xref: /openbmc/linux/net/packet/af_packet.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97 
98 #include "internal.h"
99 
100 /*
101    Assumptions:
102    - if device has no dev->hard_header routine, it adds and removes ll header
103      inside itself. In this case ll header is invisible outside of device,
104      but higher levels still should reserve dev->hard_header_len.
105      Some devices are enough clever to reallocate skb, when header
106      will not fit to reserved space (tunnel), another ones are silly
107      (PPP).
108    - packet socket receives packets with pulled ll header,
109      so that SOCK_RAW should push it back.
110 
111 On receive:
112 -----------
113 
114 Incoming, dev->hard_header!=NULL
115    mac_header -> ll header
116    data       -> data
117 
118 Outgoing, dev->hard_header!=NULL
119    mac_header -> ll header
120    data       -> ll header
121 
122 Incoming, dev->hard_header==NULL
123    mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 		 header.  PPP makes it, that is wrong, because introduce
125 		 assymetry between rx and tx paths.
126    data       -> data
127 
128 Outgoing, dev->hard_header==NULL
129    mac_header -> data. ll header is still not built!
130    data       -> data
131 
132 Resume
133   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134 
135 
136 On transmit:
137 ------------
138 
139 dev->hard_header != NULL
140    mac_header -> ll header
141    data       -> ll header
142 
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144    mac_header -> data
145    data       -> data
146 
147    We should set nh.raw on output to correct posistion,
148    packet classifier depends on it.
149  */
150 
151 /* Private packet socket structures. */
152 
153 /* identical to struct packet_mreq except it has
154  * a longer address field.
155  */
156 struct packet_mreq_max {
157 	int		mr_ifindex;
158 	unsigned short	mr_type;
159 	unsigned short	mr_alen;
160 	unsigned char	mr_address[MAX_ADDR_LEN];
161 };
162 
163 union tpacket_uhdr {
164 	struct tpacket_hdr  *h1;
165 	struct tpacket2_hdr *h2;
166 	struct tpacket3_hdr *h3;
167 	void *raw;
168 };
169 
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 		int closing, int tx_ring);
172 
173 #define V3_ALIGNMENT	(8)
174 
175 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176 
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
190 		       struct packet_type *pt, struct net_device *orig_dev);
191 
192 static void *packet_previous_frame(struct packet_sock *po,
193 		struct packet_ring_buffer *rb,
194 		int status);
195 static void packet_increment_head(struct packet_ring_buffer *buff);
196 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
197 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
198 			struct packet_sock *);
199 static void prb_retire_current_block(struct tpacket_kbdq_core *,
200 		struct packet_sock *, unsigned int status);
201 static int prb_queue_frozen(struct tpacket_kbdq_core *);
202 static void prb_open_block(struct tpacket_kbdq_core *,
203 		struct tpacket_block_desc *);
204 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
205 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
206 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
207 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
210 		struct tpacket3_hdr *);
211 static void packet_flush_mclist(struct sock *sk);
212 static u16 packet_pick_tx_queue(struct sk_buff *skb);
213 
214 struct packet_skb_cb {
215 	union {
216 		struct sockaddr_pkt pkt;
217 		union {
218 			/* Trick: alias skb original length with
219 			 * ll.sll_family and ll.protocol in order
220 			 * to save room.
221 			 */
222 			unsigned int origlen;
223 			struct sockaddr_ll ll;
224 		};
225 	} sa;
226 };
227 
228 #define vio_le() virtio_legacy_is_little_endian()
229 
230 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
231 
232 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
233 #define GET_PBLOCK_DESC(x, bid)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
235 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
236 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
237 #define GET_NEXT_PRB_BLK_NUM(x) \
238 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
239 	((x)->kactive_blk_num+1) : 0)
240 
241 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
242 static void __fanout_link(struct sock *sk, struct packet_sock *po);
243 
244 static int packet_direct_xmit(struct sk_buff *skb)
245 {
246 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
247 }
248 
249 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
250 {
251 	struct net_device *dev;
252 
253 	rcu_read_lock();
254 	dev = rcu_dereference(po->cached_dev);
255 	if (likely(dev))
256 		dev_hold(dev);
257 	rcu_read_unlock();
258 
259 	return dev;
260 }
261 
262 static void packet_cached_dev_assign(struct packet_sock *po,
263 				     struct net_device *dev)
264 {
265 	rcu_assign_pointer(po->cached_dev, dev);
266 }
267 
268 static void packet_cached_dev_reset(struct packet_sock *po)
269 {
270 	RCU_INIT_POINTER(po->cached_dev, NULL);
271 }
272 
273 static bool packet_use_direct_xmit(const struct packet_sock *po)
274 {
275 	return po->xmit == packet_direct_xmit;
276 }
277 
278 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb,
279 				  struct net_device *sb_dev)
280 {
281 	return dev_pick_tx_cpu_id(dev, skb, sb_dev, NULL);
282 }
283 
284 static u16 packet_pick_tx_queue(struct sk_buff *skb)
285 {
286 	struct net_device *dev = skb->dev;
287 	const struct net_device_ops *ops = dev->netdev_ops;
288 	u16 queue_index;
289 
290 	if (ops->ndo_select_queue) {
291 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
292 						    __packet_pick_tx_queue);
293 		queue_index = netdev_cap_txqueue(dev, queue_index);
294 	} else {
295 		queue_index = __packet_pick_tx_queue(dev, skb, NULL);
296 	}
297 
298 	return queue_index;
299 }
300 
301 /* __register_prot_hook must be invoked through register_prot_hook
302  * or from a context in which asynchronous accesses to the packet
303  * socket is not possible (packet_create()).
304  */
305 static void __register_prot_hook(struct sock *sk)
306 {
307 	struct packet_sock *po = pkt_sk(sk);
308 
309 	if (!po->running) {
310 		if (po->fanout)
311 			__fanout_link(sk, po);
312 		else
313 			dev_add_pack(&po->prot_hook);
314 
315 		sock_hold(sk);
316 		po->running = 1;
317 	}
318 }
319 
320 static void register_prot_hook(struct sock *sk)
321 {
322 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
323 	__register_prot_hook(sk);
324 }
325 
326 /* If the sync parameter is true, we will temporarily drop
327  * the po->bind_lock and do a synchronize_net to make sure no
328  * asynchronous packet processing paths still refer to the elements
329  * of po->prot_hook.  If the sync parameter is false, it is the
330  * callers responsibility to take care of this.
331  */
332 static void __unregister_prot_hook(struct sock *sk, bool sync)
333 {
334 	struct packet_sock *po = pkt_sk(sk);
335 
336 	lockdep_assert_held_once(&po->bind_lock);
337 
338 	po->running = 0;
339 
340 	if (po->fanout)
341 		__fanout_unlink(sk, po);
342 	else
343 		__dev_remove_pack(&po->prot_hook);
344 
345 	__sock_put(sk);
346 
347 	if (sync) {
348 		spin_unlock(&po->bind_lock);
349 		synchronize_net();
350 		spin_lock(&po->bind_lock);
351 	}
352 }
353 
354 static void unregister_prot_hook(struct sock *sk, bool sync)
355 {
356 	struct packet_sock *po = pkt_sk(sk);
357 
358 	if (po->running)
359 		__unregister_prot_hook(sk, sync);
360 }
361 
362 static inline struct page * __pure pgv_to_page(void *addr)
363 {
364 	if (is_vmalloc_addr(addr))
365 		return vmalloc_to_page(addr);
366 	return virt_to_page(addr);
367 }
368 
369 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
370 {
371 	union tpacket_uhdr h;
372 
373 	h.raw = frame;
374 	switch (po->tp_version) {
375 	case TPACKET_V1:
376 		h.h1->tp_status = status;
377 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
378 		break;
379 	case TPACKET_V2:
380 		h.h2->tp_status = status;
381 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
382 		break;
383 	case TPACKET_V3:
384 		h.h3->tp_status = status;
385 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
386 		break;
387 	default:
388 		WARN(1, "TPACKET version not supported.\n");
389 		BUG();
390 	}
391 
392 	smp_wmb();
393 }
394 
395 static int __packet_get_status(struct packet_sock *po, void *frame)
396 {
397 	union tpacket_uhdr h;
398 
399 	smp_rmb();
400 
401 	h.raw = frame;
402 	switch (po->tp_version) {
403 	case TPACKET_V1:
404 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
405 		return h.h1->tp_status;
406 	case TPACKET_V2:
407 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
408 		return h.h2->tp_status;
409 	case TPACKET_V3:
410 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
411 		return h.h3->tp_status;
412 	default:
413 		WARN(1, "TPACKET version not supported.\n");
414 		BUG();
415 		return 0;
416 	}
417 }
418 
419 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
420 				   unsigned int flags)
421 {
422 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
423 
424 	if (shhwtstamps &&
425 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
426 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
427 		return TP_STATUS_TS_RAW_HARDWARE;
428 
429 	if (ktime_to_timespec_cond(skb->tstamp, ts))
430 		return TP_STATUS_TS_SOFTWARE;
431 
432 	return 0;
433 }
434 
435 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
436 				    struct sk_buff *skb)
437 {
438 	union tpacket_uhdr h;
439 	struct timespec ts;
440 	__u32 ts_status;
441 
442 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
443 		return 0;
444 
445 	h.raw = frame;
446 	switch (po->tp_version) {
447 	case TPACKET_V1:
448 		h.h1->tp_sec = ts.tv_sec;
449 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
450 		break;
451 	case TPACKET_V2:
452 		h.h2->tp_sec = ts.tv_sec;
453 		h.h2->tp_nsec = ts.tv_nsec;
454 		break;
455 	case TPACKET_V3:
456 		h.h3->tp_sec = ts.tv_sec;
457 		h.h3->tp_nsec = ts.tv_nsec;
458 		break;
459 	default:
460 		WARN(1, "TPACKET version not supported.\n");
461 		BUG();
462 	}
463 
464 	/* one flush is safe, as both fields always lie on the same cacheline */
465 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
466 	smp_wmb();
467 
468 	return ts_status;
469 }
470 
471 static void *packet_lookup_frame(struct packet_sock *po,
472 		struct packet_ring_buffer *rb,
473 		unsigned int position,
474 		int status)
475 {
476 	unsigned int pg_vec_pos, frame_offset;
477 	union tpacket_uhdr h;
478 
479 	pg_vec_pos = position / rb->frames_per_block;
480 	frame_offset = position % rb->frames_per_block;
481 
482 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
483 		(frame_offset * rb->frame_size);
484 
485 	if (status != __packet_get_status(po, h.raw))
486 		return NULL;
487 
488 	return h.raw;
489 }
490 
491 static void *packet_current_frame(struct packet_sock *po,
492 		struct packet_ring_buffer *rb,
493 		int status)
494 {
495 	return packet_lookup_frame(po, rb, rb->head, status);
496 }
497 
498 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
499 {
500 	del_timer_sync(&pkc->retire_blk_timer);
501 }
502 
503 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
504 		struct sk_buff_head *rb_queue)
505 {
506 	struct tpacket_kbdq_core *pkc;
507 
508 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
509 
510 	spin_lock_bh(&rb_queue->lock);
511 	pkc->delete_blk_timer = 1;
512 	spin_unlock_bh(&rb_queue->lock);
513 
514 	prb_del_retire_blk_timer(pkc);
515 }
516 
517 static void prb_setup_retire_blk_timer(struct packet_sock *po)
518 {
519 	struct tpacket_kbdq_core *pkc;
520 
521 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
522 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
523 		    0);
524 	pkc->retire_blk_timer.expires = jiffies;
525 }
526 
527 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
528 				int blk_size_in_bytes)
529 {
530 	struct net_device *dev;
531 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
532 	struct ethtool_link_ksettings ecmd;
533 	int err;
534 
535 	rtnl_lock();
536 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
537 	if (unlikely(!dev)) {
538 		rtnl_unlock();
539 		return DEFAULT_PRB_RETIRE_TOV;
540 	}
541 	err = __ethtool_get_link_ksettings(dev, &ecmd);
542 	rtnl_unlock();
543 	if (!err) {
544 		/*
545 		 * If the link speed is so slow you don't really
546 		 * need to worry about perf anyways
547 		 */
548 		if (ecmd.base.speed < SPEED_1000 ||
549 		    ecmd.base.speed == SPEED_UNKNOWN) {
550 			return DEFAULT_PRB_RETIRE_TOV;
551 		} else {
552 			msec = 1;
553 			div = ecmd.base.speed / 1000;
554 		}
555 	}
556 
557 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
558 
559 	if (div)
560 		mbits /= div;
561 
562 	tmo = mbits * msec;
563 
564 	if (div)
565 		return tmo+1;
566 	return tmo;
567 }
568 
569 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
570 			union tpacket_req_u *req_u)
571 {
572 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
573 }
574 
575 static void init_prb_bdqc(struct packet_sock *po,
576 			struct packet_ring_buffer *rb,
577 			struct pgv *pg_vec,
578 			union tpacket_req_u *req_u)
579 {
580 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
581 	struct tpacket_block_desc *pbd;
582 
583 	memset(p1, 0x0, sizeof(*p1));
584 
585 	p1->knxt_seq_num = 1;
586 	p1->pkbdq = pg_vec;
587 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
588 	p1->pkblk_start	= pg_vec[0].buffer;
589 	p1->kblk_size = req_u->req3.tp_block_size;
590 	p1->knum_blocks	= req_u->req3.tp_block_nr;
591 	p1->hdrlen = po->tp_hdrlen;
592 	p1->version = po->tp_version;
593 	p1->last_kactive_blk_num = 0;
594 	po->stats.stats3.tp_freeze_q_cnt = 0;
595 	if (req_u->req3.tp_retire_blk_tov)
596 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
597 	else
598 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
599 						req_u->req3.tp_block_size);
600 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
601 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
602 
603 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
604 	prb_init_ft_ops(p1, req_u);
605 	prb_setup_retire_blk_timer(po);
606 	prb_open_block(p1, pbd);
607 }
608 
609 /*  Do NOT update the last_blk_num first.
610  *  Assumes sk_buff_head lock is held.
611  */
612 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
613 {
614 	mod_timer(&pkc->retire_blk_timer,
615 			jiffies + pkc->tov_in_jiffies);
616 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
617 }
618 
619 /*
620  * Timer logic:
621  * 1) We refresh the timer only when we open a block.
622  *    By doing this we don't waste cycles refreshing the timer
623  *	  on packet-by-packet basis.
624  *
625  * With a 1MB block-size, on a 1Gbps line, it will take
626  * i) ~8 ms to fill a block + ii) memcpy etc.
627  * In this cut we are not accounting for the memcpy time.
628  *
629  * So, if the user sets the 'tmo' to 10ms then the timer
630  * will never fire while the block is still getting filled
631  * (which is what we want). However, the user could choose
632  * to close a block early and that's fine.
633  *
634  * But when the timer does fire, we check whether or not to refresh it.
635  * Since the tmo granularity is in msecs, it is not too expensive
636  * to refresh the timer, lets say every '8' msecs.
637  * Either the user can set the 'tmo' or we can derive it based on
638  * a) line-speed and b) block-size.
639  * prb_calc_retire_blk_tmo() calculates the tmo.
640  *
641  */
642 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
643 {
644 	struct packet_sock *po =
645 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
646 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
647 	unsigned int frozen;
648 	struct tpacket_block_desc *pbd;
649 
650 	spin_lock(&po->sk.sk_receive_queue.lock);
651 
652 	frozen = prb_queue_frozen(pkc);
653 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
654 
655 	if (unlikely(pkc->delete_blk_timer))
656 		goto out;
657 
658 	/* We only need to plug the race when the block is partially filled.
659 	 * tpacket_rcv:
660 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
661 	 *		copy_bits() is in progress ...
662 	 *		timer fires on other cpu:
663 	 *		we can't retire the current block because copy_bits
664 	 *		is in progress.
665 	 *
666 	 */
667 	if (BLOCK_NUM_PKTS(pbd)) {
668 		while (atomic_read(&pkc->blk_fill_in_prog)) {
669 			/* Waiting for skb_copy_bits to finish... */
670 			cpu_relax();
671 		}
672 	}
673 
674 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
675 		if (!frozen) {
676 			if (!BLOCK_NUM_PKTS(pbd)) {
677 				/* An empty block. Just refresh the timer. */
678 				goto refresh_timer;
679 			}
680 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
681 			if (!prb_dispatch_next_block(pkc, po))
682 				goto refresh_timer;
683 			else
684 				goto out;
685 		} else {
686 			/* Case 1. Queue was frozen because user-space was
687 			 *	   lagging behind.
688 			 */
689 			if (prb_curr_blk_in_use(pbd)) {
690 				/*
691 				 * Ok, user-space is still behind.
692 				 * So just refresh the timer.
693 				 */
694 				goto refresh_timer;
695 			} else {
696 			       /* Case 2. queue was frozen,user-space caught up,
697 				* now the link went idle && the timer fired.
698 				* We don't have a block to close.So we open this
699 				* block and restart the timer.
700 				* opening a block thaws the queue,restarts timer
701 				* Thawing/timer-refresh is a side effect.
