xref: /openbmc/linux/net/packet/af_packet.c (revision 8684014d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99    Assumptions:
100    - if device has no dev->hard_header routine, it adds and removes ll header
101      inside itself. In this case ll header is invisible outside of device,
102      but higher levels still should reserve dev->hard_header_len.
103      Some devices are enough clever to reallocate skb, when header
104      will not fit to reserved space (tunnel), another ones are silly
105      (PPP).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev->hard_header!=NULL
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev->hard_header==NULL
121    mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 		 header.  PPP makes it, that is wrong, because introduce
123 		 assymetry between rx and tx paths.
124    data       -> data
125 
126 Outgoing, dev->hard_header==NULL
127    mac_header -> data. ll header is still not built!
128    data       -> data
129 
130 Resume
131   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142    mac_header -> data
143    data       -> data
144 
145    We should set nh.raw on output to correct posistion,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define PGV_FROM_VMALLOC 1
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 		       struct packet_type *pt, struct net_device *orig_dev);
192 
193 static void *packet_previous_frame(struct packet_sock *po,
194 		struct packet_ring_buffer *rb,
195 		int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 			struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 		struct tpacket_kbdq_core *,
210 		void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 		struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 
218 struct packet_skb_cb {
219 	unsigned int origlen;
220 	union {
221 		struct sockaddr_pkt pkt;
222 		struct sockaddr_ll ll;
223 	} sa;
224 };
225 
226 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
227 
228 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid)	\
230 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 	((x)->kactive_blk_num+1) : 0)
236 
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239 
240 static int packet_direct_xmit(struct sk_buff *skb)
241 {
242 	struct net_device *dev = skb->dev;
243 	netdev_features_t features;
244 	struct netdev_queue *txq;
245 	int ret = NETDEV_TX_BUSY;
246 
247 	if (unlikely(!netif_running(dev) ||
248 		     !netif_carrier_ok(dev)))
249 		goto drop;
250 
251 	features = netif_skb_features(skb);
252 	if (skb_needs_linearize(skb, features) &&
253 	    __skb_linearize(skb))
254 		goto drop;
255 
256 	txq = skb_get_tx_queue(dev, skb);
257 
258 	local_bh_disable();
259 
260 	HARD_TX_LOCK(dev, txq, smp_processor_id());
261 	if (!netif_xmit_frozen_or_drv_stopped(txq))
262 		ret = netdev_start_xmit(skb, dev, txq, false);
263 	HARD_TX_UNLOCK(dev, txq);
264 
265 	local_bh_enable();
266 
267 	if (!dev_xmit_complete(ret))
268 		kfree_skb(skb);
269 
270 	return ret;
271 drop:
272 	atomic_long_inc(&dev->tx_dropped);
273 	kfree_skb(skb);
274 	return NET_XMIT_DROP;
275 }
276 
277 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
278 {
279 	struct net_device *dev;
280 
281 	rcu_read_lock();
282 	dev = rcu_dereference(po->cached_dev);
283 	if (likely(dev))
284 		dev_hold(dev);
285 	rcu_read_unlock();
286 
287 	return dev;
288 }
289 
290 static void packet_cached_dev_assign(struct packet_sock *po,
291 				     struct net_device *dev)
292 {
293 	rcu_assign_pointer(po->cached_dev, dev);
294 }
295 
296 static void packet_cached_dev_reset(struct packet_sock *po)
297 {
298 	RCU_INIT_POINTER(po->cached_dev, NULL);
299 }
300 
301 static bool packet_use_direct_xmit(const struct packet_sock *po)
302 {
303 	return po->xmit == packet_direct_xmit;
304 }
305 
306 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
307 {
308 	return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
309 }
310 
311 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
312 {
313 	const struct net_device_ops *ops = dev->netdev_ops;
314 	u16 queue_index;
315 
316 	if (ops->ndo_select_queue) {
317 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
318 						    __packet_pick_tx_queue);
319 		queue_index = netdev_cap_txqueue(dev, queue_index);
320 	} else {
321 		queue_index = __packet_pick_tx_queue(dev, skb);
322 	}
323 
324 	skb_set_queue_mapping(skb, queue_index);
325 }
326 
327 /* register_prot_hook must be invoked with the po->bind_lock held,
328  * or from a context in which asynchronous accesses to the packet
329  * socket is not possible (packet_create()).
330  */
331 static void register_prot_hook(struct sock *sk)
332 {
333 	struct packet_sock *po = pkt_sk(sk);
334 
335 	if (!po->running) {
336 		if (po->fanout)
337 			__fanout_link(sk, po);
338 		else
339 			dev_add_pack(&po->prot_hook);
340 
341 		sock_hold(sk);
342 		po->running = 1;
343 	}
344 }
345 
346 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
347  * held.   If the sync parameter is true, we will temporarily drop
348  * the po->bind_lock and do a synchronize_net to make sure no
349  * asynchronous packet processing paths still refer to the elements
350  * of po->prot_hook.  If the sync parameter is false, it is the
351  * callers responsibility to take care of this.
