOOPBACK)
1888 		goto drop;
1889 
1890 	sk = pt->af_packet_priv;
1891 	po = pkt_sk(sk);
1892 
1893 	if (!net_eq(dev_net(dev), sock_net(sk)))
1894 		goto drop;
1895 
1896 	if (dev->header_ops) {
1897 		if (sk->sk_type != SOCK_DGRAM)
1898 			skb_push(skb, skb->data - skb_mac_header(skb));
1899 		else if (skb->pkt_type == PACKET_OUTGOING) {
1900 			/* Special case: outgoing packets have ll header at head */
1901 			skb_pull(skb, skb_network_offset(skb));
1902 		}
1903 	}
1904 
1905 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1906 		status |= TP_STATUS_CSUMNOTREADY;
1907 
1908 	snaplen = skb->len;
1909 
1910 	res = run_filter(skb, sk, snaplen);
1911 	if (!res)
1912 		goto drop_n_restore;
1913 	if (snaplen > res)
1914 		snaplen = res;
1915 
1916 	if (sk->sk_type == SOCK_DGRAM) {
1917 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1918 				  po->tp_reserve;
1919 	} else {
1920 		unsigned int maclen = skb_network_offset(skb);
1921 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1922 				       (maclen < 16 ? 16 : maclen)) +
1923 			po->tp_reserve;
1924 		macoff = netoff - maclen;
1925 	}
1926 	if (po->tp_version <= TPACKET_V2) {
1927 		if (macoff + snaplen > po->rx_ring.frame_size) {
1928 			if (po->copy_thresh &&
1929 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1930 				if (skb_shared(skb)) {
1931 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1932 				} else {
1933 					copy_skb = skb_get(skb);
1934 					skb_head = skb->data;
1935 				}
1936 				if (copy_skb)
1937 					skb_set_owner_r(copy_skb, sk);
1938 			}
1939 			snaplen = po->rx_ring.frame_size - macoff;
1940 			if ((int)snaplen < 0)
1941 				snaplen = 0;
1942 		}
1943 	} else if (unlikely(macoff + snaplen >
1944 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1945 		u32 nval;
1946 
1947 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1948 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1949 			    snaplen, nval, macoff);
1950 		snaplen = nval;
1951 		if (unlikely((int)snaplen < 0)) {
1952 			snaplen = 0;
1953 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1954 		}
1955 	}
1956 	spin_lock(&sk->sk_receive_queue.lock);
1957 	h.raw = packet_current_rx_frame(po, skb,
1958 					TP_STATUS_KERNEL, (macoff+snaplen));
1959 	if (!h.raw)
1960 		goto ring_is_full;
1961 	if (po->tp_version <= TPACKET_V2) {
1962 		packet_increment_rx_head(po, &po->rx_ring);
1963 	/*
1964 	 * LOSING will be reported till you read the stats,
1965 	 * because it's COR - Clear On Read.
1966 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1967 	 * at packet level.
1968 	 */
1969 		if (po->stats.stats1.tp_drops)
1970 			status |= TP_STATUS_LOSING;
1971 	}
1972 	po->stats.stats1.tp_packets++;
1973 	if (copy_skb) {
1974 		status |= TP_STATUS_COPY;
1975 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1976 	}
1977 	spin_unlock(&sk->sk_receive_queue.lock);
1978 
1979 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1980 
1981 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1982 		getnstimeofday(&ts);
1983 
1984 	status |= ts_status;
1985 
1986 	switch (po->tp_version) {
1987 	case TPACKET_V1:
1988 		h.h1->tp_len = skb->len;
1989 		h.h1->tp_snaplen = snaplen;
1990 		h.h1->tp_mac = macoff;
1991 		h.h1->tp_net = netoff;
1992 		h.h1->tp_sec = ts.tv_sec;
1993 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1994 		hdrlen = sizeof(*h.h1);
1995 		break;
1996 	case TPACKET_V2:
1997 		h.h2->tp_len = skb->len;
1998 		h.h2->tp_snaplen = snaplen;
1999 		h.h2->tp_mac = macoff;
2000 		h.h2->tp_net = netoff;
2001 		h.h2->tp_sec = ts.tv_sec;
2002 		h.h2->tp_nsec = ts.tv_nsec;
2003 		if (skb_vlan_tag_present(skb)) {
2004 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2005 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2006 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2007 		} else {
2008 			h.h2->tp_vlan_tci = 0;
2009 			h.h2->tp_vlan_tpid = 0;
2010 		}
2011 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2012 		hdrlen = sizeof(*h.h2);
2013 		break;
2014 	case TPACKET_V3:
2015 		/* tp_nxt_offset,vlan are already populated above.
2016 		 * So DONT clear those fields here
2017 		 */
2018 		h.h3->tp_status |= status;
2019 		h.h3->tp_len = skb->len;
2020 		h.h3->tp_snaplen = snaplen;
2021 		h.h3->tp_mac = macoff;
2022 		h.h3->tp_net = netoff;
2023 		h.h3->tp_sec  = ts.tv_sec;
2024 		h.h3->tp_nsec = ts.tv_nsec;
2025 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2026 		hdrlen = sizeof(*h.h3);
2027 		break;
2028 	default:
2029 		BUG();
2030 	}
2031 
2032 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2033 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2034 	sll->sll_family = AF_PACKET;
2035 	sll->sll_hatype = dev->type;
2036 	sll->sll_protocol = skb->protocol;
2037 	sll->sll_pkttype = skb->pkt_type;
2038 	if (unlikely(po->origdev))
2039 		sll->sll_ifindex = orig_dev->ifindex;
2040 	else
2041 		sll->sll_ifindex = dev->ifindex;
2042 
2043 	smp_mb();
2044 
2045 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2046 	if (po->tp_version <= TPACKET_V2) {
2047 		u8 *start, *end;
2048 
2049 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2050 					macoff + snaplen);
2051 
2052 		for (start = h.raw; start < end; start += PAGE_SIZE)
2053 			flush_dcache_page(pgv_to_page(start));
2054 	}
2055 	smp_wmb();
2056 #endif
2057 
2058 	if (po->tp_version <= TPACKET_V2) {
2059 		__packet_set_status(po, h.raw, status);
2060 		sk->sk_data_ready(sk);
2061 	} else {
2062 		prb_clear_blk_fill_status(&po->rx_ring);
2063 	}
2064 
2065 drop_n_restore:
2066 	if (skb_head != skb->data && skb_shared(skb)) {
2067 		skb->data = skb_head;
2068 		skb->len = skb_len;
2069 	}
2070 drop:
2071 	kfree_skb(skb);
2072 	return 0;
2073 
2074 ring_is_full:
2075 	po->stats.stats1.tp_drops++;
2076 	spin_unlock(&sk->sk_receive_queue.lock);
2077 
2078 	sk->sk_data_ready(sk);
2079 	kfree_skb(copy_skb);
2080 	goto drop_n_restore;
2081 }
2082 
2083 static void tpacket_destruct_skb(struct sk_buff *skb)
2084 {
2085 	struct packet_sock *po = pkt_sk(skb->sk);
2086 
2087 	if (likely(po->tx_ring.pg_vec)) {
2088 		void *ph;
2089 		__u32 ts;
2090 
2091 		ph = skb_shinfo(skb)->destructor_arg;
2092 		packet_dec_pending(&po->tx_ring);
2093 
2094 		ts = __packet_set_timestamp(po, ph, skb);
2095 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2096 	}
2097 
2098 	sock_wfree(skb);
2099 }
2100 
2101 static bool ll_header_truncated(const struct net_device *dev, int len)
2102 {
2103 	/* net device doesn't like empty head */
2104 	if (unlikely(len <= dev->hard_header_len)) {
2105 		net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2106 				     current->comm, len, dev->hard_header_len);
2107 		return true;
2108 	}
2109 
2110 	return false;
2111 }
2112 
2113 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2114 		void *frame, struct net_device *dev, int size_max,
2115 		__be16 proto, unsigned char *addr, int hlen)
2116 {
2117 	union tpacket_uhdr ph;
2118 	int to_write, offset, len, tp_len, nr_frags, len_max;
2119 	struct socket *sock = po->sk.sk_socket;
2120 	struct page *page;
2121 	void *data;
2122 	int err;
2123 
2124 	ph.raw = frame;
2125 
2126 	skb->protocol = proto;
2127 	skb->dev = dev;
2128 	skb->priority = po->sk.sk_priority;
2129 	skb->mark = po->sk.sk_mark;
2130 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2131 	skb_shinfo(skb)->destructor_arg = ph.raw;
2132 
2133 	switch (po->tp_version) {
2134 	case TPACKET_V2:
2135 		tp_len = ph.h2->tp_len;
2136 		break;
2137 	default:
2138 		tp_len = ph.h1->tp_len;
2139 		break;
2140 	}
2141 	if (unlikely(tp_len > size_max)) {
2142 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2143 		return -EMSGSIZE;
2144 	}
2145 
2146 	skb_reserve(skb, hlen);