702 				*/
703 				prb_open_block(pkc, pbd);
704 				goto out;
705 			}
706 		}
707 	}
708 
709 refresh_timer:
710 	_prb_refresh_rx_retire_blk_timer(pkc);
711 
712 out:
713 	spin_unlock(&po->sk.sk_receive_queue.lock);
714 }
715 
716 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
717 		struct tpacket_block_desc *pbd1, __u32 status)
718 {
719 	/* Flush everything minus the block header */
720 
721 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
722 	u8 *start, *end;
723 
724 	start = (u8 *)pbd1;
725 
726 	/* Skip the block header(we know header WILL fit in 4K) */
727 	start += PAGE_SIZE;
728 
729 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
730 	for (; start < end; start += PAGE_SIZE)
731 		flush_dcache_page(pgv_to_page(start));
732 
733 	smp_wmb();
734 #endif
735 
736 	/* Now update the block status. */
737 
738 	BLOCK_STATUS(pbd1) = status;
739 
740 	/* Flush the block header */
741 
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 	start = (u8 *)pbd1;
744 	flush_dcache_page(pgv_to_page(start));
745 
746 	smp_wmb();
747 #endif
748 }
749 
750 /*
751  * Side effect:
752  *
753  * 1) flush the block
754  * 2) Increment active_blk_num
755  *
756  * Note:We DONT refresh the timer on purpose.
757  *	Because almost always the next block will be opened.
758  */
759 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
760 		struct tpacket_block_desc *pbd1,
761 		struct packet_sock *po, unsigned int stat)
762 {
763 	__u32 status = TP_STATUS_USER | stat;
764 
765 	struct tpacket3_hdr *last_pkt;
766 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
767 	struct sock *sk = &po->sk;
768 
769 	if (po->stats.stats3.tp_drops)
770 		status |= TP_STATUS_LOSING;
771 
772 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
773 	last_pkt->tp_next_offset = 0;
774 
775 	/* Get the ts of the last pkt */
776 	if (BLOCK_NUM_PKTS(pbd1)) {
777 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
778 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
779 	} else {
780 		/* Ok, we tmo'd - so get the current time.
781 		 *
782 		 * It shouldn't really happen as we don't close empty
783 		 * blocks. See prb_retire_rx_blk_timer_expired().
784 		 */
785 		struct timespec ts;
786 		getnstimeofday(&ts);
787 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
788 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
789 	}
790 
791 	smp_wmb();
792 
793 	/* Flush the block */
794 	prb_flush_block(pkc1, pbd1, status);
795 
796 	sk->sk_data_ready(sk);
797 
798 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
799 }
800 
801 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
802 {
803 	pkc->reset_pending_on_curr_blk = 0;
804 }
805 
806 /*
807  * Side effect of opening a block:
808  *
809  * 1) prb_queue is thawed.
810  * 2) retire_blk_timer is refreshed.
811  *
812  */
813 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
814 	struct tpacket_block_desc *pbd1)
815 {
816 	struct timespec ts;
817 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
818 
819 	smp_rmb();
820 
821 	/* We could have just memset this but we will lose the
822 	 * flexibility of making the priv area sticky
823 	 */
824 
825 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
826 	BLOCK_NUM_PKTS(pbd1) = 0;
827 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
828 
829 	getnstimeofday(&ts);
830 
831 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
832 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
833 
834 	pkc1->pkblk_start = (char *)pbd1;
835 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
836 
837 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
838 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
839 
840 	pbd1->version = pkc1->version;
841 	pkc1->prev = pkc1->nxt_offset;
842 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
843 
844 	prb_thaw_queue(pkc1);
845 	_prb_refresh_rx_retire_blk_timer(pkc1);
846 
847 	smp_wmb();
848 }
849 
850 /*
851  * Queue freeze logic:
852  * 1) Assume tp_block_nr = 8 blocks.
853  * 2) At time 't0', user opens Rx ring.
854  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
855  * 4) user-space is either sleeping or processing block '0'.
856  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
857  *    it will close block-7,loop around and try to fill block '0'.
858  *    call-flow:
859  *    __packet_lookup_frame_in_block
860  *      prb_retire_current_block()
861  *      prb_dispatch_next_block()
862  *        |->(BLOCK_STATUS == USER) evaluates to true
863  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
864  * 6) Now there are two cases:
865  *    6.1) Link goes idle right after the queue is frozen.
866  *         But remember, the last open_block() refreshed the timer.
867  *         When this timer expires,it will refresh itself so that we can
868  *         re-open block-0 in near future.
869  *    6.2) Link is busy and keeps on receiving packets. This is a simple
870  *         case and __packet_lookup_frame_in_block will check if block-0
871  *         is free and can now be re-used.
872  */
873 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
874 				  struct packet_sock *po)
875 {
876 	pkc->reset_pending_on_curr_blk = 1;
877 	po->stats.stats3.tp_freeze_q_cnt++;
878 }
879 
880 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
881 
882 /*
883  * If the next block is free then we will dispatch it
884  * and return a good offset.
885  * Else, we will freeze the queue.
886  * So, caller must check the return value.
887  */
888 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
889 		struct packet_sock *po)
890 {
891 	struct tpacket_block_desc *pbd;
892 
893 	smp_rmb();
894 
895 	/* 1. Get current block num */
896 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
897 
898 	/* 2. If this block is currently in_use then freeze the queue */
899 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
900 		prb_freeze_queue(pkc, po);
901 		return NULL;
902 	}
903 
904 	/*
905 	 * 3.
906 	 * open this block and return the offset where the first packet
907 	 * needs to get stored.
908 	 */
909 	prb_open_block(pkc, pbd);
910 	return (void *)pkc->nxt_offset;
911 }
912 
913 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
914 		struct packet_sock *po, unsigned int status)
915 {
916 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
917 
918 	/* retire/close the current block */
919 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
920 		/*
921 		 * Plug the case where copy_bits() is in progress on
922 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
923 		 * have space to copy the pkt in the current block and
924 		 * called prb_retire_current_block()
925 		 *
926 		 * We don't need to worry about the TMO case because
927 		 * the timer-handler already handled this case.
928 		 */
929 		if (!(status & TP_STATUS_BLK_TMO)) {
930 			while (atomic_read(&pkc->blk_fill_in_prog)) {
931 				/* Waiting for skb_copy_bits to finish... */
932 				cpu_relax();
933 			}
934 		}
935 		prb_close_block(pkc, pbd, po, status);
936 		return;
937 	}
938 }
939 
940 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
941 {
942 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
943 }
944 
945 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
946 {
947 	return pkc->reset_pending_on_curr_blk;
948 }
949 
950 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
951 {
952 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
953 	atomic_dec(&pkc->blk_fill_in_prog);
954 }
955 
956 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
957 			struct tpacket3_hdr *ppd)
958 {
959 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
960 }
961 
962 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
963 			struct tpacket3_hdr *ppd)
964 {
965 	ppd->hv1.tp_rxhash = 0;
966 }
967 
968 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
969 			struct tpacket3_hdr *ppd)
970 {
971 	if (skb_vlan_tag_present(pkc->skb)) {
972 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
973 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
974 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
975 	} else {
976 		ppd->hv1.tp_vlan_tci = 0;
977 		ppd->hv1.tp_vlan_tpid = 0;
978 		ppd->tp_status = TP_STATUS_AVAILABLE;
979 	}
980 }
981 
982 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
983 			struct tpacket3_hdr *ppd)
984 {
985 	ppd->hv1.tp_padding = 0;
986 	prb_fill_vlan_info(pkc, ppd);
987 
988 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
989 		prb_fill_rxhash(pkc, ppd);
990 	else
991 		prb_clear_rxhash(pkc, ppd);
992 }
993 
994 static void prb_fill_curr_block(char *curr,
995 				struct tpacket_kbdq_core *pkc,
996 				struct tpacket_block_desc *pbd,
997 				unsigned int len)
998 {
999 	struct tpacket3_hdr *ppd;
1000 
1001 	ppd  = (struct tpacket3_hdr *)curr;
1002 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1003 	pkc->prev = curr;
1004 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1006 	BLOCK_NUM_PKTS(pbd) += 1;
1007 	atomic_inc(&pkc->blk_fill_in_prog);
1008 	prb_run_all_ft_ops(pkc, ppd);
1009 }
1010 
1011 /* Assumes caller has the sk->rx_queue.lock */
1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1013 					    struct sk_buff *skb,
1014 						int status,
1015 					    unsigned int len
1016 					    )
1017 {
1018 	struct tpacket_kbdq_core *pkc;
1019 	struct tpacket_block_desc *pbd;
1020 	char *curr, *end;
1021 
1022 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1023 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1024 
1025 	/* Queue is frozen when user space is lagging behind */
1026 	if (prb_queue_frozen(pkc)) {
1027 		/*
1028 		 * Check if that last block which caused the queue to freeze,
1029 		 * is still in_use by user-space.
1030 		 */
1031 		if (prb_curr_blk_in_use(pbd)) {
1032 			/* Can't record this packet */
1033 			return NULL;
1034 		} else {
1035 			/*
1036 			 * Ok, the block was released by user-space.
1037 			 * Now let's open that block.
1038 			 * opening a block also thaws the queue.
1039 			 * Thawing is a side effect.
1040 			 */
1041 			prb_open_block(pkc, pbd);
1042 		}
1043 	}
1044 
1045 	smp_mb();
1046 	curr = pkc->nxt_offset;
1047 	pkc->skb = skb;
1048 	end = (char *)pbd + pkc->kblk_size;
1049 
1050 	/* first try the current block */
1051 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1052 		prb_fill_curr_block(curr, pkc, pbd, len);
1053 		return (void *)curr;
1054 	}
1055 
1056 	/* Ok, close the current block */
1057 	prb_retire_current_block(pkc, po, 0);
1058 
1059 	/* Now, try to dispatch the next block */
1060 	curr = (char *)prb_dispatch_next_block(pkc, po);
1061 	if (curr) {
1062 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1063 		prb_fill_curr_block(curr, pkc, pbd, len);
1064 		return (void *)curr;
1065 	}
1066 
1067 	/*
1068 	 * No free blocks are available.user_space hasn't caught up yet.
1069 	 * Queue was just frozen and now this packet will get dropped.
1070 	 */
1071 	return NULL;
1072 }
1073 
1074 static void *packet_current_rx_frame(struct packet_sock *po,
1075 					    struct sk_buff *skb,
1076 					    int status, unsigned int len)
1077 {
1078 	char *curr = NULL;
1079 	switch (po->tp_version) {
1080 	case TPACKET_V1:
1081 	case TPACKET_V2:
1082 		curr = packet_lookup_frame(po, &po->rx_ring,
1083 					po->rx_ring.head, status);
1084 		return curr;
1085 	case TPACKET_V3:
1086 		return __packet_lookup_frame_in_block(po, skb, status, len);
1087 	default:
1088 		WARN(1, "TPACKET version not supported\n");
1089 		BUG();
1090 		return NULL;
1091 	}
1092 }
1093 
1094 static void *prb_lookup_block(struct packet_sock *po,
1095 				     struct packet_ring_buffer *rb,
1096 				     unsigned int idx,
1097 				     int status)
1098 {
1099 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1100 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1101 
1102 	if (status != BLOCK_STATUS(pbd))
1103 		return NULL;
1104 	return pbd;
1105 }
1106 
1107 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1108 {
1109 	unsigned int prev;
1110 	if (rb->prb_bdqc.kactive_blk_num)
1111 		prev = rb->prb_bdqc.kactive_blk_num-1;
1112 	else
1113 		prev = rb->prb_bdqc.knum_blocks-1;
1114 	return prev;
1115 }
1116 
1117 /* Assumes caller has held the rx_queue.lock */
1118 static void *__prb_previous_block(struct packet_sock *po,
1119 					 struct packet_ring_buffer *rb,
1120 					 int status)
1121 {
1122 	unsigned int previous = prb_previous_blk_num(rb);
1123 	return prb_lookup_block(po, rb, previous, status);
1124 }
1125 
1126 static void *packet_previous_rx_frame(struct packet_sock *po,
1127 					     struct packet_ring_buffer *rb,
1128 					     int status)
1129 {
1130 	if (po->tp_version <= TPACKET_V2)
1131 		return packet_previous_frame(po, rb, status);
1132 
1133 	return __prb_previous_block(po, rb, status);
1134 }
1135 
1136 static void packet_increment_rx_head(struct packet_sock *po,
1137 					    struct packet_ring_buffer *rb)
1138 {
1139 	switch (po->tp_version) {
1140 	case TPACKET_V1:
1141 	case TPACKET_V2:
1142 		return packet_increment_head(rb);
1143 	case TPACKET_V3:
1144 	default:
1145 		WARN(1, "TPACKET version not supported.\n");
1146 		BUG();
1147 		return;
1148 	}
1149 }
1150 
1151 static void *packet_previous_frame(struct packet_sock *po,
1152 		struct packet_ring_buffer *rb,
1153 		int status)
1154 {
1155 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1156 	return packet_lookup_frame(po, rb, previous, status);
1157 }
1158 
1159 static void packet_increment_head(struct packet_ring_buffer *buff)
1160 {
1161 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1162 }
1163 
1164 static void packet_inc_pending(struct packet_ring_buffer *rb)
1165 {
1166 	this_cpu_inc(*rb->pending_refcnt);
1167 }
1168 
1169 static void packet_dec_pending(struct packet_ring_buffer *rb)
1170 {
1171 	this_cpu_dec(*rb->pending_refcnt);
1172 }
1173 
1174 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1175 {
1176 	unsigned int refcnt = 0;
1177 	int cpu;
1178 
1179 	/* We don't use pending refcount in rx_ring. */
1180 	if (rb->pending_refcnt == NULL)
1181 		return 0;
1182 
1183 	for_each_possible_cpu(cpu)
1184 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1185 
1186 	return refcnt;
1187 }
1188 
1189 static int packet_alloc_pending(struct packet_sock *po)
1190 {
1191 	po->rx_ring.pending_refcnt = NULL;
1192 
1193 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1194 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1195 		return -ENOBUFS;
1196 
1197 	return 0;
1198 }
1199 
1200 static void packet_free_pending(struct packet_sock *po)
1201 {
1202 	free_percpu(po->tx_ring.pending_refcnt);
1203 }
1204 
1205 #define ROOM_POW_OFF	2
1206 #define ROOM_NONE	0x0
1207 #define ROOM_LOW	0x1
1208 #define ROOM_NORMAL	0x2
1209 
1210 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1211 {
1212 	int idx, len;
1213 
1214 	len = po->rx_ring.frame_max + 1;
1215 	idx = po->rx_ring.head;
1216 	if (pow_off)
1217 		idx += len >> pow_off;
1218 	if (idx >= len)
1219 		idx -= len;
1220 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1221 }
1222 
1223 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1224 {
1225 	int idx, len;
1226 
1227 	len = po->rx_ring.prb_bdqc.knum_blocks;
1228 	idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1229 	if (pow_off)
1230 		idx += len >> pow_off;
1231 	if (idx >= len)
1232 		idx -= len;
1233 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1234 }
1235 
1236 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1237 {
1238 	struct sock *sk = &po->sk;
1239 	int ret = ROOM_NONE;
1240 
1241 	if (po->prot_hook.func != tpacket_rcv) {
1242 		int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1243 					  - (skb ? skb->truesize : 0);
1244 		if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1245 			return ROOM_NORMAL;
1246 		else if (avail > 0)
1247 			return ROOM_LOW;
1248 		else
1249 			return ROOM_NONE;
1250 	}
1251 
1252 	if (po->tp_version == TPACKET_V3) {
1253 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1254 			ret = ROOM_NORMAL;
1255 		else if (__tpacket_v3_has_room(po, 0))
1256 			ret = ROOM_LOW;
1257 	} else {
1258 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1259 			ret = ROOM_NORMAL;
1260 		else if (__tpacket_has_room(po, 0))
1261 			ret = ROOM_LOW;
1262 	}
1263 
1264 	return ret;
1265 }
1266 
