xref: /openbmc/linux/net/packet/af_packet.c (revision 98ddec80)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97 
98 #include "internal.h"
99 
100 /*
101    Assumptions:
102    - if device has no dev->hard_header routine, it adds and removes ll header
103      inside itself. In this case ll header is invisible outside of device,
104      but higher levels still should reserve dev->hard_header_len.
105      Some devices are enough clever to reallocate skb, when header
106      will not fit to reserved space (tunnel), another ones are silly
107      (PPP).
108    - packet socket receives packets with pulled ll header,
109      so that SOCK_RAW should push it back.
110 
111 On receive:
112 -----------
113 
114 Incoming, dev->hard_header!=NULL
115    mac_header -> ll header
116    data       -> data
117 
118 Outgoing, dev->hard_header!=NULL
119    mac_header -> ll header
120    data       -> ll header
121 
122 Incoming, dev->hard_header==NULL
123    mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 		 header.  PPP makes it, that is wrong, because introduce
125 		 assymetry between rx and tx paths.
126    data       -> data
127 
128 Outgoing, dev->hard_header==NULL
129    mac_header -> data. ll header is still not built!
130    data       -> data
131 
132 Resume
133   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134 
135 
136 On transmit:
137 ------------
138 
139 dev->hard_header != NULL
140    mac_header -> ll header
141    data       -> ll header
142 
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144    mac_header -> data
145    data       -> data
146 
147    We should set nh.raw on output to correct posistion,
148    packet classifier depends on it.
149  */
150 
151 /* Private packet socket structures. */
152 
153 /* identical to struct packet_mreq except it has
154  * a longer address field.
155  */
156 struct packet_mreq_max {
157 	int		mr_ifindex;
158 	unsigned short	mr_type;
159 	unsigned short	mr_alen;
160 	unsigned char	mr_address[MAX_ADDR_LEN];
161 };
162 
163 union tpacket_uhdr {
164 	struct tpacket_hdr  *h1;
165 	struct tpacket2_hdr *h2;
166 	struct tpacket3_hdr *h3;
167 	void *raw;
168 };
169 
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 		int closing, int tx_ring);
172 
173 #define V3_ALIGNMENT	(8)
174 
175 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176 
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
190 		       struct packet_type *pt, struct net_device *orig_dev);
191 
192 static void *packet_previous_frame(struct packet_sock *po,
193 		struct packet_ring_buffer *rb,
194 		int status);
195 static void packet_increment_head(struct packet_ring_buffer *buff);
196 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
197 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
198 			struct packet_sock *);
199 static void prb_retire_current_block(struct tpacket_kbdq_core *,
200 		struct packet_sock *, unsigned int status);
201 static int prb_queue_frozen(struct tpacket_kbdq_core *);
202 static void prb_open_block(struct tpacket_kbdq_core *,
203 		struct tpacket_block_desc *);
204 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
205 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
206 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
207 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
210 		struct tpacket3_hdr *);
211 static void packet_flush_mclist(struct sock *sk);
212 static u16 packet_pick_tx_queue(struct sk_buff *skb);
213 
214 struct packet_skb_cb {
215 	union {
216 		struct sockaddr_pkt pkt;
217 		union {
218 			/* Trick: alias skb original length with
219 			 * ll.sll_family and ll.protocol in order
220 			 * to save room.
221 			 */
222 			unsigned int origlen;
223 			struct sockaddr_ll ll;
224 		};
225 	} sa;
226 };
227 
228 #define vio_le() virtio_legacy_is_little_endian()
229 
230 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
231 
232 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
233 #define GET_PBLOCK_DESC(x, bid)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
235 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
236 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
237 #define GET_NEXT_PRB_BLK_NUM(x) \
238 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
239 	((x)->kactive_blk_num+1) : 0)
240 
241 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
242 static void __fanout_link(struct sock *sk, struct packet_sock *po);
243 
244 static int packet_direct_xmit(struct sk_buff *skb)
245 {
246 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
247 }
248 
249 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
250 {
251 	struct net_device *dev;
252 
253 	rcu_read_lock();
254 	dev = rcu_dereference(po->cached_dev);
255 	if (likely(dev))
256 		dev_hold(dev);
257 	rcu_read_unlock();
258 
259 	return dev;
260 }
261 
262 static void packet_cached_dev_assign(struct packet_sock *po,
263 				     struct net_device *dev)
264 {
265 	rcu_assign_pointer(po->cached_dev, dev);
266 }
267 
268 static void packet_cached_dev_reset(struct packet_sock *po)
269 {
270 	RCU_INIT_POINTER(po->cached_dev, NULL);
271 }
272 
273 static bool packet_use_direct_xmit(const struct packet_sock *po)
274 {
275 	return po->xmit == packet_direct_xmit;
276 }
277 
278 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
279 {
280 	return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
281 }
282 
283 static u16 packet_pick_tx_queue(struct sk_buff *skb)
284 {
285 	struct net_device *dev = skb->dev;
286 	const struct net_device_ops *ops = dev->netdev_ops;
287 	u16 queue_index;
288 
289 	if (ops->ndo_select_queue) {
290 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
291 						    __packet_pick_tx_queue);
292 		queue_index = netdev_cap_txqueue(dev, queue_index);
293 	} else {
294 		queue_index = __packet_pick_tx_queue(dev, skb);
295 	}
296 
297 	return queue_index;
298 }
299 
300 /* __register_prot_hook must be invoked through register_prot_hook
301  * or from a context in which asynchronous accesses to the packet
302  * socket is not possible (packet_create()).
303  */
304 static void __register_prot_hook(struct sock *sk)
305 {
306 	struct packet_sock *po = pkt_sk(sk);
307 
308 	if (!po->running) {
309 		if (po->fanout)
310 			__fanout_link(sk, po);
311 		else
312 			dev_add_pack(&po->prot_hook);
313 
314 		sock_hold(sk);
315 		po->running = 1;
316 	}
317 }
318 
319 static void register_prot_hook(struct sock *sk)
320 {
321 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
322 	__register_prot_hook(sk);
323 }
324 
325 /* If the sync parameter is true, we will temporarily drop
326  * the po->bind_lock and do a synchronize_net to make sure no
327  * asynchronous packet processing paths still refer to the elements
328  * of po->prot_hook.  If the sync parameter is false, it is the
329  * callers responsibility to take care of this.
330  */
331 static void __unregister_prot_hook(struct sock *sk, bool sync)
332 {
333 	struct packet_sock *po = pkt_sk(sk);
334 
335 	lockdep_assert_held_once(&po->bind_lock);
336 
337 	po->running = 0;
338 
339 	if (po->fanout)
340 		__fanout_unlink(sk, po);
341 	else
342 		__dev_remove_pack(&po->prot_hook);
343 
344 	__sock_put(sk);
345 
346 	if (sync) {
347 		spin_unlock(&po->bind_lock);
348 		synchronize_net();
349 		spin_lock(&po->bind_lock);
350 	}
351 }
352 
353 static void unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 	struct packet_sock *po = pkt_sk(sk);
356 
357 	if (po->running)
358 		__unregister_prot_hook(sk, sync);
359 }
360 
361 static inline struct page * __pure pgv_to_page(void *addr)
362 {
363 	if (is_vmalloc_addr(addr))
364 		return vmalloc_to_page(addr);
365 	return virt_to_page(addr);
366 }
367 
368 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
369 {
370 	union tpacket_uhdr h;
371 
372 	h.raw = frame;
373 	switch (po->tp_version) {
374 	case TPACKET_V1:
375 		h.h1->tp_status = status;
376 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
377 		break;
378 	case TPACKET_V2:
379 		h.h2->tp_status = status;
380 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
381 		break;
382 	case TPACKET_V3:
383 		h.h3->tp_status = status;
384 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
385 		break;
386 	default:
387 		WARN(1, "TPACKET version not supported.\n");
388 		BUG();
389 	}
390 
391 	smp_wmb();
392 }
393 
394 static int __packet_get_status(struct packet_sock *po, void *frame)
395 {
396 	union tpacket_uhdr h;
397 
398 	smp_rmb();
399 
400 	h.raw = frame;
401 	switch (po->tp_version) {
402 	case TPACKET_V1:
403 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
404 		return h.h1->tp_status;
405 	case TPACKET_V2:
406 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
407 		return h.h2->tp_status;
408 	case TPACKET_V3:
409 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
410 		return h.h3->tp_status;
411 	default:
412 		WARN(1, "TPACKET version not supported.\n");
413 		BUG();
414 		return 0;
415 	}
416 }
417 
418 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
419 				   unsigned int flags)
420 {
421 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
422 
423 	if (shhwtstamps &&
424 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
425 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
426 		return TP_STATUS_TS_RAW_HARDWARE;
427 
428 	if (ktime_to_timespec_cond(skb->tstamp, ts))
429 		return TP_STATUS_TS_SOFTWARE;
430 
431 	return 0;
432 }
433 
434 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
435 				    struct sk_buff *skb)
436 {
437 	union tpacket_uhdr h;
438 	struct timespec ts;
439 	__u32 ts_status;
440 
441 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
442 		return 0;
443 
444 	h.raw = frame;
445 	switch (po->tp_version) {
446 	case TPACKET_V1:
447 		h.h1->tp_sec = ts.tv_sec;
448 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
449 		break;
450 	case TPACKET_V2:
451 		h.h2->tp_sec = ts.tv_sec;
452 		h.h2->tp_nsec = ts.tv_nsec;
453 		break;
454 	case TPACKET_V3:
455 		h.h3->tp_sec = ts.tv_sec;
456 		h.h3->tp_nsec = ts.tv_nsec;
457 		break;
458 	default:
459 		WARN(1, "TPACKET version not supported.\n");
460 		BUG();
461 	}
462 
463 	/* one flush is safe, as both fields always lie on the same cacheline */
464 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
465 	smp_wmb();
466 
467 	return ts_status;
468 }
469 
470 static void *packet_lookup_frame(struct packet_sock *po,
471 		struct packet_ring_buffer *rb,
472 		unsigned int position,
473 		int status)
474 {
475 	unsigned int pg_vec_pos, frame_offset;
476 	union tpacket_uhdr h;
477 
478 	pg_vec_pos = position / rb->frames_per_block;
479 	frame_offset = position % rb->frames_per_block;
480 
481 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
482 		(frame_offset * rb->frame_size);
483 
484 	if (status != __packet_get_status(po, h.raw))
485 		return NULL;
486 
487 	return h.raw;
488 }
489 
490 static void *packet_current_frame(struct packet_sock *po,
491 		struct packet_ring_buffer *rb,
492 		int status)
493 {
494 	return packet_lookup_frame(po, rb, rb->head, status);
495 }
496 
497 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
498 {
499 	del_timer_sync(&pkc->retire_blk_timer);
500 }
501 
502 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
503 		struct sk_buff_head *rb_queue)
504 {
505 	struct tpacket_kbdq_core *pkc;
506 
507 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
508 
509 	spin_lock_bh(&rb_queue->lock);
510 	pkc->delete_blk_timer = 1;
511 	spin_unlock_bh(&rb_queue->lock);
512 
513 	prb_del_retire_blk_timer(pkc);
514 }
515 
516 static void prb_setup_retire_blk_timer(struct packet_sock *po)
517 {
518 	struct tpacket_kbdq_core *pkc;
519 
520 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
521 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
522 		    0);
523 	pkc->retire_blk_timer.expires = jiffies;
524 }
525 
526 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
527 				int blk_size_in_bytes)
528 {
529 	struct net_device *dev;
530 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
531 	struct ethtool_link_ksettings ecmd;
532 	int err;
533 
534 	rtnl_lock();
535 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
536 	if (unlikely(!dev)) {
537 		rtnl_unlock();
538 		return DEFAULT_PRB_RETIRE_TOV;
539 	}
540 	err = __ethtool_get_link_ksettings(dev, &ecmd);
541 	rtnl_unlock();
542 	if (!err) {
543 		/*
544 		 * If the link speed is so slow you don't really
545 		 * need to worry about perf anyways
546 		 */
547 		if (ecmd.base.speed < SPEED_1000 ||
548 		    ecmd.base.speed == SPEED_UNKNOWN) {
549 			return DEFAULT_PRB_RETIRE_TOV;
550 		} else {
551 			msec = 1;
552 			div = ecmd.base.speed / 1000;
553 		}
554 	}
555 
556 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
557 
558 	if (div)
559 		mbits /= div;
560 
561 	tmo = mbits * msec;
562 
563 	if (div)
564 		return tmo+1;
565 	return tmo;
566 }
567 
568 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
569 			union tpacket_req_u *req_u)
570 {
571 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
572 }
573 
574 static void init_prb_bdqc(struct packet_sock *po,
575 			struct packet_ring_buffer *rb,
576 			struct pgv *pg_vec,
577 			union tpacket_req_u *req_u)
578 {
579 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
580 	struct tpacket_block_desc *pbd;
581 
582 	memset(p1, 0x0, sizeof(*p1));
583 
584 	p1->knxt_seq_num = 1;
585 	p1->pkbdq = pg_vec;
586 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
587 	p1->pkblk_start	= pg_vec[0].buffer;
588 	p1->kblk_size = req_u->req3.tp_block_size;
589 	p1->knum_blocks	= req_u->req3.tp_block_nr;
590 	p1->hdrlen = po->tp_hdrlen;
591 	p1->version = po->tp_version;
592 	p1->last_kactive_blk_num = 0;
593 	po->stats.stats3.tp_freeze_q_cnt = 0;
594 	if (req_u->req3.tp_retire_blk_tov)
595 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
596 	else
597 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
598 						req_u->req3.tp_block_size);
599 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
600 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
601 
602 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
603 	prb_init_ft_ops(p1, req_u);
604 	prb_setup_retire_blk_timer(po);
605 	prb_open_block(p1, pbd);
606 }
607 
608 /*  Do NOT update the last_blk_num first.
609  *  Assumes sk_buff_head lock is held.
610  */
611 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
612 {
613 	mod_timer(&pkc->retire_blk_timer,
614 			jiffies + pkc->tov_in_jiffies);
615 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
616 }
617 
618 /*
619  * Timer logic:
620  * 1) We refresh the timer only when we open a block.
621  *    By doing this we don't waste cycles refreshing the timer
622  *	  on packet-by-packet basis.
623  *
624  * With a 1MB block-size, on a 1Gbps line, it will take
625  * i) ~8 ms to fill a block + ii) memcpy etc.
626  * In this cut we are not accounting for the memcpy time.
627  *
628  * So, if the user sets the 'tmo' to 10ms then the timer
629  * will never fire while the block is still getting filled
630  * (which is what we want). However, the user could choose
631  * to close a block early and that's fine.
632  *
633  * But when the timer does fire, we check whether or not to refresh it.
634  * Since the tmo granularity is in msecs, it is not too expensive
635  * to refresh the timer, lets say every '8' msecs.
636  * Either the user can set the 'tmo' or we can derive it based on
637  * a) line-speed and b) block-size.
638  * prb_calc_retire_blk_tmo() calculates the tmo.
639  *
640  */
641 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
642 {
643 	struct packet_sock *po =
644 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
645 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
646 	unsigned int frozen;
647 	struct tpacket_block_desc *pbd;
648 
649 	spin_lock(&po->sk.sk_receive_queue.lock);
650 
651 	frozen = prb_queue_frozen(pkc);
652 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
653 
654 	if (unlikely(pkc->delete_blk_timer))
655 		goto out;
656 
657 	/* We only need to plug the race when the block is partially filled.
658 	 * tpacket_rcv:
659 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
660 	 *		copy_bits() is in progress ...
661 	 *		timer fires on other cpu:
662 	 *		we can't retire the current block because copy_bits
663 	 *		is in progress.
664 	 *
665 	 */
666 	if (BLOCK_NUM_PKTS(pbd)) {
667 		while (atomic_read(&pkc->blk_fill_in_prog)) {
668 			/* Waiting for skb_copy_bits to finish... */
669 			cpu_relax();
670 		}
671 	}
672 
673 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
674 		if (!frozen) {
675 			if (!BLOCK_NUM_PKTS(pbd)) {
676 				/* An empty block. Just refresh the timer. */
677 				goto refresh_timer;
678 			}
679 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
680 			if (!prb_dispatch_next_block(pkc, po))
681 				goto refresh_timer;
682 			else
683 				goto out;
684 		} else {
685 			/* Case 1. Queue was frozen because user-space was
686 			 *	   lagging behind.
687 			 */
688 			if (prb_curr_blk_in_use(pbd)) {
689 				/*
690 				 * Ok, user-space is still behind.
691 				 * So just refresh the timer.
692 				 */
693 				goto refresh_timer;
694 			} else {
695 			       /* Case 2. queue was frozen,user-space caught up,
696 				* now the link went idle && the timer fired.
697 				* We don't have a block to close.So we open this
698 				* block and restart the timer.
699 				* opening a block thaws the queue,restarts timer
700 				* Thawing/timer-refresh is a side effect.
