xref: /openbmc/linux/net/packet/af_packet.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/ethtool.h>
52 #include <linux/filter.h>
53 #include <linux/types.h>
54 #include <linux/mm.h>
55 #include <linux/capability.h>
56 #include <linux/fcntl.h>
57 #include <linux/socket.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/if_packet.h>
62 #include <linux/wireless.h>
63 #include <linux/kernel.h>
64 #include <linux/kmod.h>
65 #include <linux/slab.h>
66 #include <linux/vmalloc.h>
67 #include <net/net_namespace.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <linux/errno.h>
73 #include <linux/timer.h>
74 #include <linux/uaccess.h>
75 #include <asm/ioctls.h>
76 #include <asm/page.h>
77 #include <asm/cacheflush.h>
78 #include <asm/io.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81 #include <linux/poll.h>
82 #include <linux/module.h>
83 #include <linux/init.h>
84 #include <linux/mutex.h>
85 #include <linux/if_vlan.h>
86 #include <linux/virtio_net.h>
87 #include <linux/errqueue.h>
88 #include <linux/net_tstamp.h>
89 #include <linux/percpu.h>
90 #ifdef CONFIG_INET
91 #include <net/inet_common.h>
92 #endif
93 #include <linux/bpf.h>
94 #include <net/compat.h>
95 #include <linux/netfilter_netdev.h>
96 
97 #include "internal.h"
98 
99 /*
100    Assumptions:
101    - If the device has no dev->header_ops->create, there is no LL header
102      visible above the device. In this case, its hard_header_len should be 0.
103      The device may prepend its own header internally. In this case, its
104      needed_headroom should be set to the space needed for it to add its
105      internal header.
106      For example, a WiFi driver pretending to be an Ethernet driver should
107      set its hard_header_len to be the Ethernet header length, and set its
108      needed_headroom to be (the real WiFi header length - the fake Ethernet
109      header length).
110    - packet socket receives packets with pulled ll header,
111      so that SOCK_RAW should push it back.
112 
113 On receive:
114 -----------
115 
116 Incoming, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> data
119 
120 Outgoing, dev_has_header(dev) == true
121    mac_header -> ll header
122    data       -> ll header
123 
124 Incoming, dev_has_header(dev) == false
125    mac_header -> data
126      However drivers often make it point to the ll header.
127      This is incorrect because the ll header should be invisible to us.
128    data       -> data
129 
130 Outgoing, dev_has_header(dev) == false
131    mac_header -> data. ll header is invisible to us.
132    data       -> data
133 
134 Resume
135   If dev_has_header(dev) == false we are unable to restore the ll header,
136     because it is invisible to us.
137 
138 
139 On transmit:
140 ------------
141 
142 dev_has_header(dev) == true
143    mac_header -> ll header
144    data       -> ll header
145 
146 dev_has_header(dev) == false (ll header is invisible to us)
147    mac_header -> data
148    data       -> data
149 
150    We should set network_header on output to the correct position,
151    packet classifier depends on it.
152  */
153 
154 /* Private packet socket structures. */
155 
156 /* identical to struct packet_mreq except it has
157  * a longer address field.
158  */
159 struct packet_mreq_max {
160 	int		mr_ifindex;
161 	unsigned short	mr_type;
162 	unsigned short	mr_alen;
163 	unsigned char	mr_address[MAX_ADDR_LEN];
164 };
165 
166 union tpacket_uhdr {
167 	struct tpacket_hdr  *h1;
168 	struct tpacket2_hdr *h2;
169 	struct tpacket3_hdr *h3;
170 	void *raw;
171 };
172 
173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
174 		int closing, int tx_ring);
175 
176 #define V3_ALIGNMENT	(8)
177 
178 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
179 
180 #define BLK_PLUS_PRIV(sz_of_priv) \
181 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
182 
183 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
184 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
185 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
186 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
187 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
188 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
189 
190 struct packet_sock;
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 		       struct packet_type *pt, struct net_device *orig_dev);
193 
194 static void *packet_previous_frame(struct packet_sock *po,
195 		struct packet_ring_buffer *rb,
196 		int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
209 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
210 		struct tpacket3_hdr *);
211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
212 		struct tpacket3_hdr *);
213 static void packet_flush_mclist(struct sock *sk);
214 static u16 packet_pick_tx_queue(struct sk_buff *skb);
215 
216 struct packet_skb_cb {
217 	union {
218 		struct sockaddr_pkt pkt;
219 		union {
220 			/* Trick: alias skb original length with
221 			 * ll.sll_family and ll.protocol in order
222 			 * to save room.
223 			 */
224 			unsigned int origlen;
225 			struct sockaddr_ll ll;
226 		};
227 	} sa;
228 };
229 
230 #define vio_le() virtio_legacy_is_little_endian()
231 
232 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
233 
234 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
235 #define GET_PBLOCK_DESC(x, bid)	\
236 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
238 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
239 #define GET_NEXT_PRB_BLK_NUM(x) \
240 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
241 	((x)->kactive_blk_num+1) : 0)
242 
243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
244 static void __fanout_link(struct sock *sk, struct packet_sock *po);
245 
246 #ifdef CONFIG_NETFILTER_EGRESS
247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb)
248 {
249 	struct sk_buff *next, *head = NULL, *tail;
250 	int rc;
251 
252 	rcu_read_lock();
253 	for (; skb != NULL; skb = next) {
254 		next = skb->next;
255 		skb_mark_not_on_list(skb);
256 
257 		if (!nf_hook_egress(skb, &rc, skb->dev))
258 			continue;
259 
260 		if (!head)
261 			head = skb;
262 		else
263 			tail->next = skb;
264 
265 		tail = skb;
266 	}
267 	rcu_read_unlock();
268 
269 	return head;
270 }
271 #endif
272 
273 static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb)
274 {
275 	if (!packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS))
276 		return dev_queue_xmit(skb);
277 
278 #ifdef CONFIG_NETFILTER_EGRESS
279 	if (nf_hook_egress_active()) {
280 		skb = nf_hook_direct_egress(skb);
281 		if (!skb)
282 			return NET_XMIT_DROP;
283 	}
284 #endif
285 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
286 }
287 
288 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
289 {
290 	struct net_device *dev;
291 
292 	rcu_read_lock();
293 	dev = rcu_dereference(po->cached_dev);
294 	dev_hold(dev);
295 	rcu_read_unlock();
296 
297 	return dev;
298 }
299 
300 static void packet_cached_dev_assign(struct packet_sock *po,
301 				     struct net_device *dev)
302 {
303 	rcu_assign_pointer(po->cached_dev, dev);
304 }
305 
306 static void packet_cached_dev_reset(struct packet_sock *po)
307 {
308 	RCU_INIT_POINTER(po->cached_dev, NULL);
309 }
310 
311 static u16 packet_pick_tx_queue(struct sk_buff *skb)
312 {
313 	struct net_device *dev = skb->dev;
314 	const struct net_device_ops *ops = dev->netdev_ops;
315 	int cpu = raw_smp_processor_id();
316 	u16 queue_index;
317 
318 #ifdef CONFIG_XPS
319 	skb->sender_cpu = cpu + 1;
320 #endif
321 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
322 	if (ops->ndo_select_queue) {
323 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
324 		queue_index = netdev_cap_txqueue(dev, queue_index);
325 	} else {
326 		queue_index = netdev_pick_tx(dev, skb, NULL);
327 	}
328 
329 	return queue_index;
330 }
331 
332 /* __register_prot_hook must be invoked through register_prot_hook
333  * or from a context in which asynchronous accesses to the packet
334  * socket is not possible (packet_create()).
335  */
336 static void __register_prot_hook(struct sock *sk)
337 {
338 	struct packet_sock *po = pkt_sk(sk);
339 
340 	if (!packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
341 		if (po->fanout)
342 			__fanout_link(sk, po);
343 		else
344 			dev_add_pack(&po->prot_hook);
345 
346 		sock_hold(sk);
347 		packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 1);
348 	}
349 }
350 
351 static void register_prot_hook(struct sock *sk)
352 {
353 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
354 	__register_prot_hook(sk);
355 }
356 
357 /* If the sync parameter is true, we will temporarily drop
358  * the po->bind_lock and do a synchronize_net to make sure no
359  * asynchronous packet processing paths still refer to the elements
360  * of po->prot_hook.  If the sync parameter is false, it is the
361  * callers responsibility to take care of this.
362  */
363 static void __unregister_prot_hook(struct sock *sk, bool sync)
364 {
365 	struct packet_sock *po = pkt_sk(sk);
366 
367 	lockdep_assert_held_once(&po->bind_lock);
368 
369 	packet_sock_flag_set(po, PACKET_SOCK_RUNNING, 0);
370 
371 	if (po->fanout)
372 		__fanout_unlink(sk, po);
373 	else
374 		__dev_remove_pack(&po->prot_hook);
375 
376 	__sock_put(sk);
377 
378 	if (sync) {
379 		spin_unlock(&po->bind_lock);
380 		synchronize_net();
381 		spin_lock(&po->bind_lock);
382 	}
383 }
384 
385 static void unregister_prot_hook(struct sock *sk, bool sync)
386 {
387 	struct packet_sock *po = pkt_sk(sk);
388 
389 	if (packet_sock_flag(po, PACKET_SOCK_RUNNING))
390 		__unregister_prot_hook(sk, sync);
391 }
392 
393 static inline struct page * __pure pgv_to_page(void *addr)
394 {
395 	if (is_vmalloc_addr(addr))
396 		return vmalloc_to_page(addr);
397 	return virt_to_page(addr);
398 }
399 
400 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
401 {
402 	union tpacket_uhdr h;
403 
404 	h.raw = frame;
405 	switch (po->tp_version) {
406 	case TPACKET_V1:
407 		h.h1->tp_status = status;
408 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
409 		break;
410 	case TPACKET_V2:
411 		h.h2->tp_status = status;
412 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
413 		break;
414 	case TPACKET_V3:
415 		h.h3->tp_status = status;
416 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
417 		break;
418 	default:
419 		WARN(1, "TPACKET version not supported.\n");
420 		BUG();
421 	}
422 
423 	smp_wmb();
424 }
425 
426 static int __packet_get_status(const struct packet_sock *po, void *frame)
427 {
428 	union tpacket_uhdr h;
429 
430 	smp_rmb();
431 
432 	h.raw = frame;
433 	switch (po->tp_version) {
434 	case TPACKET_V1:
435 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
436 		return h.h1->tp_status;
437 	case TPACKET_V2:
438 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
439 		return h.h2->tp_status;
440 	case TPACKET_V3:
441 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
442 		return h.h3->tp_status;
443 	default:
444 		WARN(1, "TPACKET version not supported.\n");
445 		BUG();
446 		return 0;
447 	}
448 }
449 
450 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
451 				   unsigned int flags)
452 {
453 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
454 
455 	if (shhwtstamps &&
456 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
457 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
458 		return TP_STATUS_TS_RAW_HARDWARE;
459 
460 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
461 	    ktime_to_timespec64_cond(skb_tstamp(skb), ts))
462 		return TP_STATUS_TS_SOFTWARE;
463 
464 	return 0;
465 }
466 
467 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
468 				    struct sk_buff *skb)
469 {
470 	union tpacket_uhdr h;
471 	struct timespec64 ts;
472 	__u32 ts_status;
473 
474 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, READ_ONCE(po->tp_tstamp))))
475 		return 0;
476 
477 	h.raw = frame;
478 	/*
479 	 * versions 1 through 3 overflow the timestamps in y2106, since they
480 	 * all store the seconds in a 32-bit unsigned integer.
481 	 * If we create a version 4, that should have a 64-bit timestamp,
482 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
483 	 * nanoseconds.
484 	 */
485 	switch (po->tp_version) {
486 	case TPACKET_V1:
487 		h.h1->tp_sec = ts.tv_sec;
488 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
489 		break;
490 	case TPACKET_V2:
491 		h.h2->tp_sec = ts.tv_sec;
492 		h.h2->tp_nsec = ts.tv_nsec;
493 		break;
494 	case TPACKET_V3:
495 		h.h3->tp_sec = ts.tv_sec;
496 		h.h3->tp_nsec = ts.tv_nsec;
497 		break;
498 	default:
499 		WARN(1, "TPACKET version not supported.\n");
500 		BUG();
501 	}
502 
503 	/* one flush is safe, as both fields always lie on the same cacheline */
504 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
505 	smp_wmb();
506 
507 	return ts_status;
508 }
509 
510 static void *packet_lookup_frame(const struct packet_sock *po,
511 				 const struct packet_ring_buffer *rb,
512 				 unsigned int position,
513 				 int status)
514 {
515 	unsigned int pg_vec_pos, frame_offset;
516 	union tpacket_uhdr h;
517 
518 	pg_vec_pos = position / rb->frames_per_block;
519 	frame_offset = position % rb->frames_per_block;
520 
521 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
522 		(frame_offset * rb->frame_size);
523 
524 	if (status != __packet_get_status(po, h.raw))
525 		return NULL;
526 
527 	return h.raw;
528 }
529 
530 static void *packet_current_frame(struct packet_sock *po,
531 		struct packet_ring_buffer *rb,
532 		int status)
533 {
534 	return packet_lookup_frame(po, rb, rb->head, status);
535 }
536 
537 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
538 {
539 	del_timer_sync(&pkc->retire_blk_timer);
540 }
541 
542 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
543 		struct sk_buff_head *rb_queue)
544 {
545 	struct tpacket_kbdq_core *pkc;
546 
547 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
548 
549 	spin_lock_bh(&rb_queue->lock);
550 	pkc->delete_blk_timer = 1;
551 	spin_unlock_bh(&rb_queue->lock);
552 
553 	prb_del_retire_blk_timer(pkc);
554 }
555 
556 static void prb_setup_retire_blk_timer(struct packet_sock *po)
557 {
558 	struct tpacket_kbdq_core *pkc;
559 
560 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
561 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
562 		    0);
563 	pkc->retire_blk_timer.expires = jiffies;
564 }
565 
566 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
567 				int blk_size_in_bytes)
568 {
569 	struct net_device *dev;
570 	unsigned int mbits, div;
571 	struct ethtool_link_ksettings ecmd;
572 	int err;
573 
574 	rtnl_lock();
575 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
576 	if (unlikely(!dev)) {
577 		rtnl_unlock();
578 		return DEFAULT_PRB_RETIRE_TOV;
579 	}
580 	err = __ethtool_get_link_ksettings(dev, &ecmd);
581 	rtnl_unlock();
582 	if (err)
583 		return DEFAULT_PRB_RETIRE_TOV;
584 
585 	/* If the link speed is so slow you don't really
586 	 * need to worry about perf anyways
587 	 */
588 	if (ecmd.base.speed < SPEED_1000 ||
589 	    ecmd.base.speed == SPEED_UNKNOWN)
590 		return DEFAULT_PRB_RETIRE_TOV;
591 
592 	div = ecmd.base.speed / 1000;
593 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
594 
595 	if (div)
596 		mbits /= div;
597 
598 	if (div)
599 		return mbits + 1;
600 	return mbits;
601 }
602 
603 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
604 			union tpacket_req_u *req_u)
605 {
606 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
607 }
608 
609 static void init_prb_bdqc(struct packet_sock *po,
610 			struct packet_ring_buffer *rb,
611 			struct pgv *pg_vec,
612 			union tpacket_req_u *req_u)
613 {
614 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
615 	struct tpacket_block_desc *pbd;
616 
617 	memset(p1, 0x0, sizeof(*p1));
618 
619 	p1->knxt_seq_num = 1;
620 	p1->pkbdq = pg_vec;
621 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
622 	p1->pkblk_start	= pg_vec[0].buffer;
623 	p1->kblk_size = req_u->req3.tp_block_size;
624 	p1->knum_blocks	= req_u->req3.tp_block_nr;
625 	p1->hdrlen = po->tp_hdrlen;
626 	p1->version = po->tp_version;
627 	p1->last_kactive_blk_num = 0;
628 	po->stats.stats3.tp_freeze_q_cnt = 0;
629 	if (req_u->req3.tp_retire_blk_tov)
630 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
631 	else
632 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
633 						req_u->req3.tp_block_size);
634 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
635 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
636 	rwlock_init(&p1->blk_fill_in_prog_lock);
637 
638 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
639 	prb_init_ft_ops(p1, req_u);
640 	prb_setup_retire_blk_timer(po);
641 	prb_open_block(p1, pbd);
642 }
643 
644 /*  Do NOT update the last_blk_num first.
645  *  Assumes sk_buff_head lock is held.
646  */
647 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
648 {
649 	mod_timer(&pkc->retire_blk_timer,
650 			jiffies + pkc->tov_in_jiffies);
651 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
652 }
653 
654 /*
655  * Timer logic:
656  * 1) We refresh the timer only when we open a block.
657  *    By doing this we don't waste cycles refreshing the timer
658  *	  on packet-by-packet basis.
659  *
660  * With a 1MB block-size, on a 1Gbps line, it will take
661  * i) ~8 ms to fill a block + ii) memcpy etc.
662  * In this cut we are not accounting for the memcpy time.
663  *
664  * So, if the user sets the 'tmo' to 10ms then the timer
665  * will never fire while the block is still getting filled
666  * (which is what we want). However, the user could choose
667  * to close a block early and that's fine.
668  *
669  * But when the timer does fire, we check whether or not to refresh it.
670  * Since the tmo granularity is in msecs, it is not too expensive
671  * to refresh the timer, lets say every '8' msecs.
672  * Either the user can set the 'tmo' or we can derive it based on
673  * a) line-speed and b) block-size.
674  * prb_calc_retire_blk_tmo() calculates the tmo.
675  *
676  */
677 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
678 {
679 	struct packet_sock *po =
680 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
681 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
682 	unsigned int frozen;
683 	struct tpacket_block_desc *pbd;
684 
685 	spin_lock(&po->sk.sk_receive_queue.lock);
686 
687 	frozen = prb_queue_frozen(pkc);
688 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
689 
690 	if (unlikely(pkc->delete_blk_timer))
691 		goto out;
692 
693 	/* We only need to plug the race when the block is partially filled.
694 	 * tpacket_rcv:
695 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
696 	 *		copy_bits() is in progress ...
697 	 *		timer fires on other cpu:
698 	 *		we can't retire the current block because copy_bits
699 	 *		is in progress.
