1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb->tstamp, ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 1339 sk_refcnt_debug_dec(sk); 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = prandom_u32() % ROLLOVER_HLEN; 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return prandom_u32_max(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1414 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1415 if (i != j) 1416 po->rollover->sock = i; 1417 atomic_long_inc(&po->rollover->num); 1418 if (room == ROOM_LOW) 1419 atomic_long_inc(&po->rollover->num_huge); 1420 return i; 1421 } 1422 1423 if (++i == num) 1424 i = 0; 1425 } while (i != j); 1426 1427 atomic_long_inc(&po->rollover->num_failed); 1428 return idx; 1429 } 1430 1431 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1432 struct sk_buff *skb, 1433 unsigned int num) 1434 { 1435 return skb_get_queue_mapping(skb) % num; 1436 } 1437 1438 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1439 struct sk_buff *skb, 1440 unsigned int num) 1441 { 1442 struct bpf_prog *prog; 1443 unsigned int ret = 0; 1444 1445 rcu_read_lock(); 1446 prog = rcu_dereference(f->bpf_prog); 1447 if (prog) 1448 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1449 rcu_read_unlock(); 1450 1451 return ret; 1452 } 1453 1454 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1455 { 1456 return f->flags & (flag >> 8); 1457 } 1458 1459 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1460 struct packet_type *pt, struct net_device *orig_dev) 1461 { 1462 struct packet_fanout *f = pt->af_packet_priv; 1463 unsigned int num = READ_ONCE(f->num_members); 1464 struct net *net = read_pnet(&f->net); 1465 struct packet_sock *po; 1466 unsigned int idx; 1467 1468 if (!net_eq(dev_net(dev), net) || !num) { 1469 kfree_skb(skb); 1470 return 0; 1471 } 1472 1473 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1474 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1475 if (!skb) 1476 return 0; 1477 } 1478 switch (f->type) { 1479 case PACKET_FANOUT_HASH: 1480 default: 1481 idx = fanout_demux_hash(f, skb, num); 1482 break; 1483 case PACKET_FANOUT_LB: 1484 idx = fanout_demux_lb(f, skb, num); 1485 break; 1486 case PACKET_FANOUT_CPU: 1487 idx = fanout_demux_cpu(f, skb, num); 1488 break; 1489 case PACKET_FANOUT_RND: 1490 idx = fanout_demux_rnd(f, skb, num); 1491 break; 1492 case PACKET_FANOUT_QM: 1493 idx = fanout_demux_qm(f, skb, num); 1494 break; 1495 case PACKET_FANOUT_ROLLOVER: 1496 idx = fanout_demux_rollover(f, skb, 0, false, num); 1497 break; 1498 case PACKET_FANOUT_CBPF: 1499 case PACKET_FANOUT_EBPF: 1500 idx = fanout_demux_bpf(f, skb, num); 1501 break; 1502 } 1503 1504 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1505 idx = fanout_demux_rollover(f, skb, idx, true, num); 1506 1507 po = pkt_sk(rcu_dereference(f->arr[idx])); 1508 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1509 } 1510 1511 DEFINE_MUTEX(fanout_mutex); 1512 EXPORT_SYMBOL_GPL(fanout_mutex); 1513 static LIST_HEAD(fanout_list); 1514 static u16 fanout_next_id; 1515 1516 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1517 { 1518 struct packet_fanout *f = po->fanout; 1519 1520 spin_lock(&f->lock); 1521 rcu_assign_pointer(f->arr[f->num_members], sk); 1522 smp_wmb(); 1523 f->num_members++; 1524 if (f->num_members == 1) 1525 dev_add_pack(&f->prot_hook); 1526 spin_unlock(&f->lock); 1527 } 1528 1529 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1530 { 1531 struct packet_fanout *f = po->fanout; 1532 int i; 1533 1534 spin_lock(&f->lock); 1535 for (i = 0; i < f->num_members; i++) { 1536 if (rcu_dereference_protected(f->arr[i], 1537 lockdep_is_held(&f->lock)) == sk) 1538 break; 1539 } 1540 BUG_ON(i >= f->num_members); 1541 rcu_assign_pointer(f->arr[i], 1542 rcu_dereference_protected(f->arr[f->num_members - 1], 1543 lockdep_is_held(&f->lock))); 1544 f->num_members--; 1545 if (f->num_members == 0) 1546 __dev_remove_pack(&f->prot_hook); 1547 spin_unlock(&f->lock); 1548 } 1549 1550 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1551 { 1552 if (sk->sk_family != PF_PACKET) 1553 return false; 1554 1555 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1556 } 1557 1558 static void fanout_init_data(struct packet_fanout *f) 1559 { 1560 switch (f->type) { 1561 case PACKET_FANOUT_LB: 1562 atomic_set(&f->rr_cur, 0); 1563 break; 1564 case PACKET_FANOUT_CBPF: 1565 case PACKET_FANOUT_EBPF: 1566 RCU_INIT_POINTER(f->bpf_prog, NULL); 1567 break; 1568 } 1569 } 1570 1571 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1572 { 1573 struct bpf_prog *old; 1574 1575 spin_lock(&f->lock); 1576 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1577 rcu_assign_pointer(f->bpf_prog, new); 1578 spin_unlock(&f->lock); 1579 1580 if (old) { 1581 synchronize_net(); 1582 bpf_prog_destroy(old); 1583 } 1584 } 1585 1586 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1587 unsigned int len) 1588 { 1589 struct bpf_prog *new; 1590 struct sock_fprog fprog; 1591 int ret; 1592 1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1594 return -EPERM; 1595 1596 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1597 if (ret) 1598 return ret; 1599 1600 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1601 if (ret) 1602 return ret; 1603 1604 __fanout_set_data_bpf(po->fanout, new); 1605 return 0; 1606 } 1607 1608 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1609 unsigned int len) 1610 { 1611 struct bpf_prog *new; 1612 u32 fd; 1613 1614 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1615 return -EPERM; 1616 if (len != sizeof(fd)) 1617 return -EINVAL; 1618 if (copy_from_sockptr(&fd, data, len)) 1619 return -EFAULT; 1620 1621 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1622 if (IS_ERR(new)) 1623 return PTR_ERR(new); 1624 1625 __fanout_set_data_bpf(po->fanout, new); 1626 return 0; 1627 } 1628 1629 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1630 unsigned int len) 1631 { 1632 switch (po->fanout->type) { 1633 case PACKET_FANOUT_CBPF: 1634 return fanout_set_data_cbpf(po, data, len); 1635 case PACKET_FANOUT_EBPF: 1636 return fanout_set_data_ebpf(po, data, len); 1637 default: 1638 return -EINVAL; 1639 } 1640 } 1641 1642 static void fanout_release_data(struct packet_fanout *f) 1643 { 1644 switch (f->type) { 1645 case PACKET_FANOUT_CBPF: 1646 case PACKET_FANOUT_EBPF: 1647 __fanout_set_data_bpf(f, NULL); 1648 } 1649 } 1650 1651 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1652 { 1653 struct packet_fanout *f; 1654 1655 list_for_each_entry(f, &fanout_list, list) { 1656 if (f->id == candidate_id && 1657 read_pnet(&f->net) == sock_net(sk)) { 1658 return false; 1659 } 1660 } 1661 return true; 1662 } 1663 1664 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1665 { 1666 u16 id = fanout_next_id; 1667 1668 do { 1669 if (__fanout_id_is_free(sk, id)) { 1670 *new_id = id; 1671 fanout_next_id = id + 1; 1672 return true; 1673 } 1674 1675 id++; 1676 } while (id != fanout_next_id); 1677 1678 return false; 1679 } 1680 1681 static int fanout_add(struct sock *sk, struct fanout_args *args) 1682 { 1683 struct packet_rollover *rollover = NULL; 1684 struct packet_sock *po = pkt_sk(sk); 1685 u16 type_flags = args->type_flags; 1686 struct packet_fanout *f, *match; 1687 u8 type = type_flags & 0xff; 1688 u8 flags = type_flags >> 8; 1689 u16 id = args->id; 1690 int err; 1691 1692 switch (type) { 1693 case PACKET_FANOUT_ROLLOVER: 1694 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1695 return -EINVAL; 1696 break; 1697 case PACKET_FANOUT_HASH: 1698 case PACKET_FANOUT_LB: 1699 case PACKET_FANOUT_CPU: 1700 case PACKET_FANOUT_RND: 1701 case PACKET_FANOUT_QM: 1702 case PACKET_FANOUT_CBPF: 1703 case PACKET_FANOUT_EBPF: 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 mutex_lock(&fanout_mutex); 1710 1711 err = -EALREADY; 1712 if (po->fanout) 1713 goto out; 1714 1715 if (type == PACKET_FANOUT_ROLLOVER || 1716 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1717 err = -ENOMEM; 1718 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1719 if (!rollover) 1720 goto out; 1721 atomic_long_set(&rollover->num, 0); 1722 atomic_long_set(&rollover->num_huge, 0); 1723 atomic_long_set(&rollover->num_failed, 0); 1724 } 1725 1726 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1727 if (id != 0) { 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 if (!fanout_find_new_id(sk, &id)) { 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 /* ephemeral flag for the first socket in the group: drop it */ 1736 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1737 } 1738 1739 match = NULL; 1740 list_for_each_entry(f, &fanout_list, list) { 1741 if (f->id == id && 1742 read_pnet(&f->net) == sock_net(sk)) { 1743 match = f; 1744 break; 1745 } 1746 } 1747 err = -EINVAL; 1748 if (match) { 1749 if (match->flags != flags) 1750 goto out; 1751 if (args->max_num_members && 1752 args->max_num_members != match->max_num_members) 1753 goto out; 1754 } else { 1755 if (args->max_num_members > PACKET_FANOUT_MAX) 1756 goto out; 1757 if (!args->max_num_members) 1758 /* legacy PACKET_FANOUT_MAX */ 1759 args->max_num_members = 256; 1760 err = -ENOMEM; 1761 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1762 GFP_KERNEL); 1763 if (!match) 1764 goto out; 1765 write_pnet(&match->net, sock_net(sk)); 1766 match->id = id; 1767 match->type = type; 1768 match->flags = flags; 1769 INIT_LIST_HEAD(&match->list); 1770 spin_lock_init(&match->lock); 1771 refcount_set(&match->sk_ref, 0); 1772 fanout_init_data(match); 1773 match->prot_hook.type = po->prot_hook.type; 1774 match->prot_hook.dev = po->prot_hook.dev; 1775 match->prot_hook.func = packet_rcv_fanout; 1776 match->prot_hook.af_packet_priv = match; 1777 match->prot_hook.af_packet_net = read_pnet(&match->net); 1778 match->prot_hook.id_match = match_fanout_group; 1779 match->max_num_members = args->max_num_members; 1780 list_add(&match->list, &fanout_list); 1781 } 1782 err = -EINVAL; 1783 1784 spin_lock(&po->bind_lock); 1785 if (po->running && 1786 match->type == type && 1787 match->prot_hook.type == po->prot_hook.type && 1788 match->prot_hook.dev == po->prot_hook.dev) { 1789 err = -ENOSPC; 1790 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1791 __dev_remove_pack(&po->prot_hook); 1792 1793 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1794 WRITE_ONCE(po->fanout, match); 1795 1796 po->rollover = rollover; 1797 rollover = NULL; 1798 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1799 __fanout_link(sk, po); 1800 err = 0; 1801 } 1802 } 1803 spin_unlock(&po->bind_lock); 1804 1805 if (err && !refcount_read(&match->sk_ref)) { 1806 list_del(&match->list); 1807 kvfree(match); 1808 } 1809 1810 out: 1811 kfree(rollover); 1812 mutex_unlock(&fanout_mutex); 1813 return err; 1814 } 1815 1816 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1817 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1818 * It is the responsibility of the caller to call fanout_release_data() and 1819 * free the returned packet_fanout (after synchronize_net()) 1820 */ 1821 static struct packet_fanout *fanout_release(struct sock *sk) 1822 { 1823 struct packet_sock *po = pkt_sk(sk); 1824 struct packet_fanout *f; 1825 1826 mutex_lock(&fanout_mutex); 1827 f = po->fanout; 1828 if (f) { 1829 po->fanout = NULL; 1830 1831 if (refcount_dec_and_test(&f->sk_ref)) 1832 list_del(&f->list); 1833 else 1834 f = NULL; 1835 } 1836 mutex_unlock(&fanout_mutex); 1837 1838 return f; 1839 } 1840 1841 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1842 struct sk_buff *skb) 1843 { 1844 /* Earlier code assumed this would be a VLAN pkt, double-check 1845 * this now that we have the actual packet in hand. We can only 1846 * do this check on Ethernet devices. 