701 				*/
702 				prb_open_block(pkc, pbd);
703 				goto out;
704 			}
705 		}
706 	}
707 
708 refresh_timer:
709 	_prb_refresh_rx_retire_blk_timer(pkc);
710 
711 out:
712 	spin_unlock(&po->sk.sk_receive_queue.lock);
713 }
714 
715 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
716 		struct tpacket_block_desc *pbd1, __u32 status)
717 {
718 	/* Flush everything minus the block header */
719 
720 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
721 	u8 *start, *end;
722 
723 	start = (u8 *)pbd1;
724 
725 	/* Skip the block header(we know header WILL fit in 4K) */
726 	start += PAGE_SIZE;
727 
728 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
729 	for (; start < end; start += PAGE_SIZE)
730 		flush_dcache_page(pgv_to_page(start));
731 
732 	smp_wmb();
733 #endif
734 
735 	/* Now update the block status. */
736 
737 	BLOCK_STATUS(pbd1) = status;
738 
739 	/* Flush the block header */
740 
741 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
742 	start = (u8 *)pbd1;
743 	flush_dcache_page(pgv_to_page(start));
744 
745 	smp_wmb();
746 #endif
747 }
748 
749 /*
750  * Side effect:
751  *
752  * 1) flush the block
753  * 2) Increment active_blk_num
754  *
755  * Note:We DONT refresh the timer on purpose.
756  *	Because almost always the next block will be opened.
757  */
758 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
759 		struct tpacket_block_desc *pbd1,
760 		struct packet_sock *po, unsigned int stat)
761 {
762 	__u32 status = TP_STATUS_USER | stat;
763 
764 	struct tpacket3_hdr *last_pkt;
765 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
766 	struct sock *sk = &po->sk;
767 
768 	if (po->stats.stats3.tp_drops)
769 		status |= TP_STATUS_LOSING;
770 
771 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
772 	last_pkt->tp_next_offset = 0;
773 
774 	/* Get the ts of the last pkt */
775 	if (BLOCK_NUM_PKTS(pbd1)) {
776 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
777 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
778 	} else {
779 		/* Ok, we tmo'd - so get the current time.
780 		 *
781 		 * It shouldn't really happen as we don't close empty
782 		 * blocks. See prb_retire_rx_blk_timer_expired().
783 		 */
784 		struct timespec ts;
785 		getnstimeofday(&ts);
786 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
787 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
788 	}
789 
790 	smp_wmb();
791 
792 	/* Flush the block */
793 	prb_flush_block(pkc1, pbd1, status);
794 
795 	sk->sk_data_ready(sk);
796 
797 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
798 }
799 
800 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
801 {
802 	pkc->reset_pending_on_curr_blk = 0;
803 }
804 
805 /*
806  * Side effect of opening a block:
807  *
808  * 1) prb_queue is thawed.
809  * 2) retire_blk_timer is refreshed.
810  *
811  */
812 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
813 	struct tpacket_block_desc *pbd1)
814 {
815 	struct timespec ts;
816 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
817 
818 	smp_rmb();
819 
820 	/* We could have just memset this but we will lose the
821 	 * flexibility of making the priv area sticky
822 	 */
823 
824 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
825 	BLOCK_NUM_PKTS(pbd1) = 0;
826 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
827 
828 	getnstimeofday(&ts);
829 
830 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
831 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
832 
833 	pkc1->pkblk_start = (char *)pbd1;
834 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
835 
836 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
837 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
838 
839 	pbd1->version = pkc1->version;
840 	pkc1->prev = pkc1->nxt_offset;
841 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
842 
843 	prb_thaw_queue(pkc1);
844 	_prb_refresh_rx_retire_blk_timer(pkc1);
845 
846 	smp_wmb();
847 }
848 
849 /*
850  * Queue freeze logic:
851  * 1) Assume tp_block_nr = 8 blocks.
852  * 2) At time 't0', user opens Rx ring.
853  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
854  * 4) user-space is either sleeping or processing block '0'.
855  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
856  *    it will close block-7,loop around and try to fill block '0'.
857  *    call-flow:
858  *    __packet_lookup_frame_in_block
859  *      prb_retire_current_block()
860  *      prb_dispatch_next_block()
861  *        |->(BLOCK_STATUS == USER) evaluates to true
862  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
863  * 6) Now there are two cases:
864  *    6.1) Link goes idle right after the queue is frozen.
865  *         But remember, the last open_block() refreshed the timer.
866  *         When this timer expires,it will refresh itself so that we can
867  *         re-open block-0 in near future.
868  *    6.2) Link is busy and keeps on receiving packets. This is a simple
869  *         case and __packet_lookup_frame_in_block will check if block-0
870  *         is free and can now be re-used.
871  */
872 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
873 				  struct packet_sock *po)
874 {
875 	pkc->reset_pending_on_curr_blk = 1;
876 	po->stats.stats3.tp_freeze_q_cnt++;
877 }
878 
879 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
880 
881 /*
882  * If the next block is free then we will dispatch it
883  * and return a good offset.
884  * Else, we will freeze the queue.
885  * So, caller must check the return value.
886  */
887 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
888 		struct packet_sock *po)
889 {
890 	struct tpacket_block_desc *pbd;
891 
892 	smp_rmb();
893 
894 	/* 1. Get current block num */
895 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
896 
897 	/* 2. If this block is currently in_use then freeze the queue */
898 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
899 		prb_freeze_queue(pkc, po);
900 		return NULL;
901 	}
902 
903 	/*
904 	 * 3.
905 	 * open this block and return the offset where the first packet
906 	 * needs to get stored.
907 	 */
908 	prb_open_block(pkc, pbd);
909 	return (void *)pkc->nxt_offset;
910 }
911 
912 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
913 		struct packet_sock *po, unsigned int status)
914 {
915 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
916 
917 	/* retire/close the current block */
918 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
919 		/*
920 		 * Plug the case where copy_bits() is in progress on
921 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
922 		 * have space to copy the pkt in the current block and
923 		 * called prb_retire_current_block()
924 		 *
925 		 * We don't need to worry about the TMO case because
926 		 * the timer-handler already handled this case.
927 		 */
928 		if (!(status & TP_STATUS_BLK_TMO)) {
929 			while (atomic_read(&pkc->blk_fill_in_prog)) {
930 				/* Waiting for skb_copy_bits to finish... */
931 				cpu_relax();
932 			}
933 		}
934 		prb_close_block(pkc, pbd, po, status);
935 		return;
936 	}
937 }
938 
939 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
940 {
941 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
942 }
943 
944 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
945 {
946 	return pkc->reset_pending_on_curr_blk;
947 }
948 
949 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
950 {
951 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
952 	atomic_dec(&pkc->blk_fill_in_prog);
953 }
954 
955 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
956 			struct tpacket3_hdr *ppd)
957 {
958 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
959 }
960 
961 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
962 			struct tpacket3_hdr *ppd)
963 {
964 	ppd->hv1.tp_rxhash = 0;
965 }
966 
967 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
968 			struct tpacket3_hdr *ppd)
969 {
970 	if (skb_vlan_tag_present(pkc->skb)) {
971 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
972 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
973 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
974 	} else {
975 		ppd->hv1.tp_vlan_tci = 0;
976 		ppd->hv1.tp_vlan_tpid = 0;
977 		ppd->tp_status = TP_STATUS_AVAILABLE;
978 	}
979 }
980 
981 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
982 			struct tpacket3_hdr *ppd)
983 {
984 	ppd->hv1.tp_padding = 0;
985 	prb_fill_vlan_info(pkc, ppd);
986 
987 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
988 		prb_fill_rxhash(pkc, ppd);
989 	else
990 		prb_clear_rxhash(pkc, ppd);
991 }
992 
993 static void prb_fill_curr_block(char *curr,
994 				struct tpacket_kbdq_core *pkc,
995 				struct tpacket_block_desc *pbd,
996 				unsigned int len)
997 {
998 	struct tpacket3_hdr *ppd;
999 
1000 	ppd  = (struct tpacket3_hdr *)curr;
1001 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1002 	pkc->prev = curr;
1003 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1004 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	BLOCK_NUM_PKTS(pbd) += 1;
1006 	atomic_inc(&pkc->blk_fill_in_prog);
1007 	prb_run_all_ft_ops(pkc, ppd);
1008 }
1009 
1010 /* Assumes caller has the sk->rx_queue.lock */
1011 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1012 					    struct sk_buff *skb,
1013 						int status,
1014 					    unsigned int len
1015 					    )
1016 {
1017 	struct tpacket_kbdq_core *pkc;
1018 	struct tpacket_block_desc *pbd;
1019 	char *curr, *end;
1020 
1021 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1022 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1023 
1024 	/* Queue is frozen when user space is lagging behind */
1025 	if (prb_queue_frozen(pkc)) {
1026 		/*
1027 		 * Check if that last block which caused the queue to freeze,
1028 		 * is still in_use by user-space.
1029 		 */
1030 		if (prb_curr_blk_in_use(pbd)) {
1031 			/* Can't record this packet */
1032 			return NULL;
1033 		} else {
1034 			/*
1035 			 * Ok, the block was released by user-space.
1036 			 * Now let's open that block.
1037 			 * opening a block also thaws the queue.
1038 			 * Thawing is a side effect.
1039 			 */
1040 			prb_open_block(pkc, pbd);
1041 		}
1042 	}
1043 
1044 	smp_mb();
1045 	curr = pkc->nxt_offset;
1046 	pkc->skb = skb;
1047 	end = (char *)pbd + pkc->kblk_size;
1048 
1049 	/* first try the current block */
1050 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1051 		prb_fill_curr_block(curr, pkc, pbd, len);
1052 		return (void *)curr;
1053 	}
1054 
1055 	/* Ok, close the current block */
1056 	prb_retire_current_block(pkc, po, 0);
1057 
1058 	/* Now, try to dispatch the next block */
1059 	curr = (char *)prb_dispatch_next_block(pkc, po);
1060 	if (curr) {
1061 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1062 		prb_fill_curr_block(curr, pkc, pbd, len);
1063 		return (void *)curr;
1064 	}
1065 
1066 	/*
1067 	 * No free blocks are available.user_space hasn't caught up yet.
1068 	 * Queue was just frozen and now this packet will get dropped.
1069 	 */
1070 	return NULL;
1071 }
1072 
1073 static void *packet_current_rx_frame(struct packet_sock *po,
1074 					    struct sk_buff *skb,
1075 					    int status, unsigned int len)
1076 {
1077 	char *curr = NULL;
1078 	switch (po->tp_version) {
1079 	case TPACKET_V1:
1080 	case TPACKET_V2:
1081 		curr = packet_lookup_frame(po, &po->rx_ring,
1082 					po->rx_ring.head, status);
1083 		return curr;
1084 	case TPACKET_V3:
1085 		return __packet_lookup_frame_in_block(po, skb, status, len);
1086 	default:
1087 		WARN(1, "TPACKET version not supported\n");
1088 		BUG();
1089 		return NULL;
1090 	}
1091 }
1092 
1093 static void *prb_lookup_block(struct packet_sock *po,
1094 				     struct packet_ring_buffer *rb,
1095 				     unsigned int idx,
1096 				     int status)
1097 {
1098 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1099 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1100 
1101 	if (status != BLOCK_STATUS(pbd))
1102 		return NULL;
1103 	return pbd;
1104 }
1105 
1106 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1107 {
1108 	unsigned int prev;
1109 	if (rb->prb_bdqc.kactive_blk_num)
1110 		prev = rb->prb_bdqc.kactive_blk_num-1;
1111 	else
1112 		prev = rb->prb_bdqc.knum_blocks-1;
1113 	return prev;
1114 }
1115 
1116 /* Assumes caller has held the rx_queue.lock */
1117 static void *__prb_previous_block(struct packet_sock *po,
1118 					 struct packet_ring_buffer *rb,
1119 					 int status)
1120 {
1121 	unsigned int previous = prb_previous_blk_num(rb);
1122 	return prb_lookup_block(po, rb, previous, status);
1123 }
1124 
1125 static void *packet_previous_rx_frame(struct packet_sock *po,
1126 					     struct packet_ring_buffer *rb,
1127 					     int status)
1128 {
1129 	if (po->tp_version <= TPACKET_V2)
1130 		return packet_previous_frame(po, rb, status);
1131 
1132 	return __prb_previous_block(po, rb, status);
1133 }
1134 
1135 static void packet_increment_rx_head(struct packet_sock *po,
1136 					    struct packet_ring_buffer *rb)
1137 {
1138 	switch (po->tp_version) {
1139 	case TPACKET_V1:
1140 	case TPACKET_V2:
1141 		return packet_increment_head(rb);
1142 	case TPACKET_V3:
1143 	default:
1144 		WARN(1, "TPACKET version not supported.\n");
1145 		BUG();
1146 		return;
1147 	}
1148 }
1149 
1150 static void *packet_previous_frame(struct packet_sock *po,
1151 		struct packet_ring_buffer *rb,
1152 		int status)
1153 {
1154 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1155 	return packet_lookup_frame(po, rb, previous, status);
1156 }
1157 
1158 static void packet_increment_head(struct packet_ring_buffer *buff)
1159 {
1160 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1161 }
1162 
1163 static void packet_inc_pending(struct packet_ring_buffer *rb)
1164 {
1165 	this_cpu_inc(*rb->pending_refcnt);
1166 }
1167 
1168 static void packet_dec_pending(struct packet_ring_buffer *rb)
1169 {
1170 	this_cpu_dec(*rb->pending_refcnt);
1171 }
1172 
1173 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1174 {
1175 	unsigned int refcnt = 0;
1176 	int cpu;
1177 
1178 	/* We don't use pending refcount in rx_ring. */
1179 	if (rb->pending_refcnt == NULL)
1180 		return 0;
1181 
1182 	for_each_possible_cpu(cpu)
1183 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1184 
1185 	return refcnt;
1186 }
1187 
1188 static int packet_alloc_pending(struct packet_sock *po)
1189 {
1190 	po->rx_ring.pending_refcnt = NULL;
1191 
1192 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1193 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1194 		return -ENOBUFS;
1195 
1196 	return 0;
1197 }
1198 
1199 static void packet_free_pending(struct packet_sock *po)
1200 {
1201 	free_percpu(po->tx_ring.pending_refcnt);
1202 }
1203 
1204 #define ROOM_POW_OFF	2
1205 #define ROOM_NONE	0x0
1206 #define ROOM_LOW	0x1
1207 #define ROOM_NORMAL	0x2
1208 
1209 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1210 {
1211 	int idx, len;
1212 
1213 	len = po->rx_ring.frame_max + 1;
1214 	idx = po->rx_ring.head;
1215 	if (pow_off)
1216 		idx += len >> pow_off;
1217 	if (idx >= len)
1218 		idx -= len;
1219 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1220 }
1221 
1222 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1223 {
1224 	int idx, len;
1225 
1226 	len = po->rx_ring.prb_bdqc.knum_blocks;
1227 	idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1228 	if (pow_off)
1229 		idx += len >> pow_off;
1230 	if (idx >= len)
1231 		idx -= len;
1232 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1233 }
1234 
1235 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1236 {
1237 	struct sock *sk = &po->sk;
1238 	int ret = ROOM_NONE;
1239 
1240 	if (po->prot_hook.func != tpacket_rcv) {
1241 		int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1242 					  - (skb ? skb->truesize : 0);
1243 		if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1244 			return ROOM_NORMAL;
1245 		else if (avail > 0)
1246 			return ROOM_LOW;
1247 		else
1248 			return ROOM_NONE;
1249 	}
1250 
1251 	if (po->tp_version == TPACKET_V3) {
1252 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1253 			ret = ROOM_NORMAL;
1254 		else if (__tpacket_v3_has_room(po, 0))
1255 			ret = ROOM_LOW;
1256 	} else {
1257 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1258 			ret = ROOM_NORMAL;
1259 		else if (__tpacket_has_room(po, 0))
1260 			ret = ROOM_LOW;