352  */
353 static void __unregister_prot_hook(struct sock *sk, bool sync)
354 {
355 	struct packet_sock *po = pkt_sk(sk);
356 
357 	po->running = 0;
358 
359 	if (po->fanout)
360 		__fanout_unlink(sk, po);
361 	else
362 		__dev_remove_pack(&po->prot_hook);
363 
364 	__sock_put(sk);
365 
366 	if (sync) {
367 		spin_unlock(&po->bind_lock);
368 		synchronize_net();
369 		spin_lock(&po->bind_lock);
370 	}
371 }
372 
373 static void unregister_prot_hook(struct sock *sk, bool sync)
374 {
375 	struct packet_sock *po = pkt_sk(sk);
376 
377 	if (po->running)
378 		__unregister_prot_hook(sk, sync);
379 }
380 
381 static inline struct page * __pure pgv_to_page(void *addr)
382 {
383 	if (is_vmalloc_addr(addr))
384 		return vmalloc_to_page(addr);
385 	return virt_to_page(addr);
386 }
387 
388 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
389 {
390 	union tpacket_uhdr h;
391 
392 	h.raw = frame;
393 	switch (po->tp_version) {
394 	case TPACKET_V1:
395 		h.h1->tp_status = status;
396 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 		break;
398 	case TPACKET_V2:
399 		h.h2->tp_status = status;
400 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
401 		break;
402 	case TPACKET_V3:
403 	default:
404 		WARN(1, "TPACKET version not supported.\n");
405 		BUG();
406 	}
407 
408 	smp_wmb();
409 }
410 
411 static int __packet_get_status(struct packet_sock *po, void *frame)
412 {
413 	union tpacket_uhdr h;
414 
415 	smp_rmb();
416 
417 	h.raw = frame;
418 	switch (po->tp_version) {
419 	case TPACKET_V1:
420 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
421 		return h.h1->tp_status;
422 	case TPACKET_V2:
423 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
424 		return h.h2->tp_status;
425 	case TPACKET_V3:
426 	default:
427 		WARN(1, "TPACKET version not supported.\n");
428 		BUG();
429 		return 0;
430 	}
431 }
432 
433 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
434 				   unsigned int flags)
435 {
436 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
437 
438 	if (shhwtstamps &&
439 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
440 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
441 		return TP_STATUS_TS_RAW_HARDWARE;
442 
443 	if (ktime_to_timespec_cond(skb->tstamp, ts))
444 		return TP_STATUS_TS_SOFTWARE;
445 
446 	return 0;
447 }
448 
449 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
450 				    struct sk_buff *skb)
451 {
452 	union tpacket_uhdr h;
453 	struct timespec ts;
454 	__u32 ts_status;
455 
456 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
457 		return 0;
458 
459 	h.raw = frame;
460 	switch (po->tp_version) {
461 	case TPACKET_V1:
462 		h.h1->tp_sec = ts.tv_sec;
463 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
464 		break;
465 	case TPACKET_V2:
466 		h.h2->tp_sec = ts.tv_sec;
467 		h.h2->tp_nsec = ts.tv_nsec;
468 		break;
469 	case TPACKET_V3:
470 	default:
471 		WARN(1, "TPACKET version not supported.\n");
472 		BUG();
473 	}
474 
475 	/* one flush is safe, as both fields always lie on the same cacheline */
476 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
477 	smp_wmb();
478 
479 	return ts_status;
480 }
481 
482 static void *packet_lookup_frame(struct packet_sock *po,
483 		struct packet_ring_buffer *rb,
484 		unsigned int position,
485 		int status)
486 {
487 	unsigned int pg_vec_pos, frame_offset;
488 	union tpacket_uhdr h;
489 
490 	pg_vec_pos = position / rb->frames_per_block;
491 	frame_offset = position % rb->frames_per_block;
492 
493 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
494 		(frame_offset * rb->frame_size);
495 
496 	if (status != __packet_get_status(po, h.raw))
497 		return NULL;
498 
499 	return h.raw;
500 }
501 
502 static void *packet_current_frame(struct packet_sock *po,
503 		struct packet_ring_buffer *rb,
504 		int status)
505 {
506 	return packet_lookup_frame(po, rb, rb->head, status);
507 }
508 
509 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
510 {
511 	del_timer_sync(&pkc->retire_blk_timer);
512 }
513 
514 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
515 		int tx_ring,
516 		struct sk_buff_head *rb_queue)
517 {
518 	struct tpacket_kbdq_core *pkc;
519 
520 	pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
521 			GET_PBDQC_FROM_RB(&po->rx_ring);
522 
523 	spin_lock_bh(&rb_queue->lock);
524 	pkc->delete_blk_timer = 1;
525 	spin_unlock_bh(&rb_queue->lock);
526 
527 	prb_del_retire_blk_timer(pkc);
528 }
529 
530 static void prb_init_blk_timer(struct packet_sock *po,
531 		struct tpacket_kbdq_core *pkc,
532 		void (*func) (unsigned long))
533 {
534 	init_timer(&pkc->retire_blk_timer);
535 	pkc->retire_blk_timer.data = (long)po;
536 	pkc->retire_blk_timer.function = func;
537 	pkc->retire_blk_timer.expires = jiffies;
538 }
539 
540 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
541 {
542 	struct tpacket_kbdq_core *pkc;
543 
544 	if (tx_ring)
545 		BUG();
546 
547 	pkc = tx_ring ? GET_PBDQC_FROM_RB(&po->tx_ring) :
548 			GET_PBDQC_FROM_RB(&po->rx_ring);
549 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
550 }
551 
552 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
553 				int blk_size_in_bytes)
554 {
555 	struct net_device *dev;
556 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
557 	struct ethtool_cmd ecmd;
558 	int err;
559 	u32 speed;
560 
561 	rtnl_lock();
562 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
563 	if (unlikely(!dev)) {
564 		rtnl_unlock();
565 		return DEFAULT_PRB_RETIRE_TOV;
566 	}
567 	err = __ethtool_get_settings(dev, &ecmd);
568 	speed = ethtool_cmd_speed(&ecmd);
569 	rtnl_unlock();
570 	if (!err) {
571 		/*
572 		 * If the link speed is so slow you don't really
573 		 * need to worry about perf anyways
574 		 */
575 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
576 			return DEFAULT_PRB_RETIRE_TOV;
577 		} else {
578 			msec = 1;
579 			div = speed / 1000;
580 		}
581 	}
582 
583 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