1847 */ 1848 if (unlikely(dev->type != ARPHRD_ETHER)) 1849 return false; 1850 1851 skb_reset_mac_header(skb); 1852 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1853 } 1854 1855 static const struct proto_ops packet_ops; 1856 1857 static const struct proto_ops packet_ops_spkt; 1858 1859 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1860 struct packet_type *pt, struct net_device *orig_dev) 1861 { 1862 struct sock *sk; 1863 struct sockaddr_pkt *spkt; 1864 1865 /* 1866 * When we registered the protocol we saved the socket in the data 1867 * field for just this event. 1868 */ 1869 1870 sk = pt->af_packet_priv; 1871 1872 /* 1873 * Yank back the headers [hope the device set this 1874 * right or kerboom...] 1875 * 1876 * Incoming packets have ll header pulled, 1877 * push it back. 1878 * 1879 * For outgoing ones skb->data == skb_mac_header(skb) 1880 * so that this procedure is noop. 1881 */ 1882 1883 if (skb->pkt_type == PACKET_LOOPBACK) 1884 goto out; 1885 1886 if (!net_eq(dev_net(dev), sock_net(sk))) 1887 goto out; 1888 1889 skb = skb_share_check(skb, GFP_ATOMIC); 1890 if (skb == NULL) 1891 goto oom; 1892 1893 /* drop any routing info */ 1894 skb_dst_drop(skb); 1895 1896 /* drop conntrack reference */ 1897 nf_reset_ct(skb); 1898 1899 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1900 1901 skb_push(skb, skb->data - skb_mac_header(skb)); 1902 1903 /* 1904 * The SOCK_PACKET socket receives _all_ frames. 1905 */ 1906 1907 spkt->spkt_family = dev->type; 1908 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1909 spkt->spkt_protocol = skb->protocol; 1910 1911 /* 1912 * Charge the memory to the socket. This is done specifically 1913 * to prevent sockets using all the memory up. 1914 */ 1915 1916 if (sock_queue_rcv_skb(sk, skb) == 0) 1917 return 0; 1918 1919 out: 1920 kfree_skb(skb); 1921 oom: 1922 return 0; 1923 } 1924 1925 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1926 { 1927 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1928 sock->type == SOCK_RAW) { 1929 skb_reset_mac_header(skb); 1930 skb->protocol = dev_parse_header_protocol(skb); 1931 } 1932 1933 skb_probe_transport_header(skb); 1934 } 1935 1936 /* 1937 * Output a raw packet to a device layer. This bypasses all the other 1938 * protocol layers and you must therefore supply it with a complete frame 1939 */ 1940 1941 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1942 size_t len) 1943 { 1944 struct sock *sk = sock->sk; 1945 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1946 struct sk_buff *skb = NULL; 1947 struct net_device *dev; 1948 struct sockcm_cookie sockc; 1949 __be16 proto = 0; 1950 int err; 1951 int extra_len = 0; 1952 1953 /* 1954 * Get and verify the address. 1955 */ 1956 1957 if (saddr) { 1958 if (msg->msg_namelen < sizeof(struct sockaddr)) 1959 return -EINVAL; 1960 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1961 proto = saddr->spkt_protocol; 1962 } else 1963 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1964 1965 /* 1966 * Find the device first to size check it 1967 */ 1968 1969 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1970 retry: 1971 rcu_read_lock(); 1972 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1973 err = -ENODEV; 1974 if (dev == NULL) 1975 goto out_unlock; 1976 1977 err = -ENETDOWN; 1978 if (!(dev->flags & IFF_UP)) 1979 goto out_unlock; 1980 1981 /* 1982 * You may not queue a frame bigger than the mtu. This is the lowest level 1983 * raw protocol and you must do your own fragmentation at this level. 1984 */ 1985 1986 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1987 if (!netif_supports_nofcs(dev)) { 1988 err = -EPROTONOSUPPORT; 1989 goto out_unlock; 1990 } 1991 extra_len = 4; /* We're doing our own CRC */ 1992 } 1993 1994 err = -EMSGSIZE; 1995 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1996 goto out_unlock; 1997 1998 if (!skb) { 1999 size_t reserved = LL_RESERVED_SPACE(dev); 2000 int tlen = dev->needed_tailroom; 2001 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2002 2003 rcu_read_unlock(); 2004 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2005 if (skb == NULL) 2006 return -ENOBUFS; 2007 /* FIXME: Save some space for broken drivers that write a hard 2008 * header at transmission time by themselves. PPP is the notable 2009 * one here. This should really be fixed at the driver level. 2010 */ 2011 skb_reserve(skb, reserved); 2012 skb_reset_network_header(skb); 2013 2014 /* Try to align data part correctly */ 2015 if (hhlen) { 2016 skb->data -= hhlen; 2017 skb->tail -= hhlen; 2018 if (len < hhlen) 2019 skb_reset_network_header(skb); 2020 } 2021 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2022 if (err) 2023 goto out_free; 2024 goto retry; 2025 } 2026 2027 if (!dev_validate_header(dev, skb->data, len)) { 2028 err = -EINVAL; 2029 goto out_unlock; 2030 } 2031 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2032 !packet_extra_vlan_len_allowed(dev, skb)) { 2033 err = -EMSGSIZE; 2034 goto out_unlock; 2035 } 2036 2037 sockcm_init(&sockc, sk); 2038 if (msg->msg_controllen) { 2039 err = sock_cmsg_send(sk, msg, &sockc); 2040 if (unlikely(err)) 2041 goto out_unlock; 2042 } 2043 2044 skb->protocol = proto; 2045 skb->dev = dev; 2046 skb->priority = sk->sk_priority; 2047 skb->mark = sk->sk_mark; 2048 skb->tstamp = sockc.transmit_time; 2049 2050 skb_setup_tx_timestamp(skb, sockc.tsflags); 2051 2052 if (unlikely(extra_len == 4)) 2053 skb->no_fcs = 1; 2054 2055 packet_parse_headers(skb, sock); 2056 2057 dev_queue_xmit(skb); 2058 rcu_read_unlock(); 2059 return len; 2060 2061 out_unlock: 2062 rcu_read_unlock(); 2063 out_free: 2064 kfree_skb(skb); 2065 return err; 2066 } 2067 2068 static unsigned int run_filter(struct sk_buff *skb, 2069 const struct sock *sk, 2070 unsigned int res) 2071 { 2072 struct sk_filter *filter; 2073 2074 rcu_read_lock(); 2075 filter = rcu_dereference(sk->sk_filter); 2076 if (filter != NULL) 2077 res = bpf_prog_run_clear_cb(filter->prog, skb); 2078 rcu_read_unlock(); 2079 2080 return res; 2081 } 2082 2083 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2084 size_t *len) 2085 { 2086 struct virtio_net_hdr vnet_hdr; 2087 2088 if (*len < sizeof(vnet_hdr)) 2089 return -EINVAL; 2090 *len -= sizeof(vnet_hdr); 2091 2092 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2093 return -EINVAL; 2094 2095 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2096 } 2097 2098 /* 2099 * This function makes lazy skb cloning in hope that most of packets 2100 * are discarded by BPF. 2101 * 2102 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2103 * and skb->cb are mangled. It works because (and until) packets 2104 * falling here are owned by current CPU. Output packets are cloned 2105 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2106 * sequentially, so that if we return skb to original state on exit, 2107 * we will not harm anyone. 2108 */ 2109 2110 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2111 struct packet_type *pt, struct net_device *orig_dev) 2112 { 2113 struct sock *sk; 2114 struct sockaddr_ll *sll; 2115 struct packet_sock *po; 2116 u8 *skb_head = skb->data; 2117 int skb_len = skb->len; 2118 unsigned int snaplen, res; 2119 bool is_drop_n_account = false; 2120 2121 if (skb->pkt_type == PACKET_LOOPBACK) 2122 goto drop; 2123 2124 sk = pt->af_packet_priv; 2125 po = pkt_sk(sk); 2126 2127 if (!net_eq(dev_net(dev), sock_net(sk))) 2128 goto drop; 2129 2130 skb->dev = dev; 2131 2132 if (dev_has_header(dev)) { 2133 /* The device has an explicit notion of ll header, 2134 * exported to higher levels. 2135 * 2136 * Otherwise, the device hides details of its frame 2137 * structure, so that corresponding packet head is 2138 * never delivered to user. 2139 */ 2140 if (sk->sk_type != SOCK_DGRAM) 2141 skb_push(skb, skb->data - skb_mac_header(skb)); 2142 else if (skb->pkt_type == PACKET_OUTGOING) { 2143 /* Special case: outgoing packets have ll header at head */ 2144 skb_pull(skb, skb_network_offset(skb)); 2145 } 2146 } 2147 2148 snaplen = skb->len; 2149 2150 res = run_filter(skb, sk, snaplen); 2151 if (!res) 2152 goto drop_n_restore; 2153 if (snaplen > res) 2154 snaplen = res; 2155 2156 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2157 goto drop_n_acct; 2158 2159 if (skb_shared(skb)) { 2160 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2161 if (nskb == NULL) 2162 goto drop_n_acct; 2163 2164 if (skb_head != skb->data) { 2165 skb->data = skb_head; 2166 skb->len = skb_len; 2167 } 2168 consume_skb(skb); 2169 skb = nskb; 2170 } 2171 2172 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2173 2174 sll = &PACKET_SKB_CB(skb)->sa.ll; 2175 sll->sll_hatype = dev->type; 2176 sll->sll_pkttype = skb->pkt_type; 2177 if (unlikely(po->origdev)) 2178 sll->sll_ifindex = orig_dev->ifindex; 2179 else 2180 sll->sll_ifindex = dev->ifindex; 2181 2182 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2183 2184 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2185 * Use their space for storing the original skb length. 