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1267 {
1268 	int ret;
1269 	bool has_room;
1270 
1271 	spin_lock_bh(&po->sk.sk_receive_queue.lock);
1272 	ret = __packet_rcv_has_room(po, skb);
1273 	has_room = ret == ROOM_NORMAL;
1274 	if (po->pressure == has_room)
1275 		po->pressure = !has_room;
1276 	spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1277 
1278 	return ret;
1279 }
1280 
1281 static void packet_sock_destruct(struct sock *sk)
1282 {
1283 	skb_queue_purge(&sk->sk_error_queue);
1284 
1285 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1286 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1287 
1288 	if (!sock_flag(sk, SOCK_DEAD)) {
1289 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1290 		return;
1291 	}
1292 
1293 	sk_refcnt_debug_dec(sk);
1294 }
1295 
1296 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1297 {
1298 	u32 rxhash;
1299 	int i, count = 0;
1300 
1301 	rxhash = skb_get_hash(skb);
1302 	for (i = 0; i < ROLLOVER_HLEN; i++)
1303 		if (po->rollover->history[i] == rxhash)
1304 			count++;
1305 
1306 	po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1307 	return count > (ROLLOVER_HLEN >> 1);
1308 }
1309 
1310 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1311 				      struct sk_buff *skb,
1312 				      unsigned int num)
1313 {
1314 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1315 }
1316 
1317 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1318 				    struct sk_buff *skb,
1319 				    unsigned int num)
1320 {
1321 	unsigned int val = atomic_inc_return(&f->rr_cur);
1322 
1323 	return val % num;
1324 }
1325 
1326 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1327 				     struct sk_buff *skb,
1328 				     unsigned int num)
1329 {
1330 	return smp_processor_id() % num;
1331 }
1332 
1333 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1334 				     struct sk_buff *skb,
1335 				     unsigned int num)
1336 {
1337 	return prandom_u32_max(num);
1338 }
1339 
1340 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1341 					  struct sk_buff *skb,
1342 					  unsigned int idx, bool try_self,
1343 					  unsigned int num)
1344 {
1345 	struct packet_sock *po, *po_next, *po_skip = NULL;
1346 	unsigned int i, j, room = ROOM_NONE;
1347 
1348 	po = pkt_sk(f->arr[idx]);
1349 
1350 	if (try_self) {
1351 		room = packet_rcv_has_room(po, skb);
1352 		if (room == ROOM_NORMAL ||
1353 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1354 			return idx;
1355 		po_skip = po;
1356 	}
1357 
1358 	i = j = min_t(int, po->rollover->sock, num - 1);
1359 	do {
1360 		po_next = pkt_sk(f->arr[i]);
1361 		if (po_next != po_skip && !po_next->pressure &&
1362 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1363 			if (i != j)
1364 				po->rollover->sock = i;
1365 			atomic_long_inc(&po->rollover->num);
1366 			if (room == ROOM_LOW)
1367 				atomic_long_inc(&po->rollover->num_huge);
1368 			return i;
1369 		}
1370 
1371 		if (++i == num)
1372 			i = 0;
1373 	} while (i != j);
1374 
1375 	atomic_long_inc(&po->rollover->num_failed);
1376 	return idx;
1377 }
1378 
1379 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1380 				    struct sk_buff *skb,
1381 				    unsigned int num)
1382 {
1383 	return skb_get_queue_mapping(skb) % num;
1384 }
1385 
1386 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1387 				     struct sk_buff *skb,
1388 				     unsigned int num)
1389 {
1390 	struct bpf_prog *prog;
1391 	unsigned int ret = 0;
1392 
1393 	rcu_read_lock();
1394 	prog = rcu_dereference(f->bpf_prog);
1395 	if (prog)
1396 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1397 	rcu_read_unlock();
1398 
1399 	return ret;
1400 }
1401 
1402 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1403 {
1404 	return f->flags & (flag >> 8);
1405 }
1406 
1407 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1408 			     struct packet_type *pt, struct net_device *orig_dev)
1409 {
1410 	struct packet_fanout *f = pt->af_packet_priv;
1411 	unsigned int num = READ_ONCE(f->num_members);
1412 	struct net *net = read_pnet(&f->net);
1413 	struct packet_sock *po;
1414 	unsigned int idx;
1415 
1416 	if (!net_eq(dev_net(dev), net) || !num) {
1417 		kfree_skb(skb);
1418 		return 0;
1419 	}
1420 
1421 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1422 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1423 		if (!skb)
1424 			return 0;
1425 	}
1426 	switch (f->type) {
1427 	case PACKET_FANOUT_HASH:
1428 	default:
1429 		idx = fanout_demux_hash(f, skb, num);
1430 		break;
1431 	case PACKET_FANOUT_LB:
1432 		idx = fanout_demux_lb(f, skb, num);
1433 		break;
1434 	case PACKET_FANOUT_CPU:
1435 		idx = fanout_demux_cpu(f, skb, num);
1436 		break;
1437 	case PACKET_FANOUT_RND:
1438 		idx = fanout_demux_rnd(f, skb, num);
1439 		break;
1440 	case PACKET_FANOUT_QM:
1441 		idx = fanout_demux_qm(f, skb, num);
1442 		break;
1443 	case PACKET_FANOUT_ROLLOVER:
1444 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1445 		break;
1446 	case PACKET_FANOUT_CBPF:
1447 	case PACKET_FANOUT_EBPF:
1448 		idx = fanout_demux_bpf(f, skb, num);
1449 		break;
1450 	}
1451 
1452 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1453 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1454 
1455 	po = pkt_sk(f->arr[idx]);
1456 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1457 }
1458 
1459 DEFINE_MUTEX(fanout_mutex);
1460 EXPORT_SYMBOL_GPL(fanout_mutex);
1461 static LIST_HEAD(fanout_list);
1462 static u16 fanout_next_id;
1463 
1464 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1465 {
1466 	struct packet_fanout *f = po->fanout;
1467 
1468 	spin_lock(&f->lock);
1469 	f->arr[f->num_members] = sk;
1470 	smp_wmb();
1471 	f->num_members++;
1472 	if (f->num_members == 1)
1473 		dev_add_pack(&f->prot_hook);
1474 	spin_unlock(&f->lock);
1475 }
1476 
1477 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1478 {
1479 	struct packet_fanout *f = po->fanout;
1480 	int i;
1481 
1482 	spin_lock(&f->lock);
1483 	for (i = 0; i < f->num_members; i++) {
1484 		if (f->arr[i] == sk)
1485 			break;
1486 	}
1487 	BUG_ON(i >= f->num_members);
1488 	f->arr[i] = f->arr[f->num_members - 1];
1489 	f->num_members--;
1490 	if (f->num_members == 0)
1491 		__dev_remove_pack(&f->prot_hook);
1492 	spin_unlock(&f->lock);
1493 }
1494 
1495 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1496 {
1497 	if (sk->sk_family != PF_PACKET)
1498 		return false;
1499 
1500 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1501 }
1502 
1503 static void fanout_init_data(struct packet_fanout *f)
1504 {
1505 	switch (f->type) {
1506 	case PACKET_FANOUT_LB:
1507 		atomic_set(&f->rr_cur, 0);
1508 		break;
1509 	case PACKET_FANOUT_CBPF:
1510 	case PACKET_FANOUT_EBPF:
1511 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1512 		break;
1513 	}
1514 }
1515 
1516 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1517 {
1518 	struct bpf_prog *old;
1519 
1520 	spin_lock(&f->lock);
1521 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1522 	rcu_assign_pointer(f->bpf_prog, new);
1523 	spin_unlock(&f->lock);
1524 
1525 	if (old) {
1526 		synchronize_net();
1527 		bpf_prog_destroy(old);
1528 	}
1529 }
1530 
1531 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1532 				unsigned int len)
1533 {
1534 	struct bpf_prog *new;
1535 	struct sock_fprog fprog;
1536 	int ret;
1537 
1538 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1539 		return -EPERM;
1540 	if (len != sizeof(fprog))
1541 		return -EINVAL;
1542 	if (copy_from_user(&fprog, data, len))
1543 		return -EFAULT;
1544 
1545 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1546 	if (ret)
1547 		return ret;
1548 
1549 	__fanout_set_data_bpf(po->fanout, new);
1550 	return 0;
1551 }
1552 
1553 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1554 				unsigned int len)
1555 {
1556 	struct bpf_prog *new;
1557 	u32 fd;
1558 
1559 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1560 		return -EPERM;
1561 	if (len != sizeof(fd))
1562 		return -EINVAL;
1563 	if (copy_from_user(&fd, data, len))
1564 		return -EFAULT;
1565 
1566 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 	if (IS_ERR(new))
1568 		return PTR_ERR(new);
1569 
1570 	__fanout_set_data_bpf(po->fanout, new);
1571 	return 0;
1572 }
1573 
1574 static int fanout_set_data(struct packet_sock *po, char __user *data,
1575 			   unsigned int len)
1576 {
1577 	switch (po->fanout->type) {
1578 	case PACKET_FANOUT_CBPF:
1579 		return fanout_set_data_cbpf(po, data, len);
1580 	case PACKET_FANOUT_EBPF:
1581 		return fanout_set_data_ebpf(po, data, len);
1582 	default:
1583 		return -EINVAL;
1584 	};
1585 }
1586 
1587 static void fanout_release_data(struct packet_fanout *f)
1588 {
1589 	switch (f->type) {
1590 	case PACKET_FANOUT_CBPF:
1591 	case PACKET_FANOUT_EBPF:
1592 		__fanout_set_data_bpf(f, NULL);
1593 	};
1594 }
1595 
1596 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1597 {
1598 	struct packet_fanout *f;
1599 
1600 	list_for_each_entry(f, &fanout_list, list) {
1601 		if (f->id == candidate_id &&
1602 		    read_pnet(&f->net) == sock_net(sk)) {
1603 			return false;
1604 		}
1605 	}
1606 	return true;
1607 }
1608 
1609 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1610 {
1611 	u16 id = fanout_next_id;
1612 
1613 	do {
1614 		if (__fanout_id_is_free(sk, id)) {
1615 			*new_id = id;
1616 			fanout_next_id = id + 1;
1617 			return true;
1618 		}
1619 
1620 		id++;
1621 	} while (id != fanout_next_id);
1622 
1623 	return false;
1624 }
1625 
1626 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1627 {
1628 	struct packet_rollover *rollover = NULL;
1629 	struct packet_sock *po = pkt_sk(sk);
1630 	struct packet_fanout *f, *match;
1631 	u8 type = type_flags & 0xff;
1632 	u8 flags = type_flags >> 8;
1633 	int err;
1634 
1635 	switch (type) {
1636 	case PACKET_FANOUT_ROLLOVER:
1637 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1638 			return -EINVAL;
1639 	case PACKET_FANOUT_HASH:
1640 	case PACKET_FANOUT_LB:
1641 	case PACKET_FANOUT_CPU:
1642 	case PACKET_FANOUT_RND:
1643 	case PACKET_FANOUT_QM:
1644 	case PACKET_FANOUT_CBPF:
1645 	case PACKET_FANOUT_EBPF:
1646 		break;
1647 	default:
1648 		return -EINVAL;
1649 	}
1650 
1651 	mutex_lock(&fanout_mutex);
1652 
1653 	err = -EALREADY;
1654 	if (po->fanout)
1655 		goto out;
1656 
1657 	if (type == PACKET_FANOUT_ROLLOVER ||
1658 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1659 		err = -ENOMEM;
1660 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1661 		if (!rollover)
1662 			goto out;
1663 		atomic_long_set(&rollover->num, 0);
1664 		atomic_long_set(&rollover->num_huge, 0);
1665 		atomic_long_set(&rollover->num_failed, 0);
1666 	}
1667 
1668 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1669 		if (id != 0) {
1670 			err = -EINVAL;
1671 			goto out;
1672 		}
1673 		if (!fanout_find_new_id(sk, &id)) {
1674 			err = -ENOMEM;
1675 			goto out;
1676 		}
1677 		/* ephemeral flag for the first socket in the group: drop it */
1678 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1679 	}
1680 
1681 	match = NULL;
1682 	list_for_each_entry(f, &fanout_list, list) {
1683 		if (f->id == id &&
1684 		    read_pnet(&f->net) == sock_net(sk)) {
1685 			match = f;
1686 			break;
1687 		}
1688 	}
1689 	err = -EINVAL;
1690 	if (match && match->flags != flags)
1691 		goto out;
1692 	if (!match) {
1693 		err = -ENOMEM;
1694 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1695 		if (!match)
1696 			goto out;
1697 		write_pnet(&match->net, sock_net(sk));
1698 		match->id = id;
1699 		match->type = type;
1700 		match->flags = flags;
1701 		INIT_LIST_HEAD(&match->list);
1702 		spin_lock_init(&match->lock);
1703 		refcount_set(&match->sk_ref, 0);
1704 		fanout_init_data(match);
1705 		match->prot_hook.type = po->prot_hook.type;
1706 		match->prot_hook.dev = po->prot_hook.dev;
1707 		match->prot_hook.func = packet_rcv_fanout;
1708 		match->prot_hook.af_packet_priv = match;
1709 		match->prot_hook.id_match = match_fanout_group;
1710 		list_add(&match->list, &fanout_list);
1711 	}
1712 	err = -EINVAL;
1713 
1714 	spin_lock(&po->bind_lock);
1715 	if (po->running &&
1716 	    match->type == type &&
1717 	    match->prot_hook.type == po->prot_hook.type &&
1718 	    match->prot_hook.dev == po->prot_hook.dev) {
1719 		err = -ENOSPC;
1720 		if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1721 			__dev_remove_pack(&po->prot_hook);
1722 			po->fanout = match;
1723 			po->rollover = rollover;
1724 			rollover = NULL;
1725 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1726 			__fanout_link(sk, po);
1727 			err = 0;
1728 		}
1729 	}
1730 	spin_unlock(&po->bind_lock);
1731 
1732 	if (err && !refcount_read(&match->sk_ref)) {
1733 		list_del(&match->list);
1734 		kfree(match);
1735 	}
1736 
1737 out:
1738 	kfree(rollover);
1739 	mutex_unlock(&fanout_mutex);
1740 	return err;
1741 }
1742 
1743 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1744  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1745  * It is the responsibility of the caller to call fanout_release_data() and
1746  * free the returned packet_fanout (after synchronize_net())
1747  */
1748 static struct packet_fanout *fanout_release(struct sock *sk)
1749 {
1750 	struct packet_sock *po = pkt_sk(sk);
1751 	struct packet_fanout *f;
1752 
1753 	mutex_lock(&fanout_mutex);
1754 	f = po->fanout;
1755 	if (f) {
1756 		po->fanout = NULL;
1757 
1758 		if (refcount_dec_and_test(&f->sk_ref))
1759 			list_del(&f->list);
1760 		else
1761 			f = NULL;
1762 	}
1763 	mutex_unlock(&fanout_mutex);
1764 
1765 	return f;
1766 }
1767 
1768 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1769 					  struct sk_buff *skb)
1770 {
1771 	/* Earlier code assumed this would be a VLAN pkt, double-check
1772 	 * this now that we have the actual packet in hand. We can only
1773 	 * do this check on Ethernet devices.
1774 	 */
1775 	if (unlikely(dev->type != ARPHRD_ETHER))
1776 		return false;
1777 
1778 	skb_reset_mac_header(skb);
1779 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1780 }
1781 
1782 static const struct proto_ops packet_ops;
1783 
1784 static const struct proto_ops packet_ops_spkt;
1785 
1786 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1787 			   struct packet_type *pt, struct net_device *orig_dev)
1788 {
1789 	struct sock *sk;
1790 	struct sockaddr_pkt *spkt;
1791 
1792 	/*
1793 	 *	When we registered the protocol we saved the socket in the data
1794 	 *	field for just this event.
1795 	 */
1796 
1797 	sk = pt->af_packet_priv;
1798 
1799 	/*
1800 	 *	Yank back the headers [hope the device set this
1801 	 *	right or kerboom...]
1802 	 *
1803 	 *	Incoming packets have ll header pulled,
1804 	 *	push it back.
1805 	 *
1806 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1807 	 *	so that this procedure is noop.
1808 	 */
1809 
1810 	if (skb->pkt_type == PACKET_LOOPBACK)
1811 		goto out;
1812 
1813 	if (!net_eq(dev_net(dev), sock_net(sk)))
1814 		goto out;
1815 
1816 	skb = skb_share_check(skb, GFP_ATOMIC);
1817 	if (skb == NULL)
1818 		goto oom;
1819 
1820 	/* drop any routing info */
1821 	skb_dst_drop(skb);
1822 
1823 	/* drop conntrack reference */
1824 	nf_reset(skb);
1825 
1826 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1827 
1828 	skb_push(skb, skb->data - skb_mac_header(skb));
1829 
1830 	/*
1831 	 *	The SOCK_PACKET socket receives _all_ frames.
1832 	 */
1833 
1834 	spkt->spkt_family = dev->type;
1835 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1836 	spkt->spkt_protocol = skb->protocol;
1837 
1838 	/*
1839 	 *	Charge the memory to the socket. This is done specifically
1840 	 *	to prevent sockets using all the memory up.
1841 	 */
1842 
1843 	if (sock_queue_rcv_skb(sk, skb) == 0)
1844 		return 0;
1845 
1846 out:
1847 	kfree_skb(skb);
1848 oom:
1849 	return 0;
1850 }
1851 
1852 
1853 /*
1854  *	Output a raw packet to a device layer. This bypasses all the other
1855  *	protocol layers and you must therefore supply it with a complete frame
1856  */
1857 
1858 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1859 			       size_t len)
1860 {
1861 	struct sock *sk = sock->sk;
1862 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1863 	struct sk_buff *skb = NULL;
1864 	struct net_device *dev;
1865 	struct sockcm_cookie sockc;
1866 	__be16 proto = 0;
1867 	int err;
1868 	int extra_len = 0;
1869 
1870 	/*
1871 	 *	Get and verify the address.