584 
585 	if (div)
586 		mbits /= div;
587 
588 	tmo = mbits * msec;
589 
590 	if (div)
591 		return tmo+1;
592 	return tmo;
593 }
594 
595 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
596 			union tpacket_req_u *req_u)
597 {
598 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
599 }
600 
601 static void init_prb_bdqc(struct packet_sock *po,
602 			struct packet_ring_buffer *rb,
603 			struct pgv *pg_vec,
604 			union tpacket_req_u *req_u, int tx_ring)
605 {
606 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
607 	struct tpacket_block_desc *pbd;
608 
609 	memset(p1, 0x0, sizeof(*p1));
610 
611 	p1->knxt_seq_num = 1;
612 	p1->pkbdq = pg_vec;
613 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
614 	p1->pkblk_start	= pg_vec[0].buffer;
615 	p1->kblk_size = req_u->req3.tp_block_size;
616 	p1->knum_blocks	= req_u->req3.tp_block_nr;
617 	p1->hdrlen = po->tp_hdrlen;
618 	p1->version = po->tp_version;
619 	p1->last_kactive_blk_num = 0;
620 	po->stats.stats3.tp_freeze_q_cnt = 0;
621 	if (req_u->req3.tp_retire_blk_tov)
622 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
623 	else
624 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
625 						req_u->req3.tp_block_size);
626 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
627 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
628 
629 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
630 	prb_init_ft_ops(p1, req_u);
631 	prb_setup_retire_blk_timer(po, tx_ring);
632 	prb_open_block(p1, pbd);
633 }
634 
635 /*  Do NOT update the last_blk_num first.
636  *  Assumes sk_buff_head lock is held.
637  */
638 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
639 {
640 	mod_timer(&pkc->retire_blk_timer,
641 			jiffies + pkc->tov_in_jiffies);
642 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
643 }
644 
645 /*
646  * Timer logic:
647  * 1) We refresh the timer only when we open a block.
648  *    By doing this we don't waste cycles refreshing the timer
649  *	  on packet-by-packet basis.
650  *
651  * With a 1MB block-size, on a 1Gbps line, it will take
652  * i) ~8 ms to fill a block + ii) memcpy etc.
653  * In this cut we are not accounting for the memcpy time.
654  *
655  * So, if the user sets the 'tmo' to 10ms then the timer
656  * will never fire while the block is still getting filled
657  * (which is what we want). However, the user could choose
658  * to close a block early and that's fine.
659  *
660  * But when the timer does fire, we check whether or not to refresh it.
661  * Since the tmo granularity is in msecs, it is not too expensive
662  * to refresh the timer, lets say every '8' msecs.
663  * Either the user can set the 'tmo' or we can derive it based on
664  * a) line-speed and b) block-size.
665  * prb_calc_retire_blk_tmo() calculates the tmo.
666  *
667  */
668 static void prb_retire_rx_blk_timer_expired(unsigned long data)
669 {
670 	struct packet_sock *po = (struct packet_sock *)data;
671 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
672 	unsigned int frozen;
673 	struct tpacket_block_desc *pbd;
674 
675 	spin_lock(&po->sk.sk_receive_queue.lock);
676 
677 	frozen = prb_queue_frozen(pkc);
678 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
679 
680 	if (unlikely(pkc->delete_blk_timer))
681 		goto out;
682 
683 	/* We only need to plug the race when the block is partially filled.
684 	 * tpacket_rcv:
685 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
686 	 *		copy_bits() is in progress ...
687 	 *		timer fires on other cpu:
688 	 *		we can't retire the current block because copy_bits
689 	 *		is in progress.
690 	 *
691 	 */
692 	if (BLOCK_NUM_PKTS(pbd)) {
693 		while (atomic_read(&pkc->blk_fill_in_prog)) {
694 			/* Waiting for skb_copy_bits to finish... */
695 			cpu_relax();
696 		}
697 	}
698 
699 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
700 		if (!frozen) {
701 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
702 			if (!prb_dispatch_next_block(pkc, po))
703 				goto refresh_timer;
704 			else
705 				goto out;
706 		} else {
707 			/* Case 1. Queue was frozen because user-space was
708 			 *	   lagging behind.
709 			 */
710 			if (prb_curr_blk_in_use(pkc, pbd)) {
711 				/*
712 				 * Ok, user-space is still behind.
713 				 * So just refresh the timer.
714 				 */
715 				goto refresh_timer;
716 			} else {
717 			       /* Case 2. queue was frozen,user-space caught up,
718 				* now the link went idle && the timer fired.
719 				* We don't have a block to close.So we open this
720 				* block and restart the timer.
721 				* opening a block thaws the queue,restarts timer
722 				* Thawing/timer-refresh is a side effect.
723 				*/
724 				prb_open_block(pkc, pbd);
725 				goto out;
726 			}
727 		}
728 	}
729 
730 refresh_timer:
731 	_prb_refresh_rx_retire_blk_timer(pkc);
732 
733 out:
734 	spin_unlock(&po->sk.sk_receive_queue.lock);
735 }
736 
737 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
738 		struct tpacket_block_desc *pbd1, __u32 status)
739 {
740 	/* Flush everything minus the block header */
741 
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 	u8 *start, *end;
744 
745 	start = (u8 *)pbd1;
746 
747 	/* Skip the block header(we know header WILL fit in 4K) */
748 	start += PAGE_SIZE;
749 
750 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
751 	for (; start < end; start += PAGE_SIZE)
752 		flush_dcache_page(pgv_to_page(start));
753 
754 	smp_wmb();
755 #endif
756 
757 	/* Now update the block status. */
758 
759 	BLOCK_STATUS(pbd1) = status;
760 
761 	/* Flush the block header */
762 
763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
764 	start = (u8 *)pbd1;
765 	flush_dcache_page(pgv_to_page(start));
766 
767 	smp_wmb();
768 #endif
769 }
770 
771 /*
772  * Side effect:
773  *
774  * 1) flush the block
775  * 2) Increment active_blk_num
776  *
777  * Note:We DONT refresh the timer on purpose.