1267 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1268 {
1269 	int ret;
1270 	bool has_room;
1271 
1272 	spin_lock_bh(&po->sk.sk_receive_queue.lock);
1273 	ret = __packet_rcv_has_room(po, skb);
1274 	has_room = ret == ROOM_NORMAL;
1275 	if (po->pressure == has_room)
1276 		po->pressure = !has_room;
1277 	spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1278 
1279 	return ret;
1280 }
1281 
1282 static void packet_sock_destruct(struct sock *sk)
1283 {
1284 	skb_queue_purge(&sk->sk_error_queue);
1285 
1286 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1287 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1288 
1289 	if (!sock_flag(sk, SOCK_DEAD)) {
1290 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1291 		return;
1292 	}
1293 
1294 	sk_refcnt_debug_dec(sk);
1295 }
1296 
1297 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1298 {
1299 	u32 rxhash;
1300 	int i, count = 0;
1301 
1302 	rxhash = skb_get_hash(skb);
1303 	for (i = 0; i < ROLLOVER_HLEN; i++)
1304 		if (po->rollover->history[i] == rxhash)
1305 			count++;
1306 
1307 	po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1308 	return count > (ROLLOVER_HLEN >> 1);
1309 }
1310 
1311 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1312 				      struct sk_buff *skb,
1313 				      unsigned int num)
1314 {
1315 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1316 }
1317 
1318 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1319 				    struct sk_buff *skb,
1320 				    unsigned int num)
1321 {
1322 	unsigned int val = atomic_inc_return(&f->rr_cur);
1323 
1324 	return val % num;
1325 }
1326 
1327 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1328 				     struct sk_buff *skb,
1329 				     unsigned int num)
1330 {
1331 	return smp_processor_id() % num;
1332 }
1333 
1334 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1335 				     struct sk_buff *skb,
1336 				     unsigned int num)
1337 {
1338 	return prandom_u32_max(num);
1339 }
1340 
1341 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1342 					  struct sk_buff *skb,
1343 					  unsigned int idx, bool try_self,
1344 					  unsigned int num)
1345 {
1346 	struct packet_sock *po, *po_next, *po_skip = NULL;
1347 	unsigned int i, j, room = ROOM_NONE;
1348 
1349 	po = pkt_sk(f->arr[idx]);
1350 
1351 	if (try_self) {
1352 		room = packet_rcv_has_room(po, skb);
1353 		if (room == ROOM_NORMAL ||
1354 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1355 			return idx;
1356 		po_skip = po;
1357 	}
1358 
1359 	i = j = min_t(int, po->rollover->sock, num - 1);
1360 	do {
1361 		po_next = pkt_sk(f->arr[i]);
1362 		if (po_next != po_skip && !po_next->pressure &&
1363 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1364 			if (i != j)
1365 				po->rollover->sock = i;
1366 			atomic_long_inc(&po->rollover->num);
1367 			if (room == ROOM_LOW)
1368 				atomic_long_inc(&po->rollover->num_huge);
1369 			return i;
1370 		}
1371 
1372 		if (++i == num)
1373 			i = 0;
1374 	} while (i != j);
1375 
1376 	atomic_long_inc(&po->rollover->num_failed);
1377 	return idx;
1378 }
1379 
1380 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1381 				    struct sk_buff *skb,
1382 				    unsigned int num)
1383 {
1384 	return skb_get_queue_mapping(skb) % num;
1385 }
1386 
1387 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1388 				     struct sk_buff *skb,
1389 				     unsigned int num)
1390 {
1391 	struct bpf_prog *prog;
1392 	unsigned int ret = 0;
1393 
1394 	rcu_read_lock();
1395 	prog = rcu_dereference(f->bpf_prog);
1396 	if (prog)
1397 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1398 	rcu_read_unlock();
1399 
1400 	return ret;
1401 }
1402 
1403 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1404 {
1405 	return f->flags & (flag >> 8);
1406 }
1407 
1408 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1409 			     struct packet_type *pt, struct net_device *orig_dev)
1410 {
1411 	struct packet_fanout *f = pt->af_packet_priv;
1412 	unsigned int num = READ_ONCE(f->num_members);
1413 	struct net *net = read_pnet(&f->net);
1414 	struct packet_sock *po;
1415 	unsigned int idx;
1416 
1417 	if (!net_eq(dev_net(dev), net) || !num) {
1418 		kfree_skb(skb);
1419 		return 0;
1420 	}
1421 
1422 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1423 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1424 		if (!skb)
1425 			return 0;
1426 	}
1427 	switch (f->type) {
1428 	case PACKET_FANOUT_HASH:
1429 	default:
1430 		idx = fanout_demux_hash(f, skb, num);
1431 		break;
1432 	case PACKET_FANOUT_LB:
1433 		idx = fanout_demux_lb(f, skb, num);
1434 		break;
1435 	case PACKET_FANOUT_CPU:
1436 		idx = fanout_demux_cpu(f, skb, num);
1437 		break;
1438 	case PACKET_FANOUT_RND:
1439 		idx = fanout_demux_rnd(f, skb, num);
1440 		break;
1441 	case PACKET_FANOUT_QM:
1442 		idx = fanout_demux_qm(f, skb, num);
1443 		break;
1444 	case PACKET_FANOUT_ROLLOVER:
1445 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1446 		break;
1447 	case PACKET_FANOUT_CBPF:
1448 	case PACKET_FANOUT_EBPF:
1449 		idx = fanout_demux_bpf(f, skb, num);
1450 		break;
1451 	}
1452 
1453 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1454 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1455 
1456 	po = pkt_sk(f->arr[idx]);
1457 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1458 }
1459 
1460 DEFINE_MUTEX(fanout_mutex);
1461 EXPORT_SYMBOL_GPL(fanout_mutex);
1462 static LIST_HEAD(fanout_list);
1463 static u16 fanout_next_id;
1464 
1465 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1466 {
1467 	struct packet_fanout *f = po->fanout;
1468 
1469 	spin_lock(&f->lock);
1470 	f->arr[f->num_members] = sk;
1471 	smp_wmb();
1472 	f->num_members++;
1473 	if (f->num_members == 1)
1474 		dev_add_pack(&f->prot_hook);
1475 	spin_unlock(&f->lock);
1476 }
1477 
1478 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1479 {
1480 	struct packet_fanout *f = po->fanout;
1481 	int i;
1482 
1483 	spin_lock(&f->lock);
1484 	for (i = 0; i < f->num_members; i++) {
1485 		if (f->arr[i] == sk)
1486 			break;
1487 	}
1488 	BUG_ON(i >= f->num_members);
1489 	f->arr[i] = f->arr[f->num_members - 1];
1490 	f->num_members--;
1491 	if (f->num_members == 0)
1492 		__dev_remove_pack(&f->prot_hook);
1493 	spin_unlock(&f->lock);
1494 }
1495 
1496 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1497 {
1498 	if (sk->sk_family != PF_PACKET)
1499 		return false;
1500 
1501 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1502 }
1503 
1504 static void fanout_init_data(struct packet_fanout *f)
1505 {
1506 	switch (f->type) {
1507 	case PACKET_FANOUT_LB:
1508 		atomic_set(&f->rr_cur, 0);
1509 		break;
1510 	case PACKET_FANOUT_CBPF:
1511 	case PACKET_FANOUT_EBPF:
1512 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1513 		break;
1514 	}
1515 }
1516 
1517 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1518 {
1519 	struct bpf_prog *old;
1520 
1521 	spin_lock(&f->lock);
1522 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1523 	rcu_assign_pointer(f->bpf_prog, new);
1524 	spin_unlock(&f->lock);
1525 
1526 	if (old) {
1527 		synchronize_net();
1528 		bpf_prog_destroy(old);
1529 	}
1530 }
1531 
1532 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1533 				unsigned int len)
1534 {
1535 	struct bpf_prog *new;
1536 	struct sock_fprog fprog;
1537 	int ret;
1538 
1539 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1540 		return -EPERM;
1541 	if (len != sizeof(fprog))
1542 		return -EINVAL;
1543 	if (copy_from_user(&fprog, data, len))
1544 		return -EFAULT;
1545 
1546 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1547 	if (ret)
1548 		return ret;
1549 
1550 	__fanout_set_data_bpf(po->fanout, new);
1551 	return 0;
1552 }
1553 
1554 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1555 				unsigned int len)
1556 {
1557 	struct bpf_prog *new;
1558 	u32 fd;
1559 
1560 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1561 		return -EPERM;
1562 	if (len != sizeof(fd))
1563 		return -EINVAL;
1564 	if (copy_from_user(&fd, data, len))
1565 		return -EFAULT;
1566 
1567 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 	if (IS_ERR(new))
1569 		return PTR_ERR(new);
1570 
1571 	__fanout_set_data_bpf(po->fanout, new);
1572 	return 0;
1573 }
1574 
1575 static int fanout_set_data(struct packet_sock *po, char __user *data,
1576 			   unsigned int len)
1577 {
1578 	switch (po->fanout->type) {
1579 	case PACKET_FANOUT_CBPF:
1580 		return fanout_set_data_cbpf(po, data, len);
1581 	case PACKET_FANOUT_EBPF:
1582 		return fanout_set_data_ebpf(po, data, len);
1583 	default:
1584 		return -EINVAL;
1585 	};
1586 }
1587 
1588 static void fanout_release_data(struct packet_fanout *f)
1589 {
1590 	switch (f->type) {
1591 	case PACKET_FANOUT_CBPF:
1592 	case PACKET_FANOUT_EBPF:
1593 		__fanout_set_data_bpf(f, NULL);
1594 	};
1595 }
1596 
1597 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1598 {
1599 	struct packet_fanout *f;
1600 
1601 	list_for_each_entry(f, &fanout_list, list) {
1602 		if (f->id == candidate_id &&
1603 		    read_pnet(&f->net) == sock_net(sk)) {
1604 			return false;
1605 		}
1606 	}
1607 	return true;
1608 }
1609 
1610 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1611 {
1612 	u16 id = fanout_next_id;
1613 
1614 	do {
1615 		if (__fanout_id_is_free(sk, id)) {
1616 			*new_id = id;
1617 			fanout_next_id = id + 1;
1618 			return true;
1619 		}
1620 
1621 		id++;
1622 	} while (id != fanout_next_id);
1623 
1624 	return false;
1625 }
1626 
1627 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1628 {
1629 	struct packet_rollover *rollover = NULL;
1630 	struct packet_sock *po = pkt_sk(sk);
1631 	struct packet_fanout *f, *match;
1632 	u8 type = type_flags & 0xff;
1633 	u8 flags = type_flags >> 8;
1634 	int err;
1635 
1636 	switch (type) {
1637 	case PACKET_FANOUT_ROLLOVER:
1638 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1639 			return -EINVAL;
1640 	case PACKET_FANOUT_HASH:
1641 	case PACKET_FANOUT_LB:
1642 	case PACKET_FANOUT_CPU:
1643 	case PACKET_FANOUT_RND:
1644 	case PACKET_FANOUT_QM:
1645 	case PACKET_FANOUT_CBPF:
1646 	case PACKET_FANOUT_EBPF:
1647 		break;
1648 	default:
1649 		return -EINVAL;
1650 	}
1651 
1652 	mutex_lock(&fanout_mutex);
1653 
1654 	err = -EALREADY;
1655 	if (po->fanout)
1656 		goto out;
1657 
1658 	if (type == PACKET_FANOUT_ROLLOVER ||
1659 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1660 		err = -ENOMEM;
1661 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1662 		if (!rollover)
1663 			goto out;
1664 		atomic_long_set(&rollover->num, 0);
1665 		atomic_long_set(&rollover->num_huge, 0);
1666 		atomic_long_set(&rollover->num_failed, 0);
1667 	}
1668 
1669 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1670 		if (id != 0) {
1671 			err = -EINVAL;
1672 			goto out;
1673 		}
1674 		if (!fanout_find_new_id(sk, &id)) {
1675 			err = -ENOMEM;
1676 			goto out;
1677 		}
1678 		/* ephemeral flag for the first socket in the group: drop it */
1679 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1680 	}
1681 
1682 	match = NULL;
1683 	list_for_each_entry(f, &fanout_list, list) {
1684 		if (f->id == id &&
1685 		    read_pnet(&f->net) == sock_net(sk)) {
1686 			match = f;
1687 			break;
1688 		}
1689 	}
1690 	err = -EINVAL;
1691 	if (match && match->flags != flags)
1692 		goto out;
1693 	if (!match) {
1694 		err = -ENOMEM;
1695 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1696 		if (!match)
1697 			goto out;
1698 		write_pnet(&match->net, sock_net(sk));
1699 		match->id = id;
1700 		match->type = type;
1701 		match->flags = flags;
1702 		INIT_LIST_HEAD(&match->list);
1703 		spin_lock_init(&match->lock);
1704 		refcount_set(&match->sk_ref, 0);
1705 		fanout_init_data(match);
1706 		match->prot_hook.type = po->prot_hook.type;
1707 		match->prot_hook.dev = po->prot_hook.dev;
1708 		match->prot_hook.func = packet_rcv_fanout;
1709 		match->prot_hook.af_packet_priv = match;
1710 		match->prot_hook.id_match = match_fanout_group;
1711 		list_add(&match->list, &fanout_list);
1712 	}
1713 	err = -EINVAL;
1714 
1715 	spin_lock(&po->bind_lock);
1716 	if (po->running &&
1717 	    match->type == type &&
1718 	    match->prot_hook.type == po->prot_hook.type &&
1719 	    match->prot_hook.dev == po->prot_hook.dev) {
1720 		err = -ENOSPC;
1721 		if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1722 			__dev_remove_pack(&po->prot_hook);
1723 			po->fanout = match;
1724 			po->rollover = rollover;
1725 			rollover = NULL;
1726 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1727 			__fanout_link(sk, po);
1728 			err = 0;
1729 		}
1730 	}
1731 	spin_unlock(&po->bind_lock);
1732 
1733 	if (err && !refcount_read(&match->sk_ref)) {
1734 		list_del(&match->list);
1735 		kfree(match);
1736 	}
1737 
1738 out:
1739 	kfree(rollover);
1740 	mutex_unlock(&fanout_mutex);
1741 	return err;
1742 }
1743 
1744 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1745  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1746  * It is the responsibility of the caller to call fanout_release_data() and
1747  * free the returned packet_fanout (after synchronize_net())
1748  */
1749 static struct packet_fanout *fanout_release(struct sock *sk)
1750 {
1751 	struct packet_sock *po = pkt_sk(sk);
1752 	struct packet_fanout *f;
1753 
1754 	mutex_lock(&fanout_mutex);
1755 	f = po->fanout;
1756 	if (f) {
1757 		po->fanout = NULL;
1758 
1759 		if (refcount_dec_and_test(&f->sk_ref))
1760 			list_del(&f->list);
1761 		else
1762 			f = NULL;
1763 	}
1764 	mutex_unlock(&fanout_mutex);
1765 
1766 	return f;
1767 }
1768 
1769 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1770 					  struct sk_buff *skb)
1771 {
1772 	/* Earlier code assumed this would be a VLAN pkt, double-check
1773 	 * this now that we have the actual packet in hand. We can only
1774 	 * do this check on Ethernet devices.
1775 	 */
1776 	if (unlikely(dev->type != ARPHRD_ETHER))
1777 		return false;
1778 
1779 	skb_reset_mac_header(skb);
1780 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1781 }
1782 
1783 static const struct proto_ops packet_ops;
1784 
1785 static const struct proto_ops packet_ops_spkt;
1786 
1787 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1788 			   struct packet_type *pt, struct net_device *orig_dev)
1789 {
1790 	struct sock *sk;
1791 	struct sockaddr_pkt *spkt;
1792 
1793 	/*
1794 	 *	When we registered the protocol we saved the socket in the data
1795 	 *	field for just this event.
1796 	 */
1797 
1798 	sk = pt->af_packet_priv;
1799 
1800 	/*
1801 	 *	Yank back the headers [hope the device set this
1802 	 *	right or kerboom...]
1803 	 *
1804 	 *	Incoming packets have ll header pulled,
1805 	 *	push it back.
1806 	 *
1807 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1808 	 *	so that this procedure is noop.
1809 	 */
1810 
1811 	if (skb->pkt_type == PACKET_LOOPBACK)
1812 		goto out;
1813 
1814 	if (!net_eq(dev_net(dev), sock_net(sk)))
1815 		goto out;
1816 
1817 	skb = skb_share_check(skb, GFP_ATOMIC);
1818 	if (skb == NULL)
1819 		goto oom;
1820 
1821 	/* drop any routing info */
1822 	skb_dst_drop(skb);
1823 
1824 	/* drop conntrack reference */
1825 	nf_reset(skb);
1826 
1827 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1828 
1829 	skb_push(skb, skb->data - skb_mac_header(skb));
1830 
1831 	/*
1832 	 *	The SOCK_PACKET socket receives _all_ frames.
1833 	 */
1834 
1835 	spkt->spkt_family = dev->type;
1836 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1837 	spkt->spkt_protocol = skb->protocol;
1838 
1839 	/*
1840 	 *	Charge the memory to the socket. This is done specifically
1841 	 *	to prevent sockets using all the memory up.
1842 	 */
1843 
1844 	if (sock_queue_rcv_skb(sk, skb) == 0)
1845 		return 0;
1846 
1847 out:
1848 	kfree_skb(skb);
1849 oom:
1850 	return 0;
1851 }
1852 
1853 
1854 /*
1855  *	Output a raw packet to a device layer. This bypasses all the other
1856  *	protocol layers and you must therefore supply it with a complete frame
1857  */
1858 
1859 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1860 			       size_t len)
1861 {
1862 	struct sock *sk = sock->sk;
1863 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1864 	struct sk_buff *skb = NULL;
1865 	struct net_device *dev;
1866 	struct sockcm_cookie sockc;
1867 	__be16 proto = 0;
1868 	int err;
1869 	int extra_len = 0;
1870 
1871 	/*
1872 	 *	Get and verify the address.