2186 */ 2187 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2188 2189 if (pskb_trim(skb, snaplen)) 2190 goto drop_n_acct; 2191 2192 skb_set_owner_r(skb, sk); 2193 skb->dev = NULL; 2194 skb_dst_drop(skb); 2195 2196 /* drop conntrack reference */ 2197 nf_reset_ct(skb); 2198 2199 spin_lock(&sk->sk_receive_queue.lock); 2200 po->stats.stats1.tp_packets++; 2201 sock_skb_set_dropcount(sk, skb); 2202 __skb_queue_tail(&sk->sk_receive_queue, skb); 2203 spin_unlock(&sk->sk_receive_queue.lock); 2204 sk->sk_data_ready(sk); 2205 return 0; 2206 2207 drop_n_acct: 2208 is_drop_n_account = true; 2209 atomic_inc(&po->tp_drops); 2210 atomic_inc(&sk->sk_drops); 2211 2212 drop_n_restore: 2213 if (skb_head != skb->data && skb_shared(skb)) { 2214 skb->data = skb_head; 2215 skb->len = skb_len; 2216 } 2217 drop: 2218 if (!is_drop_n_account) 2219 consume_skb(skb); 2220 else 2221 kfree_skb(skb); 2222 return 0; 2223 } 2224 2225 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2226 struct packet_type *pt, struct net_device *orig_dev) 2227 { 2228 struct sock *sk; 2229 struct packet_sock *po; 2230 struct sockaddr_ll *sll; 2231 union tpacket_uhdr h; 2232 u8 *skb_head = skb->data; 2233 int skb_len = skb->len; 2234 unsigned int snaplen, res; 2235 unsigned long status = TP_STATUS_USER; 2236 unsigned short macoff, hdrlen; 2237 unsigned int netoff; 2238 struct sk_buff *copy_skb = NULL; 2239 struct timespec64 ts; 2240 __u32 ts_status; 2241 bool is_drop_n_account = false; 2242 unsigned int slot_id = 0; 2243 bool do_vnet = false; 2244 2245 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2246 * We may add members to them until current aligned size without forcing 2247 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2248 */ 2249 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2250 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2251 2252 if (skb->pkt_type == PACKET_LOOPBACK) 2253 goto drop; 2254 2255 sk = pt->af_packet_priv; 2256 po = pkt_sk(sk); 2257 2258 if (!net_eq(dev_net(dev), sock_net(sk))) 2259 goto drop; 2260 2261 if (dev_has_header(dev)) { 2262 if (sk->sk_type != SOCK_DGRAM) 2263 skb_push(skb, skb->data - skb_mac_header(skb)); 2264 else if (skb->pkt_type == PACKET_OUTGOING) { 2265 /* Special case: outgoing packets have ll header at head */ 2266 skb_pull(skb, skb_network_offset(skb)); 2267 } 2268 } 2269 2270 snaplen = skb->len; 2271 2272 res = run_filter(skb, sk, snaplen); 2273 if (!res) 2274 goto drop_n_restore; 2275 2276 /* If we are flooded, just give up */ 2277 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2278 atomic_inc(&po->tp_drops); 2279 goto drop_n_restore; 2280 } 2281 2282 if (skb->ip_summed == CHECKSUM_PARTIAL) 2283 status |= TP_STATUS_CSUMNOTREADY; 2284 else if (skb->pkt_type != PACKET_OUTGOING && 2285 (skb->ip_summed == CHECKSUM_COMPLETE || 2286 skb_csum_unnecessary(skb))) 2287 status |= TP_STATUS_CSUM_VALID; 2288 2289 if (snaplen > res) 2290 snaplen = res; 2291 2292 if (sk->sk_type == SOCK_DGRAM) { 2293 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2294 po->tp_reserve; 2295 } else { 2296 unsigned int maclen = skb_network_offset(skb); 2297 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2298 (maclen < 16 ? 16 : maclen)) + 2299 po->tp_reserve; 2300 if (po->has_vnet_hdr) { 2301 netoff += sizeof(struct virtio_net_hdr); 2302 do_vnet = true; 2303 } 2304 macoff = netoff - maclen; 2305 } 2306 if (netoff > USHRT_MAX) { 2307 atomic_inc(&po->tp_drops); 2308 goto drop_n_restore; 2309 } 2310 if (po->tp_version <= TPACKET_V2) { 2311 if (macoff + snaplen > po->rx_ring.frame_size) { 2312 if (po->copy_thresh && 2313 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2314 if (skb_shared(skb)) { 2315 copy_skb = skb_clone(skb, GFP_ATOMIC); 2316 } else { 2317 copy_skb = skb_get(skb); 2318 skb_head = skb->data; 2319 } 2320 if (copy_skb) { 2321 memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, 2322 sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); 2323 skb_set_owner_r(copy_skb, sk); 2324 } 2325 } 2326 snaplen = po->rx_ring.frame_size - macoff; 2327 if ((int)snaplen < 0) { 2328 snaplen = 0; 2329 do_vnet = false; 2330 } 2331 } 2332 } else if (unlikely(macoff + snaplen > 2333 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2334 u32 nval; 2335 2336 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2337 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2338 snaplen, nval, macoff); 2339 snaplen = nval; 2340 if (unlikely((int)snaplen < 0)) { 2341 snaplen = 0; 2342 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2343 do_vnet = false; 2344 } 2345 } 2346 spin_lock(&sk->sk_receive_queue.lock); 2347 h.raw = packet_current_rx_frame(po, skb, 2348 TP_STATUS_KERNEL, (macoff+snaplen)); 2349 if (!h.raw) 2350 goto drop_n_account; 2351 2352 if (po->tp_version <= TPACKET_V2) { 2353 slot_id = po->rx_ring.head; 2354 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2355 goto drop_n_account; 2356 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2357 } 2358 2359 if (do_vnet && 2360 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2361 sizeof(struct virtio_net_hdr), 2362 vio_le(), true, 0)) { 2363 if (po->tp_version == TPACKET_V3) 2364 prb_clear_blk_fill_status(&po->rx_ring); 2365 goto drop_n_account; 2366 } 2367 2368 if (po->tp_version <= TPACKET_V2) { 2369 packet_increment_rx_head(po, &po->rx_ring); 2370 /* 2371 * LOSING will be reported till you read the stats, 2372 * because it's COR - Clear On Read. 2373 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2374 * at packet level. 2375 */ 2376 if (atomic_read(&po->tp_drops)) 2377 status |= TP_STATUS_LOSING; 2378 } 2379 2380 po->stats.stats1.tp_packets++; 2381 if (copy_skb) { 2382 status |= TP_STATUS_COPY; 2383 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2384 } 2385 spin_unlock(&sk->sk_receive_queue.lock); 2386 2387 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2388 2389 /* Always timestamp; prefer an existing software timestamp taken 2390 * closer to the time of capture. 2391 */ 2392 ts_status = tpacket_get_timestamp(skb, &ts, 2393 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2394 if (!ts_status) 2395 ktime_get_real_ts64(&ts); 2396 2397 status |= ts_status; 2398 2399 switch (po->tp_version) { 2400 case TPACKET_V1: 2401 h.h1->tp_len = skb->len; 2402 h.h1->tp_snaplen = snaplen; 2403 h.h1->tp_mac = macoff; 2404 h.h1->tp_net = netoff; 2405 h.h1->tp_sec = ts.tv_sec; 2406 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2407 hdrlen = sizeof(*h.h1); 2408 break; 2409 case TPACKET_V2: 2410 h.h2->tp_len = skb->len; 2411 h.h2->tp_snaplen = snaplen; 2412 h.h2->tp_mac = macoff; 2413 h.h2->tp_net = netoff; 2414 h.h2->tp_sec = ts.tv_sec; 2415 h.h2->tp_nsec = ts.tv_nsec; 2416 if (skb_vlan_tag_present(skb)) { 2417 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2418 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2419 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2420 } else { 2421 h.h2->tp_vlan_tci = 0; 2422 h.h2->tp_vlan_tpid = 0; 2423 } 2424 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2425 hdrlen = sizeof(*h.h2); 2426 break; 2427 case TPACKET_V3: 2428 /* tp_nxt_offset,vlan are already populated above. 2429 * So DONT clear those fields here 2430 */ 2431 h.h3->tp_status |= status; 2432 h.h3->tp_len = skb->len; 2433 h.h3->tp_snaplen = snaplen; 2434 h.h3->tp_mac = macoff; 2435 h.h3->tp_net = netoff; 2436 h.h3->tp_sec = ts.tv_sec; 2437 h.h3->tp_nsec = ts.tv_nsec; 2438 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2439 hdrlen = sizeof(*h.h3); 2440 break; 2441 default: 2442 BUG(); 2443 } 2444 2445 sll = h.raw + TPACKET_ALIGN(hdrlen); 2446 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2447 sll->sll_family = AF_PACKET; 2448 sll->sll_hatype = dev->type; 2449 sll->sll_protocol = skb->protocol; 2450 sll->sll_pkttype = skb->pkt_type; 2451 if (unlikely(po->origdev)) 2452 sll->sll_ifindex = orig_dev->ifindex; 2453 else 2454 sll->sll_ifindex = dev->ifindex; 2455 2456 smp_mb(); 2457 2458 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2459 if (po->tp_version <= TPACKET_V2) { 2460 u8 *start, *end; 2461 2462 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2463 macoff + snaplen); 2464 2465 for (start = h.raw; start < end; start += PAGE_SIZE) 2466 flush_dcache_page(pgv_to_page(start)); 2467 } 2468 smp_wmb(); 2469 #endif 2470 2471 if (po->tp_version <= TPACKET_V2) { 2472 spin_lock(&sk->sk_receive_queue.lock); 2473 __packet_set_status(po, h.raw, status); 2474 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2475 spin_unlock(&sk->sk_receive_queue.lock); 2476 sk->sk_data_ready(sk); 2477 } else if (po->tp_version == TPACKET_V3) { 2478 prb_clear_blk_fill_status(&po->rx_ring); 2479 } 2480 2481 drop_n_restore: 2482 if (skb_head != skb->data && skb_shared(skb)) { 2483 skb->data = skb_head; 2484 skb->len = skb_len; 2485 } 2486 drop: 2487 if (!is_drop_n_account) 2488 consume_skb(skb); 2489 else 2490 kfree_skb(skb); 2491 return 0; 2492 2493 drop_n_account: 2494 spin_unlock(&sk->sk_receive_queue.lock); 2495 atomic_inc(&po->tp_drops); 2496 is_drop_n_account = true; 2497 2498 sk->sk_data_ready(sk); 2499 kfree_skb(copy_skb); 2500 goto drop_n_restore; 2501 } 2502 2503 static void tpacket_destruct_skb(struct sk_buff *skb) 2504 { 2505 struct packet_sock *po = pkt_sk(skb->sk); 2506 2507 if (likely(po->tx_ring.pg_vec)) { 2508 void *ph; 2509 __u32 ts; 2510 2511 ph = skb_zcopy_get_nouarg(skb); 2512 packet_dec_pending(&po->tx_ring); 2513 2514 ts = __packet_set_timestamp(po, ph, skb); 2515 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2516 2517 if (!packet_read_pending(&po->tx_ring)) 2518 complete(&po->skb_completion); 2519 } 2520 2521 sock_wfree(skb); 2522 } 2523 2524 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2525 { 2526 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2527 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2528 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2529 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2530 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2531 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2532 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2533 2534 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2535 return -EINVAL; 2536 2537 return 0; 2538 } 2539 2540 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2541 struct virtio_net_hdr *vnet_hdr) 2542 { 2543 if (*len < sizeof(*vnet_hdr)) 2544 return -EINVAL; 2545 *len -= sizeof(*vnet_hdr); 2546 2547 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2548 return -EFAULT; 2549 2550 return __packet_snd_vnet_parse(vnet_hdr, *len); 2551 } 2552 2553 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2554 void *frame, struct net_device *dev, void *data, int tp_len, 2555 __be16 proto, unsigned char *addr, int hlen, int copylen, 2556 const struct sockcm_cookie *sockc) 2557 { 2558 union tpacket_uhdr ph; 2559 int to_write, offset, len, nr_frags, len_max; 2560 struct socket *sock = po->sk.sk_socket; 2561 struct page *page; 2562 int err; 2563 2564 ph.raw = frame; 2565 2566 skb->protocol = proto; 2567 skb->dev = dev; 2568 skb->priority = po->sk.sk_priority; 2569 skb->mark = po->sk.sk_mark; 2570 skb->tstamp = sockc->transmit_time; 2571 skb_setup_tx_timestamp(skb, sockc->tsflags); 2572 skb_zcopy_set_nouarg(skb, ph.raw); 2573 2574 skb_reserve(skb, hlen); 2575 skb_reset_network_header(skb); 2576 2577 to_write = tp_len; 2578 2579 if (sock->type == SOCK_DGRAM) { 2580 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2581 NULL, tp_len); 2582 if (unlikely(err < 0)) 2583 return -EINVAL; 2584 } else if (copylen) { 2585 int hdrlen = min_t(int, copylen, tp_len); 2586 2587 skb_push(skb, dev->hard_header_len); 2588 skb_put(skb, copylen - dev->hard_header_len); 2589 err = skb_store_bits(skb, 0, data, hdrlen); 2590 if (unlikely(err)) 2591 return err; 2592 if (!dev_validate_header(dev, skb->data, hdrlen)) 2593 return -EINVAL; 2594 2595 data += hdrlen; 2596 to_write -= hdrlen; 2597 } 2598 2599 offset = offset_in_page(data); 