xref: /openbmc/linux/net/packet/af_packet.c (revision 95e9fd10)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 /*
97    Assumptions:
98    - if device has no dev->hard_header routine, it adds and removes ll header
99      inside itself. In this case ll header is invisible outside of device,
100      but higher levels still should reserve dev->hard_header_len.
101      Some devices are enough clever to reallocate skb, when header
102      will not fit to reserved space (tunnel), another ones are silly
103      (PPP).
104    - packet socket receives packets with pulled ll header,
105      so that SOCK_RAW should push it back.
106 
107 On receive:
108 -----------
109 
110 Incoming, dev->hard_header!=NULL
111    mac_header -> ll header
112    data       -> data
113 
114 Outgoing, dev->hard_header!=NULL
115    mac_header -> ll header
116    data       -> ll header
117 
118 Incoming, dev->hard_header==NULL
119    mac_header -> UNKNOWN position. It is very likely, that it points to ll
120 		 header.  PPP makes it, that is wrong, because introduce
121 		 assymetry between rx and tx paths.
122    data       -> data
123 
124 Outgoing, dev->hard_header==NULL
125    mac_header -> data. ll header is still not built!
126    data       -> data
127 
128 Resume
129   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
130 
131 
132 On transmit:
133 ------------
134 
135 dev->hard_header != NULL
136    mac_header -> ll header
137    data       -> ll header
138 
139 dev->hard_header == NULL (ll header is added by device, we cannot control it)
140    mac_header -> data
141    data       -> data
142 
143    We should set nh.raw on output to correct posistion,
144    packet classifier depends on it.
145  */
146 
147 /* Private packet socket structures. */
148 
149 struct packet_mclist {
150 	struct packet_mclist	*next;
151 	int			ifindex;
152 	int			count;
153 	unsigned short		type;
154 	unsigned short		alen;
155 	unsigned char		addr[MAX_ADDR_LEN];
156 };
157 /* identical to struct packet_mreq except it has
158  * a longer address field.
159  */
160 struct packet_mreq_max {
161 	int		mr_ifindex;
162 	unsigned short	mr_type;
163 	unsigned short	mr_alen;
164 	unsigned char	mr_address[MAX_ADDR_LEN];
165 };
166 
167 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
168 		int closing, int tx_ring);
169 
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 /* kbdq - kernel block descriptor queue */
179 struct tpacket_kbdq_core {
180 	struct pgv	*pkbdq;
181 	unsigned int	feature_req_word;
182 	unsigned int	hdrlen;
183 	unsigned char	reset_pending_on_curr_blk;
184 	unsigned char   delete_blk_timer;
185 	unsigned short	kactive_blk_num;
186 	unsigned short	blk_sizeof_priv;
187 
188 	/* last_kactive_blk_num:
189 	 * trick to see if user-space has caught up
190 	 * in order to avoid refreshing timer when every single pkt arrives.
191 	 */
192 	unsigned short	last_kactive_blk_num;
193 
194 	char		*pkblk_start;
195 	char		*pkblk_end;
196 	int		kblk_size;
197 	unsigned int	knum_blocks;
198 	uint64_t	knxt_seq_num;
199 	char		*prev;
200 	char		*nxt_offset;
201 	struct sk_buff	*skb;
202 
203 	atomic_t	blk_fill_in_prog;
204 
205 	/* Default is set to 8ms */
206 #define DEFAULT_PRB_RETIRE_TOV	(8)
207 
208 	unsigned short  retire_blk_tov;
209 	unsigned short  version;
210 	unsigned long	tov_in_jiffies;
211 
212 	/* timer to retire an outstanding block */
213 	struct timer_list retire_blk_timer;
214 };
215 
216 #define PGV_FROM_VMALLOC 1
217 struct pgv {
218 	char *buffer;
219 };
220 
221 struct packet_ring_buffer {
222 	struct pgv		*pg_vec;
223 	unsigned int		head;
224 	unsigned int		frames_per_block;
225 	unsigned int		frame_size;
226 	unsigned int		frame_max;
227 
228 	unsigned int		pg_vec_order;
229 	unsigned int		pg_vec_pages;
230 	unsigned int		pg_vec_len;
231 
232 	struct tpacket_kbdq_core	prb_bdqc;
233 	atomic_t		pending;
234 };
235 
236 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
237 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
238 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
239 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
240 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
241 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
242 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
243 
244 struct packet_sock;
245 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
246 
247 static void *packet_previous_frame(struct packet_sock *po,
248 		struct packet_ring_buffer *rb,
249 		int status);
250 static void packet_increment_head(struct packet_ring_buffer *buff);
251 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
252 			struct tpacket_block_desc *);
253 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
254 			struct packet_sock *);
255 static void prb_retire_current_block(struct tpacket_kbdq_core *,
256 		struct packet_sock *, unsigned int status);
257 static int prb_queue_frozen(struct tpacket_kbdq_core *);
258 static void prb_open_block(struct tpacket_kbdq_core *,
259 		struct tpacket_block_desc *);
260 static void prb_retire_rx_blk_timer_expired(unsigned long);
261 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
262 static void prb_init_blk_timer(struct packet_sock *,
263 		struct tpacket_kbdq_core *,
264 		void (*func) (unsigned long));
265 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
266 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
267 		struct tpacket3_hdr *);
268 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
269 		struct tpacket3_hdr *);
270 static void packet_flush_mclist(struct sock *sk);
271 
272 struct packet_fanout;
273 struct packet_sock {
274 	/* struct sock has to be the first member of packet_sock */
275 	struct sock		sk;
276 	struct packet_fanout	*fanout;
277 	struct tpacket_stats	stats;
278 	union  tpacket_stats_u	stats_u;
279 	struct packet_ring_buffer	rx_ring;
280 	struct packet_ring_buffer	tx_ring;
281 	int			copy_thresh;
282 	spinlock_t		bind_lock;
283 	struct mutex		pg_vec_lock;
284 	unsigned int		running:1,	/* prot_hook is attached*/
285 				auxdata:1,
286 				origdev:1,
287 				has_vnet_hdr:1;
288 	int			ifindex;	/* bound device		*/
289 	__be16			num;
290 	struct packet_mclist	*mclist;
291 	atomic_t		mapped;
292 	enum tpacket_versions	tp_version;
293 	unsigned int		tp_hdrlen;
294 	unsigned int		tp_reserve;
295 	unsigned int		tp_loss:1;
296 	unsigned int		tp_tstamp;
297 	struct packet_type	prot_hook ____cacheline_aligned_in_smp;
298 };
299 
300 #define PACKET_FANOUT_MAX	256
301 
302 struct packet_fanout {
303 #ifdef CONFIG_NET_NS
304 	struct net		*net;
305 #endif
306 	unsigned int		num_members;
307 	u16			id;
308 	u8			type;
309 	u8			defrag;
310 	atomic_t		rr_cur;
311 	struct list_head	list;
312 	struct sock		*arr[PACKET_FANOUT_MAX];
313 	spinlock_t		lock;
314 	atomic_t		sk_ref;
315 	struct packet_type	prot_hook ____cacheline_aligned_in_smp;
316 };
317 
318 struct packet_skb_cb {
319 	unsigned int origlen;
320 	union {
321 		struct sockaddr_pkt pkt;
322 		struct sockaddr_ll ll;
323 	} sa;
324 };
325 
326 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
327 
328 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
329 #define GET_PBLOCK_DESC(x, bid)	\
330 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
331 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
332 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
333 #define GET_NEXT_PRB_BLK_NUM(x) \
334 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
335 	((x)->kactive_blk_num+1) : 0)
336 
337 static struct packet_sock *pkt_sk(struct sock *sk)
338 {
339 	return (struct packet_sock *)sk;
340 }
341 
342 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
343 static void __fanout_link(struct sock *sk, struct packet_sock *po);
344 
345 /* register_prot_hook must be invoked with the po->bind_lock held,
346  * or from a context in which asynchronous accesses to the packet
347  * socket is not possible (packet_create()).
348  */
349 static void register_prot_hook(struct sock *sk)
350 {
351 	struct packet_sock *po = pkt_sk(sk);
352 	if (!po->running) {
353 		if (po->fanout)
354 			__fanout_link(sk, po);
355 		else
356 			dev_add_pack(&po->prot_hook);
357 		sock_hold(sk);
358 		po->running = 1;
359 	}
360 }
361 
362 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
363  * held.   If the sync parameter is true, we will temporarily drop
364  * the po->bind_lock and do a synchronize_net to make sure no
365  * asynchronous packet processing paths still refer to the elements
366  * of po->prot_hook.  If the sync parameter is false, it is the
367  * callers responsibility to take care of this.
368  */
369 static void __unregister_prot_hook(struct sock *sk, bool sync)
370 {
371 	struct packet_sock *po = pkt_sk(sk);
372 
373 	po->running = 0;
374 	if (po->fanout)
375 		__fanout_unlink(sk, po);
376 	else
377 		__dev_remove_pack(&po->prot_hook);
378 	__sock_put(sk);
379 
380 	if (sync) {
381 		spin_unlock(&po->bind_lock);
382 		synchronize_net();
383 		spin_lock(&po->bind_lock);
384 	}
385 }
386 
387 static void unregister_prot_hook(struct sock *sk, bool sync)
388 {
389 	struct packet_sock *po = pkt_sk(sk);
390 
391 	if (po->running)
392 		__unregister_prot_hook(sk, sync);
393 }
394 
395 static inline __pure struct page *pgv_to_page(void *addr)
396 {
397 	if (is_vmalloc_addr(addr))
398 		return vmalloc_to_page(addr);
399 	return virt_to_page(addr);
400 }
401 
402 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
403 {
404 	union {
405 		struct tpacket_hdr *h1;
406 		struct tpacket2_hdr *h2;
407 		void *raw;
408 	} h;
409 
410 	h.raw = frame;
411 	switch (po->tp_version) {
412 	case TPACKET_V1:
413 		h.h1->tp_status = status;
414 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
415 		break;
416 	case TPACKET_V2:
417 		h.h2->tp_status = status;
418 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
419 		break;
420 	case TPACKET_V3:
421 	default:
422 		WARN(1, "TPACKET version not supported.\n");
423 		BUG();
424 	}
425 
426 	smp_wmb();
427 }
428 
429 static int __packet_get_status(struct packet_sock *po, void *frame)
430 {
431 	union {
432 		struct tpacket_hdr *h1;
433 		struct tpacket2_hdr *h2;
434 		void *raw;
435 	} h;
436 
437 	smp_rmb();
438 
439 	h.raw = frame;
440 	switch (po->tp_version) {
441 	case TPACKET_V1:
442 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
443 		return h.h1->tp_status;
444 	case TPACKET_V2:
445 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
446 		return h.h2->tp_status;
447 	case TPACKET_V3:
448 	default:
449 		WARN(1, "TPACKET version not supported.\n");
450 		BUG();
451 		return 0;
452 	}
453 }
454 
455 static void *packet_lookup_frame(struct packet_sock *po,
456 		struct packet_ring_buffer *rb,
457 		unsigned int position,
458 		int status)
459 {
460 	unsigned int pg_vec_pos, frame_offset;
461 	union {
462 		struct tpacket_hdr *h1;
463 		struct tpacket2_hdr *h2;
464 		void *raw;
465 	} h;
466 
467 	pg_vec_pos = position / rb->frames_per_block;
468 	frame_offset = position % rb->frames_per_block;
469 
470 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
471 		(frame_offset * rb->frame_size);
472 
473 	if (status != __packet_get_status(po, h.raw))
474 		return NULL;
475 
476 	return h.raw;
477 }
478 
479 static void *packet_current_frame(struct packet_sock *po,
480 		struct packet_ring_buffer *rb,
481 		int status)
482 {
483 	return packet_lookup_frame(po, rb, rb->head, status);
484 }
485 
486 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
487 {
488 	del_timer_sync(&pkc->retire_blk_timer);
489 }
490 
491 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
492 		int tx_ring,
493 		struct sk_buff_head *rb_queue)
494 {
495 	struct tpacket_kbdq_core *pkc;
496 
497 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
498 
499 	spin_lock(&rb_queue->lock);
500 	pkc->delete_blk_timer = 1;
501 	spin_unlock(&rb_queue->lock);
502 
503 	prb_del_retire_blk_timer(pkc);
504 }
505 
506 static void prb_init_blk_timer(struct packet_sock *po,
507 		struct tpacket_kbdq_core *pkc,
508 		void (*func) (unsigned long))
509 {
510 	init_timer(&pkc->retire_blk_timer);
511 	pkc->retire_blk_timer.data = (long)po;
512 	pkc->retire_blk_timer.function = func;
513 	pkc->retire_blk_timer.expires = jiffies;
514 }
515 
516 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
517 {
518 	struct tpacket_kbdq_core *pkc;
519 
520 	if (tx_ring)
521 		BUG();
522 
523 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
524 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
525 }
526 
527 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
528 				int blk_size_in_bytes)
529 {
530 	struct net_device *dev;
531 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
532 	struct ethtool_cmd ecmd;
533 	int err;
534 	u32 speed;
535 
536 	rtnl_lock();
537 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
538 	if (unlikely(!dev)) {
539 		rtnl_unlock();
540 		return DEFAULT_PRB_RETIRE_TOV;
541 	}
542 	err = __ethtool_get_settings(dev, &ecmd);
543 	speed = ethtool_cmd_speed(&ecmd);
544 	rtnl_unlock();
545 	if (!err) {
546 		/*
547 		 * If the link speed is so slow you don't really
548 		 * need to worry about perf anyways
549 		 */
550 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
551 			return DEFAULT_PRB_RETIRE_TOV;
552 		} else {
553 			msec = 1;
554 			div = speed / 1000;
555 		}
556 	}
557 
558 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
559 
560 	if (div)
561 		mbits /= div;
562 
563 	tmo = mbits * msec;
564 
565 	if (div)
566 		return tmo+1;
567 	return tmo;
568 }
569 
570 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
571 			union tpacket_req_u *req_u)
572 {
573 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
574 }
575 
576 static void init_prb_bdqc(struct packet_sock *po,
577 			struct packet_ring_buffer *rb,
578 			struct pgv *pg_vec,
579 			union tpacket_req_u *req_u, int tx_ring)
580 {
581 	struct tpacket_kbdq_core *p1 = &rb->prb_bdqc;
582 	struct tpacket_block_desc *pbd;
583 
584 	memset(p1, 0x0, sizeof(*p1));
585 
586 	p1->knxt_seq_num = 1;
587 	p1->pkbdq = pg_vec;
588 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
589 	p1->pkblk_start	= pg_vec[0].buffer;
590 	p1->kblk_size = req_u->req3.tp_block_size;
591 	p1->knum_blocks	= req_u->req3.tp_block_nr;
592 	p1->hdrlen = po->tp_hdrlen;
593 	p1->version = po->tp_version;
594 	p1->last_kactive_blk_num = 0;
595 	po->stats_u.stats3.tp_freeze_q_cnt = 0;
596 	if (req_u->req3.tp_retire_blk_tov)
597 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
598 	else
599 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
600 						req_u->req3.tp_block_size);
601 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
602 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
603 
604 	prb_init_ft_ops(p1, req_u);
605 	prb_setup_retire_blk_timer(po, tx_ring);
606 	prb_open_block(p1, pbd);
607 }
608 
609 /*  Do NOT update the last_blk_num first.
