1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb_tstamp(skb), ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 1339 sk_refcnt_debug_dec(sk); 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = prandom_u32() % ROLLOVER_HLEN; 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return prandom_u32_max(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1414 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1415 if (i != j) 1416 po->rollover->sock = i; 1417 atomic_long_inc(&po->rollover->num); 1418 if (room == ROOM_LOW) 1419 atomic_long_inc(&po->rollover->num_huge); 1420 return i; 1421 } 1422 1423 if (++i == num) 1424 i = 0; 1425 } while (i != j); 1426 1427 atomic_long_inc(&po->rollover->num_failed); 1428 return idx; 1429 } 1430 1431 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1432 struct sk_buff *skb, 1433 unsigned int num) 1434 { 1435 return skb_get_queue_mapping(skb) % num; 1436 } 1437 1438 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1439 struct sk_buff *skb, 1440 unsigned int num) 1441 { 1442 struct bpf_prog *prog; 1443 unsigned int ret = 0; 1444 1445 rcu_read_lock(); 1446 prog = rcu_dereference(f->bpf_prog); 1447 if (prog) 1448 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1449 rcu_read_unlock(); 1450 1451 return ret; 1452 } 1453 1454 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1455 { 1456 return f->flags & (flag >> 8); 1457 } 1458 1459 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1460 struct packet_type *pt, struct net_device *orig_dev) 1461 { 1462 struct packet_fanout *f = pt->af_packet_priv; 1463 unsigned int num = READ_ONCE(f->num_members); 1464 struct net *net = read_pnet(&f->net); 1465 struct packet_sock *po; 1466 unsigned int idx; 1467 1468 if (!net_eq(dev_net(dev), net) || !num) { 1469 kfree_skb(skb); 1470 return 0; 1471 } 1472 1473 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1474 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1475 if (!skb) 1476 return 0; 1477 } 1478 switch (f->type) { 1479 case PACKET_FANOUT_HASH: 1480 default: 1481 idx = fanout_demux_hash(f, skb, num); 1482 break; 1483 case PACKET_FANOUT_LB: 1484 idx = fanout_demux_lb(f, skb, num); 1485 break; 1486 case PACKET_FANOUT_CPU: 1487 idx = fanout_demux_cpu(f, skb, num); 1488 break; 1489 case PACKET_FANOUT_RND: 1490 idx = fanout_demux_rnd(f, skb, num); 1491 break; 1492 case PACKET_FANOUT_QM: 1493 idx = fanout_demux_qm(f, skb, num); 1494 break; 1495 case PACKET_FANOUT_ROLLOVER: 1496 idx = fanout_demux_rollover(f, skb, 0, false, num); 1497 break; 1498 case PACKET_FANOUT_CBPF: 1499 case PACKET_FANOUT_EBPF: 1500 idx = fanout_demux_bpf(f, skb, num); 1501 break; 1502 } 1503 1504 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1505 idx = fanout_demux_rollover(f, skb, idx, true, num); 1506 1507 po = pkt_sk(rcu_dereference(f->arr[idx])); 1508 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1509 } 1510 1511 DEFINE_MUTEX(fanout_mutex); 1512 EXPORT_SYMBOL_GPL(fanout_mutex); 1513 static LIST_HEAD(fanout_list); 1514 static u16 fanout_next_id; 1515 1516 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1517 { 1518 struct packet_fanout *f = po->fanout; 1519 1520 spin_lock(&f->lock); 1521 rcu_assign_pointer(f->arr[f->num_members], sk); 1522 smp_wmb(); 1523 f->num_members++; 1524 if (f->num_members == 1) 1525 dev_add_pack(&f->prot_hook); 1526 spin_unlock(&f->lock); 1527 } 1528 1529 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1530 { 1531 struct packet_fanout *f = po->fanout; 1532 int i; 1533 1534 spin_lock(&f->lock); 1535 for (i = 0; i < f->num_members; i++) { 1536 if (rcu_dereference_protected(f->arr[i], 1537 lockdep_is_held(&f->lock)) == sk) 1538 break; 1539 } 1540 BUG_ON(i >= f->num_members); 1541 rcu_assign_pointer(f->arr[i], 1542 rcu_dereference_protected(f->arr[f->num_members - 1], 1543 lockdep_is_held(&f->lock))); 1544 f->num_members--; 1545 if (f->num_members == 0) 1546 __dev_remove_pack(&f->prot_hook); 1547 spin_unlock(&f->lock); 1548 } 1549 1550 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1551 { 1552 if (sk->sk_family != PF_PACKET) 1553 return false; 1554 1555 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1556 } 1557 1558 static void fanout_init_data(struct packet_fanout *f) 1559 { 1560 switch (f->type) { 1561 case PACKET_FANOUT_LB: 1562 atomic_set(&f->rr_cur, 0); 1563 break; 1564 case PACKET_FANOUT_CBPF: 1565 case PACKET_FANOUT_EBPF: 1566 RCU_INIT_POINTER(f->bpf_prog, NULL); 1567 break; 1568 } 1569 } 1570 1571 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1572 { 1573 struct bpf_prog *old; 1574 1575 spin_lock(&f->lock); 1576 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1577 rcu_assign_pointer(f->bpf_prog, new); 1578 spin_unlock(&f->lock); 1579 1580 if (old) { 1581 synchronize_net(); 1582 bpf_prog_destroy(old); 1583 } 1584 } 1585 1586 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1587 unsigned int len) 1588 { 1589 struct bpf_prog *new; 1590 struct sock_fprog fprog; 1591 int ret; 1592 1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1594 return -EPERM; 1595 1596 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1597 if (ret) 1598 return ret; 1599 1600 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1601 if (ret) 1602 return ret; 1603 1604 __fanout_set_data_bpf(po->fanout, new); 1605 return 0; 1606 } 1607 1608 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1609 unsigned int len) 1610 { 1611 struct bpf_prog *new; 1612 u32 fd; 1613 1614 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1615 return -EPERM; 1616 if (len != sizeof(fd)) 1617 return -EINVAL; 1618 if (copy_from_sockptr(&fd, data, len)) 1619 return -EFAULT; 1620 1621 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1622 if (IS_ERR(new)) 1623 return PTR_ERR(new); 1624 1625 __fanout_set_data_bpf(po->fanout, new); 1626 return 0; 1627 } 1628 1629 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1630 unsigned int len) 1631 { 1632 switch (po->fanout->type) { 1633 case PACKET_FANOUT_CBPF: 1634 return fanout_set_data_cbpf(po, data, len); 1635 case PACKET_FANOUT_EBPF: 1636 return fanout_set_data_ebpf(po, data, len); 1637 default: 1638 return -EINVAL; 1639 } 1640 } 1641 1642 static void fanout_release_data(struct packet_fanout *f) 1643 { 1644 switch (f->type) { 1645 case PACKET_FANOUT_CBPF: 1646 case PACKET_FANOUT_EBPF: 1647 __fanout_set_data_bpf(f, NULL); 1648 } 1649 } 1650 1651 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1652 { 1653 struct packet_fanout *f; 1654 1655 list_for_each_entry(f, &fanout_list, list) { 1656 if (f->id == candidate_id && 1657 read_pnet(&f->net) == sock_net(sk)) { 1658 return false; 1659 } 1660 } 1661 return true; 1662 } 1663 1664 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1665 { 1666 u16 id = fanout_next_id; 1667 1668 do { 1669 if (__fanout_id_is_free(sk, id)) { 1670 *new_id = id; 1671 fanout_next_id = id + 1; 1672 return true; 1673 } 1674 1675 id++; 1676 } while (id != fanout_next_id); 1677 1678 return false; 1679 } 1680 1681 static int fanout_add(struct sock *sk, struct fanout_args *args) 1682 { 1683 struct packet_rollover *rollover = NULL; 1684 struct packet_sock *po = pkt_sk(sk); 1685 u16 type_flags = args->type_flags; 1686 struct packet_fanout *f, *match; 1687 u8 type = type_flags & 0xff; 1688 u8 flags = type_flags >> 8; 1689 u16 id = args->id; 1690 int err; 1691 1692 switch (type) { 1693 case PACKET_FANOUT_ROLLOVER: 1694 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1695 return -EINVAL; 1696 break; 1697 case PACKET_FANOUT_HASH: 1698 case PACKET_FANOUT_LB: 1699 case PACKET_FANOUT_CPU: 1700 case PACKET_FANOUT_RND: 1701 case PACKET_FANOUT_QM: 1702 case PACKET_FANOUT_CBPF: 1703 case PACKET_FANOUT_EBPF: 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 mutex_lock(&fanout_mutex); 1710 1711 err = -EALREADY; 1712 if (po->fanout) 1713 goto out; 1714 1715 if (type == PACKET_FANOUT_ROLLOVER || 1716 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1717 err = -ENOMEM; 1718 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1719 if (!rollover) 1720 goto out; 1721 atomic_long_set(&rollover->num, 0); 1722 atomic_long_set(&rollover->num_huge, 0); 1723 atomic_long_set(&rollover->num_failed, 0); 1724 } 1725 1726 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1727 if (id != 0) { 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 if (!fanout_find_new_id(sk, &id)) { 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 /* ephemeral flag for the first socket in the group: drop it */ 1736 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1737 } 1738 1739 match = NULL; 1740 list_for_each_entry(f, &fanout_list, list) { 1741 if (f->id == id && 1742 read_pnet(&f->net) == sock_net(sk)) { 1743 match = f; 1744 break; 1745 } 1746 } 1747 err = -EINVAL; 1748 if (match) { 1749 if (match->flags != flags) 1750 goto out; 1751 if (args->max_num_members && 1752 args->max_num_members != match->max_num_members) 1753 goto out; 1754 } else { 1755 if (args->max_num_members > PACKET_FANOUT_MAX) 1756 goto out; 1757 if (!args->max_num_members) 1758 /* legacy PACKET_FANOUT_MAX */ 1759 args->max_num_members = 256; 1760 err = -ENOMEM; 1761 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1762 GFP_KERNEL); 1763 if (!match) 1764 goto out; 1765 write_pnet(&match->net, sock_net(sk)); 1766 match->id = id; 1767 match->type = type; 1768 match->flags = flags; 1769 INIT_LIST_HEAD(&match->list); 1770 spin_lock_init(&match->lock); 1771 refcount_set(&match->sk_ref, 0); 1772 fanout_init_data(match); 1773 match->prot_hook.type = po->prot_hook.type; 1774 match->prot_hook.dev = po->prot_hook.dev; 1775 match->prot_hook.func = packet_rcv_fanout; 1776 match->prot_hook.af_packet_priv = match; 1777 match->prot_hook.af_packet_net = read_pnet(&match->net); 1778 match->prot_hook.id_match = match_fanout_group; 1779 match->max_num_members = args->max_num_members; 1780 list_add(&match->list, &fanout_list); 1781 } 1782 err = -EINVAL; 1783 1784 spin_lock(&po->bind_lock); 1785 if (po->running && 1786 match->type == type && 1787 match->prot_hook.type == po->prot_hook.type && 1788 match->prot_hook.dev == po->prot_hook.dev) { 1789 err = -ENOSPC; 1790 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1791 __dev_remove_pack(&po->prot_hook); 1792 1793 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1794 WRITE_ONCE(po->fanout, match); 1795 1796 po->rollover = rollover; 1797 rollover = NULL; 1798 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1799 __fanout_link(sk, po); 1800 err = 0; 1801 } 1802 } 1803 spin_unlock(&po->bind_lock); 1804 1805 if (err && !refcount_read(&match->sk_ref)) { 1806 list_del(&match->list); 1807 kvfree(match); 1808 } 1809 1810 out: 1811 kfree(rollover); 1812 mutex_unlock(&fanout_mutex); 1813 return err; 1814 } 1815 1816 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1817 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1818 * It is the responsibility of the caller to call fanout_release_data() and 1819 * free the returned packet_fanout (after synchronize_net()) 1820 */ 1821 static struct packet_fanout *fanout_release(struct sock *sk) 1822 { 1823 struct packet_sock *po = pkt_sk(sk); 1824 struct packet_fanout *f; 1825 1826 mutex_lock(&fanout_mutex); 1827 f = po->fanout; 1828 if (f) { 1829 po->fanout = NULL; 1830 1831 if (refcount_dec_and_test(&f->sk_ref)) 1832 list_del(&f->list); 1833 else 1834 f = NULL; 1835 } 1836 mutex_unlock(&fanout_mutex); 1837 1838 return f; 1839 } 1840 1841 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1842 struct sk_buff *skb) 1843 { 1844 /* Earlier code assumed this would be a VLAN pkt, double-check 1845 * this now that we have the actual packet in hand. We can only 1846 * do this check on Ethernet devices. 