778  *	Because almost always the next block will be opened.
779  */
780 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
781 		struct tpacket_block_desc *pbd1,
782 		struct packet_sock *po, unsigned int stat)
783 {
784 	__u32 status = TP_STATUS_USER | stat;
785 
786 	struct tpacket3_hdr *last_pkt;
787 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
788 
789 	if (po->stats.stats3.tp_drops)
790 		status |= TP_STATUS_LOSING;
791 
792 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
793 	last_pkt->tp_next_offset = 0;
794 
795 	/* Get the ts of the last pkt */
796 	if (BLOCK_NUM_PKTS(pbd1)) {
797 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
798 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
799 	} else {
800 		/* Ok, we tmo'd - so get the current time */
801 		struct timespec ts;
802 		getnstimeofday(&ts);
803 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
804 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
805 	}
806 
807 	smp_wmb();
808 
809 	/* Flush the block */
810 	prb_flush_block(pkc1, pbd1, status);
811 
812 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
813 }
814 
815 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
816 {
817 	pkc->reset_pending_on_curr_blk = 0;
818 }
819 
820 /*
821  * Side effect of opening a block:
822  *
823  * 1) prb_queue is thawed.
824  * 2) retire_blk_timer is refreshed.
825  *
826  */
827 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
828 	struct tpacket_block_desc *pbd1)
829 {
830 	struct timespec ts;
831 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
832 
833 	smp_rmb();
834 
835 	/* We could have just memset this but we will lose the
836 	 * flexibility of making the priv area sticky
837 	 */
838 
839 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
840 	BLOCK_NUM_PKTS(pbd1) = 0;
841 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
842 
843 	getnstimeofday(&ts);
844 
845 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
846 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
847 
848 	pkc1->pkblk_start = (char *)pbd1;
849 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
850 
851 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
852 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
853 
854 	pbd1->version = pkc1->version;
855 	pkc1->prev = pkc1->nxt_offset;
856 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
857 
858 	prb_thaw_queue(pkc1);
859 	_prb_refresh_rx_retire_blk_timer(pkc1);
860 
861 	smp_wmb();
862 }
863 
864 /*
865  * Queue freeze logic:
866  * 1) Assume tp_block_nr = 8 blocks.
867  * 2) At time 't0', user opens Rx ring.
868  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
869  * 4) user-space is either sleeping or processing block '0'.
870  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
871  *    it will close block-7,loop around and try to fill block '0'.
872  *    call-flow:
873  *    __packet_lookup_frame_in_block
874  *      prb_retire_current_block()
875  *      prb_dispatch_next_block()
876  *        |->(BLOCK_STATUS == USER) evaluates to true
877  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
878  * 6) Now there are two cases:
879  *    6.1) Link goes idle right after the queue is frozen.
880  *         But remember, the last open_block() refreshed the timer.
881  *         When this timer expires,it will refresh itself so that we can
882  *         re-open block-0 in near future.
883  *    6.2) Link is busy and keeps on receiving packets. This is a simple
884  *         case and __packet_lookup_frame_in_block will check if block-0
885  *         is free and can now be re-used.
886  */
887 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
888 				  struct packet_sock *po)
889 {
890 	pkc->reset_pending_on_curr_blk = 1;
891 	po->stats.stats3.tp_freeze_q_cnt++;
892 }
893 
894 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
895 
896 /*
897  * If the next block is free then we will dispatch it
898  * and return a good offset.
899  * Else, we will freeze the queue.
900  * So, caller must check the return value.
901  */
902 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
903 		struct packet_sock *po)
904 {
905 	struct tpacket_block_desc *pbd;
906 
907 	smp_rmb();
908 
909 	/* 1. Get current block num */
910 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
911 
912 	/* 2. If this block is currently in_use then freeze the queue */
913 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
914 		prb_freeze_queue(pkc, po);
915 		return NULL;
916 	}
917 
918 	/*
919 	 * 3.
920 	 * open this block and return the offset where the first packet
921 	 * needs to get stored.
922 	 */
923 	prb_open_block(pkc, pbd);
924 	return (void *)pkc->nxt_offset;
925 }
926 
927 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
928 		struct packet_sock *po, unsigned int status)
929 {
930 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
931 
932 	/* retire/close the current block */
933 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
934 		/*
935 		 * Plug the case where copy_bits() is in progress on
936 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
937 		 * have space to copy the pkt in the current block and
938 		 * called prb_retire_current_block()
939 		 *
940 		 * We don't need to worry about the TMO case because
941 		 * the timer-handler already handled this case.