610  *  Assumes sk_buff_head lock is held.
611  */
612 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
613 {
614 	mod_timer(&pkc->retire_blk_timer,
615 			jiffies + pkc->tov_in_jiffies);
616 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
617 }
618 
619 /*
620  * Timer logic:
621  * 1) We refresh the timer only when we open a block.
622  *    By doing this we don't waste cycles refreshing the timer
623  *	  on packet-by-packet basis.
624  *
625  * With a 1MB block-size, on a 1Gbps line, it will take
626  * i) ~8 ms to fill a block + ii) memcpy etc.
627  * In this cut we are not accounting for the memcpy time.
628  *
629  * So, if the user sets the 'tmo' to 10ms then the timer
630  * will never fire while the block is still getting filled
631  * (which is what we want). However, the user could choose
632  * to close a block early and that's fine.
633  *
634  * But when the timer does fire, we check whether or not to refresh it.
635  * Since the tmo granularity is in msecs, it is not too expensive
636  * to refresh the timer, lets say every '8' msecs.
637  * Either the user can set the 'tmo' or we can derive it based on
638  * a) line-speed and b) block-size.
639  * prb_calc_retire_blk_tmo() calculates the tmo.
640  *
641  */
642 static void prb_retire_rx_blk_timer_expired(unsigned long data)
643 {
644 	struct packet_sock *po = (struct packet_sock *)data;
645 	struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc;
646 	unsigned int frozen;
647 	struct tpacket_block_desc *pbd;
648 
649 	spin_lock(&po->sk.sk_receive_queue.lock);
650 
651 	frozen = prb_queue_frozen(pkc);
652 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
653 
654 	if (unlikely(pkc->delete_blk_timer))
655 		goto out;
656 
657 	/* We only need to plug the race when the block is partially filled.
658 	 * tpacket_rcv:
659 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
660 	 *		copy_bits() is in progress ...
661 	 *		timer fires on other cpu:
662 	 *		we can't retire the current block because copy_bits
663 	 *		is in progress.
664 	 *
665 	 */
666 	if (BLOCK_NUM_PKTS(pbd)) {
667 		while (atomic_read(&pkc->blk_fill_in_prog)) {
668 			/* Waiting for skb_copy_bits to finish... */
669 			cpu_relax();
670 		}
671 	}
672 
673 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
674 		if (!frozen) {
675 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
676 			if (!prb_dispatch_next_block(pkc, po))
677 				goto refresh_timer;
678 			else
679 				goto out;
680 		} else {
681 			/* Case 1. Queue was frozen because user-space was
682 			 *	   lagging behind.
683 			 */
684 			if (prb_curr_blk_in_use(pkc, pbd)) {
685 				/*
686 				 * Ok, user-space is still behind.
687 				 * So just refresh the timer.
688 				 */
689 				goto refresh_timer;
690 			} else {
691 			       /* Case 2. queue was frozen,user-space caught up,
692 				* now the link went idle && the timer fired.
693 				* We don't have a block to close.So we open this
694 				* block and restart the timer.
695 				* opening a block thaws the queue,restarts timer
696 				* Thawing/timer-refresh is a side effect.
697 				*/
698 				prb_open_block(pkc, pbd);
699 				goto out;
700 			}
701 		}
702 	}
703 
704 refresh_timer:
705 	_prb_refresh_rx_retire_blk_timer(pkc);
706 
707 out:
708 	spin_unlock(&po->sk.sk_receive_queue.lock);
709 }
710 
711 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
712 		struct tpacket_block_desc *pbd1, __u32 status)
713 {
714 	/* Flush everything minus the block header */
715 
716 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
717 	u8 *start, *end;
718 
719 	start = (u8 *)pbd1;
720 
721 	/* Skip the block header(we know header WILL fit in 4K) */
722 	start += PAGE_SIZE;
723 
724 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
725 	for (; start < end; start += PAGE_SIZE)
726 		flush_dcache_page(pgv_to_page(start));
727 
728 	smp_wmb();
729 #endif
730 
731 	/* Now update the block status. */
732 
733 	BLOCK_STATUS(pbd1) = status;
734 
735 	/* Flush the block header */
736 
737 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
738 	start = (u8 *)pbd1;
739 	flush_dcache_page(pgv_to_page(start));
740 
741 	smp_wmb();
742 #endif
743 }
744 
745 /*
746  * Side effect:
747  *
748  * 1) flush the block
749  * 2) Increment active_blk_num
750  *
751  * Note:We DONT refresh the timer on purpose.
752  *	Because almost always the next block will be opened.
753  */
754 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
755 		struct tpacket_block_desc *pbd1,
756 		struct packet_sock *po, unsigned int stat)
757 {
758 	__u32 status = TP_STATUS_USER | stat;
759 
760 	struct tpacket3_hdr *last_pkt;
761 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
762 
763 	if (po->stats.tp_drops)
764 		status |= TP_STATUS_LOSING;
765 
766 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
767 	last_pkt->tp_next_offset = 0;
768 
769 	/* Get the ts of the last pkt */
770 	if (BLOCK_NUM_PKTS(pbd1)) {
771 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
772 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
773 	} else {
774 		/* Ok, we tmo'd - so get the current time */
775 		struct timespec ts;
776 		getnstimeofday(&ts);
777 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
778 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
779 	}
780 
781 	smp_wmb();
782 
783 	/* Flush the block */
784 	prb_flush_block(pkc1, pbd1, status);
785 
786 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
787 }
788 
789 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
790 {
791 	pkc->reset_pending_on_curr_blk = 0;
792 }
793 
794 /*
795  * Side effect of opening a block:
796  *
797  * 1) prb_queue is thawed.
798  * 2) retire_blk_timer is refreshed.
799  *
800  */
801 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
802 	struct tpacket_block_desc *pbd1)
803 {
804 	struct timespec ts;
805 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
806 
807 	smp_rmb();
808 
809 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd1))) {
810 
811 		/* We could have just memset this but we will lose the
812 		 * flexibility of making the priv area sticky
813 		 */
814 		BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
815 		BLOCK_NUM_PKTS(pbd1) = 0;
816 		BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
817 		getnstimeofday(&ts);
818 		h1->ts_first_pkt.ts_sec = ts.tv_sec;
819 		h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
820 		pkc1->pkblk_start = (char *)pbd1;
821 		pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
822 		BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
823 		BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
824 		pbd1->version = pkc1->version;
825 		pkc1->prev = pkc1->nxt_offset;
826 		pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
827 		prb_thaw_queue(pkc1);
828 		_prb_refresh_rx_retire_blk_timer(pkc1);
829 
830 		smp_wmb();
831 
832 		return;
833 	}
834 
835 	WARN(1, "ERROR block:%p is NOT FREE status:%d kactive_blk_num:%d\n",
836 		pbd1, BLOCK_STATUS(pbd1), pkc1->kactive_blk_num);
837 	dump_stack();
838 	BUG();
839 }
840 
841 /*
842  * Queue freeze logic:
843  * 1) Assume tp_block_nr = 8 blocks.
844  * 2) At time 't0', user opens Rx ring.
845  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
846  * 4) user-space is either sleeping or processing block '0'.
847  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
848  *    it will close block-7,loop around and try to fill block '0'.
849  *    call-flow:
850  *    __packet_lookup_frame_in_block
851  *      prb_retire_current_block()
852  *      prb_dispatch_next_block()
853  *        |->(BLOCK_STATUS == USER) evaluates to true
854  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
855  * 6) Now there are two cases:
856  *    6.1) Link goes idle right after the queue is frozen.
857  *         But remember, the last open_block() refreshed the timer.
858  *         When this timer expires,it will refresh itself so that we can
859  *         re-open block-0 in near future.
860  *    6.2) Link is busy and keeps on receiving packets. This is a simple
861  *         case and __packet_lookup_frame_in_block will check if block-0
862  *         is free and can now be re-used.
863  */
864 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
865 				  struct packet_sock *po)
866 {
867 	pkc->reset_pending_on_curr_blk = 1;
868 	po->stats_u.stats3.tp_freeze_q_cnt++;
869 }
870 
871 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
872 
873 /*
874  * If the next block is free then we will dispatch it
875  * and return a good offset.
876  * Else, we will freeze the queue.
877  * So, caller must check the return value.
878  */
879 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
880 		struct packet_sock *po)
881 {
882 	struct tpacket_block_desc *pbd;
883 
884 	smp_rmb();
885 
886 	/* 1. Get current block num */
887 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
888 
889 	/* 2. If this block is currently in_use then freeze the queue */
890 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
891 		prb_freeze_queue(pkc, po);
892 		return NULL;
893 	}
894 
895 	/*
896 	 * 3.
897 	 * open this block and return the offset where the first packet
898 	 * needs to get stored.
899 	 */
900 	prb_open_block(pkc, pbd);
901 	return (void *)pkc->nxt_offset;
902 }
903 
904 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
905 		struct packet_sock *po, unsigned int status)
906 {
907 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
908 
909 	/* retire/close the current block */
910 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
911 		/*
912 		 * Plug the case where copy_bits() is in progress on
913 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
914 		 * have space to copy the pkt in the current block and
915 		 * called prb_retire_current_block()
916 		 *
917 		 * We don't need to worry about the TMO case because
918 		 * the timer-handler already handled this case.
919 		 */
920 		if (!(status & TP_STATUS_BLK_TMO)) {
921 			while (atomic_read(&pkc->blk_fill_in_prog)) {
922 				/* Waiting for skb_copy_bits to finish... */
923 				cpu_relax();
924 			}
925 		}
926 		prb_close_block(pkc, pbd, po, status);
927 		return;
928 	}
929 
930 	WARN(1, "ERROR-pbd[%d]:%p\n", pkc->kactive_blk_num, pbd);
931 	dump_stack();
932 	BUG();
933 }
934 
935 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
936 				      struct tpacket_block_desc *pbd)
937 {
938 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
939 }
940 
941 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
942 {
943 	return pkc->reset_pending_on_curr_blk;
944 }
945 
946 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
947 {
948 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
949 	atomic_dec(&pkc->blk_fill_in_prog);
950 }
951 
952 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
953 			struct tpacket3_hdr *ppd)
954 {
955 	ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb);
956 }
957 
958 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
959 			struct tpacket3_hdr *ppd)
960 {
961 	ppd->hv1.tp_rxhash = 0;
962 }
963 
964 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
965 			struct tpacket3_hdr *ppd)
966 {
967 	if (vlan_tx_tag_present(pkc->skb)) {
968 		ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
969 		ppd->tp_status = TP_STATUS_VLAN_VALID;
970 	} else {
971 		ppd->hv1.tp_vlan_tci = ppd->tp_status = 0;
972 	}
973 }
974 
975 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
976 			struct tpacket3_hdr *ppd)
977 {
978 	prb_fill_vlan_info(pkc, ppd);
979 
980 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
981 		prb_fill_rxhash(pkc, ppd);
982 	else
983 		prb_clear_rxhash(pkc, ppd);
984 }
985 
986 static void prb_fill_curr_block(char *curr,
987 				struct tpacket_kbdq_core *pkc,
988 				struct tpacket_block_desc *pbd,
989 				unsigned int len)
990 {
991 	struct tpacket3_hdr *ppd;
992 
993 	ppd  = (struct tpacket3_hdr *)curr;
994 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
995 	pkc->prev = curr;
996 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
997 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
998 	BLOCK_NUM_PKTS(pbd) += 1;
999 	atomic_inc(&pkc->blk_fill_in_prog);
1000 	prb_run_all_ft_ops(pkc, ppd);
1001 }
1002 
1003 /* Assumes caller has the sk->rx_queue.lock */
1004 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1005 					    struct sk_buff *skb,
1006 						int status,
1007 					    unsigned int len
1008 					    )
1009 {
1010 	struct tpacket_kbdq_core *pkc;
1011 	struct tpacket_block_desc *pbd;
1012 	char *curr, *end;
1013 
1014 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1015 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1016 
1017 	/* Queue is frozen when user space is lagging behind */
1018 	if (prb_queue_frozen(pkc)) {
1019 		/*
1020 		 * Check if that last block which caused the queue to freeze,
1021 		 * is still in_use by user-space.
1022 		 */
1023 		if (prb_curr_blk_in_use(pkc, pbd)) {
1024 			/* Can't record this packet */
1025 			return NULL;
1026 		} else {
1027 			/*
1028 			 * Ok, the block was released by user-space.
1029 			 * Now let's open that block.
1030 			 * opening a block also thaws the queue.
1031 			 * Thawing is a side effect.
1032 			 */
1033 			prb_open_block(pkc, pbd);
1034 		}
1035 	}
1036 
1037 	smp_mb();
1038 	curr = pkc->nxt_offset;
1039 	pkc->skb = skb;
1040 	end = (char *)pbd + pkc->kblk_size;
1041 
1042 	/* first try the current block */
1043 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1044 		prb_fill_curr_block(curr, pkc, pbd, len);
1045 		return (void *)curr;
1046 	}
1047 
1048 	/* Ok, close the current block */
1049 	prb_retire_current_block(pkc, po, 0);
1050 
1051 	/* Now, try to dispatch the next block */
1052 	curr = (char *)prb_dispatch_next_block(pkc, po);
1053 	if (curr) {
1054 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1055 		prb_fill_curr_block(curr, pkc, pbd, len);
1056 		return (void *)curr;
1057 	}
1058 
1059 	/*
1060 	 * No free blocks are available.user_space hasn't caught up yet.
1061 	 * Queue was just frozen and now this packet will get dropped.