1873 	 */
1874 
1875 	if (saddr) {
1876 		if (msg->msg_namelen < sizeof(struct sockaddr))
1877 			return -EINVAL;
1878 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1879 			proto = saddr->spkt_protocol;
1880 	} else
1881 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1882 
1883 	/*
1884 	 *	Find the device first to size check it
1885 	 */
1886 
1887 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1888 retry:
1889 	rcu_read_lock();
1890 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1891 	err = -ENODEV;
1892 	if (dev == NULL)
1893 		goto out_unlock;
1894 
1895 	err = -ENETDOWN;
1896 	if (!(dev->flags & IFF_UP))
1897 		goto out_unlock;
1898 
1899 	/*
1900 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1901 	 * raw protocol and you must do your own fragmentation at this level.
1902 	 */
1903 
1904 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1905 		if (!netif_supports_nofcs(dev)) {
1906 			err = -EPROTONOSUPPORT;
1907 			goto out_unlock;
1908 		}
1909 		extra_len = 4; /* We're doing our own CRC */
1910 	}
1911 
1912 	err = -EMSGSIZE;
1913 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1914 		goto out_unlock;
1915 
1916 	if (!skb) {
1917 		size_t reserved = LL_RESERVED_SPACE(dev);
1918 		int tlen = dev->needed_tailroom;
1919 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1920 
1921 		rcu_read_unlock();
1922 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1923 		if (skb == NULL)
1924 			return -ENOBUFS;
1925 		/* FIXME: Save some space for broken drivers that write a hard
1926 		 * header at transmission time by themselves. PPP is the notable
1927 		 * one here. This should really be fixed at the driver level.
1928 		 */
1929 		skb_reserve(skb, reserved);
1930 		skb_reset_network_header(skb);
1931 
1932 		/* Try to align data part correctly */
1933 		if (hhlen) {
1934 			skb->data -= hhlen;
1935 			skb->tail -= hhlen;
1936 			if (len < hhlen)
1937 				skb_reset_network_header(skb);
1938 		}
1939 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1940 		if (err)
1941 			goto out_free;
1942 		goto retry;
1943 	}
1944 
1945 	if (!dev_validate_header(dev, skb->data, len)) {
1946 		err = -EINVAL;
1947 		goto out_unlock;
1948 	}
1949 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1950 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1951 		err = -EMSGSIZE;
1952 		goto out_unlock;
1953 	}
1954 
1955 	sockcm_init(&sockc, sk);
1956 	if (msg->msg_controllen) {
1957 		err = sock_cmsg_send(sk, msg, &sockc);
1958 		if (unlikely(err))
1959 			goto out_unlock;
1960 	}
1961 
1962 	skb->protocol = proto;
1963 	skb->dev = dev;
1964 	skb->priority = sk->sk_priority;
1965 	skb->mark = sk->sk_mark;
1966 	skb->tstamp = sockc.transmit_time;
1967 
1968 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
1969 
1970 	if (unlikely(extra_len == 4))
1971 		skb->no_fcs = 1;
1972 
1973 	skb_probe_transport_header(skb, 0);
1974 
1975 	dev_queue_xmit(skb);
1976 	rcu_read_unlock();
1977 	return len;
1978 
1979 out_unlock:
1980 	rcu_read_unlock();
1981 out_free:
1982 	kfree_skb(skb);
1983 	return err;
1984 }
1985 
1986 static unsigned int run_filter(struct sk_buff *skb,
1987 			       const struct sock *sk,
1988 			       unsigned int res)
1989 {
1990 	struct sk_filter *filter;
1991 
1992 	rcu_read_lock();
1993 	filter = rcu_dereference(sk->sk_filter);
1994 	if (filter != NULL)
1995 		res = bpf_prog_run_clear_cb(filter->prog, skb);
1996 	rcu_read_unlock();
1997 
1998 	return res;
1999 }
2000 
2001 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2002 			   size_t *len)
2003 {
2004 	struct virtio_net_hdr vnet_hdr;
2005 
2006 	if (*len < sizeof(vnet_hdr))
2007 		return -EINVAL;
2008 	*len -= sizeof(vnet_hdr);
2009 
2010 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2011 		return -EINVAL;
2012 
2013 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2014 }
2015 
2016 /*
2017  * This function makes lazy skb cloning in hope that most of packets
2018  * are discarded by BPF.
2019  *
2020  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2021  * and skb->cb are mangled. It works because (and until) packets
2022  * falling here are owned by current CPU. Output packets are cloned
2023  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2024  * sequencially, so that if we return skb to original state on exit,
2025  * we will not harm anyone.
2026  */
2027 
2028 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2029 		      struct packet_type *pt, struct net_device *orig_dev)
2030 {
2031 	struct sock *sk;
2032 	struct sockaddr_ll *sll;
2033 	struct packet_sock *po;
2034 	u8 *skb_head = skb->data;
2035 	int skb_len = skb->len;
2036 	unsigned int snaplen, res;
2037 	bool is_drop_n_account = false;
2038 
2039 	if (skb->pkt_type == PACKET_LOOPBACK)
2040 		goto drop;
2041 
2042 	sk = pt->af_packet_priv;
2043 	po = pkt_sk(sk);
2044 
2045 	if (!net_eq(dev_net(dev), sock_net(sk)))
2046 		goto drop;
2047 
2048 	skb->dev = dev;
2049 
2050 	if (dev->header_ops) {
2051 		/* The device has an explicit notion of ll header,
2052 		 * exported to higher levels.
2053 		 *
2054 		 * Otherwise, the device hides details of its frame
2055 		 * structure, so that corresponding packet head is
2056 		 * never delivered to user.
2057 		 */
2058 		if (sk->sk_type != SOCK_DGRAM)
2059 			skb_push(skb, skb->data - skb_mac_header(skb));
2060 		else if (skb->pkt_type == PACKET_OUTGOING) {
2061 			/* Special case: outgoing packets have ll header at head */
2062 			skb_pull(skb, skb_network_offset(skb));
2063 		}
2064 	}
2065 
2066 	snaplen = skb->len;
2067 
2068 	res = run_filter(skb, sk, snaplen);
2069 	if (!res)
2070 		goto drop_n_restore;
2071 	if (snaplen > res)
2072 		snaplen = res;
2073 
2074 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2075 		goto drop_n_acct;
2076 
2077 	if (skb_shared(skb)) {
2078 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2079 		if (nskb == NULL)
2080 			goto drop_n_acct;
2081 
2082 		if (skb_head != skb->data) {
2083 			skb->data = skb_head;
2084 			skb->len = skb_len;
2085 		}
2086 		consume_skb(skb);
2087 		skb = nskb;
2088 	}
2089 
2090 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2091 
2092 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2093 	sll->sll_hatype = dev->type;
2094 	sll->sll_pkttype = skb->pkt_type;
2095 	if (unlikely(po->origdev))
2096 		sll->sll_ifindex = orig_dev->ifindex;
2097 	else
2098 		sll->sll_ifindex = dev->ifindex;
2099 
2100 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2101 
2102 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2103 	 * Use their space for storing the original skb length.
2104 	 */
2105 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2106 
2107 	if (pskb_trim(skb, snaplen))
2108 		goto drop_n_acct;
2109 
2110 	skb_set_owner_r(skb, sk);
2111 	skb->dev = NULL;
2112 	skb_dst_drop(skb);
2113 
2114 	/* drop conntrack reference */
2115 	nf_reset(skb);
2116 
2117 	spin_lock(&sk->sk_receive_queue.lock);
2118 	po->stats.stats1.tp_packets++;
2119 	sock_skb_set_dropcount(sk, skb);
2120 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2121 	spin_unlock(&sk->sk_receive_queue.lock);
2122 	sk->sk_data_ready(sk);
2123 	return 0;
2124 
2125 drop_n_acct:
2126 	is_drop_n_account = true;
2127 	spin_lock(&sk->sk_receive_queue.lock);
2128 	po->stats.stats1.tp_drops++;
2129 	atomic_inc(&sk->sk_drops);
2130 	spin_unlock(&sk->sk_receive_queue.lock);
2131 
2132 drop_n_restore:
2133 	if (skb_head != skb->data && skb_shared(skb)) {
2134 		skb->data = skb_head;
2135 		skb->len = skb_len;
2136 	}
2137 drop:
2138 	if (!is_drop_n_account)
2139 		consume_skb(skb);
2140 	else
2141 		kfree_skb(skb);
2142 	return 0;
2143 }
2144 
2145 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2146 		       struct packet_type *pt, struct net_device *orig_dev)
2147 {
2148 	struct sock *sk;
2149 	struct packet_sock *po;
2150 	struct sockaddr_ll *sll;
2151 	union tpacket_uhdr h;
2152 	u8 *skb_head = skb->data;
2153 	int skb_len = skb->len;
2154 	unsigned int snaplen, res;
2155 	unsigned long status = TP_STATUS_USER;
2156 	unsigned short macoff, netoff, hdrlen;
2157 	struct sk_buff *copy_skb = NULL;
2158 	struct timespec ts;
2159 	__u32 ts_status;
2160 	bool is_drop_n_account = false;
2161 	bool do_vnet = false;
2162 
2163 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2164 	 * We may add members to them until current aligned size without forcing
2165 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2166 	 */
2167 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2168 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2169 
2170 	if (skb->pkt_type == PACKET_LOOPBACK)
2171 		goto drop;
2172 
2173 	sk = pt->af_packet_priv;
2174 	po = pkt_sk(sk);
2175 
2176 	if (!net_eq(dev_net(dev), sock_net(sk)))
2177 		goto drop;
2178 
2179 	if (dev->header_ops) {
2180 		if (sk->sk_type != SOCK_DGRAM)
2181 			skb_push(skb, skb->data - skb_mac_header(skb));
2182 		else if (skb->pkt_type == PACKET_OUTGOING) {
2183 			/* Special case: outgoing packets have ll header at head */
2184 			skb_pull(skb, skb_network_offset(skb));
2185 		}
2186 	}
2187 
2188 	snaplen = skb->len;
2189 
2190 	res = run_filter(skb, sk, snaplen);
2191 	if (!res)
2192 		goto drop_n_restore;
2193 
2194 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2195 		status |= TP_STATUS_CSUMNOTREADY;
2196 	else if (skb->pkt_type != PACKET_OUTGOING &&
2197 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2198 		  skb_csum_unnecessary(skb)))
2199 		status |= TP_STATUS_CSUM_VALID;
2200 
2201 	if (snaplen > res)
2202 		snaplen = res;
2203 
2204 	if (sk->sk_type == SOCK_DGRAM) {
2205 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2206 				  po->tp_reserve;
2207 	} else {
2208 		unsigned int maclen = skb_network_offset(skb);
2209 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2210 				       (maclen < 16 ? 16 : maclen)) +
2211 				       po->tp_reserve;
2212 		if (po->has_vnet_hdr) {
2213 			netoff += sizeof(struct virtio_net_hdr);
2214 			do_vnet = true;
2215 		}
2216 		macoff = netoff - maclen;
2217 	}
2218 	if (po->tp_version <= TPACKET_V2) {
2219 		if (macoff + snaplen > po->rx_ring.frame_size) {
2220 			if (po->copy_thresh &&
2221 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2222 				if (skb_shared(skb)) {
2223 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2224 				} else {
2225 					copy_skb = skb_get(skb);
2226 					skb_head = skb->data;
2227 				}
2228 				if (copy_skb)
2229 					skb_set_owner_r(copy_skb, sk);
2230 			}
2231 			snaplen = po->rx_ring.frame_size - macoff;
2232 			if ((int)snaplen < 0) {
2233 				snaplen = 0;
2234 				do_vnet = false;
2235 			}
2236 		}
2237 	} else if (unlikely(macoff + snaplen >
2238 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2239 		u32 nval;
2240 
2241 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2242 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2243 			    snaplen, nval, macoff);
2244 		snaplen = nval;
2245 		if (unlikely((int)snaplen < 0)) {
2246 			snaplen = 0;
2247 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2248 			do_vnet = false;
2249 		}
2250 	}
2251 	spin_lock(&sk->sk_receive_queue.lock);
2252 	h.raw = packet_current_rx_frame(po, skb,
2253 					TP_STATUS_KERNEL, (macoff+snaplen));
2254 	if (!h.raw)
2255 		goto drop_n_account;
2256 	if (po->tp_version <= TPACKET_V2) {
2257 		packet_increment_rx_head(po, &po->rx_ring);
2258 	/*
2259 	 * LOSING will be reported till you read the stats,
2260 	 * because it's COR - Clear On Read.
2261 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2262 	 * at packet level.
2263 	 */
2264 		if (po->stats.stats1.tp_drops)
2265 			status |= TP_STATUS_LOSING;
2266 	}
2267 
2268 	if (do_vnet &&
2269 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2270 				    sizeof(struct virtio_net_hdr),
2271 				    vio_le(), true, 0))
2272 		goto drop_n_account;
2273 
2274 	po->stats.stats1.tp_packets++;
2275 	if (copy_skb) {
2276 		status |= TP_STATUS_COPY;
2277 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2278 	}
2279 	spin_unlock(&sk->sk_receive_queue.lock);
2280 
2281 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2282 
2283 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2284 		getnstimeofday(&ts);
2285 
2286 	status |= ts_status;
2287 
2288 	switch (po->tp_version) {
2289 	case TPACKET_V1:
2290 		h.h1->tp_len = skb->len;
2291 		h.h1->tp_snaplen = snaplen;
2292 		h.h1->tp_mac = macoff;
2293 		h.h1->tp_net = netoff;
2294 		h.h1->tp_sec = ts.tv_sec;
2295 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2296 		hdrlen = sizeof(*h.h1);
2297 		break;
2298 	case TPACKET_V2:
2299 		h.h2->tp_len = skb->len;
2300 		h.h2->tp_snaplen = snaplen;
2301 		h.h2->tp_mac = macoff;
2302 		h.h2->tp_net = netoff;
2303 		h.h2->tp_sec = ts.tv_sec;
2304 		h.h2->tp_nsec = ts.tv_nsec;
2305 		if (skb_vlan_tag_present(skb)) {
2306 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2307 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2308 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2309 		} else {
2310 			h.h2->tp_vlan_tci = 0;
2311 			h.h2->tp_vlan_tpid = 0;
2312 		}
2313 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2314 		hdrlen = sizeof(*h.h2);
2315 		break;
2316 	case TPACKET_V3:
2317 		/* tp_nxt_offset,vlan are already populated above.