700 	 *
701 	 */
702 	if (BLOCK_NUM_PKTS(pbd)) {
703 		/* Waiting for skb_copy_bits to finish... */
704 		write_lock(&pkc->blk_fill_in_prog_lock);
705 		write_unlock(&pkc->blk_fill_in_prog_lock);
706 	}
707 
708 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
709 		if (!frozen) {
710 			if (!BLOCK_NUM_PKTS(pbd)) {
711 				/* An empty block. Just refresh the timer. */
712 				goto refresh_timer;
713 			}
714 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
715 			if (!prb_dispatch_next_block(pkc, po))
716 				goto refresh_timer;
717 			else
718 				goto out;
719 		} else {
720 			/* Case 1. Queue was frozen because user-space was
721 			 *	   lagging behind.
722 			 */
723 			if (prb_curr_blk_in_use(pbd)) {
724 				/*
725 				 * Ok, user-space is still behind.
726 				 * So just refresh the timer.
727 				 */
728 				goto refresh_timer;
729 			} else {
730 			       /* Case 2. queue was frozen,user-space caught up,
731 				* now the link went idle && the timer fired.
732 				* We don't have a block to close.So we open this
733 				* block and restart the timer.
734 				* opening a block thaws the queue,restarts timer
735 				* Thawing/timer-refresh is a side effect.
736 				*/
737 				prb_open_block(pkc, pbd);
738 				goto out;
739 			}
740 		}
741 	}
742 
743 refresh_timer:
744 	_prb_refresh_rx_retire_blk_timer(pkc);
745 
746 out:
747 	spin_unlock(&po->sk.sk_receive_queue.lock);
748 }
749 
750 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
751 		struct tpacket_block_desc *pbd1, __u32 status)
752 {
753 	/* Flush everything minus the block header */
754 
755 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
756 	u8 *start, *end;
757 
758 	start = (u8 *)pbd1;
759 
760 	/* Skip the block header(we know header WILL fit in 4K) */
761 	start += PAGE_SIZE;
762 
763 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
764 	for (; start < end; start += PAGE_SIZE)
765 		flush_dcache_page(pgv_to_page(start));
766 
767 	smp_wmb();
768 #endif
769 
770 	/* Now update the block status. */
771 
772 	BLOCK_STATUS(pbd1) = status;
773 
774 	/* Flush the block header */
775 
776 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
777 	start = (u8 *)pbd1;
778 	flush_dcache_page(pgv_to_page(start));
779 
780 	smp_wmb();
781 #endif
782 }
783 
784 /*
785  * Side effect:
786  *
787  * 1) flush the block
788  * 2) Increment active_blk_num
789  *
790  * Note:We DONT refresh the timer on purpose.
791  *	Because almost always the next block will be opened.
792  */
793 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
794 		struct tpacket_block_desc *pbd1,
795 		struct packet_sock *po, unsigned int stat)
796 {
797 	__u32 status = TP_STATUS_USER | stat;
798 
799 	struct tpacket3_hdr *last_pkt;
800 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
801 	struct sock *sk = &po->sk;
802 
803 	if (atomic_read(&po->tp_drops))
804 		status |= TP_STATUS_LOSING;
805 
806 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
807 	last_pkt->tp_next_offset = 0;
808 
809 	/* Get the ts of the last pkt */
810 	if (BLOCK_NUM_PKTS(pbd1)) {
811 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
812 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
813 	} else {
814 		/* Ok, we tmo'd - so get the current time.
815 		 *
816 		 * It shouldn't really happen as we don't close empty
817 		 * blocks. See prb_retire_rx_blk_timer_expired().
818 		 */
819 		struct timespec64 ts;
820 		ktime_get_real_ts64(&ts);
821 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
822 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
823 	}
824 
825 	smp_wmb();
826 
827 	/* Flush the block */
828 	prb_flush_block(pkc1, pbd1, status);
829 
830 	sk->sk_data_ready(sk);
831 
832 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
833 }
834 
835 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
836 {
837 	pkc->reset_pending_on_curr_blk = 0;
838 }
839 
840 /*
841  * Side effect of opening a block:
842  *
843  * 1) prb_queue is thawed.
844  * 2) retire_blk_timer is refreshed.
845  *
846  */
847 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
848 	struct tpacket_block_desc *pbd1)
849 {
850 	struct timespec64 ts;
851 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
852 
853 	smp_rmb();
854 
855 	/* We could have just memset this but we will lose the
856 	 * flexibility of making the priv area sticky
857 	 */
858 
859 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
860 	BLOCK_NUM_PKTS(pbd1) = 0;
861 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
862 
863 	ktime_get_real_ts64(&ts);
864 
865 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
866 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
867 
868 	pkc1->pkblk_start = (char *)pbd1;
869 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
870 
871 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
872 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
873 
874 	pbd1->version = pkc1->version;
875 	pkc1->prev = pkc1->nxt_offset;
876 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
877 
878 	prb_thaw_queue(pkc1);
879 	_prb_refresh_rx_retire_blk_timer(pkc1);
880 
881 	smp_wmb();
882 }
883 
884 /*
885  * Queue freeze logic:
886  * 1) Assume tp_block_nr = 8 blocks.
887  * 2) At time 't0', user opens Rx ring.
888  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
889  * 4) user-space is either sleeping or processing block '0'.
890  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
891  *    it will close block-7,loop around and try to fill block '0'.
892  *    call-flow:
893  *    __packet_lookup_frame_in_block
894  *      prb_retire_current_block()
895  *      prb_dispatch_next_block()
896  *        |->(BLOCK_STATUS == USER) evaluates to true
897  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
898  * 6) Now there are two cases:
899  *    6.1) Link goes idle right after the queue is frozen.
900  *         But remember, the last open_block() refreshed the timer.
901  *         When this timer expires,it will refresh itself so that we can
902  *         re-open block-0 in near future.
903  *    6.2) Link is busy and keeps on receiving packets. This is a simple
904  *         case and __packet_lookup_frame_in_block will check if block-0
905  *         is free and can now be re-used.
906  */
907 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
908 				  struct packet_sock *po)
909 {
910 	pkc->reset_pending_on_curr_blk = 1;
911 	po->stats.stats3.tp_freeze_q_cnt++;
912 }
913 
914 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
915 
916 /*
917  * If the next block is free then we will dispatch it
918  * and return a good offset.
919  * Else, we will freeze the queue.
920  * So, caller must check the return value.
921  */
922 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
923 		struct packet_sock *po)
924 {
925 	struct tpacket_block_desc *pbd;
926 
927 	smp_rmb();
928 
929 	/* 1. Get current block num */
930 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
931 
932 	/* 2. If this block is currently in_use then freeze the queue */
933 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
934 		prb_freeze_queue(pkc, po);
935 		return NULL;
936 	}
937 
938 	/*
939 	 * 3.
940 	 * open this block and return the offset where the first packet
941 	 * needs to get stored.
942 	 */
943 	prb_open_block(pkc, pbd);
944 	return (void *)pkc->nxt_offset;
945 }
946 
947 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
948 		struct packet_sock *po, unsigned int status)
949 {
950 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
951 
952 	/* retire/close the current block */
953 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
954 		/*
955 		 * Plug the case where copy_bits() is in progress on
956 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
957 		 * have space to copy the pkt in the current block and
958 		 * called prb_retire_current_block()
959 		 *
960 		 * We don't need to worry about the TMO case because
961 		 * the timer-handler already handled this case.
962 		 */
963 		if (!(status & TP_STATUS_BLK_TMO)) {
964 			/* Waiting for skb_copy_bits to finish... */
965 			write_lock(&pkc->blk_fill_in_prog_lock);
966 			write_unlock(&pkc->blk_fill_in_prog_lock);
967 		}
968 		prb_close_block(pkc, pbd, po, status);
969 		return;
970 	}
971 }
972 
973 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
974 {
975 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
976 }
977 
978 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
979 {
980 	return pkc->reset_pending_on_curr_blk;
981 }
982 
983 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
984 	__releases(&pkc->blk_fill_in_prog_lock)
985 {
986 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
987 
988 	read_unlock(&pkc->blk_fill_in_prog_lock);
989 }
990 
991 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
992 			struct tpacket3_hdr *ppd)
993 {
994 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
995 }
996 
997 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
998 			struct tpacket3_hdr *ppd)
999 {
1000 	ppd->hv1.tp_rxhash = 0;
1001 }
1002 
1003 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1004 			struct tpacket3_hdr *ppd)
1005 {
1006 	if (skb_vlan_tag_present(pkc->skb)) {
1007 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1008 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1009 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1010 	} else {
1011 		ppd->hv1.tp_vlan_tci = 0;
1012 		ppd->hv1.tp_vlan_tpid = 0;
1013 		ppd->tp_status = TP_STATUS_AVAILABLE;
1014 	}
1015 }
1016 
1017 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1018 			struct tpacket3_hdr *ppd)
1019 {
1020 	ppd->hv1.tp_padding = 0;
1021 	prb_fill_vlan_info(pkc, ppd);
1022 
1023 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1024 		prb_fill_rxhash(pkc, ppd);
1025 	else
1026 		prb_clear_rxhash(pkc, ppd);
1027 }
1028 
1029 static void prb_fill_curr_block(char *curr,
1030 				struct tpacket_kbdq_core *pkc,
1031 				struct tpacket_block_desc *pbd,
1032 				unsigned int len)
1033 	__acquires(&pkc->blk_fill_in_prog_lock)
1034 {
1035 	struct tpacket3_hdr *ppd;
1036 
1037 	ppd  = (struct tpacket3_hdr *)curr;
1038 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 	pkc->prev = curr;
1040 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1041 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1042 	BLOCK_NUM_PKTS(pbd) += 1;
1043 	read_lock(&pkc->blk_fill_in_prog_lock);
1044 	prb_run_all_ft_ops(pkc, ppd);
1045 }
1046 
1047 /* Assumes caller has the sk->rx_queue.lock */
1048 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1049 					    struct sk_buff *skb,
1050 					    unsigned int len
1051 					    )
1052 {
1053 	struct tpacket_kbdq_core *pkc;
1054 	struct tpacket_block_desc *pbd;
1055 	char *curr, *end;
1056 
1057 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1058 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1059 
1060 	/* Queue is frozen when user space is lagging behind */
1061 	if (prb_queue_frozen(pkc)) {
1062 		/*
1063 		 * Check if that last block which caused the queue to freeze,
1064 		 * is still in_use by user-space.
1065 		 */
1066 		if (prb_curr_blk_in_use(pbd)) {
1067 			/* Can't record this packet */
1068 			return NULL;
1069 		} else {
1070 			/*
1071 			 * Ok, the block was released by user-space.
1072 			 * Now let's open that block.
1073 			 * opening a block also thaws the queue.
1074 			 * Thawing is a side effect.
1075 			 */
1076 			prb_open_block(pkc, pbd);
1077 		}
1078 	}
1079 
1080 	smp_mb();
1081 	curr = pkc->nxt_offset;
1082 	pkc->skb = skb;
1083 	end = (char *)pbd + pkc->kblk_size;
1084 
1085 	/* first try the current block */
1086 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1087 		prb_fill_curr_block(curr, pkc, pbd, len);
1088 		return (void *)curr;
1089 	}
1090 
1091 	/* Ok, close the current block */
1092 	prb_retire_current_block(pkc, po, 0);
1093 
1094 	/* Now, try to dispatch the next block */
1095 	curr = (char *)prb_dispatch_next_block(pkc, po);
1096 	if (curr) {
1097 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1098 		prb_fill_curr_block(curr, pkc, pbd, len);
1099 		return (void *)curr;
1100 	}
1101 
1102 	/*
1103 	 * No free blocks are available.user_space hasn't caught up yet.
1104 	 * Queue was just frozen and now this packet will get dropped.
1105 	 */
1106 	return NULL;
1107 }
1108 
1109 static void *packet_current_rx_frame(struct packet_sock *po,
1110 					    struct sk_buff *skb,
1111 					    int status, unsigned int len)
1112 {
1113 	char *curr = NULL;
1114 	switch (po->tp_version) {
1115 	case TPACKET_V1:
1116 	case TPACKET_V2:
1117 		curr = packet_lookup_frame(po, &po->rx_ring,
1118 					po->rx_ring.head, status);
1119 		return curr;
1120 	case TPACKET_V3:
1121 		return __packet_lookup_frame_in_block(po, skb, len);
1122 	default:
1123 		WARN(1, "TPACKET version not supported\n");
1124 		BUG();
1125 		return NULL;
1126 	}
1127 }
1128 
1129 static void *prb_lookup_block(const struct packet_sock *po,
1130 			      const struct packet_ring_buffer *rb,
1131 			      unsigned int idx,
1132 			      int status)
1133 {
1134 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1135 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1136 
1137 	if (status != BLOCK_STATUS(pbd))
1138 		return NULL;
1139 	return pbd;
1140 }
1141 
1142 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1143 {
1144 	unsigned int prev;
1145 	if (rb->prb_bdqc.kactive_blk_num)
1146 		prev = rb->prb_bdqc.kactive_blk_num-1;
1147 	else
1148 		prev = rb->prb_bdqc.knum_blocks-1;
1149 	return prev;
1150 }
1151 
1152 /* Assumes caller has held the rx_queue.lock */
1153 static void *__prb_previous_block(struct packet_sock *po,
1154 					 struct packet_ring_buffer *rb,
1155 					 int status)
1156 {
1157 	unsigned int previous = prb_previous_blk_num(rb);
1158 	return prb_lookup_block(po, rb, previous, status);
1159 }
1160 
1161 static void *packet_previous_rx_frame(struct packet_sock *po,
1162 					     struct packet_ring_buffer *rb,
1163 					     int status)
1164 {
1165 	if (po->tp_version <= TPACKET_V2)
1166 		return packet_previous_frame(po, rb, status);
1167 
1168 	return __prb_previous_block(po, rb, status);
1169 }
1170 
1171 static void packet_increment_rx_head(struct packet_sock *po,
1172 					    struct packet_ring_buffer *rb)
1173 {
1174 	switch (po->tp_version) {
1175 	case TPACKET_V1:
1176 	case TPACKET_V2:
1177 		return packet_increment_head(rb);
1178 	case TPACKET_V3:
1179 	default:
1180 		WARN(1, "TPACKET version not supported.\n");
1181 		BUG();
1182 		return;
1183 	}
1184 }
1185 
1186 static void *packet_previous_frame(struct packet_sock *po,
1187 		struct packet_ring_buffer *rb,
1188 		int status)
1189 {
1190 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1191 	return packet_lookup_frame(po, rb, previous, status);
1192 }
1193 
1194 static void packet_increment_head(struct packet_ring_buffer *buff)
1195 {
1196 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1197 }
1198 
1199 static void packet_inc_pending(struct packet_ring_buffer *rb)
1200 {
1201 	this_cpu_inc(*rb->pending_refcnt);
1202 }
1203 
1204 static void packet_dec_pending(struct packet_ring_buffer *rb)
1205 {
1206 	this_cpu_dec(*rb->pending_refcnt);
1207 }
1208 
1209 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1210 {
1211 	unsigned int refcnt = 0;
1212 	int cpu;
1213 
1214 	/* We don't use pending refcount in rx_ring. */
1215 	if (rb->pending_refcnt == NULL)
1216 		return 0;
1217 
1218 	for_each_possible_cpu(cpu)
1219 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1220 
1221 	return refcnt;
1222 }
1223 
1224 static int packet_alloc_pending(struct packet_sock *po)
1225 {
1226 	po->rx_ring.pending_refcnt = NULL;
1227 
1228 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1229 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1230 		return -ENOBUFS;
1231 
1232 	return 0;
1233 }
1234 
1235 static void packet_free_pending(struct packet_sock *po)
1236 {
1237 	free_percpu(po->tx_ring.pending_refcnt);
1238 }
1239 
1240 #define ROOM_POW_OFF	2
1241 #define ROOM_NONE	0x0
1242 #define ROOM_LOW	0x1
1243 #define ROOM_NORMAL	0x2
1244 
1245 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1246 {
1247 	int idx, len;
1248 
1249 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1250 	idx = READ_ONCE(po->rx_ring.head);
1251 	if (pow_off)
1252 		idx += len >> pow_off;
1253 	if (idx >= len)
1254 		idx -= len;
1255 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1256 }
1257 
1258 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1259 {
1260 	int idx, len;
1261 
1262 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1263 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1264 	if (pow_off)
1265 		idx += len >> pow_off;
1266 	if (idx >= len)
1267 		idx -= len;
1268 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1269 }
1270 
1271 static int __packet_rcv_has_room(const struct packet_sock *po,
1272 				 const struct sk_buff *skb)
1273 {
1274 	const struct sock *sk = &po->sk;
1275 	int ret = ROOM_NONE;
1276 
1277 	if (po->prot_hook.func != tpacket_rcv) {
1278 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1279 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1280 				   - (skb ? skb->truesize : 0);
1281 
1282 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1283 			return ROOM_NORMAL;
1284 		else if (avail > 0)
1285 			return ROOM_LOW;