1062 	 */
1063 	return NULL;
1064 }
1065 
1066 static void *packet_current_rx_frame(struct packet_sock *po,
1067 					    struct sk_buff *skb,
1068 					    int status, unsigned int len)
1069 {
1070 	char *curr = NULL;
1071 	switch (po->tp_version) {
1072 	case TPACKET_V1:
1073 	case TPACKET_V2:
1074 		curr = packet_lookup_frame(po, &po->rx_ring,
1075 					po->rx_ring.head, status);
1076 		return curr;
1077 	case TPACKET_V3:
1078 		return __packet_lookup_frame_in_block(po, skb, status, len);
1079 	default:
1080 		WARN(1, "TPACKET version not supported\n");
1081 		BUG();
1082 		return NULL;
1083 	}
1084 }
1085 
1086 static void *prb_lookup_block(struct packet_sock *po,
1087 				     struct packet_ring_buffer *rb,
1088 				     unsigned int previous,
1089 				     int status)
1090 {
1091 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1092 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, previous);
1093 
1094 	if (status != BLOCK_STATUS(pbd))
1095 		return NULL;
1096 	return pbd;
1097 }
1098 
1099 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1100 {
1101 	unsigned int prev;
1102 	if (rb->prb_bdqc.kactive_blk_num)
1103 		prev = rb->prb_bdqc.kactive_blk_num-1;
1104 	else
1105 		prev = rb->prb_bdqc.knum_blocks-1;
1106 	return prev;
1107 }
1108 
1109 /* Assumes caller has held the rx_queue.lock */
1110 static void *__prb_previous_block(struct packet_sock *po,
1111 					 struct packet_ring_buffer *rb,
1112 					 int status)
1113 {
1114 	unsigned int previous = prb_previous_blk_num(rb);
1115 	return prb_lookup_block(po, rb, previous, status);
1116 }
1117 
1118 static void *packet_previous_rx_frame(struct packet_sock *po,
1119 					     struct packet_ring_buffer *rb,
1120 					     int status)
1121 {
1122 	if (po->tp_version <= TPACKET_V2)
1123 		return packet_previous_frame(po, rb, status);
1124 
1125 	return __prb_previous_block(po, rb, status);
1126 }
1127 
1128 static void packet_increment_rx_head(struct packet_sock *po,
1129 					    struct packet_ring_buffer *rb)
1130 {
1131 	switch (po->tp_version) {
1132 	case TPACKET_V1:
1133 	case TPACKET_V2:
1134 		return packet_increment_head(rb);
1135 	case TPACKET_V3:
1136 	default:
1137 		WARN(1, "TPACKET version not supported.\n");
1138 		BUG();
1139 		return;
1140 	}
1141 }
1142 
1143 static void *packet_previous_frame(struct packet_sock *po,
1144 		struct packet_ring_buffer *rb,
1145 		int status)
1146 {
1147 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1148 	return packet_lookup_frame(po, rb, previous, status);
1149 }
1150 
1151 static void packet_increment_head(struct packet_ring_buffer *buff)
1152 {
1153 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1154 }
1155 
1156 static void packet_sock_destruct(struct sock *sk)
1157 {
1158 	skb_queue_purge(&sk->sk_error_queue);
1159 
1160 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1161 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1162 
1163 	if (!sock_flag(sk, SOCK_DEAD)) {
1164 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1165 		return;
1166 	}
1167 
1168 	sk_refcnt_debug_dec(sk);
1169 }
1170 
1171 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1172 {
1173 	int x = atomic_read(&f->rr_cur) + 1;
1174 
1175 	if (x >= num)
1176 		x = 0;
1177 
1178 	return x;
1179 }
1180 
1181 static struct sock *fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1182 {
1183 	u32 idx, hash = skb->rxhash;
1184 
1185 	idx = ((u64)hash * num) >> 32;
1186 
1187 	return f->arr[idx];
1188 }
1189 
1190 static struct sock *fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1191 {
1192 	int cur, old;
1193 
1194 	cur = atomic_read(&f->rr_cur);
1195 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1196 				     fanout_rr_next(f, num))) != cur)
1197 		cur = old;
1198 	return f->arr[cur];
1199 }
1200 
1201 static struct sock *fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1202 {
1203 	unsigned int cpu = smp_processor_id();
1204 
1205 	return f->arr[cpu % num];
1206 }
1207 
1208 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1209 			     struct packet_type *pt, struct net_device *orig_dev)
1210 {
1211 	struct packet_fanout *f = pt->af_packet_priv;
1212 	unsigned int num = f->num_members;
1213 	struct packet_sock *po;
1214 	struct sock *sk;
1215 
1216 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1217 	    !num) {
1218 		kfree_skb(skb);
1219 		return 0;
1220 	}
1221 
1222 	switch (f->type) {
1223 	case PACKET_FANOUT_HASH:
1224 	default:
1225 		if (f->defrag) {
1226 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1227 			if (!skb)
1228 				return 0;
1229 		}
1230 		skb_get_rxhash(skb);
1231 		sk = fanout_demux_hash(f, skb, num);
1232 		break;
1233 	case PACKET_FANOUT_LB:
1234 		sk = fanout_demux_lb(f, skb, num);
1235 		break;
1236 	case PACKET_FANOUT_CPU:
1237 		sk = fanout_demux_cpu(f, skb, num);
1238 		break;
1239 	}
1240 
1241 	po = pkt_sk(sk);
1242 
1243 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1244 }
1245 
1246 static DEFINE_MUTEX(fanout_mutex);
1247 static LIST_HEAD(fanout_list);
1248 
1249 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1250 {
1251 	struct packet_fanout *f = po->fanout;
1252 
1253 	spin_lock(&f->lock);
1254 	f->arr[f->num_members] = sk;
1255 	smp_wmb();
1256 	f->num_members++;
1257 	spin_unlock(&f->lock);
1258 }
1259 
1260 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1261 {
1262 	struct packet_fanout *f = po->fanout;
1263 	int i;
1264 
1265 	spin_lock(&f->lock);
1266 	for (i = 0; i < f->num_members; i++) {
1267 		if (f->arr[i] == sk)
1268 			break;
1269 	}
1270 	BUG_ON(i >= f->num_members);
1271 	f->arr[i] = f->arr[f->num_members - 1];
1272 	f->num_members--;
1273 	spin_unlock(&f->lock);
1274 }
1275 
1276 static bool match_fanout_group(struct packet_type *ptype, struct sock * sk)
1277 {
1278 	if (ptype->af_packet_priv == (void*)((struct packet_sock *)sk)->fanout)
1279 		return true;
1280 
1281 	return false;
1282 }
1283 
1284 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1285 {
1286 	struct packet_sock *po = pkt_sk(sk);
1287 	struct packet_fanout *f, *match;
1288 	u8 type = type_flags & 0xff;
1289 	u8 defrag = (type_flags & PACKET_FANOUT_FLAG_DEFRAG) ? 1 : 0;
1290 	int err;
1291 
1292 	switch (type) {
1293 	case PACKET_FANOUT_HASH:
1294 	case PACKET_FANOUT_LB:
1295 	case PACKET_FANOUT_CPU:
1296 		break;
1297 	default:
1298 		return -EINVAL;
1299 	}
1300 
1301 	if (!po->running)
1302 		return -EINVAL;
1303 
1304 	if (po->fanout)
1305 		return -EALREADY;
1306 
1307 	mutex_lock(&fanout_mutex);
1308 	match = NULL;
1309 	list_for_each_entry(f, &fanout_list, list) {
1310 		if (f->id == id &&
1311 		    read_pnet(&f->net) == sock_net(sk)) {
1312 			match = f;
1313 			break;
1314 		}
1315 	}
1316 	err = -EINVAL;
1317 	if (match && match->defrag != defrag)
1318 		goto out;
1319 	if (!match) {
1320 		err = -ENOMEM;
1321 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1322 		if (!match)
1323 			goto out;
1324 		write_pnet(&match->net, sock_net(sk));
1325 		match->id = id;
1326 		match->type = type;
1327 		match->defrag = defrag;
1328 		atomic_set(&match->rr_cur, 0);
1329 		INIT_LIST_HEAD(&match->list);
1330 		spin_lock_init(&match->lock);
1331 		atomic_set(&match->sk_ref, 0);
1332 		match->prot_hook.type = po->prot_hook.type;
1333 		match->prot_hook.dev = po->prot_hook.dev;
1334 		match->prot_hook.func = packet_rcv_fanout;
1335 		match->prot_hook.af_packet_priv = match;
1336 		match->prot_hook.id_match = match_fanout_group;
1337 		dev_add_pack(&match->prot_hook);
1338 		list_add(&match->list, &fanout_list);
1339 	}
1340 	err = -EINVAL;
1341 	if (match->type == type &&
1342 	    match->prot_hook.type == po->prot_hook.type &&
1343 	    match->prot_hook.dev == po->prot_hook.dev) {
1344 		err = -ENOSPC;
1345 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1346 			__dev_remove_pack(&po->prot_hook);
1347 			po->fanout = match;
1348 			atomic_inc(&match->sk_ref);
1349 			__fanout_link(sk, po);
1350 			err = 0;
1351 		}
1352 	}
1353 out:
1354 	mutex_unlock(&fanout_mutex);
1355 	return err;
1356 }
1357 
1358 static void fanout_release(struct sock *sk)
1359 {
1360 	struct packet_sock *po = pkt_sk(sk);
1361 	struct packet_fanout *f;
1362 
1363 	f = po->fanout;
1364 	if (!f)
1365 		return;
1366 
1367 	po->fanout = NULL;
1368 
1369 	mutex_lock(&fanout_mutex);
1370 	if (atomic_dec_and_test(&f->sk_ref)) {
1371 		list_del(&f->list);
1372 		dev_remove_pack(&f->prot_hook);
1373 		kfree(f);
1374 	}
1375 	mutex_unlock(&fanout_mutex);
1376 }
1377 
1378 static const struct proto_ops packet_ops;
1379 
1380 static const struct proto_ops packet_ops_spkt;
1381 
1382 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1383 			   struct packet_type *pt, struct net_device *orig_dev)
1384 {
1385 	struct sock *sk;
1386 	struct sockaddr_pkt *spkt;
1387 
1388 	/*
1389 	 *	When we registered the protocol we saved the socket in the data
1390 	 *	field for just this event.
1391 	 */
1392 
1393 	sk = pt->af_packet_priv;
1394 
1395 	/*
1396 	 *	Yank back the headers [hope the device set this
1397 	 *	right or kerboom...]
1398 	 *
1399 	 *	Incoming packets have ll header pulled,
1400 	 *	push it back.
1401 	 *
1402 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1403 	 *	so that this procedure is noop.
1404 	 */
1405 
1406 	if (skb->pkt_type == PACKET_LOOPBACK)
1407 		goto out;
1408 
1409 	if (!net_eq(dev_net(dev), sock_net(sk)))
1410 		goto out;
1411 
1412 	skb = skb_share_check(skb, GFP_ATOMIC);
1413 	if (skb == NULL)
1414 		goto oom;
1415 
1416 	/* drop any routing info */
1417 	skb_dst_drop(skb);
1418 
1419 	/* drop conntrack reference */
1420 	nf_reset(skb);
1421 
1422 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1423 
1424 	skb_push(skb, skb->data - skb_mac_header(skb));
1425 
1426 	/*
1427 	 *	The SOCK_PACKET socket receives _all_ frames.
1428 	 */
1429 
1430 	spkt->spkt_family = dev->type;
1431 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1432 	spkt->spkt_protocol = skb->protocol;
1433 
1434 	/*
1435 	 *	Charge the memory to the socket. This is done specifically
1436 	 *	to prevent sockets using all the memory up.
1437 	 */
1438 
1439 	if (sock_queue_rcv_skb(sk, skb) == 0)
1440 		return 0;
1441 
1442 out:
1443 	kfree_skb(skb);
1444 oom:
1445 	return 0;
1446 }
1447 
1448 
1449 /*
1450  *	Output a raw packet to a device layer. This bypasses all the other
1451  *	protocol layers and you must therefore supply it with a complete frame
1452  */
1453 
1454 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1455 			       struct msghdr *msg, size_t len)
1456 {
1457 	struct sock *sk = sock->sk;
1458 	struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name;
1459 	struct sk_buff *skb = NULL;
1460 	struct net_device *dev;
1461 	__be16 proto = 0;
1462 	int err;
1463 	int extra_len = 0;
1464 
1465 	/*
1466 	 *	Get and verify the address.
1467 	 */
1468 
1469 	if (saddr) {
1470 		if (msg->msg_namelen < sizeof(struct sockaddr))
1471 			return -EINVAL;
1472 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1473 			proto = saddr->spkt_protocol;
1474 	} else
1475 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1476 
1477 	/*
1478 	 *	Find the device first to size check it
1479 	 */
1480 
1481 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1482 retry:
1483 	rcu_read_lock();
1484 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1485 	err = -ENODEV;
1486 	if (dev == NULL)
1487 		goto out_unlock;
1488 
1489 	err = -ENETDOWN;
1490 	if (!(dev->flags & IFF_UP))
1491 		goto out_unlock;
1492 
1493 	/*
1494 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1495 	 * raw protocol and you must do your own fragmentation at this level.
1496 	 */
1497 
1498 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1499 		if (!netif_supports_nofcs(dev)) {
1500 			err = -EPROTONOSUPPORT;
1501 			goto out_unlock;
1502 		}
1503 		extra_len = 4; /* We're doing our own CRC */
1504 	}
1505 
1506 	err = -EMSGSIZE;
1507 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1508 		goto out_unlock;
1509 
1510 	if (!skb) {
1511 		size_t reserved = LL_RESERVED_SPACE(dev);
1512 		int tlen = dev->needed_tailroom;
1513 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1514 
1515 		rcu_read_unlock();
1516 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1517 		if (skb == NULL)
1518 			return -ENOBUFS;
1519 		/* FIXME: Save some space for broken drivers that write a hard
1520 		 * header at transmission time by themselves. PPP is the notable
1521 		 * one here. This should really be fixed at the driver level.
1522 		 */
1523 		skb_reserve(skb, reserved);
1524 		skb_reset_network_header(skb);
1525 
1526 		/* Try to align data part correctly */
1527 		if (hhlen) {
1528 			skb->data -= hhlen;
1529 			skb->tail -= hhlen;
1530 			if (len < hhlen)
1531 				skb_reset_network_header(skb);
1532 		}
1533 		err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1534 		if (err)
1535 			goto out_free;
1536 		goto retry;
1537 	}
1538 
1539 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1540 		/* Earlier code assumed this would be a VLAN pkt,
1541 		 * double-check this now that we have the actual
1542 		 * packet in hand.
1543 		 */
1544 		struct ethhdr *ehdr;
1545 		skb_reset_mac_header(skb);
1546 		ehdr = eth_hdr(skb);
1547 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1548 			err = -EMSGSIZE;
1549 			goto out_unlock;
1550 		}
1551 	}
1552 
1553 	skb->protocol = proto;
1554 	skb->dev = dev;
1555 	skb->priority = sk->sk_priority;
1556 	skb->mark = sk->sk_mark;
1557 	err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1558 	if (err < 0)
1559 		goto out_unlock;
1560 
1561 	if (unlikely(extra_len == 4))
1562 		skb->no_fcs = 1;
1563 
1564 	dev_queue_xmit(skb);
1565 	rcu_read_unlock();
1566 	return len;
1567 
1568 out_unlock:
1569 	rcu_read_unlock();
1570 out_free:
1571 	kfree_skb(skb);
1572 	return err;
1573 }
1574 
1575 static unsigned int run_filter(const struct sk_buff *skb,
1576 				      const struct sock *sk,
1577 				      unsigned int res)
1578 {
1579 	struct sk_filter *filter;
1580 
1581 	rcu_read_lock();
1582 	filter = rcu_dereference(sk->sk_filter);
1583 	if (filter != NULL)
1584 		res = SK_RUN_FILTER(filter, skb);
1585 	rcu_read_unlock();
1586 
1587 	return res;
1588 }
1589 
1590 /*
1591  * This function makes lazy skb cloning in hope that most of packets
1592  * are discarded by BPF.
1593  *
1594  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1595  * and skb->cb are mangled. It works because (and until) packets
1596  * falling here are owned by current CPU. Output packets are cloned
1597  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1598  * sequencially, so that if we return skb to original state on exit,
1599  * we will not harm anyone.