2147 	skb_reset_network_header(skb);
2148 
2149 	if (!packet_use_direct_xmit(po))
2150 		skb_probe_transport_header(skb, 0);
2151 	if (unlikely(po->tp_tx_has_off)) {
2152 		int off_min, off_max, off;
2153 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2154 		off_max = po->tx_ring.frame_size - tp_len;
2155 		if (sock->type == SOCK_DGRAM) {
2156 			switch (po->tp_version) {
2157 			case TPACKET_V2:
2158 				off = ph.h2->tp_net;
2159 				break;
2160 			default:
2161 				off = ph.h1->tp_net;
2162 				break;
2163 			}
2164 		} else {
2165 			switch (po->tp_version) {
2166 			case TPACKET_V2:
2167 				off = ph.h2->tp_mac;
2168 				break;
2169 			default:
2170 				off = ph.h1->tp_mac;
2171 				break;
2172 			}
2173 		}
2174 		if (unlikely((off < off_min) || (off_max < off)))
2175 			return -EINVAL;
2176 		data = ph.raw + off;
2177 	} else {
2178 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2179 	}
2180 	to_write = tp_len;
2181 
2182 	if (sock->type == SOCK_DGRAM) {
2183 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2184 				NULL, tp_len);
2185 		if (unlikely(err < 0))
2186 			return -EINVAL;
2187 	} else if (dev->hard_header_len) {
2188 		if (ll_header_truncated(dev, tp_len))
2189 			return -EINVAL;
2190 
2191 		skb_push(skb, dev->hard_header_len);
2192 		err = skb_store_bits(skb, 0, data,
2193 				dev->hard_header_len);
2194 		if (unlikely(err))
2195 			return err;
2196 
2197 		data += dev->hard_header_len;
2198 		to_write -= dev->hard_header_len;
2199 	}
2200 
2201 	offset = offset_in_page(data);
2202 	len_max = PAGE_SIZE - offset;
2203 	len = ((to_write > len_max) ? len_max : to_write);
2204 
2205 	skb->data_len = to_write;
2206 	skb->len += to_write;
2207 	skb->truesize += to_write;
2208 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2209 
2210 	while (likely(to_write)) {
2211 		nr_frags = skb_shinfo(skb)->nr_frags;
2212 
2213 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2214 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2215 			       MAX_SKB_FRAGS);
2216 			return -EFAULT;
2217 		}
2218 
2219 		page = pgv_to_page(data);
2220 		data += len;
2221 		flush_dcache_page(page);
2222 		get_page(page);
2223 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2224 		to_write -= len;
2225 		offset = 0;
2226 		len_max = PAGE_SIZE;
2227 		len = ((to_write > len_max) ? len_max : to_write);
2228 	}
2229 
2230 	return tp_len;
2231 }
2232 
2233 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2234 {
2235 	struct sk_buff *skb;
2236 	struct net_device *dev;
2237 	__be16 proto;
2238 	int err, reserve = 0;
2239 	void *ph;
2240 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2241 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2242 	int tp_len, size_max;
2243 	unsigned char *addr;
2244 	int len_sum = 0;
2245 	int status = TP_STATUS_AVAILABLE;
2246 	int hlen, tlen;
2247 
2248 	mutex_lock(&po->pg_vec_lock);
2249 
2250 	if (likely(saddr == NULL)) {
2251 		dev	= packet_cached_dev_get(po);
2252 		proto	= po->num;
2253 		addr	= NULL;
2254 	} else {
2255 		err = -EINVAL;
2256 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2257 			goto out;
2258 		if (msg->msg_namelen < (saddr->sll_halen
2259 					+ offsetof(struct sockaddr_ll,
2260 						sll_addr)))
2261 			goto out;
2262 		proto	= saddr->sll_protocol;
2263 		addr	= saddr->sll_addr;
2264 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2265 	}
2266 
2267 	err = -ENXIO;
2268 	if (unlikely(dev == NULL))
2269 		goto out;
2270 	err = -ENETDOWN;
2271 	if (unlikely(!(dev->flags & IFF_UP)))
2272 		goto out_put;
2273 
2274 	reserve = dev->hard_header_len + VLAN_HLEN;
2275 	size_max = po->tx_ring.frame_size
2276 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2277 
2278 	if (size_max > dev->mtu + reserve)
2279 		size_max = dev->mtu + reserve;
2280 
2281 	do {
2282 		ph = packet_current_frame(po, &po->tx_ring,
2283 					  TP_STATUS_SEND_REQUEST);
2284 		if (unlikely(ph == NULL)) {
2285 			if (need_wait && need_resched())
2286 				schedule();
2287 			continue;
2288 		}
2289 
2290 		status = TP_STATUS_SEND_REQUEST;
2291 		hlen = LL_RESERVED_SPACE(dev);
2292 		tlen = dev->needed_tailroom;
2293 		skb = sock_alloc_send_skb(&po->sk,
2294 				hlen + tlen + sizeof(struct sockaddr_ll),
2295 				0, &err);
2296 
2297 		if (unlikely(skb == NULL))
2298 			goto out_status;
2299 
2300 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2301 					  addr, hlen);
2302 		if (tp_len > dev->mtu + dev->hard_header_len) {
2303 			struct ethhdr *ehdr;
2304 			/* Earlier code assumed this would be a VLAN pkt,
2305 			 * double-check this now that we have the actual
2306 			 * packet in hand.
2307 			 */
2308 
2309 			skb_reset_mac_header(skb);
2310 			ehdr = eth_hdr(skb);
2311 			if (ehdr->h_proto != htons(ETH_P_8021Q))
2312 				tp_len = -EMSGSIZE;
2313 		}
2314 		if (unlikely(tp_len < 0)) {
2315 			if (po->tp_loss) {
2316 				__packet_set_status(po, ph,
2317 						TP_STATUS_AVAILABLE);
2318 				packet_increment_head(&po->tx_ring);
2319 				kfree_skb(skb);
2320 				continue;
2321 			} else {
2322 				status = TP_STATUS_WRONG_FORMAT;
2323 				err = tp_len;
2324 				goto out_status;
2325 			}
2326 		}
2327 
2328 		packet_pick_tx_queue(dev, skb);
2329 
2330 		skb->destructor = tpacket_destruct_skb;
2331 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2332 		packet_inc_pending(&po->tx_ring);
2333 
2334 		status = TP_STATUS_SEND_REQUEST;
2335 		err = po->xmit(skb);
2336 		if (unlikely(err > 0)) {
2337 			err = net_xmit_errno(err);
2338 			if (err && __packet_get_status(po, ph) ==
2339 				   TP_STATUS_AVAILABLE) {
2340 				/* skb was destructed already */
2341 				skb = NULL;
2342 				goto out_status;
2343 			}
2344 			/*
2345 			 * skb was dropped but not destructed yet;
2346 			 * let's treat it like congestion or err < 0
2347 			 */
2348 			err = 0;
2349 		}
2350 		packet_increment_head(&po->tx_ring);
2351 		len_sum += tp_len;
2352 	} while (likely((ph != NULL) ||
2353 		/* Note: packet_read_pending() might be slow if we have
2354 		 * to call it as it's per_cpu variable, but in fast-path
2355 		 * we already short-circuit the loop with the first
2356 		 * condition, and luckily don't have to go that path
2357 		 * anyway.
2358 		 */
2359 		 (need_wait && packet_read_pending(&po->tx_ring))));
2360 
2361 	err = len_sum;
2362 	goto out_put;
2363 
2364 out_status:
2365 	__packet_set_status(po, ph, status);
2366 	kfree_skb(skb);
2367 out_put:
2368 	dev_put(dev);
2369 out:
2370 	mutex_unlock(&po->pg_vec_lock);
2371 	return err;
2372 }
2373 
2374 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2375 				        size_t reserve, size_t len,
2376 				        size_t linear, int noblock,
2377 				        int *err)
2378 {
2379 	struct sk_buff *skb;
2380 
2381 	/* Under a page?  Don't bother with paged skb. */
2382 	if (prepad + len < PAGE_SIZE || !linear)
2383 		linear = len;
2384 
2385 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2386 				   err, 0);
2387 	if (!skb)
2388 		return NULL;
2389 
2390 	skb_reserve(skb, reserve);
2391 	skb_put(skb, linear);
2392 	skb->data_len = len - linear;
2393 	skb->len += len - linear;
2394 
2395 	return skb;
2396 }
2397 
2398 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2399 {
2400 	struct sock *sk = sock->sk;
2401 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2402 	struct sk_buff *skb;
2403 	struct net_device *dev;
2404 	__be16 proto;
2405 	unsigned char *addr;
2406 	int err, reserve = 0;
2407 	struct virtio_net_hdr vnet_hdr = { 0 };
2408 	int offset = 0;
2409 	int vnet_hdr_len;
2410 	struct packet_sock *po = pkt_sk(sk);
2411 	unsigned short gso_type = 0;
2412 	int hlen, tlen;
2413 	int extra_len = 0;
2414 	ssize_t n;
2415 
2416 	/*
2417 	 *	Get and verify the address.