2318 		 * So DONT clear those fields here
2319 		 */
2320 		h.h3->tp_status |= status;
2321 		h.h3->tp_len = skb->len;
2322 		h.h3->tp_snaplen = snaplen;
2323 		h.h3->tp_mac = macoff;
2324 		h.h3->tp_net = netoff;
2325 		h.h3->tp_sec  = ts.tv_sec;
2326 		h.h3->tp_nsec = ts.tv_nsec;
2327 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2328 		hdrlen = sizeof(*h.h3);
2329 		break;
2330 	default:
2331 		BUG();
2332 	}
2333 
2334 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2335 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2336 	sll->sll_family = AF_PACKET;
2337 	sll->sll_hatype = dev->type;
2338 	sll->sll_protocol = skb->protocol;
2339 	sll->sll_pkttype = skb->pkt_type;
2340 	if (unlikely(po->origdev))
2341 		sll->sll_ifindex = orig_dev->ifindex;
2342 	else
2343 		sll->sll_ifindex = dev->ifindex;
2344 
2345 	smp_mb();
2346 
2347 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2348 	if (po->tp_version <= TPACKET_V2) {
2349 		u8 *start, *end;
2350 
2351 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2352 					macoff + snaplen);
2353 
2354 		for (start = h.raw; start < end; start += PAGE_SIZE)
2355 			flush_dcache_page(pgv_to_page(start));
2356 	}
2357 	smp_wmb();
2358 #endif
2359 
2360 	if (po->tp_version <= TPACKET_V2) {
2361 		__packet_set_status(po, h.raw, status);
2362 		sk->sk_data_ready(sk);
2363 	} else {
2364 		prb_clear_blk_fill_status(&po->rx_ring);
2365 	}
2366 
2367 drop_n_restore:
2368 	if (skb_head != skb->data && skb_shared(skb)) {
2369 		skb->data = skb_head;
2370 		skb->len = skb_len;
2371 	}
2372 drop:
2373 	if (!is_drop_n_account)
2374 		consume_skb(skb);
2375 	else
2376 		kfree_skb(skb);
2377 	return 0;
2378 
2379 drop_n_account:
2380 	is_drop_n_account = true;
2381 	po->stats.stats1.tp_drops++;
2382 	spin_unlock(&sk->sk_receive_queue.lock);
2383 
2384 	sk->sk_data_ready(sk);
2385 	kfree_skb(copy_skb);
2386 	goto drop_n_restore;
2387 }
2388 
2389 static void tpacket_destruct_skb(struct sk_buff *skb)
2390 {
2391 	struct packet_sock *po = pkt_sk(skb->sk);
2392 
2393 	if (likely(po->tx_ring.pg_vec)) {
2394 		void *ph;
2395 		__u32 ts;
2396 
2397 		ph = skb_shinfo(skb)->destructor_arg;
2398 		packet_dec_pending(&po->tx_ring);
2399 
2400 		ts = __packet_set_timestamp(po, ph, skb);
2401 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2402 	}
2403 
2404 	sock_wfree(skb);
2405 }
2406 
2407 static void tpacket_set_protocol(const struct net_device *dev,
2408 				 struct sk_buff *skb)
2409 {
2410 	if (dev->type == ARPHRD_ETHER) {
2411 		skb_reset_mac_header(skb);
2412 		skb->protocol = eth_hdr(skb)->h_proto;
2413 	}
2414 }
2415 
2416 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2417 {
2418 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2419 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2420 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2421 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2422 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2423 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2424 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2425 
2426 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2427 		return -EINVAL;
2428 
2429 	return 0;
2430 }
2431 
2432 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2433 				 struct virtio_net_hdr *vnet_hdr)
2434 {
2435 	if (*len < sizeof(*vnet_hdr))
2436 		return -EINVAL;
2437 	*len -= sizeof(*vnet_hdr);
2438 
2439 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2440 		return -EFAULT;
2441 
2442 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2443 }
2444 
2445 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2446 		void *frame, struct net_device *dev, void *data, int tp_len,
2447 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2448 		const struct sockcm_cookie *sockc)
2449 {
2450 	union tpacket_uhdr ph;
2451 	int to_write, offset, len, nr_frags, len_max;
2452 	struct socket *sock = po->sk.sk_socket;
2453 	struct page *page;
2454 	int err;
2455 
2456 	ph.raw = frame;
2457 
2458 	skb->protocol = proto;
2459 	skb->dev = dev;
2460 	skb->priority = po->sk.sk_priority;
2461 	skb->mark = po->sk.sk_mark;
2462 	skb->tstamp = sockc->transmit_time;
2463 	sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2464 	skb_shinfo(skb)->destructor_arg = ph.raw;
2465 
2466 	skb_reserve(skb, hlen);
2467 	skb_reset_network_header(skb);
2468 
2469 	to_write = tp_len;
2470 
2471 	if (sock->type == SOCK_DGRAM) {
2472 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2473 				NULL, tp_len);
2474 		if (unlikely(err < 0))
2475 			return -EINVAL;
2476 	} else if (copylen) {
2477 		int hdrlen = min_t(int, copylen, tp_len);
2478 
2479 		skb_push(skb, dev->hard_header_len);
2480 		skb_put(skb, copylen - dev->hard_header_len);
2481 		err = skb_store_bits(skb, 0, data, hdrlen);
2482 		if (unlikely(err))
2483 			return err;
2484 		if (!dev_validate_header(dev, skb->data, hdrlen))
2485 			return -EINVAL;
2486 		if (!skb->protocol)
2487 			tpacket_set_protocol(dev, skb);
2488 
2489 		data += hdrlen;
2490 		to_write -= hdrlen;
2491 	}
2492 
2493 	offset = offset_in_page(data);
2494 	len_max = PAGE_SIZE - offset;
2495 	len = ((to_write > len_max) ? len_max : to_write);
2496 
2497 	skb->data_len = to_write;
2498 	skb->len += to_write;
2499 	skb->truesize += to_write;
2500 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2501 
2502 	while (likely(to_write)) {
2503 		nr_frags = skb_shinfo(skb)->nr_frags;
2504 
2505 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2506 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2507 			       MAX_SKB_FRAGS);
2508 			return -EFAULT;
2509 		}
2510 
2511 		page = pgv_to_page(data);
2512 		data += len;
2513 		flush_dcache_page(page);
2514 		get_page(page);
2515 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2516 		to_write -= len;
2517 		offset = 0;
2518 		len_max = PAGE_SIZE;
2519 		len = ((to_write > len_max) ? len_max : to_write);
2520 	}
2521 
2522 	skb_probe_transport_header(skb, 0);
2523 
2524 	return tp_len;
2525 }
2526 
2527 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2528 				int size_max, void **data)
2529 {
2530 	union tpacket_uhdr ph;
2531 	int tp_len, off;
2532 
2533 	ph.raw = frame;
2534 
2535 	switch (po->tp_version) {
2536 	case TPACKET_V3:
2537 		if (ph.h3->tp_next_offset != 0) {
2538 			pr_warn_once("variable sized slot not supported");
2539 			return -EINVAL;
2540 		}
2541 		tp_len = ph.h3->tp_len;
2542 		break;
2543 	case TPACKET_V2:
2544 		tp_len = ph.h2->tp_len;
2545 		break;
2546 	default:
2547 		tp_len = ph.h1->tp_len;
2548 		break;
2549 	}
2550 	if (unlikely(tp_len > size_max)) {
2551 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2552 		return -EMSGSIZE;
2553 	}
2554 
2555 	if (unlikely(po->tp_tx_has_off)) {
2556 		int off_min, off_max;
2557 
2558 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2559 		off_max = po->tx_ring.frame_size - tp_len;
2560 		if (po->sk.sk_type == SOCK_DGRAM) {
2561 			switch (po->tp_version) {
2562 			case TPACKET_V3:
2563 				off = ph.h3->tp_net;
2564 				break;
2565 			case TPACKET_V2:
2566 				off = ph.h2->tp_net;
2567 				break;
2568 			default:
2569 				off = ph.h1->tp_net;
2570 				break;
2571 			}
2572 		} else {
2573 			switch (po->tp_version) {
2574 			case TPACKET_V3:
2575 				off = ph.h3->tp_mac;
2576 				break;
2577 			case TPACKET_V2:
2578 				off = ph.h2->tp_mac;
2579 				break;
2580 			default:
2581 				off = ph.h1->tp_mac;
2582 				break;
2583 			}
2584 		}
2585 		if (unlikely((off < off_min) || (off_max < off)))
2586 			return -EINVAL;
2587 	} else {
2588 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2589 	}
2590 
2591 	*data = frame + off;
2592 	return tp_len;
2593 }
2594 
2595 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2596 {
2597 	struct sk_buff *skb;
2598 	struct net_device *dev;
2599 	struct virtio_net_hdr *vnet_hdr = NULL;
2600 	struct sockcm_cookie sockc;
2601 	__be16 proto;
2602 	int err, reserve = 0;
2603 	void *ph;
2604 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2605 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2606 	int tp_len, size_max;
2607 	unsigned char *addr;
2608 	void *data;
2609 	int len_sum = 0;
2610 	int status = TP_STATUS_AVAILABLE;
2611 	int hlen, tlen, copylen = 0;
2612 
2613 	mutex_lock(&po->pg_vec_lock);
2614 
2615 	if (likely(saddr == NULL)) {
2616 		dev	= packet_cached_dev_get(po);
2617 		proto	= po->num;
2618 		addr	= NULL;
2619 	} else {
2620 		err = -EINVAL;
2621 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2622 			goto out;
2623 		if (msg->msg_namelen < (saddr->sll_halen
2624 					+ offsetof(struct sockaddr_ll,
2625 						sll_addr)))
2626 			goto out;
2627 		proto	= saddr->sll_protocol;
2628 		addr	= saddr->sll_addr;
2629 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2630 	}
2631 
2632 	err = -ENXIO;
2633 	if (unlikely(dev == NULL))
2634 		goto out;
2635 	err = -ENETDOWN;
2636 	if (unlikely(!(dev->flags & IFF_UP)))
2637 		goto out_put;
2638 
2639 	sockcm_init(&sockc, &po->sk);
2640 	if (msg->msg_controllen) {
2641 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2642 		if (unlikely(err))
2643 			goto out_put;
2644 	}
2645 
2646 	if (po->sk.sk_socket->type == SOCK_RAW)
2647 		reserve = dev->hard_header_len;
2648 	size_max = po->tx_ring.frame_size
2649 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2650 
2651 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2652 		size_max = dev->mtu + reserve + VLAN_HLEN;
2653 
2654 	do {
2655 		ph = packet_current_frame(po, &po->tx_ring,
2656 					  TP_STATUS_SEND_REQUEST);
2657 		if (unlikely(ph == NULL)) {
2658 			if (need_wait && need_resched())
2659 				schedule();
2660 			continue;
2661 		}
2662 
2663 		skb = NULL;
2664 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2665 		if (tp_len < 0)
2666 			goto tpacket_error;
2667 
2668 		status = TP_STATUS_SEND_REQUEST;
2669 		hlen = LL_RESERVED_SPACE(dev);
2670 		tlen = dev->needed_tailroom;
2671 		if (po->has_vnet_hdr) {
2672 			vnet_hdr = data;
2673 			data += sizeof(*vnet_hdr);
2674 			tp_len -= sizeof(*vnet_hdr);
2675 			if (tp_len < 0 ||
2676 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2677 				tp_len = -EINVAL;
2678 				goto tpacket_error;
2679 			}
2680 			copylen = __virtio16_to_cpu(vio_le(),
2681 						    vnet_hdr->hdr_len);
2682 		}
2683 		copylen = max_t(int, copylen, dev->hard_header_len);
2684 		skb = sock_alloc_send_skb(&po->sk,
2685 				hlen + tlen + sizeof(struct sockaddr_ll) +
2686 				(copylen - dev->hard_header_len),
2687 				!need_wait, &err);
2688 
2689 		if (unlikely(skb == NULL)) {
2690 			/* we assume the socket was initially writeable ... */
2691 			if (likely(len_sum > 0))
2692 				err = len_sum;
2693 			goto out_status;
2694 		}
2695 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2696 					  addr, hlen, copylen, &sockc);
2697 		if (likely(tp_len >= 0) &&
2698 		    tp_len > dev->mtu + reserve &&
2699 		    !po->has_vnet_hdr &&
2700 		    !packet_extra_vlan_len_allowed(dev, skb))
2701 			tp_len = -EMSGSIZE;
2702 
2703 		if (unlikely(tp_len < 0)) {
2704 tpacket_error:
2705 			if (po->tp_loss) {
2706 				__packet_set_status(po, ph,
2707 						TP_STATUS_AVAILABLE);
2708 				packet_increment_head(&po->tx_ring);
2709 				kfree_skb(skb);
2710 				continue;
2711 			} else {
2712 				status = TP_STATUS_WRONG_FORMAT;
2713 				err = tp_len;
2714 				goto out_status;
2715 			}
2716 		}
2717 
2718 		if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2719 							      vio_le())) {
2720 			tp_len = -EINVAL;
2721 			goto tpacket_error;
2722 		}
2723 
2724 		skb->destructor = tpacket_destruct_skb;
2725 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2726 		packet_inc_pending(&po->tx_ring);
2727 
2728 		status = TP_STATUS_SEND_REQUEST;
2729 		err = po->xmit(skb);
2730 		if (unlikely(err > 0)) {
2731 			err = net_xmit_errno(err);
2732 			if (err && __packet_get_status(po, ph) ==
2733 				   TP_STATUS_AVAILABLE) {
2734 				/* skb was destructed already */
2735 				skb = NULL;
2736 				goto out_status;
2737 			}
2738 			/*
2739 			 * skb was dropped but not destructed yet;
2740 			 * let's treat it like congestion or err < 0
2741 			 */
2742 			err = 0;
2743 		}
2744 		packet_increment_head(&po->tx_ring);
2745 		len_sum += tp_len;
2746 	} while (likely((ph != NULL) ||
2747 		/* Note: packet_read_pending() might be slow if we have
2748 		 * to call it as it's per_cpu variable, but in fast-path
2749 		 * we already short-circuit the loop with the first
2750 		 * condition, and luckily don't have to go that path
2751 		 * anyway.
2752 		 */
2753 		 (need_wait && packet_read_pending(&po->tx_ring))));
2754 
2755 	err = len_sum;
2756 	goto out_put;
2757 
2758 out_status:
2759 	__packet_set_status(po, ph, status);
2760 	kfree_skb(skb);
2761 out_put:
2762 	dev_put(dev);
2763 out:
2764 	mutex_unlock(&po->pg_vec_lock);
2765 	return err;
2766 }
2767 
2768 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2769 				        size_t reserve, size_t len,
2770 				        size_t linear, int noblock,
2771 				        int *err)
2772 {
2773 	struct sk_buff *skb;
2774 
2775 	/* Under a page?  Don't bother with paged skb. */
2776 	if (prepad + len < PAGE_SIZE || !linear)
2777 		linear = len;
2778 
2779 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2780 				   err, 0);
2781 	if (!skb)
2782 		return NULL;
2783 
2784 	skb_reserve(skb, reserve);
2785 	skb_put(skb, linear);
2786 	skb->data_len = len - linear;
2787 	skb->len += len - linear;
2788 
2789 	return skb;
2790 }
2791 
2792 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2793 {
2794 	struct sock *sk = sock->sk;
2795 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2796 	struct sk_buff *skb;
2797 	struct net_device *dev;
2798 	__be16 proto;
2799 	unsigned char *addr;
2800 	int err, reserve = 0;
2801 	struct sockcm_cookie sockc;
2802 	struct virtio_net_hdr vnet_hdr = { 0 };
2803 	int offset = 0;
2804 	struct packet_sock *po = pkt_sk(sk);
2805 	bool has_vnet_hdr = false;
2806 	int hlen, tlen, linear;
2807 	int extra_len = 0;
2808 
2809 	/*
2810 	 *	Get and verify the address.
2811 	 */
2812 
2813 	if (likely(saddr == NULL)) {
2814 		dev	= packet_cached_dev_get(po);
2815 		proto	= po->num;
2816 		addr	= NULL;
2817 	} else {
2818 		err = -EINVAL;
2819 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2820 			goto out;
2821 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2822 			goto out;
2823 		proto	= saddr->sll_protocol;
2824 		addr	= saddr->sll_addr;
2825 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2826 	}
2827 
2828 	err = -ENXIO;
2829 	if (unlikely(dev == NULL))
2830 		goto out_unlock;
2831 	err = -ENETDOWN;
2832 	if (unlikely(!(dev->flags & IFF_UP)))
2833 		goto out_unlock;
2834 
2835 	sockcm_init(&sockc, sk);
2836 	sockc.mark = sk->sk_mark;
2837 	if (msg->msg_controllen) {
2838 		err = sock_cmsg_send(sk, msg, &sockc);
2839 		if (unlikely(err))
2840 			goto out_unlock;
2841 	}
2842 
2843 	if (sock->type == SOCK_RAW)
2844 		reserve = dev->hard_header_len;
2845 	if (po->has_vnet_hdr) {
2846 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2847 		if (err)
2848 			goto out_unlock;
2849 		has_vnet_hdr = true;
2850 	}
2851 
2852 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2853 		if (!netif_supports_nofcs(dev)) {
2854 			err = -EPROTONOSUPPORT;
2855 			goto out_unlock;
2856 		}
2857 		extra_len = 4; /* We're doing our own CRC */
2858 	}
2859 
2860 	err = -EMSGSIZE;
2861 	if (!vnet_hdr.gso_type &&
2862 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2863 		goto out_unlock;
2864 
2865 	err = -ENOBUFS;
2866 	hlen = LL_RESERVED_SPACE(dev);
2867 	tlen = dev->needed_tailroom;
2868 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2869 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2870 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2871 			       msg->msg_flags & MSG_DONTWAIT, &err);
2872 	if (skb == NULL)
2873 		goto out_unlock;
2874 
2875 	skb_reset_network_header(skb);
2876 
2877 	err = -EINVAL;
2878 	if (sock->type == SOCK_DGRAM) {
2879 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2880 		if (unlikely(offset < 0))
2881 			goto out_free;
2882 	} else if (reserve) {
2883 		skb_reserve(skb, -reserve);
2884 	}
2885 
2886 	/* Returns -EFAULT on error */
2887 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2888 	if (err)
2889 		goto out_free;
2890 
2891 	if (sock->type == SOCK_RAW &&
2892 	    !dev_validate_header(dev, skb->data, len)) {
2893 		err = -EINVAL;
2894 		goto out_free;
2895 	}
2896 
2897 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2898 
2899 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2900 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2901 		err = -EMSGSIZE;
2902 		goto out_free;
2903 	}
2904 
2905 	skb->protocol = proto;
2906 	skb->dev = dev;
2907 	skb->priority = sk->sk_priority;
2908 	skb->mark = sockc.mark;
2909 	skb->tstamp = sockc.transmit_time;
2910 
2911 	if (has_vnet_hdr) {
2912 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2913 		if (err)
2914 			goto out_free;
2915 		len += sizeof(vnet_hdr);
2916 	}
2917 
2918 	skb_probe_transport_header(skb, reserve);
2919 
2920 	if (unlikely(extra_len == 4))
2921 		skb->no_fcs = 1;
2922 
2923 	err = po->xmit(skb);
2924 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2925 		goto out_unlock;
2926 
2927 	dev_put(dev);
2928 
2929 	return len;
2930 
2931 out_free:
2932 	kfree_skb(skb);
2933 out_unlock:
2934 	if (dev)
2935 		dev_put(dev);
2936 out:
2937 	return err;
2938 }
2939 
2940 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2941 {
2942 	struct sock *sk = sock->sk;
2943 	struct packet_sock *po = pkt_sk(sk);
2944 
2945 	if (po->tx_ring.pg_vec)
2946 		return tpacket_snd(po, msg);
2947 	else
2948 		return packet_snd(sock, msg, len);
2949 }
2950 
2951 /*
2952  *	Close a PACKET socket. This is fairly simple. We immediately go
2953  *	to 'closed' state and remove our protocol entry in the device list.