2600 len_max = PAGE_SIZE - offset; 2601 len = ((to_write > len_max) ? len_max : to_write); 2602 2603 skb->data_len = to_write; 2604 skb->len += to_write; 2605 skb->truesize += to_write; 2606 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2607 2608 while (likely(to_write)) { 2609 nr_frags = skb_shinfo(skb)->nr_frags; 2610 2611 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2612 pr_err("Packet exceed the number of skb frags(%lu)\n", 2613 MAX_SKB_FRAGS); 2614 return -EFAULT; 2615 } 2616 2617 page = pgv_to_page(data); 2618 data += len; 2619 flush_dcache_page(page); 2620 get_page(page); 2621 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2622 to_write -= len; 2623 offset = 0; 2624 len_max = PAGE_SIZE; 2625 len = ((to_write > len_max) ? len_max : to_write); 2626 } 2627 2628 packet_parse_headers(skb, sock); 2629 2630 return tp_len; 2631 } 2632 2633 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2634 int size_max, void **data) 2635 { 2636 union tpacket_uhdr ph; 2637 int tp_len, off; 2638 2639 ph.raw = frame; 2640 2641 switch (po->tp_version) { 2642 case TPACKET_V3: 2643 if (ph.h3->tp_next_offset != 0) { 2644 pr_warn_once("variable sized slot not supported"); 2645 return -EINVAL; 2646 } 2647 tp_len = ph.h3->tp_len; 2648 break; 2649 case TPACKET_V2: 2650 tp_len = ph.h2->tp_len; 2651 break; 2652 default: 2653 tp_len = ph.h1->tp_len; 2654 break; 2655 } 2656 if (unlikely(tp_len > size_max)) { 2657 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2658 return -EMSGSIZE; 2659 } 2660 2661 if (unlikely(po->tp_tx_has_off)) { 2662 int off_min, off_max; 2663 2664 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2665 off_max = po->tx_ring.frame_size - tp_len; 2666 if (po->sk.sk_type == SOCK_DGRAM) { 2667 switch (po->tp_version) { 2668 case TPACKET_V3: 2669 off = ph.h3->tp_net; 2670 break; 2671 case TPACKET_V2: 2672 off = ph.h2->tp_net; 2673 break; 2674 default: 2675 off = ph.h1->tp_net; 2676 break; 2677 } 2678 } else { 2679 switch (po->tp_version) { 2680 case TPACKET_V3: 2681 off = ph.h3->tp_mac; 2682 break; 2683 case TPACKET_V2: 2684 off = ph.h2->tp_mac; 2685 break; 2686 default: 2687 off = ph.h1->tp_mac; 2688 break; 2689 } 2690 } 2691 if (unlikely((off < off_min) || (off_max < off))) 2692 return -EINVAL; 2693 } else { 2694 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2695 } 2696 2697 *data = frame + off; 2698 return tp_len; 2699 } 2700 2701 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2702 { 2703 struct sk_buff *skb = NULL; 2704 struct net_device *dev; 2705 struct virtio_net_hdr *vnet_hdr = NULL; 2706 struct sockcm_cookie sockc; 2707 __be16 proto; 2708 int err, reserve = 0; 2709 void *ph; 2710 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2711 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2712 unsigned char *addr = NULL; 2713 int tp_len, size_max; 2714 void *data; 2715 int len_sum = 0; 2716 int status = TP_STATUS_AVAILABLE; 2717 int hlen, tlen, copylen = 0; 2718 long timeo = 0; 2719 2720 mutex_lock(&po->pg_vec_lock); 2721 2722 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2723 * we need to confirm it under protection of pg_vec_lock. 2724 */ 2725 if (unlikely(!po->tx_ring.pg_vec)) { 2726 err = -EBUSY; 2727 goto out; 2728 } 2729 if (likely(saddr == NULL)) { 2730 dev = packet_cached_dev_get(po); 2731 proto = READ_ONCE(po->num); 2732 } else { 2733 err = -EINVAL; 2734 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2735 goto out; 2736 if (msg->msg_namelen < (saddr->sll_halen 2737 + offsetof(struct sockaddr_ll, 2738 sll_addr))) 2739 goto out; 2740 proto = saddr->sll_protocol; 2741 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2742 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2743 if (dev && msg->msg_namelen < dev->addr_len + 2744 offsetof(struct sockaddr_ll, sll_addr)) 2745 goto out_put; 2746 addr = saddr->sll_addr; 2747 } 2748 } 2749 2750 err = -ENXIO; 2751 if (unlikely(dev == NULL)) 2752 goto out; 2753 err = -ENETDOWN; 2754 if (unlikely(!(dev->flags & IFF_UP))) 2755 goto out_put; 2756 2757 sockcm_init(&sockc, &po->sk); 2758 if (msg->msg_controllen) { 2759 err = sock_cmsg_send(&po->sk, msg, &sockc); 2760 if (unlikely(err)) 2761 goto out_put; 2762 } 2763 2764 if (po->sk.sk_socket->type == SOCK_RAW) 2765 reserve = dev->hard_header_len; 2766 size_max = po->tx_ring.frame_size 2767 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2768 2769 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2770 size_max = dev->mtu + reserve + VLAN_HLEN; 2771 2772 reinit_completion(&po->skb_completion); 2773 2774 do { 2775 ph = packet_current_frame(po, &po->tx_ring, 2776 TP_STATUS_SEND_REQUEST); 2777 if (unlikely(ph == NULL)) { 2778 if (need_wait && skb) { 2779 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2780 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2781 if (timeo <= 0) { 2782 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2783 goto out_put; 2784 } 2785 } 2786 /* check for additional frames */ 2787 continue; 2788 } 2789 2790 skb = NULL; 2791 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2792 if (tp_len < 0) 2793 goto tpacket_error; 2794 2795 status = TP_STATUS_SEND_REQUEST; 2796 hlen = LL_RESERVED_SPACE(dev); 2797 tlen = dev->needed_tailroom; 2798 if (po->has_vnet_hdr) { 2799 vnet_hdr = data; 2800 data += sizeof(*vnet_hdr); 2801 tp_len -= sizeof(*vnet_hdr); 2802 if (tp_len < 0 || 2803 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2804 tp_len = -EINVAL; 2805 goto tpacket_error; 2806 } 2807 copylen = __virtio16_to_cpu(vio_le(), 2808 vnet_hdr->hdr_len); 2809 } 2810 copylen = max_t(int, copylen, dev->hard_header_len); 2811 skb = sock_alloc_send_skb(&po->sk, 2812 hlen + tlen + sizeof(struct sockaddr_ll) + 2813 (copylen - dev->hard_header_len), 2814 !need_wait, &err); 2815 2816 if (unlikely(skb == NULL)) { 2817 /* we assume the socket was initially writeable ... */ 2818 if (likely(len_sum > 0)) 2819 err = len_sum; 2820 goto out_status; 2821 } 2822 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2823 addr, hlen, copylen, &sockc); 2824 if (likely(tp_len >= 0) && 2825 tp_len > dev->mtu + reserve && 2826 !po->has_vnet_hdr && 2827 !packet_extra_vlan_len_allowed(dev, skb)) 2828 tp_len = -EMSGSIZE; 2829 2830 if (unlikely(tp_len < 0)) { 2831 tpacket_error: 2832 if (po->tp_loss) { 2833 __packet_set_status(po, ph, 2834 TP_STATUS_AVAILABLE); 2835 packet_increment_head(&po->tx_ring); 2836 kfree_skb(skb); 2837 continue; 2838 } else { 2839 status = TP_STATUS_WRONG_FORMAT; 2840 err = tp_len; 2841 goto out_status; 2842 } 2843 } 2844 2845 if (po->has_vnet_hdr) { 2846 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2847 tp_len = -EINVAL; 2848 goto tpacket_error; 2849 } 2850 virtio_net_hdr_set_proto(skb, vnet_hdr); 2851 } 2852 2853 skb->destructor = tpacket_destruct_skb; 2854 __packet_set_status(po, ph, TP_STATUS_SENDING); 2855 packet_inc_pending(&po->tx_ring); 2856 2857 status = TP_STATUS_SEND_REQUEST; 2858 err = po->xmit(skb); 2859 if (unlikely(err > 0)) { 2860 err = net_xmit_errno(err); 2861 if (err && __packet_get_status(po, ph) == 2862 TP_STATUS_AVAILABLE) { 2863 /* skb was destructed already */ 2864 skb = NULL; 2865 goto out_status; 2866 } 2867 /* 2868 * skb was dropped but not destructed yet; 2869 * let's treat it like congestion or err < 0 2870 */ 2871 err = 0; 2872 } 2873 packet_increment_head(&po->tx_ring); 2874 len_sum += tp_len; 2875 } while (likely((ph != NULL) || 2876 /* Note: packet_read_pending() might be slow if we have 2877 * to call it as it's per_cpu variable, but in fast-path 2878 * we already short-circuit the loop with the first 2879 * condition, and luckily don't have to go that path 2880 * anyway. 2881 */ 2882 (need_wait && packet_read_pending(&po->tx_ring)))); 2883 2884 err = len_sum; 2885 goto out_put; 2886 2887 out_status: 2888 __packet_set_status(po, ph, status); 2889 kfree_skb(skb); 2890 out_put: 2891 dev_put(dev); 2892 out: 2893 mutex_unlock(&po->pg_vec_lock); 2894 return err; 2895 } 2896 2897 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2898 size_t reserve, size_t len, 2899 size_t linear, int noblock, 2900 int *err) 2901 { 2902 struct sk_buff *skb; 2903 2904 /* Under a page? Don't bother with paged skb. */ 2905 if (prepad + len < PAGE_SIZE || !linear) 2906 linear = len; 2907 2908 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2909 err, 0); 2910 if (!skb) 2911 return NULL; 2912 2913 skb_reserve(skb, reserve); 2914 skb_put(skb, linear); 2915 skb->data_len = len - linear; 2916 skb->len += len - linear; 2917 2918 return skb; 2919 } 2920 2921 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2922 { 2923 struct sock *sk = sock->sk; 2924 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2925 struct sk_buff *skb; 2926 struct net_device *dev; 2927 __be16 proto; 2928 unsigned char *addr = NULL; 2929 int err, reserve = 0; 2930 struct sockcm_cookie sockc; 2931 struct virtio_net_hdr vnet_hdr = { 0 }; 2932 int offset = 0; 2933 struct packet_sock *po = pkt_sk(sk); 2934 bool has_vnet_hdr = false; 2935 int hlen, tlen, linear; 2936 int extra_len = 0; 2937 2938 /* 2939 * Get and verify the address. 2940 */ 2941 2942 if (likely(saddr == NULL)) { 2943 dev = packet_cached_dev_get(po); 2944 proto = READ_ONCE(po->num); 2945 } else { 2946 err = -EINVAL; 2947 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2948 goto out; 2949 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2950 goto out; 2951 proto = saddr->sll_protocol; 2952 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2953 if (sock->type == SOCK_DGRAM) { 2954 if (dev && msg->msg_namelen < dev->addr_len + 2955 offsetof(struct sockaddr_ll, sll_addr)) 2956 goto out_unlock; 2957 addr = saddr->sll_addr; 2958 } 2959 } 2960 2961 err = -ENXIO; 2962 if (unlikely(dev == NULL)) 2963 goto out_unlock; 2964 err = -ENETDOWN; 2965 if (unlikely(!