1600  */
1601 
1602 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1603 		      struct packet_type *pt, struct net_device *orig_dev)
1604 {
1605 	struct sock *sk;
1606 	struct sockaddr_ll *sll;
1607 	struct packet_sock *po;
1608 	u8 *skb_head = skb->data;
1609 	int skb_len = skb->len;
1610 	unsigned int snaplen, res;
1611 
1612 	if (skb->pkt_type == PACKET_LOOPBACK)
1613 		goto drop;
1614 
1615 	sk = pt->af_packet_priv;
1616 	po = pkt_sk(sk);
1617 
1618 	if (!net_eq(dev_net(dev), sock_net(sk)))
1619 		goto drop;
1620 
1621 	skb->dev = dev;
1622 
1623 	if (dev->header_ops) {
1624 		/* The device has an explicit notion of ll header,
1625 		 * exported to higher levels.
1626 		 *
1627 		 * Otherwise, the device hides details of its frame
1628 		 * structure, so that corresponding packet head is
1629 		 * never delivered to user.
1630 		 */
1631 		if (sk->sk_type != SOCK_DGRAM)
1632 			skb_push(skb, skb->data - skb_mac_header(skb));
1633 		else if (skb->pkt_type == PACKET_OUTGOING) {
1634 			/* Special case: outgoing packets have ll header at head */
1635 			skb_pull(skb, skb_network_offset(skb));
1636 		}
1637 	}
1638 
1639 	snaplen = skb->len;
1640 
1641 	res = run_filter(skb, sk, snaplen);
1642 	if (!res)
1643 		goto drop_n_restore;
1644 	if (snaplen > res)
1645 		snaplen = res;
1646 
1647 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1648 		goto drop_n_acct;
1649 
1650 	if (skb_shared(skb)) {
1651 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1652 		if (nskb == NULL)
1653 			goto drop_n_acct;
1654 
1655 		if (skb_head != skb->data) {
1656 			skb->data = skb_head;
1657 			skb->len = skb_len;
1658 		}
1659 		consume_skb(skb);
1660 		skb = nskb;
1661 	}
1662 
1663 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1664 		     sizeof(skb->cb));
1665 
1666 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1667 	sll->sll_family = AF_PACKET;
1668 	sll->sll_hatype = dev->type;
1669 	sll->sll_protocol = skb->protocol;
1670 	sll->sll_pkttype = skb->pkt_type;
1671 	if (unlikely(po->origdev))
1672 		sll->sll_ifindex = orig_dev->ifindex;
1673 	else
1674 		sll->sll_ifindex = dev->ifindex;
1675 
1676 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1677 
1678 	PACKET_SKB_CB(skb)->origlen = skb->len;
1679 
1680 	if (pskb_trim(skb, snaplen))
1681 		goto drop_n_acct;
1682 
1683 	skb_set_owner_r(skb, sk);
1684 	skb->dev = NULL;
1685 	skb_dst_drop(skb);
1686 
1687 	/* drop conntrack reference */
1688 	nf_reset(skb);
1689 
1690 	spin_lock(&sk->sk_receive_queue.lock);
1691 	po->stats.tp_packets++;
1692 	skb->dropcount = atomic_read(&sk->sk_drops);
1693 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1694 	spin_unlock(&sk->sk_receive_queue.lock);
1695 	sk->sk_data_ready(sk, skb->len);
1696 	return 0;
1697 
1698 drop_n_acct:
1699 	spin_lock(&sk->sk_receive_queue.lock);
1700 	po->stats.tp_drops++;
1701 	atomic_inc(&sk->sk_drops);
1702 	spin_unlock(&sk->sk_receive_queue.lock);
1703 
1704 drop_n_restore:
1705 	if (skb_head != skb->data && skb_shared(skb)) {
1706 		skb->data = skb_head;
1707 		skb->len = skb_len;
1708 	}
1709 drop:
1710 	consume_skb(skb);
1711 	return 0;
1712 }
1713 
1714 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1715 		       struct packet_type *pt, struct net_device *orig_dev)
1716 {
1717 	struct sock *sk;
1718 	struct packet_sock *po;
1719 	struct sockaddr_ll *sll;
1720 	union {
1721 		struct tpacket_hdr *h1;
1722 		struct tpacket2_hdr *h2;
1723 		struct tpacket3_hdr *h3;
1724 		void *raw;
1725 	} h;
1726 	u8 *skb_head = skb->data;
1727 	int skb_len = skb->len;
1728 	unsigned int snaplen, res;
1729 	unsigned long status = TP_STATUS_USER;
1730 	unsigned short macoff, netoff, hdrlen;
1731 	struct sk_buff *copy_skb = NULL;
1732 	struct timeval tv;
1733 	struct timespec ts;
1734 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
1735 
1736 	if (skb->pkt_type == PACKET_LOOPBACK)
1737 		goto drop;
1738 
1739 	sk = pt->af_packet_priv;
1740 	po = pkt_sk(sk);
1741 
1742 	if (!net_eq(dev_net(dev), sock_net(sk)))
1743 		goto drop;
1744 
1745 	if (dev->header_ops) {
1746 		if (sk->sk_type != SOCK_DGRAM)
1747 			skb_push(skb, skb->data - skb_mac_header(skb));
1748 		else if (skb->pkt_type == PACKET_OUTGOING) {
1749 			/* Special case: outgoing packets have ll header at head */
1750 			skb_pull(skb, skb_network_offset(skb));
1751 		}
1752 	}
1753 
1754 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1755 		status |= TP_STATUS_CSUMNOTREADY;
1756 
1757 	snaplen = skb->len;
1758 
1759 	res = run_filter(skb, sk, snaplen);
1760 	if (!res)
1761 		goto drop_n_restore;
1762 	if (snaplen > res)
1763 		snaplen = res;
1764 
1765 	if (sk->sk_type == SOCK_DGRAM) {
1766 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1767 				  po->tp_reserve;
1768 	} else {
1769 		unsigned int maclen = skb_network_offset(skb);
1770 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1771 				       (maclen < 16 ? 16 : maclen)) +
1772 			po->tp_reserve;
1773 		macoff = netoff - maclen;
1774 	}
1775 	if (po->tp_version <= TPACKET_V2) {
1776 		if (macoff + snaplen > po->rx_ring.frame_size) {
1777 			if (po->copy_thresh &&
1778 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1779 				if (skb_shared(skb)) {
1780 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1781 				} else {
1782 					copy_skb = skb_get(skb);
1783 					skb_head = skb->data;
1784 				}
1785 				if (copy_skb)
1786 					skb_set_owner_r(copy_skb, sk);
1787 			}
1788 			snaplen = po->rx_ring.frame_size - macoff;
1789 			if ((int)snaplen < 0)
1790 				snaplen = 0;
1791 		}
1792 	}
1793 	spin_lock(&sk->sk_receive_queue.lock);
1794 	h.raw = packet_current_rx_frame(po, skb,
1795 					TP_STATUS_KERNEL, (macoff+snaplen));
1796 	if (!h.raw)
1797 		goto ring_is_full;
1798 	if (po->tp_version <= TPACKET_V2) {
1799 		packet_increment_rx_head(po, &po->rx_ring);
1800 	/*
1801 	 * LOSING will be reported till you read the stats,
1802 	 * because it's COR - Clear On Read.
1803 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1804 	 * at packet level.
1805 	 */
1806 		if (po->stats.tp_drops)
1807 			status |= TP_STATUS_LOSING;
1808 	}
1809 	po->stats.tp_packets++;
1810 	if (copy_skb) {
1811 		status |= TP_STATUS_COPY;
1812 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1813 	}
1814 	spin_unlock(&sk->sk_receive_queue.lock);
1815 
1816 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1817 
1818 	switch (po->tp_version) {
1819 	case TPACKET_V1:
1820 		h.h1->tp_len = skb->len;
1821 		h.h1->tp_snaplen = snaplen;
1822 		h.h1->tp_mac = macoff;
1823 		h.h1->tp_net = netoff;
1824 		if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE)
1825 				&& shhwtstamps->syststamp.tv64)
1826 			tv = ktime_to_timeval(shhwtstamps->syststamp);
1827 		else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1828 				&& shhwtstamps->hwtstamp.tv64)
1829 			tv = ktime_to_timeval(shhwtstamps->hwtstamp);
1830 		else if (skb->tstamp.tv64)
1831 			tv = ktime_to_timeval(skb->tstamp);
1832 		else
1833 			do_gettimeofday(&tv);
1834 		h.h1->tp_sec = tv.tv_sec;
1835 		h.h1->tp_usec = tv.tv_usec;
1836 		hdrlen = sizeof(*h.h1);
1837 		break;
1838 	case TPACKET_V2:
1839 		h.h2->tp_len = skb->len;
1840 		h.h2->tp_snaplen = snaplen;
1841 		h.h2->tp_mac = macoff;
1842 		h.h2->tp_net = netoff;
1843 		if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE)
1844 				&& shhwtstamps->syststamp.tv64)
1845 			ts = ktime_to_timespec(shhwtstamps->syststamp);
1846 		else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1847 				&& shhwtstamps->hwtstamp.tv64)
1848 			ts = ktime_to_timespec(shhwtstamps->hwtstamp);
1849 		else if (skb->tstamp.tv64)
1850 			ts = ktime_to_timespec(skb->tstamp);
1851 		else
1852 			getnstimeofday(&ts);
1853 		h.h2->tp_sec = ts.tv_sec;
1854 		h.h2->tp_nsec = ts.tv_nsec;
1855 		if (vlan_tx_tag_present(skb)) {
1856 			h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1857 			status |= TP_STATUS_VLAN_VALID;
1858 		} else {
1859 			h.h2->tp_vlan_tci = 0;
1860 		}
1861 		h.h2->tp_padding = 0;
1862 		hdrlen = sizeof(*h.h2);
1863 		break;
1864 	case TPACKET_V3:
1865 		/* tp_nxt_offset,vlan are already populated above.
1866 		 * So DONT clear those fields here
1867 		 */
1868 		h.h3->tp_status |= status;
1869 		h.h3->tp_len = skb->len;
1870 		h.h3->tp_snaplen = snaplen;
1871 		h.h3->tp_mac = macoff;
1872 		h.h3->tp_net = netoff;
1873 		if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE)
1874 				&& shhwtstamps->syststamp.tv64)
1875 			ts = ktime_to_timespec(shhwtstamps->syststamp);
1876 		else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1877 				&& shhwtstamps->hwtstamp.tv64)
1878 			ts = ktime_to_timespec(shhwtstamps->hwtstamp);
1879 		else if (skb->tstamp.tv64)
1880 			ts = ktime_to_timespec(skb->tstamp);
1881 		else
1882 			getnstimeofday(&ts);
1883 		h.h3->tp_sec  = ts.tv_sec;
1884 		h.h3->tp_nsec = ts.tv_nsec;
1885 		hdrlen = sizeof(*h.h3);
1886 		break;
1887 	default:
1888 		BUG();
1889 	}
1890 
1891 	sll = h.raw + TPACKET_ALIGN(hdrlen);
1892 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1893 	sll->sll_family = AF_PACKET;
1894 	sll->sll_hatype = dev->type;
1895 	sll->sll_protocol = skb->protocol;
1896 	sll->sll_pkttype = skb->pkt_type;
1897 	if (unlikely(po->origdev))
1898 		sll->sll_ifindex = orig_dev->ifindex;
1899 	else
1900 		sll->sll_ifindex = dev->ifindex;
1901 
1902 	smp_mb();
1903 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
1904 	{
1905 		u8 *start, *end;
1906 
1907 		if (po->tp_version <= TPACKET_V2) {
1908 			end = (u8 *)PAGE_ALIGN((unsigned long)h.raw
1909 				+ macoff + snaplen);
1910 			for (start = h.raw; start < end; start += PAGE_SIZE)
1911 				flush_dcache_page(pgv_to_page(start));
1912 		}
1913 		smp_wmb();
1914 	}
1915 #endif
1916 	if (po->tp_version <= TPACKET_V2)
1917 		__packet_set_status(po, h.raw, status);
1918 	else
1919 		prb_clear_blk_fill_status(&po->rx_ring);
1920 
1921 	sk->sk_data_ready(sk, 0);
1922 
1923 drop_n_restore:
1924 	if (skb_head != skb->data && skb_shared(skb)) {
1925 		skb->data = skb_head;
1926 		skb->len = skb_len;
1927 	}
1928 drop:
1929 	kfree_skb(skb);
1930 	return 0;
1931 
1932 ring_is_full:
1933 	po->stats.tp_drops++;
1934 	spin_unlock(&sk->sk_receive_queue.lock);
1935 
1936 	sk->sk_data_ready(sk, 0);
1937 	kfree_skb(copy_skb);
1938 	goto drop_n_restore;
1939 }
1940 
1941 static void tpacket_destruct_skb(struct sk_buff *skb)
1942 {
1943 	struct packet_sock *po = pkt_sk(skb->sk);
1944 	void *ph;
1945 
1946 	if (likely(po->tx_ring.pg_vec)) {
1947 		ph = skb_shinfo(skb)->destructor_arg;
1948 		BUG_ON(atomic_read(&po->tx_ring.pending) == 0);
1949 		atomic_dec(&po->tx_ring.pending);
1950 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE);
1951 	}
1952 
1953 	sock_wfree(skb);
1954 }
1955 
1956 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
1957 		void *frame, struct net_device *dev, int size_max,
1958 		__be16 proto, unsigned char *addr, int hlen)
1959 {
1960 	union {
1961 		struct tpacket_hdr *h1;
1962 		struct tpacket2_hdr *h2;
1963 		void *raw;
1964 	} ph;
1965 	int to_write, offset, len, tp_len, nr_frags, len_max;
1966 	struct socket *sock = po->sk.sk_socket;
1967 	struct page *page;
1968 	void *data;
1969 	int err;
1970 
1971 	ph.raw = frame;
1972 
1973 	skb->protocol = proto;
1974 	skb->dev = dev;
1975 	skb->priority = po->sk.sk_priority;
1976 	skb->mark = po->sk.sk_mark;
1977 	skb_shinfo(skb)->destructor_arg = ph.raw;
1978 
1979 	switch (po->tp_version) {
1980 	case TPACKET_V2:
1981 		tp_len = ph.h2->tp_len;
1982 		break;
1983 	default:
1984 		tp_len = ph.h1->tp_len;
1985 		break;
1986 	}
1987 	if (unlikely(tp_len > size_max)) {
1988 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
1989 		return -EMSGSIZE;
1990 	}
1991 
1992 	skb_reserve(skb, hlen);
1993 	skb_reset_network_header(skb);
1994 
1995 	data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
1996 	to_write = tp_len;
1997 
1998 	if (sock->type == SOCK_DGRAM) {
1999 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2000 				NULL, tp_len);
2001 		if (unlikely(err < 0))
2002 			return -EINVAL;
2003 	} else if (dev->hard_header_len) {
2004 		/* net device doesn't like empty head */
2005 		if (unlikely(tp_len <= dev->hard_header_len)) {
2006 			pr_err("packet size is too short (%d < %d)\n",
2007 			       tp_len, dev->hard_header_len);
2008 			return -EINVAL;
2009 		}