1872 	 */
1873 
1874 	if (saddr) {
1875 		if (msg->msg_namelen < sizeof(struct sockaddr))
1876 			return -EINVAL;
1877 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1878 			proto = saddr->spkt_protocol;
1879 	} else
1880 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1881 
1882 	/*
1883 	 *	Find the device first to size check it
1884 	 */
1885 
1886 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1887 retry:
1888 	rcu_read_lock();
1889 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1890 	err = -ENODEV;
1891 	if (dev == NULL)
1892 		goto out_unlock;
1893 
1894 	err = -ENETDOWN;
1895 	if (!(dev->flags & IFF_UP))
1896 		goto out_unlock;
1897 
1898 	/*
1899 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1900 	 * raw protocol and you must do your own fragmentation at this level.
1901 	 */
1902 
1903 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1904 		if (!netif_supports_nofcs(dev)) {
1905 			err = -EPROTONOSUPPORT;
1906 			goto out_unlock;
1907 		}
1908 		extra_len = 4; /* We're doing our own CRC */
1909 	}
1910 
1911 	err = -EMSGSIZE;
1912 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1913 		goto out_unlock;
1914 
1915 	if (!skb) {
1916 		size_t reserved = LL_RESERVED_SPACE(dev);
1917 		int tlen = dev->needed_tailroom;
1918 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1919 
1920 		rcu_read_unlock();
1921 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1922 		if (skb == NULL)
1923 			return -ENOBUFS;
1924 		/* FIXME: Save some space for broken drivers that write a hard
1925 		 * header at transmission time by themselves. PPP is the notable
1926 		 * one here. This should really be fixed at the driver level.
1927 		 */
1928 		skb_reserve(skb, reserved);
1929 		skb_reset_network_header(skb);
1930 
1931 		/* Try to align data part correctly */
1932 		if (hhlen) {
1933 			skb->data -= hhlen;
1934 			skb->tail -= hhlen;
1935 			if (len < hhlen)
1936 				skb_reset_network_header(skb);
1937 		}
1938 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1939 		if (err)
1940 			goto out_free;
1941 		goto retry;
1942 	}
1943 
1944 	if (!dev_validate_header(dev, skb->data, len)) {
1945 		err = -EINVAL;
1946 		goto out_unlock;
1947 	}
1948 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1949 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1950 		err = -EMSGSIZE;
1951 		goto out_unlock;
1952 	}
1953 
1954 	sockc.tsflags = sk->sk_tsflags;
1955 	if (msg->msg_controllen) {
1956 		err = sock_cmsg_send(sk, msg, &sockc);
1957 		if (unlikely(err))
1958 			goto out_unlock;
1959 	}
1960 
1961 	skb->protocol = proto;
1962 	skb->dev = dev;
1963 	skb->priority = sk->sk_priority;
1964 	skb->mark = sk->sk_mark;
1965 
1966 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
1967 
1968 	if (unlikely(extra_len == 4))
1969 		skb->no_fcs = 1;
1970 
1971 	skb_probe_transport_header(skb, 0);
1972 
1973 	dev_queue_xmit(skb);
1974 	rcu_read_unlock();
1975 	return len;
1976 
1977 out_unlock:
1978 	rcu_read_unlock();
1979 out_free:
1980 	kfree_skb(skb);
1981 	return err;
1982 }
1983 
1984 static unsigned int run_filter(struct sk_buff *skb,
1985 			       const struct sock *sk,
1986 			       unsigned int res)
1987 {
1988 	struct sk_filter *filter;
1989 
1990 	rcu_read_lock();
1991 	filter = rcu_dereference(sk->sk_filter);
1992 	if (filter != NULL)
1993 		res = bpf_prog_run_clear_cb(filter->prog, skb);
1994 	rcu_read_unlock();
1995 
1996 	return res;
1997 }
1998 
1999 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2000 			   size_t *len)
2001 {
2002 	struct virtio_net_hdr vnet_hdr;
2003 
2004 	if (*len < sizeof(vnet_hdr))
2005 		return -EINVAL;
2006 	*len -= sizeof(vnet_hdr);
2007 
2008 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2009 		return -EINVAL;
2010 
2011 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2012 }
2013 
2014 /*
2015  * This function makes lazy skb cloning in hope that most of packets
2016  * are discarded by BPF.
2017  *
2018  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2019  * and skb->cb are mangled. It works because (and until) packets
2020  * falling here are owned by current CPU. Output packets are cloned
2021  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2022  * sequencially, so that if we return skb to original state on exit,
2023  * we will not harm anyone.
2024  */
2025 
2026 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2027 		      struct packet_type *pt, struct net_device *orig_dev)
2028 {
2029 	struct sock *sk;
2030 	struct sockaddr_ll *sll;
2031 	struct packet_sock *po;
2032 	u8 *skb_head = skb->data;
2033 	int skb_len = skb->len;
2034 	unsigned int snaplen, res;
2035 	bool is_drop_n_account = false;
2036 
2037 	if (skb->pkt_type == PACKET_LOOPBACK)
2038 		goto drop;
2039 
2040 	sk = pt->af_packet_priv;
2041 	po = pkt_sk(sk);
2042 
2043 	if (!net_eq(dev_net(dev), sock_net(sk)))
2044 		goto drop;
2045 
2046 	skb->dev = dev;
2047 
2048 	if (dev->header_ops) {
2049 		/* The device has an explicit notion of ll header,
2050 		 * exported to higher levels.
2051 		 *
2052 		 * Otherwise, the device hides details of its frame
2053 		 * structure, so that corresponding packet head is
2054 		 * never delivered to user.
2055 		 */
2056 		if (sk->sk_type != SOCK_DGRAM)
2057 			skb_push(skb, skb->data - skb_mac_header(skb));
2058 		else if (skb->pkt_type == PACKET_OUTGOING) {
2059 			/* Special case: outgoing packets have ll header at head */
2060 			skb_pull(skb, skb_network_offset(skb));
2061 		}
2062 	}
2063 
2064 	snaplen = skb->len;
2065 
2066 	res = run_filter(skb, sk, snaplen);
2067 	if (!res)
2068 		goto drop_n_restore;
2069 	if (snaplen > res)
2070 		snaplen = res;
2071 
2072 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2073 		goto drop_n_acct;
2074 
2075 	if (skb_shared(skb)) {
2076 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2077 		if (nskb == NULL)
2078 			goto drop_n_acct;
2079 
2080 		if (skb_head != skb->data) {
2081 			skb->data = skb_head;
2082 			skb->len = skb_len;
2083 		}
2084 		consume_skb(skb);
2085 		skb = nskb;
2086 	}
2087 
2088 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2089 
2090 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2091 	sll->sll_hatype = dev->type;
2092 	sll->sll_pkttype = skb->pkt_type;
2093 	if (unlikely(po->origdev))
2094 		sll->sll_ifindex = orig_dev->ifindex;
2095 	else
2096 		sll->sll_ifindex = dev->ifindex;
2097 
2098 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2099 
2100 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2101 	 * Use their space for storing the original skb length.
2102 	 */
2103 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2104 
2105 	if (pskb_trim(skb, snaplen))
2106 		goto drop_n_acct;
2107 
2108 	skb_set_owner_r(skb, sk);
2109 	skb->dev = NULL;
2110 	skb_dst_drop(skb);
2111 
2112 	/* drop conntrack reference */
2113 	nf_reset(skb);
2114 
2115 	spin_lock(&sk->sk_receive_queue.lock);
2116 	po->stats.stats1.tp_packets++;
2117 	sock_skb_set_dropcount(sk, skb);
2118 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2119 	spin_unlock(&sk->sk_receive_queue.lock);
2120 	sk->sk_data_ready(sk);
2121 	return 0;
2122 
2123 drop_n_acct:
2124 	is_drop_n_account = true;
2125 	spin_lock(&sk->sk_receive_queue.lock);
2126 	po->stats.stats1.tp_drops++;
2127 	atomic_inc(&sk->sk_drops);
2128 	spin_unlock(&sk->sk_receive_queue.lock);
2129 
2130 drop_n_restore:
2131 	if (skb_head != skb->data && skb_shared(skb)) {
2132 		skb->data = skb_head;
2133 		skb->len = skb_len;
2134 	}
2135 drop:
2136 	if (!is_drop_n_account)
2137 		consume_skb(skb);
2138 	else
2139 		kfree_skb(skb);
2140 	return 0;
2141 }
2142 
2143 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2144 		       struct packet_type *pt, struct net_device *orig_dev)
2145 {
2146 	struct sock *sk;
2147 	struct packet_sock *po;
2148 	struct sockaddr_ll *sll;
2149 	union tpacket_uhdr h;
2150 	u8 *skb_head = skb->data;
2151 	int skb_len = skb->len;
2152 	unsigned int snaplen, res;
2153 	unsigned long status = TP_STATUS_USER;
2154 	unsigned short macoff, netoff, hdrlen;
2155 	struct sk_buff *copy_skb = NULL;
2156 	struct timespec ts;
2157 	__u32 ts_status;
2158 	bool is_drop_n_account = false;
2159 	bool do_vnet = false;
2160 
2161 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2162 	 * We may add members to them until current aligned size without forcing
2163 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2164 	 */
2165 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2166 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2167 
2168 	if (skb->pkt_type == PACKET_LOOPBACK)
2169 		goto drop;
2170 
2171 	sk = pt->af_packet_priv;
2172 	po = pkt_sk(sk);
2173 
2174 	if (!net_eq(dev_net(dev), sock_net(sk)))
2175 		goto drop;
2176 
2177 	if (dev->header_ops) {
2178 		if (sk->sk_type != SOCK_DGRAM)
2179 			skb_push(skb, skb->data - skb_mac_header(skb));
2180 		else if (skb->pkt_type == PACKET_OUTGOING) {
2181 			/* Special case: outgoing packets have ll header at head */
2182 			skb_pull(skb, skb_network_offset(skb));
2183 		}
2184 	}
2185 
2186 	snaplen = skb->len;
2187 
2188 	res = run_filter(skb, sk, snaplen);
2189 	if (!res)
2190 		goto drop_n_restore;
2191 
2192 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2193 		status |= TP_STATUS_CSUMNOTREADY;
2194 	else if (skb->pkt_type != PACKET_OUTGOING &&
2195 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2196 		  skb_csum_unnecessary(skb)))
2197 		status |= TP_STATUS_CSUM_VALID;
2198 
2199 	if (snaplen > res)
2200 		snaplen = res;
2201 
2202 	if (sk->sk_type == SOCK_DGRAM) {
2203 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2204 				  po->tp_reserve;
2205 	} else {
2206 		unsigned int maclen = skb_network_offset(skb);
2207 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2208 				       (maclen < 16 ? 16 : maclen)) +
2209 				       po->tp_reserve;
2210 		if (po->has_vnet_hdr) {
2211 			netoff += sizeof(struct virtio_net_hdr);
2212 			do_vnet = true;
2213 		}
2214 		macoff = netoff - maclen;
2215 	}
2216 	if (po->tp_version <= TPACKET_V2) {
2217 		if (macoff + snaplen > po->rx_ring.frame_size) {
2218 			if (po->copy_thresh &&
2219 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2220 				if (skb_shared(skb)) {
2221 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2222 				} else {
2223 					copy_skb = skb_get(skb);
2224 					skb_head = skb->data;
2225 				}
2226 				if (copy_skb)
2227 					skb_set_owner_r(copy_skb, sk);
2228 			}
2229 			snaplen = po->rx_ring.frame_size - macoff;
2230 			if ((int)snaplen < 0) {
2231 				snaplen = 0;
2232 				do_vnet = false;
2233 			}
2234 		}
2235 	} else if (unlikely(macoff + snaplen >
2236 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2237 		u32 nval;
2238 
2239 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2240 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2241 			    snaplen, nval, macoff);
2242 		snaplen = nval;
2243 		if (unlikely((int)snaplen < 0)) {
2244 			snaplen = 0;
2245 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2246 			do_vnet = false;
2247 		}
2248 	}
2249 	spin_lock(&sk->sk_receive_queue.lock);
2250 	h.raw = packet_current_rx_frame(po, skb,
2251 					TP_STATUS_KERNEL, (macoff+snaplen));
2252 	if (!h.raw)
2253 		goto drop_n_account;
2254 	if (po->tp_version <= TPACKET_V2) {
2255 		packet_increment_rx_head(po, &po->rx_ring);
2256 	/*
2257 	 * LOSING will be reported till you read the stats,
2258 	 * because it's COR - Clear On Read.
2259 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2260 	 * at packet level.
2261 	 */
2262 		if (po->stats.stats1.tp_drops)
2263 			status |= TP_STATUS_LOSING;
2264 	}
2265 	po->stats.stats1.tp_packets++;
2266 	if (copy_skb) {
2267 		status |= TP_STATUS_COPY;
2268 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2269 	}
2270 	spin_unlock(&sk->sk_receive_queue.lock);
2271 
2272 	if (do_vnet) {
2273 		if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2274 					    sizeof(struct virtio_net_hdr),
2275 					    vio_le(), true, 0)) {
2276 			spin_lock(&sk->sk_receive_queue.lock);
2277 			goto drop_n_account;
2278 		}
2279 	}
2280 
2281 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2282 
2283 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2284 		getnstimeofday(&ts);
2285 
2286 	status |= ts_status;
2287 
2288 	switch (po->tp_version) {
2289 	case TPACKET_V1:
2290 		h.h1->tp_len = skb->len;
2291 		h.h1->tp_snaplen = snaplen;
2292 		h.h1->tp_mac = macoff;
2293 		h.h1->tp_net = netoff;
2294 		h.h1->tp_sec = ts.tv_sec;
2295 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2296 		hdrlen = sizeof(*h.h1);
2297 		break;
2298 	case TPACKET_V2:
2299 		h.h2->tp_len = skb->len;
2300 		h.h2->tp_snaplen = snaplen;
2301 		h.h2->tp_mac = macoff;
2302 		h.h2->tp_net = netoff;
2303 		h.h2->tp_sec = ts.tv_sec;
2304 		h.h2->tp_nsec = ts.tv_nsec;
2305 		if (skb_vlan_tag_present(skb)) {
2306 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2307 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2308 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2309 		} else {
2310 			h.h2->tp_vlan_tci = 0;
2311 			h.h2->tp_vlan_tpid = 0;
2312 		}
2313 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2314 		hdrlen = sizeof(*h.h2);
2315 		break;
2316 	case TPACKET_V3:
2317 		/* tp_nxt_offset,vlan are already populated above.