1286 		else
1287 			return ROOM_NONE;
1288 	}
1289 
1290 	if (po->tp_version == TPACKET_V3) {
1291 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1292 			ret = ROOM_NORMAL;
1293 		else if (__tpacket_v3_has_room(po, 0))
1294 			ret = ROOM_LOW;
1295 	} else {
1296 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1297 			ret = ROOM_NORMAL;
1298 		else if (__tpacket_has_room(po, 0))
1299 			ret = ROOM_LOW;
1300 	}
1301 
1302 	return ret;
1303 }
1304 
1305 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1306 {
1307 	bool pressure;
1308 	int ret;
1309 
1310 	ret = __packet_rcv_has_room(po, skb);
1311 	pressure = ret != ROOM_NORMAL;
1312 
1313 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) != pressure)
1314 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, pressure);
1315 
1316 	return ret;
1317 }
1318 
1319 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1320 {
1321 	if (packet_sock_flag(po, PACKET_SOCK_PRESSURE) &&
1322 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1323 		packet_sock_flag_set(po, PACKET_SOCK_PRESSURE, false);
1324 }
1325 
1326 static void packet_sock_destruct(struct sock *sk)
1327 {
1328 	skb_queue_purge(&sk->sk_error_queue);
1329 
1330 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1331 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1332 
1333 	if (!sock_flag(sk, SOCK_DEAD)) {
1334 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1335 		return;
1336 	}
1337 }
1338 
1339 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1340 {
1341 	u32 *history = po->rollover->history;
1342 	u32 victim, rxhash;
1343 	int i, count = 0;
1344 
1345 	rxhash = skb_get_hash(skb);
1346 	for (i = 0; i < ROLLOVER_HLEN; i++)
1347 		if (READ_ONCE(history[i]) == rxhash)
1348 			count++;
1349 
1350 	victim = get_random_u32_below(ROLLOVER_HLEN);
1351 
1352 	/* Avoid dirtying the cache line if possible */
1353 	if (READ_ONCE(history[victim]) != rxhash)
1354 		WRITE_ONCE(history[victim], rxhash);
1355 
1356 	return count > (ROLLOVER_HLEN >> 1);
1357 }
1358 
1359 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1360 				      struct sk_buff *skb,
1361 				      unsigned int num)
1362 {
1363 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1364 }
1365 
1366 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1367 				    struct sk_buff *skb,
1368 				    unsigned int num)
1369 {
1370 	unsigned int val = atomic_inc_return(&f->rr_cur);
1371 
1372 	return val % num;
1373 }
1374 
1375 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1376 				     struct sk_buff *skb,
1377 				     unsigned int num)
1378 {
1379 	return smp_processor_id() % num;
1380 }
1381 
1382 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1383 				     struct sk_buff *skb,
1384 				     unsigned int num)
1385 {
1386 	return get_random_u32_below(num);
1387 }
1388 
1389 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1390 					  struct sk_buff *skb,
1391 					  unsigned int idx, bool try_self,
1392 					  unsigned int num)
1393 {
1394 	struct packet_sock *po, *po_next, *po_skip = NULL;
1395 	unsigned int i, j, room = ROOM_NONE;
1396 
1397 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1398 
1399 	if (try_self) {
1400 		room = packet_rcv_has_room(po, skb);
1401 		if (room == ROOM_NORMAL ||
1402 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1403 			return idx;
1404 		po_skip = po;
1405 	}
1406 
1407 	i = j = min_t(int, po->rollover->sock, num - 1);
1408 	do {
1409 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1410 		if (po_next != po_skip &&
1411 		    !packet_sock_flag(po_next, PACKET_SOCK_PRESSURE) &&
1412 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1413 			if (i != j)
1414 				po->rollover->sock = i;
1415 			atomic_long_inc(&po->rollover->num);
1416 			if (room == ROOM_LOW)
1417 				atomic_long_inc(&po->rollover->num_huge);
1418 			return i;
1419 		}
1420 
1421 		if (++i == num)
1422 			i = 0;
1423 	} while (i != j);
1424 
1425 	atomic_long_inc(&po->rollover->num_failed);
1426 	return idx;
1427 }
1428 
1429 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1430 				    struct sk_buff *skb,
1431 				    unsigned int num)
1432 {
1433 	return skb_get_queue_mapping(skb) % num;
1434 }
1435 
1436 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1437 				     struct sk_buff *skb,
1438 				     unsigned int num)
1439 {
1440 	struct bpf_prog *prog;
1441 	unsigned int ret = 0;
1442 
1443 	rcu_read_lock();
1444 	prog = rcu_dereference(f->bpf_prog);
1445 	if (prog)
1446 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1447 	rcu_read_unlock();
1448 
1449 	return ret;
1450 }
1451 
1452 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1453 {
1454 	return f->flags & (flag >> 8);
1455 }
1456 
1457 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1458 			     struct packet_type *pt, struct net_device *orig_dev)
1459 {
1460 	struct packet_fanout *f = pt->af_packet_priv;
1461 	unsigned int num = READ_ONCE(f->num_members);
1462 	struct net *net = read_pnet(&f->net);
1463 	struct packet_sock *po;
1464 	unsigned int idx;
1465 
1466 	if (!net_eq(dev_net(dev), net) || !num) {
1467 		kfree_skb(skb);
1468 		return 0;
1469 	}
1470 
1471 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1472 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1473 		if (!skb)
1474 			return 0;
1475 	}
1476 	switch (f->type) {
1477 	case PACKET_FANOUT_HASH:
1478 	default:
1479 		idx = fanout_demux_hash(f, skb, num);
1480 		break;
1481 	case PACKET_FANOUT_LB:
1482 		idx = fanout_demux_lb(f, skb, num);
1483 		break;
1484 	case PACKET_FANOUT_CPU:
1485 		idx = fanout_demux_cpu(f, skb, num);
1486 		break;
1487 	case PACKET_FANOUT_RND:
1488 		idx = fanout_demux_rnd(f, skb, num);
1489 		break;
1490 	case PACKET_FANOUT_QM:
1491 		idx = fanout_demux_qm(f, skb, num);
1492 		break;
1493 	case PACKET_FANOUT_ROLLOVER:
1494 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1495 		break;
1496 	case PACKET_FANOUT_CBPF:
1497 	case PACKET_FANOUT_EBPF:
1498 		idx = fanout_demux_bpf(f, skb, num);
1499 		break;
1500 	}
1501 
1502 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1503 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1504 
1505 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1506 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1507 }
1508 
1509 DEFINE_MUTEX(fanout_mutex);
1510 EXPORT_SYMBOL_GPL(fanout_mutex);
1511 static LIST_HEAD(fanout_list);
1512 static u16 fanout_next_id;
1513 
1514 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1515 {
1516 	struct packet_fanout *f = po->fanout;
1517 
1518 	spin_lock(&f->lock);
1519 	rcu_assign_pointer(f->arr[f->num_members], sk);
1520 	smp_wmb();
1521 	f->num_members++;
1522 	if (f->num_members == 1)
1523 		dev_add_pack(&f->prot_hook);
1524 	spin_unlock(&f->lock);
1525 }
1526 
1527 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1528 {
1529 	struct packet_fanout *f = po->fanout;
1530 	int i;
1531 
1532 	spin_lock(&f->lock);
1533 	for (i = 0; i < f->num_members; i++) {
1534 		if (rcu_dereference_protected(f->arr[i],
1535 					      lockdep_is_held(&f->lock)) == sk)
1536 			break;
1537 	}
1538 	BUG_ON(i >= f->num_members);
1539 	rcu_assign_pointer(f->arr[i],
1540 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1541 						     lockdep_is_held(&f->lock)));
1542 	f->num_members--;
1543 	if (f->num_members == 0)
1544 		__dev_remove_pack(&f->prot_hook);
1545 	spin_unlock(&f->lock);
1546 }
1547 
1548 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1549 {
1550 	if (sk->sk_family != PF_PACKET)
1551 		return false;
1552 
1553 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1554 }
1555 
1556 static void fanout_init_data(struct packet_fanout *f)
1557 {
1558 	switch (f->type) {
1559 	case PACKET_FANOUT_LB:
1560 		atomic_set(&f->rr_cur, 0);
1561 		break;
1562 	case PACKET_FANOUT_CBPF:
1563 	case PACKET_FANOUT_EBPF:
1564 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1565 		break;
1566 	}
1567 }
1568 
1569 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1570 {
1571 	struct bpf_prog *old;
1572 
1573 	spin_lock(&f->lock);
1574 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1575 	rcu_assign_pointer(f->bpf_prog, new);
1576 	spin_unlock(&f->lock);
1577 
1578 	if (old) {
1579 		synchronize_net();
1580 		bpf_prog_destroy(old);
1581 	}
1582 }
1583 
1584 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1585 				unsigned int len)
1586 {
1587 	struct bpf_prog *new;
1588 	struct sock_fprog fprog;
1589 	int ret;
1590 
1591 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1595 	if (ret)
1596 		return ret;
1597 
1598 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1599 	if (ret)
1600 		return ret;
1601 
1602 	__fanout_set_data_bpf(po->fanout, new);
1603 	return 0;
1604 }
1605 
1606 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1607 				unsigned int len)
1608 {
1609 	struct bpf_prog *new;
1610 	u32 fd;
1611 
1612 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1613 		return -EPERM;
1614 	if (len != sizeof(fd))
1615 		return -EINVAL;
1616 	if (copy_from_sockptr(&fd, data, len))
1617 		return -EFAULT;
1618 
1619 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1620 	if (IS_ERR(new))
1621 		return PTR_ERR(new);
1622 
1623 	__fanout_set_data_bpf(po->fanout, new);
1624 	return 0;
1625 }
1626 
1627 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1628 			   unsigned int len)
1629 {
1630 	switch (po->fanout->type) {
1631 	case PACKET_FANOUT_CBPF:
1632 		return fanout_set_data_cbpf(po, data, len);
1633 	case PACKET_FANOUT_EBPF:
1634 		return fanout_set_data_ebpf(po, data, len);
1635 	default:
1636 		return -EINVAL;
1637 	}
1638 }
1639 
1640 static void fanout_release_data(struct packet_fanout *f)
1641 {
1642 	switch (f->type) {
1643 	case PACKET_FANOUT_CBPF:
1644 	case PACKET_FANOUT_EBPF:
1645 		__fanout_set_data_bpf(f, NULL);
1646 	}
1647 }
1648 
1649 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1650 {
1651 	struct packet_fanout *f;
1652 
1653 	list_for_each_entry(f, &fanout_list, list) {
1654 		if (f->id == candidate_id &&
1655 		    read_pnet(&f->net) == sock_net(sk)) {
1656 			return false;
1657 		}
1658 	}
1659 	return true;
1660 }
1661 
1662 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1663 {
1664 	u16 id = fanout_next_id;
1665 
1666 	do {
1667 		if (__fanout_id_is_free(sk, id)) {
1668 			*new_id = id;
1669 			fanout_next_id = id + 1;
1670 			return true;
1671 		}
1672 
1673 		id++;
1674 	} while (id != fanout_next_id);
1675 
1676 	return false;
1677 }
1678 
1679 static int fanout_add(struct sock *sk, struct fanout_args *args)
1680 {
1681 	struct packet_rollover *rollover = NULL;
1682 	struct packet_sock *po = pkt_sk(sk);
1683 	u16 type_flags = args->type_flags;
1684 	struct packet_fanout *f, *match;
1685 	u8 type = type_flags & 0xff;
1686 	u8 flags = type_flags >> 8;
1687 	u16 id = args->id;
1688 	int err;
1689 
1690 	switch (type) {
1691 	case PACKET_FANOUT_ROLLOVER:
1692 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1693 			return -EINVAL;
1694 		break;
1695 	case PACKET_FANOUT_HASH:
1696 	case PACKET_FANOUT_LB:
1697 	case PACKET_FANOUT_CPU:
1698 	case PACKET_FANOUT_RND:
1699 	case PACKET_FANOUT_QM:
1700 	case PACKET_FANOUT_CBPF:
1701 	case PACKET_FANOUT_EBPF:
1702 		break;
1703 	default:
1704 		return -EINVAL;
1705 	}
1706 
1707 	mutex_lock(&fanout_mutex);
1708 
1709 	err = -EALREADY;
1710 	if (po->fanout)
1711 		goto out;
1712 
1713 	if (type == PACKET_FANOUT_ROLLOVER ||
1714 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1715 		err = -ENOMEM;
1716 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1717 		if (!rollover)
1718 			goto out;
1719 		atomic_long_set(&rollover->num, 0);
1720 		atomic_long_set(&rollover->num_huge, 0);
1721 		atomic_long_set(&rollover->num_failed, 0);
1722 	}
1723 
1724 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1725 		if (id != 0) {
1726 			err = -EINVAL;
1727 			goto out;
1728 		}
1729 		if (!fanout_find_new_id(sk, &id)) {
1730 			err = -ENOMEM;
1731 			goto out;
1732 		}
1733 		/* ephemeral flag for the first socket in the group: drop it */
1734 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1735 	}
1736 
1737 	match = NULL;
1738 	list_for_each_entry(f, &fanout_list, list) {
1739 		if (f->id == id &&
1740 		    read_pnet(&f->net) == sock_net(sk)) {
1741 			match = f;
1742 			break;
1743 		}
1744 	}
1745 	err = -EINVAL;
1746 	if (match) {
1747 		if (match->flags != flags)
1748 			goto out;
1749 		if (args->max_num_members &&
1750 		    args->max_num_members != match->max_num_members)
1751 			goto out;
1752 	} else {
1753 		if (args->max_num_members > PACKET_FANOUT_MAX)
1754 			goto out;
1755 		if (!args->max_num_members)
1756 			/* legacy PACKET_FANOUT_MAX */
1757 			args->max_num_members = 256;
1758 		err = -ENOMEM;
1759 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1760 				 GFP_KERNEL);
1761 		if (!match)
1762 			goto out;
1763 		write_pnet(&match->net, sock_net(sk));
1764 		match->id = id;
1765 		match->type = type;
1766 		match->flags = flags;
1767 		INIT_LIST_HEAD(&match->list);
1768 		spin_lock_init(&match->lock);
1769 		refcount_set(&match->sk_ref, 0);
1770 		fanout_init_data(match);
1771 		match->prot_hook.type = po->prot_hook.type;
1772 		match->prot_hook.dev = po->prot_hook.dev;
1773 		match->prot_hook.func = packet_rcv_fanout;
1774 		match->prot_hook.af_packet_priv = match;
1775 		match->prot_hook.af_packet_net = read_pnet(&match->net);
1776 		match->prot_hook.id_match = match_fanout_group;
1777 		match->max_num_members = args->max_num_members;
1778 		match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING;
1779 		list_add(&match->list, &fanout_list);
1780 	}
1781 	err = -EINVAL;
1782 
1783 	spin_lock(&po->bind_lock);
1784 	if (packet_sock_flag(po, PACKET_SOCK_RUNNING) &&
1785 	    match->type == type &&
1786 	    match->prot_hook.type == po->prot_hook.type &&
1787 	    match->prot_hook.dev == po->prot_hook.dev) {
1788 		err = -ENOSPC;
1789 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1790 			__dev_remove_pack(&po->prot_hook);
1791 
1792 			/* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */
1793 			WRITE_ONCE(po->fanout, match);
1794 
1795 			po->rollover = rollover;
1796 			rollover = NULL;
1797 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1798 			__fanout_link(sk, po);
1799 			err = 0;
1800 		}
1801 	}
1802 	spin_unlock(&po->bind_lock);
1803 
1804 	if (err && !refcount_read(&match->sk_ref)) {
1805 		list_del(&match->list);
1806 		kvfree(match);
1807 	}
1808 
1809 out:
1810 	kfree(rollover);
1811 	mutex_unlock(&fanout_mutex);
1812 	return err;
1813 }
1814 
1815 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1816  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1817  * It is the responsibility of the caller to call fanout_release_data() and
1818  * free the returned packet_fanout (after synchronize_net())
1819  */
1820 static struct packet_fanout *fanout_release(struct sock *sk)
1821 {
1822 	struct packet_sock *po = pkt_sk(sk);
1823 	struct packet_fanout *f;
1824 
1825 	mutex_lock(&fanout_mutex);
1826 	f = po->fanout;
1827 	if (f) {
1828 		po->fanout = NULL;
1829 
1830 		if (refcount_dec_and_test(&f->sk_ref))
1831 			list_del(&f->list);
1832 		else
1833 			f = NULL;
1834 	}
1835 	mutex_unlock(&fanout_mutex);
1836 
1837 	return f;
1838 }
1839 
1840 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1841 					  struct sk_buff *skb)
1842 {
1843 	/* Earlier code assumed this would be a VLAN pkt, double-check
1844 	 * this now that we have the actual packet in hand. We can only
1845 	 * do this check on Ethernet devices.
1846 	 */
1847 	if (unlikely(dev->type != ARPHRD_ETHER))
1848 		return false;
1849 
1850 	skb_reset_mac_header(skb);
1851 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1852 }
1853 
1854 static const struct proto_ops packet_ops;
1855 
1856 static const struct proto_ops packet_ops_spkt;
1857 
1858 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1859 			   struct packet_type *pt, struct net_device *orig_dev)
1860 {
1861 	struct sock *sk;
1862 	struct sockaddr_pkt *spkt;
1863 
1864 	/*
1865 	 *	When we registered the protocol we saved the socket in the data
1866 	 *	field for just this event.
1867 	 */
1868 
1869 	sk = pt->af_packet_priv;
1870 
1871 	/*
1872 	 *	Yank back the headers [hope the device set this
1873 	 *	right or kerboom...]
1874 	 *
1875 	 *	Incoming packets have ll header pulled,
1876 	 *	push it back.
1877 	 *
1878 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1879 	 *	so that this procedure is noop.
1880 	 */
1881 
1882 	if (skb->pkt_type == PACKET_LOOPBACK)
1883 		goto out;
1884 
1885 	if (!net_eq(dev_net(dev), sock_net(sk)))
1886 		goto out;
1887 
1888 	skb = skb_share_check(skb, GFP_ATOMIC);
1889 	if (skb == NULL)
1890 		goto oom;
1891 
1892 	/* drop any routing info */
1893 	skb_dst_drop(skb);
1894 
1895 	/* drop conntrack reference */
1896 	nf_reset_ct(skb);
1897 
1898 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1899 
1900 	skb_push(skb, skb->data - skb_mac_header(skb));
1901 
1902 	/*
1903 	 *	The SOCK_PACKET socket receives _all_ frames.
1904 	 */
1905 
1906 	spkt->spkt_family = dev->type;
1907 	strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1908 	spkt->spkt_protocol = skb->protocol;
1909 
1910 	/*
1911 	 *	Charge the memory to the socket. This is done specifically
1912 	 *	to prevent sockets using all the memory up.