942 		 */
943 		if (!(status & TP_STATUS_BLK_TMO)) {
944 			while (atomic_read(&pkc->blk_fill_in_prog)) {
945 				/* Waiting for skb_copy_bits to finish... */
946 				cpu_relax();
947 			}
948 		}
949 		prb_close_block(pkc, pbd, po, status);
950 		return;
951 	}
952 }
953 
954 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
955 				      struct tpacket_block_desc *pbd)
956 {
957 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
958 }
959 
960 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
961 {
962 	return pkc->reset_pending_on_curr_blk;
963 }
964 
965 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
966 {
967 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
968 	atomic_dec(&pkc->blk_fill_in_prog);
969 }
970 
971 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
972 			struct tpacket3_hdr *ppd)
973 {
974 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
975 }
976 
977 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
978 			struct tpacket3_hdr *ppd)
979 {
980 	ppd->hv1.tp_rxhash = 0;
981 }
982 
983 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
984 			struct tpacket3_hdr *ppd)
985 {
986 	if (vlan_tx_tag_present(pkc->skb)) {
987 		ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
988 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
989 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
990 	} else {
991 		ppd->hv1.tp_vlan_tci = 0;
992 		ppd->hv1.tp_vlan_tpid = 0;
993 		ppd->tp_status = TP_STATUS_AVAILABLE;
994 	}
995 }
996 
997 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
998 			struct tpacket3_hdr *ppd)
999 {
1000 	ppd->hv1.tp_padding = 0;
1001 	prb_fill_vlan_info(pkc, ppd);
1002 
1003 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1004 		prb_fill_rxhash(pkc, ppd);
1005 	else
1006 		prb_clear_rxhash(pkc, ppd);
1007 }
1008 
1009 static void prb_fill_curr_block(char *curr,
1010 				struct tpacket_kbdq_core *pkc,
1011 				struct tpacket_block_desc *pbd,
1012 				unsigned int len)
1013 {
1014 	struct tpacket3_hdr *ppd;
1015 
1016 	ppd  = (struct tpacket3_hdr *)curr;
1017 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1018 	pkc->prev = curr;
1019 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1020 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1021 	BLOCK_NUM_PKTS(pbd) += 1;
1022 	atomic_inc(&pkc->blk_fill_in_prog);
1023 	prb_run_all_ft_ops(pkc, ppd);
1024 }
1025 
1026 /* Assumes caller has the sk->rx_queue.lock */
1027 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1028 					    struct sk_buff *skb,
1029 						int status,
1030 					    unsigned int len
1031 					    )
1032 {
1033 	struct tpacket_kbdq_core *pkc;
1034 	struct tpacket_block_desc *pbd;
1035 	char *curr, *end;
1036 
1037 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1038 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1039 
1040 	/* Queue is frozen when user space is lagging behind */
1041 	if (prb_queue_frozen(pkc)) {
1042 		/*
1043 		 * Check if that last block which caused the queue to freeze,
1044 		 * is still in_use by user-space.
1045 		 */
1046 		if (prb_curr_blk_in_use(pkc, pbd)) {
1047 			/* Can't record this packet */
1048 			return NULL;
1049 		} else {
1050 			/*
1051 			 * Ok, the block was released by user-space.
1052 			 * Now let's open that block.
1053 			 * opening a block also thaws the queue.
1054 			 * Thawing is a side effect.
1055 			 */
1056 			prb_open_block(pkc, pbd);
1057 		}
1058 	}
1059 
1060 	smp_mb();
1061 	curr = pkc->nxt_offset;
1062 	pkc->skb = skb;
1063 	end = (char *)pbd + pkc->kblk_size;
1064 
1065 	/* first try the current block */
1066 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1067 		prb_fill_curr_block(curr, pkc, pbd, len);
1068 		return (void *)curr;
1069 	}
1070 
1071 	/* Ok, close the current block */
1072 	prb_retire_current_block(pkc, po, 0);
1073 
1074 	/* Now, try to dispatch the next block */
1075 	curr = (char *)prb_dispatch_next_block(pkc, po);
1076 	if (curr) {
1077 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1078 		prb_fill_curr_block(curr, pkc, pbd, len);
1079 		return (void *)curr;
1080 	}
1081 
1082 	/*
1083 	 * No free blocks are available.user_space hasn't caught up yet.
1084 	 * Queue was just frozen and now this packet will get dropped.
1085 	 */
1086 	return NULL;
1087 }
1088 
1089 static void *packet_current_rx_frame(struct packet_sock *po,
1090 					    struct sk_buff *skb,
1091 					    int status, unsigned int len)
1092 {
1093 	char *curr = NULL;
1094 	switch (po->tp_version) {
1095 	case TPACKET_V1:
1096 	case TPACKET_V2:
1097 		curr = packet_lookup_frame(po, &po->rx_ring,
1098 					po->rx_ring.head, status);
1099 		return curr;
1100 	case TPACKET_V3:
1101 		return __packet_lookup_frame_in_block(po, skb, status, len);
1102 	default:
1103 		WARN(1, "TPACKET version not supported\n");
1104 		BUG();
1105 		return NULL;
1106 	}
1107 }
1108 
1109 static void *prb_lookup_block(struct packet_sock *po,
1110 				     struct packet_ring_buffer *rb,
1111 				     unsigned int idx,
1112 				     int status)
1113 {
1114 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1115 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1116 
1117 	if (status != BLOCK_STATUS(pbd))
1118 		return NULL;
1119 	return pbd;
1120 }
1121 
1122 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1123 {
1124 	unsigned int prev;
1125 	if (rb->prb_bdqc.kactive_blk_num)
1126 		prev = rb->prb_bdqc.kactive_blk_num-1;
1127 	else
1128 		prev = rb->prb_bdqc.knum_blocks-1;
1129 	return prev;
1130 }
1131 