2418 	 */
2419 
2420 	if (likely(saddr == NULL)) {
2421 		dev	= packet_cached_dev_get(po);
2422 		proto	= po->num;
2423 		addr	= NULL;
2424 	} else {
2425 		err = -EINVAL;
2426 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2427 			goto out;
2428 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2429 			goto out;
2430 		proto	= saddr->sll_protocol;
2431 		addr	= saddr->sll_addr;
2432 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2433 	}
2434 
2435 	err = -ENXIO;
2436 	if (unlikely(dev == NULL))
2437 		goto out_unlock;
2438 	err = -ENETDOWN;
2439 	if (unlikely(!(dev->flags & IFF_UP)))
2440 		goto out_unlock;
2441 
2442 	if (sock->type == SOCK_RAW)
2443 		reserve = dev->hard_header_len;
2444 	if (po->has_vnet_hdr) {
2445 		vnet_hdr_len = sizeof(vnet_hdr);
2446 
2447 		err = -EINVAL;
2448 		if (len < vnet_hdr_len)
2449 			goto out_unlock;
2450 
2451 		len -= vnet_hdr_len;
2452 
2453 		err = -EFAULT;
2454 		n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2455 		if (n != vnet_hdr_len)
2456 			goto out_unlock;
2457 
2458 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2459 		    (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2460 		     __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2461 		      __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2462 			vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2463 				 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2464 				__virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2465 
2466 		err = -EINVAL;
2467 		if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2468 			goto out_unlock;
2469 
2470 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2471 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2472 			case VIRTIO_NET_HDR_GSO_TCPV4:
2473 				gso_type = SKB_GSO_TCPV4;
2474 				break;
2475 			case VIRTIO_NET_HDR_GSO_TCPV6:
2476 				gso_type = SKB_GSO_TCPV6;
2477 				break;
2478 			case VIRTIO_NET_HDR_GSO_UDP:
2479 				gso_type = SKB_GSO_UDP;
2480 				break;
2481 			default:
2482 				goto out_unlock;
2483 			}
2484 
2485 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2486 				gso_type |= SKB_GSO_TCP_ECN;
2487 
2488 			if (vnet_hdr.gso_size == 0)
2489 				goto out_unlock;
2490 
2491 		}
2492 	}
2493 
2494 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2495 		if (!netif_supports_nofcs(dev)) {
2496 			err = -EPROTONOSUPPORT;
2497 			goto out_unlock;
2498 		}
2499 		extra_len = 4; /* We're doing our own CRC */
2500 	}
2501 
2502 	err = -EMSGSIZE;
2503 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2504 		goto out_unlock;
2505 
2506 	err = -ENOBUFS;
2507 	hlen = LL_RESERVED_SPACE(dev);
2508 	tlen = dev->needed_tailroom;
2509 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2510 			       __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2511 			       msg->msg_flags & MSG_DONTWAIT, &err);
2512 	if (skb == NULL)
2513 		goto out_unlock;
2514 
2515 	skb_set_network_header(skb, reserve);
2516 
2517 	err = -EINVAL;
2518 	if (sock->type == SOCK_DGRAM) {
2519 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2520 		if (unlikely(offset < 0))
2521 			goto out_free;
2522 	} else {
2523 		if (ll_header_truncated(dev, len))
2524 			goto out_free;
2525 	}
2526 
2527 	/* Returns -EFAULT on error */
2528 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2529 	if (err)
2530 		goto out_free;
2531 
2532 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2533 
2534 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2535 		/* Earlier code assumed this would be a VLAN pkt,
2536 		 * double-check this now that we have the actual
2537 		 * packet in hand.
2538 		 */
2539 		struct ethhdr *ehdr;
2540 		skb_reset_mac_header(skb);
2541 		ehdr = eth_hdr(skb);
2542 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2543 			err = -EMSGSIZE;
2544 			goto out_free;
2545 		}
2546 	}
2547 
2548 	skb->protocol = proto;
2549 	skb->dev = dev;
2550 	skb->priority = sk->sk_priority;
2551 	skb->mark = sk->sk_mark;
2552 
2553 	packet_pick_tx_queue(dev, skb);
2554 
2555 	if (po->has_vnet_hdr) {
2556 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2557 			u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2558 			u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2559 			if (!skb_partial_csum_set(skb, s, o)) {
2560 				err = -EINVAL;
2561 				goto out_free;
2562 			}
2563 		}
2564 
2565 		skb_shinfo(skb)->gso_size =
2566 			__virtio16_to_cpu(false, vnet_hdr.gso_size);
2567 		skb_shinfo(skb)->gso_type = gso_type;
2568 
2569 		/* Header must be checked, and gso_segs computed. */
2570 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2571 		skb_shinfo(skb)->gso_segs = 0;
2572 
2573 		len += vnet_hdr_len;
2574 	}
2575 
2576 	if (!packet_use_direct_xmit(po))
2577 		skb_probe_transport_header(skb, reserve);
2578 	if (unlikely(extra_len == 4))
2579 		skb->no_fcs = 1;
2580 
2581 	err = po->xmit(skb);
2582 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2583 		goto out_unlock;
2584 
2585 	dev_put(dev);
2586 
2587 	return len;
2588 
2589 out_free:
2590 	kfree_skb(skb);
2591 out_unlock:
2592 	if (dev)
2593 		dev_put(dev);
2594 out:
2595 	return err;
2596 }
2597 
2598 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2599 		struct msghdr *msg, size_t len)
2600 {
2601 	struct sock *sk = sock->sk;
2602 	struct packet_sock *po = pkt_sk(sk);
2603 
2604 	if (po->tx_ring.pg_vec)
2605 		return tpacket_snd(po, msg);
2606 	else
2607 		return packet_snd(sock, msg, len);
2608 }
2609 
2610 /*
2611  *	Close a PACKET socket. This is fairly simple. We immediately go
2612  *	to 'closed' state and remove our protocol entry in the device list.
2613  */
2614 
2615 static int packet_release(struct socket *sock)
2616 {
2617 	struct sock *sk = sock->sk;
2618 	struct packet_sock *po;
2619 	struct net *net;
2620 	union tpacket_req_u req_u;
2621 
2622 	if (!sk)
2623 		return 0;
2624 
2625 	net = sock_net(sk);
2626 	po = pkt_sk(sk);
2627 
2628 	mutex_lock(&net->packet.sklist_lock);
2629 	sk_del_node_init_rcu(sk);
2630 	mutex_unlock(&net->packet.sklist_lock);
2631 
2632 	preempt_disable();
2633 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2634 	preempt_enable();
2635 
2636 	spin_lock(&po->bind_lock);
2637 	unregister_prot_hook(sk, false);
2638 	packet_cached_dev_reset(po);
2639 
2640 	if (po->prot_hook.dev) {
2641 		dev_put(po->prot_hook.dev);
2642 		po->prot_hook.dev = NULL;
2643 	}
2644 	spin_unlock(&po->bind_lock);
2645 
2646 	packet_flush_mclist(sk);
2647 
2648 	if (po->rx_ring.pg_vec) {
2649 		memset(&req_u, 0, sizeof(req_u));
2650 		packet_set_ring(sk, &req_u, 1, 0);
2651 	}
2652 
2653 	if (po->tx_ring.pg_vec) {
2654 		memset(&req_u, 0, sizeof(req_u));
2655 		packet_set_ring(sk, &req_u, 1, 1);
2656 	}
2657 
2658 	fanout_release(sk);
2659 
2660 	synchronize_net();
2661 	/*
2662 	 *	Now the socket is dead. No more input will appear.
2663 	 */
2664 	sock_orphan(sk);
2665 	sock->sk = NULL;
2666 
2667 	/* Purge queues */
2668 
2669 	skb_queue_purge(&sk->sk_receive_queue);
2670 	packet_free_pending(po);
2671 	sk_refcnt_debug_release(sk);
2672 
2673 	sock_put(sk);
2674 	return 0;
2675 }
2676 
2677 /*
2678  *	Attach a packet hook.