1913 	 */
1914 
1915 	if (sock_queue_rcv_skb(sk, skb) == 0)
1916 		return 0;
1917 
1918 out:
1919 	kfree_skb(skb);
1920 oom:
1921 	return 0;
1922 }
1923 
1924 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1925 {
1926 	int depth;
1927 
1928 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1929 	    sock->type == SOCK_RAW) {
1930 		skb_reset_mac_header(skb);
1931 		skb->protocol = dev_parse_header_protocol(skb);
1932 	}
1933 
1934 	/* Move network header to the right position for VLAN tagged packets */
1935 	if (likely(skb->dev->type == ARPHRD_ETHER) &&
1936 	    eth_type_vlan(skb->protocol) &&
1937 	    vlan_get_protocol_and_depth(skb, skb->protocol, &depth) != 0)
1938 		skb_set_network_header(skb, depth);
1939 
1940 	skb_probe_transport_header(skb);
1941 }
1942 
1943 /*
1944  *	Output a raw packet to a device layer. This bypasses all the other
1945  *	protocol layers and you must therefore supply it with a complete frame
1946  */
1947 
1948 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1949 			       size_t len)
1950 {
1951 	struct sock *sk = sock->sk;
1952 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1953 	struct sk_buff *skb = NULL;
1954 	struct net_device *dev;
1955 	struct sockcm_cookie sockc;
1956 	__be16 proto = 0;
1957 	int err;
1958 	int extra_len = 0;
1959 
1960 	/*
1961 	 *	Get and verify the address.
1962 	 */
1963 
1964 	if (saddr) {
1965 		if (msg->msg_namelen < sizeof(struct sockaddr))
1966 			return -EINVAL;
1967 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1968 			proto = saddr->spkt_protocol;
1969 	} else
1970 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1971 
1972 	/*
1973 	 *	Find the device first to size check it
1974 	 */
1975 
1976 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1977 retry:
1978 	rcu_read_lock();
1979 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1980 	err = -ENODEV;
1981 	if (dev == NULL)
1982 		goto out_unlock;
1983 
1984 	err = -ENETDOWN;
1985 	if (!(dev->flags & IFF_UP))
1986 		goto out_unlock;
1987 
1988 	/*
1989 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1990 	 * raw protocol and you must do your own fragmentation at this level.
1991 	 */
1992 
1993 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1994 		if (!netif_supports_nofcs(dev)) {
1995 			err = -EPROTONOSUPPORT;
1996 			goto out_unlock;
1997 		}
1998 		extra_len = 4; /* We're doing our own CRC */
1999 	}
2000 
2001 	err = -EMSGSIZE;
2002 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
2003 		goto out_unlock;
2004 
2005 	if (!skb) {
2006 		size_t reserved = LL_RESERVED_SPACE(dev);
2007 		int tlen = dev->needed_tailroom;
2008 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
2009 
2010 		rcu_read_unlock();
2011 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
2012 		if (skb == NULL)
2013 			return -ENOBUFS;
2014 		/* FIXME: Save some space for broken drivers that write a hard
2015 		 * header at transmission time by themselves. PPP is the notable
2016 		 * one here. This should really be fixed at the driver level.
2017 		 */
2018 		skb_reserve(skb, reserved);
2019 		skb_reset_network_header(skb);
2020 
2021 		/* Try to align data part correctly */
2022 		if (hhlen) {
2023 			skb->data -= hhlen;
2024 			skb->tail -= hhlen;
2025 			if (len < hhlen)
2026 				skb_reset_network_header(skb);
2027 		}
2028 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
2029 		if (err)
2030 			goto out_free;
2031 		goto retry;
2032 	}
2033 
2034 	if (!dev_validate_header(dev, skb->data, len) || !skb->len) {
2035 		err = -EINVAL;
2036 		goto out_unlock;
2037 	}
2038 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
2039 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2040 		err = -EMSGSIZE;
2041 		goto out_unlock;
2042 	}
2043 
2044 	sockcm_init(&sockc, sk);
2045 	if (msg->msg_controllen) {
2046 		err = sock_cmsg_send(sk, msg, &sockc);
2047 		if (unlikely(err))
2048 			goto out_unlock;
2049 	}
2050 
2051 	skb->protocol = proto;
2052 	skb->dev = dev;
2053 	skb->priority = sk->sk_priority;
2054 	skb->mark = sk->sk_mark;
2055 	skb->tstamp = sockc.transmit_time;
2056 
2057 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2058 
2059 	if (unlikely(extra_len == 4))
2060 		skb->no_fcs = 1;
2061 
2062 	packet_parse_headers(skb, sock);
2063 
2064 	dev_queue_xmit(skb);
2065 	rcu_read_unlock();
2066 	return len;
2067 
2068 out_unlock:
2069 	rcu_read_unlock();
2070 out_free:
2071 	kfree_skb(skb);
2072 	return err;
2073 }
2074 
2075 static unsigned int run_filter(struct sk_buff *skb,
2076 			       const struct sock *sk,
2077 			       unsigned int res)
2078 {
2079 	struct sk_filter *filter;
2080 
2081 	rcu_read_lock();
2082 	filter = rcu_dereference(sk->sk_filter);
2083 	if (filter != NULL)
2084 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2085 	rcu_read_unlock();
2086 
2087 	return res;
2088 }
2089 
2090 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2091 			   size_t *len, int vnet_hdr_sz)
2092 {
2093 	struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 };
2094 
2095 	if (*len < vnet_hdr_sz)
2096 		return -EINVAL;
2097 	*len -= vnet_hdr_sz;
2098 
2099 	if (virtio_net_hdr_from_skb(skb, (struct virtio_net_hdr *)&vnet_hdr, vio_le(), true, 0))
2100 		return -EINVAL;
2101 
2102 	return memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_sz);
2103 }
2104 
2105 /*
2106  * This function makes lazy skb cloning in hope that most of packets
2107  * are discarded by BPF.
2108  *
2109  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2110  * and skb->cb are mangled. It works because (and until) packets
2111  * falling here are owned by current CPU. Output packets are cloned
2112  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2113  * sequentially, so that if we return skb to original state on exit,
2114  * we will not harm anyone.
2115  */
2116 
2117 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2118 		      struct packet_type *pt, struct net_device *orig_dev)
2119 {
2120 	struct sock *sk;
2121 	struct sockaddr_ll *sll;
2122 	struct packet_sock *po;
2123 	u8 *skb_head = skb->data;
2124 	int skb_len = skb->len;
2125 	unsigned int snaplen, res;
2126 	bool is_drop_n_account = false;
2127 
2128 	if (skb->pkt_type == PACKET_LOOPBACK)
2129 		goto drop;
2130 
2131 	sk = pt->af_packet_priv;
2132 	po = pkt_sk(sk);
2133 
2134 	if (!net_eq(dev_net(dev), sock_net(sk)))
2135 		goto drop;
2136 
2137 	skb->dev = dev;
2138 
2139 	if (dev_has_header(dev)) {
2140 		/* The device has an explicit notion of ll header,
2141 		 * exported to higher levels.
2142 		 *
2143 		 * Otherwise, the device hides details of its frame
2144 		 * structure, so that corresponding packet head is
2145 		 * never delivered to user.
2146 		 */
2147 		if (sk->sk_type != SOCK_DGRAM)
2148 			skb_push(skb, skb->data - skb_mac_header(skb));
2149 		else if (skb->pkt_type == PACKET_OUTGOING) {
2150 			/* Special case: outgoing packets have ll header at head */
2151 			skb_pull(skb, skb_network_offset(skb));
2152 		}
2153 	}
2154 
2155 	snaplen = skb->len;
2156 
2157 	res = run_filter(skb, sk, snaplen);
2158 	if (!res)
2159 		goto drop_n_restore;
2160 	if (snaplen > res)
2161 		snaplen = res;
2162 
2163 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2164 		goto drop_n_acct;
2165 
2166 	if (skb_shared(skb)) {
2167 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2168 		if (nskb == NULL)
2169 			goto drop_n_acct;
2170 
2171 		if (skb_head != skb->data) {
2172 			skb->data = skb_head;
2173 			skb->len = skb_len;
2174 		}
2175 		consume_skb(skb);
2176 		skb = nskb;
2177 	}
2178 
2179 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2180 
2181 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2182 	sll->sll_hatype = dev->type;
2183 	sll->sll_pkttype = skb->pkt_type;
2184 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2185 		sll->sll_ifindex = orig_dev->ifindex;
2186 	else
2187 		sll->sll_ifindex = dev->ifindex;
2188 
2189 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2190 
2191 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2192 	 * Use their space for storing the original skb length.
2193 	 */
2194 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2195 
2196 	if (pskb_trim(skb, snaplen))
2197 		goto drop_n_acct;
2198 
2199 	skb_set_owner_r(skb, sk);
2200 	skb->dev = NULL;
2201 	skb_dst_drop(skb);
2202 
2203 	/* drop conntrack reference */
2204 	nf_reset_ct(skb);
2205 
2206 	spin_lock(&sk->sk_receive_queue.lock);
2207 	po->stats.stats1.tp_packets++;
2208 	sock_skb_set_dropcount(sk, skb);
2209 	skb_clear_delivery_time(skb);
2210 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2211 	spin_unlock(&sk->sk_receive_queue.lock);
2212 	sk->sk_data_ready(sk);
2213 	return 0;
2214 
2215 drop_n_acct:
2216 	is_drop_n_account = true;
2217 	atomic_inc(&po->tp_drops);
2218 	atomic_inc(&sk->sk_drops);
2219 
2220 drop_n_restore:
2221 	if (skb_head != skb->data && skb_shared(skb)) {
2222 		skb->data = skb_head;
2223 		skb->len = skb_len;
2224 	}
2225 drop:
2226 	if (!is_drop_n_account)
2227 		consume_skb(skb);
2228 	else
2229 		kfree_skb(skb);
2230 	return 0;
2231 }
2232 
2233 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2234 		       struct packet_type *pt, struct net_device *orig_dev)
2235 {
2236 	struct sock *sk;
2237 	struct packet_sock *po;
2238 	struct sockaddr_ll *sll;
2239 	union tpacket_uhdr h;
2240 	u8 *skb_head = skb->data;
2241 	int skb_len = skb->len;
2242 	unsigned int snaplen, res;
2243 	unsigned long status = TP_STATUS_USER;
2244 	unsigned short macoff, hdrlen;
2245 	unsigned int netoff;
2246 	struct sk_buff *copy_skb = NULL;
2247 	struct timespec64 ts;
2248 	__u32 ts_status;
2249 	bool is_drop_n_account = false;
2250 	unsigned int slot_id = 0;
2251 	int vnet_hdr_sz = 0;
2252 
2253 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2254 	 * We may add members to them until current aligned size without forcing
2255 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2256 	 */
2257 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2258 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2259 
2260 	if (skb->pkt_type == PACKET_LOOPBACK)
2261 		goto drop;
2262 
2263 	sk = pt->af_packet_priv;
2264 	po = pkt_sk(sk);
2265 
2266 	if (!net_eq(dev_net(dev), sock_net(sk)))
2267 		goto drop;
2268 
2269 	if (dev_has_header(dev)) {
2270 		if (sk->sk_type != SOCK_DGRAM)
2271 			skb_push(skb, skb->data - skb_mac_header(skb));
2272 		else if (skb->pkt_type == PACKET_OUTGOING) {
2273 			/* Special case: outgoing packets have ll header at head */
2274 			skb_pull(skb, skb_network_offset(skb));
2275 		}
2276 	}
2277 
2278 	snaplen = skb->len;
2279 
2280 	res = run_filter(skb, sk, snaplen);
2281 	if (!res)
2282 		goto drop_n_restore;
2283 
2284 	/* If we are flooded, just give up */
2285 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2286 		atomic_inc(&po->tp_drops);
2287 		goto drop_n_restore;
2288 	}
2289 
2290 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2291 		status |= TP_STATUS_CSUMNOTREADY;
2292 	else if (skb->pkt_type != PACKET_OUTGOING &&
2293 		 skb_csum_unnecessary(skb))
2294 		status |= TP_STATUS_CSUM_VALID;
2295 	if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
2296 		status |= TP_STATUS_GSO_TCP;
2297 
2298 	if (snaplen > res)
2299 		snaplen = res;
2300 
2301 	if (sk->sk_type == SOCK_DGRAM) {
2302 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2303 				  po->tp_reserve;
2304 	} else {
2305 		unsigned int maclen = skb_network_offset(skb);
2306 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2307 				       (maclen < 16 ? 16 : maclen)) +
2308 				       po->tp_reserve;
2309 		vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2310 		if (vnet_hdr_sz)
2311 			netoff += vnet_hdr_sz;
2312 		macoff = netoff - maclen;
2313 	}
2314 	if (netoff > USHRT_MAX) {
2315 		atomic_inc(&po->tp_drops);
2316 		goto drop_n_restore;
2317 	}
2318 	if (po->tp_version <= TPACKET_V2) {
2319 		if (macoff + snaplen > po->rx_ring.frame_size) {
2320 			if (po->copy_thresh &&
2321 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2322 				if (skb_shared(skb)) {
2323 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2324 				} else {
2325 					copy_skb = skb_get(skb);
2326 					skb_head = skb->data;
2327 				}
2328 				if (copy_skb) {
2329 					memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0,
2330 					       sizeof(PACKET_SKB_CB(copy_skb)->sa.ll));
2331 					skb_set_owner_r(copy_skb, sk);
2332 				}
2333 			}
2334 			snaplen = po->rx_ring.frame_size - macoff;
2335 			if ((int)snaplen < 0) {
2336 				snaplen = 0;
2337 				vnet_hdr_sz = 0;
2338 			}
2339 		}
2340 	} else if (unlikely(macoff + snaplen >
2341 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2342 		u32 nval;
2343 
2344 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2345 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2346 			    snaplen, nval, macoff);
2347 		snaplen = nval;
2348 		if (unlikely((int)snaplen < 0)) {
2349 			snaplen = 0;
2350 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2351 			vnet_hdr_sz = 0;
2352 		}
2353 	}
2354 	spin_lock(&sk->sk_receive_queue.lock);
2355 	h.raw = packet_current_rx_frame(po, skb,
2356 					TP_STATUS_KERNEL, (macoff+snaplen));
2357 	if (!h.raw)
2358 		goto drop_n_account;
2359 
2360 	if (po->tp_version <= TPACKET_V2) {
2361 		slot_id = po->rx_ring.head;
2362 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2363 			goto drop_n_account;
2364 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2365 	}
2366 
2367 	if (vnet_hdr_sz &&
2368 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2369 				    sizeof(struct virtio_net_hdr),
2370 				    vio_le(), true, 0)) {
2371 		if (po->tp_version == TPACKET_V3)
2372 			prb_clear_blk_fill_status(&po->rx_ring);
2373 		goto drop_n_account;
2374 	}
2375 
2376 	if (po->tp_version <= TPACKET_V2) {
2377 		packet_increment_rx_head(po, &po->rx_ring);
2378 	/*
2379 	 * LOSING will be reported till you read the stats,
2380 	 * because it's COR - Clear On Read.
2381 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2382 	 * at packet level.
2383 	 */
2384 		if (atomic_read(&po->tp_drops))
2385 			status |= TP_STATUS_LOSING;
2386 	}
2387 
2388 	po->stats.stats1.tp_packets++;
2389 	if (copy_skb) {
2390 		status |= TP_STATUS_COPY;
2391 		skb_clear_delivery_time(copy_skb);
2392 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2393 	}
2394 	spin_unlock(&sk->sk_receive_queue.lock);
2395 
2396 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2397 
2398 	/* Always timestamp; prefer an existing software timestamp taken
2399 	 * closer to the time of capture.
2400 	 */
2401 	ts_status = tpacket_get_timestamp(skb, &ts,
2402 					  READ_ONCE(po->tp_tstamp) |
2403 					  SOF_TIMESTAMPING_SOFTWARE);
2404 	if (!ts_status)
2405 		ktime_get_real_ts64(&ts);
2406 
2407 	status |= ts_status;
2408 
2409 	switch (po->tp_version) {
2410 	case TPACKET_V1:
2411 		h.h1->tp_len = skb->len;
2412 		h.h1->tp_snaplen = snaplen;
2413 		h.h1->tp_mac = macoff;
2414 		h.h1->tp_net = netoff;
2415 		h.h1->tp_sec = ts.tv_sec;
2416 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2417 		hdrlen = sizeof(*h.h1);
2418 		break;
2419 	case TPACKET_V2:
2420 		h.h2->tp_len = skb->len;
2421 		h.h2->tp_snaplen = snaplen;
2422 		h.h2->tp_mac = macoff;
2423 		h.h2->tp_net = netoff;
2424 		h.h2->tp_sec = ts.tv_sec;
2425 		h.h2->tp_nsec = ts.tv_nsec;
2426 		if (skb_vlan_tag_present(skb)) {
2427 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2428 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2429 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2430 		} else {
2431 			h.h2->tp_vlan_tci = 0;
2432 			h.h2->tp_vlan_tpid = 0;
2433 		}
2434 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2435 		hdrlen = sizeof(*h.h2);
2436 		break;
2437 	case TPACKET_V3:
2438 		/* tp_nxt_offset,vlan are already populated above.