2954  */
2955 
2956 static int packet_release(struct socket *sock)
2957 {
2958 	struct sock *sk = sock->sk;
2959 	struct packet_sock *po;
2960 	struct packet_fanout *f;
2961 	struct net *net;
2962 	union tpacket_req_u req_u;
2963 
2964 	if (!sk)
2965 		return 0;
2966 
2967 	net = sock_net(sk);
2968 	po = pkt_sk(sk);
2969 
2970 	mutex_lock(&net->packet.sklist_lock);
2971 	sk_del_node_init_rcu(sk);
2972 	mutex_unlock(&net->packet.sklist_lock);
2973 
2974 	preempt_disable();
2975 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2976 	preempt_enable();
2977 
2978 	spin_lock(&po->bind_lock);
2979 	unregister_prot_hook(sk, false);
2980 	packet_cached_dev_reset(po);
2981 
2982 	if (po->prot_hook.dev) {
2983 		dev_put(po->prot_hook.dev);
2984 		po->prot_hook.dev = NULL;
2985 	}
2986 	spin_unlock(&po->bind_lock);
2987 
2988 	packet_flush_mclist(sk);
2989 
2990 	lock_sock(sk);
2991 	if (po->rx_ring.pg_vec) {
2992 		memset(&req_u, 0, sizeof(req_u));
2993 		packet_set_ring(sk, &req_u, 1, 0);
2994 	}
2995 
2996 	if (po->tx_ring.pg_vec) {
2997 		memset(&req_u, 0, sizeof(req_u));
2998 		packet_set_ring(sk, &req_u, 1, 1);
2999 	}
3000 	release_sock(sk);
3001 
3002 	f = fanout_release(sk);
3003 
3004 	synchronize_net();
3005 
3006 	if (f) {
3007 		kfree(po->rollover);
3008 		fanout_release_data(f);
3009 		kfree(f);
3010 	}
3011 	/*
3012 	 *	Now the socket is dead. No more input will appear.
3013 	 */
3014 	sock_orphan(sk);
3015 	sock->sk = NULL;
3016 
3017 	/* Purge queues */
3018 
3019 	skb_queue_purge(&sk->sk_receive_queue);
3020 	packet_free_pending(po);
3021 	sk_refcnt_debug_release(sk);
3022 
3023 	sock_put(sk);
3024 	return 0;
3025 }
3026 
3027 /*
3028  *	Attach a packet hook.
3029  */
3030 
3031 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3032 			  __be16 proto)
3033 {
3034 	struct packet_sock *po = pkt_sk(sk);
3035 	struct net_device *dev_curr;
3036 	__be16 proto_curr;
3037 	bool need_rehook;
3038 	struct net_device *dev = NULL;
3039 	int ret = 0;
3040 	bool unlisted = false;
3041 
3042 	lock_sock(sk);
3043 	spin_lock(&po->bind_lock);
3044 	rcu_read_lock();
3045 
3046 	if (po->fanout) {
3047 		ret = -EINVAL;
3048 		goto out_unlock;
3049 	}
3050 
3051 	if (name) {
3052 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3053 		if (!dev) {
3054 			ret = -ENODEV;
3055 			goto out_unlock;
3056 		}
3057 	} else if (ifindex) {
3058 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3059 		if (!dev) {
3060 			ret = -ENODEV;
3061 			goto out_unlock;
3062 		}
3063 	}
3064 
3065 	if (dev)
3066 		dev_hold(dev);
3067 
3068 	proto_curr = po->prot_hook.type;
3069 	dev_curr = po->prot_hook.dev;
3070 
3071 	need_rehook = proto_curr != proto || dev_curr != dev;
3072 
3073 	if (need_rehook) {
3074 		if (po->running) {
3075 			rcu_read_unlock();
3076 			/* prevents packet_notifier() from calling
3077 			 * register_prot_hook()
3078 			 */
3079 			po->num = 0;
3080 			__unregister_prot_hook(sk, true);
3081 			rcu_read_lock();
3082 			dev_curr = po->prot_hook.dev;
3083 			if (dev)
3084 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3085 								 dev->ifindex);
3086 		}
3087 
3088 		BUG_ON(po->running);
3089 		po->num = proto;
3090 		po->prot_hook.type = proto;
3091 
3092 		if (unlikely(unlisted)) {
3093 			dev_put(dev);
3094 			po->prot_hook.dev = NULL;
3095 			po->ifindex = -1;
3096 			packet_cached_dev_reset(po);
3097 		} else {
3098 			po->prot_hook.dev = dev;
3099 			po->ifindex = dev ? dev->ifindex : 0;
3100 			packet_cached_dev_assign(po, dev);
3101 		}
3102 	}
3103 	if (dev_curr)
3104 		dev_put(dev_curr);
3105 
3106 	if (proto == 0 || !need_rehook)
3107 		goto out_unlock;
3108 
3109 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3110 		register_prot_hook(sk);
3111 	} else {
3112 		sk->sk_err = ENETDOWN;
3113 		if (!sock_flag(sk, SOCK_DEAD))
3114 			sk->sk_error_report(sk);
3115 	}
3116 
3117 out_unlock:
3118 	rcu_read_unlock();
3119 	spin_unlock(&po->bind_lock);
3120 	release_sock(sk);
3121 	return ret;
3122 }
3123 
3124 /*
3125  *	Bind a packet socket to a device
3126  */
3127 
3128 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3129 			    int addr_len)
3130 {
3131 	struct sock *sk = sock->sk;
3132 	char name[sizeof(uaddr->sa_data) + 1];
3133 
3134 	/*
3135 	 *	Check legality
3136 	 */
3137 
3138 	if (addr_len != sizeof(struct sockaddr))
3139 		return -EINVAL;
3140 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3141 	 * zero-terminated.
3142 	 */
3143 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3144 	name[sizeof(uaddr->sa_data)] = 0;
3145 
3146 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3147 }
3148 
3149 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3150 {
3151 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3152 	struct sock *sk = sock->sk;
3153 
3154 	/*
3155 	 *	Check legality
3156 	 */
3157 
3158 	if (addr_len < sizeof(struct sockaddr_ll))
3159 		return -EINVAL;
3160 	if (sll->sll_family != AF_PACKET)
3161 		return -EINVAL;
3162 
3163 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3164 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3165 }
3166 
3167 static struct proto packet_proto = {
3168 	.name	  = "PACKET",
3169 	.owner	  = THIS_MODULE,
3170 	.obj_size = sizeof(struct packet_sock),
3171 };
3172 
3173 /*
3174  *	Create a packet of type SOCK_PACKET.
3175  */
3176 
3177 static int packet_create(struct net *net, struct socket *sock, int protocol,
3178 			 int kern)
3179 {
3180 	struct sock *sk;
3181 	struct packet_sock *po;
3182 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3183 	int err;
3184 
3185 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3186 		return -EPERM;
3187 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3188 	    sock->type != SOCK_PACKET)
3189 		return -ESOCKTNOSUPPORT;
3190 
3191 	sock->state = SS_UNCONNECTED;
3192 
3193 	err = -ENOBUFS;
3194 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3195 	if (sk == NULL)
3196 		goto out;
3197 
3198 	sock->ops = &packet_ops;
3199 	if (sock->type == SOCK_PACKET)
3200 		sock->ops = &packet_ops_spkt;
3201 
3202 	sock_init_data(sock, sk);
3203 
3204 	po = pkt_sk(sk);
3205 	sk->sk_family = PF_PACKET;
3206 	po->num = proto;
3207 	po->xmit = dev_queue_xmit;
3208 
3209 	err = packet_alloc_pending(po);
3210 	if (err)
3211 		goto out2;
3212 
3213 	packet_cached_dev_reset(po);
3214 
3215 	sk->sk_destruct = packet_sock_destruct;
3216 	sk_refcnt_debug_inc(sk);
3217 
3218 	/*
3219 	 *	Attach a protocol block
3220 	 */
3221 
3222 	spin_lock_init(&po->bind_lock);
3223 	mutex_init(&po->pg_vec_lock);
3224 	po->rollover = NULL;
3225 	po->prot_hook.func = packet_rcv;
3226 
3227 	if (sock->type == SOCK_PACKET)
3228 		po->prot_hook.func = packet_rcv_spkt;
3229 
3230 	po->prot_hook.af_packet_priv = sk;
3231 
3232 	if (proto) {
3233 		po->prot_hook.type = proto;
3234 		__register_prot_hook(sk);
3235 	}
3236 
3237 	mutex_lock(&net->packet.sklist_lock);
3238 	sk_add_node_rcu(sk, &net->packet.sklist);
3239 	mutex_unlock(&net->packet.sklist_lock);
3240 
3241 	preempt_disable();
3242 	sock_prot_inuse_add(net, &packet_proto, 1);
3243 	preempt_enable();
3244 
3245 	return 0;
3246 out2:
3247 	sk_free(sk);
3248 out:
3249 	return err;
3250 }
3251 
3252 /*
3253  *	Pull a packet from our receive queue and hand it to the user.
3254  *	If necessary we block.
3255  */
3256 
3257 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3258 			  int flags)
3259 {
3260 	struct sock *sk = sock->sk;
3261 	struct sk_buff *skb;
3262 	int copied, err;
3263 	int vnet_hdr_len = 0;
3264 	unsigned int origlen = 0;
3265 
3266 	err = -EINVAL;
3267 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3268 		goto out;
3269 
3270 #if 0
3271 	/* What error should we return now? EUNATTACH? */
3272 	if (pkt_sk(sk)->ifindex < 0)
3273 		return -ENODEV;
3274 #endif
3275 
3276 	if (flags & MSG_ERRQUEUE) {
3277 		err = sock_recv_errqueue(sk, msg, len,
3278 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3279 		goto out;
3280 	}
3281 
3282 	/*
3283 	 *	Call the generic datagram receiver. This handles all sorts
3284 	 *	of horrible races and re-entrancy so we can forget about it
3285 	 *	in the protocol layers.
3286 	 *
3287 	 *	Now it will return ENETDOWN, if device have just gone down,
3288 	 *	but then it will block.
3289 	 */
3290 
3291 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3292 
3293 	/*
3294 	 *	An error occurred so return it. Because skb_recv_datagram()
3295 	 *	handles the blocking we don't see and worry about blocking
3296 	 *	retries.
3297 	 */
3298 
3299 	if (skb == NULL)
3300 		goto out;
3301 
3302 	if (pkt_sk(sk)->pressure)
3303 		packet_rcv_has_room(pkt_sk(sk), NULL);
3304 
3305 	if (pkt_sk(sk)->has_vnet_hdr) {
3306 		err = packet_rcv_vnet(msg, skb, &len);
3307 		if (err)
3308 			goto out_free;
3309 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3310 	}
3311 
3312 	/* You lose any data beyond the buffer you gave. If it worries
3313 	 * a user program they can ask the device for its MTU
3314 	 * anyway.
3315 	 */
3316 	copied = skb->len;
3317 	if (copied > len) {
3318 		copied = len;
3319 		msg->msg_flags |= MSG_TRUNC;
3320 	}
3321 
3322 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3323 	if (err)
3324 		goto out_free;
3325 
3326 	if (sock->type != SOCK_PACKET) {
3327 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3328 
3329 		/* Original length was stored in sockaddr_ll fields */
3330 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3331 		sll->sll_family = AF_PACKET;
3332 		sll->sll_protocol = skb->protocol;
3333 	}
3334 
3335 	sock_recv_ts_and_drops(msg, sk, skb);
3336 
3337 	if (msg->msg_name) {
3338 		/* If the address length field is there to be filled
3339 		 * in, we fill it in now.
3340 		 */
3341 		if (sock->type == SOCK_PACKET) {
3342 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3343 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3344 		} else {
3345 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3346 
3347 			msg->msg_namelen = sll->sll_halen +
3348 				offsetof(struct sockaddr_ll, sll_addr);
3349 		}
3350 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3351 		       msg->msg_namelen);
3352 	}
3353 
3354 	if (pkt_sk(sk)->auxdata) {
3355 		struct tpacket_auxdata aux;
3356 
3357 		aux.tp_status = TP_STATUS_USER;
3358 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3359 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3360 		else if (skb->pkt_type != PACKET_OUTGOING &&
3361 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3362 			  skb_csum_unnecessary(skb)))
3363 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3364 
3365 		aux.tp_len = origlen;
3366 		aux.tp_snaplen = skb->len;
3367 		aux.tp_mac = 0;
3368 		aux.tp_net = skb_network_offset(skb);
3369 		if (skb_vlan_tag_present(skb)) {
3370 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3371 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3372 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3373 		} else {
3374 			aux.tp_vlan_tci = 0;
3375 			aux.tp_vlan_tpid = 0;
3376 		}
3377 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3378 	}
3379 
3380 	/*
3381 	 *	Free or return the buffer as appropriate. Again this
3382 	 *	hides all the races and re-entrancy issues from us.