2679  */
2680 
2681 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2682 {
2683 	struct packet_sock *po = pkt_sk(sk);
2684 	const struct net_device *dev_curr;
2685 	__be16 proto_curr;
2686 	bool need_rehook;
2687 
2688 	if (po->fanout) {
2689 		if (dev)
2690 			dev_put(dev);
2691 
2692 		return -EINVAL;
2693 	}
2694 
2695 	lock_sock(sk);
2696 	spin_lock(&po->bind_lock);
2697 
2698 	proto_curr = po->prot_hook.type;
2699 	dev_curr = po->prot_hook.dev;
2700 
2701 	need_rehook = proto_curr != proto || dev_curr != dev;
2702 
2703 	if (need_rehook) {
2704 		unregister_prot_hook(sk, true);
2705 
2706 		po->num = proto;
2707 		po->prot_hook.type = proto;
2708 
2709 		if (po->prot_hook.dev)
2710 			dev_put(po->prot_hook.dev);
2711 
2712 		po->prot_hook.dev = dev;
2713 
2714 		po->ifindex = dev ? dev->ifindex : 0;
2715 		packet_cached_dev_assign(po, dev);
2716 	}
2717 
2718 	if (proto == 0 || !need_rehook)
2719 		goto out_unlock;
2720 
2721 	if (!dev || (dev->flags & IFF_UP)) {
2722 		register_prot_hook(sk);
2723 	} else {
2724 		sk->sk_err = ENETDOWN;
2725 		if (!sock_flag(sk, SOCK_DEAD))
2726 			sk->sk_error_report(sk);
2727 	}
2728 
2729 out_unlock:
2730 	spin_unlock(&po->bind_lock);
2731 	release_sock(sk);
2732 	return 0;
2733 }
2734 
2735 /*
2736  *	Bind a packet socket to a device
2737  */
2738 
2739 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2740 			    int addr_len)
2741 {
2742 	struct sock *sk = sock->sk;
2743 	char name[15];
2744 	struct net_device *dev;
2745 	int err = -ENODEV;
2746 
2747 	/*
2748 	 *	Check legality
2749 	 */
2750 
2751 	if (addr_len != sizeof(struct sockaddr))
2752 		return -EINVAL;
2753 	strlcpy(name, uaddr->sa_data, sizeof(name));
2754 
2755 	dev = dev_get_by_name(sock_net(sk), name);
2756 	if (dev)
2757 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2758 	return err;
2759 }
2760 
2761 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2762 {
2763 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2764 	struct sock *sk = sock->sk;
2765 	struct net_device *dev = NULL;
2766 	int err;
2767 
2768 
2769 	/*
2770 	 *	Check legality
2771 	 */
2772 
2773 	if (addr_len < sizeof(struct sockaddr_ll))
2774 		return -EINVAL;
2775 	if (sll->sll_family != AF_PACKET)
2776 		return -EINVAL;
2777 
2778 	if (sll->sll_ifindex) {
2779 		err = -ENODEV;
2780 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2781 		if (dev == NULL)
2782 			goto out;
2783 	}
2784 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2785 
2786 out:
2787 	return err;
2788 }
2789 
2790 static struct proto packet_proto = {
2791 	.name	  = "PACKET",
2792 	.owner	  = THIS_MODULE,
2793 	.obj_size = sizeof(struct packet_sock),
2794 };
2795 
2796 /*
2797  *	Create a packet of type SOCK_PACKET.
2798  */
2799 
2800 static int packet_create(struct net *net, struct socket *sock, int protocol,
2801 			 int kern)
2802 {
2803 	struct sock *sk;
2804 	struct packet_sock *po;
2805 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2806 	int err;
2807 
2808 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
2809 		return -EPERM;
2810 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2811 	    sock->type != SOCK_PACKET)
2812 		return -ESOCKTNOSUPPORT;
2813 
2814 	sock->state = SS_UNCONNECTED;
2815 
2816 	err = -ENOBUFS;
2817 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2818 	if (sk == NULL)
2819 		goto out;
2820 
2821 	sock->ops = &packet_ops;
2822 	if (sock->type == SOCK_PACKET)
2823 		sock->ops = &packet_ops_spkt;
2824 
2825 	sock_init_data(sock, sk);
2826 
2827 	po = pkt_sk(sk);
2828 	sk->sk_family = PF_PACKET;
2829 	po->num = proto;
2830 	po->xmit = dev_queue_xmit;
2831 
2832 	err = packet_alloc_pending(po);
2833 	if (err)
2834 		goto out2;
2835 
2836 	packet_cached_dev_reset(po);
2837 
2838 	sk->sk_destruct = packet_sock_destruct;
2839 	sk_refcnt_debug_inc(sk);
2840 
2841 	/*
2842 	 *	Attach a protocol block
2843 	 */
2844 
2845 	spin_lock_init(&po->bind_lock);
2846 	mutex_init(&po->pg_vec_lock);
2847 	po->prot_hook.func = packet_rcv;
2848 
2849 	if (sock->type == SOCK_PACKET)
2850 		po->prot_hook.func = packet_rcv_spkt;
2851 
2852 	po->prot_hook.af_packet_priv = sk;
2853 
2854 	if (proto) {
2855 		po->prot_hook.type = proto;
2856 		register_prot_hook(sk);
2857 	}
2858 
2859 	mutex_lock(&net->packet.sklist_lock);
2860 	sk_add_node_rcu(sk, &net->packet.sklist);
2861 	mutex_unlock(&net->packet.sklist_lock);
2862 
2863 	preempt_disable();
2864 	sock_prot_inuse_add(net, &packet_proto, 1);
2865 	preempt_enable();
2866 
2867 	return 0;
2868 out2:
2869 	sk_free(sk);
2870 out:
2871 	return err;
2872 }
2873 
2874 /*
2875  *	Pull a packet from our receive queue and hand it to the user.
2876  *	If necessary we block.
2877  */
2878 
2879 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2880 			  struct msghdr *msg, size_t len, int flags)
2881 {
2882 	struct sock *sk = sock->sk;
2883 	struct sk_buff *skb;
2884 	int copied, err;
2885 	int vnet_hdr_len = 0;
2886 
2887 	err = -EINVAL;
2888 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2889 		goto out;
2890 
2891 #if 0
2892 	/* What error should we return now? EUNATTACH? */
2893 	if (pkt_sk(sk)->ifindex < 0)
2894 		return -ENODEV;
2895 #endif
2896 
2897 	if (flags & MSG_ERRQUEUE) {
2898 		err = sock_recv_errqueue(sk, msg, len,
2899 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
2900 		goto out;
2901 	}
2902 
2903 	/*
2904 	 *	Call the generic datagram receiver. This handles all sorts
2905 	 *	of horrible races and re-entrancy so we can forget about it
2906 	 *	in the protocol layers.
2907 	 *
2908 	 *	Now it will return ENETDOWN, if device have just gone down,
2909 	 *	but then it will block.
2910 	 */
2911 
2912 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2913 
2914 	/*
2915 	 *	An error occurred so return it. Because skb_recv_datagram()
2916 	 *	handles the blocking we don't see and worry about blocking
2917 	 *	retries.
2918 	 */
2919 
2920 	if (skb == NULL)
2921 		goto out;
2922 
2923 	if (pkt_sk(sk)->has_vnet_hdr) {
2924 		struct virtio_net_hdr vnet_hdr = { 0 };
2925 
2926 		err = -EINVAL;
2927 		vnet_hdr_len = sizeof(vnet_hdr);
2928 		if (len < vnet_hdr_len)
2929 			goto out_free;
2930 
2931 		len -= vnet_hdr_len;
2932 
2933 		if (skb_is_gso(skb)) {
2934 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2935 
2936 			/* This is a hint as to how much should be linear. */
2937 			vnet_hdr.hdr_len =
2938 				__cpu_to_virtio16(false, skb_headlen(skb));
2939 			vnet_hdr.gso_size =
2940 				__cpu_to_virtio16(false, sinfo->gso_size);
2941 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2942 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2943 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2944 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2945 			else if (sinfo->gso_type & SKB_GSO_UDP)
2946 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2947 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2948 				goto out_free;
2949 			else
2950 				BUG();
2951 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2952 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2953 		} else
2954 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2955 
2956 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2957 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2958 			vnet_hdr.csum_start = __cpu_to_virtio16(false,
2959 					  skb_checksum_start_offset(skb));
2960 			vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2961 							 skb->csum_offset);
2962 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2963 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2964 		} /* else everything is zero */
2965 
2966 		err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2967 		if (err < 0)
2968 			goto out_free;
2969 	}
2970 
2971 	/* You lose any data beyond the buffer you gave. If it worries
2972 	 * a user program they can ask the device for its MTU
2973 	 * anyway.
2974 	 */
2975 	copied = skb->len;
2976 	if (copied > len) {
2977 		copied = len;
2978 		msg->msg_flags |= MSG_TRUNC;
2979 	}
2980 
2981 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2982 	if (err)
2983 		goto out_free;
2984 
2985 	sock_recv_ts_and_drops(msg, sk, skb);
2986 
2987 	if (msg->msg_name) {
2988 		/* If the address length field is there to be filled
2989 		 * in, we fill it in now.
2990 		 */
2991 		if (sock->type == SOCK_PACKET) {
2992 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
2993 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
2994 		} else {
2995 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2996 			msg->msg_namelen = sll->sll_halen +
2997 				offsetof(struct sockaddr_ll, sll_addr);
2998 		}
2999 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3000 		       msg->msg_namelen);
3001 	}
3002 
3003 	if (pkt_sk(sk)->auxdata) {
3004 		struct tpacket_auxdata aux;
3005 
3006 		aux.tp_status = TP_STATUS_USER;
3007 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3008 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3009 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
3010 		aux.tp_snaplen = skb->len;
3011 		aux.tp_mac = 0;
3012 		aux.tp_net = skb_network_offset(skb);
3013 		if (skb_vlan_tag_present(skb)) {
3014 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3015 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3016 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3017 		} else {
3018 			aux.tp_vlan_tci = 0;
3019 			aux.tp_vlan_tpid = 0;
3020 		}
3021 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3022 	}
3023 
3024 	/*
3025 	 *	Free or return the buffer as appropriate. Again this
3026 	 *	hides all the races and re-entrancy issues from us.