1847 */ 1848 if (unlikely(dev->type != ARPHRD_ETHER)) 1849 return false; 1850 1851 skb_reset_mac_header(skb); 1852 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1853 } 1854 1855 static const struct proto_ops packet_ops; 1856 1857 static const struct proto_ops packet_ops_spkt; 1858 1859 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1860 struct packet_type *pt, struct net_device *orig_dev) 1861 { 1862 struct sock *sk; 1863 struct sockaddr_pkt *spkt; 1864 1865 /* 1866 * When we registered the protocol we saved the socket in the data 1867 * field for just this event. 1868 */ 1869 1870 sk = pt->af_packet_priv; 1871 1872 /* 1873 * Yank back the headers [hope the device set this 1874 * right or kerboom...] 1875 * 1876 * Incoming packets have ll header pulled, 1877 * push it back. 1878 * 1879 * For outgoing ones skb->data == skb_mac_header(skb) 1880 * so that this procedure is noop. 1881 */ 1882 1883 if (skb->pkt_type == PACKET_LOOPBACK) 1884 goto out; 1885 1886 if (!net_eq(dev_net(dev), sock_net(sk))) 1887 goto out; 1888 1889 skb = skb_share_check(skb, GFP_ATOMIC); 1890 if (skb == NULL) 1891 goto oom; 1892 1893 /* drop any routing info */ 1894 skb_dst_drop(skb); 1895 1896 /* drop conntrack reference */ 1897 nf_reset_ct(skb); 1898 1899 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1900 1901 skb_push(skb, skb->data - skb_mac_header(skb)); 1902 1903 /* 1904 * The SOCK_PACKET socket receives _all_ frames. 1905 */ 1906 1907 spkt->spkt_family = dev->type; 1908 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1909 spkt->spkt_protocol = skb->protocol; 1910 1911 /* 1912 * Charge the memory to the socket. This is done specifically 1913 * to prevent sockets using all the memory up. 1914 */ 1915 1916 if (sock_queue_rcv_skb(sk, skb) == 0) 1917 return 0; 1918 1919 out: 1920 kfree_skb(skb); 1921 oom: 1922 return 0; 1923 } 1924 1925 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1926 { 1927 int depth; 1928 1929 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1930 sock->type == SOCK_RAW) { 1931 skb_reset_mac_header(skb); 1932 skb->protocol = dev_parse_header_protocol(skb); 1933 } 1934 1935 /* Move network header to the right position for VLAN tagged packets */ 1936 if (likely(skb->dev->type == ARPHRD_ETHER) && 1937 eth_type_vlan(skb->protocol) && 1938 __vlan_get_protocol(skb, skb->protocol, &depth) != 0) { 1939 if (pskb_may_pull(skb, depth)) 1940 skb_set_network_header(skb, depth); 1941 } 1942 1943 skb_probe_transport_header(skb); 1944 } 1945 1946 /* 1947 * Output a raw packet to a device layer. This bypasses all the other 1948 * protocol layers and you must therefore supply it with a complete frame 1949 */ 1950 1951 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1952 size_t len) 1953 { 1954 struct sock *sk = sock->sk; 1955 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1956 struct sk_buff *skb = NULL; 1957 struct net_device *dev; 1958 struct sockcm_cookie sockc; 1959 __be16 proto = 0; 1960 int err; 1961 int extra_len = 0; 1962 1963 /* 1964 * Get and verify the address. 1965 */ 1966 1967 if (saddr) { 1968 if (msg->msg_namelen < sizeof(struct sockaddr)) 1969 return -EINVAL; 1970 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1971 proto = saddr->spkt_protocol; 1972 } else 1973 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1974 1975 /* 1976 * Find the device first to size check it 1977 */ 1978 1979 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1980 retry: 1981 rcu_read_lock(); 1982 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1983 err = -ENODEV; 1984 if (dev == NULL) 1985 goto out_unlock; 1986 1987 err = -ENETDOWN; 1988 if (!(dev->flags & IFF_UP)) 1989 goto out_unlock; 1990 1991 /* 1992 * You may not queue a frame bigger than the mtu. This is the lowest level 1993 * raw protocol and you must do your own fragmentation at this level. 1994 */ 1995 1996 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1997 if (!netif_supports_nofcs(dev)) { 1998 err = -EPROTONOSUPPORT; 1999 goto out_unlock; 2000 } 2001 extra_len = 4; /* We're doing our own CRC */ 2002 } 2003 2004 err = -EMSGSIZE; 2005 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 2006 goto out_unlock; 2007 2008 if (!skb) { 2009 size_t reserved = LL_RESERVED_SPACE(dev); 2010 int tlen = dev->needed_tailroom; 2011 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2012 2013 rcu_read_unlock(); 2014 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2015 if (skb == NULL) 2016 return -ENOBUFS; 2017 /* FIXME: Save some space for broken drivers that write a hard 2018 * header at transmission time by themselves. PPP is the notable 2019 * one here. This should really be fixed at the driver level. 2020 */ 2021 skb_reserve(skb, reserved); 2022 skb_reset_network_header(skb); 2023 2024 /* Try to align data part correctly */ 2025 if (hhlen) { 2026 skb->data -= hhlen; 2027 skb->tail -= hhlen; 2028 if (len < hhlen) 2029 skb_reset_network_header(skb); 2030 } 2031 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2032 if (err) 2033 goto out_free; 2034 goto retry; 2035 } 2036 2037 if (!dev_validate_header(dev, skb->data, len)) { 2038 err = -EINVAL; 2039 goto out_unlock; 2040 } 2041 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2042 !packet_extra_vlan_len_allowed(dev, skb)) { 2043 err = -EMSGSIZE; 2044 goto out_unlock; 2045 } 2046 2047 sockcm_init(&sockc, sk); 2048 if (msg->msg_controllen) { 2049 err = sock_cmsg_send(sk, msg, &sockc); 2050 if (unlikely(err)) 2051 goto out_unlock; 2052 } 2053 2054 skb->protocol = proto; 2055 skb->dev = dev; 2056 skb->priority = sk->sk_priority; 2057 skb->mark = sk->sk_mark; 2058 skb->tstamp = sockc.transmit_time; 2059 2060 skb_setup_tx_timestamp(skb, sockc.tsflags); 2061 2062 if (unlikely(extra_len == 4)) 2063 skb->no_fcs = 1; 2064 2065 packet_parse_headers(skb, sock); 2066 2067 dev_queue_xmit(skb); 2068 rcu_read_unlock(); 2069 return len; 2070 2071 out_unlock: 2072 rcu_read_unlock(); 2073 out_free: 2074 kfree_skb(skb); 2075 return err; 2076 } 2077 2078 static unsigned int run_filter(struct sk_buff *skb, 2079 const struct sock *sk, 2080 unsigned int res) 2081 { 2082 struct sk_filter *filter; 2083 2084 rcu_read_lock(); 2085 filter = rcu_dereference(sk->sk_filter); 2086 if (filter != NULL) 2087 res = bpf_prog_run_clear_cb(filter->prog, skb); 2088 rcu_read_unlock(); 2089 2090 return res; 2091 } 2092 2093 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2094 size_t *len) 2095 { 2096 struct virtio_net_hdr vnet_hdr; 2097 2098 if (*len < sizeof(vnet_hdr)) 2099 return -EINVAL; 2100 *len -= sizeof(vnet_hdr); 2101 2102 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2103 return -EINVAL; 2104 2105 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2106 } 2107 2108 /* 2109 * This function makes lazy skb cloning in hope that most of packets 2110 * are discarded by BPF. 2111 * 2112 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2113 * and skb->cb are mangled. It works because (and until) packets 2114 * falling here are owned by current CPU. Output packets are cloned 2115 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2116 * sequentially, so that if we return skb to original state on exit, 2117 * we will not harm anyone. 2118 */ 2119 2120 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2121 struct packet_type *pt, struct net_device *orig_dev) 2122 { 2123 struct sock *sk; 2124 struct sockaddr_ll *sll; 2125 struct packet_sock *po; 2126 u8 *skb_head = skb->data; 2127 int skb_len = skb->len; 2128 unsigned int snaplen, res; 2129 bool is_drop_n_account = false; 2130 2131 if (skb->pkt_type == PACKET_LOOPBACK) 2132 goto drop; 2133 2134 sk = pt->af_packet_priv; 2135 po = pkt_sk(sk); 2136 2137 if (!net_eq(dev_net(dev), sock_net(sk))) 2138 goto drop; 2139 2140 skb->dev = dev; 2141 2142 if (dev_has_header(dev)) { 2143 /* The device has an explicit notion of ll header, 2144 * exported to higher levels. 2145 * 2146 * Otherwise, the device hides details of its frame 2147 * structure, so that corresponding packet head is 2148 * never delivered to user. 2149 */ 2150 if (sk->sk_type != SOCK_DGRAM) 2151 skb_push(skb, skb->data - skb_mac_header(skb)); 2152 else if (skb->pkt_type == PACKET_OUTGOING) { 2153 /* Special case: outgoing packets have ll header at head */ 2154 skb_pull(skb, skb_network_offset(skb)); 2155 } 2156 } 2157 2158 snaplen = skb->len; 2159 2160 res = run_filter(skb, sk, snaplen); 2161 if (!res) 2162 goto drop_n_restore; 2163 if (snaplen > res) 2164 snaplen = res; 2165 2166 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2167 goto drop_n_acct; 2168 2169 if (skb_shared(skb)) { 2170 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2171 if (nskb == NULL) 2172 goto drop_n_acct; 2173 2174 if (skb_head != skb->data) { 2175 skb->data = skb_head; 2176 skb->len = skb_len; 2177 } 2178 consume_skb(skb); 2179 skb = nskb; 2180 } 2181 2182 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2183 2184 sll = &PACKET_SKB_CB(skb)->sa.ll; 2185 sll->sll_hatype = dev->type; 2186 sll->sll_pkttype = skb->pkt_type; 2187 if (unlikely(po->origdev)) 2188 sll->sll_ifindex = orig_dev->ifindex; 2189 else 2190 sll->sll_ifindex = dev->ifindex; 2191 2192 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2193 2194 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2195 * Use their space for storing the original skb length. 