2439 		 * So DONT clear those fields here
2440 		 */
2441 		h.h3->tp_status |= status;
2442 		h.h3->tp_len = skb->len;
2443 		h.h3->tp_snaplen = snaplen;
2444 		h.h3->tp_mac = macoff;
2445 		h.h3->tp_net = netoff;
2446 		h.h3->tp_sec  = ts.tv_sec;
2447 		h.h3->tp_nsec = ts.tv_nsec;
2448 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2449 		hdrlen = sizeof(*h.h3);
2450 		break;
2451 	default:
2452 		BUG();
2453 	}
2454 
2455 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2456 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2457 	sll->sll_family = AF_PACKET;
2458 	sll->sll_hatype = dev->type;
2459 	sll->sll_protocol = skb->protocol;
2460 	sll->sll_pkttype = skb->pkt_type;
2461 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2462 		sll->sll_ifindex = orig_dev->ifindex;
2463 	else
2464 		sll->sll_ifindex = dev->ifindex;
2465 
2466 	smp_mb();
2467 
2468 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2469 	if (po->tp_version <= TPACKET_V2) {
2470 		u8 *start, *end;
2471 
2472 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2473 					macoff + snaplen);
2474 
2475 		for (start = h.raw; start < end; start += PAGE_SIZE)
2476 			flush_dcache_page(pgv_to_page(start));
2477 	}
2478 	smp_wmb();
2479 #endif
2480 
2481 	if (po->tp_version <= TPACKET_V2) {
2482 		spin_lock(&sk->sk_receive_queue.lock);
2483 		__packet_set_status(po, h.raw, status);
2484 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2485 		spin_unlock(&sk->sk_receive_queue.lock);
2486 		sk->sk_data_ready(sk);
2487 	} else if (po->tp_version == TPACKET_V3) {
2488 		prb_clear_blk_fill_status(&po->rx_ring);
2489 	}
2490 
2491 drop_n_restore:
2492 	if (skb_head != skb->data && skb_shared(skb)) {
2493 		skb->data = skb_head;
2494 		skb->len = skb_len;
2495 	}
2496 drop:
2497 	if (!is_drop_n_account)
2498 		consume_skb(skb);
2499 	else
2500 		kfree_skb(skb);
2501 	return 0;
2502 
2503 drop_n_account:
2504 	spin_unlock(&sk->sk_receive_queue.lock);
2505 	atomic_inc(&po->tp_drops);
2506 	is_drop_n_account = true;
2507 
2508 	sk->sk_data_ready(sk);
2509 	kfree_skb(copy_skb);
2510 	goto drop_n_restore;
2511 }
2512 
2513 static void tpacket_destruct_skb(struct sk_buff *skb)
2514 {
2515 	struct packet_sock *po = pkt_sk(skb->sk);
2516 
2517 	if (likely(po->tx_ring.pg_vec)) {
2518 		void *ph;
2519 		__u32 ts;
2520 
2521 		ph = skb_zcopy_get_nouarg(skb);
2522 		packet_dec_pending(&po->tx_ring);
2523 
2524 		ts = __packet_set_timestamp(po, ph, skb);
2525 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2526 
2527 		if (!packet_read_pending(&po->tx_ring))
2528 			complete(&po->skb_completion);
2529 	}
2530 
2531 	sock_wfree(skb);
2532 }
2533 
2534 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2535 {
2536 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2537 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2538 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2539 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2540 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2541 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2542 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2543 
2544 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2545 		return -EINVAL;
2546 
2547 	return 0;
2548 }
2549 
2550 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2551 				 struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz)
2552 {
2553 	int ret;
2554 
2555 	if (*len < vnet_hdr_sz)
2556 		return -EINVAL;
2557 	*len -= vnet_hdr_sz;
2558 
2559 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2560 		return -EFAULT;
2561 
2562 	ret = __packet_snd_vnet_parse(vnet_hdr, *len);
2563 	if (ret)
2564 		return ret;
2565 
2566 	/* move iter to point to the start of mac header */
2567 	if (vnet_hdr_sz != sizeof(struct virtio_net_hdr))
2568 		iov_iter_advance(&msg->msg_iter, vnet_hdr_sz - sizeof(struct virtio_net_hdr));
2569 
2570 	return 0;
2571 }
2572 
2573 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2574 		void *frame, struct net_device *dev, void *data, int tp_len,
2575 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2576 		const struct sockcm_cookie *sockc)
2577 {
2578 	union tpacket_uhdr ph;
2579 	int to_write, offset, len, nr_frags, len_max;
2580 	struct socket *sock = po->sk.sk_socket;
2581 	struct page *page;
2582 	int err;
2583 
2584 	ph.raw = frame;
2585 
2586 	skb->protocol = proto;
2587 	skb->dev = dev;
2588 	skb->priority = po->sk.sk_priority;
2589 	skb->mark = po->sk.sk_mark;
2590 	skb->tstamp = sockc->transmit_time;
2591 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2592 	skb_zcopy_set_nouarg(skb, ph.raw);
2593 
2594 	skb_reserve(skb, hlen);
2595 	skb_reset_network_header(skb);
2596 
2597 	to_write = tp_len;
2598 
2599 	if (sock->type == SOCK_DGRAM) {
2600 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2601 				NULL, tp_len);
2602 		if (unlikely(err < 0))
2603 			return -EINVAL;
2604 	} else if (copylen) {
2605 		int hdrlen = min_t(int, copylen, tp_len);
2606 
2607 		skb_push(skb, dev->hard_header_len);
2608 		skb_put(skb, copylen - dev->hard_header_len);
2609 		err = skb_store_bits(skb, 0, data, hdrlen);
2610 		if (unlikely(err))
2611 			return err;
2612 		if (!dev_validate_header(dev, skb->data, hdrlen))
2613 			return -EINVAL;
2614 
2615 		data += hdrlen;
2616 		to_write -= hdrlen;
2617 	}
2618 
2619 	offset = offset_in_page(data);
2620 	len_max = PAGE_SIZE - offset;
2621 	len = ((to_write > len_max) ? len_max : to_write);
2622 
2623 	skb->data_len = to_write;
2624 	skb->len += to_write;
2625 	skb->truesize += to_write;
2626 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2627 
2628 	while (likely(to_write)) {
2629 		nr_frags = skb_shinfo(skb)->nr_frags;
2630 
2631 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2632 			pr_err("Packet exceed the number of skb frags(%u)\n",
2633 			       (unsigned int)MAX_SKB_FRAGS);
2634 			return -EFAULT;
2635 		}
2636 
2637 		page = pgv_to_page(data);
2638 		data += len;
2639 		flush_dcache_page(page);
2640 		get_page(page);
2641 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2642 		to_write -= len;
2643 		offset = 0;
2644 		len_max = PAGE_SIZE;
2645 		len = ((to_write > len_max) ? len_max : to_write);
2646 	}
2647 
2648 	packet_parse_headers(skb, sock);
2649 
2650 	return tp_len;
2651 }
2652 
2653 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2654 				int size_max, void **data)
2655 {
2656 	union tpacket_uhdr ph;
2657 	int tp_len, off;
2658 
2659 	ph.raw = frame;
2660 
2661 	switch (po->tp_version) {
2662 	case TPACKET_V3:
2663 		if (ph.h3->tp_next_offset != 0) {
2664 			pr_warn_once("variable sized slot not supported");
2665 			return -EINVAL;
2666 		}
2667 		tp_len = ph.h3->tp_len;
2668 		break;
2669 	case TPACKET_V2:
2670 		tp_len = ph.h2->tp_len;
2671 		break;
2672 	default:
2673 		tp_len = ph.h1->tp_len;
2674 		break;
2675 	}
2676 	if (unlikely(tp_len > size_max)) {
2677 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2678 		return -EMSGSIZE;
2679 	}
2680 
2681 	if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) {
2682 		int off_min, off_max;
2683 
2684 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2685 		off_max = po->tx_ring.frame_size - tp_len;
2686 		if (po->sk.sk_type == SOCK_DGRAM) {
2687 			switch (po->tp_version) {
2688 			case TPACKET_V3:
2689 				off = ph.h3->tp_net;
2690 				break;
2691 			case TPACKET_V2:
2692 				off = ph.h2->tp_net;
2693 				break;
2694 			default:
2695 				off = ph.h1->tp_net;
2696 				break;
2697 			}
2698 		} else {
2699 			switch (po->tp_version) {
2700 			case TPACKET_V3:
2701 				off = ph.h3->tp_mac;
2702 				break;
2703 			case TPACKET_V2:
2704 				off = ph.h2->tp_mac;
2705 				break;
2706 			default:
2707 				off = ph.h1->tp_mac;
2708 				break;
2709 			}
2710 		}
2711 		if (unlikely((off < off_min) || (off_max < off)))
2712 			return -EINVAL;
2713 	} else {
2714 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2715 	}
2716 
2717 	*data = frame + off;
2718 	return tp_len;
2719 }
2720 
2721 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2722 {
2723 	struct sk_buff *skb = NULL;
2724 	struct net_device *dev;
2725 	struct virtio_net_hdr *vnet_hdr = NULL;
2726 	struct sockcm_cookie sockc;
2727 	__be16 proto;
2728 	int err, reserve = 0;
2729 	void *ph;
2730 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2731 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2732 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2733 	unsigned char *addr = NULL;
2734 	int tp_len, size_max;
2735 	void *data;
2736 	int len_sum = 0;
2737 	int status = TP_STATUS_AVAILABLE;
2738 	int hlen, tlen, copylen = 0;
2739 	long timeo = 0;
2740 
2741 	mutex_lock(&po->pg_vec_lock);
2742 
2743 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2744 	 * we need to confirm it under protection of pg_vec_lock.
2745 	 */
2746 	if (unlikely(!po->tx_ring.pg_vec)) {
2747 		err = -EBUSY;
2748 		goto out;
2749 	}
2750 	if (likely(saddr == NULL)) {
2751 		dev	= packet_cached_dev_get(po);
2752 		proto	= READ_ONCE(po->num);
2753 	} else {
2754 		err = -EINVAL;
2755 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2756 			goto out;
2757 		if (msg->msg_namelen < (saddr->sll_halen
2758 					+ offsetof(struct sockaddr_ll,
2759 						sll_addr)))
2760 			goto out;
2761 		proto	= saddr->sll_protocol;
2762 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2763 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2764 			if (dev && msg->msg_namelen < dev->addr_len +
2765 				   offsetof(struct sockaddr_ll, sll_addr))
2766 				goto out_put;
2767 			addr = saddr->sll_addr;
2768 		}
2769 	}
2770 
2771 	err = -ENXIO;
2772 	if (unlikely(dev == NULL))
2773 		goto out;
2774 	err = -ENETDOWN;
2775 	if (unlikely(!(dev->flags & IFF_UP)))
2776 		goto out_put;
2777 
2778 	sockcm_init(&sockc, &po->sk);
2779 	if (msg->msg_controllen) {
2780 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2781 		if (unlikely(err))
2782 			goto out_put;
2783 	}
2784 
2785 	if (po->sk.sk_socket->type == SOCK_RAW)
2786 		reserve = dev->hard_header_len;
2787 	size_max = po->tx_ring.frame_size
2788 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2789 
2790 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz)
2791 		size_max = dev->mtu + reserve + VLAN_HLEN;
2792 
2793 	reinit_completion(&po->skb_completion);
2794 
2795 	do {
2796 		ph = packet_current_frame(po, &po->tx_ring,
2797 					  TP_STATUS_SEND_REQUEST);
2798 		if (unlikely(ph == NULL)) {
2799 			if (need_wait && skb) {
2800 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2801 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2802 				if (timeo <= 0) {
2803 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2804 					goto out_put;
2805 				}
2806 			}
2807 			/* check for additional frames */
2808 			continue;
2809 		}
2810 
2811 		skb = NULL;
2812 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2813 		if (tp_len < 0)
2814 			goto tpacket_error;
2815 
2816 		status = TP_STATUS_SEND_REQUEST;
2817 		hlen = LL_RESERVED_SPACE(dev);
2818 		tlen = dev->needed_tailroom;
2819 		if (vnet_hdr_sz) {
2820 			vnet_hdr = data;
2821 			data += vnet_hdr_sz;
2822 			tp_len -= vnet_hdr_sz;
2823 			if (tp_len < 0 ||
2824 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2825 				tp_len = -EINVAL;
2826 				goto tpacket_error;
2827 			}
2828 			copylen = __virtio16_to_cpu(vio_le(),
2829 						    vnet_hdr->hdr_len);
2830 		}
2831 		copylen = max_t(int, copylen, dev->hard_header_len);
2832 		skb = sock_alloc_send_skb(&po->sk,
2833 				hlen + tlen + sizeof(struct sockaddr_ll) +
2834 				(copylen - dev->hard_header_len),
2835 				!need_wait, &err);
2836 
2837 		if (unlikely(skb == NULL)) {
2838 			/* we assume the socket was initially writeable ... */
2839 			if (likely(len_sum > 0))
2840 				err = len_sum;
2841 			goto out_status;
2842 		}
2843 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2844 					  addr, hlen, copylen, &sockc);
2845 		if (likely(tp_len >= 0) &&
2846 		    tp_len > dev->mtu + reserve &&
2847 		    !vnet_hdr_sz &&
2848 		    !packet_extra_vlan_len_allowed(dev, skb))
2849 			tp_len = -EMSGSIZE;
2850 
2851 		if (unlikely(tp_len < 0)) {
2852 tpacket_error:
2853 			if (packet_sock_flag(po, PACKET_SOCK_TP_LOSS)) {
2854 				__packet_set_status(po, ph,
2855 						TP_STATUS_AVAILABLE);
2856 				packet_increment_head(&po->tx_ring);
2857 				kfree_skb(skb);
2858 				continue;
2859 			} else {
2860 				status = TP_STATUS_WRONG_FORMAT;
2861 				err = tp_len;
2862 				goto out_status;
2863 			}
2864 		}
2865 
2866 		if (vnet_hdr_sz) {
2867 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2868 				tp_len = -EINVAL;
2869 				goto tpacket_error;
2870 			}
2871 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2872 		}
2873 
2874 		skb->destructor = tpacket_destruct_skb;
2875 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2876 		packet_inc_pending(&po->tx_ring);
2877 
2878 		status = TP_STATUS_SEND_REQUEST;
2879 		err = packet_xmit(po, skb);
2880 		if (unlikely(err != 0)) {
2881 			if (err > 0)
2882 				err = net_xmit_errno(err);
2883 			if (err && __packet_get_status(po, ph) ==
2884 				   TP_STATUS_AVAILABLE) {
2885 				/* skb was destructed already */
2886 				skb = NULL;
2887 				goto out_status;
2888 			}
2889 			/*
2890 			 * skb was dropped but not destructed yet;
2891 			 * let's treat it like congestion or err < 0
2892 			 */
2893 			err = 0;
2894 		}
2895 		packet_increment_head(&po->tx_ring);
2896 		len_sum += tp_len;
2897 	} while (likely((ph != NULL) ||
2898 		/* Note: packet_read_pending() might be slow if we have
2899 		 * to call it as it's per_cpu variable, but in fast-path
2900 		 * we already short-circuit the loop with the first
2901 		 * condition, and luckily don't have to go that path
2902 		 * anyway.
2903 		 */
2904 		 (need_wait && packet_read_pending(&po->tx_ring))));
2905 
2906 	err = len_sum;
2907 	goto out_put;
2908 
2909 out_status:
2910 	__packet_set_status(po, ph, status);
2911 	kfree_skb(skb);
2912 out_put:
2913 	dev_put(dev);
2914 out:
2915 	mutex_unlock(&po->pg_vec_lock);
2916 	return err;
2917 }
2918 
2919 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2920 				        size_t reserve, size_t len,
2921 				        size_t linear, int noblock,
2922 				        int *err)
2923 {
2924 	struct sk_buff *skb;
2925 
2926 	/* Under a page?  Don't bother with paged skb. */
2927 	if (prepad + len < PAGE_SIZE || !linear)
2928 		linear = len;
2929 
2930 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2931 				   err, 0);
2932 	if (!skb)
2933 		return NULL;
2934 
2935 	skb_reserve(skb, reserve);
2936 	skb_put(skb, linear);
2937 	skb->data_len = len - linear;
2938 	skb->len += len - linear;
2939 
2940 	return skb;
2941 }
2942 
2943 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2944 {
2945 	struct sock *sk = sock->sk;
2946 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2947 	struct sk_buff *skb;
2948 	struct net_device *dev;
2949 	__be16 proto;
2950 	unsigned char *addr = NULL;
2951 	int err, reserve = 0;
2952 	struct sockcm_cookie sockc;
2953 	struct virtio_net_hdr vnet_hdr = { 0 };
2954 	int offset = 0;
2955 	struct packet_sock *po = pkt_sk(sk);
2956 	int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2957 	int hlen, tlen, linear;
2958 	int extra_len = 0;
2959 
2960 	/*
2961 	 *	Get and verify the address.
2962 	 */
2963 
2964 	if (likely(saddr == NULL)) {
2965 		dev	= packet_cached_dev_get(po);
2966 		proto	= READ_ONCE(po->num);
2967 	} else {
2968 		err = -EINVAL;
2969 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2970 			goto out;
2971 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2972 			goto out;
2973 		proto	= saddr->sll_protocol;
2974 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2975 		if (sock->type == SOCK_DGRAM) {
2976 			if (dev && msg->msg_namelen < dev->addr_len +
2977 				   offsetof(struct sockaddr_ll, sll_addr))
2978 				goto out_unlock;
2979 			addr = saddr->sll_addr;
2980 		}
2981 	}
2982 
2983 	err = -ENXIO;
2984 	if (unlikely(dev == NULL))
2985 		goto out_unlock;
2986 	err = -ENETDOWN;
2987 	if (unlikely(!(dev->flags & IFF_UP)))
2988 		goto out_unlock;
2989 
2990 	sockcm_init(&sockc, sk);
2991 	sockc.mark = sk->sk_mark;
2992 	if (msg->msg_controllen) {
2993 		err = sock_cmsg_send(sk, msg, &sockc);
2994 		if (unlikely(err))
2995 			goto out_unlock;
2996 	}
2997 
2998 	if (sock->type == SOCK_RAW)
2999 		reserve = dev->hard_header_len;
3000 	if (vnet_hdr_sz) {
3001 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr, vnet_hdr_sz);
3002 		if (err)
3003 			goto out_unlock;
3004 	}
3005 
3006 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
3007 		if (!netif_supports_nofcs(dev)) {
3008 			err = -EPROTONOSUPPORT;
3009 			goto out_unlock;
3010 		}
3011 		extra_len = 4; /* We're doing our own CRC */
3012 	}
3013 
3014 	err = -EMSGSIZE;
3015 	if (!vnet_hdr.gso_type &&
3016 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
3017 		goto out_unlock;
3018 
3019 	err = -ENOBUFS;
3020 	hlen = LL_RESERVED_SPACE(dev);
3021 	tlen = dev->needed_tailroom;
3022 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
3023 	linear = max(linear, min_t(int, len, dev->hard_header_len));
3024 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
3025 			       msg->msg_flags & MSG_DONTWAIT, &err);
3026 	if (skb == NULL)
3027 		goto out_unlock;
3028 
3029 	skb_reset_network_header(skb);
3030 
3031 	err = -EINVAL;
3032 	if (sock->type == SOCK_DGRAM) {
3033 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
3034 		if (unlikely(offset < 0))
3035 			goto out_free;
3036 	} else if (reserve) {
3037 		skb_reserve(skb, -reserve);
3038 		if (len < reserve + sizeof(struct ipv6hdr) &&
3039 		    dev->min_header_len != dev->hard_header_len)
3040 			skb_reset_network_header(skb);
3041 	}
3042 
3043 	/* Returns -EFAULT on error */
3044 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
3045 	if (err)
3046 		goto out_free;
3047 
3048 	if ((sock->type == SOCK_RAW &&
3049 	     !dev_validate_header(dev, skb->data, len)) || !skb->len) {
3050 		err = -EINVAL;
3051 		goto out_free;
3052 	}
3053 
3054 	skb_setup_tx_timestamp(skb, sockc.tsflags);
3055 
3056 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
3057 	    !packet_extra_vlan_len_allowed(dev, skb)) {
3058 		err = -EMSGSIZE;
3059 		goto out_free;
3060 	}
3061 
3062 	skb->protocol = proto;
3063 	skb->dev = dev;
3064 	skb->priority = sk->sk_priority;
3065 	skb->mark = sockc.mark;
3066 	skb->tstamp = sockc.transmit_time;
3067 
3068 	if (unlikely(extra_len == 4))
3069 		skb->no_fcs = 1;
3070 
3071 	packet_parse_headers(skb, sock);
3072 
3073 	if (vnet_hdr_sz) {
3074 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3075 		if (err)
3076 			goto out_free;
3077 		len += vnet_hdr_sz;
3078 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3079 	}
3080 
3081 	err = packet_xmit(po, skb);
3082 
3083 	if (unlikely(err != 0)) {
3084 		if (err > 0)
3085 			err = net_xmit_errno(err);
3086 		if (err)
3087 			goto out_unlock;
3088 	}
3089 
3090 	dev_put(dev);
3091 
3092 	return len;
3093 
3094 out_free:
3095 	kfree_skb(skb);
3096 out_unlock:
3097 	dev_put(dev);
3098 out:
3099 	return err;
3100 }
3101 
3102 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3103 {
3104 	struct sock *sk = sock->sk;
3105 	struct packet_sock *po = pkt_sk(sk);
3106 
3107 	/* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3108 	 * tpacket_snd() will redo the check safely.