2318 		 * So DONT clear those fields here
2319 		 */
2320 		h.h3->tp_status |= status;
2321 		h.h3->tp_len = skb->len;
2322 		h.h3->tp_snaplen = snaplen;
2323 		h.h3->tp_mac = macoff;
2324 		h.h3->tp_net = netoff;
2325 		h.h3->tp_sec  = ts.tv_sec;
2326 		h.h3->tp_nsec = ts.tv_nsec;
2327 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2328 		hdrlen = sizeof(*h.h3);
2329 		break;
2330 	default:
2331 		BUG();
2332 	}
2333 
2334 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2335 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2336 	sll->sll_family = AF_PACKET;
2337 	sll->sll_hatype = dev->type;
2338 	sll->sll_protocol = skb->protocol;
2339 	sll->sll_pkttype = skb->pkt_type;
2340 	if (unlikely(po->origdev))
2341 		sll->sll_ifindex = orig_dev->ifindex;
2342 	else
2343 		sll->sll_ifindex = dev->ifindex;
2344 
2345 	smp_mb();
2346 
2347 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2348 	if (po->tp_version <= TPACKET_V2) {
2349 		u8 *start, *end;
2350 
2351 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2352 					macoff + snaplen);
2353 
2354 		for (start = h.raw; start < end; start += PAGE_SIZE)
2355 			flush_dcache_page(pgv_to_page(start));
2356 	}
2357 	smp_wmb();
2358 #endif
2359 
2360 	if (po->tp_version <= TPACKET_V2) {
2361 		__packet_set_status(po, h.raw, status);
2362 		sk->sk_data_ready(sk);
2363 	} else {
2364 		prb_clear_blk_fill_status(&po->rx_ring);
2365 	}
2366 
2367 drop_n_restore:
2368 	if (skb_head != skb->data && skb_shared(skb)) {
2369 		skb->data = skb_head;
2370 		skb->len = skb_len;
2371 	}
2372 drop:
2373 	if (!is_drop_n_account)
2374 		consume_skb(skb);
2375 	else
2376 		kfree_skb(skb);
2377 	return 0;
2378 
2379 drop_n_account:
2380 	is_drop_n_account = true;
2381 	po->stats.stats1.tp_drops++;
2382 	spin_unlock(&sk->sk_receive_queue.lock);
2383 
2384 	sk->sk_data_ready(sk);
2385 	kfree_skb(copy_skb);
2386 	goto drop_n_restore;
2387 }
2388 
2389 static void tpacket_destruct_skb(struct sk_buff *skb)
2390 {
2391 	struct packet_sock *po = pkt_sk(skb->sk);
2392 
2393 	if (likely(po->tx_ring.pg_vec)) {
2394 		void *ph;
2395 		__u32 ts;
2396 
2397 		ph = skb_shinfo(skb)->destructor_arg;
2398 		packet_dec_pending(&po->tx_ring);
2399 
2400 		ts = __packet_set_timestamp(po, ph, skb);
2401 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2402 	}
2403 
2404 	sock_wfree(skb);
2405 }
2406 
2407 static void tpacket_set_protocol(const struct net_device *dev,
2408 				 struct sk_buff *skb)
2409 {
2410 	if (dev->type == ARPHRD_ETHER) {
2411 		skb_reset_mac_header(skb);
2412 		skb->protocol = eth_hdr(skb)->h_proto;
2413 	}
2414 }
2415 
2416 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2417 {
2418 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2419 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2420 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2421 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2422 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2423 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2424 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2425 
2426 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2427 		return -EINVAL;
2428 
2429 	return 0;
2430 }
2431 
2432 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2433 				 struct virtio_net_hdr *vnet_hdr)
2434 {
2435 	if (*len < sizeof(*vnet_hdr))
2436 		return -EINVAL;
2437 	*len -= sizeof(*vnet_hdr);
2438 
2439 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2440 		return -EFAULT;
2441 
2442 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2443 }
2444 
2445 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2446 		void *frame, struct net_device *dev, void *data, int tp_len,
2447 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2448 		const struct sockcm_cookie *sockc)
2449 {
2450 	union tpacket_uhdr ph;
2451 	int to_write, offset, len, nr_frags, len_max;
2452 	struct socket *sock = po->sk.sk_socket;
2453 	struct page *page;
2454 	int err;
2455 
2456 	ph.raw = frame;
2457 
2458 	skb->protocol = proto;
2459 	skb->dev = dev;
2460 	skb->priority = po->sk.sk_priority;
2461 	skb->mark = po->sk.sk_mark;
2462 	sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2463 	skb_shinfo(skb)->destructor_arg = ph.raw;
2464 
2465 	skb_reserve(skb, hlen);
2466 	skb_reset_network_header(skb);
2467 
2468 	to_write = tp_len;
2469 
2470 	if (sock->type == SOCK_DGRAM) {
2471 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2472 				NULL, tp_len);
2473 		if (unlikely(err < 0))
2474 			return -EINVAL;
2475 	} else if (copylen) {
2476 		int hdrlen = min_t(int, copylen, tp_len);
2477 
2478 		skb_push(skb, dev->hard_header_len);
2479 		skb_put(skb, copylen - dev->hard_header_len);
2480 		err = skb_store_bits(skb, 0, data, hdrlen);
2481 		if (unlikely(err))
2482 			return err;
2483 		if (!dev_validate_header(dev, skb->data, hdrlen))
2484 			return -EINVAL;
2485 		if (!skb->protocol)
2486 			tpacket_set_protocol(dev, skb);
2487 
2488 		data += hdrlen;
2489 		to_write -= hdrlen;
2490 	}
2491 
2492 	offset = offset_in_page(data);
2493 	len_max = PAGE_SIZE - offset;
2494 	len = ((to_write > len_max) ? len_max : to_write);
2495 
2496 	skb->data_len = to_write;
2497 	skb->len += to_write;
2498 	skb->truesize += to_write;
2499 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2500 
2501 	while (likely(to_write)) {
2502 		nr_frags = skb_shinfo(skb)->nr_frags;
2503 
2504 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2505 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2506 			       MAX_SKB_FRAGS);
2507 			return -EFAULT;
2508 		}
2509 
2510 		page = pgv_to_page(data);
2511 		data += len;
2512 		flush_dcache_page(page);
2513 		get_page(page);
2514 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2515 		to_write -= len;
2516 		offset = 0;
2517 		len_max = PAGE_SIZE;
2518 		len = ((to_write > len_max) ? len_max : to_write);
2519 	}
2520 
2521 	skb_probe_transport_header(skb, 0);
2522 
2523 	return tp_len;
2524 }
2525 
2526 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2527 				int size_max, void **data)
2528 {
2529 	union tpacket_uhdr ph;
2530 	int tp_len, off;
2531 
2532 	ph.raw = frame;
2533 
2534 	switch (po->tp_version) {
2535 	case TPACKET_V3:
2536 		if (ph.h3->tp_next_offset != 0) {
2537 			pr_warn_once("variable sized slot not supported");
2538 			return -EINVAL;
2539 		}
2540 		tp_len = ph.h3->tp_len;
2541 		break;
2542 	case TPACKET_V2:
2543 		tp_len = ph.h2->tp_len;
2544 		break;
2545 	default:
2546 		tp_len = ph.h1->tp_len;
2547 		break;
2548 	}
2549 	if (unlikely(tp_len > size_max)) {
2550 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2551 		return -EMSGSIZE;
2552 	}
2553 
2554 	if (unlikely(po->tp_tx_has_off)) {
2555 		int off_min, off_max;
2556 
2557 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2558 		off_max = po->tx_ring.frame_size - tp_len;
2559 		if (po->sk.sk_type == SOCK_DGRAM) {
2560 			switch (po->tp_version) {
2561 			case TPACKET_V3:
2562 				off = ph.h3->tp_net;
2563 				break;
2564 			case TPACKET_V2:
2565 				off = ph.h2->tp_net;
2566 				break;
2567 			default:
2568 				off = ph.h1->tp_net;
2569 				break;
2570 			}
2571 		} else {
2572 			switch (po->tp_version) {
2573 			case TPACKET_V3:
2574 				off = ph.h3->tp_mac;
2575 				break;
2576 			case TPACKET_V2:
2577 				off = ph.h2->tp_mac;
2578 				break;
2579 			default:
2580 				off = ph.h1->tp_mac;
2581 				break;
2582 			}
2583 		}
2584 		if (unlikely((off < off_min) || (off_max < off)))
2585 			return -EINVAL;
2586 	} else {
2587 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2588 	}
2589 
2590 	*data = frame + off;
2591 	return tp_len;
2592 }
2593 
2594 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2595 {
2596 	struct sk_buff *skb;
2597 	struct net_device *dev;
2598 	struct virtio_net_hdr *vnet_hdr = NULL;
2599 	struct sockcm_cookie sockc;
2600 	__be16 proto;
2601 	int err, reserve = 0;
2602 	void *ph;
2603 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2604 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2605 	int tp_len, size_max;
2606 	unsigned char *addr;
2607 	void *data;
2608 	int len_sum = 0;
2609 	int status = TP_STATUS_AVAILABLE;
2610 	int hlen, tlen, copylen = 0;
2611 
2612 	mutex_lock(&po->pg_vec_lock);
2613 
2614 	if (likely(saddr == NULL)) {
2615 		dev	= packet_cached_dev_get(po);
2616 		proto	= po->num;
2617 		addr	= NULL;
2618 	} else {
2619 		err = -EINVAL;
2620 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2621 			goto out;
2622 		if (msg->msg_namelen < (saddr->sll_halen
2623 					+ offsetof(struct sockaddr_ll,
2624 						sll_addr)))
2625 			goto out;
2626 		proto	= saddr->sll_protocol;
2627 		addr	= saddr->sll_addr;
2628 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2629 	}
2630 
2631 	err = -ENXIO;
2632 	if (unlikely(dev == NULL))
2633 		goto out;
2634 	err = -ENETDOWN;
2635 	if (unlikely(!(dev->flags & IFF_UP)))
2636 		goto out_put;
2637 
2638 	sockc.tsflags = po->sk.sk_tsflags;
2639 	if (msg->msg_controllen) {
2640 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2641 		if (unlikely(err))
2642 			goto out_put;
2643 	}
2644 
2645 	if (po->sk.sk_socket->type == SOCK_RAW)
2646 		reserve = dev->hard_header_len;
2647 	size_max = po->tx_ring.frame_size
2648 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2649 
2650 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2651 		size_max = dev->mtu + reserve + VLAN_HLEN;
2652 
2653 	do {
2654 		ph = packet_current_frame(po, &po->tx_ring,
2655 					  TP_STATUS_SEND_REQUEST);
2656 		if (unlikely(ph == NULL)) {
2657 			if (need_wait && need_resched())
2658 				schedule();
2659 			continue;
2660 		}
2661 
2662 		skb = NULL;
2663 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2664 		if (tp_len < 0)
2665 			goto tpacket_error;
2666 
2667 		status = TP_STATUS_SEND_REQUEST;
2668 		hlen = LL_RESERVED_SPACE(dev);
2669 		tlen = dev->needed_tailroom;
2670 		if (po->has_vnet_hdr) {
2671 			vnet_hdr = data;
2672 			data += sizeof(*vnet_hdr);
2673 			tp_len -= sizeof(*vnet_hdr);
2674 			if (tp_len < 0 ||
2675 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2676 				tp_len = -EINVAL;
2677 				goto tpacket_error;
2678 			}
2679 			copylen = __virtio16_to_cpu(vio_le(),
2680 						    vnet_hdr->hdr_len);
2681 		}
2682 		copylen = max_t(int, copylen, dev->hard_header_len);
2683 		skb = sock_alloc_send_skb(&po->sk,
2684 				hlen + tlen + sizeof(struct sockaddr_ll) +
2685 				(copylen - dev->hard_header_len),
2686 				!need_wait, &err);
2687 
2688 		if (unlikely(skb == NULL)) {
2689 			/* we assume the socket was initially writeable ... */
2690 			if (likely(len_sum > 0))
2691 				err = len_sum;
2692 			goto out_status;
2693 		}
2694 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2695 					  addr, hlen, copylen, &sockc);
2696 		if (likely(tp_len >= 0) &&
2697 		    tp_len > dev->mtu + reserve &&
2698 		    !po->has_vnet_hdr &&
2699 		    !packet_extra_vlan_len_allowed(dev, skb))
2700 			tp_len = -EMSGSIZE;
2701 
2702 		if (unlikely(tp_len < 0)) {
2703 tpacket_error:
2704 			if (po->tp_loss) {
2705 				__packet_set_status(po, ph,
2706 						TP_STATUS_AVAILABLE);
2707 				packet_increment_head(&po->tx_ring);
2708 				kfree_skb(skb);
2709 				continue;
2710 			} else {
2711 				status = TP_STATUS_WRONG_FORMAT;
2712 				err = tp_len;
2713 				goto out_status;
2714 			}
2715 		}
2716 
2717 		if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2718 							      vio_le())) {
2719 			tp_len = -EINVAL;
2720 			goto tpacket_error;
2721 		}
2722 
2723 		skb->destructor = tpacket_destruct_skb;
2724 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2725 		packet_inc_pending(&po->tx_ring);
2726 
2727 		status = TP_STATUS_SEND_REQUEST;
2728 		err = po->xmit(skb);
2729 		if (unlikely(err > 0)) {
2730 			err = net_xmit_errno(err);
2731 			if (err && __packet_get_status(po, ph) ==
2732 				   TP_STATUS_AVAILABLE) {
2733 				/* skb was destructed already */
2734 				skb = NULL;
2735 				goto out_status;
2736 			}
2737 			/*
2738 			 * skb was dropped but not destructed yet;
2739 			 * let's treat it like congestion or err < 0
2740 			 */
2741 			err = 0;
2742 		}
2743 		packet_increment_head(&po->tx_ring);
2744 		len_sum += tp_len;
2745 	} while (likely((ph != NULL) ||
2746 		/* Note: packet_read_pending() might be slow if we have
2747 		 * to call it as it's per_cpu variable, but in fast-path
2748 		 * we already short-circuit the loop with the first
2749 		 * condition, and luckily don't have to go that path
2750 		 * anyway.
2751 		 */
2752 		 (need_wait && packet_read_pending(&po->tx_ring))));
2753 
2754 	err = len_sum;
2755 	goto out_put;
2756 
2757 out_status:
2758 	__packet_set_status(po, ph, status);
2759 	kfree_skb(skb);
2760 out_put:
2761 	dev_put(dev);
2762 out:
2763 	mutex_unlock(&po->pg_vec_lock);
2764 	return err;
2765 }
2766 
2767 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2768 				        size_t reserve, size_t len,
2769 				        size_t linear, int noblock,
2770 				        int *err)
2771 {
2772 	struct sk_buff *skb;
2773 
2774 	/* Under a page?  Don't bother with paged skb. */
2775 	if (prepad + len < PAGE_SIZE || !linear)
2776 		linear = len;
2777 
2778 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2779 				   err, 0);
2780 	if (!skb)
2781 		return NULL;
2782 
2783 	skb_reserve(skb, reserve);
2784 	skb_put(skb, linear);
2785 	skb->data_len = len - linear;
2786 	skb->len += len - linear;
2787 
2788 	return skb;
2789 }
2790 
2791 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2792 {
2793 	struct sock *sk = sock->sk;
2794 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2795 	struct sk_buff *skb;
2796 	struct net_device *dev;
2797 	__be16 proto;
2798 	unsigned char *addr;
2799 	int err, reserve = 0;
2800 	struct sockcm_cookie sockc;
2801 	struct virtio_net_hdr vnet_hdr = { 0 };
2802 	int offset = 0;
2803 	struct packet_sock *po = pkt_sk(sk);
2804 	bool has_vnet_hdr = false;
2805 	int hlen, tlen, linear;
2806 	int extra_len = 0;
2807 
2808 	/*
2809 	 *	Get and verify the address.
2810 	 */
2811 
2812 	if (likely(saddr == NULL)) {
2813 		dev	= packet_cached_dev_get(po);
2814 		proto	= po->num;
2815 		addr	= NULL;
2816 	} else {
2817 		err = -EINVAL;
2818 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2819 			goto out;
2820 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2821 			goto out;
2822 		proto	= saddr->sll_protocol;
2823 		addr	= saddr->sll_addr;
2824 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2825 	}
2826 
2827 	err = -ENXIO;
2828 	if (unlikely(dev == NULL))
2829 		goto out_unlock;
2830 	err = -ENETDOWN;
2831 	if (unlikely(!(dev->flags & IFF_UP)))
2832 		goto out_unlock;
2833 
2834 	sockc.tsflags = sk->sk_tsflags;
2835 	sockc.mark = sk->sk_mark;
2836 	if (msg->msg_controllen) {
2837 		err = sock_cmsg_send(sk, msg, &sockc);
2838 		if (unlikely(err))
2839 			goto out_unlock;
2840 	}
2841 
2842 	if (sock->type == SOCK_RAW)
2843 		reserve = dev->hard_header_len;
2844 	if (po->has_vnet_hdr) {
2845 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2846 		if (err)
2847 			goto out_unlock;
2848 		has_vnet_hdr = true;
2849 	}
2850 
2851 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2852 		if (!netif_supports_nofcs(dev)) {
2853 			err = -EPROTONOSUPPORT;
2854 			goto out_unlock;
2855 		}
2856 		extra_len = 4; /* We're doing our own CRC */
2857 	}
2858 
2859 	err = -EMSGSIZE;
2860 	if (!vnet_hdr.gso_type &&
2861 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2862 		goto out_unlock;
2863 
2864 	err = -ENOBUFS;
2865 	hlen = LL_RESERVED_SPACE(dev);
2866 	tlen = dev->needed_tailroom;
2867 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2868 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2869 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2870 			       msg->msg_flags & MSG_DONTWAIT, &err);
2871 	if (skb == NULL)
2872 		goto out_unlock;
2873 
2874 	skb_reset_network_header(skb);
2875 
2876 	err = -EINVAL;
2877 	if (sock->type == SOCK_DGRAM) {
2878 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2879 		if (unlikely(offset < 0))
2880 			goto out_free;
2881 	} else if (reserve) {
2882 		skb_reserve(skb, -reserve);
2883 	}
2884 
2885 	/* Returns -EFAULT on error */
2886 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2887 	if (err)
2888 		goto out_free;
2889 
2890 	if (sock->type == SOCK_RAW &&
2891 	    !dev_validate_header(dev, skb->data, len)) {
2892 		err = -EINVAL;
2893 		goto out_free;
2894 	}
2895 
2896 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2897 
2898 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2899 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2900 		err = -EMSGSIZE;
2901 		goto out_free;
2902 	}
2903 
2904 	skb->protocol = proto;
2905 	skb->dev = dev;
2906 	skb->priority = sk->sk_priority;
2907 	skb->mark = sockc.mark;
2908 
2909 	if (has_vnet_hdr) {
2910 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2911 		if (err)
2912 			goto out_free;
2913 		len += sizeof(vnet_hdr);
2914 	}
2915 
2916 	skb_probe_transport_header(skb, reserve);
2917 
2918 	if (unlikely(extra_len == 4))
2919 		skb->no_fcs = 1;
2920 
2921 	err = po->xmit(skb);
2922 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2923 		goto out_unlock;
2924 
2925 	dev_put(dev);
2926 
2927 	return len;
2928 
2929 out_free:
2930 	kfree_skb(skb);
2931 out_unlock:
2932 	if (dev)
2933 		dev_put(dev);
2934 out:
2935 	return err;
2936 }
2937 
2938 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2939 {
2940 	struct sock *sk = sock->sk;
2941 	struct packet_sock *po = pkt_sk(sk);
2942 
2943 	if (po->tx_ring.pg_vec)
2944 		return tpacket_snd(po, msg);
2945 	else
2946 		return packet_snd(sock, msg, len);
2947 }
2948 
2949 /*
2950  *	Close a PACKET socket. This is fairly simple. We immediately go
2951  *	to 'closed' state and remove our protocol entry in the device list.