2010 
2011 		skb_push(skb, dev->hard_header_len);
2012 		err = skb_store_bits(skb, 0, data,
2013 				dev->hard_header_len);
2014 		if (unlikely(err))
2015 			return err;
2016 
2017 		data += dev->hard_header_len;
2018 		to_write -= dev->hard_header_len;
2019 	}
2020 
2021 	err = -EFAULT;
2022 	offset = offset_in_page(data);
2023 	len_max = PAGE_SIZE - offset;
2024 	len = ((to_write > len_max) ? len_max : to_write);
2025 
2026 	skb->data_len = to_write;
2027 	skb->len += to_write;
2028 	skb->truesize += to_write;
2029 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2030 
2031 	while (likely(to_write)) {
2032 		nr_frags = skb_shinfo(skb)->nr_frags;
2033 
2034 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2035 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2036 			       MAX_SKB_FRAGS);
2037 			return -EFAULT;
2038 		}
2039 
2040 		page = pgv_to_page(data);
2041 		data += len;
2042 		flush_dcache_page(page);
2043 		get_page(page);
2044 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2045 		to_write -= len;
2046 		offset = 0;
2047 		len_max = PAGE_SIZE;
2048 		len = ((to_write > len_max) ? len_max : to_write);
2049 	}
2050 
2051 	return tp_len;
2052 }
2053 
2054 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2055 {
2056 	struct sk_buff *skb;
2057 	struct net_device *dev;
2058 	__be16 proto;
2059 	bool need_rls_dev = false;
2060 	int err, reserve = 0;
2061 	void *ph;
2062 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2063 	int tp_len, size_max;
2064 	unsigned char *addr;
2065 	int len_sum = 0;
2066 	int status = 0;
2067 	int hlen, tlen;
2068 
2069 	mutex_lock(&po->pg_vec_lock);
2070 
2071 	err = -EBUSY;
2072 	if (saddr == NULL) {
2073 		dev = po->prot_hook.dev;
2074 		proto	= po->num;
2075 		addr	= NULL;
2076 	} else {
2077 		err = -EINVAL;
2078 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2079 			goto out;
2080 		if (msg->msg_namelen < (saddr->sll_halen
2081 					+ offsetof(struct sockaddr_ll,
2082 						sll_addr)))
2083 			goto out;
2084 		proto	= saddr->sll_protocol;
2085 		addr	= saddr->sll_addr;
2086 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2087 		need_rls_dev = true;
2088 	}
2089 
2090 	err = -ENXIO;
2091 	if (unlikely(dev == NULL))
2092 		goto out;
2093 
2094 	reserve = dev->hard_header_len;
2095 
2096 	err = -ENETDOWN;
2097 	if (unlikely(!(dev->flags & IFF_UP)))
2098 		goto out_put;
2099 
2100 	size_max = po->tx_ring.frame_size
2101 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2102 
2103 	if (size_max > dev->mtu + reserve)
2104 		size_max = dev->mtu + reserve;
2105 
2106 	do {
2107 		ph = packet_current_frame(po, &po->tx_ring,
2108 				TP_STATUS_SEND_REQUEST);
2109 
2110 		if (unlikely(ph == NULL)) {
2111 			schedule();
2112 			continue;
2113 		}
2114 
2115 		status = TP_STATUS_SEND_REQUEST;
2116 		hlen = LL_RESERVED_SPACE(dev);
2117 		tlen = dev->needed_tailroom;
2118 		skb = sock_alloc_send_skb(&po->sk,
2119 				hlen + tlen + sizeof(struct sockaddr_ll),
2120 				0, &err);
2121 
2122 		if (unlikely(skb == NULL))
2123 			goto out_status;
2124 
2125 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2126 				addr, hlen);
2127 
2128 		if (unlikely(tp_len < 0)) {
2129 			if (po->tp_loss) {
2130 				__packet_set_status(po, ph,
2131 						TP_STATUS_AVAILABLE);
2132 				packet_increment_head(&po->tx_ring);
2133 				kfree_skb(skb);
2134 				continue;
2135 			} else {
2136 				status = TP_STATUS_WRONG_FORMAT;
2137 				err = tp_len;
2138 				goto out_status;
2139 			}
2140 		}
2141 
2142 		skb->destructor = tpacket_destruct_skb;
2143 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2144 		atomic_inc(&po->tx_ring.pending);
2145 
2146 		status = TP_STATUS_SEND_REQUEST;
2147 		err = dev_queue_xmit(skb);
2148 		if (unlikely(err > 0)) {
2149 			err = net_xmit_errno(err);
2150 			if (err && __packet_get_status(po, ph) ==
2151 				   TP_STATUS_AVAILABLE) {
2152 				/* skb was destructed already */
2153 				skb = NULL;
2154 				goto out_status;
2155 			}
2156 			/*
2157 			 * skb was dropped but not destructed yet;
2158 			 * let's treat it like congestion or err < 0
2159 			 */
2160 			err = 0;
2161 		}
2162 		packet_increment_head(&po->tx_ring);
2163 		len_sum += tp_len;
2164 	} while (likely((ph != NULL) ||
2165 			((!(msg->msg_flags & MSG_DONTWAIT)) &&
2166 			 (atomic_read(&po->tx_ring.pending))))
2167 		);
2168 
2169 	err = len_sum;
2170 	goto out_put;
2171 
2172 out_status:
2173 	__packet_set_status(po, ph, status);
2174 	kfree_skb(skb);
2175 out_put:
2176 	if (need_rls_dev)
2177 		dev_put(dev);
2178 out:
2179 	mutex_unlock(&po->pg_vec_lock);
2180 	return err;
2181 }
2182 
2183 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2184 				        size_t reserve, size_t len,
2185 				        size_t linear, int noblock,
2186 				        int *err)
2187 {
2188 	struct sk_buff *skb;
2189 
2190 	/* Under a page?  Don't bother with paged skb. */
2191 	if (prepad + len < PAGE_SIZE || !linear)
2192 		linear = len;
2193 
2194 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2195 				   err);
2196 	if (!skb)
2197 		return NULL;
2198 
2199 	skb_reserve(skb, reserve);
2200 	skb_put(skb, linear);
2201 	skb->data_len = len - linear;
2202 	skb->len += len - linear;
2203 
2204 	return skb;
2205 }
2206 
2207 static int packet_snd(struct socket *sock,
2208 			  struct msghdr *msg, size_t len)
2209 {
2210 	struct sock *sk = sock->sk;
2211 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2212 	struct sk_buff *skb;
2213 	struct net_device *dev;
2214 	__be16 proto;
2215 	bool need_rls_dev = false;
2216 	unsigned char *addr;
2217 	int err, reserve = 0;
2218 	struct virtio_net_hdr vnet_hdr = { 0 };
2219 	int offset = 0;
2220 	int vnet_hdr_len;
2221 	struct packet_sock *po = pkt_sk(sk);
2222 	unsigned short gso_type = 0;
2223 	int hlen, tlen;
2224 	int extra_len = 0;
2225 
2226 	/*
2227 	 *	Get and verify the address.
2228 	 */
2229 
2230 	if (saddr == NULL) {
2231 		dev = po->prot_hook.dev;
2232 		proto	= po->num;
2233 		addr	= NULL;
2234 	} else {
2235 		err = -EINVAL;
2236 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2237 			goto out;
2238 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2239 			goto out;
2240 		proto	= saddr->sll_protocol;
2241 		addr	= saddr->sll_addr;
2242 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2243 		need_rls_dev = true;
2244 	}
2245 
2246 	err = -ENXIO;
2247 	if (dev == NULL)
2248 		goto out_unlock;
2249 	if (sock->type == SOCK_RAW)
2250 		reserve = dev->hard_header_len;
2251 
2252 	err = -ENETDOWN;
2253 	if (!(dev->flags & IFF_UP))
2254 		goto out_unlock;
2255 
2256 	if (po->has_vnet_hdr) {
2257 		vnet_hdr_len = sizeof(vnet_hdr);
2258 
2259 		err = -EINVAL;
2260 		if (len < vnet_hdr_len)
2261 			goto out_unlock;
2262 
2263 		len -= vnet_hdr_len;
2264 
2265 		err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2266 				       vnet_hdr_len);
2267 		if (err < 0)
2268 			goto out_unlock;
2269 
2270 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2271 		    (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2272 		      vnet_hdr.hdr_len))
2273 			vnet_hdr.hdr_len = vnet_hdr.csum_start +
2274 						 vnet_hdr.csum_offset + 2;
2275 
2276 		err = -EINVAL;
2277 		if (vnet_hdr.hdr_len > len)
2278 			goto out_unlock;
2279 
2280 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2281 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2282 			case VIRTIO_NET_HDR_GSO_TCPV4:
2283 				gso_type = SKB_GSO_TCPV4;
2284 				break;
2285 			case VIRTIO_NET_HDR_GSO_TCPV6:
2286 				gso_type = SKB_GSO_TCPV6;
2287 				break;
2288 			case VIRTIO_NET_HDR_GSO_UDP:
2289 				gso_type = SKB_GSO_UDP;
2290 				break;
2291 			default:
2292 				goto out_unlock;
2293 			}
2294 
2295 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2296 				gso_type |= SKB_GSO_TCP_ECN;
2297 
2298 			if (vnet_hdr.gso_size == 0)
2299 				goto out_unlock;
2300 
2301 		}
2302 	}
2303 
2304 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2305 		if (!netif_supports_nofcs(dev)) {
2306 			err = -EPROTONOSUPPORT;
2307 			goto out_unlock;
2308 		}
2309 		extra_len = 4; /* We're doing our own CRC */
2310 	}
2311 
2312 	err = -EMSGSIZE;
2313 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2314 		goto out_unlock;
2315 
2316 	err = -ENOBUFS;
2317 	hlen = LL_RESERVED_SPACE(dev);
2318 	tlen = dev->needed_tailroom;
2319 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2320 			       msg->msg_flags & MSG_DONTWAIT, &err);
2321 	if (skb == NULL)
2322 		goto out_unlock;
2323 
2324 	skb_set_network_header(skb, reserve);
2325 
2326 	err = -EINVAL;
2327 	if (sock->type == SOCK_DGRAM &&
2328 	    (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2329 		goto out_free;
2330 
2331 	/* Returns -EFAULT on error */
2332 	err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2333 	if (err)
2334 		goto out_free;
2335 	err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2336 	if (err < 0)
2337 		goto out_free;
2338 
2339 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2340 		/* Earlier code assumed this would be a VLAN pkt,
2341 		 * double-check this now that we have the actual
2342 		 * packet in hand.
2343 		 */
2344 		struct ethhdr *ehdr;
2345 		skb_reset_mac_header(skb);
2346 		ehdr = eth_hdr(skb);
2347 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2348 			err = -EMSGSIZE;
2349 			goto out_free;
2350 		}
2351 	}
2352 
2353 	skb->protocol = proto;
2354 	skb->dev = dev;
2355 	skb->priority = sk->sk_priority;
2356 	skb->mark = sk->sk_mark;
2357 
2358 	if (po->has_vnet_hdr) {
2359 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2360 			if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2361 						  vnet_hdr.csum_offset)) {
2362 				err = -EINVAL;
2363 				goto out_free;
2364 			}
2365 		}
2366 
2367 		skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2368 		skb_shinfo(skb)->gso_type = gso_type;
2369 
2370 		/* Header must be checked, and gso_segs computed. */
2371 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2372 		skb_shinfo(skb)->gso_segs = 0;
2373 
2374 		len += vnet_hdr_len;
2375 	}
2376 
2377 	if (unlikely(extra_len == 4))
2378 		skb->no_fcs = 1;
2379 
2380 	/*
2381 	 *	Now send it
2382 	 */
2383 
2384 	err = dev_queue_xmit(skb);
2385 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2386 		goto out_unlock;
2387 
2388 	if (need_rls_dev)
2389 		dev_put(dev);
2390 
2391 	return len;
2392 
2393 out_free:
2394 	kfree_skb(skb);
2395 out_unlock:
2396 	if (dev && need_rls_dev)
2397 		dev_put(dev);
2398 out:
2399 	return err;
2400 }
2401 
2402 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2403 		struct msghdr *msg, size_t len)
2404 {
2405 	struct sock *sk = sock->sk;
2406 	struct packet_sock *po = pkt_sk(sk);
2407 	if (po->tx_ring.pg_vec)
2408 		return tpacket_snd(po, msg);
2409 	else
2410 		return packet_snd(sock, msg, len);
2411 }
2412 
2413 /*
2414  *	Close a PACKET socket. This is fairly simple. We immediately go
2415  *	to 'closed' state and remove our protocol entry in the device list.
2416  */
2417 
2418 static int packet_release(struct socket *sock)
2419 {
2420 	struct sock *sk = sock->sk;
2421 	struct packet_sock *po;
2422 	struct net *net;
2423 	union tpacket_req_u req_u;
2424 
2425 	if (!sk)
2426 		return 0;
2427 
2428 	net = sock_net(sk);
2429 	po = pkt_sk(sk);
2430 
2431 	spin_lock_bh(&net->packet.sklist_lock);
2432 	sk_del_node_init_rcu(sk);
2433 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2434 	spin_unlock_bh(&net->packet.sklist_lock);
2435 
2436 	spin_lock(&po->bind_lock);
2437 	unregister_prot_hook(sk, false);
2438 	if (po->prot_hook.dev) {
2439 		dev_put(po->prot_hook.dev);
2440 		po->prot_hook.dev = NULL;
2441 	}
2442 	spin_unlock(&po->bind_lock);
2443 
2444 	packet_flush_mclist(sk);
2445 
2446 	memset(&req_u, 0, sizeof(req_u));
2447 
2448 	if (po->rx_ring.pg_vec)
2449 		packet_set_ring(sk, &req_u, 1, 0);
2450 
2451 	if (po->tx_ring.pg_vec)
2452 		packet_set_ring(sk, &req_u, 1, 1);
2453 
2454 	fanout_release(sk);
2455 
2456 	synchronize_net();
2457 	/*
2458 	 *	Now the socket is dead. No more input will appear.
2459 	 */
2460 	sock_orphan(sk);
2461 	sock->sk = NULL;
2462 
2463 	/* Purge queues */
2464 
2465 	skb_queue_purge(&sk->sk_receive_queue);
2466 	sk_refcnt_debug_release(sk);
2467 
2468 	sock_put(sk);
2469 	return 0;
2470 }
2471 
2472 /*
2473  *	Attach a packet hook.