1132 /* Assumes caller has held the rx_queue.lock */
1133 static void *__prb_previous_block(struct packet_sock *po,
1134 					 struct packet_ring_buffer *rb,
1135 					 int status)
1136 {
1137 	unsigned int previous = prb_previous_blk_num(rb);
1138 	return prb_lookup_block(po, rb, previous, status);
1139 }
1140 
1141 static void *packet_previous_rx_frame(struct packet_sock *po,
1142 					     struct packet_ring_buffer *rb,
1143 					     int status)
1144 {
1145 	if (po->tp_version <= TPACKET_V2)
1146 		return packet_previous_frame(po, rb, status);
1147 
1148 	return __prb_previous_block(po, rb, status);
1149 }
1150 
1151 static void packet_increment_rx_head(struct packet_sock *po,
1152 					    struct packet_ring_buffer *rb)
1153 {
1154 	switch (po->tp_version) {
1155 	case TPACKET_V1:
1156 	case TPACKET_V2:
1157 		return packet_increment_head(rb);
1158 	case TPACKET_V3:
1159 	default:
1160 		WARN(1, "TPACKET version not supported.\n");
1161 		BUG();
1162 		return;
1163 	}
1164 }
1165 
1166 static void *packet_previous_frame(struct packet_sock *po,
1167 		struct packet_ring_buffer *rb,
1168 		int status)
1169 {
1170 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1171 	return packet_lookup_frame(po, rb, previous, status);
1172 }
1173 
1174 static void packet_increment_head(struct packet_ring_buffer *buff)
1175 {
1176 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1177 }
1178 
1179 static void packet_inc_pending(struct packet_ring_buffer *rb)
1180 {
1181 	this_cpu_inc(*rb->pending_refcnt);
1182 }
1183 
1184 static void packet_dec_pending(struct packet_ring_buffer *rb)
1185 {
1186 	this_cpu_dec(*rb->pending_refcnt);
1187 }
1188 
1189 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1190 {
1191 	unsigned int refcnt = 0;
1192 	int cpu;
1193 
1194 	/* We don't use pending refcount in rx_ring. */
1195 	if (rb->pending_refcnt == NULL)
1196 		return 0;
1197 
1198 	for_each_possible_cpu(cpu)
1199 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1200 
1201 	return refcnt;
1202 }
1203 
1204 static int packet_alloc_pending(struct packet_sock *po)
1205 {
1206 	po->rx_ring.pending_refcnt = NULL;
1207 
1208 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1209 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1210 		return -ENOBUFS;
1211 
1212 	return 0;
1213 }
1214 
1215 static void packet_free_pending(struct packet_sock *po)
1216 {
1217 	free_percpu(po->tx_ring.pending_refcnt);
1218 }
1219 
1220 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1221 {
1222 	struct sock *sk = &po->sk;
1223 	bool has_room;
1224 
1225 	if (po->prot_hook.func != tpacket_rcv)
1226 		return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1227 			<= sk->sk_rcvbuf;
1228 
1229 	spin_lock(&sk->sk_receive_queue.lock);
1230 	if (po->tp_version == TPACKET_V3)
1231 		has_room = prb_lookup_block(po, &po->rx_ring,
1232 					    po->rx_ring.prb_bdqc.kactive_blk_num,
1233 					    TP_STATUS_KERNEL);
1234 	else
1235 		has_room = packet_lookup_frame(po, &po->rx_ring,
1236 					       po->rx_ring.head,
1237 					       TP_STATUS_KERNEL);
1238 	spin_unlock(&sk->sk_receive_queue.lock);
1239 
1240 	return has_room;
1241 }
1242 
1243 static void packet_sock_destruct(struct sock *sk)
1244 {
1245 	skb_queue_purge(&sk->sk_error_queue);
1246 
1247 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1248 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1249 
1250 	if (!sock_flag(sk, SOCK_DEAD)) {
1251 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1252 		return;
1253 	}
1254 
1255 	sk_refcnt_debug_dec(sk);
1256 }
1257 
1258 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1259 {
1260 	int x = atomic_read(&f->rr_cur) + 1;
1261 
1262 	if (x >= num)
1263 		x = 0;
1264 
1265 	return x;
1266 }
1267 
1268 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1269 				      struct sk_buff *skb,
1270 				      unsigned int num)
1271 {
1272 	return reciprocal_scale(skb_get_hash(skb), num);
1273 }
1274 
1275 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1276 				    struct sk_buff *skb,
1277 				    unsigned int num)
1278 {
1279 	int cur, old;
1280 
1281 	cur = atomic_read(&f->rr_cur);
1282 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1283 				     fanout_rr_next(f, num))) != cur)
1284 		cur = old;
1285 	return cur;
1286 }
1287 
1288 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1289 				     struct sk_buff *skb,
1290 				     unsigned int num)
1291 {
1292 	return smp_processor_id() % num;
1293 }
1294 
1295 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1296 				     struct sk_buff *skb,
1297 				     unsigned int num)
1298 {
1299 	return prandom_u32_max(num);
1300 }
1301 
1302 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1303 					  struct sk_buff *skb,
1304 					  unsigned int idx, unsigned int skip,
1305 					  unsigned int num)
1306 {
1307 	unsigned int i, j;
1308 
1309 	i = j = min_t(int, f->next[idx], num - 1);
1310 	do {
1311 		if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1312 			if (i != j)
1313 				f->next[idx] = i;
1314 			return i;
1315 		}
1316 		if (++i == num)
1317 			i = 0;
1318 	} while (i != j);
1319 
1320 	return idx;
1321 }
1322 
1323 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1324 				    struct sk_buff *skb,
1325 				    unsigned int num)
1326 {
1327 	return skb_get_queue_mapping(skb) % num;
1328 }
1329 
1330 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1331 {
1332 	return f->flags & (flag >> 8);
1333 }
1334 