2196 */ 2197 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2198 2199 if (pskb_trim(skb, snaplen)) 2200 goto drop_n_acct; 2201 2202 skb_set_owner_r(skb, sk); 2203 skb->dev = NULL; 2204 skb_dst_drop(skb); 2205 2206 /* drop conntrack reference */ 2207 nf_reset_ct(skb); 2208 2209 spin_lock(&sk->sk_receive_queue.lock); 2210 po->stats.stats1.tp_packets++; 2211 sock_skb_set_dropcount(sk, skb); 2212 skb_clear_delivery_time(skb); 2213 __skb_queue_tail(&sk->sk_receive_queue, skb); 2214 spin_unlock(&sk->sk_receive_queue.lock); 2215 sk->sk_data_ready(sk); 2216 return 0; 2217 2218 drop_n_acct: 2219 is_drop_n_account = true; 2220 atomic_inc(&po->tp_drops); 2221 atomic_inc(&sk->sk_drops); 2222 2223 drop_n_restore: 2224 if (skb_head != skb->data && skb_shared(skb)) { 2225 skb->data = skb_head; 2226 skb->len = skb_len; 2227 } 2228 drop: 2229 if (!is_drop_n_account) 2230 consume_skb(skb); 2231 else 2232 kfree_skb(skb); 2233 return 0; 2234 } 2235 2236 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2237 struct packet_type *pt, struct net_device *orig_dev) 2238 { 2239 struct sock *sk; 2240 struct packet_sock *po; 2241 struct sockaddr_ll *sll; 2242 union tpacket_uhdr h; 2243 u8 *skb_head = skb->data; 2244 int skb_len = skb->len; 2245 unsigned int snaplen, res; 2246 unsigned long status = TP_STATUS_USER; 2247 unsigned short macoff, hdrlen; 2248 unsigned int netoff; 2249 struct sk_buff *copy_skb = NULL; 2250 struct timespec64 ts; 2251 __u32 ts_status; 2252 bool is_drop_n_account = false; 2253 unsigned int slot_id = 0; 2254 bool do_vnet = false; 2255 2256 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2257 * We may add members to them until current aligned size without forcing 2258 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2259 */ 2260 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2261 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2262 2263 if (skb->pkt_type == PACKET_LOOPBACK) 2264 goto drop; 2265 2266 sk = pt->af_packet_priv; 2267 po = pkt_sk(sk); 2268 2269 if (!net_eq(dev_net(dev), sock_net(sk))) 2270 goto drop; 2271 2272 if (dev_has_header(dev)) { 2273 if (sk->sk_type != SOCK_DGRAM) 2274 skb_push(skb, skb->data - skb_mac_header(skb)); 2275 else if (skb->pkt_type == PACKET_OUTGOING) { 2276 /* Special case: outgoing packets have ll header at head */ 2277 skb_pull(skb, skb_network_offset(skb)); 2278 } 2279 } 2280 2281 snaplen = skb->len; 2282 2283 res = run_filter(skb, sk, snaplen); 2284 if (!res) 2285 goto drop_n_restore; 2286 2287 /* If we are flooded, just give up */ 2288 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2289 atomic_inc(&po->tp_drops); 2290 goto drop_n_restore; 2291 } 2292 2293 if (skb->ip_summed == CHECKSUM_PARTIAL) 2294 status |= TP_STATUS_CSUMNOTREADY; 2295 else if (skb->pkt_type != PACKET_OUTGOING && 2296 (skb->ip_summed == CHECKSUM_COMPLETE || 2297 skb_csum_unnecessary(skb))) 2298 status |= TP_STATUS_CSUM_VALID; 2299 2300 if (snaplen > res) 2301 snaplen = res; 2302 2303 if (sk->sk_type == SOCK_DGRAM) { 2304 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2305 po->tp_reserve; 2306 } else { 2307 unsigned int maclen = skb_network_offset(skb); 2308 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2309 (maclen < 16 ? 16 : maclen)) + 2310 po->tp_reserve; 2311 if (po->has_vnet_hdr) { 2312 netoff += sizeof(struct virtio_net_hdr); 2313 do_vnet = true; 2314 } 2315 macoff = netoff - maclen; 2316 } 2317 if (netoff > USHRT_MAX) { 2318 atomic_inc(&po->tp_drops); 2319 goto drop_n_restore; 2320 } 2321 if (po->tp_version <= TPACKET_V2) { 2322 if (macoff + snaplen > po->rx_ring.frame_size) { 2323 if (po->copy_thresh && 2324 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2325 if (skb_shared(skb)) { 2326 copy_skb = skb_clone(skb, GFP_ATOMIC); 2327 } else { 2328 copy_skb = skb_get(skb); 2329 skb_head = skb->data; 2330 } 2331 if (copy_skb) { 2332 memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, 2333 sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); 2334 skb_set_owner_r(copy_skb, sk); 2335 } 2336 } 2337 snaplen = po->rx_ring.frame_size - macoff; 2338 if ((int)snaplen < 0) { 2339 snaplen = 0; 2340 do_vnet = false; 2341 } 2342 } 2343 } else if (unlikely(macoff + snaplen > 2344 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2345 u32 nval; 2346 2347 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2348 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2349 snaplen, nval, macoff); 2350 snaplen = nval; 2351 if (unlikely((int)snaplen < 0)) { 2352 snaplen = 0; 2353 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2354 do_vnet = false; 2355 } 2356 } 2357 spin_lock(&sk->sk_receive_queue.lock); 2358 h.raw = packet_current_rx_frame(po, skb, 2359 TP_STATUS_KERNEL, (macoff+snaplen)); 2360 if (!h.raw) 2361 goto drop_n_account; 2362 2363 if (po->tp_version <= TPACKET_V2) { 2364 slot_id = po->rx_ring.head; 2365 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2366 goto drop_n_account; 2367 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2368 } 2369 2370 if (do_vnet && 2371 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2372 sizeof(struct virtio_net_hdr), 2373 vio_le(), true, 0)) { 2374 if (po->tp_version == TPACKET_V3) 2375 prb_clear_blk_fill_status(&po->rx_ring); 2376 goto drop_n_account; 2377 } 2378 2379 if (po->tp_version <= TPACKET_V2) { 2380 packet_increment_rx_head(po, &po->rx_ring); 2381 /* 2382 * LOSING will be reported till you read the stats, 2383 * because it's COR - Clear On Read. 2384 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2385 * at packet level. 2386 */ 2387 if (atomic_read(&po->tp_drops)) 2388 status |= TP_STATUS_LOSING; 2389 } 2390 2391 po->stats.stats1.tp_packets++; 2392 if (copy_skb) { 2393 status |= TP_STATUS_COPY; 2394 skb_clear_delivery_time(copy_skb); 2395 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2396 } 2397 spin_unlock(&sk->sk_receive_queue.lock); 2398 2399 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2400 2401 /* Always timestamp; prefer an existing software timestamp taken 2402 * closer to the time of capture. 2403 */ 2404 ts_status = tpacket_get_timestamp(skb, &ts, 2405 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2406 if (!ts_status) 2407 ktime_get_real_ts64(&ts); 2408 2409 status |= ts_status; 2410 2411 switch (po->tp_version) { 2412 case TPACKET_V1: 2413 h.h1->tp_len = skb->len; 2414 h.h1->tp_snaplen = snaplen; 2415 h.h1->tp_mac = macoff; 2416 h.h1->tp_net = netoff; 2417 h.h1->tp_sec = ts.tv_sec; 2418 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2419 hdrlen = sizeof(*h.h1); 2420 break; 2421 case TPACKET_V2: 2422 h.h2->tp_len = skb->len; 2423 h.h2->tp_snaplen = snaplen; 2424 h.h2->tp_mac = macoff; 2425 h.h2->tp_net = netoff; 2426 h.h2->tp_sec = ts.tv_sec; 2427 h.h2->tp_nsec = ts.tv_nsec; 2428 if (skb_vlan_tag_present(skb)) { 2429 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2430 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2431 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2432 } else { 2433 h.h2->tp_vlan_tci = 0; 2434 h.h2->tp_vlan_tpid = 0; 2435 } 2436 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2437 hdrlen = sizeof(*h.h2); 2438 break; 2439 case TPACKET_V3: 2440 /* tp_nxt_offset,vlan are already populated above. 2441 * So DONT clear those fields here 2442 */ 2443 h.h3->tp_status |= status; 2444 h.h3->tp_len = skb->len; 2445 h.h3->tp_snaplen = snaplen; 2446 h.h3->tp_mac = macoff; 2447 h.h3->tp_net = netoff; 2448 h.h3->tp_sec = ts.tv_sec; 2449 h.h3->tp_nsec = ts.tv_nsec; 2450 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2451 hdrlen = sizeof(*h.h3); 2452 break; 2453 default: 2454 BUG(); 2455 } 2456 2457 sll = h.raw + TPACKET_ALIGN(hdrlen); 2458 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2459 sll->sll_family = AF_PACKET; 2460 sll->sll_hatype = dev->type; 2461 sll->sll_protocol = skb->protocol; 2462 sll->sll_pkttype = skb->pkt_type; 2463 if (unlikely(po->origdev)) 2464 sll->sll_ifindex = orig_dev->ifindex; 2465 else 2466 sll->sll_ifindex = dev->ifindex; 2467 2468 smp_mb(); 2469 2470 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2471 if (po->tp_version <= TPACKET_V2) { 2472 u8 *start, *end; 2473 2474 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2475 macoff + snaplen); 2476 2477 for (start = h.raw; start < end; start += PAGE_SIZE) 2478 flush_dcache_page(pgv_to_page(start)); 2479 } 2480 smp_wmb(); 2481 #endif 2482 2483 if (po->tp_version <= TPACKET_V2) { 2484 spin_lock(&sk->sk_receive_queue.lock); 2485 __packet_set_status(po, h.raw, status); 2486 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2487 spin_unlock(&sk->sk_receive_queue.lock); 2488 sk->sk_data_ready(sk); 2489 } else if (po->tp_version == TPACKET_V3) { 2490 prb_clear_blk_fill_status(&po->rx_ring); 2491 } 2492 2493 drop_n_restore: 2494 if (skb_head != skb->data && skb_shared(skb)) { 2495 skb->data = skb_head; 2496 skb->len = skb_len; 2497 } 2498 drop: 2499 if (!is_drop_n_account) 2500 consume_skb(skb); 2501 else 2502 kfree_skb(skb); 2503 return 0; 2504 2505 drop_n_account: 2506 spin_unlock(&sk->sk_receive_queue.lock); 2507 atomic_inc(&po->tp_drops); 2508 is_drop_n_account = true; 2509 2510 sk->sk_data_ready(sk); 2511 kfree_skb(copy_skb); 2512 goto drop_n_restore; 2513 } 2514 2515 static void tpacket_destruct_skb(struct sk_buff *skb) 2516 { 2517 struct packet_sock *po = pkt_sk(skb->sk); 2518 2519 if (likely(po->tx_ring.pg_vec)) { 2520 void *ph; 2521 __u32 ts; 2522 2523 ph = skb_zcopy_get_nouarg(skb); 2524 packet_dec_pending(&po->tx_ring); 2525 2526 ts = __packet_set_timestamp(po, ph, skb); 2527 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2528 2529 if (!packet_read_pending(&po->tx_ring)) 2530 complete(&po->skb_completion); 2531 } 2532 2533 sock_wfree(skb); 2534 } 2535 2536 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2537 { 2538 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2539 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2540 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2541 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2542 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2543 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2544 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2545 2546 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2547 return -EINVAL; 2548 2549 return 0; 2550 } 2551 2552 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2553 struct virtio_net_hdr *vnet_hdr) 2554 { 2555 if (*len < sizeof(*vnet_hdr)) 2556 return -EINVAL; 2557 *len -= sizeof(*vnet_hdr); 2558 2559 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2560 return -EFAULT; 2561 2562 return __packet_snd_vnet_parse(vnet_hdr, *len); 2563 } 2564 2565 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2566 void *frame, struct net_device *dev, void *data, int tp_len, 2567 __be16 proto, unsigned char *addr, int hlen, int copylen, 2568 const struct sockcm_cookie *sockc) 2569 { 2570 union tpacket_uhdr ph; 2571 int to_write, offset, len, nr_frags, len_max; 2572 struct socket *sock = po->sk.sk_socket; 2573 struct page *page; 2574 int err; 2575 2576 ph.raw = frame; 2577 2578 skb->protocol = proto; 2579 skb->dev = dev; 2580 skb->priority = po->sk.sk_priority; 2581 skb->mark = po->sk.sk_mark; 2582 skb->tstamp = sockc->transmit_time; 2583 skb_setup_tx_timestamp(skb, sockc->tsflags); 2584 skb_zcopy_set_nouarg(skb, ph.raw); 2585 2586 skb_reserve(skb, hlen); 2587 skb_reset_network_header(skb); 2588 2589 to_write = tp_len; 2590 2591 if (sock->type == SOCK_DGRAM) { 2592 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2593 NULL, tp_len); 2594 if (unlikely(err < 0)) 2595 return -EINVAL; 2596 } else if (copylen) { 2597 int hdrlen = min_t(int, copylen, tp_len); 2598 2599 skb_push(skb, dev->hard_header_len); 2600 skb_put(skb, copylen - dev->hard_header_len); 2601 err = skb_store_bits(skb, 