3383 	 */
3384 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3385 
3386 out_free:
3387 	skb_free_datagram(sk, skb);
3388 out:
3389 	return err;
3390 }
3391 
3392 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3393 			       int peer)
3394 {
3395 	struct net_device *dev;
3396 	struct sock *sk	= sock->sk;
3397 
3398 	if (peer)
3399 		return -EOPNOTSUPP;
3400 
3401 	uaddr->sa_family = AF_PACKET;
3402 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3403 	rcu_read_lock();
3404 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3405 	if (dev)
3406 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3407 	rcu_read_unlock();
3408 
3409 	return sizeof(*uaddr);
3410 }
3411 
3412 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3413 			  int peer)
3414 {
3415 	struct net_device *dev;
3416 	struct sock *sk = sock->sk;
3417 	struct packet_sock *po = pkt_sk(sk);
3418 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3419 
3420 	if (peer)
3421 		return -EOPNOTSUPP;
3422 
3423 	sll->sll_family = AF_PACKET;
3424 	sll->sll_ifindex = po->ifindex;
3425 	sll->sll_protocol = po->num;
3426 	sll->sll_pkttype = 0;
3427 	rcu_read_lock();
3428 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3429 	if (dev) {
3430 		sll->sll_hatype = dev->type;
3431 		sll->sll_halen = dev->addr_len;
3432 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3433 	} else {
3434 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3435 		sll->sll_halen = 0;
3436 	}
3437 	rcu_read_unlock();
3438 
3439 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3440 }
3441 
3442 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3443 			 int what)
3444 {
3445 	switch (i->type) {
3446 	case PACKET_MR_MULTICAST:
3447 		if (i->alen != dev->addr_len)
3448 			return -EINVAL;
3449 		if (what > 0)
3450 			return dev_mc_add(dev, i->addr);
3451 		else
3452 			return dev_mc_del(dev, i->addr);
3453 		break;
3454 	case PACKET_MR_PROMISC:
3455 		return dev_set_promiscuity(dev, what);
3456 	case PACKET_MR_ALLMULTI:
3457 		return dev_set_allmulti(dev, what);
3458 	case PACKET_MR_UNICAST:
3459 		if (i->alen != dev->addr_len)
3460 			return -EINVAL;
3461 		if (what > 0)
3462 			return dev_uc_add(dev, i->addr);
3463 		else
3464 			return dev_uc_del(dev, i->addr);
3465 		break;
3466 	default:
3467 		break;
3468 	}
3469 	return 0;
3470 }
3471 
3472 static void packet_dev_mclist_delete(struct net_device *dev,
3473 				     struct packet_mclist **mlp)
3474 {
3475 	struct packet_mclist *ml;
3476 
3477 	while ((ml = *mlp) != NULL) {
3478 		if (ml->ifindex == dev->ifindex) {
3479 			packet_dev_mc(dev, ml, -1);
3480 			*mlp = ml->next;
3481 			kfree(ml);
3482 		} else
3483 			mlp = &ml->next;
3484 	}
3485 }
3486 
3487 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3488 {
3489 	struct packet_sock *po = pkt_sk(sk);
3490 	struct packet_mclist *ml, *i;
3491 	struct net_device *dev;
3492 	int err;
3493 
3494 	rtnl_lock();
3495 
3496 	err = -ENODEV;
3497 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3498 	if (!dev)
3499 		goto done;
3500 
3501 	err = -EINVAL;
3502 	if (mreq->mr_alen > dev->addr_len)
3503 		goto done;
3504 
3505 	err = -ENOBUFS;
3506 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3507 	if (i == NULL)
3508 		goto done;
3509 
3510 	err = 0;
3511 	for (ml = po->mclist; ml; ml = ml->next) {
3512 		if (ml->ifindex == mreq->mr_ifindex &&
3513 		    ml->type == mreq->mr_type &&
3514 		    ml->alen == mreq->mr_alen &&
3515 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3516 			ml->count++;
3517 			/* Free the new element ... */
3518 			kfree(i);
3519 			goto done;
3520 		}
3521 	}
3522 
3523 	i->type = mreq->mr_type;
3524 	i->ifindex = mreq->mr_ifindex;
3525 	i->alen = mreq->mr_alen;
3526 	memcpy(i->addr, mreq->mr_address, i->alen);
3527 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3528 	i->count = 1;
3529 	i->next = po->mclist;
3530 	po->mclist = i;
3531 	err = packet_dev_mc(dev, i, 1);
3532 	if (err) {
3533 		po->mclist = i->next;
3534 		kfree(i);
3535 	}
3536 
3537 done:
3538 	rtnl_unlock();
3539 	return err;
3540 }
3541 
3542 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3543 {
3544 	struct packet_mclist *ml, **mlp;
3545 
3546 	rtnl_lock();
3547 
3548 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3549 		if (ml->ifindex == mreq->mr_ifindex &&
3550 		    ml->type == mreq->mr_type &&
3551 		    ml->alen == mreq->mr_alen &&
3552 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3553 			if (--ml->count == 0) {
3554 				struct net_device *dev;
3555 				*mlp = ml->next;
3556 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3557 				if (dev)
3558 					packet_dev_mc(dev, ml, -1);
3559 				kfree(ml);
3560 			}
3561 			break;
3562 		}
3563 	}
3564 	rtnl_unlock();
3565 	return 0;
3566 }
3567 
3568 static void packet_flush_mclist(struct sock *sk)
3569 {
3570 	struct packet_sock *po = pkt_sk(sk);
3571 	struct packet_mclist *ml;
3572 
3573 	if (!po->mclist)
3574 		return;
3575 
3576 	rtnl_lock();
3577 	while ((ml = po->mclist) != NULL) {
3578 		struct net_device *dev;
3579 
3580 		po->mclist = ml->next;
3581 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3582 		if (dev != NULL)
3583 			packet_dev_mc(dev, ml, -1);
3584 		kfree(ml);
3585 	}
3586 	rtnl_unlock();
3587 }
3588 
3589 static int
3590 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3591 {
3592 	struct sock *sk = sock->sk;
3593 	struct packet_sock *po = pkt_sk(sk);
3594 	int ret;
3595 
3596 	if (level != SOL_PACKET)
3597 		return -ENOPROTOOPT;
3598 
3599 	switch (optname) {
3600 	case PACKET_ADD_MEMBERSHIP:
3601 	case PACKET_DROP_MEMBERSHIP:
3602 	{
3603 		struct packet_mreq_max mreq;
3604 		int len = optlen;
3605 		memset(&mreq, 0, sizeof(mreq));
3606 		if (len < sizeof(struct packet_mreq))
3607 			return -EINVAL;
3608 		if (len > sizeof(mreq))
3609 			len = sizeof(mreq);
3610 		if (copy_from_user(&mreq, optval, len))
3611 			return -EFAULT;
3612 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3613 			return -EINVAL;
3614 		if (optname == PACKET_ADD_MEMBERSHIP)
3615 			ret = packet_mc_add(sk, &mreq);
3616 		else
3617 			ret = packet_mc_drop(sk, &mreq);
3618 		return ret;
3619 	}
3620 
3621 	case PACKET_RX_RING:
3622 	case PACKET_TX_RING:
3623 	{
3624 		union tpacket_req_u req_u;
3625 		int len;
3626 
3627 		lock_sock(sk);
3628 		switch (po->tp_version) {
3629 		case TPACKET_V1:
3630 		case TPACKET_V2:
3631 			len = sizeof(req_u.req);
3632 			break;
3633 		case TPACKET_V3:
3634 		default:
3635 			len = sizeof(req_u.req3);
3636 			break;
3637 		}
3638 		if (optlen < len) {
3639 			ret = -EINVAL;
3640 		} else {
3641 			if (copy_from_user(&req_u.req, optval, len))
3642 				ret = -EFAULT;
3643 			else
3644 				ret = packet_set_ring(sk, &req_u, 0,
3645 						    optname == PACKET_TX_RING);
3646 		}
3647 		release_sock(sk);
3648 		return ret;
3649 	}
3650 	case PACKET_COPY_THRESH:
3651 	{
3652 		int val;
3653 
3654 		if (optlen != sizeof(val))
3655 			return -EINVAL;
3656 		if (copy_from_user(&val, optval, sizeof(val)))
3657 			return -EFAULT;
3658 
3659 		pkt_sk(sk)->copy_thresh = val;
3660 		return 0;
3661 	}
3662 	case PACKET_VERSION:
3663 	{
3664 		int val;
3665 
3666 		if (optlen != sizeof(val))
3667 			return -EINVAL;
3668 		if (copy_from_user(&val, optval, sizeof(val)))
3669 			return -EFAULT;
3670 		switch (val) {
3671 		case TPACKET_V1:
3672 		case TPACKET_V2:
3673 		case TPACKET_V3:
3674 			break;
3675 		default:
3676 			return -EINVAL;
3677 		}
3678 		lock_sock(sk);
3679 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3680 			ret = -EBUSY;
3681 		} else {
3682 			po->tp_version = val;
3683 			ret = 0;
3684 		}
3685 		release_sock(sk);
3686 		return ret;
3687 	}
3688 	case PACKET_RESERVE:
3689 	{
3690 		unsigned int val;
3691 
3692 		if (optlen != sizeof(val))
3693 			return -EINVAL;
3694 		if (copy_from_user(&val, optval, sizeof(val)))
3695 			return -EFAULT;
3696 		if (val > INT_MAX)
3697 			return -EINVAL;
3698 		lock_sock(sk);
3699 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3700 			ret = -EBUSY;
3701 		} else {
3702 			po->tp_reserve = val;
3703 			ret = 0;
3704 		}
3705 		release_sock(sk);
3706 		return ret;
3707 	}
3708 	case PACKET_LOSS:
3709 	{
3710 		unsigned int val;
3711 
3712 		if (optlen != sizeof(val))
3713 			return -EINVAL;
3714 		if (copy_from_user(&val, optval, sizeof(val)))
3715 			return -EFAULT;
3716 
3717 		lock_sock(sk);
3718 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3719 			ret = -EBUSY;
3720 		} else {
3721 			po->tp_loss = !!val;
3722 			ret = 0;
3723 		}
3724 		release_sock(sk);
3725 		return ret;
3726 	}
3727 	case PACKET_AUXDATA:
3728 	{
3729 		int val;
3730 
3731 		if (optlen < sizeof(val))
3732 			return -EINVAL;
3733 		if (copy_from_user(&val, optval, sizeof(val)))
3734 			return -EFAULT;
3735 
3736 		lock_sock(sk);
3737 		po->auxdata = !!val;
3738 		release_sock(sk);
3739 		return 0;
3740 	}
3741 	case PACKET_ORIGDEV:
3742 	{
3743 		int val;
3744 
3745 		if (optlen < sizeof(val))
3746 			return -EINVAL;
3747 		if (copy_from_user(&val, optval, sizeof(val)))
3748 			return -EFAULT;
3749 
3750 		lock_sock(sk);
3751 		po->origdev = !!val;
3752 		release_sock(sk);
3753 		return 0;
3754 	}
3755 	case PACKET_VNET_HDR:
3756 	{
3757 		int val;
3758 
3759 		if (sock->type != SOCK_RAW)
3760 			return -EINVAL;
3761 		if (optlen < sizeof(val))
3762 			return -EINVAL;
3763 		if (copy_from_user(&val, optval, sizeof(val)))
3764 			return -EFAULT;
3765 
3766 		lock_sock(sk);
3767 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3768 			ret = -EBUSY;
3769 		} else {
3770 			po->has_vnet_hdr = !!val;
3771 			ret = 0;
3772 		}
3773 		release_sock(sk);
3774 		return ret;
3775 	}
3776 	case PACKET_TIMESTAMP:
3777 	{
3778 		int val;
3779 
3780 		if (optlen != sizeof(val))
3781 			return -EINVAL;
3782 		if (copy_from_user(&val, optval, sizeof(val)))
3783 			return -EFAULT;
3784 
3785 		po->tp_tstamp = val;
3786 		return 0;
3787 	}
3788 	case PACKET_FANOUT:
3789 	{
3790 		int val;
3791 
3792 		if (optlen != sizeof(val))
3793 			return -EINVAL;
3794 		if (copy_from_user(&val, optval, sizeof(val)))
3795 			return -EFAULT;
3796 
3797 		return fanout_add(sk, val & 0xffff, val >> 16);
3798 	}
3799 	case PACKET_FANOUT_DATA:
3800 	{
3801 		if (!po->fanout)
3802 			return -EINVAL;
3803 
3804 		return fanout_set_data(po, optval, optlen);
3805 	}
3806 	case PACKET_TX_HAS_OFF:
3807 	{
3808 		unsigned int val;
3809 
3810 		if (optlen != sizeof(val))
3811 			return -EINVAL;
3812 		if (copy_from_user(&val, optval, sizeof(val)))
3813 			return -EFAULT;
3814 
3815 		lock_sock(sk);
3816 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3817 			ret = -EBUSY;
3818 		} else {
3819 			po->tp_tx_has_off = !!val;
3820 			ret = 0;
3821 		}
3822 		release_sock(sk);
3823 		return 0;
3824 	}
3825 	case PACKET_QDISC_BYPASS:
3826 	{
3827 		int val;
3828 
3829 		if (optlen != sizeof(val))
3830 			return -EINVAL;
3831 		if (copy_from_user(&val, optval, sizeof(val)))
3832 			return -EFAULT;
3833 
3834 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3835 		return 0;
3836 	}
3837 	default:
3838 		return -ENOPROTOOPT;
3839 	}
3840 }
3841 
3842 static int packet_getsockopt(struct socket *sock, int level, int optname,
3843 			     char __user *optval, int __user *optlen)
3844 {
3845 	int len;
3846 	int val, lv = sizeof(val);
3847 	struct sock *sk = sock->sk;
3848 	struct packet_sock *po = pkt_sk(sk);
3849 	void *data = &val;
3850 	union tpacket_stats_u st;
3851 	struct tpacket_rollover_stats rstats;
3852 
3853 	if (level != SOL_PACKET)
3854 		return -ENOPROTOOPT;
3855 
3856 	if (get_user(len, optlen))
3857 		return -EFAULT;
3858 
3859 	if (len < 0)
3860 		return -EINVAL;
3861 
3862 	switch (optname) {
3863 	case PACKET_STATISTICS:
3864 		spin_lock_bh(&sk->sk_receive_queue.lock);
3865 		memcpy(&st, &po->stats, sizeof(st));
3866 		memset(&po->stats, 0, sizeof(po->stats));
3867 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3868 
3869 		if (po->tp_version == TPACKET_V3) {
3870 			lv = sizeof(struct tpacket_stats_v3);
3871 			st.stats3.tp_packets += st.stats3.tp_drops;
3872 			data = &st.stats3;
3873 		} else {
3874 			lv = sizeof(struct tpacket_stats);
3875 			st.stats1.tp_packets += st.stats1.tp_drops;
3876 			data = &st.stats1;
3877 		}
3878 
3879 		break;
3880 	case PACKET_AUXDATA:
3881 		val = po->auxdata;
3882 		break;
3883 	case PACKET_ORIGDEV:
3884 		val = po->origdev;
3885 		break;
3886 	case PACKET_VNET_HDR:
3887 		val = po->has_vnet_hdr;
3888 		break;
3889 	case PACKET_VERSION:
3890 		val = po->tp_version;
3891 		break;
3892 	case PACKET_HDRLEN:
3893 		if (len > sizeof(int))
3894 			len = sizeof(int);
3895 		if (len < sizeof(int))
3896 			return -EINVAL;
3897 		if (copy_from_user(&val, optval, len))
3898 			return -EFAULT;
3899 		switch (val) {
3900 		case TPACKET_V1:
3901 			val = sizeof(struct tpacket_hdr);
3902 			break;
3903 		case TPACKET_V2:
3904 			val = sizeof(struct tpacket2_hdr);
3905 			break;
3906 		case TPACKET_V3:
3907 			val = sizeof(struct tpacket3_hdr);
3908 			break;
3909 		default:
3910 			return -EINVAL;
3911 		}
3912 		break;
3913 	case PACKET_RESERVE:
3914 		val = po->tp_reserve;
3915 		break;
3916 	case PACKET_LOSS:
3917 		val = po->tp_loss;
3918 		break;
3919 	case PACKET_TIMESTAMP:
3920 		val = po->tp_tstamp;
3921 		break;
3922 	case PACKET_FANOUT:
3923 		val = (po->fanout ?
3924 		       ((u32)po->fanout->id |
3925 			((u32)po->fanout->type << 16) |
3926 			((u32)po->fanout->flags << 24)) :
3927 		       0);
3928 		break;
3929 	case PACKET_ROLLOVER_STATS:
3930 		if (!po->rollover)
3931 			return -EINVAL;
3932 		rstats.tp_all = atomic_long_read(&po->rollover->num);
3933 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3934 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3935 		data = &rstats;
3936 		lv = sizeof(rstats);
3937 		break;
3938 	case PACKET_TX_HAS_OFF:
3939 		val = po->tp_tx_has_off;
3940 		break;
3941 	case PACKET_QDISC_BYPASS:
3942 		val = packet_use_direct_xmit(po);
3943 		break;
3944 	default:
3945 		return -ENOPROTOOPT;
3946 	}
3947 
3948 	if (len > lv)
3949 		len = lv;
3950 	if (put_user(len, optlen))
3951 		return -EFAULT;
3952 	if (copy_to_user(optval, data, len))
3953 		return -EFAULT;
3954 	return 0;
3955 }
3956 
3957 
3958 #ifdef CONFIG_COMPAT
3959 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3960 				    char __user *optval, unsigned int optlen)
3961 {
3962 	struct packet_sock *po = pkt_sk(sock->sk);
3963 
3964 	if (level != SOL_PACKET)
3965 		return -ENOPROTOOPT;
3966 
3967 	if (optname == PACKET_FANOUT_DATA &&
3968 	    po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3969 		optval = (char __user *)get_compat_bpf_fprog(optval);
3970 		if (!optval)
3971 			return -EFAULT;
3972 		optlen = sizeof(struct sock_fprog);
3973 	}
3974 
3975 	return packet_setsockopt(sock, level, optname, optval, optlen);
3976 }
3977 #endif
3978 
3979 static int packet_notifier(struct notifier_block *this,
3980 			   unsigned long msg, void *ptr)
3981 {
3982 	struct sock *sk;
3983 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3984 	struct net *net = dev_net(dev);
3985 
3986 	rcu_read_lock();
3987 	sk_for_each_rcu(sk, &net->packet.sklist) {
3988 		struct packet_sock *po = pkt_sk(sk);
3989 
3990 		switch (msg) {
3991 		case NETDEV_UNREGISTER:
3992 			if (po->mclist)
3993 				packet_dev_mclist_delete(dev, &po->mclist);
3994 			/* fallthrough */
3995 
3996 		case NETDEV_DOWN:
3997 			if (dev->ifindex == po->ifindex) {
3998 				spin_lock(&po->bind_lock);
3999 				if (po->running) {
4000 					__unregister_prot_hook(sk, false);
4001 					sk->sk_err = ENETDOWN;
4002 					if (!sock_flag(sk, SOCK_DEAD))
4003 						sk->sk_error_report(sk);
4004 				}
4005 				if (msg == NETDEV_UNREGISTER) {
4006 					packet_cached_dev_reset(po);
4007 					po->ifindex = -1;
4008 					if (po->prot_hook.dev)
4009 						dev_put(po->prot_hook.dev);
4010 					po->prot_hook.dev = NULL;
4011 				}
4012 				spin_unlock(&po->bind_lock);
4013 			}
4014 			break;
4015 		case NETDEV_UP:
4016 			if (dev->ifindex == po->ifindex) {
4017 				spin_lock(&po->bind_lock);
4018 				if (po->num)
4019 					register_prot_hook(sk);
4020 				spin_unlock(&po->bind_lock);
4021 			}
4022 			break;
4023 		}
4024 	}
4025 	rcu_read_unlock();
4026 	return NOTIFY_DONE;
4027 }
4028 
4029 
4030 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4031 			unsigned long arg)
4032 {
4033 	struct sock *sk = sock->sk;
4034 
4035 	switch (cmd) {
4036 	case SIOCOUTQ:
4037 	{
4038 		int amount = sk_wmem_alloc_get(sk);
4039 
4040 		return put_user(amount, (int __user *)arg);
4041 	}
4042 	case SIOCINQ:
4043 	{
4044 		struct sk_buff *skb;
4045 		int amount = 0;
4046 
4047 		spin_lock_bh(&sk->sk_receive_queue.lock);
4048 		skb = skb_peek(&sk->sk_receive_queue);
4049 		if (skb)
4050 			amount = skb->len;
4051 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4052 		return put_user(amount, (int __user *)arg);
4053 	}
4054 	case SIOCGSTAMP:
4055 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
4056 	case SIOCGSTAMPNS:
4057 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
4058 
4059 #ifdef CONFIG_INET
4060 	case SIOCADDRT:
4061 	case SIOCDELRT:
4062 	case SIOCDARP:
4063 	case SIOCGARP:
4064 	case SIOCSARP:
4065 	case SIOCGIFADDR:
4066 	case SIOCSIFADDR:
4067 	case SIOCGIFBRDADDR:
4068 	case SIOCSIFBRDADDR:
4069 	case SIOCGIFNETMASK:
4070 	case SIOCSIFNETMASK:
4071 	case SIOCGIFDSTADDR:
4072 	case SIOCSIFDSTADDR:
4073 	case SIOCSIFFLAGS:
4074 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4075 #endif
4076 
4077 	default:
4078 		return -ENOIOCTLCMD;
4079 	}
4080 	return 0;
4081 }
4082 
4083 static __poll_t packet_poll(struct file *file, struct socket *sock,
4084 				poll_table *wait)
4085 {
4086 	struct sock *sk = sock->sk;
4087 	struct packet_sock *po = pkt_sk(sk);
4088 	__poll_t mask = datagram_poll(file, sock, wait);
4089 
4090 	spin_lock_bh(&sk->sk_receive_queue.lock);
4091 	if (po->rx_ring.pg_vec) {
4092 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4093 			TP_STATUS_KERNEL))
4094 			mask |= EPOLLIN | EPOLLRDNORM;
4095 	}
4096 	if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4097 		po->pressure = 0;
4098 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4099 	spin_lock_bh(&sk->sk_write_queue.lock);
4100 	if (po->tx_ring.pg_vec) {
4101 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4102 			mask |= EPOLLOUT | EPOLLWRNORM;
4103 	}
4104 	spin_unlock_bh(&sk->sk_write_queue.lock);
4105 	return mask;
4106 }
4107 
4108 
4109 /* Dirty? Well, I still did not learn better way to account
4110  * for user mmaps.
