1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #include <linux/types.h> 50 #include <linux/mm.h> 51 #include <linux/capability.h> 52 #include <linux/fcntl.h> 53 #include <linux/socket.h> 54 #include <linux/in.h> 55 #include <linux/inet.h> 56 #include <linux/netdevice.h> 57 #include <linux/if_packet.h> 58 #include <linux/wireless.h> 59 #include <linux/kernel.h> 60 #include <linux/kmod.h> 61 #include <linux/slab.h> 62 #include <linux/vmalloc.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <linux/skbuff.h> 67 #include <net/sock.h> 68 #include <linux/errno.h> 69 #include <linux/timer.h> 70 #include <linux/uaccess.h> 71 #include <asm/ioctls.h> 72 #include <asm/page.h> 73 #include <asm/cacheflush.h> 74 #include <asm/io.h> 75 #include <linux/proc_fs.h> 76 #include <linux/seq_file.h> 77 #include <linux/poll.h> 78 #include <linux/module.h> 79 #include <linux/init.h> 80 #include <linux/mutex.h> 81 #include <linux/if_vlan.h> 82 #include <linux/virtio_net.h> 83 #include <linux/errqueue.h> 84 #include <linux/net_tstamp.h> 85 #include <linux/percpu.h> 86 #ifdef CONFIG_INET 87 #include <net/inet_common.h> 88 #endif 89 #include <linux/bpf.h> 90 #include <net/compat.h> 91 92 #include "internal.h" 93 94 /* 95 Assumptions: 96 - if device has no dev->hard_header routine, it adds and removes ll header 97 inside itself. In this case ll header is invisible outside of device, 98 but higher levels still should reserve dev->hard_header_len. 99 Some devices are enough clever to reallocate skb, when header 100 will not fit to reserved space (tunnel), another ones are silly 101 (PPP). 102 - packet socket receives packets with pulled ll header, 103 so that SOCK_RAW should push it back. 104 105 On receive: 106 ----------- 107 108 Incoming, dev->hard_header!=NULL 109 mac_header -> ll header 110 data -> data 111 112 Outgoing, dev->hard_header!=NULL 113 mac_header -> ll header 114 data -> ll header 115 116 Incoming, dev->hard_header==NULL 117 mac_header -> UNKNOWN position. It is very likely, that it points to ll 118 header. PPP makes it, that is wrong, because introduce 119 assymetry between rx and tx paths. 120 data -> data 121 122 Outgoing, dev->hard_header==NULL 123 mac_header -> data. ll header is still not built! 124 data -> data 125 126 Resume 127 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 128 129 130 On transmit: 131 ------------ 132 133 dev->hard_header != NULL 134 mac_header -> ll header 135 data -> ll header 136 137 dev->hard_header == NULL (ll header is added by device, we cannot control it) 138 mac_header -> data 139 data -> data 140 141 We should set nh.raw on output to correct posistion, 142 packet classifier depends on it. 143 */ 144 145 /* Private packet socket structures. */ 146 147 /* identical to struct packet_mreq except it has 148 * a longer address field. 149 */ 150 struct packet_mreq_max { 151 int mr_ifindex; 152 unsigned short mr_type; 153 unsigned short mr_alen; 154 unsigned char mr_address[MAX_ADDR_LEN]; 155 }; 156 157 union tpacket_uhdr { 158 struct tpacket_hdr *h1; 159 struct tpacket2_hdr *h2; 160 struct tpacket3_hdr *h3; 161 void *raw; 162 }; 163 164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 165 int closing, int tx_ring); 166 167 #define V3_ALIGNMENT (8) 168 169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 170 171 #define BLK_PLUS_PRIV(sz_of_priv) \ 172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 173 174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 181 182 struct packet_sock; 183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 184 struct packet_type *pt, struct net_device *orig_dev); 185 186 static void *packet_previous_frame(struct packet_sock *po, 187 struct packet_ring_buffer *rb, 188 int status); 189 static void packet_increment_head(struct packet_ring_buffer *buff); 190 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 192 struct packet_sock *); 193 static void prb_retire_current_block(struct tpacket_kbdq_core *, 194 struct packet_sock *, unsigned int status); 195 static int prb_queue_frozen(struct tpacket_kbdq_core *); 196 static void prb_open_block(struct tpacket_kbdq_core *, 197 struct tpacket_block_desc *); 198 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 201 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 202 struct tpacket3_hdr *); 203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 204 struct tpacket3_hdr *); 205 static void packet_flush_mclist(struct sock *sk); 206 static u16 packet_pick_tx_queue(struct sk_buff *skb); 207 208 struct packet_skb_cb { 209 union { 210 struct sockaddr_pkt pkt; 211 union { 212 /* Trick: alias skb original length with 213 * ll.sll_family and ll.protocol in order 214 * to save room. 215 */ 216 unsigned int origlen; 217 struct sockaddr_ll ll; 218 }; 219 } sa; 220 }; 221 222 #define vio_le() virtio_legacy_is_little_endian() 223 224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 225 226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 227 #define GET_PBLOCK_DESC(x, bid) \ 228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 231 #define GET_NEXT_PRB_BLK_NUM(x) \ 232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 233 ((x)->kactive_blk_num+1) : 0) 234 235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 236 static void __fanout_link(struct sock *sk, struct packet_sock *po); 237 238 static int packet_direct_xmit(struct sk_buff *skb) 239 { 240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 241 } 242 243 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 244 { 245 struct net_device *dev; 246 247 rcu_read_lock(); 248 dev = rcu_dereference(po->cached_dev); 249 if (likely(dev)) 250 dev_hold(dev); 251 rcu_read_unlock(); 252 253 return dev; 254 } 255 256 static void packet_cached_dev_assign(struct packet_sock *po, 257 struct net_device *dev) 258 { 259 rcu_assign_pointer(po->cached_dev, dev); 260 } 261 262 static void packet_cached_dev_reset(struct packet_sock *po) 263 { 264 RCU_INIT_POINTER(po->cached_dev, NULL); 265 } 266 267 static bool packet_use_direct_xmit(const struct packet_sock *po) 268 { 269 return po->xmit == packet_direct_xmit; 270 } 271 272 static u16 packet_pick_tx_queue(struct sk_buff *skb) 273 { 274 struct net_device *dev = skb->dev; 275 const struct net_device_ops *ops = dev->netdev_ops; 276 int cpu = raw_smp_processor_id(); 277 u16 queue_index; 278 279 #ifdef CONFIG_XPS 280 skb->sender_cpu = cpu + 1; 281 #endif 282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 283 if (ops->ndo_select_queue) { 284 queue_index = ops->ndo_select_queue(dev, skb, NULL); 285 queue_index = netdev_cap_txqueue(dev, queue_index); 286 } else { 287 queue_index = netdev_pick_tx(dev, skb, NULL); 288 } 289 290 return queue_index; 291 } 292 293 /* __register_prot_hook must be invoked through register_prot_hook 294 * or from a context in which asynchronous accesses to the packet 295 * socket is not possible (packet_create()). 296 */ 297 static void __register_prot_hook(struct sock *sk) 298 { 299 struct packet_sock *po = pkt_sk(sk); 300 301 if (!po->running) { 302 if (po->fanout) 303 __fanout_link(sk, po); 304 else 305 dev_add_pack(&po->prot_hook); 306 307 sock_hold(sk); 308 po->running = 1; 309 } 310 } 311 312 static void register_prot_hook(struct sock *sk) 313 { 314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 315 __register_prot_hook(sk); 316 } 317 318 /* If the sync parameter is true, we will temporarily drop 319 * the po->bind_lock and do a synchronize_net to make sure no 320 * asynchronous packet processing paths still refer to the elements 321 * of po->prot_hook. If the sync parameter is false, it is the 322 * callers responsibility to take care of this. 323 */ 324 static void __unregister_prot_hook(struct sock *sk, bool sync) 325 { 326 struct packet_sock *po = pkt_sk(sk); 327 328 lockdep_assert_held_once(&po->bind_lock); 329 330 po->running = 0; 331 332 if (po->fanout) 333 __fanout_unlink(sk, po); 334 else 335 __dev_remove_pack(&po->prot_hook); 336 337 __sock_put(sk); 338 339 if (sync) { 340 spin_unlock(&po->bind_lock); 341 synchronize_net(); 342 spin_lock(&po->bind_lock); 343 } 344 } 345 346 static void unregister_prot_hook(struct sock *sk, bool sync) 347 { 348 struct packet_sock *po = pkt_sk(sk); 349 350 if (po->running) 351 __unregister_prot_hook(sk, sync); 352 } 353 354 static inline struct page * __pure pgv_to_page(void *addr) 355 { 356 if (is_vmalloc_addr(addr)) 357 return vmalloc_to_page(addr); 358 return virt_to_page(addr); 359 } 360 361 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 362 { 363 union tpacket_uhdr h; 364 365 h.raw = frame; 366 switch (po->tp_version) { 367 case TPACKET_V1: 368 h.h1->tp_status = status; 369 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 370 break; 371 case TPACKET_V2: 372 h.h2->tp_status = status; 373 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 374 break; 375 case TPACKET_V3: 376 h.h3->tp_status = status; 377 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 378 break; 379 default: 380 WARN(1, "TPACKET version not supported.\n"); 381 BUG(); 382 } 383 384 smp_wmb(); 385 } 386 387 static int __packet_get_status(const struct packet_sock *po, void *frame) 388 { 389 union tpacket_uhdr h; 390 391 smp_rmb(); 392 393 h.raw = frame; 394 switch (po->tp_version) { 395 case TPACKET_V1: 396 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 397 return h.h1->tp_status; 398 case TPACKET_V2: 399 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 400 return h.h2->tp_status; 401 case TPACKET_V3: 402 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 403 return h.h3->tp_status; 404 default: 405 WARN(1, "TPACKET version not supported.\n"); 406 BUG(); 407 return 0; 408 } 409 } 410 411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts, 412 unsigned int flags) 413 { 414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 415 416 if (shhwtstamps && 417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 418 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts)) 419 return TP_STATUS_TS_RAW_HARDWARE; 420 421 if (ktime_to_timespec_cond(skb->tstamp, ts)) 422 return TP_STATUS_TS_SOFTWARE; 423 424 return 0; 425 } 426 427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 428 struct sk_buff *skb) 429 { 430 union tpacket_uhdr h; 431 struct timespec ts; 432 __u32 ts_status; 433 434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 435 return 0; 436 437 h.raw = frame; 438 switch (po->tp_version) { 439 case TPACKET_V1: 440 h.h1->tp_sec = ts.tv_sec; 441 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 442 break; 443 case TPACKET_V2: 444 h.h2->tp_sec = ts.tv_sec; 445 h.h2->tp_nsec = ts.tv_nsec; 446 break; 447 case TPACKET_V3: 448 h.h3->tp_sec = ts.tv_sec; 449 h.h3->tp_nsec = ts.tv_nsec; 450 break; 451 default: 452 WARN(1, "TPACKET version not supported.\n"); 453 BUG(); 454 } 455 456 /* one flush is safe, as both fields always lie on the same cacheline */ 457 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 458 smp_wmb(); 459 460 return ts_status; 461 } 462 463 static void *packet_lookup_frame(const struct packet_sock *po, 464 const struct packet_ring_buffer *rb, 465 unsigned int position, 466 int status) 467 { 468 unsigned int pg_vec_pos, frame_offset; 469 union tpacket_uhdr h; 470 471 pg_vec_pos = position / rb->frames_per_block; 472 frame_offset = position % rb->frames_per_block; 473 474 h.raw = rb->pg_vec[pg_vec_pos].buffer + 475 (frame_offset * rb->frame_size); 476 477 if (status != __packet_get_status(po, h.raw)) 478 return NULL; 479 480 return h.raw; 481 } 482 483 static void *packet_current_frame(struct packet_sock *po, 484 struct packet_ring_buffer *rb, 485 int status) 486 { 487 return packet_lookup_frame(po, rb, rb->head, status); 488 } 489 490 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 491 { 492 del_timer_sync(&pkc->retire_blk_timer); 493 } 494 495 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 496 struct sk_buff_head *rb_queue) 497 { 498 struct tpacket_kbdq_core *pkc; 499 500 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 501 502 spin_lock_bh(&rb_queue->lock); 503 pkc->delete_blk_timer = 1; 504 spin_unlock_bh(&rb_queue->lock); 505 506 prb_del_retire_blk_timer(pkc); 507 } 508 509 static void prb_setup_retire_blk_timer(struct packet_sock *po) 510 { 511 struct tpacket_kbdq_core *pkc; 512 513 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 514 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 515 0); 516 pkc->retire_blk_timer.expires = jiffies; 517 } 518 519 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 520 int blk_size_in_bytes) 521 { 522 struct net_device *dev; 523 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 524 struct ethtool_link_ksettings ecmd; 525 int err; 526 527 rtnl_lock(); 528 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 529 if (unlikely(!dev)) { 530 rtnl_unlock(); 531 return DEFAULT_PRB_RETIRE_TOV; 532 } 533 err = __ethtool_get_link_ksettings(dev, &ecmd); 534 rtnl_unlock(); 535 if (!err) { 536 /* 537 * If the link speed is so slow you don't really 538 * need to worry about perf anyways 539 */ 540 if (ecmd.base.speed < SPEED_1000 || 541 ecmd.base.speed == SPEED_UNKNOWN) { 542 return DEFAULT_PRB_RETIRE_TOV; 543 } else { 544 msec = 1; 545 div = ecmd.base.speed / 1000; 546 } 547 } 548 549 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 550 551 if (div) 552 mbits /= div; 553 554 tmo = mbits * msec; 555 556 if (div) 557 return tmo+1; 558 return tmo; 559 } 560 561 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 562 union tpacket_req_u *req_u) 563 { 564 p1->feature_req_word = req_u->req3.tp_feature_req_word; 565 } 566 567 static void init_prb_bdqc(struct packet_sock *po, 568 struct packet_ring_buffer *rb, 569 struct pgv *pg_vec, 570 union tpacket_req_u *req_u) 571 { 572 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 573 struct tpacket_block_desc *pbd; 574 575 memset(p1, 0x0, sizeof(*p1)); 576 577 p1->knxt_seq_num = 1; 578 p1->pkbdq = pg_vec; 579 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 580 p1->pkblk_start = pg_vec[0].buffer; 581 p1->kblk_size = req_u->req3.tp_block_size; 582 p1->knum_blocks = req_u->req3.tp_block_nr; 583 p1->hdrlen = po->tp_hdrlen; 584 p1->version = po->tp_version; 585 p1->last_kactive_blk_num = 0; 586 po->stats.stats3.tp_freeze_q_cnt = 0; 587 if (req_u->req3.tp_retire_blk_tov) 588 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 589 else 590 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 591 req_u->req3.tp_block_size); 592 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 593 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 594 595 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 596 prb_init_ft_ops(p1, req_u); 597 prb_setup_retire_blk_timer(po); 598 prb_open_block(p1, pbd); 599 } 600 601 /* Do NOT update the last_blk_num first. 602 * Assumes sk_buff_head lock is held. 603 */ 604 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 605 { 606 mod_timer(&pkc->retire_blk_timer, 607 jiffies + pkc->tov_in_jiffies); 608 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 609 } 610 611 /* 612 * Timer logic: 613 * 1) We refresh the timer only when we open a block. 