0, data, hdrlen); 2602 if (unlikely(err)) 2603 return err; 2604 if (!dev_validate_header(dev, skb->data, hdrlen)) 2605 return -EINVAL; 2606 2607 data += hdrlen; 2608 to_write -= hdrlen; 2609 } 2610 2611 offset = offset_in_page(data); 2612 len_max = PAGE_SIZE - offset; 2613 len = ((to_write > len_max) ? len_max : to_write); 2614 2615 skb->data_len = to_write; 2616 skb->len += to_write; 2617 skb->truesize += to_write; 2618 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2619 2620 while (likely(to_write)) { 2621 nr_frags = skb_shinfo(skb)->nr_frags; 2622 2623 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2624 pr_err("Packet exceed the number of skb frags(%lu)\n", 2625 MAX_SKB_FRAGS); 2626 return -EFAULT; 2627 } 2628 2629 page = pgv_to_page(data); 2630 data += len; 2631 flush_dcache_page(page); 2632 get_page(page); 2633 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2634 to_write -= len; 2635 offset = 0; 2636 len_max = PAGE_SIZE; 2637 len = ((to_write > len_max) ? len_max : to_write); 2638 } 2639 2640 packet_parse_headers(skb, sock); 2641 2642 return tp_len; 2643 } 2644 2645 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2646 int size_max, void **data) 2647 { 2648 union tpacket_uhdr ph; 2649 int tp_len, off; 2650 2651 ph.raw = frame; 2652 2653 switch (po->tp_version) { 2654 case TPACKET_V3: 2655 if (ph.h3->tp_next_offset != 0) { 2656 pr_warn_once("variable sized slot not supported"); 2657 return -EINVAL; 2658 } 2659 tp_len = ph.h3->tp_len; 2660 break; 2661 case TPACKET_V2: 2662 tp_len = ph.h2->tp_len; 2663 break; 2664 default: 2665 tp_len = ph.h1->tp_len; 2666 break; 2667 } 2668 if (unlikely(tp_len > size_max)) { 2669 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2670 return -EMSGSIZE; 2671 } 2672 2673 if (unlikely(po->tp_tx_has_off)) { 2674 int off_min, off_max; 2675 2676 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2677 off_max = po->tx_ring.frame_size - tp_len; 2678 if (po->sk.sk_type == SOCK_DGRAM) { 2679 switch (po->tp_version) { 2680 case TPACKET_V3: 2681 off = ph.h3->tp_net; 2682 break; 2683 case TPACKET_V2: 2684 off = ph.h2->tp_net; 2685 break; 2686 default: 2687 off = ph.h1->tp_net; 2688 break; 2689 } 2690 } else { 2691 switch (po->tp_version) { 2692 case TPACKET_V3: 2693 off = ph.h3->tp_mac; 2694 break; 2695 case TPACKET_V2: 2696 off = ph.h2->tp_mac; 2697 break; 2698 default: 2699 off = ph.h1->tp_mac; 2700 break; 2701 } 2702 } 2703 if (unlikely((off < off_min) || (off_max < off))) 2704 return -EINVAL; 2705 } else { 2706 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2707 } 2708 2709 *data = frame + off; 2710 return tp_len; 2711 } 2712 2713 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2714 { 2715 struct sk_buff *skb = NULL; 2716 struct net_device *dev; 2717 struct virtio_net_hdr *vnet_hdr = NULL; 2718 struct sockcm_cookie sockc; 2719 __be16 proto; 2720 int err, reserve = 0; 2721 void *ph; 2722 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2723 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2724 unsigned char *addr = NULL; 2725 int tp_len, size_max; 2726 void *data; 2727 int len_sum = 0; 2728 int status = TP_STATUS_AVAILABLE; 2729 int hlen, tlen, copylen = 0; 2730 long timeo = 0; 2731 2732 mutex_lock(&po->pg_vec_lock); 2733 2734 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2735 * we need to confirm it under protection of pg_vec_lock. 2736 */ 2737 if (unlikely(!po->tx_ring.pg_vec)) { 2738 err = -EBUSY; 2739 goto out; 2740 } 2741 if (likely(saddr == NULL)) { 2742 dev = packet_cached_dev_get(po); 2743 proto = READ_ONCE(po->num); 2744 } else { 2745 err = -EINVAL; 2746 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2747 goto out; 2748 if (msg->msg_namelen < (saddr->sll_halen 2749 + offsetof(struct sockaddr_ll, 2750 sll_addr))) 2751 goto out; 2752 proto = saddr->sll_protocol; 2753 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2754 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2755 if (dev && msg->msg_namelen < dev->addr_len + 2756 offsetof(struct sockaddr_ll, sll_addr)) 2757 goto out_put; 2758 addr = saddr->sll_addr; 2759 } 2760 } 2761 2762 err = -ENXIO; 2763 if (unlikely(dev == NULL)) 2764 goto out; 2765 err = -ENETDOWN; 2766 if (unlikely(!(dev->flags & IFF_UP))) 2767 goto out_put; 2768 2769 sockcm_init(&sockc, &po->sk); 2770 if (msg->msg_controllen) { 2771 err = sock_cmsg_send(&po->sk, msg, &sockc); 2772 if (unlikely(err)) 2773 goto out_put; 2774 } 2775 2776 if (po->sk.sk_socket->type == SOCK_RAW) 2777 reserve = dev->hard_header_len; 2778 size_max = po->tx_ring.frame_size 2779 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2780 2781 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2782 size_max = dev->mtu + reserve + VLAN_HLEN; 2783 2784 reinit_completion(&po->skb_completion); 2785 2786 do { 2787 ph = packet_current_frame(po, &po->tx_ring, 2788 TP_STATUS_SEND_REQUEST); 2789 if (unlikely(ph == NULL)) { 2790 if (need_wait && skb) { 2791 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2792 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2793 if (timeo <= 0) { 2794 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2795 goto out_put; 2796 } 2797 } 2798 /* check for additional frames */ 2799 continue; 2800 } 2801 2802 skb = NULL; 2803 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2804 if (tp_len < 0) 2805 goto tpacket_error; 2806 2807 status = TP_STATUS_SEND_REQUEST; 2808 hlen = LL_RESERVED_SPACE(dev); 2809 tlen = dev->needed_tailroom; 2810 if (po->has_vnet_hdr) { 2811 vnet_hdr = data; 2812 data += sizeof(*vnet_hdr); 2813 tp_len -= sizeof(*vnet_hdr); 2814 if (tp_len < 0 || 2815 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2816 tp_len = -EINVAL; 2817 goto tpacket_error; 2818 } 2819 copylen = __virtio16_to_cpu(vio_le(), 2820 vnet_hdr->hdr_len); 2821 } 2822 copylen = max_t(int, copylen, dev->hard_header_len); 2823 skb = sock_alloc_send_skb(&po->sk, 2824 hlen + tlen + sizeof(struct sockaddr_ll) + 2825 (copylen - dev->hard_header_len), 2826 !need_wait, &err); 2827 2828 if (unlikely(skb == NULL)) { 2829 /* we assume the socket was initially writeable ... */ 2830 if (likely(len_sum > 0)) 2831 err = len_sum; 2832 goto out_status; 2833 } 2834 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2835 addr, hlen, copylen, &sockc); 2836 if (likely(tp_len >= 0) && 2837 tp_len > dev->mtu + reserve && 2838 !po->has_vnet_hdr && 2839 !packet_extra_vlan_len_allowed(dev, skb)) 2840 tp_len = -EMSGSIZE; 2841 2842 if (unlikely(tp_len < 0)) { 2843 tpacket_error: 2844 if (po->tp_loss) { 2845 __packet_set_status(po, ph, 2846 TP_STATUS_AVAILABLE); 2847 packet_increment_head(&po->tx_ring); 2848 kfree_skb(skb); 2849 continue; 2850 } else { 2851 status = TP_STATUS_WRONG_FORMAT; 2852 err = tp_len; 2853 goto out_status; 2854 } 2855 } 2856 2857 if (po->has_vnet_hdr) { 2858 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2859 tp_len = -EINVAL; 2860 goto tpacket_error; 2861 } 2862 virtio_net_hdr_set_proto(skb, vnet_hdr); 2863 } 2864 2865 skb->destructor = tpacket_destruct_skb; 2866 __packet_set_status(po, ph, TP_STATUS_SENDING); 2867 packet_inc_pending(&po->tx_ring); 2868 2869 status = TP_STATUS_SEND_REQUEST; 2870 err = po->xmit(skb); 2871 if (unlikely(err != 0)) { 2872 if (err > 0) 2873 err = net_xmit_errno(err); 2874 if (err && __packet_get_status(po, ph) == 2875 TP_STATUS_AVAILABLE) { 2876 /* skb was destructed already */ 2877 skb = NULL; 2878 goto out_status; 2879 } 2880 /* 2881 * skb was dropped but not destructed yet; 2882 * let's treat it like congestion or err < 0 2883 */ 2884 err = 0; 2885 } 2886 packet_increment_head(&po->tx_ring); 2887 len_sum += tp_len; 2888 } while (likely((ph != NULL) || 2889 /* Note: packet_read_pending() might be slow if we have 2890 * to call it as it's per_cpu variable, but in fast-path 2891 * we already short-circuit the loop with the first 2892 * condition, and luckily don't have to go that path 2893 * anyway. 2894 */ 2895 (need_wait && packet_read_pending(&po->tx_ring)))); 2896 2897 err = len_sum; 2898 goto out_put; 2899 2900 out_status: 2901 __packet_set_status(po, ph, status); 2902 kfree_skb(skb); 2903 out_put: 2904 dev_put(dev); 2905 out: 2906 mutex_unlock(&po->pg_vec_lock); 2907 return err; 2908 } 2909 2910 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2911 size_t reserve, size_t len, 2912 size_t linear, int noblock, 2913 int *err) 2914 { 2915 struct sk_buff *skb; 2916 2917 /* Under a page? Don't bother with paged skb. */ 2918 if (prepad + len < PAGE_SIZE || !linear) 2919 linear = len; 2920 2921 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2922 err, 0); 2923 if (!skb) 2924 return NULL; 2925 2926 skb_reserve(skb, reserve); 2927 skb_put(skb, linear); 2928 skb->data_len = len - linear; 2929 skb->len += len - linear; 2930 2931 return skb; 2932 } 2933 2934 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2935 { 2936 struct sock *sk = sock->sk; 2937 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2938 struct sk_buff *skb; 2939 struct net_device *dev; 2940 __be16 proto; 2941 unsigned char *addr = NULL; 2942 int err, reserve = 0; 2943 struct sockcm_cookie sockc; 2944 struct virtio_net_hdr vnet_hdr = { 0 }; 2945 int offset = 0; 2946 struct packet_sock *po = pkt_sk(sk); 2947 bool has_vnet_hdr = false; 2948 int hlen, tlen, linear; 2949 int extra_len = 0; 2950 2951 /* 2952 * Get and verify the address. 2953 */ 2954 2955 if (likely(saddr == NULL)) { 2956 dev = packet_cached_dev_get(po); 2957 proto = READ_ONCE(po->num); 2958 } else { 2959 err = -EINVAL; 2960 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2961 goto out; 2962 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2963 goto out; 2964 proto = saddr->sll_protocol; 2965 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2966 if (sock->type == SOCK_DGRAM) { 2967 if (dev && msg->msg_namelen < dev->addr_len + 2968 offsetof(struct sockaddr_ll, sll_addr)) 2969 goto out_unlock; 2970 addr = saddr->sll_addr; 2971 } 2972 } 2973 2974 err = -ENXIO; 2975 if (unlikely(dev == NULL)) 2976 goto out_unlock; 2977 err = -ENETDOWN; 2978 if (unlikely(!