2474  */
2475 
2476 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol)
2477 {
2478 	struct packet_sock *po = pkt_sk(sk);
2479 
2480 	if (po->fanout) {
2481 		if (dev)
2482 			dev_put(dev);
2483 
2484 		return -EINVAL;
2485 	}
2486 
2487 	lock_sock(sk);
2488 
2489 	spin_lock(&po->bind_lock);
2490 	unregister_prot_hook(sk, true);
2491 	po->num = protocol;
2492 	po->prot_hook.type = protocol;
2493 	if (po->prot_hook.dev)
2494 		dev_put(po->prot_hook.dev);
2495 	po->prot_hook.dev = dev;
2496 
2497 	po->ifindex = dev ? dev->ifindex : 0;
2498 
2499 	if (protocol == 0)
2500 		goto out_unlock;
2501 
2502 	if (!dev || (dev->flags & IFF_UP)) {
2503 		register_prot_hook(sk);
2504 	} else {
2505 		sk->sk_err = ENETDOWN;
2506 		if (!sock_flag(sk, SOCK_DEAD))
2507 			sk->sk_error_report(sk);
2508 	}
2509 
2510 out_unlock:
2511 	spin_unlock(&po->bind_lock);
2512 	release_sock(sk);
2513 	return 0;
2514 }
2515 
2516 /*
2517  *	Bind a packet socket to a device
2518  */
2519 
2520 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2521 			    int addr_len)
2522 {
2523 	struct sock *sk = sock->sk;
2524 	char name[15];
2525 	struct net_device *dev;
2526 	int err = -ENODEV;
2527 
2528 	/*
2529 	 *	Check legality
2530 	 */
2531 
2532 	if (addr_len != sizeof(struct sockaddr))
2533 		return -EINVAL;
2534 	strlcpy(name, uaddr->sa_data, sizeof(name));
2535 
2536 	dev = dev_get_by_name(sock_net(sk), name);
2537 	if (dev)
2538 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2539 	return err;
2540 }
2541 
2542 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2543 {
2544 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2545 	struct sock *sk = sock->sk;
2546 	struct net_device *dev = NULL;
2547 	int err;
2548 
2549 
2550 	/*
2551 	 *	Check legality
2552 	 */
2553 
2554 	if (addr_len < sizeof(struct sockaddr_ll))
2555 		return -EINVAL;
2556 	if (sll->sll_family != AF_PACKET)
2557 		return -EINVAL;
2558 
2559 	if (sll->sll_ifindex) {
2560 		err = -ENODEV;
2561 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2562 		if (dev == NULL)
2563 			goto out;
2564 	}
2565 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2566 
2567 out:
2568 	return err;
2569 }
2570 
2571 static struct proto packet_proto = {
2572 	.name	  = "PACKET",
2573 	.owner	  = THIS_MODULE,
2574 	.obj_size = sizeof(struct packet_sock),
2575 };
2576 
2577 /*
2578  *	Create a packet of type SOCK_PACKET.
2579  */
2580 
2581 static int packet_create(struct net *net, struct socket *sock, int protocol,
2582 			 int kern)
2583 {
2584 	struct sock *sk;
2585 	struct packet_sock *po;
2586 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2587 	int err;
2588 
2589 	if (!capable(CAP_NET_RAW))
2590 		return -EPERM;
2591 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2592 	    sock->type != SOCK_PACKET)
2593 		return -ESOCKTNOSUPPORT;
2594 
2595 	sock->state = SS_UNCONNECTED;
2596 
2597 	err = -ENOBUFS;
2598 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2599 	if (sk == NULL)
2600 		goto out;
2601 
2602 	sock->ops = &packet_ops;
2603 	if (sock->type == SOCK_PACKET)
2604 		sock->ops = &packet_ops_spkt;
2605 
2606 	sock_init_data(sock, sk);
2607 
2608 	po = pkt_sk(sk);
2609 	sk->sk_family = PF_PACKET;
2610 	po->num = proto;
2611 
2612 	sk->sk_destruct = packet_sock_destruct;
2613 	sk_refcnt_debug_inc(sk);
2614 
2615 	/*
2616 	 *	Attach a protocol block
2617 	 */
2618 
2619 	spin_lock_init(&po->bind_lock);
2620 	mutex_init(&po->pg_vec_lock);
2621 	po->prot_hook.func = packet_rcv;
2622 
2623 	if (sock->type == SOCK_PACKET)
2624 		po->prot_hook.func = packet_rcv_spkt;
2625 
2626 	po->prot_hook.af_packet_priv = sk;
2627 
2628 	if (proto) {
2629 		po->prot_hook.type = proto;
2630 		register_prot_hook(sk);
2631 	}
2632 
2633 	spin_lock_bh(&net->packet.sklist_lock);
2634 	sk_add_node_rcu(sk, &net->packet.sklist);
2635 	sock_prot_inuse_add(net, &packet_proto, 1);
2636 	spin_unlock_bh(&net->packet.sklist_lock);
2637 
2638 	return 0;
2639 out:
2640 	return err;
2641 }
2642 
2643 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len)
2644 {
2645 	struct sock_exterr_skb *serr;
2646 	struct sk_buff *skb, *skb2;
2647 	int copied, err;
2648 
2649 	err = -EAGAIN;
2650 	skb = skb_dequeue(&sk->sk_error_queue);
2651 	if (skb == NULL)
2652 		goto out;
2653 
2654 	copied = skb->len;
2655 	if (copied > len) {
2656 		msg->msg_flags |= MSG_TRUNC;
2657 		copied = len;
2658 	}
2659 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2660 	if (err)
2661 		goto out_free_skb;
2662 
2663 	sock_recv_timestamp(msg, sk, skb);
2664 
2665 	serr = SKB_EXT_ERR(skb);
2666 	put_cmsg(msg, SOL_PACKET, PACKET_TX_TIMESTAMP,
2667 		 sizeof(serr->ee), &serr->ee);
2668 
2669 	msg->msg_flags |= MSG_ERRQUEUE;
2670 	err = copied;
2671 
2672 	/* Reset and regenerate socket error */
2673 	spin_lock_bh(&sk->sk_error_queue.lock);
2674 	sk->sk_err = 0;
2675 	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2676 		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2677 		spin_unlock_bh(&sk->sk_error_queue.lock);
2678 		sk->sk_error_report(sk);
2679 	} else
2680 		spin_unlock_bh(&sk->sk_error_queue.lock);
2681 
2682 out_free_skb:
2683 	kfree_skb(skb);
2684 out:
2685 	return err;
2686 }
2687 
2688 /*
2689  *	Pull a packet from our receive queue and hand it to the user.
2690  *	If necessary we block.
2691  */
2692 
2693 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2694 			  struct msghdr *msg, size_t len, int flags)
2695 {
2696 	struct sock *sk = sock->sk;
2697 	struct sk_buff *skb;
2698 	int copied, err;
2699 	struct sockaddr_ll *sll;
2700 	int vnet_hdr_len = 0;
2701 
2702 	err = -EINVAL;
2703 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2704 		goto out;
2705 
2706 #if 0
2707 	/* What error should we return now? EUNATTACH? */
2708 	if (pkt_sk(sk)->ifindex < 0)
2709 		return -ENODEV;
2710 #endif
2711 
2712 	if (flags & MSG_ERRQUEUE) {
2713 		err = packet_recv_error(sk, msg, len);
2714 		goto out;
2715 	}
2716 
2717 	/*
2718 	 *	Call the generic datagram receiver. This handles all sorts
2719 	 *	of horrible races and re-entrancy so we can forget about it
2720 	 *	in the protocol layers.
2721 	 *
2722 	 *	Now it will return ENETDOWN, if device have just gone down,
2723 	 *	but then it will block.
2724 	 */
2725 
2726 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2727 
2728 	/*
2729 	 *	An error occurred so return it. Because skb_recv_datagram()
2730 	 *	handles the blocking we don't see and worry about blocking
2731 	 *	retries.
2732 	 */
2733 
2734 	if (skb == NULL)
2735 		goto out;
2736 
2737 	if (pkt_sk(sk)->has_vnet_hdr) {
2738 		struct virtio_net_hdr vnet_hdr = { 0 };
2739 
2740 		err = -EINVAL;
2741 		vnet_hdr_len = sizeof(vnet_hdr);
2742 		if (len < vnet_hdr_len)
2743 			goto out_free;
2744 
2745 		len -= vnet_hdr_len;
2746 
2747 		if (skb_is_gso(skb)) {
2748 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2749 
2750 			/* This is a hint as to how much should be linear. */
2751 			vnet_hdr.hdr_len = skb_headlen(skb);
2752 			vnet_hdr.gso_size = sinfo->gso_size;
2753 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2754 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2755 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2756 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2757 			else if (sinfo->gso_type & SKB_GSO_UDP)
2758 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2759 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2760 				goto out_free;
2761 			else
2762 				BUG();
2763 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2764 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2765 		} else
2766 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2767 
2768 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2770 			vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2771 			vnet_hdr.csum_offset = skb->csum_offset;
2772 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2773 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2774 		} /* else everything is zero */
2775 
2776 		err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2777 				     vnet_hdr_len);
2778 		if (err < 0)
2779 			goto out_free;
2780 	}
2781 
2782 	/*
2783 	 *	If the address length field is there to be filled in, we fill
2784 	 *	it in now.
2785 	 */
2786 
2787 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2788 	if (sock->type == SOCK_PACKET)
2789 		msg->msg_namelen = sizeof(struct sockaddr_pkt);
2790 	else
2791 		msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr);
2792 
2793 	/*
2794 	 *	You lose any data beyond the buffer you gave. If it worries a
2795 	 *	user program they can ask the device for its MTU anyway.
2796 	 */
2797 
2798 	copied = skb->len;
2799 	if (copied > len) {
2800 		copied = len;
2801 		msg->msg_flags |= MSG_TRUNC;
2802 	}
2803 
2804 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2805 	if (err)
2806 		goto out_free;
2807 
2808 	sock_recv_ts_and_drops(msg, sk, skb);
2809 
2810 	if (msg->msg_name)
2811 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2812 		       msg->msg_namelen);
2813 
2814 	if (pkt_sk(sk)->auxdata) {
2815 		struct tpacket_auxdata aux;
2816 
2817 		aux.tp_status = TP_STATUS_USER;
2818 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2819 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2820 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2821 		aux.tp_snaplen = skb->len;
2822 		aux.tp_mac = 0;
2823 		aux.tp_net = skb_network_offset(skb);
2824 		if (vlan_tx_tag_present(skb)) {
2825 			aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2826 			aux.tp_status |= TP_STATUS_VLAN_VALID;
2827 		} else {
2828 			aux.tp_vlan_tci = 0;
2829 		}
2830 		aux.tp_padding = 0;
2831 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2832 	}
2833 
2834 	/*
2835 	 *	Free or return the buffer as appropriate. Again this
2836 	 *	hides all the races and re-entrancy issues from us.
2837 	 */
2838 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2839 
2840 out_free:
2841 	skb_free_datagram(sk, skb);
2842 out:
2843 	return err;
2844 }
2845 
2846 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2847 			       int *uaddr_len, int peer)
2848 {
2849 	struct net_device *dev;
2850 	struct sock *sk	= sock->sk;
2851 
2852 	if (peer)
2853 		return -EOPNOTSUPP;
2854 
2855 	uaddr->sa_family = AF_PACKET;
2856 	rcu_read_lock();
2857 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
2858 	if (dev)
2859 		strncpy(uaddr->sa_data, dev->name, 14);
2860 	else
2861 		memset(uaddr->sa_data, 0, 14);
2862 	rcu_read_unlock();
2863 	*uaddr_len = sizeof(*uaddr);
2864 
2865 	return 0;
2866 }
2867 
2868 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
2869 			  int *uaddr_len, int peer)
2870 {
2871 	struct net_device *dev;
2872 	struct sock *sk = sock->sk;
2873 	struct packet_sock *po = pkt_sk(sk);
2874 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
2875 
2876 	if (peer)
2877 		return -EOPNOTSUPP;
2878 
2879 	sll->sll_family = AF_PACKET;
2880 	sll->sll_ifindex = po->ifindex;
2881 	sll->sll_protocol = po->num;
2882 	sll->sll_pkttype = 0;
2883 	rcu_read_lock();
2884 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
2885 	if (dev) {
2886 		sll->sll_hatype = dev->type;
2887 		sll->sll_halen = dev->addr_len;
2888 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
2889 	} else {
2890 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
2891 		sll->sll_halen = 0;
2892 	}
2893 	rcu_read_unlock();
2894 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
2895 
2896 	return 0;
2897 }
2898 
2899 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
2900 			 int what)
2901 {
2902 	switch (i->type) {
2903 	case PACKET_MR_MULTICAST:
2904 		if (i->alen != dev->addr_len)
2905 			return -EINVAL;
2906 		if (what > 0)
2907 			return dev_mc_add(dev, i->addr);
2908 		else
2909 			return dev_mc_del(dev, i->addr);
2910 		break;
2911 	case PACKET_MR_PROMISC:
2912 		return dev_set_promiscuity(dev, what);
2913 		break;
2914 	case PACKET_MR_ALLMULTI:
2915 		return dev_set_allmulti(dev, what);
2916 		break;
2917 	case PACKET_MR_UNICAST:
2918 		if (i->alen != dev->addr_len)
2919 			return -EINVAL;
2920 		if (what > 0)
2921 			return dev_uc_add(dev, i->addr);
2922 		else
2923 			return dev_uc_del(dev, i->addr);
2924 		break;
2925 	default:
2926 		break;
2927 	}
2928 	return 0;
2929 }
2930 
2931 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
2932 {
2933 	for ( ; i; i = i->next) {
2934 		if (i->ifindex == dev->ifindex)
2935 			packet_dev_mc(dev, i, what);
2936 	}
2937 }
2938 
2939 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
2940 {
2941 	struct packet_sock *po = pkt_sk(sk);
2942 	struct packet_mclist *ml, *i;
2943 	struct net_device *dev;
2944 	int err;
2945 
2946 	rtnl_lock();
2947 
2948 	err = -ENODEV;
2949 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