3109 	 */
3110 	if (data_race(po->tx_ring.pg_vec))
3111 		return tpacket_snd(po, msg);
3112 
3113 	return packet_snd(sock, msg, len);
3114 }
3115 
3116 /*
3117  *	Close a PACKET socket. This is fairly simple. We immediately go
3118  *	to 'closed' state and remove our protocol entry in the device list.
3119  */
3120 
3121 static int packet_release(struct socket *sock)
3122 {
3123 	struct sock *sk = sock->sk;
3124 	struct packet_sock *po;
3125 	struct packet_fanout *f;
3126 	struct net *net;
3127 	union tpacket_req_u req_u;
3128 
3129 	if (!sk)
3130 		return 0;
3131 
3132 	net = sock_net(sk);
3133 	po = pkt_sk(sk);
3134 
3135 	mutex_lock(&net->packet.sklist_lock);
3136 	sk_del_node_init_rcu(sk);
3137 	mutex_unlock(&net->packet.sklist_lock);
3138 
3139 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3140 
3141 	spin_lock(&po->bind_lock);
3142 	unregister_prot_hook(sk, false);
3143 	packet_cached_dev_reset(po);
3144 
3145 	if (po->prot_hook.dev) {
3146 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3147 		po->prot_hook.dev = NULL;
3148 	}
3149 	spin_unlock(&po->bind_lock);
3150 
3151 	packet_flush_mclist(sk);
3152 
3153 	lock_sock(sk);
3154 	if (po->rx_ring.pg_vec) {
3155 		memset(&req_u, 0, sizeof(req_u));
3156 		packet_set_ring(sk, &req_u, 1, 0);
3157 	}
3158 
3159 	if (po->tx_ring.pg_vec) {
3160 		memset(&req_u, 0, sizeof(req_u));
3161 		packet_set_ring(sk, &req_u, 1, 1);
3162 	}
3163 	release_sock(sk);
3164 
3165 	f = fanout_release(sk);
3166 
3167 	synchronize_net();
3168 
3169 	kfree(po->rollover);
3170 	if (f) {
3171 		fanout_release_data(f);
3172 		kvfree(f);
3173 	}
3174 	/*
3175 	 *	Now the socket is dead. No more input will appear.
3176 	 */
3177 	sock_orphan(sk);
3178 	sock->sk = NULL;
3179 
3180 	/* Purge queues */
3181 
3182 	skb_queue_purge(&sk->sk_receive_queue);
3183 	packet_free_pending(po);
3184 
3185 	sock_put(sk);
3186 	return 0;
3187 }
3188 
3189 /*
3190  *	Attach a packet hook.
3191  */
3192 
3193 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3194 			  __be16 proto)
3195 {
3196 	struct packet_sock *po = pkt_sk(sk);
3197 	struct net_device *dev = NULL;
3198 	bool unlisted = false;
3199 	bool need_rehook;
3200 	int ret = 0;
3201 
3202 	lock_sock(sk);
3203 	spin_lock(&po->bind_lock);
3204 	rcu_read_lock();
3205 
3206 	if (po->fanout) {
3207 		ret = -EINVAL;
3208 		goto out_unlock;
3209 	}
3210 
3211 	if (name) {
3212 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3213 		if (!dev) {
3214 			ret = -ENODEV;
3215 			goto out_unlock;
3216 		}
3217 	} else if (ifindex) {
3218 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3219 		if (!dev) {
3220 			ret = -ENODEV;
3221 			goto out_unlock;
3222 		}
3223 	}
3224 
3225 	need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev;
3226 
3227 	if (need_rehook) {
3228 		dev_hold(dev);
3229 		if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
3230 			rcu_read_unlock();
3231 			/* prevents packet_notifier() from calling
3232 			 * register_prot_hook()
3233 			 */
3234 			WRITE_ONCE(po->num, 0);
3235 			__unregister_prot_hook(sk, true);
3236 			rcu_read_lock();
3237 			if (dev)
3238 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3239 								 dev->ifindex);
3240 		}
3241 
3242 		BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING));
3243 		WRITE_ONCE(po->num, proto);
3244 		po->prot_hook.type = proto;
3245 
3246 		netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker);
3247 
3248 		if (unlikely(unlisted)) {
3249 			po->prot_hook.dev = NULL;
3250 			WRITE_ONCE(po->ifindex, -1);
3251 			packet_cached_dev_reset(po);
3252 		} else {
3253 			netdev_hold(dev, &po->prot_hook.dev_tracker,
3254 				    GFP_ATOMIC);
3255 			po->prot_hook.dev = dev;
3256 			WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3257 			packet_cached_dev_assign(po, dev);
3258 		}
3259 		dev_put(dev);
3260 	}
3261 
3262 	if (proto == 0 || !need_rehook)
3263 		goto out_unlock;
3264 
3265 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3266 		register_prot_hook(sk);
3267 	} else {
3268 		sk->sk_err = ENETDOWN;
3269 		if (!sock_flag(sk, SOCK_DEAD))
3270 			sk_error_report(sk);
3271 	}
3272 
3273 out_unlock:
3274 	rcu_read_unlock();
3275 	spin_unlock(&po->bind_lock);
3276 	release_sock(sk);
3277 	return ret;
3278 }
3279 
3280 /*
3281  *	Bind a packet socket to a device
3282  */
3283 
3284 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3285 			    int addr_len)
3286 {
3287 	struct sock *sk = sock->sk;
3288 	char name[sizeof(uaddr->sa_data_min) + 1];
3289 
3290 	/*
3291 	 *	Check legality
3292 	 */
3293 
3294 	if (addr_len != sizeof(struct sockaddr))
3295 		return -EINVAL;
3296 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3297 	 * zero-terminated.
3298 	 */
3299 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data_min));
3300 	name[sizeof(uaddr->sa_data_min)] = 0;
3301 
3302 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3303 }
3304 
3305 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3306 {
3307 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3308 	struct sock *sk = sock->sk;
3309 
3310 	/*
3311 	 *	Check legality
3312 	 */
3313 
3314 	if (addr_len < sizeof(struct sockaddr_ll))
3315 		return -EINVAL;
3316 	if (sll->sll_family != AF_PACKET)
3317 		return -EINVAL;
3318 
3319 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3320 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3321 }
3322 
3323 static struct proto packet_proto = {
3324 	.name	  = "PACKET",
3325 	.owner	  = THIS_MODULE,
3326 	.obj_size = sizeof(struct packet_sock),
3327 };
3328 
3329 /*
3330  *	Create a packet of type SOCK_PACKET.
3331  */
3332 
3333 static int packet_create(struct net *net, struct socket *sock, int protocol,
3334 			 int kern)
3335 {
3336 	struct sock *sk;
3337 	struct packet_sock *po;
3338 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3339 	int err;
3340 
3341 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3342 		return -EPERM;
3343 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3344 	    sock->type != SOCK_PACKET)
3345 		return -ESOCKTNOSUPPORT;
3346 
3347 	sock->state = SS_UNCONNECTED;
3348 
3349 	err = -ENOBUFS;
3350 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3351 	if (sk == NULL)
3352 		goto out;
3353 
3354 	sock->ops = &packet_ops;
3355 	if (sock->type == SOCK_PACKET)
3356 		sock->ops = &packet_ops_spkt;
3357 
3358 	sock_init_data(sock, sk);
3359 
3360 	po = pkt_sk(sk);
3361 	init_completion(&po->skb_completion);
3362 	sk->sk_family = PF_PACKET;
3363 	po->num = proto;
3364 
3365 	err = packet_alloc_pending(po);
3366 	if (err)
3367 		goto out2;
3368 
3369 	packet_cached_dev_reset(po);
3370 
3371 	sk->sk_destruct = packet_sock_destruct;
3372 
3373 	/*
3374 	 *	Attach a protocol block
3375 	 */
3376 
3377 	spin_lock_init(&po->bind_lock);
3378 	mutex_init(&po->pg_vec_lock);
3379 	po->rollover = NULL;
3380 	po->prot_hook.func = packet_rcv;
3381 
3382 	if (sock->type == SOCK_PACKET)
3383 		po->prot_hook.func = packet_rcv_spkt;
3384 
3385 	po->prot_hook.af_packet_priv = sk;
3386 	po->prot_hook.af_packet_net = sock_net(sk);
3387 
3388 	if (proto) {
3389 		po->prot_hook.type = proto;
3390 		__register_prot_hook(sk);
3391 	}
3392 
3393 	mutex_lock(&net->packet.sklist_lock);
3394 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3395 	mutex_unlock(&net->packet.sklist_lock);
3396 
3397 	sock_prot_inuse_add(net, &packet_proto, 1);
3398 
3399 	return 0;
3400 out2:
3401 	sk_free(sk);
3402 out:
3403 	return err;
3404 }
3405 
3406 /*
3407  *	Pull a packet from our receive queue and hand it to the user.
3408  *	If necessary we block.
3409  */
3410 
3411 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3412 			  int flags)
3413 {
3414 	struct sock *sk = sock->sk;
3415 	struct sk_buff *skb;
3416 	int copied, err;
3417 	int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz);
3418 	unsigned int origlen = 0;
3419 
3420 	err = -EINVAL;
3421 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3422 		goto out;
3423 
3424 #if 0
3425 	/* What error should we return now? EUNATTACH? */
3426 	if (pkt_sk(sk)->ifindex < 0)
3427 		return -ENODEV;
3428 #endif
3429 
3430 	if (flags & MSG_ERRQUEUE) {
3431 		err = sock_recv_errqueue(sk, msg, len,
3432 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3433 		goto out;
3434 	}
3435 
3436 	/*
3437 	 *	Call the generic datagram receiver. This handles all sorts
3438 	 *	of horrible races and re-entrancy so we can forget about it
3439 	 *	in the protocol layers.
3440 	 *
3441 	 *	Now it will return ENETDOWN, if device have just gone down,
3442 	 *	but then it will block.
3443 	 */
3444 
3445 	skb = skb_recv_datagram(sk, flags, &err);
3446 
3447 	/*
3448 	 *	An error occurred so return it. Because skb_recv_datagram()
3449 	 *	handles the blocking we don't see and worry about blocking
3450 	 *	retries.
3451 	 */
3452 
3453 	if (skb == NULL)
3454 		goto out;
3455 
3456 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3457 
3458 	if (vnet_hdr_len) {
3459 		err = packet_rcv_vnet(msg, skb, &len, vnet_hdr_len);
3460 		if (err)
3461 			goto out_free;
3462 	}
3463 
3464 	/* You lose any data beyond the buffer you gave. If it worries
3465 	 * a user program they can ask the device for its MTU
3466 	 * anyway.
3467 	 */
3468 	copied = skb->len;
3469 	if (copied > len) {
3470 		copied = len;
3471 		msg->msg_flags |= MSG_TRUNC;
3472 	}
3473 
3474 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3475 	if (err)
3476 		goto out_free;
3477 
3478 	if (sock->type != SOCK_PACKET) {
3479 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3480 
3481 		/* Original length was stored in sockaddr_ll fields */
3482 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3483 		sll->sll_family = AF_PACKET;
3484 		sll->sll_protocol = skb->protocol;
3485 	}
3486 
3487 	sock_recv_cmsgs(msg, sk, skb);
3488 
3489 	if (msg->msg_name) {
3490 		const size_t max_len = min(sizeof(skb->cb),
3491 					   sizeof(struct sockaddr_storage));
3492 		int copy_len;
3493 
3494 		/* If the address length field is there to be filled
3495 		 * in, we fill it in now.
3496 		 */
3497 		if (sock->type == SOCK_PACKET) {
3498 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3499 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3500 			copy_len = msg->msg_namelen;
3501 		} else {
3502 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3503 
3504 			msg->msg_namelen = sll->sll_halen +
3505 				offsetof(struct sockaddr_ll, sll_addr);
3506 			copy_len = msg->msg_namelen;
3507 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3508 				memset(msg->msg_name +
3509 				       offsetof(struct sockaddr_ll, sll_addr),
3510 				       0, sizeof(sll->sll_addr));
3511 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3512 			}
3513 		}
3514 		if (WARN_ON_ONCE(copy_len > max_len)) {
3515 			copy_len = max_len;
3516 			msg->msg_namelen = copy_len;
3517 		}
3518 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3519 	}
3520 
3521 	if (packet_sock_flag(pkt_sk(sk), PACKET_SOCK_AUXDATA)) {
3522 		struct tpacket_auxdata aux;
3523 
3524 		aux.tp_status = TP_STATUS_USER;
3525 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3526 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3527 		else if (skb->pkt_type != PACKET_OUTGOING &&
3528 			 skb_csum_unnecessary(skb))
3529 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3530 		if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
3531 			aux.tp_status |= TP_STATUS_GSO_TCP;
3532 
3533 		aux.tp_len = origlen;
3534 		aux.tp_snaplen = skb->len;
3535 		aux.tp_mac = 0;
3536 		aux.tp_net = skb_network_offset(skb);
3537 		if (skb_vlan_tag_present(skb)) {
3538 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3539 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3540 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3541 		} else {
3542 			aux.tp_vlan_tci = 0;
3543 			aux.tp_vlan_tpid = 0;
3544 		}
3545 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3546 	}
3547 
3548 	/*
3549 	 *	Free or return the buffer as appropriate. Again this
3550 	 *	hides all the races and re-entrancy issues from us.