(dev->flags & IFF_UP))) 2966 goto out_unlock; 2967 2968 sockcm_init(&sockc, sk); 2969 sockc.mark = sk->sk_mark; 2970 if (msg->msg_controllen) { 2971 err = sock_cmsg_send(sk, msg, &sockc); 2972 if (unlikely(err)) 2973 goto out_unlock; 2974 } 2975 2976 if (sock->type == SOCK_RAW) 2977 reserve = dev->hard_header_len; 2978 if (po->has_vnet_hdr) { 2979 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2980 if (err) 2981 goto out_unlock; 2982 has_vnet_hdr = true; 2983 } 2984 2985 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2986 if (!netif_supports_nofcs(dev)) { 2987 err = -EPROTONOSUPPORT; 2988 goto out_unlock; 2989 } 2990 extra_len = 4; /* We're doing our own CRC */ 2991 } 2992 2993 err = -EMSGSIZE; 2994 if (!vnet_hdr.gso_type && 2995 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2996 goto out_unlock; 2997 2998 err = -ENOBUFS; 2999 hlen = LL_RESERVED_SPACE(dev); 3000 tlen = dev->needed_tailroom; 3001 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3002 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3003 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3004 msg->msg_flags & MSG_DONTWAIT, &err); 3005 if (skb == NULL) 3006 goto out_unlock; 3007 3008 skb_reset_network_header(skb); 3009 3010 err = -EINVAL; 3011 if (sock->type == SOCK_DGRAM) { 3012 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3013 if (unlikely(offset < 0)) 3014 goto out_free; 3015 } else if (reserve) { 3016 skb_reserve(skb, -reserve); 3017 if (len < reserve + sizeof(struct ipv6hdr) && 3018 dev->min_header_len != dev->hard_header_len) 3019 skb_reset_network_header(skb); 3020 } 3021 3022 /* Returns -EFAULT on error */ 3023 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3024 if (err) 3025 goto out_free; 3026 3027 if (sock->type == SOCK_RAW && 3028 !dev_validate_header(dev, skb->data, len)) { 3029 err = -EINVAL; 3030 goto out_free; 3031 } 3032 3033 skb_setup_tx_timestamp(skb, sockc.tsflags); 3034 3035 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3036 !packet_extra_vlan_len_allowed(dev, skb)) { 3037 err = -EMSGSIZE; 3038 goto out_free; 3039 } 3040 3041 skb->protocol = proto; 3042 skb->dev = dev; 3043 skb->priority = sk->sk_priority; 3044 skb->mark = sockc.mark; 3045 skb->tstamp = sockc.transmit_time; 3046 3047 if (has_vnet_hdr) { 3048 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3049 if (err) 3050 goto out_free; 3051 len += sizeof(vnet_hdr); 3052 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3053 } 3054 3055 packet_parse_headers(skb, sock); 3056 3057 if (unlikely(extra_len == 4)) 3058 skb->no_fcs = 1; 3059 3060 err = po->xmit(skb); 3061 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3062 goto out_unlock; 3063 3064 dev_put(dev); 3065 3066 return len; 3067 3068 out_free: 3069 kfree_skb(skb); 3070 out_unlock: 3071 dev_put(dev); 3072 out: 3073 return err; 3074 } 3075 3076 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3077 { 3078 struct sock *sk = sock->sk; 3079 struct packet_sock *po = pkt_sk(sk); 3080 3081 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3082 * tpacket_snd() will redo the check safely. 3083 */ 3084 if (data_race(po->tx_ring.pg_vec)) 3085 return tpacket_snd(po, msg); 3086 3087 return packet_snd(sock, msg, len); 3088 } 3089 3090 /* 3091 * Close a PACKET socket. This is fairly simple. We immediately go 3092 * to 'closed' state and remove our protocol entry in the device list. 3093 */ 3094 3095 static int packet_release(struct socket *sock) 3096 { 3097 struct sock *sk = sock->sk; 3098 struct packet_sock *po; 3099 struct packet_fanout *f; 3100 struct net *net; 3101 union tpacket_req_u req_u; 3102 3103 if (!sk) 3104 return 0; 3105 3106 net = sock_net(sk); 3107 po = pkt_sk(sk); 3108 3109 mutex_lock(&net->packet.sklist_lock); 3110 sk_del_node_init_rcu(sk); 3111 mutex_unlock(&net->packet.sklist_lock); 3112 3113 sock_prot_inuse_add(net, sk->sk_prot, -1); 3114 3115 spin_lock(&po->bind_lock); 3116 unregister_prot_hook(sk, false); 3117 packet_cached_dev_reset(po); 3118 3119 if (po->prot_hook.dev) { 3120 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3121 po->prot_hook.dev = NULL; 3122 } 3123 spin_unlock(&po->bind_lock); 3124 3125 packet_flush_mclist(sk); 3126 3127 lock_sock(sk); 3128 if (po->rx_ring.pg_vec) { 3129 memset(&req_u, 0, sizeof(req_u)); 3130 packet_set_ring(sk, &req_u, 1, 0); 3131 } 3132 3133 if (po->tx_ring.pg_vec) { 3134 memset(&req_u, 0, sizeof(req_u)); 3135 packet_set_ring(sk, &req_u, 1, 1); 3136 } 3137 release_sock(sk); 3138 3139 f = fanout_release(sk); 3140 3141 synchronize_net(); 3142 3143 kfree(po->rollover); 3144 if (f) { 3145 fanout_release_data(f); 3146 kvfree(f); 3147 } 3148 /* 3149 * Now the socket is dead. No more input will appear. 3150 */ 3151 sock_orphan(sk); 3152 sock->sk = NULL; 3153 3154 /* Purge queues */ 3155 3156 skb_queue_purge(&sk->sk_receive_queue); 3157 packet_free_pending(po); 3158 sk_refcnt_debug_release(sk); 3159 3160 sock_put(sk); 3161 return 0; 3162 } 3163 3164 /* 3165 * Attach a packet hook. 3166 */ 3167 3168 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3169 __be16 proto) 3170 { 3171 struct packet_sock *po = pkt_sk(sk); 3172 struct net_device *dev = NULL; 3173 bool unlisted = false; 3174 bool need_rehook; 3175 int ret = 0; 3176 3177 lock_sock(sk); 3178 spin_lock(&po->bind_lock); 3179 rcu_read_lock(); 3180 3181 if (po->fanout) { 3182 ret = -EINVAL; 3183 goto out_unlock; 3184 } 3185 3186 if (name) { 3187 dev = dev_get_by_name_rcu(sock_net(sk), name); 3188 if (!dev) { 3189 ret = -ENODEV; 3190 goto out_unlock; 3191 } 3192 } else if (ifindex) { 3193 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3194 if (!dev) { 3195 ret = -ENODEV; 3196 goto out_unlock; 3197 } 3198 } 3199 3200 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3201 3202 if (need_rehook) { 3203 dev_hold(dev); 3204 if (po->running) { 3205 rcu_read_unlock(); 3206 /* prevents packet_notifier() from calling 3207 * register_prot_hook() 3208 */ 3209 WRITE_ONCE(po->num, 0); 3210 __unregister_prot_hook(sk, true); 3211 rcu_read_lock(); 3212 if (dev) 3213 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3214 dev->ifindex); 3215 } 3216 3217 BUG_ON(po->running); 3218 WRITE_ONCE(po->num, proto); 3219 po->prot_hook.type = proto; 3220 3221 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3222 3223 if (unlikely(unlisted)) { 3224 po->prot_hook.dev = NULL; 3225 WRITE_ONCE(po->ifindex, -1); 3226 packet_cached_dev_reset(po); 3227 } else { 3228 dev_hold_track(dev, &po->prot_hook.dev_tracker, 3229 GFP_ATOMIC); 3230 po->prot_hook.dev = dev; 3231 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3232 packet_cached_dev_assign(po, dev); 3233 } 3234 dev_put(dev); 3235 } 3236 3237 if (proto == 0 || !need_rehook) 3238 goto out_unlock; 3239 3240 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3241 register_prot_hook(sk); 3242 } else { 3243 sk->sk_err = ENETDOWN; 3244 if (!sock_flag(sk, SOCK_DEAD)) 3245 sk_error_report(sk); 3246 } 3247 3248 out_unlock: 3249 rcu_read_unlock(); 3250 spin_unlock(&po->bind_lock); 3251 release_sock(sk); 3252 return ret; 3253 } 3254 3255 /* 3256 * Bind a packet socket to a device 3257 */ 3258 3259 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3260 int addr_len) 3261 { 3262 struct sock *sk = sock->sk; 3263 char name[sizeof(uaddr->sa_data) + 1]; 3264 3265 /* 3266 * Check legality 3267 */ 3268 3269 if (addr_len != sizeof(struct sockaddr)) 3270 return -EINVAL; 3271 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3272 * zero-terminated. 3273 */ 3274 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3275 name[sizeof(uaddr->sa_data)] = 0; 3276 3277 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3278 } 3279 3280 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3281 { 3282 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3283 struct sock *sk = sock->sk; 3284 3285 /* 3286 * Check legality 3287 */ 3288 3289 if (addr_len < sizeof(struct sockaddr_ll)) 3290 return -EINVAL; 3291 if (sll->sll_family != AF_PACKET) 3292 return -EINVAL; 3293 3294 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3295 sll->sll_protocol ? : pkt_sk(sk)->num); 3296 } 3297 3298 static struct proto packet_proto = { 3299 .name = "PACKET", 3300 .owner = THIS_MODULE, 3301 .obj_size = sizeof(struct packet_sock), 3302 }; 3303 3304 /* 3305 * Create a packet of type SOCK_PACKET. 3306 */ 3307 3308 static int packet_create(struct net *net, struct socket *sock, int protocol, 3309 int kern) 3310 { 3311 struct sock *sk; 3312 struct packet_sock *po; 3313 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3314 int err; 3315 3316 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3317 return -EPERM; 3318 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3319 sock->type != SOCK_PACKET) 3320 return -ESOCKTNOSUPPORT; 3321 3322 sock->state = SS_UNCONNECTED; 3323 3324 err = -ENOBUFS; 3325 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3326 if (sk == NULL) 3327 goto out; 3328 3329 sock->ops = &packet_ops; 3330 if (sock->type == SOCK_PACKET) 3331 sock->ops = &packet_ops_spkt; 3332 3333 sock_init_data(sock, sk); 3334 3335 po = pkt_sk(sk); 3336 init_completion(&po->skb_completion); 3337 sk->sk_family = PF_PACKET; 3338 po->num = proto; 3339 po->xmit = dev_queue_xmit; 3340 3341 err = packet_alloc_pending(po); 3342 if (err) 3343 goto out2; 3344 3345 packet_cached_dev_reset(po); 3346 3347 sk->sk_destruct = packet_sock_destruct; 3348 sk_refcnt_debug_inc(sk); 3349 3350 /* 3351 * Attach a protocol block 3352 */ 3353 3354 spin_lock_init(&po->bind_lock); 3355 mutex_init(&po->pg_vec_lock); 3356 po->rollover = NULL; 3357 po->prot_hook.func = packet_rcv; 3358 3359 if (sock->type == SOCK_PACKET) 3360 po->prot_hook.func = packet_rcv_spkt; 3361 3362 po->prot_hook.af_packet_priv = sk; 3363 po->prot_hook.af_packet_net = sock_net(sk); 3364 3365 if (proto) { 3366 po->prot_hook.type = proto; 3367 __register_prot_hook(sk); 3368 } 3369 3370 mutex_lock(&net->packet.sklist_lock); 3371 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3372 mutex_unlock(&net->packet.sklist_lock); 3373 3374 sock_prot_inuse_add(net, &packet_proto, 1); 3375 3376 return 0; 3377 out2: 3378 sk_free(sk); 3379 out: 3380 return err; 3381 } 3382 3383 /* 3384 * Pull a packet from our receive queue and hand it to the user. 3385 * If necessary we block. 3386 */ 3387 3388 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3389 int flags) 3390 { 3391 struct sock *sk = sock->sk; 3392 struct sk_buff *skb; 3393 int copied, err; 3394 int vnet_hdr_len = 0; 3395 unsigned int origlen = 0; 3396 3397 err = -EINVAL; 3398 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3399 goto out; 3400 3401 #if 0 3402 /* What error should we return now? EUNATTACH? */ 3403 if (pkt_sk(sk)->ifindex < 0) 3404 return -ENODEV; 3405 #endif 3406 3407 if (flags & MSG_ERRQUEUE) { 3408 err = sock_recv_errqueue(sk, msg, len, 3409 SOL_PACKET, PACKET_TX_TIMESTAMP); 3410 goto out; 3411 } 3412 3413 /* 3414 * Call the generic datagram receiver. This handles all sorts 3415 * of horrible races and re-entrancy so we can forget about it 3416 * in the protocol layers. 3417 * 3418 * Now it will return ENETDOWN, if device have just gone down, 3419 * but then it will block. 3420 */ 3421 3422 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3423 3424 /* 3425 * An error occurred so return it. Because skb_recv_datagram() 3426 * handles the blocking we don't see and worry about blocking 3427 * retries. 3428 */ 3429 3430 if (skb == NULL) 3431 goto out; 3432 3433 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3434 3435 if (pkt_sk(sk)->has_vnet_hdr) { 3436 err = packet_rcv_vnet(msg, skb, &len); 3437 if (err) 3438 goto out_free; 3439 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3440 } 3441 3442 /* You lose any data beyond the buffer you gave. If it worries 3443 * a user program they can ask the device for its MTU 3444 * anyway. 