614 * By doing this we don't waste cycles refreshing the timer 615 * on packet-by-packet basis. 616 * 617 * With a 1MB block-size, on a 1Gbps line, it will take 618 * i) ~8 ms to fill a block + ii) memcpy etc. 619 * In this cut we are not accounting for the memcpy time. 620 * 621 * So, if the user sets the 'tmo' to 10ms then the timer 622 * will never fire while the block is still getting filled 623 * (which is what we want). However, the user could choose 624 * to close a block early and that's fine. 625 * 626 * But when the timer does fire, we check whether or not to refresh it. 627 * Since the tmo granularity is in msecs, it is not too expensive 628 * to refresh the timer, lets say every '8' msecs. 629 * Either the user can set the 'tmo' or we can derive it based on 630 * a) line-speed and b) block-size. 631 * prb_calc_retire_blk_tmo() calculates the tmo. 632 * 633 */ 634 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 635 { 636 struct packet_sock *po = 637 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 638 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 639 unsigned int frozen; 640 struct tpacket_block_desc *pbd; 641 642 spin_lock(&po->sk.sk_receive_queue.lock); 643 644 frozen = prb_queue_frozen(pkc); 645 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 646 647 if (unlikely(pkc->delete_blk_timer)) 648 goto out; 649 650 /* We only need to plug the race when the block is partially filled. 651 * tpacket_rcv: 652 * lock(); increment BLOCK_NUM_PKTS; unlock() 653 * copy_bits() is in progress ... 654 * timer fires on other cpu: 655 * we can't retire the current block because copy_bits 656 * is in progress. 657 * 658 */ 659 if (BLOCK_NUM_PKTS(pbd)) { 660 while (atomic_read(&pkc->blk_fill_in_prog)) { 661 /* Waiting for skb_copy_bits to finish... */ 662 cpu_relax(); 663 } 664 } 665 666 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 667 if (!frozen) { 668 if (!BLOCK_NUM_PKTS(pbd)) { 669 /* An empty block. Just refresh the timer. */ 670 goto refresh_timer; 671 } 672 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 673 if (!prb_dispatch_next_block(pkc, po)) 674 goto refresh_timer; 675 else 676 goto out; 677 } else { 678 /* Case 1. Queue was frozen because user-space was 679 * lagging behind. 680 */ 681 if (prb_curr_blk_in_use(pbd)) { 682 /* 683 * Ok, user-space is still behind. 684 * So just refresh the timer. 685 */ 686 goto refresh_timer; 687 } else { 688 /* Case 2. queue was frozen,user-space caught up, 689 * now the link went idle && the timer fired. 690 * We don't have a block to close.So we open this 691 * block and restart the timer. 692 * opening a block thaws the queue,restarts timer 693 * Thawing/timer-refresh is a side effect. 694 */ 695 prb_open_block(pkc, pbd); 696 goto out; 697 } 698 } 699 } 700 701 refresh_timer: 702 _prb_refresh_rx_retire_blk_timer(pkc); 703 704 out: 705 spin_unlock(&po->sk.sk_receive_queue.lock); 706 } 707 708 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 709 struct tpacket_block_desc *pbd1, __u32 status) 710 { 711 /* Flush everything minus the block header */ 712 713 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 714 u8 *start, *end; 715 716 start = (u8 *)pbd1; 717 718 /* Skip the block header(we know header WILL fit in 4K) */ 719 start += PAGE_SIZE; 720 721 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 722 for (; start < end; start += PAGE_SIZE) 723 flush_dcache_page(pgv_to_page(start)); 724 725 smp_wmb(); 726 #endif 727 728 /* Now update the block status. */ 729 730 BLOCK_STATUS(pbd1) = status; 731 732 /* Flush the block header */ 733 734 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 735 start = (u8 *)pbd1; 736 flush_dcache_page(pgv_to_page(start)); 737 738 smp_wmb(); 739 #endif 740 } 741 742 /* 743 * Side effect: 744 * 745 * 1) flush the block 746 * 2) Increment active_blk_num 747 * 748 * Note:We DONT refresh the timer on purpose. 749 * Because almost always the next block will be opened. 750 */ 751 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 752 struct tpacket_block_desc *pbd1, 753 struct packet_sock *po, unsigned int stat) 754 { 755 __u32 status = TP_STATUS_USER | stat; 756 757 struct tpacket3_hdr *last_pkt; 758 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 759 struct sock *sk = &po->sk; 760 761 if (atomic_read(&po->tp_drops)) 762 status |= TP_STATUS_LOSING; 763 764 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 765 last_pkt->tp_next_offset = 0; 766 767 /* Get the ts of the last pkt */ 768 if (BLOCK_NUM_PKTS(pbd1)) { 769 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 770 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 771 } else { 772 /* Ok, we tmo'd - so get the current time. 773 * 774 * It shouldn't really happen as we don't close empty 775 * blocks. See prb_retire_rx_blk_timer_expired(). 776 */ 777 struct timespec ts; 778 getnstimeofday(&ts); 779 h1->ts_last_pkt.ts_sec = ts.tv_sec; 780 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 781 } 782 783 smp_wmb(); 784 785 /* Flush the block */ 786 prb_flush_block(pkc1, pbd1, status); 787 788 sk->sk_data_ready(sk); 789 790 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 791 } 792 793 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 794 { 795 pkc->reset_pending_on_curr_blk = 0; 796 } 797 798 /* 799 * Side effect of opening a block: 800 * 801 * 1) prb_queue is thawed. 802 * 2) retire_blk_timer is refreshed. 803 * 804 */ 805 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 806 struct tpacket_block_desc *pbd1) 807 { 808 struct timespec ts; 809 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 810 811 smp_rmb(); 812 813 /* We could have just memset this but we will lose the 814 * flexibility of making the priv area sticky 815 */ 816 817 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 818 BLOCK_NUM_PKTS(pbd1) = 0; 819 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 820 821 getnstimeofday(&ts); 822 823 h1->ts_first_pkt.ts_sec = ts.tv_sec; 824 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 825 826 pkc1->pkblk_start = (char *)pbd1; 827 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 828 829 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 830 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 831 832 pbd1->version = pkc1->version; 833 pkc1->prev = pkc1->nxt_offset; 834 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 835 836 prb_thaw_queue(pkc1); 837 _prb_refresh_rx_retire_blk_timer(pkc1); 838 839 smp_wmb(); 840 } 841 842 /* 843 * Queue freeze logic: 844 * 1) Assume tp_block_nr = 8 blocks. 845 * 2) At time 't0', user opens Rx ring. 846 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 847 * 4) user-space is either sleeping or processing block '0'. 848 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 849 * it will close block-7,loop around and try to fill block '0'. 850 * call-flow: 851 * __packet_lookup_frame_in_block 852 * prb_retire_current_block() 853 * prb_dispatch_next_block() 854 * |->(BLOCK_STATUS == USER) evaluates to true 855 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 856 * 6) Now there are two cases: 857 * 6.1) Link goes idle right after the queue is frozen. 858 * But remember, the last open_block() refreshed the timer. 859 * When this timer expires,it will refresh itself so that we can 860 * re-open block-0 in near future. 861 * 6.2) Link is busy and keeps on receiving packets. This is a simple 862 * case and __packet_lookup_frame_in_block will check if block-0 863 * is free and can now be re-used. 864 */ 865 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 866 struct packet_sock *po) 867 { 868 pkc->reset_pending_on_curr_blk = 1; 869 po->stats.stats3.tp_freeze_q_cnt++; 870 } 871 872 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 873 874 /* 875 * If the next block is free then we will dispatch it 876 * and return a good offset. 877 * Else, we will freeze the queue. 878 * So, caller must check the return value. 879 */ 880 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 881 struct packet_sock *po) 882 { 883 struct tpacket_block_desc *pbd; 884 885 smp_rmb(); 886 887 /* 1. Get current block num */ 888 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 889 890 /* 2. If this block is currently in_use then freeze the queue */ 891 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 892 prb_freeze_queue(pkc, po); 893 return NULL; 894 } 895 896 /* 897 * 3. 898 * open this block and return the offset where the first packet 899 * needs to get stored. 900 */ 901 prb_open_block(pkc, pbd); 902 return (void *)pkc->nxt_offset; 903 } 904 905 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 906 struct packet_sock *po, unsigned int status) 907 { 908 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 909 910 /* retire/close the current block */ 911 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 912 /* 913 * Plug the case where copy_bits() is in progress on 914 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 915 * have space to copy the pkt in the current block and 916 * called prb_retire_current_block() 917 * 918 * We don't need to worry about the TMO case because 919 * the timer-handler already handled this case. 920 */ 921 if (!(status & TP_STATUS_BLK_TMO)) { 922 while (atomic_read(&pkc->blk_fill_in_prog)) { 923 /* Waiting for skb_copy_bits to finish... */ 924 cpu_relax(); 925 } 926 } 927 prb_close_block(pkc, pbd, po, status); 928 return; 929 } 930 } 931 932 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 933 { 934 return TP_STATUS_USER & BLOCK_STATUS(pbd); 935 } 936 937 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 938 { 939 return pkc->reset_pending_on_curr_blk; 940 } 941 942 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 943 { 944 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 945 atomic_dec(&pkc->blk_fill_in_prog); 946 } 947 948 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 949 struct tpacket3_hdr *ppd) 950 { 951 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 952 } 953 954 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 955 struct tpacket3_hdr *ppd) 956 { 957 ppd->hv1.tp_rxhash = 0; 958 } 959 960 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 961 struct tpacket3_hdr *ppd) 962 { 963 if (skb_vlan_tag_present(pkc->skb)) { 964 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 965 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 966 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 967 } else { 968 ppd->hv1.tp_vlan_tci = 0; 969 ppd->hv1.tp_vlan_tpid = 0; 970 ppd->tp_status = TP_STATUS_AVAILABLE; 971 } 972 } 973 974 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 975 struct tpacket3_hdr *ppd) 976 { 977 ppd->hv1.tp_padding = 0; 978 prb_fill_vlan_info(pkc, ppd); 979 980 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 981 prb_fill_rxhash(pkc, ppd); 982 else 983 prb_clear_rxhash(pkc, ppd); 984 } 985 986 static void prb_fill_curr_block(char *curr, 987 struct tpacket_kbdq_core *pkc, 988 struct tpacket_block_desc *pbd, 989 unsigned int len) 990 { 991 struct tpacket3_hdr *ppd; 992 993 ppd = (struct tpacket3_hdr *)curr; 994 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 995 pkc->prev = curr; 996 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 997 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 998 BLOCK_NUM_PKTS(pbd) += 1; 999 atomic_inc(&pkc->blk_fill_in_prog); 1000 prb_run_all_ft_ops(pkc, ppd); 1001 } 1002 1003 /* Assumes caller has the sk->rx_queue.lock */ 1004 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1005 struct sk_buff *skb, 1006 unsigned int len 1007 ) 1008 { 1009 struct tpacket_kbdq_core *pkc; 1010 struct tpacket_block_desc *pbd; 1011 char *curr, *end; 1012 1013 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1014 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1015 1016 /* Queue is frozen when user space is lagging behind */ 1017 if (prb_queue_frozen(pkc)) { 1018 /* 1019 * Check if that last block which caused the queue to freeze, 1020 * is still in_use by user-space. 1021 */ 1022 if (prb_curr_blk_in_use(pbd)) { 1023 /* Can't record this packet */ 1024 return NULL; 1025 } else { 1026 /* 1027 * Ok, the block was released by user-space. 1028 * Now let's open that block. 1029 * opening a block also thaws the queue. 1030 * Thawing is a side effect. 1031 */ 1032 prb_open_block(pkc, pbd); 1033 } 1034 } 1035 1036 smp_mb(); 1037 curr = pkc->nxt_offset; 1038 pkc->skb = skb; 1039 end = (char *)pbd + pkc->kblk_size; 1040 1041 /* first try the current block */ 1042 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1043 prb_fill_curr_block(curr, pkc, pbd, len); 1044 return (void *)curr; 1045 } 1046 1047 /* Ok, close the current block */ 1048 prb_retire_current_block(pkc, po, 0); 1049 1050 /* Now, try to dispatch the next block */ 1051 curr = (char *)prb_dispatch_next_block(pkc, po); 1052 if (curr) { 1053 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1054 prb_fill_curr_block(curr, pkc, pbd, len); 1055 return (void *)curr; 1056 } 1057 1058 /* 1059 * No free blocks are available.user_space hasn't caught up yet. 1060 * Queue was just frozen and now this packet will get dropped. 1061 */ 1062 return NULL; 1063 } 1064 1065 static void *packet_current_rx_frame(struct packet_sock *po, 1066 struct sk_buff *skb, 1067 int status, unsigned int len) 1068 { 1069 char *curr = NULL; 1070 switch (po->tp_version) { 1071 case TPACKET_V1: 1072 case TPACKET_V2: 1073 curr = packet_lookup_frame(po, &po->rx_ring, 1074 po->rx_ring.head, status); 1075 return curr; 1076 case TPACKET_V3: 1077 return __packet_lookup_frame_in_block(po, skb, len); 1078 default: 1079 WARN(1, "TPACKET version not supported\n"); 1080 BUG(); 1081 return NULL; 1082 } 1083 } 1084 1085 static void *prb_lookup_block(const struct packet_sock *po, 1086 const struct packet_ring_buffer *rb, 1087 unsigned int idx, 1088 int status) 1089 { 1090 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1091 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1092 1093 if (status != BLOCK_STATUS(pbd)) 1094 return NULL; 1095 return pbd; 1096 } 1097 1098 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1099 { 1100 unsigned int prev; 1101 if (rb->prb_bdqc.kactive_blk_num) 1102 prev = rb->prb_bdqc.kactive_blk_num-1; 1103 else 1104 prev = rb->prb_bdqc.knum_blocks-1; 1105 return prev; 1106 } 1107 1108 /* Assumes caller has held the rx_queue.lock */ 1109 static void *__prb_previous_block(struct packet_sock *po, 1110 struct packet_ring_buffer *rb, 1111 int status) 1112 { 1113 unsigned int previous = prb_previous_blk_num(rb); 1114 return prb_lookup_block(po, rb, previous, status); 1115 } 1116 1117 static void *packet_previous_rx_frame(struct packet_sock *po, 1118 struct packet_ring_buffer *rb, 1119 int status) 1120 { 1121 if (po->tp_version <= TPACKET_V2) 1122 return packet_previous_frame(po, rb, status); 1123 1124 return __prb_previous_block(po, rb, status); 1125 } 1126 1127 static void packet_increment_rx_head(struct packet_sock *po, 1128 struct packet_ring_buffer *rb) 1129 { 1130 switch (po->tp_version) { 1131 case TPACKET_V1: 1132 case TPACKET_V2: 1133 return packet_increment_head(rb); 1134 case TPACKET_V3: 1135 default: 1136 WARN(1, "TPACKET version not supported.