2950 	if (!dev)
2951 		goto done;
2952 
2953 	err = -EINVAL;
2954 	if (mreq->mr_alen > dev->addr_len)
2955 		goto done;
2956 
2957 	err = -ENOBUFS;
2958 	i = kmalloc(sizeof(*i), GFP_KERNEL);
2959 	if (i == NULL)
2960 		goto done;
2961 
2962 	err = 0;
2963 	for (ml = po->mclist; ml; ml = ml->next) {
2964 		if (ml->ifindex == mreq->mr_ifindex &&
2965 		    ml->type == mreq->mr_type &&
2966 		    ml->alen == mreq->mr_alen &&
2967 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2968 			ml->count++;
2969 			/* Free the new element ... */
2970 			kfree(i);
2971 			goto done;
2972 		}
2973 	}
2974 
2975 	i->type = mreq->mr_type;
2976 	i->ifindex = mreq->mr_ifindex;
2977 	i->alen = mreq->mr_alen;
2978 	memcpy(i->addr, mreq->mr_address, i->alen);
2979 	i->count = 1;
2980 	i->next = po->mclist;
2981 	po->mclist = i;
2982 	err = packet_dev_mc(dev, i, 1);
2983 	if (err) {
2984 		po->mclist = i->next;
2985 		kfree(i);
2986 	}
2987 
2988 done:
2989 	rtnl_unlock();
2990 	return err;
2991 }
2992 
2993 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
2994 {
2995 	struct packet_mclist *ml, **mlp;
2996 
2997 	rtnl_lock();
2998 
2999 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3000 		if (ml->ifindex == mreq->mr_ifindex &&
3001 		    ml->type == mreq->mr_type &&
3002 		    ml->alen == mreq->mr_alen &&
3003 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3004 			if (--ml->count == 0) {
3005 				struct net_device *dev;
3006 				*mlp = ml->next;
3007 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3008 				if (dev)
3009 					packet_dev_mc(dev, ml, -1);
3010 				kfree(ml);
3011 			}
3012 			rtnl_unlock();
3013 			return 0;
3014 		}
3015 	}
3016 	rtnl_unlock();
3017 	return -EADDRNOTAVAIL;
3018 }
3019 
3020 static void packet_flush_mclist(struct sock *sk)
3021 {
3022 	struct packet_sock *po = pkt_sk(sk);
3023 	struct packet_mclist *ml;
3024 
3025 	if (!po->mclist)
3026 		return;
3027 
3028 	rtnl_lock();
3029 	while ((ml = po->mclist) != NULL) {
3030 		struct net_device *dev;
3031 
3032 		po->mclist = ml->next;
3033 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3034 		if (dev != NULL)
3035 			packet_dev_mc(dev, ml, -1);
3036 		kfree(ml);
3037 	}
3038 	rtnl_unlock();
3039 }
3040 
3041 static int
3042 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3043 {
3044 	struct sock *sk = sock->sk;
3045 	struct packet_sock *po = pkt_sk(sk);
3046 	int ret;
3047 
3048 	if (level != SOL_PACKET)
3049 		return -ENOPROTOOPT;
3050 
3051 	switch (optname) {
3052 	case PACKET_ADD_MEMBERSHIP:
3053 	case PACKET_DROP_MEMBERSHIP:
3054 	{
3055 		struct packet_mreq_max mreq;
3056 		int len = optlen;
3057 		memset(&mreq, 0, sizeof(mreq));
3058 		if (len < sizeof(struct packet_mreq))
3059 			return -EINVAL;
3060 		if (len > sizeof(mreq))
3061 			len = sizeof(mreq);
3062 		if (copy_from_user(&mreq, optval, len))
3063 			return -EFAULT;
3064 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3065 			return -EINVAL;
3066 		if (optname == PACKET_ADD_MEMBERSHIP)
3067 			ret = packet_mc_add(sk, &mreq);
3068 		else
3069 			ret = packet_mc_drop(sk, &mreq);
3070 		return ret;
3071 	}
3072 
3073 	case PACKET_RX_RING:
3074 	case PACKET_TX_RING:
3075 	{
3076 		union tpacket_req_u req_u;
3077 		int len;
3078 
3079 		switch (po->tp_version) {
3080 		case TPACKET_V1:
3081 		case TPACKET_V2:
3082 			len = sizeof(req_u.req);
3083 			break;
3084 		case TPACKET_V3:
3085 		default:
3086 			len = sizeof(req_u.req3);
3087 			break;
3088 		}
3089 		if (optlen < len)
3090 			return -EINVAL;
3091 		if (pkt_sk(sk)->has_vnet_hdr)
3092 			return -EINVAL;
3093 		if (copy_from_user(&req_u.req, optval, len))
3094 			return -EFAULT;
3095 		return packet_set_ring(sk, &req_u, 0,
3096 			optname == PACKET_TX_RING);
3097 	}
3098 	case PACKET_COPY_THRESH:
3099 	{
3100 		int val;
3101 
3102 		if (optlen != sizeof(val))
3103 			return -EINVAL;
3104 		if (copy_from_user(&val, optval, sizeof(val)))
3105 			return -EFAULT;
3106 
3107 		pkt_sk(sk)->copy_thresh = val;
3108 		return 0;
3109 	}
3110 	case PACKET_VERSION:
3111 	{
3112 		int val;
3113 
3114 		if (optlen != sizeof(val))
3115 			return -EINVAL;
3116 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3117 			return -EBUSY;
3118 		if (copy_from_user(&val, optval, sizeof(val)))
3119 			return -EFAULT;
3120 		switch (val) {
3121 		case TPACKET_V1:
3122 		case TPACKET_V2:
3123 		case TPACKET_V3:
3124 			po->tp_version = val;
3125 			return 0;
3126 		default:
3127 			return -EINVAL;
3128 		}
3129 	}
3130 	case PACKET_RESERVE:
3131 	{
3132 		unsigned int val;
3133 
3134 		if (optlen != sizeof(val))
3135 			return -EINVAL;
3136 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3137 			return -EBUSY;
3138 		if (copy_from_user(&val, optval, sizeof(val)))
3139 			return -EFAULT;
3140 		po->tp_reserve = val;
3141 		return 0;
3142 	}
3143 	case PACKET_LOSS:
3144 	{
3145 		unsigned int val;
3146 
3147 		if (optlen != sizeof(val))
3148 			return -EINVAL;
3149 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3150 			return -EBUSY;
3151 		if (copy_from_user(&val, optval, sizeof(val)))
3152 			return -EFAULT;
3153 		po->tp_loss = !!val;
3154 		return 0;
3155 	}
3156 	case PACKET_AUXDATA:
3157 	{
3158 		int val;
3159 
3160 		if (optlen < sizeof(val))
3161 			return -EINVAL;
3162 		if (copy_from_user(&val, optval, sizeof(val)))
3163 			return -EFAULT;
3164 
3165 		po->auxdata = !!val;
3166 		return 0;
3167 	}
3168 	case PACKET_ORIGDEV:
3169 	{
3170 		int val;
3171 
3172 		if (optlen < sizeof(val))
3173 			return -EINVAL;
3174 		if (copy_from_user(&val, optval, sizeof(val)))
3175 			return -EFAULT;
3176 
3177 		po->origdev = !!val;
3178 		return 0;
3179 	}
3180 	case PACKET_VNET_HDR:
3181 	{
3182 		int val;
3183 
3184 		if (sock->type != SOCK_RAW)
3185 			return -EINVAL;
3186 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3187 			return -EBUSY;
3188 		if (optlen < sizeof(val))
3189 			return -EINVAL;
3190 		if (copy_from_user(&val, optval, sizeof(val)))
3191 			return -EFAULT;
3192 
3193 		po->has_vnet_hdr = !!val;
3194 		return 0;
3195 	}
3196 	case PACKET_TIMESTAMP:
3197 	{
3198 		int val;
3199 
3200 		if (optlen != sizeof(val))
3201 			return -EINVAL;
3202 		if (copy_from_user(&val, optval, sizeof(val)))
3203 			return -EFAULT;
3204 
3205 		po->tp_tstamp = val;
3206 		return 0;
3207 	}
3208 	case PACKET_FANOUT:
3209 	{
3210 		int val;
3211 
3212 		if (optlen != sizeof(val))
3213 			return -EINVAL;
3214 		if (copy_from_user(&val, optval, sizeof(val)))
3215 			return -EFAULT;
3216 
3217 		return fanout_add(sk, val & 0xffff, val >> 16);
3218 	}
3219 	default:
3220 		return -ENOPROTOOPT;
3221 	}
3222 }
3223 
3224 static int packet_getsockopt(struct socket *sock, int level, int optname,
3225 			     char __user *optval, int __user *optlen)
3226 {
3227 	int len;
3228 	int val, lv = sizeof(val);
3229 	struct sock *sk = sock->sk;
3230 	struct packet_sock *po = pkt_sk(sk);
3231 	void *data = &val;
3232 	struct tpacket_stats st;
3233 	union tpacket_stats_u st_u;
3234 
3235 	if (level != SOL_PACKET)
3236 		return -ENOPROTOOPT;
3237 
3238 	if (get_user(len, optlen))
3239 		return -EFAULT;
3240 
3241 	if (len < 0)
3242 		return -EINVAL;
3243 
3244 	switch (optname) {
3245 	case PACKET_STATISTICS:
3246 		spin_lock_bh(&sk->sk_receive_queue.lock);
3247 		if (po->tp_version == TPACKET_V3) {
3248 			lv = sizeof(struct tpacket_stats_v3);
3249 			memcpy(&st_u.stats3, &po->stats,
3250 			       sizeof(struct tpacket_stats));
3251 			st_u.stats3.tp_freeze_q_cnt =
3252 					po->stats_u.stats3.tp_freeze_q_cnt;
3253 			st_u.stats3.tp_packets += po->stats.tp_drops;
3254 			data = &st_u.stats3;
3255 		} else {
3256 			lv = sizeof(struct tpacket_stats);
3257 			st = po->stats;
3258 			st.tp_packets += st.tp_drops;
3259 			data = &st;
3260 		}
3261 		memset(&po->stats, 0, sizeof(st));
3262 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3263 		break;
3264 	case PACKET_AUXDATA:
3265 		val = po->auxdata;
3266 		break;
3267 	case PACKET_ORIGDEV:
3268 		val = po->origdev;
3269 		break;
3270 	case PACKET_VNET_HDR:
3271 		val = po->has_vnet_hdr;
3272 		break;
3273 	case PACKET_VERSION:
3274 		val = po->tp_version;
3275 		break;
3276 	case PACKET_HDRLEN:
3277 		if (len > sizeof(int))
3278 			len = sizeof(int);
3279 		if (copy_from_user(&val, optval, len))
3280 			return -EFAULT;
3281 		switch (val) {
3282 		case TPACKET_V1:
3283 			val = sizeof(struct tpacket_hdr);
3284 			break;
3285 		case TPACKET_V2:
3286 			val = sizeof(struct tpacket2_hdr);
3287 			break;
3288 		case TPACKET_V3:
3289 			val = sizeof(struct tpacket3_hdr);
3290 			break;
3291 		default:
3292 			return -EINVAL;
3293 		}
3294 		break;
3295 	case PACKET_RESERVE:
3296 		val = po->tp_reserve;
3297 		break;
3298 	case PACKET_LOSS:
3299 		val = po->tp_loss;
3300 		break;
3301 	case PACKET_TIMESTAMP:
3302 		val = po->tp_tstamp;
3303 		break;
3304 	case PACKET_FANOUT:
3305 		val = (po->fanout ?
3306 		       ((u32)po->fanout->id |
3307 			((u32)po->fanout->type << 16)) :
3308 		       0);
3309 		break;
3310 	default:
3311 		return -ENOPROTOOPT;
3312 	}
3313 
3314 	if (len > lv)
3315 		len = lv;
3316 	if (put_user(len, optlen))
3317 		return -EFAULT;
3318 	if (copy_to_user(optval, data, len))
3319 		return -EFAULT;
3320 	return 0;
3321 }
3322 
3323 
3324 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data)
3325 {
3326 	struct sock *sk;
3327 	struct hlist_node *node;
3328 	struct net_device *dev = data;
3329 	struct net *net = dev_net(dev);
3330 
3331 	rcu_read_lock();
3332 	sk_for_each_rcu(sk, node, &net->packet.sklist) {
3333 		struct packet_sock *po = pkt_sk(sk);
3334 
3335 		switch (msg) {
3336 		case NETDEV_UNREGISTER:
3337 			if (po->mclist)
3338 				packet_dev_mclist(dev, po->mclist, -1);
3339 			/* fallthrough */
3340 
3341 		case NETDEV_DOWN:
3342 			if (dev->ifindex == po->ifindex) {
3343 				spin_lock(&po->bind_lock);
3344 				if (po->running) {
3345 					__unregister_prot_hook(sk, false);
3346 					sk->sk_err = ENETDOWN;
3347 					if (!sock_flag(sk, SOCK_DEAD))
3348 						sk->sk_error_report(sk);
3349 				}
3350 				if (msg == NETDEV_UNREGISTER) {
3351 					po->ifindex = -1;
3352 					if (po->prot_hook.dev)
3353 						dev_put(po->prot_hook.dev);
3354 					po->prot_hook.dev = NULL;
3355 				}
3356 				spin_unlock(&po->bind_lock);
3357 			}
3358 			break;
3359 		case NETDEV_UP:
3360 			if (dev->ifindex == po->ifindex) {
3361 				spin_lock(&po->bind_lock);
3362 				if (po->num)
3363 					register_prot_hook(sk);
3364 				spin_unlock(&po->bind_lock);
3365 			}
3366 			break;
3367 		}
3368 	}
3369 	rcu_read_unlock();
3370 	return NOTIFY_DONE;
3371 }
3372 
3373 
3374 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3375 			unsigned long arg)
3376 {
3377 	struct sock *sk = sock->sk;
3378 
3379 	switch (cmd) {
3380 	case SIOCOUTQ:
3381 	{
3382 		int amount = sk_wmem_alloc_get(sk);
3383 
3384 		return put_user(amount, (int __user *)arg);
3385 	}
3386 	case SIOCINQ:
3387 	{
3388 		struct sk_buff *skb;
3389 		int amount = 0;
3390 
3391 		spin_lock_bh(&sk->sk_receive_queue.lock);
3392 		skb = skb_peek(&sk->sk_receive_queue);
3393 		if (skb)
3394 			amount = skb->len;
3395 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3396 		return put_user(amount, (int __user *)arg);
3397 	}
3398 	case SIOCGSTAMP:
3399 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3400 	case SIOCGSTAMPNS:
3401 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3402 
3403 #ifdef CONFIG_INET
3404 	case SIOCADDRT:
3405 	case SIOCDELRT:
3406 	case SIOCDARP:
3407 	case SIOCGARP:
3408 	case SIOCSARP:
3409 	case SIOCGIFADDR:
3410 	case SIOCSIFADDR:
3411 	case SIOCGIFBRDADDR:
3412 	case SIOCSIFBRDADDR:
3413 	case SIOCGIFNETMASK:
3414 	case SIOCSIFNETMASK:
3415 	case SIOCGIFDSTADDR:
3416 	case SIOCSIFDSTADDR:
3417 	case SIOCSIFFLAGS:
3418 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3419 #endif
3420 
3421 	default:
3422 		return -ENOIOCTLCMD;
3423 	}
3424 	return 0;
3425 }
3426 
3427 static unsigned int packet_poll(struct file *file, struct socket *sock,
3428 				poll_table *wait)
3429 {
3430 	struct sock *sk = sock->sk;
3431 	struct packet_sock *po = pkt_sk(sk);
3432 	unsigned int mask = datagram_poll(file, sock, wait);
3433 
3434 	spin_lock_bh(&sk->sk_receive_queue.lock);
3435 	if (po->rx_ring.pg_vec) {
3436 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3437 			TP_STATUS_KERNEL))
3438 			mask |= POLLIN | POLLRDNORM;
3439 	}
3440 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3441 	spin_lock_bh(&sk->sk_write_queue.lock);
3442 	if (po->tx_ring.pg_vec) {
3443 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3444 			mask |= POLLOUT | POLLWRNORM;
3445 	}
3446 	spin_unlock_bh(&sk->sk_write_queue.lock);
3447 	return mask;
3448 }
3449 
3450 
3451 /* Dirty? Well, I still did not learn better way to account
3452  * for user mmaps.