3551 	 */
3552 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3553 
3554 out_free:
3555 	skb_free_datagram(sk, skb);
3556 out:
3557 	return err;
3558 }
3559 
3560 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3561 			       int peer)
3562 {
3563 	struct net_device *dev;
3564 	struct sock *sk	= sock->sk;
3565 
3566 	if (peer)
3567 		return -EOPNOTSUPP;
3568 
3569 	uaddr->sa_family = AF_PACKET;
3570 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data_min));
3571 	rcu_read_lock();
3572 	dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3573 	if (dev)
3574 		strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min));
3575 	rcu_read_unlock();
3576 
3577 	return sizeof(*uaddr);
3578 }
3579 
3580 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3581 			  int peer)
3582 {
3583 	struct net_device *dev;
3584 	struct sock *sk = sock->sk;
3585 	struct packet_sock *po = pkt_sk(sk);
3586 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3587 	int ifindex;
3588 
3589 	if (peer)
3590 		return -EOPNOTSUPP;
3591 
3592 	ifindex = READ_ONCE(po->ifindex);
3593 	sll->sll_family = AF_PACKET;
3594 	sll->sll_ifindex = ifindex;
3595 	sll->sll_protocol = READ_ONCE(po->num);
3596 	sll->sll_pkttype = 0;
3597 	rcu_read_lock();
3598 	dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3599 	if (dev) {
3600 		sll->sll_hatype = dev->type;
3601 		sll->sll_halen = dev->addr_len;
3602 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3603 	} else {
3604 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3605 		sll->sll_halen = 0;
3606 	}
3607 	rcu_read_unlock();
3608 
3609 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3610 }
3611 
3612 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3613 			 int what)
3614 {
3615 	switch (i->type) {
3616 	case PACKET_MR_MULTICAST:
3617 		if (i->alen != dev->addr_len)
3618 			return -EINVAL;
3619 		if (what > 0)
3620 			return dev_mc_add(dev, i->addr);
3621 		else
3622 			return dev_mc_del(dev, i->addr);
3623 		break;
3624 	case PACKET_MR_PROMISC:
3625 		return dev_set_promiscuity(dev, what);
3626 	case PACKET_MR_ALLMULTI:
3627 		return dev_set_allmulti(dev, what);
3628 	case PACKET_MR_UNICAST:
3629 		if (i->alen != dev->addr_len)
3630 			return -EINVAL;
3631 		if (what > 0)
3632 			return dev_uc_add(dev, i->addr);
3633 		else
3634 			return dev_uc_del(dev, i->addr);
3635 		break;
3636 	default:
3637 		break;
3638 	}
3639 	return 0;
3640 }
3641 
3642 static void packet_dev_mclist_delete(struct net_device *dev,
3643 				     struct packet_mclist **mlp)
3644 {
3645 	struct packet_mclist *ml;
3646 
3647 	while ((ml = *mlp) != NULL) {
3648 		if (ml->ifindex == dev->ifindex) {
3649 			packet_dev_mc(dev, ml, -1);
3650 			*mlp = ml->next;
3651 			kfree(ml);
3652 		} else
3653 			mlp = &ml->next;
3654 	}
3655 }
3656 
3657 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3658 {
3659 	struct packet_sock *po = pkt_sk(sk);
3660 	struct packet_mclist *ml, *i;
3661 	struct net_device *dev;
3662 	int err;
3663 
3664 	rtnl_lock();
3665 
3666 	err = -ENODEV;
3667 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3668 	if (!dev)
3669 		goto done;
3670 
3671 	err = -EINVAL;
3672 	if (mreq->mr_alen > dev->addr_len)
3673 		goto done;
3674 
3675 	err = -ENOBUFS;
3676 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3677 	if (i == NULL)
3678 		goto done;
3679 
3680 	err = 0;
3681 	for (ml = po->mclist; ml; ml = ml->next) {
3682 		if (ml->ifindex == mreq->mr_ifindex &&
3683 		    ml->type == mreq->mr_type &&
3684 		    ml->alen == mreq->mr_alen &&
3685 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3686 			ml->count++;
3687 			/* Free the new element ... */
3688 			kfree(i);
3689 			goto done;
3690 		}
3691 	}
3692 
3693 	i->type = mreq->mr_type;
3694 	i->ifindex = mreq->mr_ifindex;
3695 	i->alen = mreq->mr_alen;
3696 	memcpy(i->addr, mreq->mr_address, i->alen);
3697 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3698 	i->count = 1;
3699 	i->next = po->mclist;
3700 	po->mclist = i;
3701 	err = packet_dev_mc(dev, i, 1);
3702 	if (err) {
3703 		po->mclist = i->next;
3704 		kfree(i);
3705 	}
3706 
3707 done:
3708 	rtnl_unlock();
3709 	return err;
3710 }
3711 
3712 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3713 {
3714 	struct packet_mclist *ml, **mlp;
3715 
3716 	rtnl_lock();
3717 
3718 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3719 		if (ml->ifindex == mreq->mr_ifindex &&
3720 		    ml->type == mreq->mr_type &&
3721 		    ml->alen == mreq->mr_alen &&
3722 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3723 			if (--ml->count == 0) {
3724 				struct net_device *dev;
3725 				*mlp = ml->next;
3726 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3727 				if (dev)
3728 					packet_dev_mc(dev, ml, -1);
3729 				kfree(ml);
3730 			}
3731 			break;
3732 		}
3733 	}
3734 	rtnl_unlock();
3735 	return 0;
3736 }
3737 
3738 static void packet_flush_mclist(struct sock *sk)
3739 {
3740 	struct packet_sock *po = pkt_sk(sk);
3741 	struct packet_mclist *ml;
3742 
3743 	if (!po->mclist)
3744 		return;
3745 
3746 	rtnl_lock();
3747 	while ((ml = po->mclist) != NULL) {
3748 		struct net_device *dev;
3749 
3750 		po->mclist = ml->next;
3751 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3752 		if (dev != NULL)
3753 			packet_dev_mc(dev, ml, -1);
3754 		kfree(ml);
3755 	}
3756 	rtnl_unlock();
3757 }
3758 
3759 static int
3760 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3761 		  unsigned int optlen)
3762 {
3763 	struct sock *sk = sock->sk;
3764 	struct packet_sock *po = pkt_sk(sk);
3765 	int ret;
3766 
3767 	if (level != SOL_PACKET)
3768 		return -ENOPROTOOPT;
3769 
3770 	switch (optname) {
3771 	case PACKET_ADD_MEMBERSHIP:
3772 	case PACKET_DROP_MEMBERSHIP:
3773 	{
3774 		struct packet_mreq_max mreq;
3775 		int len = optlen;
3776 		memset(&mreq, 0, sizeof(mreq));
3777 		if (len < sizeof(struct packet_mreq))
3778 			return -EINVAL;
3779 		if (len > sizeof(mreq))
3780 			len = sizeof(mreq);
3781 		if (copy_from_sockptr(&mreq, optval, len))
3782 			return -EFAULT;
3783 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3784 			return -EINVAL;
3785 		if (optname == PACKET_ADD_MEMBERSHIP)
3786 			ret = packet_mc_add(sk, &mreq);
3787 		else
3788 			ret = packet_mc_drop(sk, &mreq);
3789 		return ret;
3790 	}
3791 
3792 	case PACKET_RX_RING:
3793 	case PACKET_TX_RING:
3794 	{
3795 		union tpacket_req_u req_u;
3796 		int len;
3797 
3798 		lock_sock(sk);
3799 		switch (po->tp_version) {
3800 		case TPACKET_V1:
3801 		case TPACKET_V2:
3802 			len = sizeof(req_u.req);
3803 			break;
3804 		case TPACKET_V3:
3805 		default:
3806 			len = sizeof(req_u.req3);
3807 			break;
3808 		}
3809 		if (optlen < len) {
3810 			ret = -EINVAL;
3811 		} else {
3812 			if (copy_from_sockptr(&req_u.req, optval, len))
3813 				ret = -EFAULT;
3814 			else
3815 				ret = packet_set_ring(sk, &req_u, 0,
3816 						    optname == PACKET_TX_RING);
3817 		}
3818 		release_sock(sk);
3819 		return ret;
3820 	}
3821 	case PACKET_COPY_THRESH:
3822 	{
3823 		int val;
3824 
3825 		if (optlen != sizeof(val))
3826 			return -EINVAL;
3827 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3828 			return -EFAULT;
3829 
3830 		pkt_sk(sk)->copy_thresh = val;
3831 		return 0;
3832 	}
3833 	case PACKET_VERSION:
3834 	{
3835 		int val;
3836 
3837 		if (optlen != sizeof(val))
3838 			return -EINVAL;
3839 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3840 			return -EFAULT;
3841 		switch (val) {
3842 		case TPACKET_V1:
3843 		case TPACKET_V2:
3844 		case TPACKET_V3:
3845 			break;
3846 		default:
3847 			return -EINVAL;
3848 		}
3849 		lock_sock(sk);
3850 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3851 			ret = -EBUSY;
3852 		} else {
3853 			po->tp_version = val;
3854 			ret = 0;
3855 		}
3856 		release_sock(sk);
3857 		return ret;
3858 	}
3859 	case PACKET_RESERVE:
3860 	{
3861 		unsigned int val;
3862 
3863 		if (optlen != sizeof(val))
3864 			return -EINVAL;
3865 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3866 			return -EFAULT;
3867 		if (val > INT_MAX)
3868 			return -EINVAL;
3869 		lock_sock(sk);
3870 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3871 			ret = -EBUSY;
3872 		} else {
3873 			po->tp_reserve = val;
3874 			ret = 0;
3875 		}
3876 		release_sock(sk);
3877 		return ret;
3878 	}
3879 	case PACKET_LOSS:
3880 	{
3881 		unsigned int val;
3882 
3883 		if (optlen != sizeof(val))
3884 			return -EINVAL;
3885 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3886 			return -EFAULT;
3887 
3888 		lock_sock(sk);
3889 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3890 			ret = -EBUSY;
3891 		} else {
3892 			packet_sock_flag_set(po, PACKET_SOCK_TP_LOSS, val);
3893 			ret = 0;
3894 		}
3895 		release_sock(sk);
3896 		return ret;
3897 	}
3898 	case PACKET_AUXDATA:
3899 	{
3900 		int val;
3901 
3902 		if (optlen < sizeof(val))
3903 			return -EINVAL;
3904 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3905 			return -EFAULT;
3906 
3907 		packet_sock_flag_set(po, PACKET_SOCK_AUXDATA, val);
3908 		return 0;
3909 	}
3910 	case PACKET_ORIGDEV:
3911 	{
3912 		int val;
3913 
3914 		if (optlen < sizeof(val))
3915 			return -EINVAL;
3916 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3917 			return -EFAULT;
3918 
3919 		packet_sock_flag_set(po, PACKET_SOCK_ORIGDEV, val);
3920 		return 0;
3921 	}
3922 	case PACKET_VNET_HDR:
3923 	case PACKET_VNET_HDR_SZ:
3924 	{
3925 		int val, hdr_len;
3926 
3927 		if (sock->type != SOCK_RAW)
3928 			return -EINVAL;
3929 		if (optlen < sizeof(val))
3930 			return -EINVAL;
3931 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3932 			return -EFAULT;
3933 
3934 		if (optname == PACKET_VNET_HDR_SZ) {
3935 			if (val && val != sizeof(struct virtio_net_hdr) &&
3936 			    val != sizeof(struct virtio_net_hdr_mrg_rxbuf))
3937 				return -EINVAL;
3938 			hdr_len = val;
3939 		} else {
3940 			hdr_len = val ? sizeof(struct virtio_net_hdr) : 0;
3941 		}
3942 		lock_sock(sk);
3943 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3944 			ret = -EBUSY;
3945 		} else {
3946 			WRITE_ONCE(po->vnet_hdr_sz, hdr_len);
3947 			ret = 0;
3948 		}
3949 		release_sock(sk);
3950 		return ret;
3951 	}
3952 	case PACKET_TIMESTAMP:
3953 	{
3954 		int val;
3955 
3956 		if (optlen != sizeof(val))
3957 			return -EINVAL;
3958 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3959 			return -EFAULT;
3960 
3961 		WRITE_ONCE(po->tp_tstamp, val);
3962 		return 0;
3963 	}
3964 	case PACKET_FANOUT:
3965 	{
3966 		struct fanout_args args = { 0 };
3967 
3968 		if (optlen != sizeof(int) && optlen != sizeof(args))
3969 			return -EINVAL;
3970 		if (copy_from_sockptr(&args, optval, optlen))
3971 			return -EFAULT;
3972 
3973 		return fanout_add(sk, &args);
3974 	}
3975 	case PACKET_FANOUT_DATA:
3976 	{
3977 		/* Paired with the WRITE_ONCE() in fanout_add() */
3978 		if (!READ_ONCE(po->fanout))
3979 			return -EINVAL;
3980 
3981 		return fanout_set_data(po, optval, optlen);
3982 	}
3983 	case PACKET_IGNORE_OUTGOING:
3984 	{
3985 		int val;
3986 
3987 		if (optlen != sizeof(val))
3988 			return -EINVAL;
3989 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3990 			return -EFAULT;
3991 		if (val < 0 || val > 1)
3992 			return -EINVAL;
3993 
3994 		po->prot_hook.ignore_outgoing = !!val;
3995 		return 0;
3996 	}
3997 	case PACKET_TX_HAS_OFF:
3998 	{
3999 		unsigned int val;
4000 
4001 		if (optlen != sizeof(val))
4002 			return -EINVAL;
4003 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4004 			return -EFAULT;
4005 
4006 		lock_sock(sk);
4007 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
4008 			packet_sock_flag_set(po, PACKET_SOCK_TX_HAS_OFF, val);
4009 
4010 		release_sock(sk);
4011 		return 0;
4012 	}
4013 	case PACKET_QDISC_BYPASS:
4014 	{
4015 		int val;
4016 
4017 		if (optlen != sizeof(val))
4018 			return -EINVAL;
4019 		if (copy_from_sockptr(&val, optval, sizeof(val)))
4020 			return -EFAULT;
4021 
4022 		packet_sock_flag_set(po, PACKET_SOCK_QDISC_BYPASS, val);
4023 		return 0;
4024 	}
4025 	default:
4026 		return -ENOPROTOOPT;
4027 	}
4028 }
4029 
4030 static int packet_getsockopt(struct socket *sock, int level, int optname,
4031 			     char __user *optval, int __user *optlen)
4032 {
4033 	int len;
4034 	int val, lv = sizeof(val);
4035 	struct sock *sk = sock->sk;
4036 	struct packet_sock *po = pkt_sk(sk);
4037 	void *data = &val;
4038 	union tpacket_stats_u st;
4039 	struct tpacket_rollover_stats rstats;
4040 	int drops;
4041 
4042 	if (level != SOL_PACKET)
4043 		return -ENOPROTOOPT;
4044 
4045 	if (get_user(len, optlen))
4046 		return -EFAULT;
4047 
4048 	if (len < 0)
4049 		return -EINVAL;
4050 
4051 	switch (optname) {
4052 	case PACKET_STATISTICS:
4053 		spin_lock_bh(&sk->sk_receive_queue.lock);
4054 		memcpy(&st, &po->stats, sizeof(st));
4055 		memset(&po->stats, 0, sizeof(po->stats));
4056 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4057 		drops = atomic_xchg(&po->tp_drops, 0);
4058 
4059 		if (po->tp_version == TPACKET_V3) {
4060 			lv = sizeof(struct tpacket_stats_v3);
4061 			st.stats3.tp_drops = drops;
4062 			st.stats3.tp_packets += drops;
4063 			data = &st.stats3;
4064 		} else {
4065 			lv = sizeof(struct tpacket_stats);
4066 			st.stats1.tp_drops = drops;
4067 			st.stats1.tp_packets += drops;
4068 			data = &st.stats1;
4069 		}
4070 
4071 		break;
4072 	case PACKET_AUXDATA:
4073 		val = packet_sock_flag(po, PACKET_SOCK_AUXDATA);
4074 		break;
4075 	case PACKET_ORIGDEV:
4076 		val = packet_sock_flag(po, PACKET_SOCK_ORIGDEV);
4077 		break;
4078 	case PACKET_VNET_HDR:
4079 		val = !!READ_ONCE(po->vnet_hdr_sz);
4080 		break;
4081 	case PACKET_VNET_HDR_SZ:
4082 		val = READ_ONCE(po->vnet_hdr_sz);
4083 		break;
4084 	case PACKET_VERSION:
4085 		val = po->tp_version;
4086 		break;
4087 	case PACKET_HDRLEN:
4088 		if (len > sizeof(int))
4089 			len = sizeof(int);
4090 		if (len < sizeof(int))
4091 			return -EINVAL;
4092 		if (copy_from_user(&val, optval, len))
4093 			return -EFAULT;
4094 		switch (val) {
4095 		case TPACKET_V1:
4096 			val = sizeof(struct tpacket_hdr);
4097 			break;
4098 		case TPACKET_V2:
4099 			val = sizeof(struct tpacket2_hdr);
4100 			break;
4101 		case TPACKET_V3:
4102 			val = sizeof(struct tpacket3_hdr);
4103 			break;
4104 		default:
4105 			return -EINVAL;
4106 		}
4107 		break;
4108 	case PACKET_RESERVE:
4109 		val = po->tp_reserve;
4110 		break;
4111 	case PACKET_LOSS:
4112 		val = packet_sock_flag(po, PACKET_SOCK_TP_LOSS);
4113 		break;
4114 	case PACKET_TIMESTAMP:
4115 		val = READ_ONCE(po->tp_tstamp);
4116 		break;
4117 	case PACKET_FANOUT:
4118 		val = (po->fanout ?
4119 		       ((u32)po->fanout->id |
4120 			((u32)po->fanout->type << 16) |
4121 			((u32)po->fanout->flags << 24)) :
4122 		       0);
4123 		break;
4124 	case PACKET_IGNORE_OUTGOING:
4125 		val = po->prot_hook.ignore_outgoing;
4126 		break;
4127 	case PACKET_ROLLOVER_STATS:
4128 		if (!po->rollover)
4129 			return -EINVAL;
4130 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4131 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4132 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4133 		data = &rstats;
4134 		lv = sizeof(rstats);
4135 		break;
4136 	case PACKET_TX_HAS_OFF:
4137 		val = packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF);
4138 		break;
4139 	case PACKET_QDISC_BYPASS:
4140 		val = packet_sock_flag(po, PACKET_SOCK_QDISC_BYPASS);
4141 		break;
4142 	default:
4143 		return -ENOPROTOOPT;
4144 	}
4145 
4146 	if (len > lv)
4147 		len = lv;
4148 	if (put_user(len, optlen))
4149 		return -EFAULT;
4150 	if (copy_to_user(optval, data, len))
4151 		return -EFAULT;
4152 	return 0;
4153 }
4154 
4155 static int packet_notifier(struct notifier_block *this,
4156 			   unsigned long msg, void *ptr)
4157 {
4158 	struct sock *sk;
4159 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4160 	struct net *net = dev_net(dev);
4161 
4162 	rcu_read_lock();
4163 	sk_for_each_rcu(sk, &net->packet.sklist) {
4164 		struct packet_sock *po = pkt_sk(sk);
4165 
4166 		switch (msg) {
4167 		case NETDEV_UNREGISTER:
4168 			if (po->mclist)
4169 				packet_dev_mclist_delete(dev, &po->mclist);
4170 			fallthrough;
4171 
4172 		case NETDEV_DOWN:
4173 			if (dev->ifindex == po->ifindex) {
4174 				spin_lock(&po->bind_lock);
4175 				if (packet_sock_flag(po, PACKET_SOCK_RUNNING)) {
4176 					__unregister_prot_hook(sk, false);
4177 					sk->sk_err = ENETDOWN;
4178 					if (!sock_flag(sk, SOCK_DEAD))
4179 						sk_error_report(sk);
4180 				}
4181 				if (msg == NETDEV_UNREGISTER) {
4182 					packet_cached_dev_reset(po);
4183 					WRITE_ONCE(po->ifindex, -1);
4184 					netdev_put(po->prot_hook.dev,
4185 						   &po->prot_hook.dev_tracker);
4186 					po->prot_hook.dev = NULL;
4187 				}
4188 				spin_unlock(&po->bind_lock);
4189 			}
4190 			break;
4191 		case NETDEV_UP:
4192 			if (dev->ifindex == po->ifindex) {
4193 				spin_lock(&po->bind_lock);
4194 				if (po->num)
4195 					register_prot_hook(sk);
4196 				spin_unlock(&po->bind_lock);
4197 			}
4198 			break;
4199 		}
4200 	}
4201 	rcu_read_unlock();
4202 	return NOTIFY_DONE;
4203 }
4204 
4205 
4206 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4207 			unsigned long arg)
4208 {
4209 	struct sock *sk = sock->sk;
4210 
4211 	switch (cmd) {
4212 	case SIOCOUTQ:
4213 	{
4214 		int amount = sk_wmem_alloc_get(sk);
4215 
4216 		return put_user(amount, (int __user *)arg);
4217 	}
4218 	case SIOCINQ:
4219 	{
4220 		struct sk_buff *skb;
4221 		int amount = 0;
4222 
4223 		spin_lock_bh(&sk->sk_receive_queue.lock);
4224 		skb = skb_peek(&sk->sk_receive_queue);
4225 		if (skb)
4226 			amount = skb->len;
4227 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4228 		return put_user(amount, (int __user *)arg);
4229 	}
4230 #ifdef CONFIG_INET
4231 	case SIOCADDRT:
4232 	case SIOCDELRT:
4233 	case SIOCDARP:
4234 	case SIOCGARP:
4235 	case SIOCSARP:
4236 	case SIOCGIFADDR:
4237 	case SIOCSIFADDR:
4238 	case SIOCGIFBRDADDR:
4239 	case SIOCSIFBRDADDR:
4240 	case SIOCGIFNETMASK:
4241 	case SIOCSIFNETMASK:
4242 	case SIOCGIFDSTADDR:
4243 	case SIOCSIFDSTADDR:
4244 	case SIOCSIFFLAGS:
4245 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4246 #endif
4247 
4248 	default:
4249 		return -ENOIOCTLCMD;
4250 	}
4251 	return 0;
4252 }
4253 
4254 static __poll_t packet_poll(struct file *file, struct socket *sock,
4255 				poll_table *wait)
4256 {
4257 	struct sock *sk = sock->sk;
4258 	struct packet_sock *po = pkt_sk(sk);
4259 	__poll_t mask = datagram_poll(file, sock, wait);
4260 
4261 	spin_lock_bh(&sk->sk_receive_queue.lock);
4262 	if (po->rx_ring.pg_vec) {
4263 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4264 			TP_STATUS_KERNEL))
4265 			mask |= EPOLLIN | EPOLLRDNORM;
4266 	}
4267 	packet_rcv_try_clear_pressure(po);
4268 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4269 	spin_lock_bh(&sk->sk_write_queue.lock);
4270 	if (po->tx_ring.pg_vec) {
4271 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4272 			mask |= EPOLLOUT | EPOLLWRNORM;
4273 	}
4274 	spin_unlock_bh(&sk->sk_write_queue.lock);
4275 	return mask;
4276 }
4277 
4278 
4279 /* Dirty? Well, I still did not learn better way to account
4280  * for user mmaps.