\n"); 1137 BUG(); 1138 return; 1139 } 1140 } 1141 1142 static void *packet_previous_frame(struct packet_sock *po, 1143 struct packet_ring_buffer *rb, 1144 int status) 1145 { 1146 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1147 return packet_lookup_frame(po, rb, previous, status); 1148 } 1149 1150 static void packet_increment_head(struct packet_ring_buffer *buff) 1151 { 1152 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1153 } 1154 1155 static void packet_inc_pending(struct packet_ring_buffer *rb) 1156 { 1157 this_cpu_inc(*rb->pending_refcnt); 1158 } 1159 1160 static void packet_dec_pending(struct packet_ring_buffer *rb) 1161 { 1162 this_cpu_dec(*rb->pending_refcnt); 1163 } 1164 1165 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1166 { 1167 unsigned int refcnt = 0; 1168 int cpu; 1169 1170 /* We don't use pending refcount in rx_ring. */ 1171 if (rb->pending_refcnt == NULL) 1172 return 0; 1173 1174 for_each_possible_cpu(cpu) 1175 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1176 1177 return refcnt; 1178 } 1179 1180 static int packet_alloc_pending(struct packet_sock *po) 1181 { 1182 po->rx_ring.pending_refcnt = NULL; 1183 1184 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1185 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1186 return -ENOBUFS; 1187 1188 return 0; 1189 } 1190 1191 static void packet_free_pending(struct packet_sock *po) 1192 { 1193 free_percpu(po->tx_ring.pending_refcnt); 1194 } 1195 1196 #define ROOM_POW_OFF 2 1197 #define ROOM_NONE 0x0 1198 #define ROOM_LOW 0x1 1199 #define ROOM_NORMAL 0x2 1200 1201 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1202 { 1203 int idx, len; 1204 1205 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1206 idx = READ_ONCE(po->rx_ring.head); 1207 if (pow_off) 1208 idx += len >> pow_off; 1209 if (idx >= len) 1210 idx -= len; 1211 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1212 } 1213 1214 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1215 { 1216 int idx, len; 1217 1218 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1219 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1220 if (pow_off) 1221 idx += len >> pow_off; 1222 if (idx >= len) 1223 idx -= len; 1224 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1225 } 1226 1227 static int __packet_rcv_has_room(const struct packet_sock *po, 1228 const struct sk_buff *skb) 1229 { 1230 const struct sock *sk = &po->sk; 1231 int ret = ROOM_NONE; 1232 1233 if (po->prot_hook.func != tpacket_rcv) { 1234 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1235 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1236 - (skb ? skb->truesize : 0); 1237 1238 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1239 return ROOM_NORMAL; 1240 else if (avail > 0) 1241 return ROOM_LOW; 1242 else 1243 return ROOM_NONE; 1244 } 1245 1246 if (po->tp_version == TPACKET_V3) { 1247 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1248 ret = ROOM_NORMAL; 1249 else if (__tpacket_v3_has_room(po, 0)) 1250 ret = ROOM_LOW; 1251 } else { 1252 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1253 ret = ROOM_NORMAL; 1254 else if (__tpacket_has_room(po, 0)) 1255 ret = ROOM_LOW; 1256 } 1257 1258 return ret; 1259 } 1260 1261 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1262 { 1263 int pressure, ret; 1264 1265 ret = __packet_rcv_has_room(po, skb); 1266 pressure = ret != ROOM_NORMAL; 1267 1268 if (READ_ONCE(po->pressure) != pressure) 1269 WRITE_ONCE(po->pressure, pressure); 1270 1271 return ret; 1272 } 1273 1274 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1275 { 1276 if (READ_ONCE(po->pressure) && 1277 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1278 WRITE_ONCE(po->pressure, 0); 1279 } 1280 1281 static void packet_sock_destruct(struct sock *sk) 1282 { 1283 skb_queue_purge(&sk->sk_error_queue); 1284 1285 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1286 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1287 1288 if (!sock_flag(sk, SOCK_DEAD)) { 1289 pr_err("Attempt to release alive packet socket: %p\n", sk); 1290 return; 1291 } 1292 1293 sk_refcnt_debug_dec(sk); 1294 } 1295 1296 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1297 { 1298 u32 *history = po->rollover->history; 1299 u32 victim, rxhash; 1300 int i, count = 0; 1301 1302 rxhash = skb_get_hash(skb); 1303 for (i = 0; i < ROLLOVER_HLEN; i++) 1304 if (READ_ONCE(history[i]) == rxhash) 1305 count++; 1306 1307 victim = prandom_u32() % ROLLOVER_HLEN; 1308 1309 /* Avoid dirtying the cache line if possible */ 1310 if (READ_ONCE(history[victim]) != rxhash) 1311 WRITE_ONCE(history[victim], rxhash); 1312 1313 return count > (ROLLOVER_HLEN >> 1); 1314 } 1315 1316 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1317 struct sk_buff *skb, 1318 unsigned int num) 1319 { 1320 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1321 } 1322 1323 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1324 struct sk_buff *skb, 1325 unsigned int num) 1326 { 1327 unsigned int val = atomic_inc_return(&f->rr_cur); 1328 1329 return val % num; 1330 } 1331 1332 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1333 struct sk_buff *skb, 1334 unsigned int num) 1335 { 1336 return smp_processor_id() % num; 1337 } 1338 1339 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1340 struct sk_buff *skb, 1341 unsigned int num) 1342 { 1343 return prandom_u32_max(num); 1344 } 1345 1346 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1347 struct sk_buff *skb, 1348 unsigned int idx, bool try_self, 1349 unsigned int num) 1350 { 1351 struct packet_sock *po, *po_next, *po_skip = NULL; 1352 unsigned int i, j, room = ROOM_NONE; 1353 1354 po = pkt_sk(f->arr[idx]); 1355 1356 if (try_self) { 1357 room = packet_rcv_has_room(po, skb); 1358 if (room == ROOM_NORMAL || 1359 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1360 return idx; 1361 po_skip = po; 1362 } 1363 1364 i = j = min_t(int, po->rollover->sock, num - 1); 1365 do { 1366 po_next = pkt_sk(f->arr[i]); 1367 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1368 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1369 if (i != j) 1370 po->rollover->sock = i; 1371 atomic_long_inc(&po->rollover->num); 1372 if (room == ROOM_LOW) 1373 atomic_long_inc(&po->rollover->num_huge); 1374 return i; 1375 } 1376 1377 if (++i == num) 1378 i = 0; 1379 } while (i != j); 1380 1381 atomic_long_inc(&po->rollover->num_failed); 1382 return idx; 1383 } 1384 1385 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return skb_get_queue_mapping(skb) % num; 1390 } 1391 1392 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int num) 1395 { 1396 struct bpf_prog *prog; 1397 unsigned int ret = 0; 1398 1399 rcu_read_lock(); 1400 prog = rcu_dereference(f->bpf_prog); 1401 if (prog) 1402 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1403 rcu_read_unlock(); 1404 1405 return ret; 1406 } 1407 1408 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1409 { 1410 return f->flags & (flag >> 8); 1411 } 1412 1413 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1414 struct packet_type *pt, struct net_device *orig_dev) 1415 { 1416 struct packet_fanout *f = pt->af_packet_priv; 1417 unsigned int num = READ_ONCE(f->num_members); 1418 struct net *net = read_pnet(&f->net); 1419 struct packet_sock *po; 1420 unsigned int idx; 1421 1422 if (!net_eq(dev_net(dev), net) || !num) { 1423 kfree_skb(skb); 1424 return 0; 1425 } 1426 1427 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1428 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1429 if (!skb) 1430 return 0; 1431 } 1432 switch (f->type) { 1433 case PACKET_FANOUT_HASH: 1434 default: 1435 idx = fanout_demux_hash(f, skb, num); 1436 break; 1437 case PACKET_FANOUT_LB: 1438 idx = fanout_demux_lb(f, skb, num); 1439 break; 1440 case PACKET_FANOUT_CPU: 1441 idx = fanout_demux_cpu(f, skb, num); 1442 break; 1443 case PACKET_FANOUT_RND: 1444 idx = fanout_demux_rnd(f, skb, num); 1445 break; 1446 case PACKET_FANOUT_QM: 1447 idx = fanout_demux_qm(f, skb, num); 1448 break; 1449 case PACKET_FANOUT_ROLLOVER: 1450 idx = fanout_demux_rollover(f, skb, 0, false, num); 1451 break; 1452 case PACKET_FANOUT_CBPF: 1453 case PACKET_FANOUT_EBPF: 1454 idx = fanout_demux_bpf(f, skb, num); 1455 break; 1456 } 1457 1458 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1459 idx = fanout_demux_rollover(f, skb, idx, true, num); 1460 1461 po = pkt_sk(f->arr[idx]); 1462 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1463 } 1464 1465 DEFINE_MUTEX(fanout_mutex); 1466 EXPORT_SYMBOL_GPL(fanout_mutex); 1467 static LIST_HEAD(fanout_list); 1468 static u16 fanout_next_id; 1469 1470 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1471 { 1472 struct packet_fanout *f = po->fanout; 1473 1474 spin_lock(&f->lock); 1475 f->arr[f->num_members] = sk; 1476 smp_wmb(); 1477 f->num_members++; 1478 if (f->num_members == 1) 1479 dev_add_pack(&f->prot_hook); 1480 spin_unlock(&f->lock); 1481 } 1482 1483 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1484 { 1485 struct packet_fanout *f = po->fanout; 1486 int i; 1487 1488 spin_lock(&f->lock); 1489 for (i = 0; i < f->num_members; i++) { 1490 if (f->arr[i] == sk) 1491 break; 1492 } 1493 BUG_ON(i >= f->num_members); 1494 f->arr[i] = f->arr[f->num_members - 1]; 1495 f->num_members--; 1496 if (f->num_members == 0) 1497 __dev_remove_pack(&f->prot_hook); 1498 spin_unlock(&f->lock); 1499 } 1500 1501 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1502 { 1503 if (sk->sk_family != PF_PACKET) 1504 return false; 1505 1506 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1507 } 1508 1509 static void fanout_init_data(struct packet_fanout *f) 1510 { 1511 switch (f->type) { 1512 case PACKET_FANOUT_LB: 1513 atomic_set(&f->rr_cur, 0); 1514 break; 1515 case PACKET_FANOUT_CBPF: 1516 case PACKET_FANOUT_EBPF: 1517 RCU_INIT_POINTER(f->bpf_prog, NULL); 1518 break; 1519 } 1520 } 1521 1522 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1523 { 1524 struct bpf_prog *old; 1525 1526 spin_lock(&f->lock); 1527 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1528 rcu_assign_pointer(f->bpf_prog, new); 1529 spin_unlock(&f->lock); 1530 1531 if (old) { 1532 synchronize_net(); 1533 bpf_prog_destroy(old); 1534 } 1535 } 1536 1537 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data, 1538 unsigned int len) 1539 { 1540 struct bpf_prog *new; 1541 struct sock_fprog fprog; 1542 int ret; 1543 1544 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1545 return -EPERM; 1546 if (len != sizeof(fprog)) 1547 return -EINVAL; 1548 if (copy_from_user(&fprog, data, len)) 1549 return -EFAULT; 1550 1551 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1552 if (ret) 1553 return ret; 1554 1555 __fanout_set_data_bpf(po->fanout, new); 1556 return 0; 1557 } 1558 1559 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data, 1560 unsigned int len) 1561 { 1562 struct bpf_prog *new; 1563 u32 fd; 1564 1565 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1566 return -EPERM; 1567 if (len != sizeof(fd)) 1568 return -EINVAL; 1569 if (copy_from_user(&fd, data, len)) 1570 return -EFAULT; 1571 1572 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1573 if (IS_ERR(new)) 1574 return PTR_ERR(new); 1575 1576 __fanout_set_data_bpf(po->fanout, new); 1577 return 0; 1578 } 1579 1580 static int fanout_set_data(struct packet_sock *po, char __user *data, 1581 unsigned int len) 1582 { 1583 switch (po->fanout->type) { 1584 case PACKET_FANOUT_CBPF: 1585 return fanout_set_data_cbpf(po, data, len); 1586 case PACKET_FANOUT_EBPF: 1587 return fanout_set_data_ebpf(po, data, len); 1588 default: 1589 return -EINVAL; 1590 } 1591 } 1592 1593 static void fanout_release_data(struct packet_fanout *f) 1594 { 1595 switch (f->type) { 1596 case PACKET_FANOUT_CBPF: 1597 case PACKET_FANOUT_EBPF: 1598 __fanout_set_data_bpf(f, NULL); 1599 } 1600 } 1601 1602 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1603 { 1604 struct packet_fanout *f; 1605 1606 list_for_each_entry(f, &fanout_list, list) { 1607 if (f->id == candidate_id && 1608 read_pnet(&f->net) == sock_net(sk)) { 1609 return false; 1610 } 1611 } 1612 return true; 1613 } 1614 1615 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1616 { 1617 u16 id = fanout_next_id; 1618 1619 do { 1620 if (__fanout_id_is_free(sk, id)) { 1621 *new_id = id; 1622 fanout_next_id = id + 1; 1623 return true; 1624 } 1625 1626 id++; 1627 } while (id != fanout_next_id); 1628 1629 return false; 1630 } 1631 1632 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1633 { 1634 struct packet_rollover *rollover = NULL; 1635 struct packet_sock *po = pkt_sk(sk); 1636 struct packet_fanout *f, *match; 1637 u8 type = type_flags & 0xff; 1638 u8 flags = type_flags >> 8; 1639 int err; 1640 1641 switch (type) { 1642 case PACKET_FANOUT_ROLLOVER: 1643 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1644 return -EINVAL; 1645 case PACKET_FANOUT_HASH: 1646 case PACKET_FANOUT_LB: 1647 case PACKET_FANOUT_CPU: 1648 case PACKET_FANOUT_RND: 1649 case PACKET_FANOUT_QM: 1650 case PACKET_FANOUT_CBPF: 1651 case PACKET_FANOUT_EBPF: 1652 break; 1653 default: 1654 return -EINVAL; 1655 } 1656 1657 mutex_lock(&fanout_mutex); 1658 1659 err = -EALREADY; 1660 if (po->fanout) 1661 goto out; 1662 1663 if (type == PACKET_FANOUT_ROLLOVER || 1664 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1665 err = -ENOMEM; 1666 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1667 if (!rollover) 1668 goto out; 1669 atomic_long_set(&rollover->num, 0); 1670 atomic_long_set(&rollover->num_huge, 0); 1671 atomic_long_set(&rollover->num_failed, 0); 1672 } 1673 1674 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1675 if (id != 0) { 1676 err = -EINVAL; 1677 goto out; 1678 } 1679 if (!fanout_find_new_id(sk, &id)) { 1680 err = -ENOMEM; 1681 goto out; 1682 } 1683 /* ephemeral flag for the first socket in the group: drop it */ 1684 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1685 } 1686 1687 match = NULL; 1688 list_for_each_entry(f, &fanout_list, list) { 1689 if (f->id == id && 1690 read_pnet(&f->net) == sock_net(sk)) { 1691 match = f; 1692 break; 1693 } 1694 } 1695 err = -EINVAL; 1696 if (match && match->flags != flags) 1697 goto out; 1698 if (!match) { 1699 err = -ENOMEM; 1700 match = kzalloc(sizeof(*match), GFP_KERNEL); 1701 if (!match) 1702 goto out; 1703 write_pnet(&match->net, sock_net(sk)); 1704 match->id = id; 1705 match->type = type; 1706 match->flags = flags; 1707 INIT_LIST_HEAD(&match->list); 1708 spin_lock_init(&match->lock); 1709 refcount_set(&match->sk_ref, 0); 1710 fanout_init_data(match); 1711 match->prot_hook.type = po->prot_hook.type; 1712 match->prot_hook.dev = po->prot_hook.dev; 1713 match->prot_hook.func = packet_rcv_fanout; 1714 match->prot_hook.af_packet_priv = match; 1715 match->prot_hook.id_match = match_fanout_group; 1716 list_add(&match->list, &fanout_list); 1717 } 1718 err = -EINVAL; 1719 1720 spin_lock(&po->bind_lock); 1721 if (po->running && 1722 match->type == type && 1723 match->prot_hook.type == po->prot_hook.type && 1724 match->prot_hook.dev == po->prot_hook.dev) { 1725 err = -ENOSPC; 1726 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1727 __dev_remove_pack(&po->prot_hook); 1728 po->fanout = match; 1729 po->rollover = rollover; 1730 rollover = NULL; 1731 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1732 __fanout_link(sk, po); 1733 err = 0; 1734 } 1735 } 1736 spin_unlock(&po->bind_lock); 1737 1738 if (err && !refcount_read(&match->sk_ref)) { 1739 list_del(&match->list); 1740 kfree(match); 1741 } 1742 1743 out: 1744 kfree(rollover); 1745 mutex_unlock(&fanout_mutex); 1746 return err; 1747 } 1748 1749 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1750 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1751 * It is the responsibility of the caller to call fanout_release_data() and 1752 * free the returned packet_fanout (after synchronize_net()) 1753 */ 1754 static struct packet_fanout *fanout_release(struct sock *sk) 1755 { 1756 struct packet_sock *po = pkt_sk(sk); 1757 struct packet_fanout *f; 1758 1759 mutex_lock(&fanout_mutex); 1760 f = po->fanout; 1761 if (f) { 1762 po->fanout = NULL; 1763 1764 if (refcount_dec_and_test(&f->sk_ref)) 1765 list_del(&f->list); 1766 else 1767 f = NULL; 1768 } 1769 mutex_unlock(&fanout_mutex); 1770 1771 return f; 1772 } 1773 1774 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1775 struct sk_buff *skb) 1776 { 1777 /* Earlier code assumed this would be a VLAN pkt, double-check 1778 * this now that we have the actual packet in hand. We can only 1779 * do this check on Ethernet devices. 