2952  */
2953 
2954 static int packet_release(struct socket *sock)
2955 {
2956 	struct sock *sk = sock->sk;
2957 	struct packet_sock *po;
2958 	struct packet_fanout *f;
2959 	struct net *net;
2960 	union tpacket_req_u req_u;
2961 
2962 	if (!sk)
2963 		return 0;
2964 
2965 	net = sock_net(sk);
2966 	po = pkt_sk(sk);
2967 
2968 	mutex_lock(&net->packet.sklist_lock);
2969 	sk_del_node_init_rcu(sk);
2970 	mutex_unlock(&net->packet.sklist_lock);
2971 
2972 	preempt_disable();
2973 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2974 	preempt_enable();
2975 
2976 	spin_lock(&po->bind_lock);
2977 	unregister_prot_hook(sk, false);
2978 	packet_cached_dev_reset(po);
2979 
2980 	if (po->prot_hook.dev) {
2981 		dev_put(po->prot_hook.dev);
2982 		po->prot_hook.dev = NULL;
2983 	}
2984 	spin_unlock(&po->bind_lock);
2985 
2986 	packet_flush_mclist(sk);
2987 
2988 	lock_sock(sk);
2989 	if (po->rx_ring.pg_vec) {
2990 		memset(&req_u, 0, sizeof(req_u));
2991 		packet_set_ring(sk, &req_u, 1, 0);
2992 	}
2993 
2994 	if (po->tx_ring.pg_vec) {
2995 		memset(&req_u, 0, sizeof(req_u));
2996 		packet_set_ring(sk, &req_u, 1, 1);
2997 	}
2998 	release_sock(sk);
2999 
3000 	f = fanout_release(sk);
3001 
3002 	synchronize_net();
3003 
3004 	if (f) {
3005 		kfree(po->rollover);
3006 		fanout_release_data(f);
3007 		kfree(f);
3008 	}
3009 	/*
3010 	 *	Now the socket is dead. No more input will appear.
3011 	 */
3012 	sock_orphan(sk);
3013 	sock->sk = NULL;
3014 
3015 	/* Purge queues */
3016 
3017 	skb_queue_purge(&sk->sk_receive_queue);
3018 	packet_free_pending(po);
3019 	sk_refcnt_debug_release(sk);
3020 
3021 	sock_put(sk);
3022 	return 0;
3023 }
3024 
3025 /*
3026  *	Attach a packet hook.
3027  */
3028 
3029 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3030 			  __be16 proto)
3031 {
3032 	struct packet_sock *po = pkt_sk(sk);
3033 	struct net_device *dev_curr;
3034 	__be16 proto_curr;
3035 	bool need_rehook;
3036 	struct net_device *dev = NULL;
3037 	int ret = 0;
3038 	bool unlisted = false;
3039 
3040 	lock_sock(sk);
3041 	spin_lock(&po->bind_lock);
3042 	rcu_read_lock();
3043 
3044 	if (po->fanout) {
3045 		ret = -EINVAL;
3046 		goto out_unlock;
3047 	}
3048 
3049 	if (name) {
3050 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3051 		if (!dev) {
3052 			ret = -ENODEV;
3053 			goto out_unlock;
3054 		}
3055 	} else if (ifindex) {
3056 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3057 		if (!dev) {
3058 			ret = -ENODEV;
3059 			goto out_unlock;
3060 		}
3061 	}
3062 
3063 	if (dev)
3064 		dev_hold(dev);
3065 
3066 	proto_curr = po->prot_hook.type;
3067 	dev_curr = po->prot_hook.dev;
3068 
3069 	need_rehook = proto_curr != proto || dev_curr != dev;
3070 
3071 	if (need_rehook) {
3072 		if (po->running) {
3073 			rcu_read_unlock();
3074 			/* prevents packet_notifier() from calling
3075 			 * register_prot_hook()
3076 			 */
3077 			po->num = 0;
3078 			__unregister_prot_hook(sk, true);
3079 			rcu_read_lock();
3080 			dev_curr = po->prot_hook.dev;
3081 			if (dev)
3082 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3083 								 dev->ifindex);
3084 		}
3085 
3086 		BUG_ON(po->running);
3087 		po->num = proto;
3088 		po->prot_hook.type = proto;
3089 
3090 		if (unlikely(unlisted)) {
3091 			dev_put(dev);
3092 			po->prot_hook.dev = NULL;
3093 			po->ifindex = -1;
3094 			packet_cached_dev_reset(po);
3095 		} else {
3096 			po->prot_hook.dev = dev;
3097 			po->ifindex = dev ? dev->ifindex : 0;
3098 			packet_cached_dev_assign(po, dev);
3099 		}
3100 	}
3101 	if (dev_curr)
3102 		dev_put(dev_curr);
3103 
3104 	if (proto == 0 || !need_rehook)
3105 		goto out_unlock;
3106 
3107 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3108 		register_prot_hook(sk);
3109 	} else {
3110 		sk->sk_err = ENETDOWN;
3111 		if (!sock_flag(sk, SOCK_DEAD))
3112 			sk->sk_error_report(sk);
3113 	}
3114 
3115 out_unlock:
3116 	rcu_read_unlock();
3117 	spin_unlock(&po->bind_lock);
3118 	release_sock(sk);
3119 	return ret;
3120 }
3121 
3122 /*
3123  *	Bind a packet socket to a device
3124  */
3125 
3126 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3127 			    int addr_len)
3128 {
3129 	struct sock *sk = sock->sk;
3130 	char name[sizeof(uaddr->sa_data) + 1];
3131 
3132 	/*
3133 	 *	Check legality
3134 	 */
3135 
3136 	if (addr_len != sizeof(struct sockaddr))
3137 		return -EINVAL;
3138 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3139 	 * zero-terminated.
3140 	 */
3141 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3142 	name[sizeof(uaddr->sa_data)] = 0;
3143 
3144 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3145 }
3146 
3147 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3148 {
3149 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3150 	struct sock *sk = sock->sk;
3151 
3152 	/*
3153 	 *	Check legality
3154 	 */
3155 
3156 	if (addr_len < sizeof(struct sockaddr_ll))
3157 		return -EINVAL;
3158 	if (sll->sll_family != AF_PACKET)
3159 		return -EINVAL;
3160 
3161 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3162 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3163 }
3164 
3165 static struct proto packet_proto = {
3166 	.name	  = "PACKET",
3167 	.owner	  = THIS_MODULE,
3168 	.obj_size = sizeof(struct packet_sock),
3169 };
3170 
3171 /*
3172  *	Create a packet of type SOCK_PACKET.
3173  */
3174 
3175 static int packet_create(struct net *net, struct socket *sock, int protocol,
3176 			 int kern)
3177 {
3178 	struct sock *sk;
3179 	struct packet_sock *po;
3180 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3181 	int err;
3182 
3183 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3184 		return -EPERM;
3185 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3186 	    sock->type != SOCK_PACKET)
3187 		return -ESOCKTNOSUPPORT;
3188 
3189 	sock->state = SS_UNCONNECTED;
3190 
3191 	err = -ENOBUFS;
3192 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3193 	if (sk == NULL)
3194 		goto out;
3195 
3196 	sock->ops = &packet_ops;
3197 	if (sock->type == SOCK_PACKET)
3198 		sock->ops = &packet_ops_spkt;
3199 
3200 	sock_init_data(sock, sk);
3201 
3202 	po = pkt_sk(sk);
3203 	sk->sk_family = PF_PACKET;
3204 	po->num = proto;
3205 	po->xmit = dev_queue_xmit;
3206 
3207 	err = packet_alloc_pending(po);
3208 	if (err)
3209 		goto out2;
3210 
3211 	packet_cached_dev_reset(po);
3212 
3213 	sk->sk_destruct = packet_sock_destruct;
3214 	sk_refcnt_debug_inc(sk);
3215 
3216 	/*
3217 	 *	Attach a protocol block
3218 	 */
3219 
3220 	spin_lock_init(&po->bind_lock);
3221 	mutex_init(&po->pg_vec_lock);
3222 	po->rollover = NULL;
3223 	po->prot_hook.func = packet_rcv;
3224 
3225 	if (sock->type == SOCK_PACKET)
3226 		po->prot_hook.func = packet_rcv_spkt;
3227 
3228 	po->prot_hook.af_packet_priv = sk;
3229 
3230 	if (proto) {
3231 		po->prot_hook.type = proto;
3232 		__register_prot_hook(sk);
3233 	}
3234 
3235 	mutex_lock(&net->packet.sklist_lock);
3236 	sk_add_node_rcu(sk, &net->packet.sklist);
3237 	mutex_unlock(&net->packet.sklist_lock);
3238 
3239 	preempt_disable();
3240 	sock_prot_inuse_add(net, &packet_proto, 1);
3241 	preempt_enable();
3242 
3243 	return 0;
3244 out2:
3245 	sk_free(sk);
3246 out:
3247 	return err;
3248 }
3249 
3250 /*
3251  *	Pull a packet from our receive queue and hand it to the user.
3252  *	If necessary we block.
3253  */
3254 
3255 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3256 			  int flags)
3257 {
3258 	struct sock *sk = sock->sk;
3259 	struct sk_buff *skb;
3260 	int copied, err;
3261 	int vnet_hdr_len = 0;
3262 	unsigned int origlen = 0;
3263 
3264 	err = -EINVAL;
3265 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3266 		goto out;
3267 
3268 #if 0
3269 	/* What error should we return now? EUNATTACH? */
3270 	if (pkt_sk(sk)->ifindex < 0)
3271 		return -ENODEV;
3272 #endif
3273 
3274 	if (flags & MSG_ERRQUEUE) {
3275 		err = sock_recv_errqueue(sk, msg, len,
3276 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3277 		goto out;
3278 	}
3279 
3280 	/*
3281 	 *	Call the generic datagram receiver. This handles all sorts
3282 	 *	of horrible races and re-entrancy so we can forget about it
3283 	 *	in the protocol layers.
3284 	 *
3285 	 *	Now it will return ENETDOWN, if device have just gone down,
3286 	 *	but then it will block.
3287 	 */
3288 
3289 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3290 
3291 	/*
3292 	 *	An error occurred so return it. Because skb_recv_datagram()
3293 	 *	handles the blocking we don't see and worry about blocking
3294 	 *	retries.
3295 	 */
3296 
3297 	if (skb == NULL)
3298 		goto out;
3299 
3300 	if (pkt_sk(sk)->pressure)
3301 		packet_rcv_has_room(pkt_sk(sk), NULL);
3302 
3303 	if (pkt_sk(sk)->has_vnet_hdr) {
3304 		err = packet_rcv_vnet(msg, skb, &len);
3305 		if (err)
3306 			goto out_free;
3307 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3308 	}
3309 
3310 	/* You lose any data beyond the buffer you gave. If it worries
3311 	 * a user program they can ask the device for its MTU
3312 	 * anyway.
3313 	 */
3314 	copied = skb->len;
3315 	if (copied > len) {
3316 		copied = len;
3317 		msg->msg_flags |= MSG_TRUNC;
3318 	}
3319 
3320 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3321 	if (err)
3322 		goto out_free;
3323 
3324 	if (sock->type != SOCK_PACKET) {
3325 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3326 
3327 		/* Original length was stored in sockaddr_ll fields */
3328 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3329 		sll->sll_family = AF_PACKET;
3330 		sll->sll_protocol = skb->protocol;
3331 	}
3332 
3333 	sock_recv_ts_and_drops(msg, sk, skb);
3334 
3335 	if (msg->msg_name) {
3336 		/* If the address length field is there to be filled
3337 		 * in, we fill it in now.
3338 		 */
3339 		if (sock->type == SOCK_PACKET) {
3340 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3341 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3342 		} else {
3343 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3344 
3345 			msg->msg_namelen = sll->sll_halen +
3346 				offsetof(struct sockaddr_ll, sll_addr);
3347 		}
3348 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3349 		       msg->msg_namelen);
3350 	}
3351 
3352 	if (pkt_sk(sk)->auxdata) {
3353 		struct tpacket_auxdata aux;
3354 
3355 		aux.tp_status = TP_STATUS_USER;
3356 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3357 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3358 		else if (skb->pkt_type != PACKET_OUTGOING &&
3359 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3360 			  skb_csum_unnecessary(skb)))
3361 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3362 
3363 		aux.tp_len = origlen;
3364 		aux.tp_snaplen = skb->len;
3365 		aux.tp_mac = 0;
3366 		aux.tp_net = skb_network_offset(skb);
3367 		if (skb_vlan_tag_present(skb)) {
3368 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3369 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3370 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3371 		} else {
3372 			aux.tp_vlan_tci = 0;
3373 			aux.tp_vlan_tpid = 0;
3374 		}
3375 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3376 	}
3377 
3378 	/*
3379 	 *	Free or return the buffer as appropriate. Again this
3380 	 *	hides all the races and re-entrancy issues from us.