4281  */
4282 
4283 static void packet_mm_open(struct vm_area_struct *vma)
4284 {
4285 	struct file *file = vma->vm_file;
4286 	struct socket *sock = file->private_data;
4287 	struct sock *sk = sock->sk;
4288 
4289 	if (sk)
4290 		atomic_inc(&pkt_sk(sk)->mapped);
4291 }
4292 
4293 static void packet_mm_close(struct vm_area_struct *vma)
4294 {
4295 	struct file *file = vma->vm_file;
4296 	struct socket *sock = file->private_data;
4297 	struct sock *sk = sock->sk;
4298 
4299 	if (sk)
4300 		atomic_dec(&pkt_sk(sk)->mapped);
4301 }
4302 
4303 static const struct vm_operations_struct packet_mmap_ops = {
4304 	.open	=	packet_mm_open,
4305 	.close	=	packet_mm_close,
4306 };
4307 
4308 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4309 			unsigned int len)
4310 {
4311 	int i;
4312 
4313 	for (i = 0; i < len; i++) {
4314 		if (likely(pg_vec[i].buffer)) {
4315 			if (is_vmalloc_addr(pg_vec[i].buffer))
4316 				vfree(pg_vec[i].buffer);
4317 			else
4318 				free_pages((unsigned long)pg_vec[i].buffer,
4319 					   order);
4320 			pg_vec[i].buffer = NULL;
4321 		}
4322 	}
4323 	kfree(pg_vec);
4324 }
4325 
4326 static char *alloc_one_pg_vec_page(unsigned long order)
4327 {
4328 	char *buffer;
4329 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4330 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4331 
4332 	buffer = (char *) __get_free_pages(gfp_flags, order);
4333 	if (buffer)
4334 		return buffer;
4335 
4336 	/* __get_free_pages failed, fall back to vmalloc */
4337 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4338 	if (buffer)
4339 		return buffer;
4340 
4341 	/* vmalloc failed, lets dig into swap here */
4342 	gfp_flags &= ~__GFP_NORETRY;
4343 	buffer = (char *) __get_free_pages(gfp_flags, order);
4344 	if (buffer)
4345 		return buffer;
4346 
4347 	/* complete and utter failure */
4348 	return NULL;
4349 }
4350 
4351 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4352 {
4353 	unsigned int block_nr = req->tp_block_nr;
4354 	struct pgv *pg_vec;
4355 	int i;
4356 
4357 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4358 	if (unlikely(!pg_vec))
4359 		goto out;
4360 
4361 	for (i = 0; i < block_nr; i++) {
4362 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4363 		if (unlikely(!pg_vec[i].buffer))
4364 			goto out_free_pgvec;
4365 	}
4366 
4367 out:
4368 	return pg_vec;
4369 
4370 out_free_pgvec:
4371 	free_pg_vec(pg_vec, order, block_nr);
4372 	pg_vec = NULL;
4373 	goto out;
4374 }
4375 
4376 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4377 		int closing, int tx_ring)
4378 {
4379 	struct pgv *pg_vec = NULL;
4380 	struct packet_sock *po = pkt_sk(sk);
4381 	unsigned long *rx_owner_map = NULL;
4382 	int was_running, order = 0;
4383 	struct packet_ring_buffer *rb;
4384 	struct sk_buff_head *rb_queue;
4385 	__be16 num;
4386 	int err;
4387 	/* Added to avoid minimal code churn */
4388 	struct tpacket_req *req = &req_u->req;
4389 
4390 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4391 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4392 
4393 	err = -EBUSY;
4394 	if (!closing) {
4395 		if (atomic_read(&po->mapped))
4396 			goto out;
4397 		if (packet_read_pending(rb))
4398 			goto out;
4399 	}
4400 
4401 	if (req->tp_block_nr) {
4402 		unsigned int min_frame_size;
4403 
4404 		/* Sanity tests and some calculations */
4405 		err = -EBUSY;
4406 		if (unlikely(rb->pg_vec))
4407 			goto out;
4408 
4409 		switch (po->tp_version) {
4410 		case TPACKET_V1:
4411 			po->tp_hdrlen = TPACKET_HDRLEN;
4412 			break;
4413 		case TPACKET_V2:
4414 			po->tp_hdrlen = TPACKET2_HDRLEN;
4415 			break;
4416 		case TPACKET_V3:
4417 			po->tp_hdrlen = TPACKET3_HDRLEN;
4418 			break;
4419 		}
4420 
4421 		err = -EINVAL;
4422 		if (unlikely((int)req->tp_block_size <= 0))
4423 			goto out;
4424 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4425 			goto out;
4426 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4427 		if (po->tp_version >= TPACKET_V3 &&
4428 		    req->tp_block_size <
4429 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4430 			goto out;
4431 		if (unlikely(req->tp_frame_size < min_frame_size))
4432 			goto out;
4433 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4434 			goto out;
4435 
4436 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4437 		if (unlikely(rb->frames_per_block == 0))
4438 			goto out;
4439 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4440 			goto out;
4441 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4442 					req->tp_frame_nr))
4443 			goto out;
4444 
4445 		err = -ENOMEM;
4446 		order = get_order(req->tp_block_size);
4447 		pg_vec = alloc_pg_vec(req, order);
4448 		if (unlikely(!pg_vec))
4449 			goto out;
4450 		switch (po->tp_version) {
4451 		case TPACKET_V3:
4452 			/* Block transmit is not supported yet */
4453 			if (!tx_ring) {
4454 				init_prb_bdqc(po, rb, pg_vec, req_u);
4455 			} else {
4456 				struct tpacket_req3 *req3 = &req_u->req3;
4457 
4458 				if (req3->tp_retire_blk_tov ||
4459 				    req3->tp_sizeof_priv ||
4460 				    req3->tp_feature_req_word) {
4461 					err = -EINVAL;
4462 					goto out_free_pg_vec;
4463 				}
4464 			}
4465 			break;
4466 		default:
4467 			if (!tx_ring) {
4468 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4469 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4470 				if (!rx_owner_map)
4471 					goto out_free_pg_vec;
4472 			}
4473 			break;
4474 		}
4475 	}
4476 	/* Done */
4477 	else {
4478 		err = -EINVAL;
4479 		if (unlikely(req->tp_frame_nr))
4480 			goto out;
4481 	}
4482 
4483 
4484 	/* Detach socket from network */
4485 	spin_lock(&po->bind_lock);
4486 	was_running = packet_sock_flag(po, PACKET_SOCK_RUNNING);
4487 	num = po->num;
4488 	if (was_running) {
4489 		WRITE_ONCE(po->num, 0);
4490 		__unregister_prot_hook(sk, false);
4491 	}
4492 	spin_unlock(&po->bind_lock);
4493 
4494 	synchronize_net();
4495 
4496 	err = -EBUSY;
4497 	mutex_lock(&po->pg_vec_lock);
4498 	if (closing || atomic_read(&po->mapped) == 0) {
4499 		err = 0;
4500 		spin_lock_bh(&rb_queue->lock);
4501 		swap(rb->pg_vec, pg_vec);
4502 		if (po->tp_version <= TPACKET_V2)
4503 			swap(rb->rx_owner_map, rx_owner_map);
4504 		rb->frame_max = (req->tp_frame_nr - 1);
4505 		rb->head = 0;
4506 		rb->frame_size = req->tp_frame_size;
4507 		spin_unlock_bh(&rb_queue->lock);
4508 
4509 		swap(rb->pg_vec_order, order);
4510 		swap(rb->pg_vec_len, req->tp_block_nr);
4511 
4512 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4513 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4514 						tpacket_rcv : packet_rcv;
4515 		skb_queue_purge(rb_queue);
4516 		if (atomic_read(&po->mapped))
4517 			pr_err("packet_mmap: vma is busy: %d\n",
4518 			       atomic_read(&po->mapped));
4519 	}
4520 	mutex_unlock(&po->pg_vec_lock);
4521 
4522 	spin_lock(&po->bind_lock);
4523 	if (was_running) {
4524 		WRITE_ONCE(po->num, num);
4525 		register_prot_hook(sk);
4526 	}
4527 	spin_unlock(&po->bind_lock);
4528 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4529 		/* Because we don't support block-based V3 on tx-ring */
4530 		if (!tx_ring)
4531 			prb_shutdown_retire_blk_timer(po, rb_queue);
4532 	}
4533 
4534 out_free_pg_vec:
4535 	if (pg_vec) {
4536 		bitmap_free(rx_owner_map);
4537 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4538 	}
4539 out:
4540 	return err;
4541 }
4542 
4543 static int packet_mmap(struct file *file, struct socket *sock,
4544 		struct vm_area_struct *vma)
4545 {
4546 	struct sock *sk = sock->sk;
4547 	struct packet_sock *po = pkt_sk(sk);
4548 	unsigned long size, expected_size;
4549 	struct packet_ring_buffer *rb;
4550 	unsigned long start;
4551 	int err = -EINVAL;
4552 	int i;
4553 
4554 	if (vma->vm_pgoff)
4555 		return -EINVAL;
4556 
4557 	mutex_lock(&po->pg_vec_lock);
4558 
4559 	expected_size = 0;
4560 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4561 		if (rb->pg_vec) {
4562 			expected_size += rb->pg_vec_len
4563 						* rb->pg_vec_pages
4564 						* PAGE_SIZE;
4565 		}
4566 	}
4567 
4568 	if (expected_size == 0)
4569 		goto out;
4570 
4571 	size = vma->vm_end - vma->vm_start;
4572 	if (size != expected_size)
4573 		goto out;
4574 
4575 	start = vma->vm_start;
4576 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4577 		if (rb->pg_vec == NULL)
4578 			continue;
4579 
4580 		for (i = 0; i < rb->pg_vec_len; i++) {
4581 			struct page *page;
4582 			void *kaddr = rb->pg_vec[i].buffer;
4583 			int pg_num;
4584 
4585 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4586 				page = pgv_to_page(kaddr);
4587 				err = vm_insert_page(vma, start, page);
4588 				if (unlikely(err))
4589 					goto out;
4590 				start += PAGE_SIZE;
4591 				kaddr += PAGE_SIZE;
4592 			}
4593 		}
4594 	}
4595 
4596 	atomic_inc(&po->mapped);
4597 	vma->vm_ops = &packet_mmap_ops;
4598 	err = 0;
4599 
4600 out:
4601 	mutex_unlock(&po->pg_vec_lock);
4602 	return err;
4603 }
4604 
4605 static const struct proto_ops packet_ops_spkt = {
4606 	.family =	PF_PACKET,
4607 	.owner =	THIS_MODULE,
4608 	.release =	packet_release,
4609 	.bind =		packet_bind_spkt,
4610 	.connect =	sock_no_connect,
4611 	.socketpair =	sock_no_socketpair,
4612 	.accept =	sock_no_accept,
4613 	.getname =	packet_getname_spkt,
4614 	.poll =		datagram_poll,
4615 	.ioctl =	packet_ioctl,
4616 	.gettstamp =	sock_gettstamp,
4617 	.listen =	sock_no_listen,
4618 	.shutdown =	sock_no_shutdown,
4619 	.sendmsg =	packet_sendmsg_spkt,
4620 	.recvmsg =	packet_recvmsg,
4621 	.mmap =		sock_no_mmap,
4622 	.sendpage =	sock_no_sendpage,
4623 };
4624 
4625 static const struct proto_ops packet_ops = {
4626 	.family =	PF_PACKET,
4627 	.owner =	THIS_MODULE,
4628 	.release =	packet_release,
4629 	.bind =		packet_bind,
4630 	.connect =	sock_no_connect,
4631 	.socketpair =	sock_no_socketpair,
4632 	.accept =	sock_no_accept,
4633 	.getname =	packet_getname,
4634 	.poll =		packet_poll,
4635 	.ioctl =	packet_ioctl,
4636 	.gettstamp =	sock_gettstamp,
4637 	.listen =	sock_no_listen,
4638 	.shutdown =	sock_no_shutdown,
4639 	.setsockopt =	packet_setsockopt,
4640 	.getsockopt =	packet_getsockopt,
4641 	.sendmsg =	packet_sendmsg,
4642 	.recvmsg =	packet_recvmsg,
4643 	.mmap =		packet_mmap,
4644 	.sendpage =	sock_no_sendpage,
4645 };
4646 
4647 static const struct net_proto_family packet_family_ops = {
4648 	.family =	PF_PACKET,
4649 	.create =	packet_create,
4650 	.owner	=	THIS_MODULE,
4651 };
4652 
4653 static struct notifier_block packet_netdev_notifier = {
4654 	.notifier_call =	packet_notifier,
4655 };
4656 
4657 #ifdef CONFIG_PROC_FS
4658 
4659 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4660 	__acquires(RCU)
4661 {
4662 	struct net *net = seq_file_net(seq);
4663 
4664 	rcu_read_lock();
4665 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4666 }
4667 
4668 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4669 {
4670 	struct net *net = seq_file_net(seq);
4671 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4672 }
4673 
4674 static void packet_seq_stop(struct seq_file *seq, void *v)
4675 	__releases(RCU)
4676 {
4677 	rcu_read_unlock();
4678 }
4679 
4680 static int packet_seq_show(struct seq_file *seq, void *v)
4681 {
4682 	if (v == SEQ_START_TOKEN)
4683 		seq_printf(seq,
4684 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4685 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4686 	else {
4687 		struct sock *s = sk_entry(v);
4688 		const struct packet_sock *po = pkt_sk(s);
4689 
4690 		seq_printf(seq,
4691 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4692 			   s,
4693 			   refcount_read(&s->sk_refcnt),
4694 			   s->sk_type,
4695 			   ntohs(READ_ONCE(po->num)),
4696 			   READ_ONCE(po->ifindex),
4697 			   packet_sock_flag(po, PACKET_SOCK_RUNNING),
4698 			   atomic_read(&s->sk_rmem_alloc),
4699 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4700 			   sock_i_ino(s));
4701 	}
4702 
4703 	return 0;
4704 }
4705 
4706 static const struct seq_operations packet_seq_ops = {
4707 	.start	= packet_seq_start,
4708 	.next	= packet_seq_next,
4709 	.stop	= packet_seq_stop,
4710 	.show	= packet_seq_show,
4711 };
4712 #endif
4713 
4714 static int __net_init packet_net_init(struct net *net)
4715 {
4716 	mutex_init(&net->packet.sklist_lock);
4717 	INIT_HLIST_HEAD(&net->packet.sklist);
4718 
4719 #ifdef CONFIG_PROC_FS
4720 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4721 			sizeof(struct seq_net_private)))
4722 		return -ENOMEM;
4723 #endif /* CONFIG_PROC_FS */
4724 
4725 	return 0;
4726 }
4727 
4728 static void __net_exit packet_net_exit(struct net *net)
4729 {
4730 	remove_proc_entry("packet", net->proc_net);
4731 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4732 }
4733 
4734 static struct pernet_operations packet_net_ops = {
4735 	.init = packet_net_init,
4736 	.exit = packet_net_exit,
4737 };
4738 
4739 
4740 static void __exit packet_exit(void)
4741 {
4742 	sock_unregister(PF_PACKET);
4743 	proto_unregister(&packet_proto);
4744 	unregister_netdevice_notifier(&packet_netdev_notifier);
4745 	unregister_pernet_subsys(&packet_net_ops);
4746 }
4747 
4748 static int __init packet_init(void)
4749 {
4750 	int rc;
4751 
4752 	rc = register_pernet_subsys(&packet_net_ops);
4753 	if (rc)
4754 		goto out;
4755 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4756 	if (rc)
4757 		goto out_pernet;
4758 	rc = proto_register(&packet_proto, 0);
4759 	if (rc)
4760 		goto out_notifier;
4761 	rc = sock_register(&packet_family_ops);
4762 	if (rc)
4763 		goto out_proto;
4764 
4765 	return 0;
4766 
4767 out_proto:
4768 	proto_unregister(&packet_proto);
4769 out_notifier:
4770 	unregister_netdevice_notifier(&packet_netdev_notifier);
4771 out_pernet:
4772 	unregister_pernet_subsys(&packet_net_ops);
4773 out:
4774 	return rc;
4775 }
4776 
4777 module_init(packet_init);
4778 module_exit(packet_exit);
4779 MODULE_LICENSE("GPL");
4780 MODULE_ALIAS_NETPROTO(PF_PACKET);
4781