1780 */ 1781 if (unlikely(dev->type != ARPHRD_ETHER)) 1782 return false; 1783 1784 skb_reset_mac_header(skb); 1785 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1786 } 1787 1788 static const struct proto_ops packet_ops; 1789 1790 static const struct proto_ops packet_ops_spkt; 1791 1792 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1793 struct packet_type *pt, struct net_device *orig_dev) 1794 { 1795 struct sock *sk; 1796 struct sockaddr_pkt *spkt; 1797 1798 /* 1799 * When we registered the protocol we saved the socket in the data 1800 * field for just this event. 1801 */ 1802 1803 sk = pt->af_packet_priv; 1804 1805 /* 1806 * Yank back the headers [hope the device set this 1807 * right or kerboom...] 1808 * 1809 * Incoming packets have ll header pulled, 1810 * push it back. 1811 * 1812 * For outgoing ones skb->data == skb_mac_header(skb) 1813 * so that this procedure is noop. 1814 */ 1815 1816 if (skb->pkt_type == PACKET_LOOPBACK) 1817 goto out; 1818 1819 if (!net_eq(dev_net(dev), sock_net(sk))) 1820 goto out; 1821 1822 skb = skb_share_check(skb, GFP_ATOMIC); 1823 if (skb == NULL) 1824 goto oom; 1825 1826 /* drop any routing info */ 1827 skb_dst_drop(skb); 1828 1829 /* drop conntrack reference */ 1830 nf_reset_ct(skb); 1831 1832 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1833 1834 skb_push(skb, skb->data - skb_mac_header(skb)); 1835 1836 /* 1837 * The SOCK_PACKET socket receives _all_ frames. 1838 */ 1839 1840 spkt->spkt_family = dev->type; 1841 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1842 spkt->spkt_protocol = skb->protocol; 1843 1844 /* 1845 * Charge the memory to the socket. This is done specifically 1846 * to prevent sockets using all the memory up. 1847 */ 1848 1849 if (sock_queue_rcv_skb(sk, skb) == 0) 1850 return 0; 1851 1852 out: 1853 kfree_skb(skb); 1854 oom: 1855 return 0; 1856 } 1857 1858 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1859 { 1860 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1861 sock->type == SOCK_RAW) { 1862 skb_reset_mac_header(skb); 1863 skb->protocol = dev_parse_header_protocol(skb); 1864 } 1865 1866 skb_probe_transport_header(skb); 1867 } 1868 1869 /* 1870 * Output a raw packet to a device layer. This bypasses all the other 1871 * protocol layers and you must therefore supply it with a complete frame 1872 */ 1873 1874 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1875 size_t len) 1876 { 1877 struct sock *sk = sock->sk; 1878 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1879 struct sk_buff *skb = NULL; 1880 struct net_device *dev; 1881 struct sockcm_cookie sockc; 1882 __be16 proto = 0; 1883 int err; 1884 int extra_len = 0; 1885 1886 /* 1887 * Get and verify the address. 1888 */ 1889 1890 if (saddr) { 1891 if (msg->msg_namelen < sizeof(struct sockaddr)) 1892 return -EINVAL; 1893 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1894 proto = saddr->spkt_protocol; 1895 } else 1896 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1897 1898 /* 1899 * Find the device first to size check it 1900 */ 1901 1902 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1903 retry: 1904 rcu_read_lock(); 1905 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1906 err = -ENODEV; 1907 if (dev == NULL) 1908 goto out_unlock; 1909 1910 err = -ENETDOWN; 1911 if (!(dev->flags & IFF_UP)) 1912 goto out_unlock; 1913 1914 /* 1915 * You may not queue a frame bigger than the mtu. This is the lowest level 1916 * raw protocol and you must do your own fragmentation at this level. 1917 */ 1918 1919 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1920 if (!netif_supports_nofcs(dev)) { 1921 err = -EPROTONOSUPPORT; 1922 goto out_unlock; 1923 } 1924 extra_len = 4; /* We're doing our own CRC */ 1925 } 1926 1927 err = -EMSGSIZE; 1928 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1929 goto out_unlock; 1930 1931 if (!skb) { 1932 size_t reserved = LL_RESERVED_SPACE(dev); 1933 int tlen = dev->needed_tailroom; 1934 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1935 1936 rcu_read_unlock(); 1937 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1938 if (skb == NULL) 1939 return -ENOBUFS; 1940 /* FIXME: Save some space for broken drivers that write a hard 1941 * header at transmission time by themselves. PPP is the notable 1942 * one here. This should really be fixed at the driver level. 1943 */ 1944 skb_reserve(skb, reserved); 1945 skb_reset_network_header(skb); 1946 1947 /* Try to align data part correctly */ 1948 if (hhlen) { 1949 skb->data -= hhlen; 1950 skb->tail -= hhlen; 1951 if (len < hhlen) 1952 skb_reset_network_header(skb); 1953 } 1954 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1955 if (err) 1956 goto out_free; 1957 goto retry; 1958 } 1959 1960 if (!dev_validate_header(dev, skb->data, len)) { 1961 err = -EINVAL; 1962 goto out_unlock; 1963 } 1964 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1965 !packet_extra_vlan_len_allowed(dev, skb)) { 1966 err = -EMSGSIZE; 1967 goto out_unlock; 1968 } 1969 1970 sockcm_init(&sockc, sk); 1971 if (msg->msg_controllen) { 1972 err = sock_cmsg_send(sk, msg, &sockc); 1973 if (unlikely(err)) 1974 goto out_unlock; 1975 } 1976 1977 skb->protocol = proto; 1978 skb->dev = dev; 1979 skb->priority = sk->sk_priority; 1980 skb->mark = sk->sk_mark; 1981 skb->tstamp = sockc.transmit_time; 1982 1983 skb_setup_tx_timestamp(skb, sockc.tsflags); 1984 1985 if (unlikely(extra_len == 4)) 1986 skb->no_fcs = 1; 1987 1988 packet_parse_headers(skb, sock); 1989 1990 dev_queue_xmit(skb); 1991 rcu_read_unlock(); 1992 return len; 1993 1994 out_unlock: 1995 rcu_read_unlock(); 1996 out_free: 1997 kfree_skb(skb); 1998 return err; 1999 } 2000 2001 static unsigned int run_filter(struct sk_buff *skb, 2002 const struct sock *sk, 2003 unsigned int res) 2004 { 2005 struct sk_filter *filter; 2006 2007 rcu_read_lock(); 2008 filter = rcu_dereference(sk->sk_filter); 2009 if (filter != NULL) 2010 res = bpf_prog_run_clear_cb(filter->prog, skb); 2011 rcu_read_unlock(); 2012 2013 return res; 2014 } 2015 2016 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2017 size_t *len) 2018 { 2019 struct virtio_net_hdr vnet_hdr; 2020 2021 if (*len < sizeof(vnet_hdr)) 2022 return -EINVAL; 2023 *len -= sizeof(vnet_hdr); 2024 2025 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2026 return -EINVAL; 2027 2028 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2029 } 2030 2031 /* 2032 * This function makes lazy skb cloning in hope that most of packets 2033 * are discarded by BPF. 2034 * 2035 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2036 * and skb->cb are mangled. It works because (and until) packets 2037 * falling here are owned by current CPU. Output packets are cloned 2038 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2039 * sequencially, so that if we return skb to original state on exit, 2040 * we will not harm anyone. 2041 */ 2042 2043 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2044 struct packet_type *pt, struct net_device *orig_dev) 2045 { 2046 struct sock *sk; 2047 struct sockaddr_ll *sll; 2048 struct packet_sock *po; 2049 u8 *skb_head = skb->data; 2050 int skb_len = skb->len; 2051 unsigned int snaplen, res; 2052 bool is_drop_n_account = false; 2053 2054 if (skb->pkt_type == PACKET_LOOPBACK) 2055 goto drop; 2056 2057 sk = pt->af_packet_priv; 2058 po = pkt_sk(sk); 2059 2060 if (!net_eq(dev_net(dev), sock_net(sk))) 2061 goto drop; 2062 2063 skb->dev = dev; 2064 2065 if (dev->header_ops) { 2066 /* The device has an explicit notion of ll header, 2067 * exported to higher levels. 2068 * 2069 * Otherwise, the device hides details of its frame 2070 * structure, so that corresponding packet head is 2071 * never delivered to user. 2072 */ 2073 if (sk->sk_type != SOCK_DGRAM) 2074 skb_push(skb, skb->data - skb_mac_header(skb)); 2075 else if (skb->pkt_type == PACKET_OUTGOING) { 2076 /* Special case: outgoing packets have ll header at head */ 2077 skb_pull(skb, skb_network_offset(skb)); 2078 } 2079 } 2080 2081 snaplen = skb->len; 2082 2083 res = run_filter(skb, sk, snaplen); 2084 if (!res) 2085 goto drop_n_restore; 2086 if (snaplen > res) 2087 snaplen = res; 2088 2089 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2090 goto drop_n_acct; 2091 2092 if (skb_shared(skb)) { 2093 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2094 if (nskb == NULL) 2095 goto drop_n_acct; 2096 2097 if (skb_head != skb->data) { 2098 skb->data = skb_head; 2099 skb->len = skb_len; 2100 } 2101 consume_skb(skb); 2102 skb = nskb; 2103 } 2104 2105 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2106 2107 sll = &PACKET_SKB_CB(skb)->sa.ll; 2108 sll->sll_hatype = dev->type; 2109 sll->sll_pkttype = skb->pkt_type; 2110 if (unlikely(po->origdev)) 2111 sll->sll_ifindex = orig_dev->ifindex; 2112 else 2113 sll->sll_ifindex = dev->ifindex; 2114 2115 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2116 2117 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2118 * Use their space for storing the original skb length. 2119 */ 2120 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2121 2122 if (pskb_trim(skb, snaplen)) 2123 goto drop_n_acct; 2124 2125 skb_set_owner_r(skb, sk); 2126 skb->dev = NULL; 2127 skb_dst_drop(skb); 2128 2129 /* drop conntrack reference */ 2130 nf_reset_ct(skb); 2131 2132 spin_lock(&sk->sk_receive_queue.lock); 2133 po->stats.stats1.tp_packets++; 2134 sock_skb_set_dropcount(sk, skb); 2135 __skb_queue_tail(&sk->sk_receive_queue, skb); 2136 spin_unlock(&sk->sk_receive_queue.lock); 2137 sk->sk_data_ready(sk); 2138 return 0; 2139 2140 drop_n_acct: 2141 is_drop_n_account = true; 2142 atomic_inc(&po->tp_drops); 2143 atomic_inc(&sk->sk_drops); 2144 2145 drop_n_restore: 2146 if (skb_head != skb->data && skb_shared(skb)) { 2147 skb->data = skb_head; 2148 skb->len = skb_len; 2149 } 2150 drop: 2151 if (!is_drop_n_account) 2152 consume_skb(skb); 2153 else 2154 kfree_skb(skb); 2155 return 0; 2156 } 2157 2158 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2159 struct packet_type *pt, struct net_device *orig_dev) 2160 { 2161 struct sock *sk; 2162 struct packet_sock *po; 2163 struct sockaddr_ll *sll; 2164 union tpacket_uhdr h; 2165 u8 *skb_head = skb->data; 2166 int skb_len = skb->len; 2167 unsigned int snaplen, res; 2168 unsigned long status = TP_STATUS_USER; 2169 unsigned short macoff, netoff, hdrlen; 2170 struct sk_buff *copy_skb = NULL; 2171 struct timespec ts; 2172 __u32 ts_status; 2173 bool is_drop_n_account = false; 2174 bool do_vnet = false; 2175 2176 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2177 * We may add members to them until current aligned size without forcing 2178 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2179 */ 2180 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2181 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2182 2183 if (skb->pkt_type == PACKET_LOOPBACK) 2184 goto drop; 2185 2186 sk = pt->af_packet_priv; 2187 po = pkt_sk(sk); 2188 2189 if (!net_eq(dev_net(dev), sock_net(sk))) 2190 goto drop; 2191 2192 if (dev->header_ops) { 2193 if (sk->sk_type != SOCK_DGRAM) 2194 skb_push(skb, skb->data - skb_mac_header(skb)); 2195 else if (skb->pkt_type == PACKET_OUTGOING) { 2196 /* Special case: outgoing packets have ll header at head */ 2197 skb_pull(skb, skb_network_offset(skb)); 2198 } 2199 } 2200 2201 snaplen = skb->len; 2202 2203 res = run_filter(skb, sk, snaplen); 2204 if (!res) 2205 goto drop_n_restore; 2206 2207 /* If we are flooded, just give up */ 2208 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2209 atomic_inc(&po->tp_drops); 2210 goto drop_n_restore; 2211 } 2212 2213 if (skb->ip_summed == CHECKSUM_PARTIAL) 2214 status |= TP_STATUS_CSUMNOTREADY; 2215 else if (skb->pkt_type != PACKET_OUTGOING && 2216 (skb->ip_summed == CHECKSUM_COMPLETE || 2217 skb_csum_unnecessary(skb))) 2218 status |= TP_STATUS_CSUM_VALID; 2219 2220 if (snaplen > res) 2221 snaplen = res; 2222 2223 if (sk->sk_type == SOCK_DGRAM) { 2224 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2225 po->tp_reserve; 2226 } else { 2227 unsigned int maclen = skb_network_offset(skb); 2228 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2229 (maclen < 16 ? 16 : maclen)) + 2230 po->tp_reserve; 2231 if (po->has_vnet_hdr) { 2232 netoff += sizeof(struct virtio_net_hdr); 2233 do_vnet = true; 2234 } 2235 macoff = netoff - maclen; 2236 } 2237 if (po->tp_version <= TPACKET_V2) { 2238 if (macoff + snaplen > po->rx_ring.frame_size) { 2239 if (po->copy_thresh && 2240 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2241 if (skb_shared(skb)) { 2242 copy_skb = skb_clone(skb, GFP_ATOMIC); 2243 } else { 2244 copy_skb = skb_get(skb); 2245 skb_head = skb->data; 2246 } 2247 if (copy_skb) 2248 skb_set_owner_r(copy_skb, sk); 2249 } 2250 snaplen = po->rx_ring.frame_size - macoff; 2251 if ((int)snaplen < 0) { 2252 snaplen = 0; 2253 do_vnet = false; 2254 } 2255 } 2256 } else if (unlikely(macoff + snaplen > 2257 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2258 u32 nval; 2259 2260 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2261 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2262 snaplen, nval, macoff); 2263 snaplen = nval; 2264 if (unlikely((int)snaplen < 0)) { 2265 snaplen = 0; 2266 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2267 do_vnet = false; 2268 } 2269 } 2270 spin_lock(&sk->sk_receive_queue.lock); 2271 h.raw = packet_current_rx_frame(po, skb, 2272 TP_STATUS_KERNEL, (macoff+snaplen)); 2273 if (!h.raw) 2274 goto drop_n_account; 2275 if (po->tp_version <= TPACKET_V2) { 2276 packet_increment_rx_head(po, &po->rx_ring); 2277 /* 2278 * LOSING will be reported till you read the stats, 2279 * because it's COR - Clear On Read. 2280 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2281 * at packet level. 