3453  */
3454 
3455 static void packet_mm_open(struct vm_area_struct *vma)
3456 {
3457 	struct file *file = vma->vm_file;
3458 	struct socket *sock = file->private_data;
3459 	struct sock *sk = sock->sk;
3460 
3461 	if (sk)
3462 		atomic_inc(&pkt_sk(sk)->mapped);
3463 }
3464 
3465 static void packet_mm_close(struct vm_area_struct *vma)
3466 {
3467 	struct file *file = vma->vm_file;
3468 	struct socket *sock = file->private_data;
3469 	struct sock *sk = sock->sk;
3470 
3471 	if (sk)
3472 		atomic_dec(&pkt_sk(sk)->mapped);
3473 }
3474 
3475 static const struct vm_operations_struct packet_mmap_ops = {
3476 	.open	=	packet_mm_open,
3477 	.close	=	packet_mm_close,
3478 };
3479 
3480 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3481 			unsigned int len)
3482 {
3483 	int i;
3484 
3485 	for (i = 0; i < len; i++) {
3486 		if (likely(pg_vec[i].buffer)) {
3487 			if (is_vmalloc_addr(pg_vec[i].buffer))
3488 				vfree(pg_vec[i].buffer);
3489 			else
3490 				free_pages((unsigned long)pg_vec[i].buffer,
3491 					   order);
3492 			pg_vec[i].buffer = NULL;
3493 		}
3494 	}
3495 	kfree(pg_vec);
3496 }
3497 
3498 static char *alloc_one_pg_vec_page(unsigned long order)
3499 {
3500 	char *buffer = NULL;
3501 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3502 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3503 
3504 	buffer = (char *) __get_free_pages(gfp_flags, order);
3505 
3506 	if (buffer)
3507 		return buffer;
3508 
3509 	/*
3510 	 * __get_free_pages failed, fall back to vmalloc
3511 	 */
3512 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3513 
3514 	if (buffer)
3515 		return buffer;
3516 
3517 	/*
3518 	 * vmalloc failed, lets dig into swap here
3519 	 */
3520 	gfp_flags &= ~__GFP_NORETRY;
3521 	buffer = (char *)__get_free_pages(gfp_flags, order);
3522 	if (buffer)
3523 		return buffer;
3524 
3525 	/*
3526 	 * complete and utter failure
3527 	 */
3528 	return NULL;
3529 }
3530 
3531 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3532 {
3533 	unsigned int block_nr = req->tp_block_nr;
3534 	struct pgv *pg_vec;
3535 	int i;
3536 
3537 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3538 	if (unlikely(!pg_vec))
3539 		goto out;
3540 
3541 	for (i = 0; i < block_nr; i++) {
3542 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3543 		if (unlikely(!pg_vec[i].buffer))
3544 			goto out_free_pgvec;
3545 	}
3546 
3547 out:
3548 	return pg_vec;
3549 
3550 out_free_pgvec:
3551 	free_pg_vec(pg_vec, order, block_nr);
3552 	pg_vec = NULL;
3553 	goto out;
3554 }
3555 
3556 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3557 		int closing, int tx_ring)
3558 {
3559 	struct pgv *pg_vec = NULL;
3560 	struct packet_sock *po = pkt_sk(sk);
3561 	int was_running, order = 0;
3562 	struct packet_ring_buffer *rb;
3563 	struct sk_buff_head *rb_queue;
3564 	__be16 num;
3565 	int err = -EINVAL;
3566 	/* Added to avoid minimal code churn */
3567 	struct tpacket_req *req = &req_u->req;
3568 
3569 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3570 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3571 		WARN(1, "Tx-ring is not supported.\n");
3572 		goto out;
3573 	}
3574 
3575 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3576 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3577 
3578 	err = -EBUSY;
3579 	if (!closing) {
3580 		if (atomic_read(&po->mapped))
3581 			goto out;
3582 		if (atomic_read(&rb->pending))
3583 			goto out;
3584 	}
3585 
3586 	if (req->tp_block_nr) {
3587 		/* Sanity tests and some calculations */
3588 		err = -EBUSY;
3589 		if (unlikely(rb->pg_vec))
3590 			goto out;
3591 
3592 		switch (po->tp_version) {
3593 		case TPACKET_V1:
3594 			po->tp_hdrlen = TPACKET_HDRLEN;
3595 			break;
3596 		case TPACKET_V2:
3597 			po->tp_hdrlen = TPACKET2_HDRLEN;
3598 			break;
3599 		case TPACKET_V3:
3600 			po->tp_hdrlen = TPACKET3_HDRLEN;
3601 			break;
3602 		}
3603 
3604 		err = -EINVAL;
3605 		if (unlikely((int)req->tp_block_size <= 0))
3606 			goto out;
3607 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3608 			goto out;
3609 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3610 					po->tp_reserve))
3611 			goto out;
3612 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3613 			goto out;
3614 
3615 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3616 		if (unlikely(rb->frames_per_block <= 0))
3617 			goto out;
3618 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3619 					req->tp_frame_nr))
3620 			goto out;
3621 
3622 		err = -ENOMEM;
3623 		order = get_order(req->tp_block_size);
3624 		pg_vec = alloc_pg_vec(req, order);
3625 		if (unlikely(!pg_vec))
3626 			goto out;
3627 		switch (po->tp_version) {
3628 		case TPACKET_V3:
3629 		/* Transmit path is not supported. We checked
3630 		 * it above but just being paranoid
3631 		 */
3632 			if (!tx_ring)
3633 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3634 				break;
3635 		default:
3636 			break;
3637 		}
3638 	}
3639 	/* Done */
3640 	else {
3641 		err = -EINVAL;
3642 		if (unlikely(req->tp_frame_nr))
3643 			goto out;
3644 	}
3645 
3646 	lock_sock(sk);
3647 
3648 	/* Detach socket from network */
3649 	spin_lock(&po->bind_lock);
3650 	was_running = po->running;
3651 	num = po->num;
3652 	if (was_running) {
3653 		po->num = 0;
3654 		__unregister_prot_hook(sk, false);
3655 	}
3656 	spin_unlock(&po->bind_lock);
3657 
3658 	synchronize_net();
3659 
3660 	err = -EBUSY;
3661 	mutex_lock(&po->pg_vec_lock);
3662 	if (closing || atomic_read(&po->mapped) == 0) {
3663 		err = 0;
3664 		spin_lock_bh(&rb_queue->lock);
3665 		swap(rb->pg_vec, pg_vec);
3666 		rb->frame_max = (req->tp_frame_nr - 1);
3667 		rb->head = 0;
3668 		rb->frame_size = req->tp_frame_size;
3669 		spin_unlock_bh(&rb_queue->lock);
3670 
3671 		swap(rb->pg_vec_order, order);
3672 		swap(rb->pg_vec_len, req->tp_block_nr);
3673 
3674 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3675 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3676 						tpacket_rcv : packet_rcv;
3677 		skb_queue_purge(rb_queue);
3678 		if (atomic_read(&po->mapped))
3679 			pr_err("packet_mmap: vma is busy: %d\n",
3680 			       atomic_read(&po->mapped));
3681 	}
3682 	mutex_unlock(&po->pg_vec_lock);
3683 
3684 	spin_lock(&po->bind_lock);
3685 	if (was_running) {
3686 		po->num = num;
3687 		register_prot_hook(sk);
3688 	}
3689 	spin_unlock(&po->bind_lock);
3690 	if (closing && (po->tp_version > TPACKET_V2)) {
3691 		/* Because we don't support block-based V3 on tx-ring */
3692 		if (!tx_ring)
3693 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3694 	}
3695 	release_sock(sk);
3696 
3697 	if (pg_vec)
3698 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3699 out:
3700 	return err;
3701 }
3702 
3703 static int packet_mmap(struct file *file, struct socket *sock,
3704 		struct vm_area_struct *vma)
3705 {
3706 	struct sock *sk = sock->sk;
3707 	struct packet_sock *po = pkt_sk(sk);
3708 	unsigned long size, expected_size;
3709 	struct packet_ring_buffer *rb;
3710 	unsigned long start;
3711 	int err = -EINVAL;
3712 	int i;
3713 
3714 	if (vma->vm_pgoff)
3715 		return -EINVAL;
3716 
3717 	mutex_lock(&po->pg_vec_lock);
3718 
3719 	expected_size = 0;
3720 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3721 		if (rb->pg_vec) {
3722 			expected_size += rb->pg_vec_len
3723 						* rb->pg_vec_pages
3724 						* PAGE_SIZE;
3725 		}
3726 	}
3727 
3728 	if (expected_size == 0)
3729 		goto out;
3730 
3731 	size = vma->vm_end - vma->vm_start;
3732 	if (size != expected_size)
3733 		goto out;
3734 
3735 	start = vma->vm_start;
3736 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3737 		if (rb->pg_vec == NULL)
3738 			continue;
3739 
3740 		for (i = 0; i < rb->pg_vec_len; i++) {
3741 			struct page *page;
3742 			void *kaddr = rb->pg_vec[i].buffer;
3743 			int pg_num;
3744 
3745 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3746 				page = pgv_to_page(kaddr);
3747 				err = vm_insert_page(vma, start, page);
3748 				if (unlikely(err))
3749 					goto out;
3750 				start += PAGE_SIZE;
3751 				kaddr += PAGE_SIZE;
3752 			}
3753 		}
3754 	}
3755 
3756 	atomic_inc(&po->mapped);
3757 	vma->vm_ops = &packet_mmap_ops;
3758 	err = 0;
3759 
3760 out:
3761 	mutex_unlock(&po->pg_vec_lock);
3762 	return err;
3763 }
3764 
3765 static const struct proto_ops packet_ops_spkt = {
3766 	.family =	PF_PACKET,
3767 	.owner =	THIS_MODULE,
3768 	.release =	packet_release,
3769 	.bind =		packet_bind_spkt,
3770 	.connect =	sock_no_connect,
3771 	.socketpair =	sock_no_socketpair,
3772 	.accept =	sock_no_accept,
3773 	.getname =	packet_getname_spkt,
3774 	.poll =		datagram_poll,
3775 	.ioctl =	packet_ioctl,
3776 	.listen =	sock_no_listen,
3777 	.shutdown =	sock_no_shutdown,
3778 	.setsockopt =	sock_no_setsockopt,
3779 	.getsockopt =	sock_no_getsockopt,
3780 	.sendmsg =	packet_sendmsg_spkt,
3781 	.recvmsg =	packet_recvmsg,
3782 	.mmap =		sock_no_mmap,
3783 	.sendpage =	sock_no_sendpage,
3784 };
3785 
3786 static const struct proto_ops packet_ops = {
3787 	.family =	PF_PACKET,
3788 	.owner =	THIS_MODULE,
3789 	.release =	packet_release,
3790 	.bind =		packet_bind,
3791 	.connect =	sock_no_connect,
3792 	.socketpair =	sock_no_socketpair,
3793 	.accept =	sock_no_accept,
3794 	.getname =	packet_getname,
3795 	.poll =		packet_poll,
3796 	.ioctl =	packet_ioctl,
3797 	.listen =	sock_no_listen,
3798 	.shutdown =	sock_no_shutdown,
3799 	.setsockopt =	packet_setsockopt,
3800 	.getsockopt =	packet_getsockopt,
3801 	.sendmsg =	packet_sendmsg,
3802 	.recvmsg =	packet_recvmsg,
3803 	.mmap =		packet_mmap,
3804 	.sendpage =	sock_no_sendpage,
3805 };
3806 
3807 static const struct net_proto_family packet_family_ops = {
3808 	.family =	PF_PACKET,
3809 	.create =	packet_create,
3810 	.owner	=	THIS_MODULE,
3811 };
3812 
3813 static struct notifier_block packet_netdev_notifier = {
3814 	.notifier_call =	packet_notifier,
3815 };
3816 
3817 #ifdef CONFIG_PROC_FS
3818 
3819 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3820 	__acquires(RCU)
3821 {
3822 	struct net *net = seq_file_net(seq);
3823 
3824 	rcu_read_lock();
3825 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3826 }
3827 
3828 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3829 {
3830 	struct net *net = seq_file_net(seq);
3831 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
3832 }
3833 
3834 static void packet_seq_stop(struct seq_file *seq, void *v)
3835 	__releases(RCU)
3836 {
3837 	rcu_read_unlock();
3838 }
3839 
3840 static int packet_seq_show(struct seq_file *seq, void *v)
3841 {
3842 	if (v == SEQ_START_TOKEN)
3843 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
3844 	else {
3845 		struct sock *s = sk_entry(v);
3846 		const struct packet_sock *po = pkt_sk(s);
3847 
3848 		seq_printf(seq,
3849 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
3850 			   s,
3851 			   atomic_read(&s->sk_refcnt),
3852 			   s->sk_type,
3853 			   ntohs(po->num),
3854 			   po->ifindex,
3855 			   po->running,
3856 			   atomic_read(&s->sk_rmem_alloc),
3857 			   sock_i_uid(s),
3858 			   sock_i_ino(s));
3859 	}
3860 
3861 	return 0;
3862 }
3863 
3864 static const struct seq_operations packet_seq_ops = {
3865 	.start	= packet_seq_start,
3866 	.next	= packet_seq_next,
3867 	.stop	= packet_seq_stop,
3868 	.show	= packet_seq_show,
3869 };
3870 
3871 static int packet_seq_open(struct inode *inode, struct file *file)
3872 {
3873 	return seq_open_net(inode, file, &packet_seq_ops,
3874 			    sizeof(struct seq_net_private));
3875 }
3876 
3877 static const struct file_operations packet_seq_fops = {
3878 	.owner		= THIS_MODULE,
3879 	.open		= packet_seq_open,
3880 	.read		= seq_read,
3881 	.llseek		= seq_lseek,
3882 	.release	= seq_release_net,
3883 };
3884 
3885 #endif
3886 
3887 static int __net_init packet_net_init(struct net *net)
3888 {
3889 	spin_lock_init(&net->packet.sklist_lock);
3890 	INIT_HLIST_HEAD(&net->packet.sklist);
3891 
3892 	if (!proc_net_fops_create(net, "packet", 0, &packet_seq_fops))
3893 		return -ENOMEM;
3894 
3895 	return 0;
3896 }
3897 
3898 static void __net_exit packet_net_exit(struct net *net)
3899 {
3900 	proc_net_remove(net, "packet");
3901 }
3902 
3903 static struct pernet_operations packet_net_ops = {
3904 	.init = packet_net_init,
3905 	.exit = packet_net_exit,
3906 };
3907 
3908 
3909 static void __exit packet_exit(void)
3910 {
3911 	unregister_netdevice_notifier(&packet_netdev_notifier);
3912 	unregister_pernet_subsys(&packet_net_ops);
3913 	sock_unregister(PF_PACKET);
3914 	proto_unregister(&packet_proto);
3915 }
3916 
3917 static int __init packet_init(void)
3918 {
3919 	int rc = proto_register(&packet_proto, 0);
3920 
3921 	if (rc != 0)
3922 		goto out;
3923 
3924 	sock_register(&packet_family_ops);
3925 	register_pernet_subsys(&packet_net_ops);
3926 	register_netdevice_notifier(&packet_netdev_notifier);
3927 out:
3928 	return rc;
3929 }
3930 
3931 module_init(packet_init);
3932 module_exit(packet_exit);
3933 MODULE_LICENSE("GPL");
3934 MODULE_ALIAS_NETPROTO(PF_PACKET);
3935