3027 	 */
3028 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3029 
3030 out_free:
3031 	skb_free_datagram(sk, skb);
3032 out:
3033 	return err;
3034 }
3035 
3036 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3037 			       int *uaddr_len, int peer)
3038 {
3039 	struct net_device *dev;
3040 	struct sock *sk	= sock->sk;
3041 
3042 	if (peer)
3043 		return -EOPNOTSUPP;
3044 
3045 	uaddr->sa_family = AF_PACKET;
3046 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3047 	rcu_read_lock();
3048 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3049 	if (dev)
3050 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3051 	rcu_read_unlock();
3052 	*uaddr_len = sizeof(*uaddr);
3053 
3054 	return 0;
3055 }
3056 
3057 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3058 			  int *uaddr_len, int peer)
3059 {
3060 	struct net_device *dev;
3061 	struct sock *sk = sock->sk;
3062 	struct packet_sock *po = pkt_sk(sk);
3063 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3064 
3065 	if (peer)
3066 		return -EOPNOTSUPP;
3067 
3068 	sll->sll_family = AF_PACKET;
3069 	sll->sll_ifindex = po->ifindex;
3070 	sll->sll_protocol = po->num;
3071 	sll->sll_pkttype = 0;
3072 	rcu_read_lock();
3073 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3074 	if (dev) {
3075 		sll->sll_hatype = dev->type;
3076 		sll->sll_halen = dev->addr_len;
3077 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3078 	} else {
3079 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3080 		sll->sll_halen = 0;
3081 	}
3082 	rcu_read_unlock();
3083 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3084 
3085 	return 0;
3086 }
3087 
3088 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3089 			 int what)
3090 {
3091 	switch (i->type) {
3092 	case PACKET_MR_MULTICAST:
3093 		if (i->alen != dev->addr_len)
3094 			return -EINVAL;
3095 		if (what > 0)
3096 			return dev_mc_add(dev, i->addr);
3097 		else
3098 			return dev_mc_del(dev, i->addr);
3099 		break;
3100 	case PACKET_MR_PROMISC:
3101 		return dev_set_promiscuity(dev, what);
3102 	case PACKET_MR_ALLMULTI:
3103 		return dev_set_allmulti(dev, what);
3104 	case PACKET_MR_UNICAST:
3105 		if (i->alen != dev->addr_len)
3106 			return -EINVAL;
3107 		if (what > 0)
3108 			return dev_uc_add(dev, i->addr);
3109 		else
3110 			return dev_uc_del(dev, i->addr);
3111 		break;
3112 	default:
3113 		break;
3114 	}
3115 	return 0;
3116 }
3117 
3118 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3119 {
3120 	for ( ; i; i = i->next) {
3121 		if (i->ifindex == dev->ifindex)
3122 			packet_dev_mc(dev, i, what);
3123 	}
3124 }
3125 
3126 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3127 {
3128 	struct packet_sock *po = pkt_sk(sk);
3129 	struct packet_mclist *ml, *i;
3130 	struct net_device *dev;
3131 	int err;
3132 
3133 	rtnl_lock();
3134 
3135 	err = -ENODEV;
3136 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3137 	if (!dev)
3138 		goto done;
3139 
3140 	err = -EINVAL;
3141 	if (mreq->mr_alen > dev->addr_len)
3142 		goto done;
3143 
3144 	err = -ENOBUFS;
3145 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3146 	if (i == NULL)
3147 		goto done;
3148 
3149 	err = 0;
3150 	for (ml = po->mclist; ml; ml = ml->next) {
3151 		if (ml->ifindex == mreq->mr_ifindex &&
3152 		    ml->type == mreq->mr_type &&
3153 		    ml->alen == mreq->mr_alen &&
3154 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3155 			ml->count++;
3156 			/* Free the new element ... */
3157 			kfree(i);
3158 			goto done;
3159 		}
3160 	}
3161 
3162 	i->type = mreq->mr_type;
3163 	i->ifindex = mreq->mr_ifindex;
3164 	i->alen = mreq->mr_alen;
3165 	memcpy(i->addr, mreq->mr_address, i->alen);
3166 	i->count = 1;
3167 	i->next = po->mclist;
3168 	po->mclist = i;
3169 	err = packet_dev_mc(dev, i, 1);
3170 	if (err) {
3171 		po->mclist = i->next;
3172 		kfree(i);
3173 	}
3174 
3175 done:
3176 	rtnl_unlock();
3177 	return err;
3178 }
3179 
3180 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3181 {
3182 	struct packet_mclist *ml, **mlp;
3183 
3184 	rtnl_lock();
3185 
3186 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3187 		if (ml->ifindex == mreq->mr_ifindex &&
3188 		    ml->type == mreq->mr_type &&
3189 		    ml->alen == mreq->mr_alen &&
3190 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3191 			if (--ml->count == 0) {
3192 				struct net_device *dev;
3193 				*mlp = ml->next;
3194 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3195 				if (dev)
3196 					packet_dev_mc(dev, ml, -1);
3197 				kfree(ml);
3198 			}
3199 			rtnl_unlock();
3200 			return 0;
3201 		}
3202 	}
3203 	rtnl_unlock();
3204 	return -EADDRNOTAVAIL;
3205 }
3206 
3207 static void packet_flush_mclist(struct sock *sk)
3208 {
3209 	struct packet_sock *po = pkt_sk(sk);
3210 	struct packet_mclist *ml;
3211 
3212 	if (!po->mclist)
3213 		return;
3214 
3215 	rtnl_lock();
3216 	while ((ml = po->mclist) != NULL) {
3217 		struct net_device *dev;
3218 
3219 		po->mclist = ml->next;
3220 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3221 		if (dev != NULL)
3222 			packet_dev_mc(dev, ml, -1);
3223 		kfree(ml);
3224 	}
3225 	rtnl_unlock();
3226 }
3227 
3228 static int
3229 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3230 {
3231 	struct sock *sk = sock->sk;
3232 	struct packet_sock *po = pkt_sk(sk);
3233 	int ret;
3234 
3235 	if (level != SOL_PACKET)
3236 		return -ENOPROTOOPT;
3237 
3238 	switch (optname) {
3239 	case PACKET_ADD_MEMBERSHIP:
3240 	case PACKET_DROP_MEMBERSHIP:
3241 	{
3242 		struct packet_mreq_max mreq;
3243 		int len = optlen;
3244 		memset(&mreq, 0, sizeof(mreq));
3245 		if (len < sizeof(struct packet_mreq))
3246 			return -EINVAL;
3247 		if (len > sizeof(mreq))
3248 			len = sizeof(mreq);
3249 		if (copy_from_user(&mreq, optval, len))
3250 			return -EFAULT;
3251 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3252 			return -EINVAL;
3253 		if (optname == PACKET_ADD_MEMBERSHIP)
3254 			ret = packet_mc_add(sk, &mreq);
3255 		else
3256 			ret = packet_mc_drop(sk, &mreq);
3257 		return ret;
3258 	}
3259 
3260 	case PACKET_RX_RING:
3261 	case PACKET_TX_RING:
3262 	{
3263 		union tpacket_req_u req_u;
3264 		int len;
3265 
3266 		switch (po->tp_version) {
3267 		case TPACKET_V1:
3268 		case TPACKET_V2:
3269 			len = sizeof(req_u.req);
3270 			break;
3271 		case TPACKET_V3:
3272 		default:
3273 			len = sizeof(req_u.req3);
3274 			break;
3275 		}
3276 		if (optlen < len)
3277 			return -EINVAL;
3278 		if (pkt_sk(sk)->has_vnet_hdr)
3279 			return -EINVAL;
3280 		if (copy_from_user(&req_u.req, optval, len))
3281 			return -EFAULT;
3282 		return packet_set_ring(sk, &req_u, 0,
3283 			optname == PACKET_TX_RING);
3284 	}
3285 	case PACKET_COPY_THRESH:
3286 	{
3287 		int val;
3288 
3289 		if (optlen != sizeof(val))
3290 			return -EINVAL;
3291 		if (copy_from_user(&val, optval, sizeof(val)))
3292 			return -EFAULT;
3293 
3294 		pkt_sk(sk)->copy_thresh = val;
3295 		return 0;
3296 	}
3297 	case PACKET_VERSION:
3298 	{
3299 		int val;
3300 
3301 		if (optlen != sizeof(val))
3302 			return -EINVAL;
3303 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3304 			return -EBUSY;
3305 		if (copy_from_user(&val, optval, sizeof(val)))
3306 			return -EFAULT;
3307 		switch (val) {
3308 		case TPACKET_V1:
3309 		case TPACKET_V2:
3310 		case TPACKET_V3:
3311 			po->tp_version = val;
3312 			return 0;
3313 		default:
3314 			return -EINVAL;
3315 		}
3316 	}
3317 	case PACKET_RESERVE:
3318 	{
3319 		unsigned int val;
3320 
3321 		if (optlen != sizeof(val))
3322 			return -EINVAL;
3323 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3324 			return -EBUSY;
3325 		if (copy_from_user(&val, optval, sizeof(val)))
3326 			return -EFAULT;
3327 		po->tp_reserve = val;
3328 		return 0;
3329 	}
3330 	case PACKET_LOSS:
3331 	{
3332 		unsigned int val;
3333 
3334 		if (optlen != sizeof(val))
3335 			return -EINVAL;
3336 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3337 			return -EBUSY;
3338 		if (copy_from_user(&val, optval, sizeof(val)))
3339 			return -EFAULT;
3340 		po->tp_loss = !!val;
3341 		return 0;
3342 	}
3343 	case PACKET_AUXDATA:
3344 	{
3345 		int val;
3346 
3347 		if (optlen < sizeof(val))
3348 			return -EINVAL;
3349 		if (copy_from_user(&val, optval, sizeof(val)))