2282 */ 2283 if (atomic_read(&po->tp_drops)) 2284 status |= TP_STATUS_LOSING; 2285 } 2286 2287 if (do_vnet && 2288 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2289 sizeof(struct virtio_net_hdr), 2290 vio_le(), true, 0)) 2291 goto drop_n_account; 2292 2293 po->stats.stats1.tp_packets++; 2294 if (copy_skb) { 2295 status |= TP_STATUS_COPY; 2296 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2297 } 2298 spin_unlock(&sk->sk_receive_queue.lock); 2299 2300 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2301 2302 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2303 getnstimeofday(&ts); 2304 2305 status |= ts_status; 2306 2307 switch (po->tp_version) { 2308 case TPACKET_V1: 2309 h.h1->tp_len = skb->len; 2310 h.h1->tp_snaplen = snaplen; 2311 h.h1->tp_mac = macoff; 2312 h.h1->tp_net = netoff; 2313 h.h1->tp_sec = ts.tv_sec; 2314 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2315 hdrlen = sizeof(*h.h1); 2316 break; 2317 case TPACKET_V2: 2318 h.h2->tp_len = skb->len; 2319 h.h2->tp_snaplen = snaplen; 2320 h.h2->tp_mac = macoff; 2321 h.h2->tp_net = netoff; 2322 h.h2->tp_sec = ts.tv_sec; 2323 h.h2->tp_nsec = ts.tv_nsec; 2324 if (skb_vlan_tag_present(skb)) { 2325 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2326 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2327 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2328 } else { 2329 h.h2->tp_vlan_tci = 0; 2330 h.h2->tp_vlan_tpid = 0; 2331 } 2332 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2333 hdrlen = sizeof(*h.h2); 2334 break; 2335 case TPACKET_V3: 2336 /* tp_nxt_offset,vlan are already populated above. 2337 * So DONT clear those fields here 2338 */ 2339 h.h3->tp_status |= status; 2340 h.h3->tp_len = skb->len; 2341 h.h3->tp_snaplen = snaplen; 2342 h.h3->tp_mac = macoff; 2343 h.h3->tp_net = netoff; 2344 h.h3->tp_sec = ts.tv_sec; 2345 h.h3->tp_nsec = ts.tv_nsec; 2346 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2347 hdrlen = sizeof(*h.h3); 2348 break; 2349 default: 2350 BUG(); 2351 } 2352 2353 sll = h.raw + TPACKET_ALIGN(hdrlen); 2354 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2355 sll->sll_family = AF_PACKET; 2356 sll->sll_hatype = dev->type; 2357 sll->sll_protocol = skb->protocol; 2358 sll->sll_pkttype = skb->pkt_type; 2359 if (unlikely(po->origdev)) 2360 sll->sll_ifindex = orig_dev->ifindex; 2361 else 2362 sll->sll_ifindex = dev->ifindex; 2363 2364 smp_mb(); 2365 2366 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2367 if (po->tp_version <= TPACKET_V2) { 2368 u8 *start, *end; 2369 2370 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2371 macoff + snaplen); 2372 2373 for (start = h.raw; start < end; start += PAGE_SIZE) 2374 flush_dcache_page(pgv_to_page(start)); 2375 } 2376 smp_wmb(); 2377 #endif 2378 2379 if (po->tp_version <= TPACKET_V2) { 2380 __packet_set_status(po, h.raw, status); 2381 sk->sk_data_ready(sk); 2382 } else { 2383 prb_clear_blk_fill_status(&po->rx_ring); 2384 } 2385 2386 drop_n_restore: 2387 if (skb_head != skb->data && skb_shared(skb)) { 2388 skb->data = skb_head; 2389 skb->len = skb_len; 2390 } 2391 drop: 2392 if (!is_drop_n_account) 2393 consume_skb(skb); 2394 else 2395 kfree_skb(skb); 2396 return 0; 2397 2398 drop_n_account: 2399 spin_unlock(&sk->sk_receive_queue.lock); 2400 atomic_inc(&po->tp_drops); 2401 is_drop_n_account = true; 2402 2403 sk->sk_data_ready(sk); 2404 kfree_skb(copy_skb); 2405 goto drop_n_restore; 2406 } 2407 2408 static void tpacket_destruct_skb(struct sk_buff *skb) 2409 { 2410 struct packet_sock *po = pkt_sk(skb->sk); 2411 2412 if (likely(po->tx_ring.pg_vec)) { 2413 void *ph; 2414 __u32 ts; 2415 2416 ph = skb_zcopy_get_nouarg(skb); 2417 packet_dec_pending(&po->tx_ring); 2418 2419 ts = __packet_set_timestamp(po, ph, skb); 2420 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2421 2422 if (!packet_read_pending(&po->tx_ring)) 2423 complete(&po->skb_completion); 2424 } 2425 2426 sock_wfree(skb); 2427 } 2428 2429 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2430 { 2431 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2432 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2433 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2434 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2435 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2436 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2437 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2438 2439 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2440 return -EINVAL; 2441 2442 return 0; 2443 } 2444 2445 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2446 struct virtio_net_hdr *vnet_hdr) 2447 { 2448 if (*len < sizeof(*vnet_hdr)) 2449 return -EINVAL; 2450 *len -= sizeof(*vnet_hdr); 2451 2452 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2453 return -EFAULT; 2454 2455 return __packet_snd_vnet_parse(vnet_hdr, *len); 2456 } 2457 2458 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2459 void *frame, struct net_device *dev, void *data, int tp_len, 2460 __be16 proto, unsigned char *addr, int hlen, int copylen, 2461 const struct sockcm_cookie *sockc) 2462 { 2463 union tpacket_uhdr ph; 2464 int to_write, offset, len, nr_frags, len_max; 2465 struct socket *sock = po->sk.sk_socket; 2466 struct page *page; 2467 int err; 2468 2469 ph.raw = frame; 2470 2471 skb->protocol = proto; 2472 skb->dev = dev; 2473 skb->priority = po->sk.sk_priority; 2474 skb->mark = po->sk.sk_mark; 2475 skb->tstamp = sockc->transmit_time; 2476 skb_setup_tx_timestamp(skb, sockc->tsflags); 2477 skb_zcopy_set_nouarg(skb, ph.raw); 2478 2479 skb_reserve(skb, hlen); 2480 skb_reset_network_header(skb); 2481 2482 to_write = tp_len; 2483 2484 if (sock->type == SOCK_DGRAM) { 2485 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2486 NULL, tp_len); 2487 if (unlikely(err < 0)) 2488 return -EINVAL; 2489 } else if (copylen) { 2490 int hdrlen = min_t(int, copylen, tp_len); 2491 2492 skb_push(skb, dev->hard_header_len); 2493 skb_put(skb, copylen - dev->hard_header_len); 2494 err = skb_store_bits(skb, 0, data, hdrlen); 2495 if (unlikely(err)) 2496 return err; 2497 if (!dev_validate_header(dev, skb->data, hdrlen)) 2498 return -EINVAL; 2499 2500 data += hdrlen; 2501 to_write -= hdrlen; 2502 } 2503 2504 offset = offset_in_page(data); 2505 len_max = PAGE_SIZE - offset; 2506 len = ((to_write > len_max) ? len_max : to_write); 2507 2508 skb->data_len = to_write; 2509 skb->len += to_write; 2510 skb->truesize += to_write; 2511 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2512 2513 while (likely(to_write)) { 2514 nr_frags = skb_shinfo(skb)->nr_frags; 2515 2516 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2517 pr_err("Packet exceed the number of skb frags(%lu)\n", 2518 MAX_SKB_FRAGS); 2519 return -EFAULT; 2520 } 2521 2522 page = pgv_to_page(data); 2523 data += len; 2524 flush_dcache_page(page); 2525 get_page(page); 2526 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2527 to_write -= len; 2528 offset = 0; 2529 len_max = PAGE_SIZE; 2530 len = ((to_write > len_max) ? len_max : to_write); 2531 } 2532 2533 packet_parse_headers(skb, sock); 2534 2535 return tp_len; 2536 } 2537 2538 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2539 int size_max, void **data) 2540 { 2541 union tpacket_uhdr ph; 2542 int tp_len, off; 2543 2544 ph.raw = frame; 2545 2546 switch (po->tp_version) { 2547 case TPACKET_V3: 2548 if (ph.h3->tp_next_offset != 0) { 2549 pr_warn_once("variable sized slot not supported"); 2550 return -EINVAL; 2551 } 2552 tp_len = ph.h3->tp_len; 2553 break; 2554 case TPACKET_V2: 2555 tp_len = ph.h2->tp_len; 2556 break; 2557 default: 2558 tp_len = ph.h1->tp_len; 2559 break; 2560 } 2561 if (unlikely(tp_len > size_max)) { 2562 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2563 return -EMSGSIZE; 2564 } 2565 2566 if (unlikely(po->tp_tx_has_off)) { 2567 int off_min, off_max; 2568 2569 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2570 off_max = po->tx_ring.frame_size - tp_len; 2571 if (po->sk.sk_type == SOCK_DGRAM) { 2572 switch (po->tp_version) { 2573 case TPACKET_V3: 2574 off = ph.h3->tp_net; 2575 break; 2576 case TPACKET_V2: 2577 off = ph.h2->tp_net; 2578 break; 2579 default: 2580 off = ph.h1->tp_net; 2581 break; 2582 } 2583 } else { 2584 switch (po->tp_version) { 2585 case TPACKET_V3: 2586 off = ph.h3->tp_mac; 2587 break; 2588 case TPACKET_V2: 2589 off = ph.h2->tp_mac; 2590 break; 2591 default: 2592 off = ph.h1->tp_mac; 2593 break; 2594 } 2595 } 2596 if (unlikely((off < off_min) || (off_max < off))) 2597 return -EINVAL; 2598 } else { 2599 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2600 } 2601 2602 *data = frame + off; 2603 return tp_len; 2604 } 2605 2606 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2607 { 2608 struct sk_buff *skb = NULL; 2609 struct net_device *dev; 2610 struct virtio_net_hdr *vnet_hdr = NULL; 2611 struct sockcm_cookie sockc; 2612 __be16 proto; 2613 int err, reserve = 0; 2614 void *ph; 2615 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2616 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2617 unsigned char *addr = NULL; 2618 int tp_len, size_max; 2619 void *data; 2620 int len_sum = 0; 2621 int status = TP_STATUS_AVAILABLE; 2622 int hlen, tlen, copylen = 0; 2623 long timeo = 0; 2624 2625 mutex_lock(&po->pg_vec_lock); 2626 2627 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2628 * we need to confirm it under protection of pg_vec_lock. 2629 */ 2630 if (unlikely(!po->tx_ring.pg_vec)) { 2631 err = -EBUSY; 2632 goto out; 2633 } 2634 if (likely(saddr == NULL)) { 2635 dev = packet_cached_dev_get(po); 2636 proto = po->num; 2637 } else { 2638 err = -EINVAL; 2639 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2640 goto out; 2641 if (msg->msg_namelen < (saddr->sll_halen 2642 + offsetof(struct sockaddr_ll, 2643 sll_addr))) 2644 goto out; 2645 proto = saddr->sll_protocol; 2646 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2647 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2648 if (dev && msg->msg_namelen < dev->addr_len + 2649 offsetof(struct sockaddr_ll, sll_addr)) 2650 goto out_put; 2651 addr = saddr->sll_addr; 2652 } 2653 } 2654 2655 err = -ENXIO; 2656 if (unlikely(dev == NULL)) 2657 goto out; 2658 err = -ENETDOWN; 2659 if (unlikely(!(dev->flags & IFF_UP))) 2660 goto out_put; 2661 2662 sockcm_init(&sockc, &po->sk); 2663 if (msg->msg_controllen) { 2664 err = sock_cmsg_send(&po->sk, msg, &sockc); 2665 if (unlikely(err)) 2666 goto out_put; 2667 } 2668 2669 if (po->sk.sk_socket->type == SOCK_RAW) 2670 reserve = dev->hard_header_len; 2671 size_max = po->tx_ring.frame_size 2672 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2673 2674 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2675 size_max = dev->mtu + reserve + VLAN_HLEN; 2676 2677 reinit_completion(&po->skb_completion); 2678 2679 do { 2680 ph = packet_current_frame(po, &po->tx_ring, 2681 TP_STATUS_SEND_REQUEST); 2682 if (unlikely(ph == NULL)) { 2683 if (need_wait && skb) { 2684 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2685 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2686 if (timeo <= 0) { 2687 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2688 goto out_put; 2689 } 2690 } 2691 /* check for additional frames */ 2692 continue; 2693 } 2694 2695 skb = NULL; 2696 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2697 if (tp_len < 0) 2698 goto tpacket_error; 2699 2700 status = TP_STATUS_SEND_REQUEST; 2701 hlen = LL_RESERVED_SPACE(dev); 2702 tlen = dev->needed_tailroom; 2703 if (po->has_vnet_hdr) { 2704 vnet_hdr = data; 2705 data += sizeof(*vnet_hdr); 2706 tp_len -= sizeof(*vnet_hdr); 2707 if (tp_len < 0 || 2708 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2709 tp_len = -EINVAL; 2710 goto tpacket_error; 2711 } 2712 copylen = __virtio16_to_cpu(vio_le(), 2713 vnet_hdr->hdr_len); 2714 } 2715 copylen = max_t(int, copylen, dev->hard_header_len); 2716 skb = sock_alloc_send_skb(&po->sk, 2717 hlen + tlen + sizeof(struct sockaddr_ll) + 2718 (copylen - dev->hard_header_len), 2719 !need_wait, &err); 2720 2721 if (unlikely(skb == NULL)) { 2722 /* we assume the socket was initially writeable ... */ 2723 if (likely(len_sum > 0)) 2724 err = len_sum; 2725 goto out_status; 2726 } 2727 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2728 addr, hlen, copylen, &sockc); 2729 if (likely(tp_len >= 0) && 2730 tp_len > dev->mtu + reserve && 2731 !po->has_vnet_hdr && 2732 !packet_extra_vlan_len_allowed(dev, skb)) 2733 tp_len = -EMSGSIZE; 2734 2735 if (unlikely(tp_len < 0)) { 2736 tpacket_error: 2737 if (po->tp_loss) { 2738 __packet_set_status(po, ph, 2739 TP_STATUS_AVAILABLE); 2740 packet_increment_head(&po->tx_ring); 2741 kfree_skb(skb); 2742 continue; 2743 } else { 2744 status = TP_STATUS_WRONG_FORMAT; 2745 err = tp_len; 2746 goto out_status; 2747 } 2748 } 2749 2750 if (po->has_vnet_hdr) { 2751 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2752 tp_len = -EINVAL; 2753 goto tpacket_error; 2754 } 2755 virtio_net_hdr_set_proto(skb, vnet_hdr); 2756 } 2757 2758 skb->destructor = tpacket_destruct_skb; 2759 __packet_set_status(po, ph, TP_STATUS_SENDING); 2760 packet_inc_pending(&po->tx_ring); 2761 2762 status = TP_STATUS_SEND_REQUEST; 2763 err = po->xmit(skb); 2764 if (unlikely(err > 0)) { 2765 err = net_xmit_errno(err); 2766 if (err && __packet_get_status(po, ph) == 2767 TP_STATUS_AVAILABLE) { 2768 /* skb was destructed already */ 2769 skb = NULL; 2770 goto out_status; 2771 } 2772 /* 2773 * skb was dropped but not destructed yet; 2774 * let's treat it like congestion or err < 0 2775 */ 2776 err = 0; 2777 } 2778 packet_increment_head(&po->tx_ring); 2779 len_sum += tp_len; 2780 } while (likely((ph != NULL) || 2781 /* Note: packet_read_pending() might be slow if we have 2782 * to call it as it's per_cpu variable, but in fast-path 2783 * we already short-circuit the loop with the first 2784 * condition, and luckily don't have to go that path 2785 * anyway. 2786 */ 2787 (need_wait && packet_read_pending(&po->tx_ring)))); 2788 2789 err = len_sum; 2790 goto out_put; 2791 2792 out_status: 2793 __packet_set_status(po, ph, status); 2794 kfree_skb(skb); 2795 out_put: 2796 dev_put(dev); 2797 out: 2798 mutex_unlock(&po->pg_vec_lock); 2799 return err; 2800 } 2801 2802 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2803 size_t reserve, size_t len, 2804 size_t linear, int noblock, 2805 int *err) 2806 { 2807 struct sk_buff *skb; 2808 2809 /* Under a page? Don't bother with paged skb. */ 2810 if (prepad + len < PAGE_SIZE || !linear) 2811 linear = len; 2812 2813 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2814 err, 0); 2815 if (!skb) 2816 return NULL; 2817 2818 skb_reserve(skb, reserve); 2819 skb_put(skb, linear); 2820 skb->data_len = len - linear; 2821 skb->len += len - linear; 2822 2823 return skb; 2824 } 2825 2826 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2827 { 2828 struct sock *sk = sock->sk; 2829 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2830 struct sk_buff *skb; 2831 struct net_device *dev; 2832 __be16 proto; 2833 unsigned char *addr = NULL; 2834 int err, reserve = 0; 2835 struct sockcm_cookie sockc; 2836 struct virtio_net_hdr vnet_hdr = { 0 }; 2837 int offset = 0; 2838 struct packet_sock *po = pkt_sk(sk); 2839 bool has_vnet_hdr = false; 2840 int hlen, tlen, linear; 2841 int extra_len = 0; 2842 2843 /* 2844 * Get and verify the address. 