3381 	 */
3382 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3383 
3384 out_free:
3385 	skb_free_datagram(sk, skb);
3386 out:
3387 	return err;
3388 }
3389 
3390 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3391 			       int peer)
3392 {
3393 	struct net_device *dev;
3394 	struct sock *sk	= sock->sk;
3395 
3396 	if (peer)
3397 		return -EOPNOTSUPP;
3398 
3399 	uaddr->sa_family = AF_PACKET;
3400 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3401 	rcu_read_lock();
3402 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3403 	if (dev)
3404 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3405 	rcu_read_unlock();
3406 
3407 	return sizeof(*uaddr);
3408 }
3409 
3410 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3411 			  int peer)
3412 {
3413 	struct net_device *dev;
3414 	struct sock *sk = sock->sk;
3415 	struct packet_sock *po = pkt_sk(sk);
3416 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3417 
3418 	if (peer)
3419 		return -EOPNOTSUPP;
3420 
3421 	sll->sll_family = AF_PACKET;
3422 	sll->sll_ifindex = po->ifindex;
3423 	sll->sll_protocol = po->num;
3424 	sll->sll_pkttype = 0;
3425 	rcu_read_lock();
3426 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3427 	if (dev) {
3428 		sll->sll_hatype = dev->type;
3429 		sll->sll_halen = dev->addr_len;
3430 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3431 	} else {
3432 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3433 		sll->sll_halen = 0;
3434 	}
3435 	rcu_read_unlock();
3436 
3437 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3438 }
3439 
3440 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3441 			 int what)
3442 {
3443 	switch (i->type) {
3444 	case PACKET_MR_MULTICAST:
3445 		if (i->alen != dev->addr_len)
3446 			return -EINVAL;
3447 		if (what > 0)
3448 			return dev_mc_add(dev, i->addr);
3449 		else
3450 			return dev_mc_del(dev, i->addr);
3451 		break;
3452 	case PACKET_MR_PROMISC:
3453 		return dev_set_promiscuity(dev, what);
3454 	case PACKET_MR_ALLMULTI:
3455 		return dev_set_allmulti(dev, what);
3456 	case PACKET_MR_UNICAST:
3457 		if (i->alen != dev->addr_len)
3458 			return -EINVAL;
3459 		if (what > 0)
3460 			return dev_uc_add(dev, i->addr);
3461 		else
3462 			return dev_uc_del(dev, i->addr);
3463 		break;
3464 	default:
3465 		break;
3466 	}
3467 	return 0;
3468 }
3469 
3470 static void packet_dev_mclist_delete(struct net_device *dev,
3471 				     struct packet_mclist **mlp)
3472 {
3473 	struct packet_mclist *ml;
3474 
3475 	while ((ml = *mlp) != NULL) {
3476 		if (ml->ifindex == dev->ifindex) {
3477 			packet_dev_mc(dev, ml, -1);
3478 			*mlp = ml->next;
3479 			kfree(ml);
3480 		} else
3481 			mlp = &ml->next;
3482 	}
3483 }
3484 
3485 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3486 {
3487 	struct packet_sock *po = pkt_sk(sk);
3488 	struct packet_mclist *ml, *i;
3489 	struct net_device *dev;
3490 	int err;
3491 
3492 	rtnl_lock();
3493 
3494 	err = -ENODEV;
3495 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3496 	if (!dev)
3497 		goto done;
3498 
3499 	err = -EINVAL;
3500 	if (mreq->mr_alen > dev->addr_len)
3501 		goto done;
3502 
3503 	err = -ENOBUFS;
3504 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3505 	if (i == NULL)
3506 		goto done;
3507 
3508 	err = 0;
3509 	for (ml = po->mclist; ml; ml = ml->next) {
3510 		if (ml->ifindex == mreq->mr_ifindex &&
3511 		    ml->type == mreq->mr_type &&
3512 		    ml->alen == mreq->mr_alen &&
3513 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3514 			ml->count++;
3515 			/* Free the new element ... */
3516 			kfree(i);
3517 			goto done;
3518 		}
3519 	}
3520 
3521 	i->type = mreq->mr_type;
3522 	i->ifindex = mreq->mr_ifindex;
3523 	i->alen = mreq->mr_alen;
3524 	memcpy(i->addr, mreq->mr_address, i->alen);
3525 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3526 	i->count = 1;
3527 	i->next = po->mclist;
3528 	po->mclist = i;
3529 	err = packet_dev_mc(dev, i, 1);
3530 	if (err) {
3531 		po->mclist = i->next;
3532 		kfree(i);
3533 	}
3534 
3535 done:
3536 	rtnl_unlock();
3537 	return err;
3538 }
3539 
3540 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3541 {
3542 	struct packet_mclist *ml, **mlp;
3543 
3544 	rtnl_lock();
3545 
3546 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3547 		if (ml->ifindex == mreq->mr_ifindex &&
3548 		    ml->type == mreq->mr_type &&
3549 		    ml->alen == mreq->mr_alen &&
3550 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3551 			if (--ml->count == 0) {
3552 				struct net_device *dev;
3553 				*mlp = ml->next;
3554 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3555 				if (dev)
3556 					packet_dev_mc(dev, ml, -1);
3557 				kfree(ml);
3558 			}
3559 			break;
3560 		}
3561 	}
3562 	rtnl_unlock();
3563 	return 0;
3564 }
3565 
3566 static void packet_flush_mclist(struct sock *sk)
3567 {
3568 	struct packet_sock *po = pkt_sk(sk);
3569 	struct packet_mclist *ml;
3570 
3571 	if (!po->mclist)
3572 		return;
3573 
3574 	rtnl_lock();
3575 	while ((ml = po->mclist) != NULL) {
3576 		struct net_device *dev;
3577 
3578 		po->mclist = ml->next;
3579 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3580 		if (dev != NULL)
3581 			packet_dev_mc(dev, ml, -1);
3582 		kfree(ml);
3583 	}
3584 	rtnl_unlock();
3585 }
3586 
3587 static int
3588 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3589 {
3590 	struct sock *sk = sock->sk;
3591 	struct packet_sock *po = pkt_sk(sk);
3592 	int ret;
3593 
3594 	if (level != SOL_PACKET)
3595 		return -ENOPROTOOPT;
3596 
3597 	switch (optname) {
3598 	case PACKET_ADD_MEMBERSHIP:
3599 	case PACKET_DROP_MEMBERSHIP:
3600 	{
3601 		struct packet_mreq_max mreq;
3602 		int len = optlen;
3603 		memset(&mreq, 0, sizeof(mreq));
3604 		if (len < sizeof(struct packet_mreq))
3605 			return -EINVAL;
3606 		if (len > sizeof(mreq))
3607 			len = sizeof(mreq);
3608 		if (copy_from_user(&mreq, optval, len))
3609 			return -EFAULT;
3610 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3611 			return -EINVAL;
3612 		if (optname == PACKET_ADD_MEMBERSHIP)
3613 			ret = packet_mc_add(sk, &mreq);
3614 		else
3615 			ret = packet_mc_drop(sk, &mreq);
3616 		return ret;
3617 	}
3618 
3619 	case PACKET_RX_RING:
3620 	case PACKET_TX_RING:
3621 	{
3622 		union tpacket_req_u req_u;
3623 		int len;
3624 
3625 		lock_sock(sk);
3626 		switch (po->tp_version) {
3627 		case TPACKET_V1:
3628 		case TPACKET_V2:
3629 			len = sizeof(req_u.req);
3630 			break;
3631 		case TPACKET_V3:
3632 		default:
3633 			len = sizeof(req_u.req3);
3634 			break;
3635 		}
3636 		if (optlen < len) {
3637 			ret = -EINVAL;
3638 		} else {
3639 			if (copy_from_user(&req_u.req, optval, len))
3640 				ret = -EFAULT;
3641 			else
3642 				ret = packet_set_ring(sk, &req_u, 0,
3643 						    optname == PACKET_TX_RING);
3644 		}
3645 		release_sock(sk);
3646 		return ret;
3647 	}
3648 	case PACKET_COPY_THRESH:
3649 	{
3650 		int val;
3651 
3652 		if (optlen != sizeof(val))
3653 			return -EINVAL;
3654 		if (copy_from_user(&val, optval, sizeof(val)))
3655 			return -EFAULT;
3656 
3657 		pkt_sk(sk)->copy_thresh = val;
3658 		return 0;
3659 	}
3660 	case PACKET_VERSION:
3661 	{
3662 		int val;
3663 
3664 		if (optlen != sizeof(val))
3665 			return -EINVAL;
3666 		if (copy_from_user(&val, optval, sizeof(val)))
3667 			return -EFAULT;
3668 		switch (val) {
3669 		case TPACKET_V1:
3670 		case TPACKET_V2:
3671 		case TPACKET_V3:
3672 			break;
3673 		default:
3674 			return -EINVAL;
3675 		}
3676 		lock_sock(sk);
3677 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3678 			ret = -EBUSY;
3679 		} else {
3680 			po->tp_version = val;
3681 			ret = 0;
3682 		}
3683 		release_sock(sk);
3684 		return ret;
3685 	}
3686 	case PACKET_RESERVE:
3687 	{
3688 		unsigned int val;
3689 
3690 		if (optlen != sizeof(val))
3691 			return -EINVAL;
3692 		if (copy_from_user(&val, optval, sizeof(val)))
3693 			return -EFAULT;
3694 		if (val > INT_MAX)
3695 			return -EINVAL;
3696 		lock_sock(sk);
3697 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3698 			ret = -EBUSY;
3699 		} else {
3700 			po->tp_reserve = val;
3701 			ret = 0;
3702 		}
3703 		release_sock(sk);
3704 		return ret;
3705 	}
3706 	case PACKET_LOSS:
3707 	{
3708 		unsigned int val;
3709 
3710 		if (optlen != sizeof(val))
3711 			return -EINVAL;
3712 		if (copy_from_user(&val, optval, sizeof(val)))
3713 			return -EFAULT;
3714 
3715 		lock_sock(sk);
3716 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3717 			ret = -EBUSY;
3718 		} else {
3719 			po->tp_loss = !!val;
3720 			ret = 0;
3721 		}
3722 		release_sock(sk);
3723 		return ret;
3724 	}
3725 	case PACKET_AUXDATA:
3726 	{
3727 		int val;
3728 
3729 		if (optlen < sizeof(val))
3730 			return -EINVAL;
3731 		if (copy_from_user(&val, optval, sizeof(val)))
3732 			return -EFAULT;
3733 
3734 		lock_sock(sk);
3735 		po->auxdata = !!val;
3736 		release_sock(sk);
3737 		return 0;
3738 	}
3739 	case PACKET_ORIGDEV:
3740 	{
3741 		int val;
3742 
3743 		if (optlen < sizeof(val))
3744 			return -EINVAL;
3745 		if (copy_from_user(&val, optval, sizeof(val)))
3746 			return -EFAULT;
3747 
3748 		lock_sock(sk);
3749 		po->origdev = !!val;
3750 		release_sock(sk);
3751 		return 0;
3752 	}
3753 	case PACKET_VNET_HDR:
3754 	{
3755 		int val;
3756 
3757 		if (sock->type != SOCK_RAW)
3758 			return -EINVAL;
3759 		if (optlen < sizeof(val))
3760 			return -EINVAL;
3761 		if (copy_from_user(&val, optval, sizeof(val)))
3762 			return -EFAULT;
3763 
3764 		lock_sock(sk);
3765 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3766 			ret = -EBUSY;
3767 		} else {
3768 			po->has_vnet_hdr = !!val;
3769 			ret = 0;
3770 		}
3771 		release_sock(sk);
3772 		return ret;
3773 	}
3774 	case PACKET_TIMESTAMP:
3775 	{
3776 		int val;
3777 
3778 		if (optlen != sizeof(val))
3779 			return -EINVAL;
3780 		if (copy_from_user(&val, optval, sizeof(val)))
3781 			return -EFAULT;
3782 
3783 		po->tp_tstamp = val;
3784 		return 0;
3785 	}
3786 	case PACKET_FANOUT:
3787 	{
3788 		int val;
3789 
3790 		if (optlen != sizeof(val))
3791 			return -EINVAL;
3792 		if (copy_from_user(&val, optval, sizeof(val)))
3793 			return -EFAULT;
3794 
3795 		return fanout_add(sk, val & 0xffff, val >> 16);
3796 	}
3797 	case PACKET_FANOUT_DATA:
3798 	{
3799 		if (!po->fanout)
3800 			return -EINVAL;
3801 
3802 		return fanout_set_data(po, optval, optlen);
3803 	}
3804 	case PACKET_TX_HAS_OFF:
3805 	{
3806 		unsigned int val;
3807 
3808 		if (optlen != sizeof(val))
3809 			return -EINVAL;
3810 		if (copy_from_user(&val, optval, sizeof(val)))
3811 			return -EFAULT;
3812 
3813 		lock_sock(sk);
3814 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3815 			ret = -EBUSY;
3816 		} else {
3817 			po->tp_tx_has_off = !!val;
3818 			ret = 0;
3819 		}
3820 		release_sock(sk);
3821 		return 0;
3822 	}
3823 	case PACKET_QDISC_BYPASS:
3824 	{
3825 		int val;
3826 
3827 		if (optlen != sizeof(val))
3828 			return -EINVAL;
3829 		if (copy_from_user(&val, optval, sizeof(val)))
3830 			return -EFAULT;
3831 
3832 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3833 		return 0;
3834 	}
3835 	default:
3836 		return -ENOPROTOOPT;
3837 	}
3838 }
3839 
3840 static int packet_getsockopt(struct socket *sock, int level, int optname,
3841 			     char __user *optval, int __user *optlen)
3842 {
3843 	int len;
3844 	int val, lv = sizeof(val);
3845 	struct sock *sk = sock->sk;
3846 	struct packet_sock *po = pkt_sk(sk);
3847 	void *data = &val;
3848 	union tpacket_stats_u st;
3849 	struct tpacket_rollover_stats rstats;
3850 
3851 	if (level != SOL_PACKET)
3852 		return -ENOPROTOOPT;
3853 
3854 	if (get_user(len, optlen))
3855 		return -EFAULT;
3856 
3857 	if (len < 0)
3858 		return -EINVAL;
3859 
3860 	switch (optname) {
3861 	case PACKET_STATISTICS:
3862 		spin_lock_bh(&sk->sk_receive_queue.lock);
3863 		memcpy(&st, &po->stats, sizeof(st));
3864 		memset(&po->stats, 0, sizeof(po->stats));
3865 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3866 
3867 		if (po->tp_version == TPACKET_V3) {
3868 			lv = sizeof(struct tpacket_stats_v3);
3869 			st.stats3.tp_packets += st.stats3.tp_drops;
3870 			data = &st.stats3;
3871 		} else {
3872 			lv = sizeof(struct tpacket_stats);
3873 			st.stats1.tp_packets += st.stats1.tp_drops;
3874 			data = &st.stats1;
3875 		}
3876 
3877 		break;
3878 	case PACKET_AUXDATA:
3879 		val = po->auxdata;
3880 		break;
3881 	case PACKET_ORIGDEV:
3882 		val = po->origdev;
3883 		break;
3884 	case PACKET_VNET_HDR:
3885 		val = po->has_vnet_hdr;
3886 		break;
3887 	case PACKET_VERSION:
3888 		val = po->tp_version;
3889 		break;
3890 	case PACKET_HDRLEN:
3891 		if (len > sizeof(int))
3892 			len = sizeof(int);
3893 		if (len < sizeof(int))
3894 			return -EINVAL;
3895 		if (copy_from_user(&val, optval, len))
3896 			return -EFAULT;
3897 		switch (val) {
3898 		case TPACKET_V1:
3899 			val = sizeof(struct tpacket_hdr);
3900 			break;
3901 		case TPACKET_V2:
3902 			val = sizeof(struct tpacket2_hdr);
3903 			break;
3904 		case TPACKET_V3:
3905 			val = sizeof(struct tpacket3_hdr);
3906 			break;
3907 		default:
3908 			return -EINVAL;
3909 		}
3910 		break;
3911 	case PACKET_RESERVE:
3912 		val = po->tp_reserve;
3913 		break;
3914 	case PACKET_LOSS:
3915 		val = po->tp_loss;
3916 		break;
3917 	case PACKET_TIMESTAMP:
3918 		val = po->tp_tstamp;
3919 		break;
3920 	case PACKET_FANOUT:
3921 		val = (po->fanout ?
3922 		       ((u32)po->fanout->id |
3923 			((u32)po->fanout->type << 16) |
3924 			((u32)po->fanout->flags << 24)) :
3925 		       0);
3926 		break;
3927 	case PACKET_ROLLOVER_STATS:
3928 		if (!po->rollover)
3929 			return -EINVAL;
3930 		rstats.tp_all = atomic_long_read(&po->rollover->num);
3931 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3932 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3933 		data = &rstats;
3934 		lv = sizeof(rstats);
3935 		break;
3936 	case PACKET_TX_HAS_OFF:
3937 		val = po->tp_tx_has_off;
3938 		break;
3939 	case PACKET_QDISC_BYPASS:
3940 		val = packet_use_direct_xmit(po);
3941 		break;
3942 	default:
3943 		return -ENOPROTOOPT;
3944 	}
3945 
3946 	if (len > lv)
3947 		len = lv;
3948 	if (put_user(len, optlen))
3949 		return -EFAULT;
3950 	if (copy_to_user(optval, data, len))
3951 		return -EFAULT;
3952 	return 0;
3953 }
3954 
3955 
3956 #ifdef CONFIG_COMPAT
3957 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3958 				    char __user *optval, unsigned int optlen)
3959 {
3960 	struct packet_sock *po = pkt_sk(sock->sk);
3961 
3962 	if (level != SOL_PACKET)
3963 		return -ENOPROTOOPT;
3964 
3965 	if (optname == PACKET_FANOUT_DATA &&
3966 	    po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3967 		optval = (char __user *)get_compat_bpf_fprog(optval);
3968 		if (!optval)
3969 			return -EFAULT;
3970 		optlen = sizeof(struct sock_fprog);
3971 	}
3972 
3973 	return packet_setsockopt(sock, level, optname, optval, optlen);
3974 }
3975 #endif
3976 
3977 static int packet_notifier(struct notifier_block *this,
3978 			   unsigned long msg, void *ptr)
3979 {
3980 	struct sock *sk;
3981 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3982 	struct net *net = dev_net(dev);
3983 
3984 	rcu_read_lock();
3985 	sk_for_each_rcu(sk, &net->packet.sklist) {
3986 		struct packet_sock *po = pkt_sk(sk);
3987 
3988 		switch (msg) {
3989 		case NETDEV_UNREGISTER:
3990 			if (po->mclist)
3991 				packet_dev_mclist_delete(dev, &po->mclist);
3992 			/* fallthrough */
3993 
3994 		case NETDEV_DOWN:
3995 			if (dev->ifindex == po->ifindex) {
3996 				spin_lock(&po->bind_lock);
3997 				if (po->running) {
3998 					__unregister_prot_hook(sk, false);
3999 					sk->sk_err = ENETDOWN;
4000 					if (!sock_flag(sk, SOCK_DEAD))
4001 						sk->sk_error_report(sk);
4002 				}
4003 				if (msg == NETDEV_UNREGISTER) {
4004 					packet_cached_dev_reset(po);
4005 					po->ifindex = -1;
4006 					if (po->prot_hook.dev)
4007 						dev_put(po->prot_hook.dev);
4008 					po->prot_hook.dev = NULL;
4009 				}
4010 				spin_unlock(&po->bind_lock);
4011 			}
4012 			break;
4013 		case NETDEV_UP:
4014 			if (dev->ifindex == po->ifindex) {
4015 				spin_lock(&po->bind_lock);
4016 				if (po->num)
4017 					register_prot_hook(sk);
4018 				spin_unlock(&po->bind_lock);
4019 			}
4020 			break;
4021 		}
4022 	}
4023 	rcu_read_unlock();
4024 	return NOTIFY_DONE;
4025 }
4026 
4027 
4028 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4029 			unsigned long arg)
4030 {
4031 	struct sock *sk = sock->sk;
4032 
4033 	switch (cmd) {
4034 	case SIOCOUTQ:
4035 	{
4036 		int amount = sk_wmem_alloc_get(sk);
4037 
4038 		return put_user(amount, (int __user *)arg);
4039 	}
4040 	case SIOCINQ:
4041 	{
4042 		struct sk_buff *skb;
4043 		int amount = 0;
4044 
4045 		spin_lock_bh(&sk->sk_receive_queue.lock);
4046 		skb = skb_peek(&sk->sk_receive_queue);
4047 		if (skb)
4048 			amount = skb->len;
4049 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4050 		return put_user(amount, (int __user *)arg);
4051 	}
4052 	case SIOCGSTAMP:
4053 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
4054 	case SIOCGSTAMPNS:
4055 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
4056 
4057 #ifdef CONFIG_INET
4058 	case SIOCADDRT:
4059 	case SIOCDELRT:
4060 	case SIOCDARP:
4061 	case SIOCGARP:
4062 	case SIOCSARP:
4063 	case SIOCGIFADDR:
4064 	case SIOCSIFADDR:
4065 	case SIOCGIFBRDADDR:
4066 	case SIOCSIFBRDADDR:
4067 	case SIOCGIFNETMASK:
4068 	case SIOCSIFNETMASK:
4069 	case SIOCGIFDSTADDR:
4070 	case SIOCSIFDSTADDR:
4071 	case SIOCSIFFLAGS:
4072 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4073 #endif
4074 
4075 	default:
4076 		return -ENOIOCTLCMD;
4077 	}
4078 	return 0;
4079 }
4080 
4081 static __poll_t packet_poll_mask(struct socket *sock, __poll_t events)
4082 {
4083 	struct sock *sk = sock->sk;
4084 	struct packet_sock *po = pkt_sk(sk);
4085 	__poll_t mask = datagram_poll_mask(sock, events);
4086 
4087 	spin_lock_bh(&sk->sk_receive_queue.lock);
4088 	if (po->rx_ring.pg_vec) {
4089 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4090 			TP_STATUS_KERNEL))
4091 			mask |= EPOLLIN | EPOLLRDNORM;
4092 	}
4093 	if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4094 		po->pressure = 0;
4095 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4096 	spin_lock_bh(&sk->sk_write_queue.lock);
4097 	if (po->tx_ring.pg_vec) {
4098 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4099 			mask |= EPOLLOUT | EPOLLWRNORM;
4100 	}
4101 	spin_unlock_bh(&sk->sk_write_queue.lock);
4102 	return mask;
4103 }
4104 
4105 
4106 /* Dirty? Well, I still did not learn better way to account
4107  * for user mmaps.