(dev->flags & IFF_UP))) 2979 goto out_unlock; 2980 2981 sockcm_init(&sockc, sk); 2982 sockc.mark = sk->sk_mark; 2983 if (msg->msg_controllen) { 2984 err = sock_cmsg_send(sk, msg, &sockc); 2985 if (unlikely(err)) 2986 goto out_unlock; 2987 } 2988 2989 if (sock->type == SOCK_RAW) 2990 reserve = dev->hard_header_len; 2991 if (po->has_vnet_hdr) { 2992 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2993 if (err) 2994 goto out_unlock; 2995 has_vnet_hdr = true; 2996 } 2997 2998 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2999 if (!netif_supports_nofcs(dev)) { 3000 err = -EPROTONOSUPPORT; 3001 goto out_unlock; 3002 } 3003 extra_len = 4; /* We're doing our own CRC */ 3004 } 3005 3006 err = -EMSGSIZE; 3007 if (!vnet_hdr.gso_type && 3008 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 3009 goto out_unlock; 3010 3011 err = -ENOBUFS; 3012 hlen = LL_RESERVED_SPACE(dev); 3013 tlen = dev->needed_tailroom; 3014 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3015 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3016 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3017 msg->msg_flags & MSG_DONTWAIT, &err); 3018 if (skb == NULL) 3019 goto out_unlock; 3020 3021 skb_reset_network_header(skb); 3022 3023 err = -EINVAL; 3024 if (sock->type == SOCK_DGRAM) { 3025 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3026 if (unlikely(offset < 0)) 3027 goto out_free; 3028 } else if (reserve) { 3029 skb_reserve(skb, -reserve); 3030 if (len < reserve + sizeof(struct ipv6hdr) && 3031 dev->min_header_len != dev->hard_header_len) 3032 skb_reset_network_header(skb); 3033 } 3034 3035 /* Returns -EFAULT on error */ 3036 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3037 if (err) 3038 goto out_free; 3039 3040 if ((sock->type == SOCK_RAW && 3041 !dev_validate_header(dev, skb->data, len)) || !skb->len) { 3042 err = -EINVAL; 3043 goto out_free; 3044 } 3045 3046 skb_setup_tx_timestamp(skb, sockc.tsflags); 3047 3048 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3049 !packet_extra_vlan_len_allowed(dev, skb)) { 3050 err = -EMSGSIZE; 3051 goto out_free; 3052 } 3053 3054 skb->protocol = proto; 3055 skb->dev = dev; 3056 skb->priority = sk->sk_priority; 3057 skb->mark = sockc.mark; 3058 skb->tstamp = sockc.transmit_time; 3059 3060 if (unlikely(extra_len == 4)) 3061 skb->no_fcs = 1; 3062 3063 packet_parse_headers(skb, sock); 3064 3065 if (has_vnet_hdr) { 3066 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3067 if (err) 3068 goto out_free; 3069 len += sizeof(vnet_hdr); 3070 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3071 } 3072 3073 err = po->xmit(skb); 3074 if (unlikely(err != 0)) { 3075 if (err > 0) 3076 err = net_xmit_errno(err); 3077 if (err) 3078 goto out_unlock; 3079 } 3080 3081 dev_put(dev); 3082 3083 return len; 3084 3085 out_free: 3086 kfree_skb(skb); 3087 out_unlock: 3088 dev_put(dev); 3089 out: 3090 return err; 3091 } 3092 3093 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3094 { 3095 struct sock *sk = sock->sk; 3096 struct packet_sock *po = pkt_sk(sk); 3097 3098 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3099 * tpacket_snd() will redo the check safely. 3100 */ 3101 if (data_race(po->tx_ring.pg_vec)) 3102 return tpacket_snd(po, msg); 3103 3104 return packet_snd(sock, msg, len); 3105 } 3106 3107 /* 3108 * Close a PACKET socket. This is fairly simple. We immediately go 3109 * to 'closed' state and remove our protocol entry in the device list. 3110 */ 3111 3112 static int packet_release(struct socket *sock) 3113 { 3114 struct sock *sk = sock->sk; 3115 struct packet_sock *po; 3116 struct packet_fanout *f; 3117 struct net *net; 3118 union tpacket_req_u req_u; 3119 3120 if (!sk) 3121 return 0; 3122 3123 net = sock_net(sk); 3124 po = pkt_sk(sk); 3125 3126 mutex_lock(&net->packet.sklist_lock); 3127 sk_del_node_init_rcu(sk); 3128 mutex_unlock(&net->packet.sklist_lock); 3129 3130 sock_prot_inuse_add(net, sk->sk_prot, -1); 3131 3132 spin_lock(&po->bind_lock); 3133 unregister_prot_hook(sk, false); 3134 packet_cached_dev_reset(po); 3135 3136 if (po->prot_hook.dev) { 3137 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3138 po->prot_hook.dev = NULL; 3139 } 3140 spin_unlock(&po->bind_lock); 3141 3142 packet_flush_mclist(sk); 3143 3144 lock_sock(sk); 3145 if (po->rx_ring.pg_vec) { 3146 memset(&req_u, 0, sizeof(req_u)); 3147 packet_set_ring(sk, &req_u, 1, 0); 3148 } 3149 3150 if (po->tx_ring.pg_vec) { 3151 memset(&req_u, 0, sizeof(req_u)); 3152 packet_set_ring(sk, &req_u, 1, 1); 3153 } 3154 release_sock(sk); 3155 3156 f = fanout_release(sk); 3157 3158 synchronize_net(); 3159 3160 kfree(po->rollover); 3161 if (f) { 3162 fanout_release_data(f); 3163 kvfree(f); 3164 } 3165 /* 3166 * Now the socket is dead. No more input will appear. 3167 */ 3168 sock_orphan(sk); 3169 sock->sk = NULL; 3170 3171 /* Purge queues */ 3172 3173 skb_queue_purge(&sk->sk_receive_queue); 3174 packet_free_pending(po); 3175 sk_refcnt_debug_release(sk); 3176 3177 sock_put(sk); 3178 return 0; 3179 } 3180 3181 /* 3182 * Attach a packet hook. 3183 */ 3184 3185 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3186 __be16 proto) 3187 { 3188 struct packet_sock *po = pkt_sk(sk); 3189 struct net_device *dev = NULL; 3190 bool unlisted = false; 3191 bool need_rehook; 3192 int ret = 0; 3193 3194 lock_sock(sk); 3195 spin_lock(&po->bind_lock); 3196 rcu_read_lock(); 3197 3198 if (po->fanout) { 3199 ret = -EINVAL; 3200 goto out_unlock; 3201 } 3202 3203 if (name) { 3204 dev = dev_get_by_name_rcu(sock_net(sk), name); 3205 if (!dev) { 3206 ret = -ENODEV; 3207 goto out_unlock; 3208 } 3209 } else if (ifindex) { 3210 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3211 if (!dev) { 3212 ret = -ENODEV; 3213 goto out_unlock; 3214 } 3215 } 3216 3217 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3218 3219 if (need_rehook) { 3220 dev_hold(dev); 3221 if (po->running) { 3222 rcu_read_unlock(); 3223 /* prevents packet_notifier() from calling 3224 * register_prot_hook() 3225 */ 3226 WRITE_ONCE(po->num, 0); 3227 __unregister_prot_hook(sk, true); 3228 rcu_read_lock(); 3229 if (dev) 3230 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3231 dev->ifindex); 3232 } 3233 3234 BUG_ON(po->running); 3235 WRITE_ONCE(po->num, proto); 3236 po->prot_hook.type = proto; 3237 3238 netdev_put(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3239 3240 if (unlikely(unlisted)) { 3241 po->prot_hook.dev = NULL; 3242 WRITE_ONCE(po->ifindex, -1); 3243 packet_cached_dev_reset(po); 3244 } else { 3245 netdev_hold(dev, &po->prot_hook.dev_tracker, 3246 GFP_ATOMIC); 3247 po->prot_hook.dev = dev; 3248 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3249 packet_cached_dev_assign(po, dev); 3250 } 3251 dev_put(dev); 3252 } 3253 3254 if (proto == 0 || !need_rehook) 3255 goto out_unlock; 3256 3257 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3258 register_prot_hook(sk); 3259 } else { 3260 sk->sk_err = ENETDOWN; 3261 if (!sock_flag(sk, SOCK_DEAD)) 3262 sk_error_report(sk); 3263 } 3264 3265 out_unlock: 3266 rcu_read_unlock(); 3267 spin_unlock(&po->bind_lock); 3268 release_sock(sk); 3269 return ret; 3270 } 3271 3272 /* 3273 * Bind a packet socket to a device 3274 */ 3275 3276 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3277 int addr_len) 3278 { 3279 struct sock *sk = sock->sk; 3280 char name[sizeof(uaddr->sa_data) + 1]; 3281 3282 /* 3283 * Check legality 3284 */ 3285 3286 if (addr_len != sizeof(struct sockaddr)) 3287 return -EINVAL; 3288 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3289 * zero-terminated. 3290 */ 3291 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3292 name[sizeof(uaddr->sa_data)] = 0; 3293 3294 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3295 } 3296 3297 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3298 { 3299 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3300 struct sock *sk = sock->sk; 3301 3302 /* 3303 * Check legality 3304 */ 3305 3306 if (addr_len < sizeof(struct sockaddr_ll)) 3307 return -EINVAL; 3308 if (sll->sll_family != AF_PACKET) 3309 return -EINVAL; 3310 3311 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3312 sll->sll_protocol ? : pkt_sk(sk)->num); 3313 } 3314 3315 static struct proto packet_proto = { 3316 .name = "PACKET", 3317 .owner = THIS_MODULE, 3318 .obj_size = sizeof(struct packet_sock), 3319 }; 3320 3321 /* 3322 * Create a packet of type SOCK_PACKET. 3323 */ 3324 3325 static int packet_create(struct net *net, struct socket *sock, int protocol, 3326 int kern) 3327 { 3328 struct sock *sk; 3329 struct packet_sock *po; 3330 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3331 int err; 3332 3333 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3334 return -EPERM; 3335 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3336 sock->type != SOCK_PACKET) 3337 return -ESOCKTNOSUPPORT; 3338 3339 sock->state = SS_UNCONNECTED; 3340 3341 err = -ENOBUFS; 3342 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3343 if (sk == NULL) 3344 goto out; 3345 3346 sock->ops = &packet_ops; 3347 if (sock->type == SOCK_PACKET) 3348 sock->ops = &packet_ops_spkt; 3349 3350 sock_init_data(sock, sk); 3351 3352 po = pkt_sk(sk); 3353 init_completion(&po->skb_completion); 3354 sk->sk_family = PF_PACKET; 3355 po->num = proto; 3356 po->xmit = dev_queue_xmit; 3357 3358 err = packet_alloc_pending(po); 3359 if (err) 3360 goto out2; 3361 3362 packet_cached_dev_reset(po); 3363 3364 sk->sk_destruct = packet_sock_destruct; 3365 sk_refcnt_debug_inc(sk); 3366 3367 /* 3368 * Attach a protocol block 3369 */ 3370 3371 spin_lock_init(&po->bind_lock); 3372 mutex_init(&po->pg_vec_lock); 3373 po->rollover = NULL; 3374 po->prot_hook.func = packet_rcv; 3375 3376 if (sock->type == SOCK_PACKET) 3377 po->prot_hook.func = packet_rcv_spkt; 3378 3379 po->prot_hook.af_packet_priv = sk; 3380 po->prot_hook.af_packet_net = sock_net(sk); 3381 3382 if (proto) { 3383 po->prot_hook.type = proto; 3384 __register_prot_hook(sk); 3385 } 3386 3387 mutex_lock(&net->packet.sklist_lock); 3388 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3389 mutex_unlock(&net->packet.sklist_lock); 3390 3391 sock_prot_inuse_add(net, &packet_proto, 1); 3392 3393 return 0; 3394 out2: 3395 sk_free(sk); 3396 out: 3397 return err; 3398 } 3399 3400 /* 3401 * Pull a packet from our receive queue and hand it to the user. 3402 * If necessary we block. 3403 */ 3404 3405 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3406 int flags) 3407 { 3408 struct sock *sk = sock->sk; 3409 struct sk_buff *skb; 3410 int copied, err; 3411 int vnet_hdr_len = 0; 3412 unsigned int origlen = 0; 3413 3414 err = -EINVAL; 3415 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3416 goto out; 3417 3418 #if 0 3419 /* What error should we return now? EUNATTACH? */ 3420 if (pkt_sk(sk)->ifindex < 0) 3421 return -ENODEV; 3422 #endif 3423 3424 if (flags & MSG_ERRQUEUE) { 3425 err = sock_recv_errqueue(sk, msg, len, 3426 SOL_PACKET, PACKET_TX_TIMESTAMP); 3427 goto out; 3428 } 3429 3430 /* 3431 * Call the generic datagram receiver. This handles all sorts 3432 * of horrible races and re-entrancy so we can forget about it 3433 * in the protocol layers. 3434 * 3435 * Now it will return ENETDOWN, if device have just gone down, 3436 * but then it will block. 3437 */ 3438 3439 skb = skb_recv_datagram(sk, flags, &err); 3440 3441 /* 3442 * An error occurred so return it. Because skb_recv_datagram() 3443 * handles the blocking we don't see and worry about blocking 3444 * retries. 3445 */ 3446 3447 if (skb == NULL) 3448 goto out; 3449 3450 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3451 3452 if (pkt_sk(sk)->has_vnet_hdr) { 3453 err = packet_rcv_vnet(msg, skb, &len); 3454 if (err) 3455 goto out_free; 3456 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3457 } 3458 3459 /* You lose any data beyond the buffer you gave. If it worries 3460 * a user program they can ask the device for its MTU 3461 * anyway. 