3350 			return -EFAULT;
3351 
3352 		po->auxdata = !!val;
3353 		return 0;
3354 	}
3355 	case PACKET_ORIGDEV:
3356 	{
3357 		int val;
3358 
3359 		if (optlen < sizeof(val))
3360 			return -EINVAL;
3361 		if (copy_from_user(&val, optval, sizeof(val)))
3362 			return -EFAULT;
3363 
3364 		po->origdev = !!val;
3365 		return 0;
3366 	}
3367 	case PACKET_VNET_HDR:
3368 	{
3369 		int val;
3370 
3371 		if (sock->type != SOCK_RAW)
3372 			return -EINVAL;
3373 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3374 			return -EBUSY;
3375 		if (optlen < sizeof(val))
3376 			return -EINVAL;
3377 		if (copy_from_user(&val, optval, sizeof(val)))
3378 			return -EFAULT;
3379 
3380 		po->has_vnet_hdr = !!val;
3381 		return 0;
3382 	}
3383 	case PACKET_TIMESTAMP:
3384 	{
3385 		int val;
3386 
3387 		if (optlen != sizeof(val))
3388 			return -EINVAL;
3389 		if (copy_from_user(&val, optval, sizeof(val)))
3390 			return -EFAULT;
3391 
3392 		po->tp_tstamp = val;
3393 		return 0;
3394 	}
3395 	case PACKET_FANOUT:
3396 	{
3397 		int val;
3398 
3399 		if (optlen != sizeof(val))
3400 			return -EINVAL;
3401 		if (copy_from_user(&val, optval, sizeof(val)))
3402 			return -EFAULT;
3403 
3404 		return fanout_add(sk, val & 0xffff, val >> 16);
3405 	}
3406 	case PACKET_TX_HAS_OFF:
3407 	{
3408 		unsigned int val;
3409 
3410 		if (optlen != sizeof(val))
3411 			return -EINVAL;
3412 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3413 			return -EBUSY;
3414 		if (copy_from_user(&val, optval, sizeof(val)))
3415 			return -EFAULT;
3416 		po->tp_tx_has_off = !!val;
3417 		return 0;
3418 	}
3419 	case PACKET_QDISC_BYPASS:
3420 	{
3421 		int val;
3422 
3423 		if (optlen != sizeof(val))
3424 			return -EINVAL;
3425 		if (copy_from_user(&val, optval, sizeof(val)))
3426 			return -EFAULT;
3427 
3428 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3429 		return 0;
3430 	}
3431 	default:
3432 		return -ENOPROTOOPT;
3433 	}
3434 }
3435 
3436 static int packet_getsockopt(struct socket *sock, int level, int optname,
3437 			     char __user *optval, int __user *optlen)
3438 {
3439 	int len;
3440 	int val, lv = sizeof(val);
3441 	struct sock *sk = sock->sk;
3442 	struct packet_sock *po = pkt_sk(sk);
3443 	void *data = &val;
3444 	union tpacket_stats_u st;
3445 
3446 	if (level != SOL_PACKET)
3447 		return -ENOPROTOOPT;
3448 
3449 	if (get_user(len, optlen))
3450 		return -EFAULT;
3451 
3452 	if (len < 0)
3453 		return -EINVAL;
3454 
3455 	switch (optname) {
3456 	case PACKET_STATISTICS:
3457 		spin_lock_bh(&sk->sk_receive_queue.lock);
3458 		memcpy(&st, &po->stats, sizeof(st));
3459 		memset(&po->stats, 0, sizeof(po->stats));
3460 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3461 
3462 		if (po->tp_version == TPACKET_V3) {
3463 			lv = sizeof(struct tpacket_stats_v3);
3464 			st.stats3.tp_packets += st.stats3.tp_drops;
3465 			data = &st.stats3;
3466 		} else {
3467 			lv = sizeof(struct tpacket_stats);
3468 			st.stats1.tp_packets += st.stats1.tp_drops;
3469 			data = &st.stats1;
3470 		}
3471 
3472 		break;
3473 	case PACKET_AUXDATA:
3474 		val = po->auxdata;
3475 		break;
3476 	case PACKET_ORIGDEV:
3477 		val = po->origdev;
3478 		break;
3479 	case PACKET_VNET_HDR:
3480 		val = po->has_vnet_hdr;
3481 		break;
3482 	case PACKET_VERSION:
3483 		val = po->tp_version;
3484 		break;
3485 	case PACKET_HDRLEN:
3486 		if (len > sizeof(int))
3487 			len = sizeof(int);
3488 		if (copy_from_user(&val, optval, len))
3489 			return -EFAULT;
3490 		switch (val) {
3491 		case TPACKET_V1:
3492 			val = sizeof(struct tpacket_hdr);
3493 			break;
3494 		case TPACKET_V2:
3495 			val = sizeof(struct tpacket2_hdr);
3496 			break;
3497 		case TPACKET_V3:
3498 			val = sizeof(struct tpacket3_hdr);
3499 			break;
3500 		default:
3501 			return -EINVAL;
3502 		}
3503 		break;
3504 	case PACKET_RESERVE:
3505 		val = po->tp_reserve;
3506 		break;
3507 	case PACKET_LOSS:
3508 		val = po->tp_loss;
3509 		break;
3510 	case PACKET_TIMESTAMP:
3511 		val = po->tp_tstamp;
3512 		break;
3513 	case PACKET_FANOUT:
3514 		val = (po->fanout ?
3515 		       ((u32)po->fanout->id |
3516 			((u32)po->fanout->type << 16) |
3517 			((u32)po->fanout->flags << 24)) :
3518 		       0);
3519 		break;
3520 	case PACKET_TX_HAS_OFF:
3521 		val = po->tp_tx_has_off;
3522 		break;
3523 	case PACKET_QDISC_BYPASS:
3524 		val = packet_use_direct_xmit(po);
3525 		break;
3526 	default:
3527 		return -ENOPROTOOPT;
3528 	}
3529 
3530 	if (len > lv)
3531 		len = lv;
3532 	if (put_user(len, optlen))
3533 		return -EFAULT;
3534 	if (copy_to_user(optval, data, len))
3535 		return -EFAULT;
3536 	return 0;
3537 }
3538 
3539 
3540 static int packet_notifier(struct notifier_block *this,
3541 			   unsigned long msg, void *ptr)
3542 {
3543 	struct sock *sk;
3544 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3545 	struct net *net = dev_net(dev);
3546 
3547 	rcu_read_lock();
3548 	sk_for_each_rcu(sk, &net->packet.sklist) {
3549 		struct packet_sock *po = pkt_sk(sk);
3550 
3551 		switch (msg) {
3552 		case NETDEV_UNREGISTER:
3553 			if (po->mclist)
3554 				packet_dev_mclist(dev, po->mclist, -1);
3555 			/* fallthrough */
3556 
3557 		case NETDEV_DOWN:
3558 			if (dev->ifindex == po->ifindex) {
3559 				spin_lock(&po->bind_lock);
3560 				if (po->running) {
3561 					__unregister_prot_hook(sk, false);
3562 					sk->sk_err = ENETDOWN;
3563 					if (!sock_flag(sk, SOCK_DEAD))
3564 						sk->sk_error_report(sk);
3565 				}
3566 				if (msg == NETDEV_UNREGISTER) {
3567 					packet_cached_dev_reset(po);
3568 					po->ifindex = -1;
3569 					if (po->prot_hook.dev)
3570 						dev_put(po->prot_hook.dev);
3571 					po->prot_hook.dev = NULL;
3572 				}
3573 				spin_unlock(&po->bind_lock);
3574 			}
3575 			break;
3576 		case NETDEV_UP:
3577 			if (dev->ifindex == po->ifindex) {
3578 				spin_lock(&po->bind_lock);
3579 				if (po->num)
3580 					register_prot_hook(sk);
3581 				spin_unlock(&po->bind_lock);
3582 			}
3583 			break;
3584 		}
3585 	}
3586 	rcu_read_unlock();
3587 	return NOTIFY_DONE;
3588 }
3589 
3590 
3591 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3592 			unsigned long arg)
3593 {
3594 	struct sock *sk = sock->sk;
3595 
3596 	switch (cmd) {
3597 	case SIOCOUTQ:
3598 	{
3599 		int amount = sk_wmem_alloc_get(sk);
3600 
3601 		return put_user(amount, (int __user *)arg);
3602 	}
3603 	case SIOCINQ:
3604 	{
3605 		struct sk_buff *skb;
3606 		int amount = 0;
3607 
3608 		spin_lock_bh(&sk->sk_receive_queue.lock);
3609 		skb = skb_peek(&sk->sk_receive_queue);
3610 		if (skb)
3611 			amount = skb->len;
3612 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3613 		return put_user(amount, (int __user *)arg);
3614 	}
3615 	case SIOCGSTAMP:
3616 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3617 	case SIOCGSTAMPNS:
3618 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3619 
3620 #ifdef CONFIG_INET
3621 	case SIOCADDRT:
3622 	case SIOCDELRT:
3623 	case SIOCDARP:
3624 	case SIOCGARP:
3625 	case SIOCSARP:
3626 	case SIOCGIFADDR:
3627 	case SIOCSIFADDR:
3628 	case SIOCGIFBRDADDR:
3629 	case SIOCSIFBRDADDR:
3630 	case SIOCGIFNETMASK:
3631 	case SIOCSIFNETMASK:
3632 	case SIOCGIFDSTADDR:
3633 	case SIOCSIFDSTADDR:
3634 	case SIOCSIFFLAGS:
3635 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3636 #endif
3637 
3638 	default:
3639 		return -ENOIOCTLCMD;
3640 	}
3641 	return 0;
3642 }
3643 
3644 static unsigned int packet_poll(struct file *file, struct socket *sock,
3645 				poll_table *wait)
3646 {
3647 	struct sock *sk = sock->sk;
3648 	struct packet_sock *po = pkt_sk(sk);
3649 	unsigned int mask = datagram_poll(file, sock, wait);
3650 
3651 	spin_lock_bh(&sk->sk_receive_queue.lock);
3652 	if (po->rx_ring.pg_vec) {
3653 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3654 			TP_STATUS_KERNEL))
3655 			mask |= POLLIN | POLLRDNORM;
3656 	}
3657 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3658 	spin_lock_bh(&sk->sk_write_queue.lock);
3659 	if (po->tx_ring.pg_vec) {
3660 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3661 			mask |= POLLOUT | POLLWRNORM;
3662 	}
3663 	spin_unlock_bh(&sk->sk_write_queue.lock);
3664 	return mask;
3665 }
3666 
3667 
3668 /* Dirty? Well, I still did not learn better way to account
3669  * for user mmaps.