3445 */ 3446 copied = skb->len; 3447 if (copied > len) { 3448 copied = len; 3449 msg->msg_flags |= MSG_TRUNC; 3450 } 3451 3452 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3453 if (err) 3454 goto out_free; 3455 3456 if (sock->type != SOCK_PACKET) { 3457 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3458 3459 /* Original length was stored in sockaddr_ll fields */ 3460 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3461 sll->sll_family = AF_PACKET; 3462 sll->sll_protocol = skb->protocol; 3463 } 3464 3465 sock_recv_ts_and_drops(msg, sk, skb); 3466 3467 if (msg->msg_name) { 3468 const size_t max_len = min(sizeof(skb->cb), 3469 sizeof(struct sockaddr_storage)); 3470 int copy_len; 3471 3472 /* If the address length field is there to be filled 3473 * in, we fill it in now. 3474 */ 3475 if (sock->type == SOCK_PACKET) { 3476 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3477 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3478 copy_len = msg->msg_namelen; 3479 } else { 3480 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3481 3482 msg->msg_namelen = sll->sll_halen + 3483 offsetof(struct sockaddr_ll, sll_addr); 3484 copy_len = msg->msg_namelen; 3485 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3486 memset(msg->msg_name + 3487 offsetof(struct sockaddr_ll, sll_addr), 3488 0, sizeof(sll->sll_addr)); 3489 msg->msg_namelen = sizeof(struct sockaddr_ll); 3490 } 3491 } 3492 if (WARN_ON_ONCE(copy_len > max_len)) { 3493 copy_len = max_len; 3494 msg->msg_namelen = copy_len; 3495 } 3496 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3497 } 3498 3499 if (pkt_sk(sk)->auxdata) { 3500 struct tpacket_auxdata aux; 3501 3502 aux.tp_status = TP_STATUS_USER; 3503 if (skb->ip_summed == CHECKSUM_PARTIAL) 3504 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3505 else if (skb->pkt_type != PACKET_OUTGOING && 3506 (skb->ip_summed == CHECKSUM_COMPLETE || 3507 skb_csum_unnecessary(skb))) 3508 aux.tp_status |= TP_STATUS_CSUM_VALID; 3509 3510 aux.tp_len = origlen; 3511 aux.tp_snaplen = skb->len; 3512 aux.tp_mac = 0; 3513 aux.tp_net = skb_network_offset(skb); 3514 if (skb_vlan_tag_present(skb)) { 3515 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3516 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3517 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3518 } else { 3519 aux.tp_vlan_tci = 0; 3520 aux.tp_vlan_tpid = 0; 3521 } 3522 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3523 } 3524 3525 /* 3526 * Free or return the buffer as appropriate. Again this 3527 * hides all the races and re-entrancy issues from us. 3528 */ 3529 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3530 3531 out_free: 3532 skb_free_datagram(sk, skb); 3533 out: 3534 return err; 3535 } 3536 3537 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3538 int peer) 3539 { 3540 struct net_device *dev; 3541 struct sock *sk = sock->sk; 3542 3543 if (peer) 3544 return -EOPNOTSUPP; 3545 3546 uaddr->sa_family = AF_PACKET; 3547 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3548 rcu_read_lock(); 3549 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3550 if (dev) 3551 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3552 rcu_read_unlock(); 3553 3554 return sizeof(*uaddr); 3555 } 3556 3557 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3558 int peer) 3559 { 3560 struct net_device *dev; 3561 struct sock *sk = sock->sk; 3562 struct packet_sock *po = pkt_sk(sk); 3563 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3564 int ifindex; 3565 3566 if (peer) 3567 return -EOPNOTSUPP; 3568 3569 ifindex = READ_ONCE(po->ifindex); 3570 sll->sll_family = AF_PACKET; 3571 sll->sll_ifindex = ifindex; 3572 sll->sll_protocol = READ_ONCE(po->num); 3573 sll->sll_pkttype = 0; 3574 rcu_read_lock(); 3575 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3576 if (dev) { 3577 sll->sll_hatype = dev->type; 3578 sll->sll_halen = dev->addr_len; 3579 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3580 } else { 3581 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3582 sll->sll_halen = 0; 3583 } 3584 rcu_read_unlock(); 3585 3586 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3587 } 3588 3589 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3590 int what) 3591 { 3592 switch (i->type) { 3593 case PACKET_MR_MULTICAST: 3594 if (i->alen != dev->addr_len) 3595 return -EINVAL; 3596 if (what > 0) 3597 return dev_mc_add(dev, i->addr); 3598 else 3599 return dev_mc_del(dev, i->addr); 3600 break; 3601 case PACKET_MR_PROMISC: 3602 return dev_set_promiscuity(dev, what); 3603 case PACKET_MR_ALLMULTI: 3604 return dev_set_allmulti(dev, what); 3605 case PACKET_MR_UNICAST: 3606 if (i->alen != dev->addr_len) 3607 return -EINVAL; 3608 if (what > 0) 3609 return dev_uc_add(dev, i->addr); 3610 else 3611 return dev_uc_del(dev, i->addr); 3612 break; 3613 default: 3614 break; 3615 } 3616 return 0; 3617 } 3618 3619 static void packet_dev_mclist_delete(struct net_device *dev, 3620 struct packet_mclist **mlp) 3621 { 3622 struct packet_mclist *ml; 3623 3624 while ((ml = *mlp) != NULL) { 3625 if (ml->ifindex == dev->ifindex) { 3626 packet_dev_mc(dev, ml, -1); 3627 *mlp = ml->next; 3628 kfree(ml); 3629 } else 3630 mlp = &ml->next; 3631 } 3632 } 3633 3634 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3635 { 3636 struct packet_sock *po = pkt_sk(sk); 3637 struct packet_mclist *ml, *i; 3638 struct net_device *dev; 3639 int err; 3640 3641 rtnl_lock(); 3642 3643 err = -ENODEV; 3644 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3645 if (!dev) 3646 goto done; 3647 3648 err = -EINVAL; 3649 if (mreq->mr_alen > dev->addr_len) 3650 goto done; 3651 3652 err = -ENOBUFS; 3653 i = kmalloc(sizeof(*i), GFP_KERNEL); 3654 if (i == NULL) 3655 goto done; 3656 3657 err = 0; 3658 for (ml = po->mclist; ml; ml = ml->next) { 3659 if (ml->ifindex == mreq->mr_ifindex && 3660 ml->type == mreq->mr_type && 3661 ml->alen == mreq->mr_alen && 3662 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3663 ml->count++; 3664 /* Free the new element ... */ 3665 kfree(i); 3666 goto done; 3667 } 3668 } 3669 3670 i->type = mreq->mr_type; 3671 i->ifindex = mreq->mr_ifindex; 3672 i->alen = mreq->mr_alen; 3673 memcpy(i->addr, mreq->mr_address, i->alen); 3674 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3675 i->count = 1; 3676 i->next = po->mclist; 3677 po->mclist = i; 3678 err = packet_dev_mc(dev, i, 1); 3679 if (err) { 3680 po->mclist = i->next; 3681 kfree(i); 3682 } 3683 3684 done: 3685 rtnl_unlock(); 3686 return err; 3687 } 3688 3689 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3690 { 3691 struct packet_mclist *ml, **mlp; 3692 3693 rtnl_lock(); 3694 3695 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3696 if (ml->ifindex == mreq->mr_ifindex && 3697 ml->type == mreq->mr_type && 3698 ml->alen == mreq->mr_alen && 3699 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3700 if (--ml->count == 0) { 3701 struct net_device *dev; 3702 *mlp = ml->next; 3703 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3704 if (dev) 3705 packet_dev_mc(dev, ml, -1); 3706 kfree(ml); 3707 } 3708 break; 3709 } 3710 } 3711 rtnl_unlock(); 3712 return 0; 3713 } 3714 3715 static void packet_flush_mclist(struct sock *sk) 3716 { 3717 struct packet_sock *po = pkt_sk(sk); 3718 struct packet_mclist *ml; 3719 3720 if (!po->mclist) 3721 return; 3722 3723 rtnl_lock(); 3724 while ((ml = po->mclist) != NULL) { 3725 struct net_device *dev; 3726 3727 po->mclist = ml->next; 3728 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3729 if (dev != NULL) 3730 packet_dev_mc(dev, ml, -1); 3731 kfree(ml); 3732 } 3733 rtnl_unlock(); 3734 } 3735 3736 static int 3737 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3738 unsigned int optlen) 3739 { 3740 struct sock *sk = sock->sk; 3741 struct packet_sock *po = pkt_sk(sk); 3742 int ret; 3743 3744 if (level != SOL_PACKET) 3745 return -ENOPROTOOPT; 3746 3747 switch (optname) { 3748 case PACKET_ADD_MEMBERSHIP: 3749 case PACKET_DROP_MEMBERSHIP: 3750 { 3751 struct packet_mreq_max mreq; 3752 int len = optlen; 3753 memset(&mreq, 0, sizeof(mreq)); 3754 if (len < sizeof(struct packet_mreq)) 3755 return -EINVAL; 3756 if (len > sizeof(mreq)) 3757 len = sizeof(mreq); 3758 if (copy_from_sockptr(&mreq, optval, len)) 3759 return -EFAULT; 3760 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3761 return -EINVAL; 3762 if (optname == PACKET_ADD_MEMBERSHIP) 3763 ret = packet_mc_add(sk, &mreq); 3764 else 3765 ret = packet_mc_drop(sk, &mreq); 3766 return ret; 3767 } 3768 3769 case PACKET_RX_RING: 3770 case PACKET_TX_RING: 3771 { 3772 union tpacket_req_u req_u; 3773 int len; 3774 3775 lock_sock(sk); 3776 switch (po->tp_version) { 3777 case TPACKET_V1: 3778 case TPACKET_V2: 3779 len = sizeof(req_u.req); 3780 break; 3781 case TPACKET_V3: 3782 default: 3783 len = sizeof(req_u.req3); 3784 break; 3785 } 3786 if (optlen < len) { 3787 ret = -EINVAL; 3788 } else { 3789 if (copy_from_sockptr(&req_u.req, optval, len)) 3790 ret = -EFAULT; 3791 else 3792 ret = packet_set_ring(sk, &req_u, 0, 3793 optname == PACKET_TX_RING); 3794 } 3795 release_sock(sk); 3796 return ret; 3797 } 3798 case PACKET_COPY_THRESH: 3799 { 3800 int val; 3801 3802 if (optlen != sizeof(val)) 3803 return -EINVAL; 3804 if (copy_from_sockptr(&val, optval, sizeof(val))) 3805 return -EFAULT; 3806 3807 pkt_sk(sk)->copy_thresh = val; 3808 return 0; 3809 } 3810 case PACKET_VERSION: 3811 { 3812 int val; 3813 3814 if (optlen != sizeof(val)) 3815 return -EINVAL; 3816 if (copy_from_sockptr(&val, optval, sizeof(val))) 3817 return -EFAULT; 3818 switch (val) { 3819 case TPACKET_V1: 3820 case TPACKET_V2: 3821 case TPACKET_V3: 3822 break; 3823 default: 3824 return -EINVAL; 3825 } 3826 lock_sock(sk); 3827 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3828 ret = -EBUSY; 3829 } else { 3830 po->tp_version = val; 3831 ret = 0; 3832 } 3833 release_sock(sk); 3834 return ret; 3835 } 3836 case PACKET_RESERVE: 3837 { 3838 unsigned int val; 3839 3840 if (optlen != sizeof(val)) 3841 return -EINVAL; 3842 if (copy_from_sockptr(&val, optval, sizeof(val))) 3843 return -EFAULT; 3844 if (val > INT_MAX) 3845 return -EINVAL; 3846 lock_sock(sk); 3847 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3848 ret = -EBUSY; 3849 } else { 3850 po->tp_reserve = val; 3851 ret = 0; 3852 } 3853 release_sock(sk); 3854 return ret; 3855 } 3856 case PACKET_LOSS: 3857 { 3858 unsigned int val; 3859 3860 if (optlen != sizeof(val)) 3861 return -EINVAL; 3862 if (copy_from_sockptr(&val, optval, sizeof(val))) 3863 return -EFAULT; 3864 3865 lock_sock(sk); 3866 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3867 ret = -EBUSY; 3868 } else { 3869 po->tp_loss = !!val; 3870 ret = 0; 3871 } 3872 release_sock(sk); 3873 return ret; 3874 } 3875 case PACKET_AUXDATA: 3876 { 3877 int val; 3878 3879 if (optlen < sizeof(val)) 3880 return -EINVAL; 3881 if (copy_from_sockptr(&val, optval, sizeof(val))) 3882 return -EFAULT; 3883 3884 lock_sock(sk); 3885 po->auxdata = !!val; 3886 release_sock(sk); 3887 return 0; 3888 } 3889 case