1335 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1336 			     struct packet_type *pt, struct net_device *orig_dev)
1337 {
1338 	struct packet_fanout *f = pt->af_packet_priv;
1339 	unsigned int num = f->num_members;
1340 	struct packet_sock *po;
1341 	unsigned int idx;
1342 
1343 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1344 	    !num) {
1345 		kfree_skb(skb);
1346 		return 0;
1347 	}
1348 
1349 	switch (f->type) {
1350 	case PACKET_FANOUT_HASH:
1351 	default:
1352 		if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1353 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1354 			if (!skb)
1355 				return 0;
1356 		}
1357 		idx = fanout_demux_hash(f, skb, num);
1358 		break;
1359 	case PACKET_FANOUT_LB:
1360 		idx = fanout_demux_lb(f, skb, num);
1361 		break;
1362 	case PACKET_FANOUT_CPU:
1363 		idx = fanout_demux_cpu(f, skb, num);
1364 		break;
1365 	case PACKET_FANOUT_RND:
1366 		idx = fanout_demux_rnd(f, skb, num);
1367 		break;
1368 	case PACKET_FANOUT_QM:
1369 		idx = fanout_demux_qm(f, skb, num);
1370 		break;
1371 	case PACKET_FANOUT_ROLLOVER:
1372 		idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1373 		break;
1374 	}
1375 
1376 	po = pkt_sk(f->arr[idx]);
1377 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1378 	    unlikely(!packet_rcv_has_room(po, skb))) {
1379 		idx = fanout_demux_rollover(f, skb, idx, idx, num);
1380 		po = pkt_sk(f->arr[idx]);
1381 	}
1382 
1383 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1384 }
1385 
1386 DEFINE_MUTEX(fanout_mutex);
1387 EXPORT_SYMBOL_GPL(fanout_mutex);
1388 static LIST_HEAD(fanout_list);
1389 
1390 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1391 {
1392 	struct packet_fanout *f = po->fanout;
1393 
1394 	spin_lock(&f->lock);
1395 	f->arr[f->num_members] = sk;
1396 	smp_wmb();
1397 	f->num_members++;
1398 	spin_unlock(&f->lock);
1399 }
1400 
1401 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1402 {
1403 	struct packet_fanout *f = po->fanout;
1404 	int i;
1405 
1406 	spin_lock(&f->lock);
1407 	for (i = 0; i < f->num_members; i++) {
1408 		if (f->arr[i] == sk)
1409 			break;
1410 	}
1411 	BUG_ON(i >= f->num_members);
1412 	f->arr[i] = f->arr[f->num_members - 1];
1413 	f->num_members--;
1414 	spin_unlock(&f->lock);
1415 }
1416 
1417 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1418 {
1419 	if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1420 		return true;
1421 
1422 	return false;
1423 }
1424 
1425 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1426 {
1427 	struct packet_sock *po = pkt_sk(sk);
1428 	struct packet_fanout *f, *match;
1429 	u8 type = type_flags & 0xff;
1430 	u8 flags = type_flags >> 8;
1431 	int err;
1432 
1433 	switch (type) {
1434 	case PACKET_FANOUT_ROLLOVER:
1435 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1436 			return -EINVAL;
1437 	case PACKET_FANOUT_HASH:
1438 	case PACKET_FANOUT_LB:
1439 	case PACKET_FANOUT_CPU:
1440 	case PACKET_FANOUT_RND:
1441 	case PACKET_FANOUT_QM:
1442 		break;
1443 	default:
1444 		return -EINVAL;
1445 	}
1446 
1447 	if (!po->running)
1448 		return -EINVAL;
1449 
1450 	if (po->fanout)
1451 		return -EALREADY;
1452 
1453 	mutex_lock(&fanout_mutex);
1454 	match = NULL;
1455 	list_for_each_entry(f, &fanout_list, list) {
1456 		if (f->id == id &&
1457 		    read_pnet(&f->net) == sock_net(sk)) {
1458 			match = f;
1459 			break;
1460 		}
1461 	}
1462 	err = -EINVAL;
1463 	if (match && match->flags != flags)
1464 		goto out;
1465 	if (!match) {
1466 		err = -ENOMEM;
1467 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1468 		if (!match)
1469 			goto out;
1470 		write_pnet(&match->net, sock_net(sk));
1471 		match->id = id;
1472 		match->type = type;
1473 		match->flags = flags;
1474 		atomic_set(&match->rr_cur, 0);
1475 		INIT_LIST_HEAD(&match->list);
1476 		spin_lock_init(&match->lock);
1477 		atomic_set(&match->sk_ref, 0);
1478 		match->prot_hook.type = po->prot_hook.type;
1479 		match->prot_hook.dev = po->prot_hook.dev;
1480 		match->prot_hook.func = packet_rcv_fanout;
1481 		match->prot_hook.af_packet_priv = match;
1482 		match->prot_hook.id_match = match_fanout_group;
1483 		dev_add_pack(&match->prot_hook);
1484 		list_add(&match->list, &fanout_list);
1485 	}
1486 	err = -EINVAL;
1487 	if (match->type == type &&
1488 	    match->prot_hook.type == po->prot_hook.type &&
1489 	    match->prot_hook.dev == po->prot_hook.dev) {
1490 		err = -ENOSPC;
1491 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1492 			__dev_remove_pack(&po->prot_hook);
1493 			po->fanout = match;
1494 			atomic_inc(&match->sk_ref);
1495 			__fanout_link(sk, po);
1496 			err = 0;
1497 		}
1498 	}
1499 out:
1500 	mutex_unlock(&fanout_mutex);
1501 	return err;
1502 }
1503 
1504 static void fanout_release(struct sock *sk)
1505 {
1506 	struct packet_sock *po = pkt_sk(sk);
1507 	struct packet_fanout *f;
1508 
1509 	f = po->fanout;
1510 	if (!f)
1511 		return;
1512 
1513 	mutex_lock(&fanout_mutex);
1514 	po->fanout = NULL;
1515 
1516 	if (atomic_dec_and_test(&f->sk_ref)) {
1517 		list_del(&f->list);
1518 		dev_remove_pack(&f->prot_hook);
1519 		kfree(f);
1520 	}
1521 	mutex_unlock(&fanout_mutex);
1522 }
1523 
1524 static const struct proto_ops packet_ops;
1525 
1526 static const struct proto_ops packet_ops_spkt;
1527 
1528 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1529 			   struct packet_type *pt, struct net_device *orig_dev)
1530 {
1531 	struct sock *sk;
1532 	struct sockaddr_pkt *spkt;
1533 
1534 	/*
1535 	 *	When we registered the protocol we saved the socket in the data
1536 	 *	field for just this event.