3670  */
3671 
3672 static void packet_mm_open(struct vm_area_struct *vma)
3673 {
3674 	struct file *file = vma->vm_file;
3675 	struct socket *sock = file->private_data;
3676 	struct sock *sk = sock->sk;
3677 
3678 	if (sk)
3679 		atomic_inc(&pkt_sk(sk)->mapped);
3680 }
3681 
3682 static void packet_mm_close(struct vm_area_struct *vma)
3683 {
3684 	struct file *file = vma->vm_file;
3685 	struct socket *sock = file->private_data;
3686 	struct sock *sk = sock->sk;
3687 
3688 	if (sk)
3689 		atomic_dec(&pkt_sk(sk)->mapped);
3690 }
3691 
3692 static const struct vm_operations_struct packet_mmap_ops = {
3693 	.open	=	packet_mm_open,
3694 	.close	=	packet_mm_close,
3695 };
3696 
3697 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3698 			unsigned int len)
3699 {
3700 	int i;
3701 
3702 	for (i = 0; i < len; i++) {
3703 		if (likely(pg_vec[i].buffer)) {
3704 			if (is_vmalloc_addr(pg_vec[i].buffer))
3705 				vfree(pg_vec[i].buffer);
3706 			else
3707 				free_pages((unsigned long)pg_vec[i].buffer,
3708 					   order);
3709 			pg_vec[i].buffer = NULL;
3710 		}
3711 	}
3712 	kfree(pg_vec);
3713 }
3714 
3715 static char *alloc_one_pg_vec_page(unsigned long order)
3716 {
3717 	char *buffer;
3718 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3719 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3720 
3721 	buffer = (char *) __get_free_pages(gfp_flags, order);
3722 	if (buffer)
3723 		return buffer;
3724 
3725 	/* __get_free_pages failed, fall back to vmalloc */
3726 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3727 	if (buffer)
3728 		return buffer;
3729 
3730 	/* vmalloc failed, lets dig into swap here */
3731 	gfp_flags &= ~__GFP_NORETRY;
3732 	buffer = (char *) __get_free_pages(gfp_flags, order);
3733 	if (buffer)
3734 		return buffer;
3735 
3736 	/* complete and utter failure */
3737 	return NULL;
3738 }
3739 
3740 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3741 {
3742 	unsigned int block_nr = req->tp_block_nr;
3743 	struct pgv *pg_vec;
3744 	int i;
3745 
3746 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3747 	if (unlikely(!pg_vec))
3748 		goto out;
3749 
3750 	for (i = 0; i < block_nr; i++) {
3751 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3752 		if (unlikely(!pg_vec[i].buffer))
3753 			goto out_free_pgvec;
3754 	}
3755 
3756 out:
3757 	return pg_vec;
3758 
3759 out_free_pgvec:
3760 	free_pg_vec(pg_vec, order, block_nr);
3761 	pg_vec = NULL;
3762 	goto out;
3763 }
3764 
3765 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3766 		int closing, int tx_ring)
3767 {
3768 	struct pgv *pg_vec = NULL;
3769 	struct packet_sock *po = pkt_sk(sk);
3770 	int was_running, order = 0;
3771 	struct packet_ring_buffer *rb;
3772 	struct sk_buff_head *rb_queue;
3773 	__be16 num;
3774 	int err = -EINVAL;
3775 	/* Added to avoid minimal code churn */
3776 	struct tpacket_req *req = &req_u->req;
3777 
3778 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3779 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3780 		WARN(1, "Tx-ring is not supported.\n");
3781 		goto out;
3782 	}
3783 
3784 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3785 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3786 
3787 	err = -EBUSY;
3788 	if (!closing) {
3789 		if (atomic_read(&po->mapped))
3790 			goto out;
3791 		if (packet_read_pending(rb))
3792 			goto out;
3793 	}
3794 
3795 	if (req->tp_block_nr) {
3796 		/* Sanity tests and some calculations */
3797 		err = -EBUSY;
3798 		if (unlikely(rb->pg_vec))
3799 			goto out;
3800 
3801 		switch (po->tp_version) {
3802 		case TPACKET_V1:
3803 			po->tp_hdrlen = TPACKET_HDRLEN;
3804 			break;
3805 		case TPACKET_V2:
3806 			po->tp_hdrlen = TPACKET2_HDRLEN;
3807 			break;
3808 		case TPACKET_V3:
3809 			po->tp_hdrlen = TPACKET3_HDRLEN;
3810 			break;
3811 		}
3812 
3813 		err = -EINVAL;
3814 		if (unlikely((int)req->tp_block_size <= 0))
3815 			goto out;
3816 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3817 			goto out;
3818 		if (po->tp_version >= TPACKET_V3 &&
3819 		    (int)(req->tp_block_size -
3820 			  BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3821 			goto out;
3822 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3823 					po->tp_reserve))
3824 			goto out;
3825 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3826 			goto out;
3827 
3828 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3829 		if (unlikely(rb->frames_per_block <= 0))
3830 			goto out;
3831 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3832 					req->tp_frame_nr))
3833 			goto out;
3834 
3835 		err = -ENOMEM;
3836 		order = get_order(req->tp_block_size);
3837 		pg_vec = alloc_pg_vec(req, order);
3838 		if (unlikely(!pg_vec))
3839 			goto out;
3840 		switch (po->tp_version) {
3841 		case TPACKET_V3:
3842 		/* Transmit path is not supported. We checked
3843 		 * it above but just being paranoid
3844 		 */
3845 			if (!tx_ring)
3846 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3847 			break;
3848 		default:
3849 			break;
3850 		}
3851 	}
3852 	/* Done */
3853 	else {
3854 		err = -EINVAL;
3855 		if (unlikely(req->tp_frame_nr))
3856 			goto out;
3857 	}
3858 
3859 	lock_sock(sk);
3860 
3861 	/* Detach socket from network */
3862 	spin_lock(&po->bind_lock);
3863 	was_running = po->running;
3864 	num = po->num;
3865 	if (was_running) {
3866 		po->num = 0;
3867 		__unregister_prot_hook(sk, false);
3868 	}
3869 	spin_unlock(&po->bind_lock);
3870 
3871 	synchronize_net();
3872 
3873 	err = -EBUSY;
3874 	mutex_lock(&po->pg_vec_lock);
3875 	if (closing || atomic_read(&po->mapped) == 0) {
3876 		err = 0;
3877 		spin_lock_bh(&rb_queue->lock);
3878 		swap(rb->pg_vec, pg_vec);
3879 		rb->frame_max = (req->tp_frame_nr - 1);
3880 		rb->head = 0;
3881 		rb->frame_size = req->tp_frame_size;
3882 		spin_unlock_bh(&rb_queue->lock);
3883 
3884 		swap(rb->pg_vec_order, order);
3885 		swap(rb->pg_vec_len, req->tp_block_nr);
3886 
3887 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3888 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3889 						tpacket_rcv : packet_rcv;
3890 		skb_queue_purge(rb_queue);
3891 		if (atomic_read(&po->mapped))
3892 			pr_err("packet_mmap: vma is busy: %d\n",
3893 			       atomic_read(&po->mapped));
3894 	}
3895 	mutex_unlock(&po->pg_vec_lock);
3896 
3897 	spin_lock(&po->bind_lock);
3898 	if (was_running) {
3899 		po->num = num;
3900 		register_prot_hook(sk);
3901 	}
3902 	spin_unlock(&po->bind_lock);
3903 	if (closing && (po->tp_version > TPACKET_V2)) {
3904 		/* Because we don't support block-based V3 on tx-ring */