3462 */ 3463 copied = skb->len; 3464 if (copied > len) { 3465 copied = len; 3466 msg->msg_flags |= MSG_TRUNC; 3467 } 3468 3469 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3470 if (err) 3471 goto out_free; 3472 3473 if (sock->type != SOCK_PACKET) { 3474 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3475 3476 /* Original length was stored in sockaddr_ll fields */ 3477 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3478 sll->sll_family = AF_PACKET; 3479 sll->sll_protocol = skb->protocol; 3480 } 3481 3482 sock_recv_cmsgs(msg, sk, skb); 3483 3484 if (msg->msg_name) { 3485 const size_t max_len = min(sizeof(skb->cb), 3486 sizeof(struct sockaddr_storage)); 3487 int copy_len; 3488 3489 /* If the address length field is there to be filled 3490 * in, we fill it in now. 3491 */ 3492 if (sock->type == SOCK_PACKET) { 3493 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3494 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3495 copy_len = msg->msg_namelen; 3496 } else { 3497 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3498 3499 msg->msg_namelen = sll->sll_halen + 3500 offsetof(struct sockaddr_ll, sll_addr); 3501 copy_len = msg->msg_namelen; 3502 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3503 memset(msg->msg_name + 3504 offsetof(struct sockaddr_ll, sll_addr), 3505 0, sizeof(sll->sll_addr)); 3506 msg->msg_namelen = sizeof(struct sockaddr_ll); 3507 } 3508 } 3509 if (WARN_ON_ONCE(copy_len > max_len)) { 3510 copy_len = max_len; 3511 msg->msg_namelen = copy_len; 3512 } 3513 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3514 } 3515 3516 if (pkt_sk(sk)->auxdata) { 3517 struct tpacket_auxdata aux; 3518 3519 aux.tp_status = TP_STATUS_USER; 3520 if (skb->ip_summed == CHECKSUM_PARTIAL) 3521 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3522 else if (skb->pkt_type != PACKET_OUTGOING && 3523 (skb->ip_summed == CHECKSUM_COMPLETE || 3524 skb_csum_unnecessary(skb))) 3525 aux.tp_status |= TP_STATUS_CSUM_VALID; 3526 3527 aux.tp_len = origlen; 3528 aux.tp_snaplen = skb->len; 3529 aux.tp_mac = 0; 3530 aux.tp_net = skb_network_offset(skb); 3531 if (skb_vlan_tag_present(skb)) { 3532 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3533 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3534 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3535 } else { 3536 aux.tp_vlan_tci = 0; 3537 aux.tp_vlan_tpid = 0; 3538 } 3539 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3540 } 3541 3542 /* 3543 * Free or return the buffer as appropriate. Again this 3544 * hides all the races and re-entrancy issues from us. 3545 */ 3546 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3547 3548 out_free: 3549 skb_free_datagram(sk, skb); 3550 out: 3551 return err; 3552 } 3553 3554 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3555 int peer) 3556 { 3557 struct net_device *dev; 3558 struct sock *sk = sock->sk; 3559 3560 if (peer) 3561 return -EOPNOTSUPP; 3562 3563 uaddr->sa_family = AF_PACKET; 3564 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3565 rcu_read_lock(); 3566 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3567 if (dev) 3568 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3569 rcu_read_unlock(); 3570 3571 return sizeof(*uaddr); 3572 } 3573 3574 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3575 int peer) 3576 { 3577 struct net_device *dev; 3578 struct sock *sk = sock->sk; 3579 struct packet_sock *po = pkt_sk(sk); 3580 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3581 int ifindex; 3582 3583 if (peer) 3584 return -EOPNOTSUPP; 3585 3586 ifindex = READ_ONCE(po->ifindex); 3587 sll->sll_family = AF_PACKET; 3588 sll->sll_ifindex = ifindex; 3589 sll->sll_protocol = READ_ONCE(po->num); 3590 sll->sll_pkttype = 0; 3591 rcu_read_lock(); 3592 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3593 if (dev) { 3594 sll->sll_hatype = dev->type; 3595 sll->sll_halen = dev->addr_len; 3596 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3597 } else { 3598 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3599 sll->sll_halen = 0; 3600 } 3601 rcu_read_unlock(); 3602 3603 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3604 } 3605 3606 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3607 int what) 3608 { 3609 switch (i->type) { 3610 case PACKET_MR_MULTICAST: 3611 if (i->alen != dev->addr_len) 3612 return -EINVAL; 3613 if (what > 0) 3614 return dev_mc_add(dev, i->addr); 3615 else 3616 return dev_mc_del(dev, i->addr); 3617 break; 3618 case PACKET_MR_PROMISC: 3619 return dev_set_promiscuity(dev, what); 3620 case PACKET_MR_ALLMULTI: 3621 return dev_set_allmulti(dev, what); 3622 case PACKET_MR_UNICAST: 3623 if (i->alen != dev->addr_len) 3624 return -EINVAL; 3625 if (what > 0) 3626 return dev_uc_add(dev, i->addr); 3627 else 3628 return dev_uc_del(dev, i->addr); 3629 break; 3630 default: 3631 break; 3632 } 3633 return 0; 3634 } 3635 3636 static void packet_dev_mclist_delete(struct net_device *dev, 3637 struct packet_mclist **mlp) 3638 { 3639 struct packet_mclist *ml; 3640 3641 while ((ml = *mlp) != NULL) { 3642 if (ml->ifindex == dev->ifindex) { 3643 packet_dev_mc(dev, ml, -1); 3644 *mlp = ml->next; 3645 kfree(ml); 3646 } else 3647 mlp = &ml->next; 3648 } 3649 } 3650 3651 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3652 { 3653 struct packet_sock *po = pkt_sk(sk); 3654 struct packet_mclist *ml, *i; 3655 struct net_device *dev; 3656 int err; 3657 3658 rtnl_lock(); 3659 3660 err = -ENODEV; 3661 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3662 if (!dev) 3663 goto done; 3664 3665 err = -EINVAL; 3666 if (mreq->mr_alen > dev->addr_len) 3667 goto done; 3668 3669 err = -ENOBUFS; 3670 i = kmalloc(sizeof(*i), GFP_KERNEL); 3671 if (i == NULL) 3672 goto done; 3673 3674 err = 0; 3675 for (ml = po->mclist; ml; ml = ml->next) { 3676 if (ml->ifindex == mreq->mr_ifindex && 3677 ml->type == mreq->mr_type && 3678 ml->alen == mreq->mr_alen && 3679 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3680 ml->count++; 3681 /* Free the new element ... */ 3682 kfree(i); 3683 goto done; 3684 } 3685 } 3686 3687 i->type = mreq->mr_type; 3688 i->ifindex = mreq->mr_ifindex; 3689 i->alen = mreq->mr_alen; 3690 memcpy(i->addr, mreq->mr_address, i->alen); 3691 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3692 i->count = 1; 3693 i->next = po->mclist; 3694 po->mclist = i; 3695 err = packet_dev_mc(dev, i, 1); 3696 if (err) { 3697 po->mclist = i->next; 3698 kfree(i); 3699 } 3700 3701 done: 3702 rtnl_unlock(); 3703 return err; 3704 } 3705 3706 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3707 { 3708 struct packet_mclist *ml, **mlp; 3709 3710 rtnl_lock(); 3711 3712 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3713 if (ml->ifindex == mreq->mr_ifindex && 3714 ml->type == mreq->mr_type && 3715 ml->alen == mreq->mr_alen && 3716 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3717 if (--ml->count == 0) { 3718 struct net_device *dev; 3719 *mlp = ml->next; 3720 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3721 if (dev) 3722 packet_dev_mc(dev, ml, -1); 3723 kfree(ml); 3724 } 3725 break; 3726 } 3727 } 3728 rtnl_unlock(); 3729 return 0; 3730 } 3731 3732 static void packet_flush_mclist(struct sock *sk) 3733 { 3734 struct packet_sock *po = pkt_sk(sk); 3735 struct packet_mclist *ml; 3736 3737 if (!po->mclist) 3738 return; 3739 3740 rtnl_lock(); 3741 while ((ml = po->mclist) != NULL) { 3742 struct net_device *dev; 3743 3744 po->mclist = ml->next; 3745 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3746 if (dev != NULL) 3747 packet_dev_mc(dev, ml, -1); 3748 kfree(ml); 3749 } 3750 rtnl_unlock(); 3751 } 3752 3753 static int 3754 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3755 unsigned int optlen) 3756 { 3757 struct sock *sk = sock->sk; 3758 struct packet_sock *po = pkt_sk(sk); 3759 int ret; 3760 3761 if (level != SOL_PACKET) 3762 return -ENOPROTOOPT; 3763 3764 switch (optname) { 3765 case PACKET_ADD_MEMBERSHIP: 3766 case PACKET_DROP_MEMBERSHIP: 3767 { 3768 struct packet_mreq_max mreq; 3769 int len = optlen; 3770 memset(&mreq, 0, sizeof(mreq)); 3771 if (len < sizeof(struct packet_mreq)) 3772 return -EINVAL; 3773 if (len > sizeof(mreq)) 3774 len = sizeof(mreq); 3775 if (copy_from_sockptr(&mreq, optval, len)) 3776 return -EFAULT; 3777 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3778 return -EINVAL; 3779 if (optname == PACKET_ADD_MEMBERSHIP) 3780 ret = packet_mc_add(sk, &mreq); 3781 else 3782 ret = packet_mc_drop(sk, &mreq); 3783 return ret; 3784 } 3785 3786 case PACKET_RX_RING: 3787 case PACKET_TX_RING: 3788 { 3789 union tpacket_req_u req_u; 3790 int len; 3791 3792 lock_sock(sk); 3793 switch (po->tp_version) { 3794 case TPACKET_V1: 3795 case TPACKET_V2: 3796 len = sizeof(req_u.req); 3797 break; 3798 case TPACKET_V3: 3799 default: 3800 len = sizeof(req_u.req3); 3801 break; 3802 } 3803 if (optlen < len) { 3804 ret = -EINVAL; 3805 } else { 3806 if (copy_from_sockptr(&req_u.req, optval, len)) 3807 ret = -EFAULT; 3808 else 3809 ret = packet_set_ring(sk, &req_u, 0, 3810 optname == PACKET_TX_RING); 3811 } 3812 release_sock(sk); 3813 return ret; 3814 } 3815 case PACKET_COPY_THRESH: 3816 { 3817 int val; 3818 3819 if (optlen != sizeof(val)) 3820 return -EINVAL; 3821 if (copy_from_sockptr(&val, optval, sizeof(val))) 3822 return -EFAULT; 3823 3824 pkt_sk(sk)->copy_thresh = val; 3825 return 0; 3826 } 3827 case PACKET_VERSION: 3828 { 3829 int val; 3830 3831 if (optlen != sizeof(val)) 3832 return -EINVAL; 3833 if (copy_from_sockptr(&val, optval, sizeof(val))) 3834 return -EFAULT; 3835 switch (val) { 3836 case TPACKET_V1: 3837 case TPACKET_V2: 3838 case TPACKET_V3: 3839 break; 3840 default: 3841 return -EINVAL; 3842 } 3843 lock_sock(sk); 3844 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3845 ret = -EBUSY; 3846 } else { 3847 po->tp_version = val; 3848 ret = 0; 3849 } 3850 release_sock(sk); 3851 return ret; 3852 } 3853 case PACKET_RESERVE: 3854 { 3855 unsigned int val; 3856 3857 if (optlen != sizeof(val)) 3858 return -EINVAL; 3859 if (copy_from_sockptr(&val, optval, sizeof(val))) 3860 return -EFAULT; 3861 if (val > INT_MAX) 3862 return -EINVAL; 3863 lock_sock(sk); 3864 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3865 ret = -EBUSY; 3866 } else { 3867 po->tp_reserve = val; 3868 ret = 0; 3869 } 3870 release_sock(sk); 3871 return ret; 3872 } 3873 case PACKET_LOSS: 3874 { 3875 unsigned int val; 3876 3877 if (optlen != sizeof(val)) 3878 return -EINVAL; 3879 if (copy_from_sockptr(&val, optval, sizeof(val))) 3880 return -EFAULT; 3881 3882 lock_sock(sk); 3883 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3884 ret = -EBUSY; 3885 } else { 3886 po->tp_loss = !!val; 3887 ret = 0; 3888 } 3889 release_sock(sk); 3890 return ret; 3891 } 3892 case PACKET_AUXDATA: 3893 { 3894 int val; 3895 3896 if (optlen < sizeof(val)) 3897 return -EINVAL; 3898 if (copy_from_sockptr(&val, optval, sizeof(val))) 3899 return -EFAULT; 3900 3901 lock_sock(sk); 3902 po->auxdata = !!val; 3903 release_sock(sk); 3904 return 0; 3905 } 3906 case PACKET_ORIGDEV: 3907 { 3908 int val; 3909 3910 if (optlen < sizeof(val)) 3911 return -EINVAL; 3912 if (copy_from_sockptr(&val, optval, sizeof(val))) 3913 return -EFAULT; 3914 3915 lock_sock(sk); 3916 po->origdev = !!val; 3917 release_sock(sk); 3918 return 0; 3919 } 3920 case PACKET_VNET_HDR: 3921 { 3922 int val; 3923 3924 if (sock->type != SOCK_RAW) 3925 return -EINVAL; 3926 if (optlen < sizeof(val)) 3927 return -EINVAL; 3928 if (copy_from_sockptr(&val, optval, sizeof(val))) 3929 return -EFAULT; 3930 3931 lock_sock(sk); 3932 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3933 ret = -EBUSY; 3934 } else { 3935 po->has_vnet_hdr = !!val; 3936 ret = 0; 3937 } 3938 release_sock(sk); 3939 return ret; 3940 } 3941 case PACKET_TIMESTAMP: 3942 { 3943 int val; 3944 3945 if (optlen != sizeof(val)) 3946 return -EINVAL; 3947 if (copy_from_sockptr(&val, optval, sizeof(val))) 3948 return -EFAULT; 3949 3950 po->tp_tstamp = val; 3951 return 0; 3952 } 3953 case PACKET_FANOUT: 3954 { 3955 struct fanout_args args = { 0 }; 3956 3957 if (optlen != sizeof(int) && optlen != sizeof(args)) 3958 return -EINVAL; 3959 if (copy_from_sockptr(&args, optval, optlen)) 3960 return -EFAULT; 3961 3962 return fanout_add(sk, &args); 3963 } 3964 case PACKET_FANOUT_DATA: 3965 { 3966 /* Paired with the WRITE_ONCE() in fanout_add() */ 3967 if (!READ_ONCE(po->fanout)) 3968 return -EINVAL; 3969 3970 return fanout_set_data(po, optval, optlen); 3971 } 3972 case PACKET_IGNORE_OUTGOING: 3973 { 3974 int val; 3975 3976 if (optlen != sizeof(val)) 3977 return -EINVAL; 3978 if (copy_from_sockptr(&val, optval, sizeof(val))) 3979 return -EFAULT; 3980 if (val < 0 || val > 1) 3981 return -EINVAL; 3982 3983 po->prot_hook.ignore_outgoing = !!val; 3984 return 0; 3985 } 3986 case PACKET_TX_HAS_OFF: 3987 { 3988 unsigned int val; 3989 3990 if (optlen != sizeof(val)) 3991 return -EINVAL; 3992 if (copy_from_sockptr(&val, optval, sizeof(val))) 3993 return -EFAULT; 3994 3995 lock_sock(sk); 3996 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3997 po->tp_tx_has_off = !!val; 3998 3999 release_sock(sk); 4000 return 0; 4001 } 4002 case PACKET_QDISC_BYPASS: 4003 { 4004 int val; 4005 4006 if (optlen != sizeof(val)) 4007 return -EINVAL; 4008 if (copy_from_sockptr(&val, optval, sizeof(val))) 4009 return -EFAULT; 4010 4011 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 4012 return 0; 4013 } 4014 default: 4015 return -ENOPROTOOPT; 4016 } 4017 } 4018 4019 static int packet_getsockopt(struct socket *sock, int level, int optname, 4020 char __user *optval, int __user *optlen) 4021 { 4022 int len; 4023 int val, lv = sizeof(val); 4024 struct sock *sk = sock->sk; 4025 struct packet_sock *po = pkt_sk(sk); 4026 void *data = &val; 4027 union tpacket_stats_u st; 4028 struct tpacket_rollover_stats rstats; 4029 int drops; 4030 4031 if (level != SOL_PACKET) 4032 return -ENOPROTOOPT; 4033 4034 if (get_user(len, optlen)) 4035 return -EFAULT; 4036 4037 if (len < 0) 4038 return -EINVAL; 4039 4040 switch (optname) { 4041 case PACKET_STATISTICS: 4042 spin_lock_bh(&sk->sk_receive_queue.lock); 4043 memcpy(&st, &po->stats, sizeof(st)); 4044 memset(&po->stats, 0, sizeof(po->stats)); 4045 spin_unlock_bh(&sk->sk_receive_queue.lock); 4046 drops = atomic_xchg(&po->tp_drops, 0); 4047 4048 if (po->tp_version == TPACKET_V3) { 4049 lv = sizeof(struct tpacket_stats_v3); 4050 st.stats3.tp_drops = drops; 4051 st.stats3.tp_packets += drops; 4052 data = &st.stats3; 4053 } else { 4054 lv = sizeof(struct tpacket_stats); 4055 st.stats1.tp_drops = drops; 4056 st.stats1.tp_packets += drops; 4057 data = &st.stats1; 4058 } 4059 4060 break; 4061 case PACKET_AUXDATA: 4062 val = po->auxdata; 4063 break; 4064 case PACKET_ORIGDEV: 4065 val = po->origdev; 4066 break; 4067 case PACKET_VNET_HDR: 4068 val = po->has_vnet_hdr; 4069 break; 4070 case PACKET_VERSION: 4071 val = po->tp_version; 4072 break; 4073 case PACKET_HDRLEN: 4074 if (len > sizeof(int)) 4075 len = sizeof(int); 4076 if (len < sizeof(int)) 4077 return -EINVAL; 4078 if (copy_from_user(&val, optval, len)) 4079 return -EFAULT; 4080 switch (val) { 4081 case TPACKET_V1: 4082 val = sizeof(struct tpacket_hdr); 4083 break; 4084 case TPACKET_V2: 4085 val = sizeof(struct tpacket2_hdr); 4086 break; 4087 case TPACKET_V3: 4088 val = sizeof(struct tpacket3_hdr); 4089 break; 4090 default: 4091 return -EINVAL; 4092 } 4093 break; 4094 case PACKET_RESERVE: 4095 val = po->tp_reserve; 4096 break; 4097 case PACKET_LOSS: 4098 val = po->tp_loss; 4099 break; 4100 case PACKET_TIMESTAMP: 4101 val = po->tp_tstamp; 4102 break; 4103 case PACKET_FANOUT: 4104 val = (po->fanout ? 4105 ((u32)po->fanout->id | 4106 ((u32)po->fanout->type << 16) | 4107 ((u32)po->fanout->flags << 24)) : 4108 0); 4109 break; 4110 case PACKET_IGNORE_OUTGOING: 4111 val = po->prot_hook.ignore_outgoing; 4112 break; 4113 case PACKET_ROLLOVER_STATS: 4114 if (!po->rollover) 4115 return -EINVAL; 4116 rstats.tp_all = atomic_long_read(&po->rollover->num); 4117 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4118 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4119 data = &rstats; 4120 lv = sizeof(rstats); 4121 break; 4122 case PACKET_TX_HAS_OFF: 4123 val = po->tp_tx_has_off; 4124 break; 4125 case PACKET_QDISC_BYPASS: 4126 val = packet_use_direct_xmit(po); 4127 break; 4128 default: 4129 return -ENOPROTOOPT; 4130 } 4131 4132 if (len > lv) 4133 len = lv; 4134 if (put_user(len, optlen)) 4135 return -EFAULT; 4136 if (copy_to_user(optval, data, len)) 4137 return -EFAULT; 4138 return 0; 4139 } 4140 4141 static int packet_notifier(struct notifier_block *this, 4142 unsigned long msg, void *ptr) 4143 { 4144 struct sock *sk; 4145 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4146 struct net *net = dev_net(dev); 4147 4148 rcu_read_lock(); 4149 sk_for_each_rcu(sk, &net->packet.sklist) { 4150 struct packet_sock *po = pkt_sk(sk); 4151 4152 switch (msg) { 4153 case NETDEV_UNREGISTER: 4154 if (po->mclist) 4155 packet_dev_mclist_delete(dev, &po->mclist); 4156 fallthrough; 4157 4158 case NETDEV_DOWN: 4159 if (dev->ifindex == po->ifindex) { 4160 spin_lock(&po->bind_lock); 4161 if (po->running) { 4162 __unregister_prot_hook(sk, false); 4163 sk->sk_err = ENETDOWN; 4164 if (!sock_flag(sk, SOCK_DEAD)) 4165 sk_error_report(sk); 4166 } 4167 if (msg == NETDEV_UNREGISTER) { 4168 packet_cached_dev_reset(po); 4169 WRITE_ONCE(po->ifindex, -1); 4170 netdev_put(po->prot_hook.dev, 4171 &po->prot_hook.dev_tracker); 4172 po->prot_hook.dev = NULL; 4173 } 4174 spin_unlock(&po->bind_lock); 4175 } 4176 break; 4177 case NETDEV_UP: 4178 if (dev->ifindex == po->ifindex) { 4179 spin_lock(&po->bind_lock); 4180 if (po->num) 4181 register_prot_hook(sk); 4182 spin_unlock(&po->bind_lock); 4183 } 4184 break; 4185 } 4186 } 4187 rcu_read_unlock(); 4188 return NOTIFY_DONE; 4189 } 4190 4191 4192 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4193 unsigned long arg) 4194 { 4195 struct sock *sk = sock->sk; 4196 4197 switch (cmd) { 4198 case SIOCOUTQ: 4199 { 4200 int amount = sk_wmem_alloc_get(sk); 4201 4202 return put_user(amount, (int __user *)arg); 4203 } 4204 case SIOCINQ: 4205 { 4206 struct sk_buff *skb; 4207 int amount = 0; 4208 4209 spin_lock_bh(&sk->sk_receive_queue.lock); 4210 skb = skb_peek(&sk->sk_receive_queue); 4211 if (skb) 4212 amount = skb->len; 4213 spin_unlock_bh(&sk->sk_receive_queue.lock); 4214 return put_user(amount, (int __user *)arg); 4215 } 4216 #ifdef CONFIG_INET 4217 case SIOCADDRT: 4218 case SIOCDELRT: 4219 case SIOCDARP: 4220 case SIOCGARP: 4221 case SIOCSARP: 4222 case SIOCGIFADDR: 4223 case SIOCSIFADDR: 4224 case SIOCGIFBRDADDR: 4225 case SIOCSIFBRDADDR: 4226 case SIOCGIFNETMASK: 4227 case SIOCSIFNETMASK: 4228 case SIOCGIFDSTADDR: 4229 case SIOCSIFDSTADDR: 4230 case SIOCSIFFLAGS: 4231 return inet_dgram_ops.ioctl(sock, cmd, arg); 4232 #endif 4233 4234 default: 4235 return -ENOIOCTLCMD; 4236 } 4237 return 0; 4238 } 4239 4240 static __poll_t packet_poll(struct file *file, struct socket *sock, 4241 poll_table *wait) 4242 { 4243 struct sock *sk = sock->sk; 4244 struct packet_sock *po = pkt_sk(sk); 4245 __poll_t mask = datagram_poll(file, sock, wait); 4246 4247 spin_lock_bh(&sk->sk_receive_queue.lock); 4248 if (po->rx_ring.pg_vec) { 4249 if (!packet_previous_rx_frame(po, &po->rx_ring, 4250 TP_STATUS_KERNEL)) 4251 mask |= EPOLLIN | EPOLLRDNORM; 4252 } 4253 packet_rcv_try_clear_pressure(po); 4254 spin_unlock_bh(&sk->sk_receive_queue.lock); 4255 spin_lock_bh(&sk->sk_write_queue.lock); 4256 if (po->tx_ring.pg_vec) { 4257 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4258 mask |= EPOLLOUT | EPOLLWRNORM; 4259 } 4260 spin_unlock_bh(&sk->sk_write_queue.lock); 4261 return mask; 4262 } 4263 4264 4265 /* Dirty? Well, I still did not learn better way to account 4266 * for user mmaps. 4267 */ 4268 4269 static void packet_mm_open(struct vm_area_struct *vma) 4270 { 4271 struct file *file = vma->vm_file; 4272 struct socket *sock = file->private_data; 4273 struct sock *sk = sock->sk; 4274 4275 if (sk) 4276 atomic_inc(&pkt_sk(sk)->mapped); 4277 } 4278 4279 static void packet_mm_close(struct vm_area_struct *vma) 4280 { 4281 struct file *file = vma->vm_file; 4282 struct socket *sock = file->private_data; 4283 struct sock *sk = sock->sk; 4284 4285 if (sk) 4286 atomic_dec(&pkt_sk(sk)->mapped); 4287 } 4288 4289 static const struct vm_operations_struct packet_mmap_ops = { 4290 .open = packet_mm_open, 4291 .close = packet_mm_close, 4292 }; 4293 4294 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4295 unsigned int len) 4296 { 4297 int i; 4298 4299 for (i = 0; i < len; i++) { 4300 if (likely(pg_vec[i].buffer)) { 4301 if (is_vmalloc_addr(pg_vec[i].buffer)) 4302 vfree(pg_vec[i].buffer); 4303 else 4304 free_pages((unsigned long)pg_vec[i].buffer, 4305 order); 4306 pg_vec[i].buffer = NULL; 4307 } 4308 } 4309 kfree(pg_vec); 4310 } 4311 4312 static char *alloc_one_pg_vec_page(unsigned long order) 4313 { 4314 char *buffer; 4315 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4316 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4317 4318 buffer = (char *) __get_free_pages(gfp_flags, order); 4319 if (buffer) 4320 return buffer; 4321 4322 /* __get_free_pages failed, fall back to vmalloc */ 4323 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4324 if (buffer) 4325 return buffer; 4326 4327 /* vmalloc failed, lets dig into swap here */ 4328 gfp_flags &= ~__GFP_NORETRY; 4329 buffer = (char *) __get_free_pages(gfp_flags, order); 4330 if (buffer) 4331 return buffer; 4332 4333 /* complete and utter failure */ 4334 return NULL; 4335 } 4336 4337 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4338 { 4339 unsigned int block_nr = req->tp_block_nr; 4340 struct pgv *pg_vec; 4341 int i; 4342 4343 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4344 if (unlikely(!pg_vec)) 4345 goto out; 4346 4347 for (i = 0; i < block_nr; i++) { 4348 