2845 */ 2846 2847 if (likely(saddr == NULL)) { 2848 dev = packet_cached_dev_get(po); 2849 proto = po->num; 2850 } else { 2851 err = -EINVAL; 2852 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2853 goto out; 2854 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2855 goto out; 2856 proto = saddr->sll_protocol; 2857 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2858 if (sock->type == SOCK_DGRAM) { 2859 if (dev && msg->msg_namelen < dev->addr_len + 2860 offsetof(struct sockaddr_ll, sll_addr)) 2861 goto out_unlock; 2862 addr = saddr->sll_addr; 2863 } 2864 } 2865 2866 err = -ENXIO; 2867 if (unlikely(dev == NULL)) 2868 goto out_unlock; 2869 err = -ENETDOWN; 2870 if (unlikely(!(dev->flags & IFF_UP))) 2871 goto out_unlock; 2872 2873 sockcm_init(&sockc, sk); 2874 sockc.mark = sk->sk_mark; 2875 if (msg->msg_controllen) { 2876 err = sock_cmsg_send(sk, msg, &sockc); 2877 if (unlikely(err)) 2878 goto out_unlock; 2879 } 2880 2881 if (sock->type == SOCK_RAW) 2882 reserve = dev->hard_header_len; 2883 if (po->has_vnet_hdr) { 2884 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2885 if (err) 2886 goto out_unlock; 2887 has_vnet_hdr = true; 2888 } 2889 2890 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2891 if (!netif_supports_nofcs(dev)) { 2892 err = -EPROTONOSUPPORT; 2893 goto out_unlock; 2894 } 2895 extra_len = 4; /* We're doing our own CRC */ 2896 } 2897 2898 err = -EMSGSIZE; 2899 if (!vnet_hdr.gso_type && 2900 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2901 goto out_unlock; 2902 2903 err = -ENOBUFS; 2904 hlen = LL_RESERVED_SPACE(dev); 2905 tlen = dev->needed_tailroom; 2906 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2907 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2908 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2909 msg->msg_flags & MSG_DONTWAIT, &err); 2910 if (skb == NULL) 2911 goto out_unlock; 2912 2913 skb_reset_network_header(skb); 2914 2915 err = -EINVAL; 2916 if (sock->type == SOCK_DGRAM) { 2917 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2918 if (unlikely(offset < 0)) 2919 goto out_free; 2920 } else if (reserve) { 2921 skb_reserve(skb, -reserve); 2922 if (len < reserve + sizeof(struct ipv6hdr) && 2923 dev->min_header_len != dev->hard_header_len) 2924 skb_reset_network_header(skb); 2925 } 2926 2927 /* Returns -EFAULT on error */ 2928 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2929 if (err) 2930 goto out_free; 2931 2932 if (sock->type == SOCK_RAW && 2933 !dev_validate_header(dev, skb->data, len)) { 2934 err = -EINVAL; 2935 goto out_free; 2936 } 2937 2938 skb_setup_tx_timestamp(skb, sockc.tsflags); 2939 2940 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2941 !packet_extra_vlan_len_allowed(dev, skb)) { 2942 err = -EMSGSIZE; 2943 goto out_free; 2944 } 2945 2946 skb->protocol = proto; 2947 skb->dev = dev; 2948 skb->priority = sk->sk_priority; 2949 skb->mark = sockc.mark; 2950 skb->tstamp = sockc.transmit_time; 2951 2952 if (has_vnet_hdr) { 2953 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 2954 if (err) 2955 goto out_free; 2956 len += sizeof(vnet_hdr); 2957 virtio_net_hdr_set_proto(skb, &vnet_hdr); 2958 } 2959 2960 packet_parse_headers(skb, sock); 2961 2962 if (unlikely(extra_len == 4)) 2963 skb->no_fcs = 1; 2964 2965 err = po->xmit(skb); 2966 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2967 goto out_unlock; 2968 2969 dev_put(dev); 2970 2971 return len; 2972 2973 out_free: 2974 kfree_skb(skb); 2975 out_unlock: 2976 if (dev) 2977 dev_put(dev); 2978 out: 2979 return err; 2980 } 2981 2982 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2983 { 2984 struct sock *sk = sock->sk; 2985 struct packet_sock *po = pkt_sk(sk); 2986 2987 if (po->tx_ring.pg_vec) 2988 return tpacket_snd(po, msg); 2989 else 2990 return packet_snd(sock, msg, len); 2991 } 2992 2993 /* 2994 * Close a PACKET socket. This is fairly simple. We immediately go 2995 * to 'closed' state and remove our protocol entry in the device list. 2996 */ 2997 2998 static int packet_release(struct socket *sock) 2999 { 3000 struct sock *sk = sock->sk; 3001 struct packet_sock *po; 3002 struct packet_fanout *f; 3003 struct net *net; 3004 union tpacket_req_u req_u; 3005 3006 if (!sk) 3007 return 0; 3008 3009 net = sock_net(sk); 3010 po = pkt_sk(sk); 3011 3012 mutex_lock(&net->packet.sklist_lock); 3013 sk_del_node_init_rcu(sk); 3014 mutex_unlock(&net->packet.sklist_lock); 3015 3016 preempt_disable(); 3017 sock_prot_inuse_add(net, sk->sk_prot, -1); 3018 preempt_enable(); 3019 3020 spin_lock(&po->bind_lock); 3021 unregister_prot_hook(sk, false); 3022 packet_cached_dev_reset(po); 3023 3024 if (po->prot_hook.dev) { 3025 dev_put(po->prot_hook.dev); 3026 po->prot_hook.dev = NULL; 3027 } 3028 spin_unlock(&po->bind_lock); 3029 3030 packet_flush_mclist(sk); 3031 3032 lock_sock(sk); 3033 if (po->rx_ring.pg_vec) { 3034 memset(&req_u, 0, sizeof(req_u)); 3035 packet_set_ring(sk, &req_u, 1, 0); 3036 } 3037 3038 if (po->tx_ring.pg_vec) { 3039 memset(&req_u, 0, sizeof(req_u)); 3040 packet_set_ring(sk, &req_u, 1, 1); 3041 } 3042 release_sock(sk); 3043 3044 f = fanout_release(sk); 3045 3046 synchronize_net(); 3047 3048 kfree(po->rollover); 3049 if (f) { 3050 fanout_release_data(f); 3051 kfree(f); 3052 } 3053 /* 3054 * Now the socket is dead. No more input will appear. 3055 */ 3056 sock_orphan(sk); 3057 sock->sk = NULL; 3058 3059 /* Purge queues */ 3060 3061 skb_queue_purge(&sk->sk_receive_queue); 3062 packet_free_pending(po); 3063 sk_refcnt_debug_release(sk); 3064 3065 sock_put(sk); 3066 return 0; 3067 } 3068 3069 /* 3070 * Attach a packet hook. 3071 */ 3072 3073 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3074 __be16 proto) 3075 { 3076 struct packet_sock *po = pkt_sk(sk); 3077 struct net_device *dev_curr; 3078 __be16 proto_curr; 3079 bool need_rehook; 3080 struct net_device *dev = NULL; 3081 int ret = 0; 3082 bool unlisted = false; 3083 3084 lock_sock(sk); 3085 spin_lock(&po->bind_lock); 3086 rcu_read_lock(); 3087 3088 if (po->fanout) { 3089 ret = -EINVAL; 3090 goto out_unlock; 3091 } 3092 3093 if (name) { 3094 dev = dev_get_by_name_rcu(sock_net(sk), name); 3095 if (!dev) { 3096 ret = -ENODEV; 3097 goto out_unlock; 3098 } 3099 } else if (ifindex) { 3100 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3101 if (!dev) { 3102 ret = -ENODEV; 3103 goto out_unlock; 3104 } 3105 } 3106 3107 if (dev) 3108 dev_hold(dev); 3109 3110 proto_curr = po->prot_hook.type; 3111 dev_curr = po->prot_hook.dev; 3112 3113 need_rehook = proto_curr != proto || dev_curr != dev; 3114 3115 if (need_rehook) { 3116 if (po->running) { 3117 rcu_read_unlock(); 3118 /* prevents packet_notifier() from calling 3119 * register_prot_hook() 3120 */ 3121 po->num = 0; 3122 __unregister_prot_hook(sk, true); 3123 rcu_read_lock(); 3124 dev_curr = po->prot_hook.dev; 3125 if (dev) 3126 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3127 dev->ifindex); 3128 } 3129 3130 BUG_ON(po->running); 3131 po->num = proto; 3132 po->prot_hook.type = proto; 3133 3134 if (unlikely(unlisted)) { 3135 dev_put(dev); 3136 po->prot_hook.dev = NULL; 3137 po->ifindex = -1; 3138 packet_cached_dev_reset(po); 3139 } else { 3140 po->prot_hook.dev = dev; 3141 po->ifindex = dev ? dev->ifindex : 0; 3142 packet_cached_dev_assign(po, dev); 3143 } 3144 } 3145 if (dev_curr) 3146 dev_put(dev_curr); 3147 3148 if (proto == 0 || !need_rehook) 3149 goto out_unlock; 3150 3151 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3152 register_prot_hook(sk); 3153 } else { 3154 sk->sk_err = ENETDOWN; 3155 if (!sock_flag(sk, SOCK_DEAD)) 3156 sk->sk_error_report(sk); 3157 } 3158 3159 out_unlock: 3160 rcu_read_unlock(); 3161 spin_unlock(&po->bind_lock); 3162 release_sock(sk); 3163 return ret; 3164 } 3165 3166 /* 3167 * Bind a packet socket to a device 3168 */ 3169 3170 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3171 int addr_len) 3172 { 3173 struct sock *sk = sock->sk; 3174 char name[sizeof(uaddr->sa_data) + 1]; 3175 3176 /* 3177 * Check legality 3178 */ 3179 3180 if (addr_len != sizeof(struct sockaddr)) 3181 return -EINVAL; 3182 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3183 * zero-terminated. 3184 */ 3185 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3186 name[sizeof(uaddr->sa_data)] = 0; 3187 3188 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3189 } 3190 3191 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3192 { 3193 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3194 struct sock *sk = sock->sk; 3195 3196 /* 3197 * Check legality 3198 */ 3199 3200 if (addr_len < sizeof(struct sockaddr_ll)) 3201 return -EINVAL; 3202 if (sll->sll_family != AF_PACKET) 3203 return -EINVAL; 3204 3205 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3206 sll->sll_protocol ? : pkt_sk(sk)->num); 3207 } 3208 3209 static struct proto packet_proto = { 3210 .name = "PACKET", 3211 .owner = THIS_MODULE, 3212 .obj_size = sizeof(struct packet_sock), 3213 }; 3214 3215 /* 3216 * Create a packet of type SOCK_PACKET. 3217 */ 3218 3219 static int packet_create(struct net *net, struct socket *sock, int protocol, 3220 int kern) 3221 { 3222 struct sock *sk; 3223 struct packet_sock *po; 3224 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3225 int err; 3226 3227 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3228 return -EPERM; 3229 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3230 sock->type != SOCK_PACKET) 3231 return -ESOCKTNOSUPPORT; 3232 3233 sock->state = SS_UNCONNECTED; 3234 3235 err = -ENOBUFS; 3236 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3237 if (sk == NULL) 3238 goto out; 3239 3240 sock->ops = &packet_ops; 3241 if (sock->type == SOCK_PACKET) 3242 sock->ops = &packet_ops_spkt; 3243 3244 sock_init_data(sock, sk); 3245 3246 po = pkt_sk(sk); 3247 init_completion(&po->skb_completion); 3248 sk->sk_family = PF_PACKET; 3249 po->num = proto; 3250 po->xmit = dev_queue_xmit; 3251 3252 err = packet_alloc_pending(po); 3253 if (err) 3254 goto out2; 3255 3256 packet_cached_dev_reset(po); 3257 3258 sk->sk_destruct = packet_sock_destruct; 3259 sk_refcnt_debug_inc(sk); 3260 3261 /* 3262 * Attach a protocol block 3263 */ 3264 3265 spin_lock_init(&po->bind_lock); 3266 mutex_init(&po->pg_vec_lock); 3267 po->rollover = NULL; 3268 po->prot_hook.func = packet_rcv; 3269 3270 if (sock->type == SOCK_PACKET) 3271 po->prot_hook.func = packet_rcv_spkt; 3272 3273 po->prot_hook.af_packet_priv = sk; 3274 3275 if (proto) { 3276 po->prot_hook.type = proto; 3277 __register_prot_hook(sk); 3278 } 3279 3280 mutex_lock(&net->packet.sklist_lock); 3281 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3282 mutex_unlock(&net->packet.sklist_lock); 3283 3284 preempt_disable(); 3285 sock_prot_inuse_add(net, &packet_proto, 1); 3286 preempt_enable(); 3287 3288 return 0; 3289 out2: 3290 sk_free(sk); 3291 out: 3292 return err; 3293 } 3294 3295 /* 3296 * Pull a packet from our receive queue and hand it to the user. 3297 * If necessary we block. 3298 */ 3299 3300 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3301 int flags) 3302 { 3303 struct sock *sk = sock->sk; 3304 struct sk_buff *skb; 3305 int copied, err; 3306 int vnet_hdr_len = 0; 3307 unsigned int origlen = 0; 3308 3309 err = -EINVAL; 3310 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3311 goto out; 3312 3313 #if 0 3314 /* What error should we return now? EUNATTACH? */ 3315 if (pkt_sk(sk)->ifindex < 0) 3316 return -ENODEV; 3317 #endif 3318 3319 if (flags & MSG_ERRQUEUE) { 3320 err = sock_recv_errqueue(sk, msg, len, 3321 SOL_PACKET, PACKET_TX_TIMESTAMP); 3322 goto out; 3323 } 3324 3325 /* 3326 * Call the generic datagram receiver. This handles all sorts 3327 * of horrible races and re-entrancy so we can forget about it 3328 * in the protocol layers. 3329 * 3330 * Now it will return ENETDOWN, if device have just gone down, 3331 * but then it will block. 3332 */ 3333 3334 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3335 3336 /* 3337 * An error occurred so return it. Because skb_recv_datagram() 3338 * handles the blocking we don't see and worry about blocking 3339 * retries. 3340 */ 3341 3342 if (skb == NULL) 3343 goto out; 3344 3345 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3346 3347 if (pkt_sk(sk)->has_vnet_hdr) { 3348 err = packet_rcv_vnet(msg, skb, &len); 3349 if (err) 3350 goto out_free; 3351 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3352 } 3353 3354 /* You lose any data beyond the buffer you gave. If it worries 3355 * a user program they can ask the device for its MTU 3356 * anyway. 3357 */ 3358 copied = skb->len; 3359 if (copied > len) { 3360 copied = len; 3361 msg->msg_flags |= MSG_TRUNC; 3362 } 3363 3364 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3365 if (err) 3366 goto out_free; 3367 3368 if (sock->type != SOCK_PACKET) { 3369 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3370 3371 /* Original length was stored in sockaddr_ll fields */ 3372 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3373 sll->sll_family = AF_PACKET; 3374 sll->sll_protocol = skb->protocol; 3375 } 3376 3377 sock_recv_ts_and_drops(msg, sk, skb); 3378 3379 if (msg->msg_name) { 3380 int copy_len; 3381 3382 /* If the address length field is there to be filled 3383 * in, we fill it in now. 3384 */ 3385 if (sock->type == SOCK_PACKET) { 3386 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3387 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3388 copy_len = msg->msg_namelen; 3389 } else { 3390 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3391 3392 msg->msg_namelen = sll->sll_halen + 3393 offsetof(struct sockaddr_ll, sll_addr); 3394 copy_len = msg->msg_namelen; 3395 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3396 memset(msg->msg_name + 3397 offsetof(struct sockaddr_ll, sll_addr), 3398 0, sizeof(sll->sll_addr)); 3399 msg->msg_namelen = sizeof(struct sockaddr_ll); 3400 } 3401 } 3402 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3403 } 3404 3405 if (pkt_sk(sk)->auxdata) { 3406 struct tpacket_auxdata aux; 3407 3408 aux.tp_status = TP_STATUS_USER; 3409 if (skb->ip_summed == CHECKSUM_PARTIAL) 3410 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3411 else if (skb->pkt_type != PACKET_OUTGOING && 3412 (skb->ip_summed == CHECKSUM_COMPLETE || 3413 skb_csum_unnecessary(skb))) 3414 aux.tp_status |= TP_STATUS_CSUM_VALID; 3415 3416 aux.tp_len = origlen; 3417 aux.tp_snaplen = skb->len; 3418 aux.tp_mac = 0; 3419 aux.tp_net = skb_network_offset(skb); 3420 if (skb_vlan_tag_present(skb)) { 3421 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3422 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3423 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3424 } else { 3425 aux.tp_vlan_tci = 0; 3426 aux.tp_vlan_tpid = 0; 3427 } 3428 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3429 } 3430 3431 /* 3432 * Free or return the buffer as appropriate. Again this 3433 * hides all the races and re-entrancy issues from us. 