PACKET_ORIGDEV: 3890 { 3891 int val; 3892 3893 if (optlen < sizeof(val)) 3894 return -EINVAL; 3895 if (copy_from_sockptr(&val, optval, sizeof(val))) 3896 return -EFAULT; 3897 3898 lock_sock(sk); 3899 po->origdev = !!val; 3900 release_sock(sk); 3901 return 0; 3902 } 3903 case PACKET_VNET_HDR: 3904 { 3905 int val; 3906 3907 if (sock->type != SOCK_RAW) 3908 return -EINVAL; 3909 if (optlen < sizeof(val)) 3910 return -EINVAL; 3911 if (copy_from_sockptr(&val, optval, sizeof(val))) 3912 return -EFAULT; 3913 3914 lock_sock(sk); 3915 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3916 ret = -EBUSY; 3917 } else { 3918 po->has_vnet_hdr = !!val; 3919 ret = 0; 3920 } 3921 release_sock(sk); 3922 return ret; 3923 } 3924 case PACKET_TIMESTAMP: 3925 { 3926 int val; 3927 3928 if (optlen != sizeof(val)) 3929 return -EINVAL; 3930 if (copy_from_sockptr(&val, optval, sizeof(val))) 3931 return -EFAULT; 3932 3933 po->tp_tstamp = val; 3934 return 0; 3935 } 3936 case PACKET_FANOUT: 3937 { 3938 struct fanout_args args = { 0 }; 3939 3940 if (optlen != sizeof(int) && optlen != sizeof(args)) 3941 return -EINVAL; 3942 if (copy_from_sockptr(&args, optval, optlen)) 3943 return -EFAULT; 3944 3945 return fanout_add(sk, &args); 3946 } 3947 case PACKET_FANOUT_DATA: 3948 { 3949 /* Paired with the WRITE_ONCE() in fanout_add() */ 3950 if (!READ_ONCE(po->fanout)) 3951 return -EINVAL; 3952 3953 return fanout_set_data(po, optval, optlen); 3954 } 3955 case PACKET_IGNORE_OUTGOING: 3956 { 3957 int val; 3958 3959 if (optlen != sizeof(val)) 3960 return -EINVAL; 3961 if (copy_from_sockptr(&val, optval, sizeof(val))) 3962 return -EFAULT; 3963 if (val < 0 || val > 1) 3964 return -EINVAL; 3965 3966 po->prot_hook.ignore_outgoing = !!val; 3967 return 0; 3968 } 3969 case PACKET_TX_HAS_OFF: 3970 { 3971 unsigned int val; 3972 3973 if (optlen != sizeof(val)) 3974 return -EINVAL; 3975 if (copy_from_sockptr(&val, optval, sizeof(val))) 3976 return -EFAULT; 3977 3978 lock_sock(sk); 3979 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3980 po->tp_tx_has_off = !!val; 3981 3982 release_sock(sk); 3983 return 0; 3984 } 3985 case PACKET_QDISC_BYPASS: 3986 { 3987 int val; 3988 3989 if (optlen != sizeof(val)) 3990 return -EINVAL; 3991 if (copy_from_sockptr(&val, optval, sizeof(val))) 3992 return -EFAULT; 3993 3994 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3995 return 0; 3996 } 3997 default: 3998 return -ENOPROTOOPT; 3999 } 4000 } 4001 4002 static int packet_getsockopt(struct socket *sock, int level, int optname, 4003 char __user *optval, int __user *optlen) 4004 { 4005 int len; 4006 int val, lv = sizeof(val); 4007 struct sock *sk = sock->sk; 4008 struct packet_sock *po = pkt_sk(sk); 4009 void *data = &val; 4010 union tpacket_stats_u st; 4011 struct tpacket_rollover_stats rstats; 4012 int drops; 4013 4014 if (level != SOL_PACKET) 4015 return -ENOPROTOOPT; 4016 4017 if (get_user(len, optlen)) 4018 return -EFAULT; 4019 4020 if (len < 0) 4021 return -EINVAL; 4022 4023 switch (optname) { 4024 case PACKET_STATISTICS: 4025 spin_lock_bh(&sk->sk_receive_queue.lock); 4026 memcpy(&st, &po->stats, sizeof(st)); 4027 memset(&po->stats, 0, sizeof(po->stats)); 4028 spin_unlock_bh(&sk->sk_receive_queue.lock); 4029 drops = atomic_xchg(&po->tp_drops, 0); 4030 4031 if (po->tp_version == TPACKET_V3) { 4032 lv = sizeof(struct tpacket_stats_v3); 4033 st.stats3.tp_drops = drops; 4034 st.stats3.tp_packets += drops; 4035 data = &st.stats3; 4036 } else { 4037 lv = sizeof(struct tpacket_stats); 4038 st.stats1.tp_drops = drops; 4039 st.stats1.tp_packets += drops; 4040 data = &st.stats1; 4041 } 4042 4043 break; 4044 case PACKET_AUXDATA: 4045 val = po->auxdata; 4046 break; 4047 case PACKET_ORIGDEV: 4048 val = po->origdev; 4049 break; 4050 case PACKET_VNET_HDR: 4051 val = po->has_vnet_hdr; 4052 break; 4053 case PACKET_VERSION: 4054 val = po->tp_version; 4055 break; 4056 case PACKET_HDRLEN: 4057 if (len > sizeof(int)) 4058 len = sizeof(int); 4059 if (len < sizeof(int)) 4060 return -EINVAL; 4061 if (copy_from_user(&val, optval, len)) 4062 return -EFAULT; 4063 switch (val) { 4064 case TPACKET_V1: 4065 val = sizeof(struct tpacket_hdr); 4066 break; 4067 case TPACKET_V2: 4068 val = sizeof(struct tpacket2_hdr); 4069 break; 4070 case TPACKET_V3: 4071 val = sizeof(struct tpacket3_hdr); 4072 break; 4073 default: 4074 return -EINVAL; 4075 } 4076 break; 4077 case PACKET_RESERVE: 4078 val = po->tp_reserve; 4079 break; 4080 case PACKET_LOSS: 4081 val = po->tp_loss; 4082 break; 4083 case PACKET_TIMESTAMP: 4084 val = po->tp_tstamp; 4085 break; 4086 case PACKET_FANOUT: 4087 val = (po->fanout ? 4088 ((u32)po->fanout->id | 4089 ((u32)po->fanout->type << 16) | 4090 ((u32)po->fanout->flags << 24)) : 4091 0); 4092 break; 4093 case PACKET_IGNORE_OUTGOING: 4094 val = po->prot_hook.ignore_outgoing; 4095 break; 4096 case PACKET_ROLLOVER_STATS: 4097 if (!po->rollover) 4098 return -EINVAL; 4099 rstats.tp_all = atomic_long_read(&po->rollover->num); 4100 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4101 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4102 data = &rstats; 4103 lv = sizeof(rstats); 4104 break; 4105 case PACKET_TX_HAS_OFF: 4106 val = po->tp_tx_has_off; 4107 break; 4108 case PACKET_QDISC_BYPASS: 4109 val = packet_use_direct_xmit(po); 4110 break; 4111 default: 4112 return -ENOPROTOOPT; 4113 } 4114 4115 if (len > lv) 4116 len = lv; 4117 if (put_user(len, optlen)) 4118 return -EFAULT; 4119 if (copy_to_user(optval, data, len)) 4120 return -EFAULT; 4121 return 0; 4122 } 4123 4124 static int packet_notifier(struct notifier_block *this, 4125 unsigned long msg, void *ptr) 4126 { 4127 struct sock *sk; 4128 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4129 struct net *net = dev_net(dev); 4130 4131 rcu_read_lock(); 4132 sk_for_each_rcu(sk, &net->packet.sklist) { 4133 struct packet_sock *po = pkt_sk(sk); 4134 4135 switch (msg) { 4136 case NETDEV_UNREGISTER: 4137 if (po->mclist) 4138 packet_dev_mclist_delete(dev, &po->mclist); 4139 fallthrough; 4140 4141 case NETDEV_DOWN: 4142 if (dev->ifindex == po->ifindex) { 4143 spin_lock(&po->bind_lock); 4144 if (po->running) { 4145 __unregister_prot_hook(sk, false); 4146 sk->sk_err = ENETDOWN; 4147 if (!sock_flag(sk, SOCK_DEAD)) 4148 sk_error_report(sk); 4149 } 4150 if (msg == NETDEV_UNREGISTER) { 4151 packet_cached_dev_reset(po); 4152 WRITE_ONCE(po->ifindex, -1); 4153 dev_put_track(po->prot_hook.dev, 4154 &po->prot_hook.dev_tracker); 4155 po->prot_hook.dev = NULL; 4156 } 4157 spin_unlock(&po->bind_lock); 4158 } 4159 break; 4160 case NETDEV_UP: 4161 if (dev->ifindex == po->ifindex) { 4162 spin_lock(&po->bind_lock); 4163 if (po->num) 4164 register_prot_hook(sk); 4165 spin_unlock(&po->bind_lock); 4166 } 4167 break; 4168 } 4169 } 4170 rcu_read_unlock(); 4171 return NOTIFY_DONE; 4172 } 4173 4174 4175 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4176 unsigned long arg) 4177 { 4178 struct sock *sk = sock->sk; 4179 4180 switch (cmd) { 4181 case SIOCOUTQ: 4182 { 4183 int amount = sk_wmem_alloc_get(sk); 4184 4185 return put_user(amount, (int __user *)arg); 4186 } 4187 case SIOCINQ: 4188 { 4189 struct sk_buff *skb; 4190 int amount = 0; 4191 4192 spin_lock_bh(&sk->sk_receive_queue.lock); 4193 skb = skb_peek(&sk->sk_receive_queue); 4194 if (skb) 4195 amount = skb->len; 4196 spin_unlock_bh(&sk->sk_receive_queue.lock); 4197 return put_user(amount, (int __user *)arg); 4198 } 4199 #ifdef CONFIG_INET 4200 case SIOCADDRT: 4201 case SIOCDELRT: 4202 case SIOCDARP: 4203 case SIOCGARP: 4204 case SIOCSARP: 4205 case SIOCGIFADDR: 4206 case SIOCSIFADDR: 4207 case SIOCGIFBRDADDR: 4208 case SIOCSIFBRDADDR: 4209 case SIOCGIFNETMASK: 4210 case SIOCSIFNETMASK: 4211 case SIOCGIFDSTADDR: 4212 case SIOCSIFDSTADDR: 4213 case SIOCSIFFLAGS: 4214 return inet_dgram_ops.ioctl(sock, cmd, arg); 4215 #endif 4216 4217 default: 4218 return -ENOIOCTLCMD; 4219 } 4220 return 0; 4221 } 4222 4223 static __poll_t packet_poll(struct file *file, struct socket *sock, 4224 poll_table *wait) 4225 { 4226 struct sock *sk = sock->sk; 4227 struct packet_sock *po = pkt_sk(sk); 4228 __poll_t mask = datagram_poll(file, sock, wait); 4229 4230 spin_lock_bh(&sk->sk_receive_queue.lock); 4231 if (po->rx_ring.pg_vec) { 4232 if (!packet_previous_rx_frame(po, &po->rx_ring, 4233 TP_STATUS_KERNEL)) 4234 mask |= EPOLLIN | EPOLLRDNORM; 4235 } 4236 packet_rcv_try_clear_pressure(po); 4237 spin_unlock_bh(&sk->sk_receive_queue.lock); 4238 spin_lock_bh(&sk->sk_write_queue.lock); 4239 if (po->tx_ring.pg_vec) { 4240 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4241 mask |= EPOLLOUT | EPOLLWRNORM; 4242 } 4243 spin_unlock_bh(&sk->sk_write_queue.lock); 4244 return mask; 4245 } 4246 4247 4248 /* Dirty? Well, I still did not learn better way to account 4249 * for user mmaps. 4250 */ 4251 4252 static void packet_mm_open(struct vm_area_struct *vma) 4253 { 4254 struct file *file = vma->vm_file; 4255 struct socket *sock = file->private_data; 4256 struct sock *sk = sock->sk; 4257 4258 if (sk) 4259 atomic_inc(&pkt_sk(sk)->mapped); 4260 } 4261 4262 static void packet_mm_close(struct vm_area_struct *vma) 4263 { 4264 struct file *file = vma->vm_file; 4265 struct socket *sock = file->private_data; 4266 struct sock *sk = sock->sk; 4267 4268 if (sk) 4269 atomic_dec(&pkt_sk(sk)->mapped); 4270 } 4271 4272 static const struct vm_operations_struct packet_mmap_ops = { 4273 .open = packet_mm_open, 4274 .close = packet_mm_close, 4275 }; 4276 4277 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4278 unsigned int len) 4279 { 4280 int i; 4281 4282 for (i = 0; i < len; i++) { 4283 if (likely(pg_vec[i].buffer)) { 4284 if (is_vmalloc_addr(pg_vec[i].buffer)) 4285 vfree(pg_vec[i].buffer); 4286 else 4287 free_pages((unsigned long)pg_vec[i].buffer, 4288 order); 4289 pg_vec[i].buffer = NULL; 4290 } 4291 } 4292 kfree(pg_vec); 4293 } 4294 4295 static char *alloc_one_pg_vec_page(unsigned long order) 4296 { 4297 char *buffer; 4298 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4299 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4300 4301 buffer = (char *) __get_free_pages(gfp_flags, order); 4302 if (buffer) 4303 return buffer; 4304 4305 /* __get_free_pages failed, fall back to vmalloc */ 4306 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4307 if (buffer) 4308 return buffer; 4309 4310 /* vmalloc failed, lets dig into swap here */ 4311 gfp_flags &= ~__GFP_NORETRY; 4312 buffer = (char *) __get_free_pages(gfp_flags, order); 4313 if (buffer) 4314 return buffer; 4315 4316 /* complete and utter failure */ 4317 return NULL; 4318 } 4319 4320 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4321 { 4322 unsigned int block_nr = req->tp_block_nr; 4323 struct pgv *pg_vec; 4324 int i; 4325 4326 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4327 if (unlikely(!pg_vec)) 4328 goto out; 4329 4330 for (i = 0; i < block_nr; i++) { 4331 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4332 if (unlikely(!pg_vec[i].buffer)) 4333 goto out_free_pgvec; 4334 } 4335 4336 out: 4337 return pg_vec; 4338 4339 out_free_pgvec: 4340 free_pg_vec(pg_vec, order, block_nr); 4341 pg_vec = NULL; 4342 goto out; 4343 } 4344 4345 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4346 int closing, int tx_ring) 4347 { 4348 struct pgv *pg_vec = NULL; 4349 struct packet_sock *po = pkt_sk(sk); 4350 unsigned long *rx_owner_map = NULL; 4351 int was_running, order = 0; 4352 struct packet_ring_buffer *rb; 4353 struct sk_buff_head *rb_queue; 4354 __be16 num; 4355 int err; 4356 /* Added to avoid minimal code churn */ 4357 struct tpacket_req *req = &req_u->req; 4358 4359 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4360 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4361 4362 err = -EBUSY; 4363 if (!closing) { 4364 if (atomic_read(&po->mapped)) 4365 goto out; 4366 if (packet_read_pending(rb)) 4367 goto out; 4368 } 4369 4370 if (req->tp_block_nr) { 4371 unsigned int min_frame_size; 4372 4373 /* Sanity tests and some calculations */ 4374 err = -EBUSY; 4375 if (unlikely(rb->pg_vec)) 4376 goto out; 4377 4378 switch (po->tp_version) { 4379 case TPACKET_V1: 4380 po->tp_hdrlen = TPACKET_HDRLEN; 4381 break; 4382 case TPACKET_V2: 4383 po->tp_hdrlen = TPACKET2_HDRLEN; 4384 break; 4385 case TPACKET_V3: 4386 po->tp_hdrlen = TPACKET3_HDRLEN; 4387 break; 4388 } 4389 4390 err = -EINVAL; 4391 if (unlikely((int)req->tp_block_size <= 0)) 4392 goto out; 4393 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4394 goto out; 4395 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4396 if (po->tp_version >= TPACKET_V3 && 4397 req->tp_block_size < 4398 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4399 goto out; 4400 if (unlikely(req->tp_frame_size < min_frame_size)) 4401 goto out; 4402 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4403 goto out; 4404 4405 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4406 if (unlikely(rb->frames_per_block == 0)) 4407 goto out; 4408 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4409 goto out; 4410 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4411 req->tp_frame_nr)) 4412 goto out; 4413 4414 err = -ENOMEM; 4415 order = get_order(req->tp_block_size); 4416 pg_vec = alloc_pg_vec(req, order); 4417 if (unlikely(!pg_vec)) 4418 goto out; 4419 switch (po->tp_version) { 4420 case TPACKET_V3: 4421 /* Block transmit is not supported yet */ 4422 if (!tx_ring) { 4423 init_prb_bdqc(po, rb, pg_vec, req_u); 4424 } else { 4425 struct tpacket_req3 *req3 = &req_u->req3; 4426 4427 if (req3->tp_retire_blk_tov || 4428 req3->tp_sizeof_priv || 4429 req3->tp_feature_req_word) { 4430 err = -EINVAL; 4431 goto out_free_pg_vec; 4432 } 4433 } 4434 break; 4435 default: 4436 if (!tx_ring) { 4437 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4438 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4439 if (!rx_owner_map) 4440 goto out_free_pg_vec; 4441 } 4442 break; 4443 } 4444 } 4445 /* Done */ 4446 else { 4447 err = -EINVAL; 4448 if (unlikely(req->tp_frame_nr)) 4449 goto out; 4450 } 4451 4452 4453 /* Detach socket from network */ 4454 spin_lock(&po->bind_lock); 4455 was_running = po->running; 4456 num = po->num; 4457 if (was_running) { 4458 WRITE_ONCE(po->num, 0); 4459 __unregister_prot_hook(sk, false); 4460 } 4461 spin_unlock(&po->bind_lock); 4462 4463 synchronize_net(); 4464 4465 err = -EBUSY; 4466 mutex_lock(&po->pg_vec_lock); 4467 if (closing || atomic_read(&po->mapped) == 0) { 4468 err = 0; 4469 spin_lock_bh(&rb_queue->lock); 4470 swap(rb->pg_vec, pg_vec); 4471 if (po->tp_version <= TPACKET_V2) 4472 swap(rb->rx_owner_map, rx_owner_map); 4473 rb->frame_max = (req->tp_frame_nr - 1); 4474 rb->head = 0; 4475 rb->frame_size = req->tp_frame_size; 4476 spin_unlock_bh(&rb_queue->lock); 4477 4478 swap(rb->pg_vec_order, order); 4479 swap(rb->pg_vec_len, req->tp_block_nr); 4480 4481 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4482 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4483 tpacket_rcv : packet_rcv; 4484 skb_queue_purge(rb_queue); 4485 if (atomic_read(&po->mapped)) 4486 pr_err("packet_mmap: vma is busy: %d\n", 4487 atomic_read(&po->mapped)); 4488 } 4489 mutex_unlock(&po->pg_vec_lock); 4490 4491 spin_lock(&po->bind_lock); 4492 if (was_running) { 4493 WRITE_ONCE(po->num, num); 4494 register_prot_hook(sk); 4495 } 4496 spin_unlock(&po->bind_lock); 4497 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4498 /* Because we don't support block-based V3 on tx-ring */ 4499 if (!tx_ring) 4500 prb_shutdown_retire_blk_timer(po, rb_queue); 4501 } 4502 4503 out_free_pg_vec: 4504 if (pg_vec) { 4505 bitmap_free(rx_owner_map); 4506 free_pg_vec(pg_vec, order, req->tp_block_nr); 4507 } 4508 out: 4509 return err; 4510 } 4511 4512 static int packet_mmap(struct file *file, struct socket *sock, 4513 struct vm_area_struct *vma) 4514 { 4515 struct sock *sk = sock->sk; 4516 struct packet_sock *po = pkt_sk(sk); 4517 unsigned long size, expected_size; 4518 struct packet_ring_buffer *rb; 4519 unsigned long start; 4520 int err = -EINVAL; 4521 int i; 4522 4523 if (vma->vm_pgoff) 4524 return -EINVAL; 4525 4526 mutex_lock(&po->pg_vec_lock); 4527 4528 expected_size = 0; 4529 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4530 if (rb->pg_vec) { 4531 expected_size += rb->pg_vec_len 4532 * rb->pg_vec_pages 4533 * PAGE_SIZE; 4534 } 4535 } 4536 4537 if (expected_size == 0) 4538 goto out; 4539 4540 size = vma->vm_end - vma->vm_start; 4541 if (size != expected_size) 4542 goto out; 4543 4544 start = vma->vm_start; 4545 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4546 if (rb->pg_vec == NULL) 4547 continue; 4548 4549 for (i = 0; i < rb->pg_vec_len; i++) { 4550 struct page *page; 4551 void *kaddr = rb->pg_vec[i].buffer; 4552 int pg_num; 4553 4554 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4555 page = pgv_to_page(kaddr); 4556 err = vm_insert_page(vma, start, page); 4557 if (unlikely(err)) 4558 goto out; 4559 start += PAGE_SIZE; 4560 kaddr += PAGE_SIZE; 4561 } 4562 } 4563 } 4564 4565 atomic_inc(&po->mapped); 4566 vma->vm_ops = &packet_mmap_ops; 4567 err = 0; 4568 4569 out: 4570 mutex_unlock(&po->pg_vec_lock); 4571 return err; 4572 } 4573 4574 static const struct proto_ops packet_ops_spkt = { 4575 .family = PF_PACKET, 4576 .owner = THIS_MODULE, 4577 .release = packet_release, 4578 .bind = packet_bind_spkt, 4579 .connect = sock_no_connect, 4580 .socketpair = sock_no_socketpair, 4581 .accept = sock_no_accept, 4582 .getname = packet_getname_spkt, 4583 .poll = datagram_poll, 4584 .ioctl = packet_ioctl, 4585 .gettstamp = sock_gettstamp, 4586 .listen = sock_no_listen, 4587 .shutdown = sock_no_shutdown, 4588 .sendmsg = packet_sendmsg_spkt, 4589 .recvmsg = packet_recvmsg, 4590 .mmap = sock_no_mmap, 4591 .sendpage = sock_no_sendpage, 4592 }; 4593 4594 static const struct proto_ops packet_ops = { 4595 .family = PF_PACKET, 4596 .owner = THIS_MODULE, 4597 .release = packet_release, 4598 .bind = packet_bind, 4599 .connect = sock_no_connect, 4600 .socketpair = sock_no_socketpair, 4601 .accept = sock_no_accept, 4602 .getname = packet_getname, 4603 .poll = packet_poll, 4604 .ioctl = packet_ioctl, 4605 .gettstamp = sock_gettstamp, 4606 .listen = sock_no_listen, 4607 .shutdown = sock_no_shutdown, 4608 .setsockopt = packet_setsockopt, 4609 .getsockopt = packet_getsockopt, 4610 .sendmsg = packet_sendmsg, 4611 .recvmsg = packet_recvmsg, 4612 .mmap = packet_mmap, 4613 .sendpage = sock_no_sendpage, 4614 }; 4615 4616 static const struct net_proto_family packet_family_ops = { 4617 .family = PF_PACKET, 4618 .create = packet_create, 4619 .owner = THIS_MODULE, 4620 }; 4621 4622 static struct notifier_block packet_netdev_notifier = { 4623 .notifier_call = packet_notifier, 4624 }; 4625 4626 #ifdef CONFIG_PROC_FS 4627 4628 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4629 __acquires(RCU) 4630 { 4631 struct net *net = seq_file_net(seq); 4632 4633 rcu_read_lock(); 4634 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4635 } 4636 4637 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4638 { 4639 struct net *net = seq_file_net(seq); 4640 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4641 } 4642 4643 static void packet_seq_stop(struct seq_file *seq, void *v) 4644 __releases(RCU) 4645 { 4646 rcu_read_unlock(); 4647 } 4648 4649 static int packet_seq_show(struct seq_file *seq, void *v) 4650 { 4651 if (v == SEQ_START_TOKEN) 4652 seq_printf(seq, 4653 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4654 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4655 else { 4656 struct sock *s = sk_entry(v); 4657 const struct packet_sock *po = pkt_sk(s); 4658 4659 seq_printf(seq, 4660 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4661 s, 4662 refcount_read(&s->sk_refcnt), 4663 s->sk_type, 4664 ntohs(READ_ONCE(po->num)), 4665 READ_ONCE(po->ifindex), 4666 po->running, 4667 atomic_read(&s->sk_rmem_alloc), 4668 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4669 sock_i_ino(s)); 4670 } 4671 4672 return 0; 4673 } 4674 4675 static const struct seq_operations packet_seq_ops = { 4676 .start = packet_seq_start, 4677 .next = packet_seq_next, 4678 .stop = packet_seq_stop, 4679 .show = packet_seq_show, 4680 }; 4681 #endif 4682 4683 static int __net_init packet_net_init(struct net *net) 4684 { 4685 mutex_init(&net->packet.sklist_lock); 4686 INIT_HLIST_HEAD(&net->packet.sklist); 4687 4688 #ifdef CONFIG_PROC_FS 4689 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4690 sizeof(struct seq_net_private))) 4691 return -ENOMEM; 4692 #endif /* CONFIG_PROC_FS */ 4693 4694 return 0; 4695 } 4696 4697 static void __net_exit packet_net_exit(struct net *net) 4698 { 4699 remove_proc_entry("packet", net->proc_net); 4700 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4701 } 4702 4703 static struct pernet_operations packet_net_ops = { 4704 .init = packet_net_init, 4705 .exit = packet_net_exit, 4706 }; 4707 4708 4709 static void __exit packet_exit(void) 4710 { 4711 unregister_netdevice_notifier(&packet_netdev_notifier); 4712 unregister_pernet_subsys(&packet_net_ops); 4713 sock_unregister(PF_PACKET); 4714 proto_unregister(&packet_proto); 4715 } 4716 4717 static int __init packet_init(void) 4718 { 4719 int rc; 4720 4721 rc = proto_register(&packet_proto, 0); 4722 if (rc) 4723 goto out; 4724 rc = sock_register(&packet_family_ops); 4725 if (rc) 4726 goto out_proto; 4727 rc = register_pernet_subsys(&packet_net_ops); 4728 if (rc) 4729 goto out_sock; 4730 rc = register_netdevice_notifier(&packet_netdev_notifier); 4731 if (rc) 4732 goto out_pernet; 4733 4734 return 0; 4735 4736 out_pernet: 4737 unregister_pernet_subsys(&packet_net_ops); 4738 out_sock: 4739 sock_unregister(PF_PACKET); 4740 out_proto: 4741 proto_unregister(&packet_proto); 4742 out: 4743 return rc; 4744 } 4745 4746 module_init(packet_init); 4747 module_exit(packet_exit); 4748 MODULE_LICENSE("GPL"); 4749 MODULE_ALIAS_NETPROTO(PF_PACKET); 4750