3905 		if (!tx_ring)
3906 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3907 	}
3908 	release_sock(sk);
3909 
3910 	if (pg_vec)
3911 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3912 out:
3913 	return err;
3914 }
3915 
3916 static int packet_mmap(struct file *file, struct socket *sock,
3917 		struct vm_area_struct *vma)
3918 {
3919 	struct sock *sk = sock->sk;
3920 	struct packet_sock *po = pkt_sk(sk);
3921 	unsigned long size, expected_size;
3922 	struct packet_ring_buffer *rb;
3923 	unsigned long start;
3924 	int err = -EINVAL;
3925 	int i;
3926 
3927 	if (vma->vm_pgoff)
3928 		return -EINVAL;
3929 
3930 	mutex_lock(&po->pg_vec_lock);
3931 
3932 	expected_size = 0;
3933 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3934 		if (rb->pg_vec) {
3935 			expected_size += rb->pg_vec_len
3936 						* rb->pg_vec_pages
3937 						* PAGE_SIZE;
3938 		}
3939 	}
3940 
3941 	if (expected_size == 0)
3942 		goto out;
3943 
3944 	size = vma->vm_end - vma->vm_start;
3945 	if (size != expected_size)
3946 		goto out;
3947 
3948 	start = vma->vm_start;
3949 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3950 		if (rb->pg_vec == NULL)
3951 			continue;
3952 
3953 		for (i = 0; i < rb->pg_vec_len; i++) {
3954 			struct page *page;
3955 			void *kaddr = rb->pg_vec[i].buffer;
3956 			int pg_num;
3957 
3958 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3959 				page = pgv_to_page(kaddr);
3960 				err = vm_insert_page(vma, start, page);
3961 				if (unlikely(err))
3962 					goto out;
3963 				start += PAGE_SIZE;
3964 				kaddr += PAGE_SIZE;
3965 			}
3966 		}
3967 	}
3968 
3969 	atomic_inc(&po->mapped);
3970 	vma->vm_ops = &packet_mmap_ops;
3971 	err = 0;
3972 
3973 out:
3974 	mutex_unlock(&po->pg_vec_lock);
3975 	return err;
3976 }
3977 
3978 static const struct proto_ops packet_ops_spkt = {
3979 	.family =	PF_PACKET,
3980 	.owner =	THIS_MODULE,
3981 	.release =	packet_release,
3982 	.bind =		packet_bind_spkt,
3983 	.connect =	sock_no_connect,
3984 	.socketpair =	sock_no_socketpair,
3985 	.accept =	sock_no_accept,
3986 	.getname =	packet_getname_spkt,
3987 	.poll =		datagram_poll,
3988 	.ioctl =	packet_ioctl,
3989 	.listen =	sock_no_listen,
3990 	.shutdown =	sock_no_shutdown,
3991 	.setsockopt =	sock_no_setsockopt,
3992 	.getsockopt =	sock_no_getsockopt,
3993 	.sendmsg =	packet_sendmsg_spkt,
3994 	.recvmsg =	packet_recvmsg,
3995 	.mmap =		sock_no_mmap,
3996 	.sendpage =	sock_no_sendpage,
3997 };
3998 
3999 static const struct proto_ops packet_ops = {
4000 	.family =	PF_PACKET,
4001 	.owner =	THIS_MODULE,
4002 	.release =	packet_release,
4003 	.bind =		packet_bind,
4004 	.connect =	sock_no_connect,
4005 	.socketpair =	sock_no_socketpair,
4006 	.accept =	sock_no_accept,
4007 	.getname =	packet_getname,
4008 	.poll =		packet_poll,
4009 	.ioctl =	packet_ioctl,
4010 	.listen =	sock_no_listen,
4011 	.shutdown =	sock_no_shutdown,
4012 	.setsockopt =	packet_setsockopt,
4013 	.getsockopt =	packet_getsockopt,
4014 	.sendmsg =	packet_sendmsg,
4015 	.recvmsg =	packet_recvmsg,
4016 	.mmap =		packet_mmap,
4017 	.sendpage =	sock_no_sendpage,
4018 };
4019 
4020 static const struct net_proto_family packet_family_ops = {
4021 	.family =	PF_PACKET,
4022 	.create =	packet_create,
4023 	.owner	=	THIS_MODULE,
4024 };
4025 
4026 static struct notifier_block packet_netdev_notifier = {
4027 	.notifier_call =	packet_notifier,
4028 };
4029 
4030 #ifdef CONFIG_PROC_FS
4031 
4032 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4033 	__acquires(RCU)
4034 {
4035 	struct net *net = seq_file_net(seq);
4036 
4037 	rcu_read_lock();
4038 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4039 }
4040 
4041 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4042 {
4043 	struct net *net = seq_file_net(seq);
4044 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4045 }
4046 
4047 static void packet_seq_stop(struct seq_file *seq, void *v)
4048 	__releases(RCU)
4049 {
4050 	rcu_read_unlock();
4051 }
4052 
4053 static int packet_seq_show(struct seq_file *seq, void *v)
4054 {
4055 	if (v == SEQ_START_TOKEN)
4056 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4057 	else {
4058 		struct sock *s = sk_entry(v);
4059 		const struct packet_sock *po = pkt_sk(s);
4060 
4061 		seq_printf(seq,
4062 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4063 			   s,
4064 			   atomic_read(&s->sk_refcnt),
4065 			   s->sk_type,
4066 			   ntohs(po->num),
4067 			   po->ifindex,
4068 			   po->running,
4069 			   atomic_read(&s->sk_rmem_alloc),
4070 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4071 			   sock_i_ino(s));
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 static const struct seq_operations packet_seq_ops = {
4078 	.start	= packet_seq_start,
4079 	.next	= packet_seq_next,
4080 	.stop	= packet_seq_stop,
4081 	.show	= packet_seq_show,
4082 };
4083 
4084 static int packet_seq_open(struct inode *inode, struct file *file)
4085 {
4086 	return seq_open_net(inode, file, &packet_seq_ops,
4087 			    sizeof(struct seq_net_private));
4088 }
4089 
4090 static const struct file_operations packet_seq_fops = {
4091 	.owner		= THIS_MODULE,
4092 	.open		= packet_seq_open,
4093 	.read		= seq_read,
4094 	.llseek		= seq_lseek,
4095 	.release	= seq_release_net,
4096 };
4097 
4098 #endif
4099 
4100 static int __net_init packet_net_init(struct net *net)
4101 {
4102 	mutex_init(&net->packet.sklist_lock);
4103 	INIT_HLIST_HEAD(&net->packet.sklist);
4104 
4105 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4106 		return -ENOMEM;
4107 
4108 	return 0;
4109 }
4110 
4111 static void __net_exit packet_net_exit(struct net *net)
4112 {
4113 	remove_proc_entry("packet", net->proc_net);
4114 }
4115 
4116 static struct pernet_operations packet_net_ops = {
4117 	.init = packet_net_init,
4118 	.exit = packet_net_exit,
4119 };
4120 
4121 
4122 static void __exit packet_exit(void)
4123 {
4124 	unregister_netdevice_notifier(&packet_netdev_notifier);
4125 	unregister_pernet_subsys(&packet_net_ops);
4126 	sock_unregister(PF_PACKET);
4127 	proto_unregister(&packet_proto);
4128 }
4129 
4130 static int __init packet_init(void)
4131 {
4132 	int rc = proto_register(&packet_proto, 0);
4133 
4134 	if (rc != 0)
4135 		goto out;
4136 
4137 	sock_register(&packet_family_ops);
4138 	register_pernet_subsys(&packet_net_ops);
4139 	register_netdevice_notifier(&packet_netdev_notifier);
4140 out:
4141 	return rc;
4142 }
4143 
4144 module_init(packet_init);
4145 module_exit(packet_exit);
4146 MODULE_LICENSE("GPL");
4147 MODULE_ALIAS_NETPROTO(PF_PACKET);
4148