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4349 if (unlikely(!pg_vec[i].buffer)) 4350 goto out_free_pgvec; 4351 } 4352 4353 out: 4354 return pg_vec; 4355 4356 out_free_pgvec: 4357 free_pg_vec(pg_vec, order, block_nr); 4358 pg_vec = NULL; 4359 goto out; 4360 } 4361 4362 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4363 int closing, int tx_ring) 4364 { 4365 struct pgv *pg_vec = NULL; 4366 struct packet_sock *po = pkt_sk(sk); 4367 unsigned long *rx_owner_map = NULL; 4368 int was_running, order = 0; 4369 struct packet_ring_buffer *rb; 4370 struct sk_buff_head *rb_queue; 4371 __be16 num; 4372 int err; 4373 /* Added to avoid minimal code churn */ 4374 struct tpacket_req *req = &req_u->req; 4375 4376 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4377 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4378 4379 err = -EBUSY; 4380 if (!closing) { 4381 if (atomic_read(&po->mapped)) 4382 goto out; 4383 if (packet_read_pending(rb)) 4384 goto out; 4385 } 4386 4387 if (req->tp_block_nr) { 4388 unsigned int min_frame_size; 4389 4390 /* Sanity tests and some calculations */ 4391 err = -EBUSY; 4392 if (unlikely(rb->pg_vec)) 4393 goto out; 4394 4395 switch (po->tp_version) { 4396 case TPACKET_V1: 4397 po->tp_hdrlen = TPACKET_HDRLEN; 4398 break; 4399 case TPACKET_V2: 4400 po->tp_hdrlen = TPACKET2_HDRLEN; 4401 break; 4402 case TPACKET_V3: 4403 po->tp_hdrlen = TPACKET3_HDRLEN; 4404 break; 4405 } 4406 4407 err = -EINVAL; 4408 if (unlikely((int)req->tp_block_size <= 0)) 4409 goto out; 4410 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4411 goto out; 4412 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4413 if (po->tp_version >= TPACKET_V3 && 4414 req->tp_block_size < 4415 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4416 goto out; 4417 if (unlikely(req->tp_frame_size < min_frame_size)) 4418 goto out; 4419 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4420 goto out; 4421 4422 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4423 if (unlikely(rb->frames_per_block == 0)) 4424 goto out; 4425 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4426 goto out; 4427 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4428 req->tp_frame_nr)) 4429 goto out; 4430 4431 err = -ENOMEM; 4432 order = get_order(req->tp_block_size); 4433 pg_vec = alloc_pg_vec(req, order); 4434 if (unlikely(!pg_vec)) 4435 goto out; 4436 switch (po->tp_version) { 4437 case TPACKET_V3: 4438 /* Block transmit is not supported yet */ 4439 if (!tx_ring) { 4440 init_prb_bdqc(po, rb, pg_vec, req_u); 4441 } else { 4442 struct tpacket_req3 *req3 = &req_u->req3; 4443 4444 if (req3->tp_retire_blk_tov || 4445 req3->tp_sizeof_priv || 4446 req3->tp_feature_req_word) { 4447 err = -EINVAL; 4448 goto out_free_pg_vec; 4449 } 4450 } 4451 break; 4452 default: 4453 if (!tx_ring) { 4454 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4455 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4456 if (!rx_owner_map) 4457 goto out_free_pg_vec; 4458 } 4459 break; 4460 } 4461 } 4462 /* Done */ 4463 else { 4464 err = -EINVAL; 4465 if (unlikely(req->tp_frame_nr)) 4466 goto out; 4467 } 4468 4469 4470 /* Detach socket from network */ 4471 spin_lock(&po->bind_lock); 4472 was_running = po->running; 4473 num = po->num; 4474 if (was_running) { 4475 WRITE_ONCE(po->num, 0); 4476 __unregister_prot_hook(sk, false); 4477 } 4478 spin_unlock(&po->bind_lock); 4479 4480 synchronize_net(); 4481 4482 err = -EBUSY; 4483 mutex_lock(&po->pg_vec_lock); 4484 if (closing || atomic_read(&po->mapped) == 0) { 4485 err = 0; 4486 spin_lock_bh(&rb_queue->lock); 4487 swap(rb->pg_vec, pg_vec); 4488 if (po->tp_version <= TPACKET_V2) 4489 swap(rb->rx_owner_map, rx_owner_map); 4490 rb->frame_max = (req->tp_frame_nr - 1); 4491 rb->head = 0; 4492 rb->frame_size = req->tp_frame_size; 4493 spin_unlock_bh(&rb_queue->lock); 4494 4495 swap(rb->pg_vec_order, order); 4496 swap(rb->pg_vec_len, req->tp_block_nr); 4497 4498 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4499 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4500 tpacket_rcv : packet_rcv; 4501 skb_queue_purge(rb_queue); 4502 if (atomic_read(&po->mapped)) 4503 pr_err("packet_mmap: vma is busy: %d\n", 4504 atomic_read(&po->mapped)); 4505 } 4506 mutex_unlock(&po->pg_vec_lock); 4507 4508 spin_lock(&po->bind_lock); 4509 if (was_running) { 4510 WRITE_ONCE(po->num, num); 4511 register_prot_hook(sk); 4512 } 4513 spin_unlock(&po->bind_lock); 4514 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4515 /* Because we don't support block-based V3 on tx-ring */ 4516 if (!tx_ring) 4517 prb_shutdown_retire_blk_timer(po, rb_queue); 4518 } 4519 4520 out_free_pg_vec: 4521 if (pg_vec) { 4522 bitmap_free(rx_owner_map); 4523 free_pg_vec(pg_vec, order, req->tp_block_nr); 4524 } 4525 out: 4526 return err; 4527 } 4528 4529 static int packet_mmap(struct file *file, struct socket *sock, 4530 struct vm_area_struct *vma) 4531 { 4532 struct sock *sk = sock->sk; 4533 struct packet_sock *po = pkt_sk(sk); 4534 unsigned long size, expected_size; 4535 struct packet_ring_buffer *rb; 4536 unsigned long start; 4537 int err = -EINVAL; 4538 int i; 4539 4540 if (vma->vm_pgoff) 4541 return -EINVAL; 4542 4543 mutex_lock(&po->pg_vec_lock); 4544 4545 expected_size = 0; 4546 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4547 if (rb->pg_vec) { 4548 expected_size += rb->pg_vec_len 4549 * rb->pg_vec_pages 4550 * PAGE_SIZE; 4551 } 4552 } 4553 4554 if (expected_size == 0) 4555 goto out; 4556 4557 size = vma->vm_end - vma->vm_start; 4558 if (size != expected_size) 4559 goto out; 4560 4561 start = vma->vm_start; 4562 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4563 if (rb->pg_vec == NULL) 4564 continue; 4565 4566 for (i = 0; i < rb->pg_vec_len; i++) { 4567 struct page *page; 4568 void *kaddr = rb->pg_vec[i].buffer; 4569 int pg_num; 4570 4571 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4572 page = pgv_to_page(kaddr); 4573 err = vm_insert_page(vma, start, page); 4574 if (unlikely(err)) 4575 goto out; 4576 start += PAGE_SIZE; 4577 kaddr += PAGE_SIZE; 4578 } 4579 } 4580 } 4581 4582 atomic_inc(&po->mapped); 4583 vma->vm_ops = &packet_mmap_ops; 4584 err = 0; 4585 4586 out: 4587 mutex_unlock(&po->pg_vec_lock); 4588 return err; 4589 } 4590 4591 static const struct proto_ops packet_ops_spkt = { 4592 .family = PF_PACKET, 4593 .owner = THIS_MODULE, 4594 .release = packet_release, 4595 .bind = packet_bind_spkt, 4596 .connect = sock_no_connect, 4597 .socketpair = sock_no_socketpair, 4598 .accept = sock_no_accept, 4599 .getname = packet_getname_spkt, 4600 .poll = datagram_poll, 4601 .ioctl = packet_ioctl, 4602 .gettstamp = sock_gettstamp, 4603 .listen = sock_no_listen, 4604 .shutdown = sock_no_shutdown, 4605 .sendmsg = packet_sendmsg_spkt, 4606 .recvmsg = packet_recvmsg, 4607 .mmap = sock_no_mmap, 4608 .sendpage = sock_no_sendpage, 4609 }; 4610 4611 static const struct proto_ops packet_ops = { 4612 .family = PF_PACKET, 4613 .owner = THIS_MODULE, 4614 .release = packet_release, 4615 .bind = packet_bind, 4616 .connect = sock_no_connect, 4617 .socketpair = sock_no_socketpair, 4618 .accept = sock_no_accept, 4619 .getname = packet_getname, 4620 .poll = packet_poll, 4621 .ioctl = packet_ioctl, 4622 .gettstamp = sock_gettstamp, 4623 .listen = sock_no_listen, 4624 .shutdown = sock_no_shutdown, 4625 .setsockopt = packet_setsockopt, 4626 .getsockopt = packet_getsockopt, 4627 .sendmsg = packet_sendmsg, 4628 .recvmsg = packet_recvmsg, 4629 .mmap = packet_mmap, 4630 .sendpage = sock_no_sendpage, 4631 }; 4632 4633 static const struct net_proto_family packet_family_ops = { 4634 .family = PF_PACKET, 4635 .create = packet_create, 4636 .owner = THIS_MODULE, 4637 }; 4638 4639 static struct notifier_block packet_netdev_notifier = { 4640 .notifier_call = packet_notifier, 4641 }; 4642 4643 #ifdef CONFIG_PROC_FS 4644 4645 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4646 __acquires(RCU) 4647 { 4648 struct net *net = seq_file_net(seq); 4649 4650 rcu_read_lock(); 4651 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4652 } 4653 4654 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4655 { 4656 struct net *net = seq_file_net(seq); 4657 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4658 } 4659 4660 static void packet_seq_stop(struct seq_file *seq, void *v) 4661 __releases(RCU) 4662 { 4663 rcu_read_unlock(); 4664 } 4665 4666 static int packet_seq_show(struct seq_file *seq, void *v) 4667 { 4668 if (v == SEQ_START_TOKEN) 4669 seq_printf(seq, 4670 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4671 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4672 else { 4673 struct sock *s = sk_entry(v); 4674 const struct packet_sock *po = pkt_sk(s); 4675 4676 seq_printf(seq, 4677 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4678 s, 4679 refcount_read(&s->sk_refcnt), 4680 s->sk_type, 4681 ntohs(READ_ONCE(po->num)), 4682 READ_ONCE(po->ifindex), 4683 po->running, 4684 atomic_read(&s->sk_rmem_alloc), 4685 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4686 sock_i_ino(s)); 4687 } 4688 4689 return 0; 4690 } 4691 4692 static const struct seq_operations packet_seq_ops = { 4693 .start = packet_seq_start, 4694 .next = packet_seq_next, 4695 .stop = packet_seq_stop, 4696 .show = packet_seq_show, 4697 }; 4698 #endif 4699 4700 static int __net_init packet_net_init(struct net *net) 4701 { 4702 mutex_init(&net->packet.sklist_lock); 4703 INIT_HLIST_HEAD(&net->packet.sklist); 4704 4705 #ifdef CONFIG_PROC_FS 4706 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4707 sizeof(struct seq_net_private))) 4708 return -ENOMEM; 4709 #endif /* CONFIG_PROC_FS */ 4710 4711 return 0; 4712 } 4713 4714 static void __net_exit packet_net_exit(struct net *net) 4715 { 4716 remove_proc_entry("packet", net->proc_net); 4717 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4718 } 4719 4720 static struct pernet_operations packet_net_ops = { 4721 .init = packet_net_init, 4722 .exit = packet_net_exit, 4723 }; 4724 4725 4726 static void __exit packet_exit(void) 4727 { 4728 unregister_netdevice_notifier(&packet_netdev_notifier); 4729 unregister_pernet_subsys(&packet_net_ops); 4730 sock_unregister(PF_PACKET); 4731 proto_unregister(&packet_proto); 4732 } 4733 4734 static int __init packet_init(void) 4735 { 4736 int rc; 4737 4738 rc = proto_register(&packet_proto, 0); 4739 if (rc) 4740 goto out; 4741 rc = sock_register(&packet_family_ops); 4742 if (rc) 4743 goto out_proto; 4744 rc = register_pernet_subsys(&packet_net_ops); 4745 if (rc) 4746 goto out_sock; 4747 rc = register_netdevice_notifier(&packet_netdev_notifier); 4748 if (rc) 4749 goto out_pernet; 4750 4751 return 0; 4752 4753 out_pernet: 4754 unregister_pernet_subsys(&packet_net_ops); 4755 out_sock: 4756 sock_unregister(PF_PACKET); 4757 out_proto: 4758 proto_unregister(&packet_proto); 4759 out: 4760 return rc; 4761 } 4762 4763 module_init(packet_init); 4764 module_exit(packet_exit); 4765 MODULE_LICENSE("GPL"); 4766 MODULE_ALIAS_NETPROTO(PF_PACKET); 4767