3434 */ 3435 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3436 3437 out_free: 3438 skb_free_datagram(sk, skb); 3439 out: 3440 return err; 3441 } 3442 3443 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3444 int peer) 3445 { 3446 struct net_device *dev; 3447 struct sock *sk = sock->sk; 3448 3449 if (peer) 3450 return -EOPNOTSUPP; 3451 3452 uaddr->sa_family = AF_PACKET; 3453 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3454 rcu_read_lock(); 3455 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3456 if (dev) 3457 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3458 rcu_read_unlock(); 3459 3460 return sizeof(*uaddr); 3461 } 3462 3463 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3464 int peer) 3465 { 3466 struct net_device *dev; 3467 struct sock *sk = sock->sk; 3468 struct packet_sock *po = pkt_sk(sk); 3469 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3470 3471 if (peer) 3472 return -EOPNOTSUPP; 3473 3474 sll->sll_family = AF_PACKET; 3475 sll->sll_ifindex = po->ifindex; 3476 sll->sll_protocol = po->num; 3477 sll->sll_pkttype = 0; 3478 rcu_read_lock(); 3479 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3480 if (dev) { 3481 sll->sll_hatype = dev->type; 3482 sll->sll_halen = dev->addr_len; 3483 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3484 } else { 3485 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3486 sll->sll_halen = 0; 3487 } 3488 rcu_read_unlock(); 3489 3490 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3491 } 3492 3493 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3494 int what) 3495 { 3496 switch (i->type) { 3497 case PACKET_MR_MULTICAST: 3498 if (i->alen != dev->addr_len) 3499 return -EINVAL; 3500 if (what > 0) 3501 return dev_mc_add(dev, i->addr); 3502 else 3503 return dev_mc_del(dev, i->addr); 3504 break; 3505 case PACKET_MR_PROMISC: 3506 return dev_set_promiscuity(dev, what); 3507 case PACKET_MR_ALLMULTI: 3508 return dev_set_allmulti(dev, what); 3509 case PACKET_MR_UNICAST: 3510 if (i->alen != dev->addr_len) 3511 return -EINVAL; 3512 if (what > 0) 3513 return dev_uc_add(dev, i->addr); 3514 else 3515 return dev_uc_del(dev, i->addr); 3516 break; 3517 default: 3518 break; 3519 } 3520 return 0; 3521 } 3522 3523 static void packet_dev_mclist_delete(struct net_device *dev, 3524 struct packet_mclist **mlp) 3525 { 3526 struct packet_mclist *ml; 3527 3528 while ((ml = *mlp) != NULL) { 3529 if (ml->ifindex == dev->ifindex) { 3530 packet_dev_mc(dev, ml, -1); 3531 *mlp = ml->next; 3532 kfree(ml); 3533 } else 3534 mlp = &ml->next; 3535 } 3536 } 3537 3538 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3539 { 3540 struct packet_sock *po = pkt_sk(sk); 3541 struct packet_mclist *ml, *i; 3542 struct net_device *dev; 3543 int err; 3544 3545 rtnl_lock(); 3546 3547 err = -ENODEV; 3548 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3549 if (!dev) 3550 goto done; 3551 3552 err = -EINVAL; 3553 if (mreq->mr_alen > dev->addr_len) 3554 goto done; 3555 3556 err = -ENOBUFS; 3557 i = kmalloc(sizeof(*i), GFP_KERNEL); 3558 if (i == NULL) 3559 goto done; 3560 3561 err = 0; 3562 for (ml = po->mclist; ml; ml = ml->next) { 3563 if (ml->ifindex == mreq->mr_ifindex && 3564 ml->type == mreq->mr_type && 3565 ml->alen == mreq->mr_alen && 3566 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3567 ml->count++; 3568 /* Free the new element ... */ 3569 kfree(i); 3570 goto done; 3571 } 3572 } 3573 3574 i->type = mreq->mr_type; 3575 i->ifindex = mreq->mr_ifindex; 3576 i->alen = mreq->mr_alen; 3577 memcpy(i->addr, mreq->mr_address, i->alen); 3578 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3579 i->count = 1; 3580 i->next = po->mclist; 3581 po->mclist = i; 3582 err = packet_dev_mc(dev, i, 1); 3583 if (err) { 3584 po->mclist = i->next; 3585 kfree(i); 3586 } 3587 3588 done: 3589 rtnl_unlock(); 3590 return err; 3591 } 3592 3593 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3594 { 3595 struct packet_mclist *ml, **mlp; 3596 3597 rtnl_lock(); 3598 3599 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3600 if (ml->ifindex == mreq->mr_ifindex && 3601 ml->type == mreq->mr_type && 3602 ml->alen == mreq->mr_alen && 3603 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3604 if (--ml->count == 0) { 3605 struct net_device *dev; 3606 *mlp = ml->next; 3607 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3608 if (dev) 3609 packet_dev_mc(dev, ml, -1); 3610 kfree(ml); 3611 } 3612 break; 3613 } 3614 } 3615 rtnl_unlock(); 3616 return 0; 3617 } 3618 3619 static void packet_flush_mclist(struct sock *sk) 3620 { 3621 struct packet_sock *po = pkt_sk(sk); 3622 struct packet_mclist *ml; 3623 3624 if (!po->mclist) 3625 return; 3626 3627 rtnl_lock(); 3628 while ((ml = po->mclist) != NULL) { 3629 struct net_device *dev; 3630 3631 po->mclist = ml->next; 3632 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3633 if (dev != NULL) 3634 packet_dev_mc(dev, ml, -1); 3635 kfree(ml); 3636 } 3637 rtnl_unlock(); 3638 } 3639 3640 static int 3641 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3642 { 3643 struct sock *sk = sock->sk; 3644 struct packet_sock *po = pkt_sk(sk); 3645 int ret; 3646 3647 if (level != SOL_PACKET) 3648 return -ENOPROTOOPT; 3649 3650 switch (optname) { 3651 case PACKET_ADD_MEMBERSHIP: 3652 case PACKET_DROP_MEMBERSHIP: 3653 { 3654 struct packet_mreq_max mreq; 3655 int len = optlen; 3656 memset(&mreq, 0, sizeof(mreq)); 3657 if (len < sizeof(struct packet_mreq)) 3658 return -EINVAL; 3659 if (len > sizeof(mreq)) 3660 len = sizeof(mreq); 3661 if (copy_from_user(&mreq, optval, len)) 3662 return -EFAULT; 3663 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3664 return -EINVAL; 3665 if (optname == PACKET_ADD_MEMBERSHIP) 3666 ret = packet_mc_add(sk, &mreq); 3667 else 3668 ret = packet_mc_drop(sk, &mreq); 3669 return ret; 3670 } 3671 3672 case PACKET_RX_RING: 3673 case PACKET_TX_RING: 3674 { 3675 union tpacket_req_u req_u; 3676 int len; 3677 3678 lock_sock(sk); 3679 switch (po->tp_version) { 3680 case TPACKET_V1: 3681 case TPACKET_V2: 3682 len = sizeof(req_u.req); 3683 break; 3684 case TPACKET_V3: 3685 default: 3686 len = sizeof(req_u.req3); 3687 break; 3688 } 3689 if (optlen < len) { 3690 ret = -EINVAL; 3691 } else { 3692 if (copy_from_user(&req_u.req, optval, len)) 3693 ret = -EFAULT; 3694 else 3695 ret = packet_set_ring(sk, &req_u, 0, 3696 optname == PACKET_TX_RING); 3697 } 3698 release_sock(sk); 3699 return ret; 3700 } 3701 case PACKET_COPY_THRESH: 3702 { 3703 int val; 3704 3705 if (optlen != sizeof(val)) 3706 return -EINVAL; 3707 if (copy_from_user(&val, optval, sizeof(val))) 3708 return -EFAULT; 3709 3710 pkt_sk(sk)->copy_thresh = val; 3711 return 0; 3712 } 3713 case PACKET_VERSION: 3714 { 3715 int val; 3716 3717 if (optlen != sizeof(val)) 3718 return -EINVAL; 3719 if (copy_from_user(&val, optval, sizeof(val))) 3720 return -EFAULT; 3721 switch (val) { 3722 case TPACKET_V1: 3723 case TPACKET_V2: 3724 case TPACKET_V3: 3725 break; 3726 default: 3727 return -EINVAL; 3728 } 3729 lock_sock(sk); 3730 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3731 ret = -EBUSY; 3732 } else { 3733 po->tp_version = val; 3734 ret = 0; 3735 } 3736 release_sock(sk); 3737 return ret; 3738 } 3739 case PACKET_RESERVE: 3740 { 3741 unsigned int val; 3742 3743 if (optlen != sizeof(val)) 3744 return -EINVAL; 3745 if (copy_from_user(&val, optval, sizeof(val))) 3746 return -EFAULT; 3747 if (val > INT_MAX) 3748 return -EINVAL; 3749 lock_sock(sk); 3750 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3751 ret = -EBUSY; 3752 } else { 3753 po->tp_reserve = val; 3754 ret = 0; 3755 } 3756 release_sock(sk); 3757 return ret; 3758 } 3759 case PACKET_LOSS: 3760 { 3761 unsigned int val; 3762 3763 if (optlen != sizeof(val)) 3764 return -EINVAL; 3765 if (copy_from_user(&val, optval, sizeof(val))) 3766 return -EFAULT; 3767 3768 lock_sock(sk); 3769 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3770 ret = -EBUSY; 3771 } else { 3772 po->tp_loss = !!val; 3773 ret = 0; 3774 } 3775 release_sock(sk); 3776 return ret; 3777 } 3778 case PACKET_AUXDATA: 3779 { 3780 int val; 3781 3782 if (optlen < sizeof(val)) 3783 return -EINVAL; 3784 if (copy_from_user(&val, optval, sizeof(val))) 3785 return -EFAULT; 3786 3787 lock_sock(sk); 3788 po->auxdata = !!val; 3789 release_sock(sk); 3790 return 0; 3791 } 3792 case PACKET_ORIGDEV: 3793 { 3794 int val; 3795 3796 if (optlen < sizeof(val)) 3797 return -EINVAL; 3798 if (copy_from_user(&val, optval, sizeof(val))) 3799 return -EFAULT; 3800 3801 lock_sock(sk); 3802 po->origdev = !!val; 3803 release_sock(sk); 3804 return 0; 3805 } 3806 case PACKET_VNET_HDR: 3807 { 3808 int val; 3809 3810 if (sock->type != SOCK_RAW) 3811 return -EINVAL; 3812 if (optlen < sizeof(val)) 3813 return -EINVAL; 3814 if (copy_from_user(&val, optval, sizeof(val))) 3815 return -EFAULT; 3816 3817 lock_sock(sk); 3818 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3819 ret = -EBUSY; 3820 } else { 3821 po->has_vnet_hdr = !!val; 3822 ret = 0; 3823 } 3824 release_sock(sk); 3825 return ret; 3826 } 3827 case PACKET_TIMESTAMP: 3828 { 3829 int val; 3830 3831 if (optlen != sizeof(val)) 3832 return -EINVAL; 3833 if (copy_from_user(&val, optval, sizeof(val))) 3834 return -EFAULT; 3835 3836 po->tp_tstamp = val; 3837 return 0; 3838 } 3839 case PACKET_FANOUT: 3840 { 3841 int val; 3842 3843 if (optlen != sizeof(val)) 3844 return -EINVAL; 3845 if (copy_from_user(&val, optval, sizeof(val))) 3846 return -EFAULT; 3847 3848 return fanout_add(sk, val & 0xffff, val >> 16); 3849 } 3850 case PACKET_FANOUT_DATA: 3851 { 3852 if (!po->fanout) 3853 return -EINVAL; 3854 3855 return fanout_set_data(po, optval, optlen); 3856 } 3857 case PACKET_IGNORE_OUTGOING: 3858 { 3859 int val; 3860 3861 if (optlen != sizeof(val)) 3862 return -EINVAL; 3863 if (copy_from_user(&val, optval, sizeof(val))) 3864 return -EFAULT; 3865 if (val < 0 || val > 1) 3866 return -EINVAL; 3867 3868 po->prot_hook.ignore_outgoing = !!val; 3869 return 0; 3870 } 3871 case PACKET_TX_HAS_OFF: 3872 { 3873 unsigned int val; 3874 3875 if (optlen != sizeof(val)) 3876 return -EINVAL; 3877 if (copy_from_user(&val, optval, sizeof(val))) 3878 return -EFAULT; 3879 3880 lock_sock(sk); 3881 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3882 ret = -EBUSY; 3883 } else { 3884 po->tp_tx_has_off = !!val; 3885 ret = 0; 3886 } 3887 release_sock(sk); 3888 return 0; 3889 } 3890 case PACKET_QDISC_BYPASS: 3891 { 3892 int val; 3893 3894 if (optlen != sizeof(val)) 3895 return -EINVAL; 3896 if (copy_from_user(&val, optval, sizeof(val))) 3897 return -EFAULT; 3898 3899 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3900 return 0; 3901 } 3902 default: 3903 return -ENOPROTOOPT; 3904 } 3905 } 3906 3907 static int packet_getsockopt(struct socket *sock, int level, int optname, 3908 char __user *optval, int __user *optlen) 3909 { 3910 int len; 3911 int val, lv = sizeof(val); 3912 struct sock *sk = sock->sk; 3913 struct packet_sock *po = pkt_sk(sk); 3914 void *data = &val; 3915 union tpacket_stats_u st; 3916 struct tpacket_rollover_stats rstats; 3917 int drops; 3918 3919 if (level != SOL_PACKET) 3920 return -ENOPROTOOPT; 3921 3922 if (get_user(len, optlen)) 3923 return -EFAULT; 3924 3925 if (len < 0) 3926 return -EINVAL; 3927 3928 switch (optname) { 3929 case PACKET_STATISTICS: 3930 spin_lock_bh(&sk->sk_receive_queue.lock); 3931 memcpy(&st, &po->stats, sizeof(st)); 3932 memset(&po->stats, 0, sizeof(po->stats)); 3933 spin_unlock_bh(&sk->sk_receive_queue.lock); 3934 drops = atomic_xchg(&po->tp_drops, 0); 3935 3936 if (po->tp_version == TPACKET_V3) { 3937 lv = sizeof(struct tpacket_stats_v3); 3938 st.stats3.tp_drops = drops; 3939 st.stats3.tp_packets += drops; 3940 data = &st.stats3; 3941 } else { 3942 lv = sizeof(struct tpacket_stats); 3943 st.stats1.tp_drops = drops; 3944 st.stats1.tp_packets += drops; 3945 data = &st.stats1; 3946 } 3947 3948 break; 3949 case PACKET_AUXDATA: 3950 val = po->auxdata; 3951 break; 3952 case PACKET_ORIGDEV: 3953 val = po->origdev; 3954 break; 3955 case PACKET_VNET_HDR: 3956 val = po->has_vnet_hdr; 3957 break; 3958 case PACKET_VERSION: 3959 val = po->tp_version; 3960 break; 3961 case PACKET_HDRLEN: 3962 if (len > sizeof(int)) 3963 len = sizeof(int); 3964 if (len < sizeof(int)) 3965 return -EINVAL; 3966 if (copy_from_user(&val, optval, len)) 3967 return -EFAULT; 3968 switch (val) { 3969 case TPACKET_V1: 3970 val = sizeof(struct tpacket_hdr); 3971 break; 3972 case TPACKET_V2: 3973 val = sizeof(struct tpacket2_hdr); 3974 break; 3975 case TPACKET_V3: 3976 val = sizeof(struct tpacket3_hdr); 3977 break; 3978 default: 3979 return -EINVAL; 3980 } 3981 break; 3982 case PACKET_RESERVE: 3983 val = po->tp_reserve; 3984 break; 3985 case PACKET_LOSS: 3986 val = po->tp_loss; 3987 break; 3988 case PACKET_TIMESTAMP: 3989 val = po->tp_tstamp; 3990 break; 3991 case PACKET_FANOUT: 3992 val = (po->fanout ? 3993 ((u32)po->fanout->id | 3994 ((u32)po->fanout->type << 16) | 3995 ((u32)po->fanout->flags << 24)) : 3996 0); 3997 break; 3998 case PACKET_IGNORE_OUTGOING: 3999 val = po->prot_hook.ignore_outgoing; 4000 break; 4001 case PACKET_ROLLOVER_STATS: 4002 if (!po->rollover) 4003 return -EINVAL; 4004 rstats.tp_all = atomic_long_read(&po->rollover->num); 4005 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4006 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4007 data = &rstats; 4008 lv = sizeof(rstats); 4009 break; 4010 case PACKET_TX_HAS_OFF: 4011 val = po->tp_tx_has_off; 4012 break; 4013 case PACKET_QDISC_BYPASS: 4014 val = packet_use_direct_xmit(po); 4015 break; 4016 default: 4017 return -ENOPROTOOPT; 4018 } 4019 4020 if (len > lv) 4021 len = lv; 4022 if (put_user(len, optlen)) 4023 return -EFAULT; 4024 if (copy_to_user(optval, data, len)) 4025 return -EFAULT; 4026 return 0; 4027 } 4028 4029 4030 #ifdef CONFIG_COMPAT 4031 static int compat_packet_setsockopt(struct socket *sock, int level, int optname, 4032 char __user *optval, unsigned int optlen) 4033 { 4034 struct packet_sock *po = pkt_sk(sock->sk); 4035 4036 if (level != SOL_PACKET) 4037 return -ENOPROTOOPT; 4038 4039 if (optname == PACKET_FANOUT_DATA && 4040 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) { 4041 optval = (char __user *)get_compat_bpf_fprog(optval); 4042 if (!optval) 4043 return -EFAULT; 4044 optlen = sizeof(struct sock_fprog); 4045 } 4046 4047 return packet_setsockopt(sock, level, optname, optval, optlen); 4048 } 4049 #endif 4050 4051 static int packet_notifier(struct notifier_block *this, 4052 unsigned long msg, void *ptr) 4053 { 4054 struct sock *sk; 4055 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4056 struct net *net = dev_net(dev); 4057 4058 rcu_read_lock(); 4059 sk_for_each_rcu(sk, &net->packet.sklist) { 4060 struct packet_sock *po = pkt_sk(sk); 4061 4062 switch (msg) { 4063 case NETDEV_UNREGISTER: 4064 if (po->mclist) 4065 packet_dev_mclist_delete(dev, &po->mclist); 4066 /* fallthrough */ 4067 4068 case NETDEV_DOWN: 4069 if (dev->ifindex == po->ifindex) { 4070 spin_lock(&po->bind_lock); 4071 if (po->running) { 4072 __unregister_prot_hook(sk, false); 4073 sk->sk_err = ENETDOWN; 4074 if (!sock_flag(sk, SOCK_DEAD)) 4075 sk->sk_error_report(sk); 4076 } 4077 if (msg == NETDEV_UNREGISTER) { 4078 packet_cached_dev_reset(po); 4079 po->ifindex = -1; 4080 if (po->prot_hook.dev) 4081 dev_put(po->prot_hook.dev); 4082 po->prot_hook.dev = NULL; 4083 } 4084 spin_unlock(&po->bind_lock); 4085 } 4086 break; 4087 case NETDEV_UP: 4088 if (dev->ifindex == po->ifindex) { 4089 spin_lock(&po->bind_lock); 4090 if (po->num) 4091 register_prot_hook(sk); 4092 spin_unlock(&po->bind_lock); 4093 } 4094 break; 4095 } 4096 } 4097 rcu_read_unlock(); 4098 return NOTIFY_DONE; 4099 } 4100 4101 4102 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4103 unsigned long arg) 4104 { 4105 struct sock *sk = sock->sk; 4106 4107 switch (cmd) { 4108 case SIOCOUTQ: 4109 { 4110 int amount = sk_wmem_alloc_get(sk); 4111 4112 return put_user(amount, (int __user *)arg); 4113 } 4114 case SIOCINQ: 4115 { 4116 struct sk_buff *skb; 4117 int amount = 0; 4118 4119 spin_lock_bh(&sk->sk_receive_queue.lock); 4120 skb = skb_peek(&sk->sk_receive_queue); 4121 if (skb) 4122 amount = skb->len; 4123 spin_unlock_bh(&sk->sk_receive_queue.lock); 4124 return put_user(amount, (int __user *)arg); 4125 } 4126 #ifdef CONFIG_INET 4127 case SIOCADDRT: 4128 case SIOCDELRT: 4129 case SIOCDARP: 4130 case SIOCGARP: 4131 case SIOCSARP: 4132 case SIOCGIFADDR: 4133 case SIOCSIFADDR: 4134 case SIOCGIFBRDADDR: 4135 case SIOCSIFBRDADDR: 4136 case SIOCGIFNETMASK: 4137 case SIOCSIFNETMASK: 4138 case SIOCGIFDSTADDR: 4139 case SIOCSIFDSTADDR: 4140 case SIOCSIFFLAGS: 4141 return inet_dgram_ops.ioctl(sock, cmd, arg); 4142 #endif 4143 4144 default: 4145 return -ENOIOCTLCMD; 4146 } 4147 return 0; 4148 } 4149 4150 static __poll_t packet_poll(struct file *file, struct socket *sock, 4151 poll_table *wait) 4152 { 4153 struct sock *sk = sock->sk; 4154 struct packet_sock *po = pkt_sk(sk); 4155 __poll_t mask = datagram_poll(file, sock, wait); 4156 4157 spin_lock_bh(&sk->sk_receive_queue.lock); 4158 if (po->rx_ring.pg_vec) { 4159 if (!packet_previous_rx_frame(po, &po->rx_ring, 4160 TP_STATUS_KERNEL)) 4161 mask |= EPOLLIN | EPOLLRDNORM; 4162 } 4163 packet_rcv_try_clear_pressure(po); 4164 spin_unlock_bh(&sk->sk_receive_queue.lock); 4165 spin_lock_bh(&sk->sk_write_queue.lock); 4166 if (po->tx_ring.pg_vec) { 4167 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4168 mask |= EPOLLOUT | EPOLLWRNORM; 4169 } 4170 spin_unlock_bh(&sk->sk_write_queue.lock); 4171 return mask; 4172 } 4173 4174 4175 /* Dirty? Well, I still did not learn better way to account 4176 * for user mmaps. 4177 */ 4178 4179 static void packet_mm_open(struct vm_area_struct *vma) 4180 { 4181 struct file *file = vma->vm_file; 4182 struct socket *sock = file->private_data; 4183 struct sock *sk = sock->sk; 4184 4185 if (sk) 4186 atomic_inc(&pkt_sk(sk)->mapped); 4187 } 4188 4189 static void packet_mm_close(struct vm_area_struct *vma) 4190 { 4191 struct file *file = vma->vm_file; 4192 struct socket *sock = file->private_data; 4193 struct sock *sk = sock->sk; 4194 4195 if (sk) 4196 atomic_dec(&pkt_sk(sk)->mapped); 4197 } 4198 4199 static const struct vm_operations_struct packet_mmap_ops = { 4200 .open = packet_mm_open, 4201 .close = packet_mm_close, 4202 }; 4203 4204 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4205 unsigned int len) 4206 { 4207 int i; 4208 4209 for (i = 0; i < len; i++) { 4210 if (likely(pg_vec[i].buffer)) { 4211 if (is_vmalloc_addr(pg_vec[i].buffer)) 4212 vfree(pg_vec[i].buffer); 4213 else 4214 free_pages((unsigned long)pg_vec[i].buffer, 4215 order); 4216 pg_vec[i].buffer = NULL; 4217 } 4218 } 4219 kfree(pg_vec); 4220 } 4221 4222 static char *alloc_one_pg_vec_page(unsigned long order) 4223 { 4224 char *buffer; 4225 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4226 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4227 4228 buffer = (char *) __get_free_pages(gfp_flags, order); 4229 if (buffer) 4230 return buffer; 4231 4232 /* __get_free_pages failed, fall back to vmalloc */ 4233 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4234 if (buffer) 4235 return buffer; 4236 4237 /* vmalloc failed, lets dig into swap here */ 4238 gfp_flags &= ~__GFP_NORETRY; 4239 buffer = (char *) __get_free_pages(gfp_flags, order); 4240 if (buffer) 4241 return buffer; 4242 4243 /* complete and utter failure */ 4244 return NULL; 4245 } 4246 4247 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4248 { 4249 unsigned int block_nr = req->tp_block_nr; 4250 struct pgv *pg_vec; 4251 int i; 4252 4253 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4254 if (unlikely(!pg_vec)) 4255 goto out; 4256 4257 for (i = 0; i < block_nr; i++) { 4258 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4259 if (unlikely(!pg_vec[i].buffer)) 4260 goto out_free_pgvec; 4261 } 4262 4263 out: 4264 return pg_vec; 4265 4266 out_free_pgvec: 4267 free_pg_vec(pg_vec, order, block_nr); 4268 pg_vec = NULL; 4269 goto out; 4270 } 4271 4272 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4273 int closing, int tx_ring) 4274 { 4275 struct pgv *pg_vec = NULL; 4276 struct packet_sock *po = pkt_sk(sk); 4277 int was_running, order = 0; 4278 struct packet_ring_buffer *rb; 4279 struct sk_buff_head *rb_queue; 4280 __be16 num; 4281 int err = -EINVAL; 4282 /* Added to avoid minimal code churn */ 4283 struct tpacket_req *req = &req_u->req; 4284 4285 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4286 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4287 4288 err = -EBUSY; 4289 if (!closing) { 4290 if (atomic_read(&po->mapped)) 4291 goto out; 4292 if (packet_read_pending(rb)) 4293 goto out; 4294 } 4295 4296 if (req->tp_block_nr) { 4297 unsigned int min_frame_size; 4298 4299 /* Sanity tests and some calculations */ 4300 err = -EBUSY; 4301 if (unlikely(rb->pg_vec)) 4302 goto out; 4303 4304 switch (po->tp_version) { 4305 case TPACKET_V1: 4306 po->tp_hdrlen = TPACKET_HDRLEN; 4307 break; 4308 case TPACKET_V2: 4309 po->tp_hdrlen = TPACKET2_HDRLEN; 4310 break; 4311 case TPACKET_V3: 4312 po->tp_hdrlen = TPACKET3_HDRLEN; 4313 break; 4314 } 4315 4316 err = -EINVAL; 4317 if (unlikely((int)req->tp_block_size <= 0)) 4318 goto out; 4319 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4320 goto out; 4321 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4322 if (po->tp_version >= TPACKET_V3 && 4323 req->tp_block_size < 4324 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4325 goto out; 4326 if (unlikely(req->tp_frame_size < min_frame_size)) 4327 goto out; 4328 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4329 goto out; 4330 4331 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4332 if (unlikely(rb->frames_per_block == 0)) 4333 goto out; 4334 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4335 goto out; 4336 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4337 req->tp_frame_nr)) 4338 goto out; 4339 4340 err = -ENOMEM; 4341 order = get_order(req->tp_block_size); 4342 pg_vec = alloc_pg_vec(req, order); 4343 if (unlikely(!pg_vec)) 4344 goto out; 4345 switch (po->tp_version) { 4346 case TPACKET_V3: 4347 /* Block transmit is not supported yet */ 4348 if (!tx_ring) { 4349 init_prb_bdqc(po, rb, pg_vec, req_u); 4350 } else { 4351 struct tpacket_req3 *req3 = &req_u->req3; 4352 4353 if (req3->tp_retire_blk_tov || 4354 req3->tp_sizeof_priv || 4355 req3->tp_feature_req_word) { 4356 err = -EINVAL; 4357 goto out_free_pg_vec; 4358 } 4359 } 4360 break; 4361 default: 4362 break; 4363 } 4364 } 4365 /* Done */ 4366 else { 4367 err = -EINVAL; 4368 if (unlikely(req->tp_frame_nr)) 4369 goto out; 4370 } 4371 4372 4373 /* Detach socket from network */ 4374 spin_lock(&po->bind_lock); 4375 was_running = po->running; 4376 num = po->num; 4377 if (was_running) { 4378 po->num = 0; 4379 __unregister_prot_hook(sk, false); 4380 } 4381 spin_unlock(&po->bind_lock); 4382 4383 synchronize_net(); 4384 4385 err = -EBUSY; 4386 mutex_lock(&po->pg_vec_lock); 4387 if (closing || atomic_read(&po->mapped) == 0) { 4388 err = 0; 4389 spin_lock_bh(&rb_queue->lock); 4390 swap(rb->pg_vec, pg_vec); 4391 rb->frame_max = (req->tp_frame_nr - 1); 4392 rb->head = 0; 4393 rb->frame_size = req->tp_frame_size; 4394 spin_unlock_bh(&rb_queue->lock); 4395 4396 swap(rb->pg_vec_order, order); 4397 swap(rb->pg_vec_len, req->tp_block_nr); 4398 4399 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4400 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4401 tpacket_rcv : packet_rcv; 4402 skb_queue_purge(rb_queue); 4403 if (atomic_read(&po->mapped)) 4404 pr_err("packet_mmap: vma is busy: %d\n", 4405 atomic_read(&po->mapped)); 4406 } 4407 mutex_unlock(&po->pg_vec_lock); 4408 4409 spin_lock(&po->bind_lock); 4410 if (was_running) { 4411 po->num = num; 4412 register_prot_hook(sk); 4413 } 4414 spin_unlock(&po->bind_lock); 4415 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4416 /* Because we don't support block-based V3 on tx-ring */ 4417 if (!tx_ring) 4418 prb_shutdown_retire_blk_timer(po, rb_queue); 4419 } 4420 4421 out_free_pg_vec: 4422 if (pg_vec) 4423 free_pg_vec(pg_vec, order, req->tp_block_nr); 4424 out: 4425 return err; 4426 } 4427 4428 static int packet_mmap(struct file *file, struct socket *sock, 4429 struct vm_area_struct *vma) 4430 { 4431 struct sock *sk = sock->sk; 4432 struct packet_sock *po = pkt_sk(sk); 4433 unsigned long size, expected_size; 4434 struct packet_ring_buffer *rb; 4435 unsigned long start; 4436 int err = -EINVAL; 4437 int i; 4438 4439 if (vma->vm_pgoff) 4440 return -EINVAL; 4441 4442 mutex_lock(&po->pg_vec_lock); 4443 4444 expected_size = 0; 4445 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4446 if (rb->pg_vec) { 4447 expected_size += rb->pg_vec_len 4448 * rb->pg_vec_pages 4449 * PAGE_SIZE; 4450 } 4451 } 4452 4453 if (expected_size == 0) 4454 goto out; 4455 4456 size = vma->vm_end - vma->vm_start; 4457 if (size != expected_size) 4458 goto out; 4459 4460 start = vma->vm_start; 4461 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4462 if (rb->pg_vec == NULL) 4463 continue; 4464 4465 for (i = 0; i < rb->pg_vec_len; i++) { 4466 struct page *page; 4467 void *kaddr = rb->pg_vec[i].buffer; 4468 int pg_num; 4469 4470 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4471 page = pgv_to_page(kaddr); 4472 err = vm_insert_page(vma, start, page); 4473 if (unlikely(err)) 4474 goto out; 4475 start += PAGE_SIZE; 4476 kaddr += PAGE_SIZE; 4477 } 4478 } 4479 } 4480 4481 atomic_inc(&po->mapped); 4482 vma->vm_ops = &packet_mmap_ops; 4483 err = 0; 4484 4485 out: 4486 mutex_unlock(&po->pg_vec_lock); 4487 return err; 4488 } 4489 4490 static const struct proto_ops packet_ops_spkt = { 4491 .family = PF_PACKET, 4492 .owner = THIS_MODULE, 4493 .release = packet_release, 4494 .bind = packet_bind_spkt, 4495 .connect = sock_no_connect, 4496 .socketpair = sock_no_socketpair, 4497 .accept = sock_no_accept, 4498 .getname = packet_getname_spkt, 4499 .poll = datagram_poll, 4500 .ioctl = packet_ioctl, 4501 .gettstamp = sock_gettstamp, 4502 .listen = sock_no_listen, 4503 .shutdown = sock_no_shutdown, 4504 .setsockopt = sock_no_setsockopt, 4505 .getsockopt = sock_no_getsockopt, 4506 .sendmsg = packet_sendmsg_spkt, 4507 .recvmsg = packet_recvmsg, 4508 .mmap = sock_no_mmap, 4509 .sendpage = sock_no_sendpage, 4510 }; 4511 4512 static const struct proto_ops packet_ops = { 4513 .family = PF_PACKET, 4514 .owner = THIS_MODULE, 4515 .release = packet_release, 4516 .bind = packet_bind, 4517 .connect = sock_no_connect, 4518 .socketpair = sock_no_socketpair, 4519 .accept = sock_no_accept, 4520 .getname = packet_getname, 4521 .poll = packet_poll, 4522 .ioctl = packet_ioctl, 4523 .gettstamp = sock_gettstamp, 4524 .listen = sock_no_listen, 4525 .shutdown = sock_no_shutdown, 4526 .setsockopt = packet_setsockopt, 4527 .getsockopt = packet_getsockopt, 4528 #ifdef CONFIG_COMPAT 4529 .compat_setsockopt = compat_packet_setsockopt, 4530 #endif 4531 .sendmsg = packet_sendmsg, 4532 .recvmsg = packet_recvmsg, 4533 .mmap = packet_mmap, 4534 .sendpage = sock_no_sendpage, 4535 }; 4536 4537 static const struct net_proto_family packet_family_ops = { 4538 .family = PF_PACKET, 4539 .create = packet_create, 4540 .owner = THIS_MODULE, 4541 }; 4542 4543 static struct notifier_block packet_netdev_notifier = { 4544 .notifier_call = packet_notifier, 4545 }; 4546 4547 #ifdef CONFIG_PROC_FS 4548 4549 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4550 __acquires(RCU) 4551 { 4552 struct net *net = seq_file_net(seq); 4553 4554 rcu_read_lock(); 4555 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4556 } 4557 4558 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4559 { 4560 struct net *net = seq_file_net(seq); 4561 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4562 } 4563 4564 static void packet_seq_stop(struct seq_file *seq, void *v) 4565 __releases(RCU) 4566 { 4567 rcu_read_unlock(); 4568 } 4569 4570 static int packet_seq_show(struct seq_file *seq, void *v) 4571 { 4572 if (v == SEQ_START_TOKEN) 4573 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4574 else { 4575 struct sock *s = sk_entry(v); 4576 const struct packet_sock *po = pkt_sk(s); 4577 4578 seq_printf(seq, 4579 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4580 s, 4581 refcount_read(&s->sk_refcnt), 4582 s->sk_type, 4583 ntohs(po->num), 4584 po->ifindex, 4585 po->running, 4586 atomic_read(&s->sk_rmem_alloc), 4587 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4588 sock_i_ino(s)); 4589 } 4590 4591 return 0; 4592 } 4593 4594 static const struct seq_operations packet_seq_ops = { 4595 .start = packet_seq_start, 4596 .next = packet_seq_next, 4597 .stop = packet_seq_stop, 4598 .show = packet_seq_show, 4599 }; 4600 #endif 4601 4602 static int __net_init packet_net_init(struct net *net) 4603 { 4604 mutex_init(&net->packet.sklist_lock); 4605 INIT_HLIST_HEAD(&net->packet.sklist); 4606 4607 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4608 sizeof(struct seq_net_private))) 4609 return -ENOMEM; 4610 4611 return 0; 4612 } 4613 4614 static void __net_exit packet_net_exit(struct net *net) 4615 { 4616 remove_proc_entry("packet", net->proc_net); 4617 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4618 } 4619 4620 static struct pernet_operations packet_net_ops = { 4621 .init = packet_net_init, 4622 .exit = packet_net_exit, 4623 }; 4624 4625 4626 static void __exit packet_exit(void) 4627 { 4628 unregister_netdevice_notifier(&packet_netdev_notifier); 4629 unregister_pernet_subsys(&packet_net_ops); 4630 sock_unregister(PF_PACKET); 4631 proto_unregister(&packet_proto); 4632 } 4633 4634 static int __init packet_init(void) 4635 { 4636 int rc; 4637 4638 rc = proto_register(&packet_proto, 0); 4639 if (rc) 4640 goto out; 4641 rc = sock_register(&packet_family_ops); 4642 if (rc) 4643 goto out_proto; 4644 rc = register_pernet_subsys(&packet_net_ops); 4645 if (rc) 4646 goto out_sock; 4647 rc = register_netdevice_notifier(&packet_netdev_notifier); 4648 if (rc) 4649 goto out_pernet; 4650 4651 return 0; 4652 4653 out_pernet: 4654 unregister_pernet_subsys(&packet_net_ops); 4655 out_sock: 4656 sock_unregister(PF_PACKET); 4657 out_proto: 4658 proto_unregister(&packet_proto); 4659 out: 4660 return rc; 4661 } 4662 4663 module_init(packet_init); 4664 module_exit(packet_exit); 4665 MODULE_LICENSE("GPL"); 4666 MODULE_ALIAS_NETPROTO(PF_PACKET); 4667