4111  */
4112 
4113 static void packet_mm_open(struct vm_area_struct *vma)
4114 {
4115 	struct file *file = vma->vm_file;
4116 	struct socket *sock = file->private_data;
4117 	struct sock *sk = sock->sk;
4118 
4119 	if (sk)
4120 		atomic_inc(&pkt_sk(sk)->mapped);
4121 }
4122 
4123 static void packet_mm_close(struct vm_area_struct *vma)
4124 {
4125 	struct file *file = vma->vm_file;
4126 	struct socket *sock = file->private_data;
4127 	struct sock *sk = sock->sk;
4128 
4129 	if (sk)
4130 		atomic_dec(&pkt_sk(sk)->mapped);
4131 }
4132 
4133 static const struct vm_operations_struct packet_mmap_ops = {
4134 	.open	=	packet_mm_open,
4135 	.close	=	packet_mm_close,
4136 };
4137 
4138 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4139 			unsigned int len)
4140 {
4141 	int i;
4142 
4143 	for (i = 0; i < len; i++) {
4144 		if (likely(pg_vec[i].buffer)) {
4145 			if (is_vmalloc_addr(pg_vec[i].buffer))
4146 				vfree(pg_vec[i].buffer);
4147 			else
4148 				free_pages((unsigned long)pg_vec[i].buffer,
4149 					   order);
4150 			pg_vec[i].buffer = NULL;
4151 		}
4152 	}
4153 	kfree(pg_vec);
4154 }
4155 
4156 static char *alloc_one_pg_vec_page(unsigned long order)
4157 {
4158 	char *buffer;
4159 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4160 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4161 
4162 	buffer = (char *) __get_free_pages(gfp_flags, order);
4163 	if (buffer)
4164 		return buffer;
4165 
4166 	/* __get_free_pages failed, fall back to vmalloc */
4167 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4168 	if (buffer)
4169 		return buffer;
4170 
4171 	/* vmalloc failed, lets dig into swap here */
4172 	gfp_flags &= ~__GFP_NORETRY;
4173 	buffer = (char *) __get_free_pages(gfp_flags, order);
4174 	if (buffer)
4175 		return buffer;
4176 
4177 	/* complete and utter failure */
4178 	return NULL;
4179 }
4180 
4181 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4182 {
4183 	unsigned int block_nr = req->tp_block_nr;
4184 	struct pgv *pg_vec;
4185 	int i;
4186 
4187 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4188 	if (unlikely(!pg_vec))
4189 		goto out;
4190 
4191 	for (i = 0; i < block_nr; i++) {
4192 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4193 		if (unlikely(!pg_vec[i].buffer))
4194 			goto out_free_pgvec;
4195 	}
4196 
4197 out:
4198 	return pg_vec;
4199 
4200 out_free_pgvec:
4201 	free_pg_vec(pg_vec, order, block_nr);
4202 	pg_vec = NULL;
4203 	goto out;
4204 }
4205 
4206 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4207 		int closing, int tx_ring)
4208 {
4209 	struct pgv *pg_vec = NULL;
4210 	struct packet_sock *po = pkt_sk(sk);
4211 	int was_running, order = 0;
4212 	struct packet_ring_buffer *rb;
4213 	struct sk_buff_head *rb_queue;
4214 	__be16 num;
4215 	int err = -EINVAL;
4216 	/* Added to avoid minimal code churn */
4217 	struct tpacket_req *req = &req_u->req;
4218 
4219 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4220 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4221 
4222 	err = -EBUSY;
4223 	if (!closing) {
4224 		if (atomic_read(&po->mapped))
4225 			goto out;
4226 		if (packet_read_pending(rb))
4227 			goto out;
4228 	}
4229 
4230 	if (req->tp_block_nr) {
4231 		/* Sanity tests and some calculations */
4232 		err = -EBUSY;
4233 		if (unlikely(rb->pg_vec))
4234 			goto out;
4235 
4236 		switch (po->tp_version) {
4237 		case TPACKET_V1:
4238 			po->tp_hdrlen = TPACKET_HDRLEN;
4239 			break;
4240 		case TPACKET_V2:
4241 			po->tp_hdrlen = TPACKET2_HDRLEN;
4242 			break;
4243 		case TPACKET_V3:
4244 			po->tp_hdrlen = TPACKET3_HDRLEN;
4245 			break;
4246 		}
4247 
4248 		err = -EINVAL;
4249 		if (unlikely((int)req->tp_block_size <= 0))
4250 			goto out;
4251 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4252 			goto out;
4253 		if (po->tp_version >= TPACKET_V3 &&
4254 		    req->tp_block_size <=
4255 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + sizeof(struct tpacket3_hdr))
4256 			goto out;
4257 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4258 					po->tp_reserve))
4259 			goto out;
4260 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4261 			goto out;
4262 
4263 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4264 		if (unlikely(rb->frames_per_block == 0))
4265 			goto out;
4266 		if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4267 			goto out;
4268 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4269 					req->tp_frame_nr))
4270 			goto out;
4271 
4272 		err = -ENOMEM;
4273 		order = get_order(req->tp_block_size);
4274 		pg_vec = alloc_pg_vec(req, order);
4275 		if (unlikely(!pg_vec))
4276 			goto out;
4277 		switch (po->tp_version) {
4278 		case TPACKET_V3:
4279 			/* Block transmit is not supported yet */
4280 			if (!tx_ring) {
4281 				init_prb_bdqc(po, rb, pg_vec, req_u);
4282 			} else {
4283 				struct tpacket_req3 *req3 = &req_u->req3;
4284 
4285 				if (req3->tp_retire_blk_tov ||
4286 				    req3->tp_sizeof_priv ||
4287 				    req3->tp_feature_req_word) {
4288 					err = -EINVAL;
4289 					goto out;
4290 				}
4291 			}
4292 			break;
4293 		default:
4294 			break;
4295 		}
4296 	}
4297 	/* Done */
4298 	else {
4299 		err = -EINVAL;
4300 		if (unlikely(req->tp_frame_nr))
4301 			goto out;
4302 	}
4303 
4304 
4305 	/* Detach socket from network */
4306 	spin_lock(&po->bind_lock);
4307 	was_running = po->running;
4308 	num = po->num;
4309 	if (was_running) {
4310 		po->num = 0;
4311 		__unregister_prot_hook(sk, false);
4312 	}
4313 	spin_unlock(&po->bind_lock);
4314 
4315 	synchronize_net();
4316 
4317 	err = -EBUSY;
4318 	mutex_lock(&po->pg_vec_lock);
4319 	if (closing || atomic_read(&po->mapped) == 0) {
4320 		err = 0;
4321 		spin_lock_bh(&rb_queue->lock);
4322 		swap(rb->pg_vec, pg_vec);
4323 		rb->frame_max = (req->tp_frame_nr - 1);
4324 		rb->head = 0;
4325 		rb->frame_size = req->tp_frame_size;
4326 		spin_unlock_bh(&rb_queue->lock);
4327 
4328 		swap(rb->pg_vec_order, order);
4329 		swap(rb->pg_vec_len, req->tp_block_nr);
4330 
4331 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4332 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4333 						tpacket_rcv : packet_rcv;
4334 		skb_queue_purge(rb_queue);
4335 		if (atomic_read(&po->mapped))
4336 			pr_err("packet_mmap: vma is busy: %d\n",
4337 			       atomic_read(&po->mapped));
4338 	}
4339 	mutex_unlock(&po->pg_vec_lock);
4340 
4341 	spin_lock(&po->bind_lock);
4342 	if (was_running) {
4343 		po->num = num;
4344 		register_prot_hook(sk);
4345 	}
4346 	spin_unlock(&po->bind_lock);
4347 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4348 		/* Because we don't support block-based V3 on tx-ring */
4349 		if (!tx_ring)
4350 			prb_shutdown_retire_blk_timer(po, rb_queue);
4351 	}
4352 
4353 	if (pg_vec)
4354 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4355 out:
4356 	return err;
4357 }
4358 
4359 static int packet_mmap(struct file *file, struct socket *sock,
4360 		struct vm_area_struct *vma)
4361 {
4362 	struct sock *sk = sock->sk;
4363 	struct packet_sock *po = pkt_sk(sk);
4364 	unsigned long size, expected_size;
4365 	struct packet_ring_buffer *rb;
4366 	unsigned long start;
4367 	int err = -EINVAL;
4368 	int i;
4369 
4370 	if (vma->vm_pgoff)
4371 		return -EINVAL;
4372 
4373 	mutex_lock(&po->pg_vec_lock);
4374 
4375 	expected_size = 0;
4376 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4377 		if (rb->pg_vec) {
4378 			expected_size += rb->pg_vec_len
4379 						* rb->pg_vec_pages
4380 						* PAGE_SIZE;
4381 		}
4382 	}
4383 
4384 	if (expected_size == 0)
4385 		goto out;
4386 
4387 	size = vma->vm_end - vma->vm_start;
4388 	if (size != expected_size)
4389 		goto out;
4390 
4391 	start = vma->vm_start;
4392 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4393 		if (rb->pg_vec == NULL)
4394 			continue;
4395 
4396 		for (i = 0; i < rb->pg_vec_len; i++) {
4397 			struct page *page;
4398 			void *kaddr = rb->pg_vec[i].buffer;
4399 			int pg_num;
4400 
4401 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4402 				page = pgv_to_page(kaddr);
4403 				err = vm_insert_page(vma, start, page);
4404 				if (unlikely(err))
4405 					goto out;
4406 				start += PAGE_SIZE;
4407 				kaddr += PAGE_SIZE;
4408 			}
4409 		}
4410 	}
4411 
4412 	atomic_inc(&po->mapped);
4413 	vma->vm_ops = &packet_mmap_ops;
4414 	err = 0;
4415 
4416 out:
4417 	mutex_unlock(&po->pg_vec_lock);
4418 	return err;
4419 }
4420 
4421 static const struct proto_ops packet_ops_spkt = {
4422 	.family =	PF_PACKET,
4423 	.owner =	THIS_MODULE,
4424 	.release =	packet_release,
4425 	.bind =		packet_bind_spkt,
4426 	.connect =	sock_no_connect,
4427 	.socketpair =	sock_no_socketpair,
4428 	.accept =	sock_no_accept,
4429 	.getname =	packet_getname_spkt,
4430 	.poll =		datagram_poll,
4431 	.ioctl =	packet_ioctl,
4432 	.listen =	sock_no_listen,
4433 	.shutdown =	sock_no_shutdown,
4434 	.setsockopt =	sock_no_setsockopt,
4435 	.getsockopt =	sock_no_getsockopt,
4436 	.sendmsg =	packet_sendmsg_spkt,
4437 	.recvmsg =	packet_recvmsg,
4438 	.mmap =		sock_no_mmap,
4439 	.sendpage =	sock_no_sendpage,
4440 };
4441 
4442 static const struct proto_ops packet_ops = {
4443 	.family =	PF_PACKET,
4444 	.owner =	THIS_MODULE,
4445 	.release =	packet_release,
4446 	.bind =		packet_bind,
4447 	.connect =	sock_no_connect,
4448 	.socketpair =	sock_no_socketpair,
4449 	.accept =	sock_no_accept,
4450 	.getname =	packet_getname,
4451 	.poll =		packet_poll,
4452 	.ioctl =	packet_ioctl,
4453 	.listen =	sock_no_listen,
4454 	.shutdown =	sock_no_shutdown,
4455 	.setsockopt =	packet_setsockopt,
4456 	.getsockopt =	packet_getsockopt,
4457 #ifdef CONFIG_COMPAT
4458 	.compat_setsockopt = compat_packet_setsockopt,
4459 #endif
4460 	.sendmsg =	packet_sendmsg,
4461 	.recvmsg =	packet_recvmsg,
4462 	.mmap =		packet_mmap,
4463 	.sendpage =	sock_no_sendpage,
4464 };
4465 
4466 static const struct net_proto_family packet_family_ops = {
4467 	.family =	PF_PACKET,
4468 	.create =	packet_create,
4469 	.owner	=	THIS_MODULE,
4470 };
4471 
4472 static struct notifier_block packet_netdev_notifier = {
4473 	.notifier_call =	packet_notifier,
4474 };
4475 
4476 #ifdef CONFIG_PROC_FS
4477 
4478 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4479 	__acquires(RCU)
4480 {
4481 	struct net *net = seq_file_net(seq);
4482 
4483 	rcu_read_lock();
4484 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4485 }
4486 
4487 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4488 {
4489 	struct net *net = seq_file_net(seq);
4490 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4491 }
4492 
4493 static void packet_seq_stop(struct seq_file *seq, void *v)
4494 	__releases(RCU)
4495 {
4496 	rcu_read_unlock();
4497 }
4498 
4499 static int packet_seq_show(struct seq_file *seq, void *v)
4500 {
4501 	if (v == SEQ_START_TOKEN)
4502 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4503 	else {
4504 		struct sock *s = sk_entry(v);
4505 		const struct packet_sock *po = pkt_sk(s);
4506 
4507 		seq_printf(seq,
4508 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4509 			   s,
4510 			   refcount_read(&s->sk_refcnt),
4511 			   s->sk_type,
4512 			   ntohs(po->num),
4513 			   po->ifindex,
4514 			   po->running,
4515 			   atomic_read(&s->sk_rmem_alloc),
4516 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4517 			   sock_i_ino(s));
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 static const struct seq_operations packet_seq_ops = {
4524 	.start	= packet_seq_start,
4525 	.next	= packet_seq_next,
4526 	.stop	= packet_seq_stop,
4527 	.show	= packet_seq_show,
4528 };
4529 #endif
4530 
4531 static int __net_init packet_net_init(struct net *net)
4532 {
4533 	mutex_init(&net->packet.sklist_lock);
4534 	INIT_HLIST_HEAD(&net->packet.sklist);
4535 
4536 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4537 			sizeof(struct seq_net_private)))
4538 		return -ENOMEM;
4539 
4540 	return 0;
4541 }
4542 
4543 static void __net_exit packet_net_exit(struct net *net)
4544 {
4545 	remove_proc_entry("packet", net->proc_net);
4546 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4547 }
4548 
4549 static struct pernet_operations packet_net_ops = {
4550 	.init = packet_net_init,
4551 	.exit = packet_net_exit,
4552 };
4553 
4554 
4555 static void __exit packet_exit(void)
4556 {
4557 	unregister_netdevice_notifier(&packet_netdev_notifier);
4558 	unregister_pernet_subsys(&packet_net_ops);
4559 	sock_unregister(PF_PACKET);
4560 	proto_unregister(&packet_proto);
4561 }
4562 
4563 static int __init packet_init(void)
4564 {
4565 	int rc = proto_register(&packet_proto, 0);
4566 
4567 	if (rc != 0)
4568 		goto out;
4569 
4570 	sock_register(&packet_family_ops);
4571 	register_pernet_subsys(&packet_net_ops);
4572 	register_netdevice_notifier(&packet_netdev_notifier);
4573 out:
4574 	return rc;
4575 }
4576 
4577 module_init(packet_init);
4578 module_exit(packet_exit);
4579 MODULE_LICENSE("GPL");
4580 MODULE_ALIAS_NETPROTO(PF_PACKET);
4581