4108  */
4109 
4110 static void packet_mm_open(struct vm_area_struct *vma)
4111 {
4112 	struct file *file = vma->vm_file;
4113 	struct socket *sock = file->private_data;
4114 	struct sock *sk = sock->sk;
4115 
4116 	if (sk)
4117 		atomic_inc(&pkt_sk(sk)->mapped);
4118 }
4119 
4120 static void packet_mm_close(struct vm_area_struct *vma)
4121 {
4122 	struct file *file = vma->vm_file;
4123 	struct socket *sock = file->private_data;
4124 	struct sock *sk = sock->sk;
4125 
4126 	if (sk)
4127 		atomic_dec(&pkt_sk(sk)->mapped);
4128 }
4129 
4130 static const struct vm_operations_struct packet_mmap_ops = {
4131 	.open	=	packet_mm_open,
4132 	.close	=	packet_mm_close,
4133 };
4134 
4135 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4136 			unsigned int len)
4137 {
4138 	int i;
4139 
4140 	for (i = 0; i < len; i++) {
4141 		if (likely(pg_vec[i].buffer)) {
4142 			if (is_vmalloc_addr(pg_vec[i].buffer))
4143 				vfree(pg_vec[i].buffer);
4144 			else
4145 				free_pages((unsigned long)pg_vec[i].buffer,
4146 					   order);
4147 			pg_vec[i].buffer = NULL;
4148 		}
4149 	}
4150 	kfree(pg_vec);
4151 }
4152 
4153 static char *alloc_one_pg_vec_page(unsigned long order)
4154 {
4155 	char *buffer;
4156 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4157 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4158 
4159 	buffer = (char *) __get_free_pages(gfp_flags, order);
4160 	if (buffer)
4161 		return buffer;
4162 
4163 	/* __get_free_pages failed, fall back to vmalloc */
4164 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4165 	if (buffer)
4166 		return buffer;
4167 
4168 	/* vmalloc failed, lets dig into swap here */
4169 	gfp_flags &= ~__GFP_NORETRY;
4170 	buffer = (char *) __get_free_pages(gfp_flags, order);
4171 	if (buffer)
4172 		return buffer;
4173 
4174 	/* complete and utter failure */
4175 	return NULL;
4176 }
4177 
4178 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4179 {
4180 	unsigned int block_nr = req->tp_block_nr;
4181 	struct pgv *pg_vec;
4182 	int i;
4183 
4184 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4185 	if (unlikely(!pg_vec))
4186 		goto out;
4187 
4188 	for (i = 0; i < block_nr; i++) {
4189 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4190 		if (unlikely(!pg_vec[i].buffer))
4191 			goto out_free_pgvec;
4192 	}
4193 
4194 out:
4195 	return pg_vec;
4196 
4197 out_free_pgvec:
4198 	free_pg_vec(pg_vec, order, block_nr);
4199 	pg_vec = NULL;
4200 	goto out;
4201 }
4202 
4203 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4204 		int closing, int tx_ring)
4205 {
4206 	struct pgv *pg_vec = NULL;
4207 	struct packet_sock *po = pkt_sk(sk);
4208 	int was_running, order = 0;
4209 	struct packet_ring_buffer *rb;
4210 	struct sk_buff_head *rb_queue;
4211 	__be16 num;
4212 	int err = -EINVAL;
4213 	/* Added to avoid minimal code churn */
4214 	struct tpacket_req *req = &req_u->req;
4215 
4216 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4217 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4218 
4219 	err = -EBUSY;
4220 	if (!closing) {
4221 		if (atomic_read(&po->mapped))
4222 			goto out;
4223 		if (packet_read_pending(rb))
4224 			goto out;
4225 	}
4226 
4227 	if (req->tp_block_nr) {
4228 		/* Sanity tests and some calculations */
4229 		err = -EBUSY;
4230 		if (unlikely(rb->pg_vec))
4231 			goto out;
4232 
4233 		switch (po->tp_version) {
4234 		case TPACKET_V1:
4235 			po->tp_hdrlen = TPACKET_HDRLEN;
4236 			break;
4237 		case TPACKET_V2:
4238 			po->tp_hdrlen = TPACKET2_HDRLEN;
4239 			break;
4240 		case TPACKET_V3:
4241 			po->tp_hdrlen = TPACKET3_HDRLEN;
4242 			break;
4243 		}
4244 
4245 		err = -EINVAL;
4246 		if (unlikely((int)req->tp_block_size <= 0))
4247 			goto out;
4248 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4249 			goto out;
4250 		if (po->tp_version >= TPACKET_V3 &&
4251 		    req->tp_block_size <=
4252 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + sizeof(struct tpacket3_hdr))
4253 			goto out;
4254 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4255 					po->tp_reserve))
4256 			goto out;
4257 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4258 			goto out;
4259 
4260 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4261 		if (unlikely(rb->frames_per_block == 0))
4262 			goto out;
4263 		if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4264 			goto out;
4265 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4266 					req->tp_frame_nr))
4267 			goto out;
4268 
4269 		err = -ENOMEM;
4270 		order = get_order(req->tp_block_size);
4271 		pg_vec = alloc_pg_vec(req, order);
4272 		if (unlikely(!pg_vec))
4273 			goto out;
4274 		switch (po->tp_version) {
4275 		case TPACKET_V3:
4276 			/* Block transmit is not supported yet */
4277 			if (!tx_ring) {
4278 				init_prb_bdqc(po, rb, pg_vec, req_u);
4279 			} else {
4280 				struct tpacket_req3 *req3 = &req_u->req3;
4281 
4282 				if (req3->tp_retire_blk_tov ||
4283 				    req3->tp_sizeof_priv ||
4284 				    req3->tp_feature_req_word) {
4285 					err = -EINVAL;
4286 					goto out;
4287 				}
4288 			}
4289 			break;
4290 		default:
4291 			break;
4292 		}
4293 	}
4294 	/* Done */
4295 	else {
4296 		err = -EINVAL;
4297 		if (unlikely(req->tp_frame_nr))
4298 			goto out;
4299 	}
4300 
4301 
4302 	/* Detach socket from network */
4303 	spin_lock(&po->bind_lock);
4304 	was_running = po->running;
4305 	num = po->num;
4306 	if (was_running) {
4307 		po->num = 0;
4308 		__unregister_prot_hook(sk, false);
4309 	}
4310 	spin_unlock(&po->bind_lock);
4311 
4312 	synchronize_net();
4313 
4314 	err = -EBUSY;
4315 	mutex_lock(&po->pg_vec_lock);
4316 	if (closing || atomic_read(&po->mapped) == 0) {
4317 		err = 0;
4318 		spin_lock_bh(&rb_queue->lock);
4319 		swap(rb->pg_vec, pg_vec);
4320 		rb->frame_max = (req->tp_frame_nr - 1);
4321 		rb->head = 0;
4322 		rb->frame_size = req->tp_frame_size;
4323 		spin_unlock_bh(&rb_queue->lock);
4324 
4325 		swap(rb->pg_vec_order, order);
4326 		swap(rb->pg_vec_len, req->tp_block_nr);
4327 
4328 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4329 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4330 						tpacket_rcv : packet_rcv;
4331 		skb_queue_purge(rb_queue);
4332 		if (atomic_read(&po->mapped))
4333 			pr_err("packet_mmap: vma is busy: %d\n",
4334 			       atomic_read(&po->mapped));
4335 	}
4336 	mutex_unlock(&po->pg_vec_lock);
4337 
4338 	spin_lock(&po->bind_lock);
4339 	if (was_running) {
4340 		po->num = num;
4341 		register_prot_hook(sk);
4342 	}
4343 	spin_unlock(&po->bind_lock);
4344 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4345 		/* Because we don't support block-based V3 on tx-ring */
4346 		if (!tx_ring)
4347 			prb_shutdown_retire_blk_timer(po, rb_queue);
4348 	}
4349 
4350 	if (pg_vec)
4351 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4352 out:
4353 	return err;
4354 }
4355 
4356 static int packet_mmap(struct file *file, struct socket *sock,
4357 		struct vm_area_struct *vma)
4358 {
4359 	struct sock *sk = sock->sk;
4360 	struct packet_sock *po = pkt_sk(sk);
4361 	unsigned long size, expected_size;
4362 	struct packet_ring_buffer *rb;
4363 	unsigned long start;
4364 	int err = -EINVAL;
4365 	int i;
4366 
4367 	if (vma->vm_pgoff)
4368 		return -EINVAL;
4369 
4370 	mutex_lock(&po->pg_vec_lock);
4371 
4372 	expected_size = 0;
4373 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4374 		if (rb->pg_vec) {
4375 			expected_size += rb->pg_vec_len
4376 						* rb->pg_vec_pages
4377 						* PAGE_SIZE;
4378 		}
4379 	}
4380 
4381 	if (expected_size == 0)
4382 		goto out;
4383 
4384 	size = vma->vm_end - vma->vm_start;
4385 	if (size != expected_size)
4386 		goto out;
4387 
4388 	start = vma->vm_start;
4389 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4390 		if (rb->pg_vec == NULL)
4391 			continue;
4392 
4393 		for (i = 0; i < rb->pg_vec_len; i++) {
4394 			struct page *page;
4395 			void *kaddr = rb->pg_vec[i].buffer;
4396 			int pg_num;
4397 
4398 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4399 				page = pgv_to_page(kaddr);
4400 				err = vm_insert_page(vma, start, page);
4401 				if (unlikely(err))
4402 					goto out;
4403 				start += PAGE_SIZE;
4404 				kaddr += PAGE_SIZE;
4405 			}
4406 		}
4407 	}
4408 
4409 	atomic_inc(&po->mapped);
4410 	vma->vm_ops = &packet_mmap_ops;
4411 	err = 0;
4412 
4413 out:
4414 	mutex_unlock(&po->pg_vec_lock);
4415 	return err;
4416 }
4417 
4418 static const struct proto_ops packet_ops_spkt = {
4419 	.family =	PF_PACKET,
4420 	.owner =	THIS_MODULE,
4421 	.release =	packet_release,
4422 	.bind =		packet_bind_spkt,
4423 	.connect =	sock_no_connect,
4424 	.socketpair =	sock_no_socketpair,
4425 	.accept =	sock_no_accept,
4426 	.getname =	packet_getname_spkt,
4427 	.poll_mask =	datagram_poll_mask,
4428 	.ioctl =	packet_ioctl,
4429 	.listen =	sock_no_listen,
4430 	.shutdown =	sock_no_shutdown,
4431 	.setsockopt =	sock_no_setsockopt,
4432 	.getsockopt =	sock_no_getsockopt,
4433 	.sendmsg =	packet_sendmsg_spkt,
4434 	.recvmsg =	packet_recvmsg,
4435 	.mmap =		sock_no_mmap,
4436 	.sendpage =	sock_no_sendpage,
4437 };
4438 
4439 static const struct proto_ops packet_ops = {
4440 	.family =	PF_PACKET,
4441 	.owner =	THIS_MODULE,
4442 	.release =	packet_release,
4443 	.bind =		packet_bind,
4444 	.connect =	sock_no_connect,
4445 	.socketpair =	sock_no_socketpair,
4446 	.accept =	sock_no_accept,
4447 	.getname =	packet_getname,
4448 	.poll_mask =	packet_poll_mask,
4449 	.ioctl =	packet_ioctl,
4450 	.listen =	sock_no_listen,
4451 	.shutdown =	sock_no_shutdown,
4452 	.setsockopt =	packet_setsockopt,
4453 	.getsockopt =	packet_getsockopt,
4454 #ifdef CONFIG_COMPAT
4455 	.compat_setsockopt = compat_packet_setsockopt,
4456 #endif
4457 	.sendmsg =	packet_sendmsg,
4458 	.recvmsg =	packet_recvmsg,
4459 	.mmap =		packet_mmap,
4460 	.sendpage =	sock_no_sendpage,
4461 };
4462 
4463 static const struct net_proto_family packet_family_ops = {
4464 	.family =	PF_PACKET,
4465 	.create =	packet_create,
4466 	.owner	=	THIS_MODULE,
4467 };
4468 
4469 static struct notifier_block packet_netdev_notifier = {
4470 	.notifier_call =	packet_notifier,
4471 };
4472 
4473 #ifdef CONFIG_PROC_FS
4474 
4475 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4476 	__acquires(RCU)
4477 {
4478 	struct net *net = seq_file_net(seq);
4479 
4480 	rcu_read_lock();
4481 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4482 }
4483 
4484 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4485 {
4486 	struct net *net = seq_file_net(seq);
4487 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4488 }
4489 
4490 static void packet_seq_stop(struct seq_file *seq, void *v)
4491 	__releases(RCU)
4492 {
4493 	rcu_read_unlock();
4494 }
4495 
4496 static int packet_seq_show(struct seq_file *seq, void *v)
4497 {
4498 	if (v == SEQ_START_TOKEN)
4499 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4500 	else {
4501 		struct sock *s = sk_entry(v);
4502 		const struct packet_sock *po = pkt_sk(s);
4503 
4504 		seq_printf(seq,
4505 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4506 			   s,
4507 			   refcount_read(&s->sk_refcnt),
4508 			   s->sk_type,
4509 			   ntohs(po->num),
4510 			   po->ifindex,
4511 			   po->running,
4512 			   atomic_read(&s->sk_rmem_alloc),
4513 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4514 			   sock_i_ino(s));
4515 	}
4516 
4517 	return 0;
4518 }
4519 
4520 static const struct seq_operations packet_seq_ops = {
4521 	.start	= packet_seq_start,
4522 	.next	= packet_seq_next,
4523 	.stop	= packet_seq_stop,
4524 	.show	= packet_seq_show,
4525 };
4526 #endif
4527 
4528 static int __net_init packet_net_init(struct net *net)
4529 {
4530 	mutex_init(&net->packet.sklist_lock);
4531 	INIT_HLIST_HEAD(&net->packet.sklist);
4532 
4533 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4534 			sizeof(struct seq_net_private)))
4535 		return -ENOMEM;
4536 
4537 	return 0;
4538 }
4539 
4540 static void __net_exit packet_net_exit(struct net *net)
4541 {
4542 	remove_proc_entry("packet", net->proc_net);
4543 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4544 }
4545 
4546 static struct pernet_operations packet_net_ops = {
4547 	.init = packet_net_init,
4548 	.exit = packet_net_exit,
4549 };
4550 
4551 
4552 static void __exit packet_exit(void)
4553 {
4554 	unregister_netdevice_notifier(&packet_netdev_notifier);
4555 	unregister_pernet_subsys(&packet_net_ops);
4556 	sock_unregister(PF_PACKET);
4557 	proto_unregister(&packet_proto);
4558 }
4559 
4560 static int __init packet_init(void)
4561 {
4562 	int rc = proto_register(&packet_proto, 0);
4563 
4564 	if (rc != 0)
4565 		goto out;
4566 
4567 	sock_register(&packet_family_ops);
4568 	register_pernet_subsys(&packet_net_ops);
4569 	register_netdevice_notifier(&packet_netdev_notifier);
4570 out:
4571 	return rc;
4572 }
4573 
4574 module_init(packet_init);
4575 module_exit(packet_exit);
4576 MODULE_LICENSE("GPL");
4577 MODULE_ALIAS_NETPROTO(PF_PACKET);
4578