1537 	 */
1538 
1539 	sk = pt->af_packet_priv;
1540 
1541 	/*
1542 	 *	Yank back the headers [hope the device set this
1543 	 *	right or kerboom...]
1544 	 *
1545 	 *	Incoming packets have ll header pulled,
1546 	 *	push it back.
1547 	 *
1548 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1549 	 *	so that this procedure is noop.
1550 	 */
1551 
1552 	if (skb->pkt_type == PACKET_LOOPBACK)
1553 		goto out;
1554 
1555 	if (!net_eq(dev_net(dev), sock_net(sk)))
1556 		goto out;
1557 
1558 	skb = skb_share_check(skb, GFP_ATOMIC);
1559 	if (skb == NULL)
1560 		goto oom;
1561 
1562 	/* drop any routing info */
1563 	skb_dst_drop(skb);
1564 
1565 	/* drop conntrack reference */
1566 	nf_reset(skb);
1567 
1568 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1569 
1570 	skb_push(skb, skb->data - skb_mac_header(skb));
1571 
1572 	/*
1573 	 *	The SOCK_PACKET socket receives _all_ frames.
1574 	 */
1575 
1576 	spkt->spkt_family = dev->type;
1577 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1578 	spkt->spkt_protocol = skb->protocol;
1579 
1580 	/*
1581 	 *	Charge the memory to the socket. This is done specifically
1582 	 *	to prevent sockets using all the memory up.
1583 	 */
1584 
1585 	if (sock_queue_rcv_skb(sk, skb) == 0)
1586 		return 0;
1587 
1588 out:
1589 	kfree_skb(skb);
1590 oom:
1591 	return 0;
1592 }
1593 
1594 
1595 /*
1596  *	Output a raw packet to a device layer. This bypasses all the other
1597  *	protocol layers and you must therefore supply it with a complete frame
1598  */
1599 
1600 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1601 			       struct msghdr *msg, size_t len)
1602 {
1603 	struct sock *sk = sock->sk;
1604 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1605 	struct sk_buff *skb = NULL;
1606 	struct net_device *dev;
1607 	__be16 proto = 0;
1608 	int err;
1609 	int extra_len = 0;
1610 
1611 	/*
1612 	 *	Get and verify the address.
1613 	 */
1614 
1615 	if (saddr) {
1616 		if (msg->msg_namelen < sizeof(struct sockaddr))
1617 			return -EINVAL;
1618 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1619 			proto = saddr->spkt_protocol;
1620 	} else
1621 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1622 
1623 	/*
1624 	 *	Find the device first to size check it
1625 	 */
1626 
1627 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1628 retry:
1629 	rcu_read_lock();
1630 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1631 	err = -ENODEV;
1632 	if (dev == NULL)
1633 		goto out_unlock;
1634 
1635 	err = -ENETDOWN;
1636 	if (!(dev->flags & IFF_UP))
1637 		goto out_unlock;
1638 
1639 	/*
1640 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1641 	 * raw protocol and you must do your own fragmentation at this level.
1642 	 */
1643 
1644 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1645 		if (!netif_supports_nofcs(dev)) {
1646 			err = -EPROTONOSUPPORT;
1647 			goto out_unlock;
1648 		}
1649 		extra_len = 4; /* We're doing our own CRC */
1650 	}
1651 
1652 	err = -EMSGSIZE;
1653 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1654 		goto out_unlock;
1655 
1656 	if (!skb) {
1657 		size_t reserved = LL_RESERVED_SPACE(dev);
1658 		int tlen = dev->needed_tailroom;
1659 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1660 
1661 		rcu_read_unlock();
1662 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1663 		if (skb == NULL)
1664 			return -ENOBUFS;
1665 		/* FIXME: Save some space for broken drivers that write a hard
1666 		 * header at transmission time by themselves. PPP is the notable
1667 		 * one here. This should really be fixed at the driver level.
1668 		 */
1669 		skb_reserve(skb, reserved);
1670 		skb_reset_network_header(skb);
1671 
1672 		/* Try to align data part correctly */
1673 		if (hhlen) {
1674 			skb->data -= hhlen;
1675 			skb->tail -= hhlen;
1676 			if (len < hhlen)
1677 				skb_reset_network_header(skb);
1678 		}
1679 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1680 		if (err)
1681 			goto out_free;
1682 		goto retry;
1683 	}
1684 
1685 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1686 		/* Earlier code assumed this would be a VLAN pkt,
1687 		 * double-check this now that we have the actual
1688 		 * packet in hand.
1689 		 */
1690 		struct ethhdr *ehdr;
1691 		skb_reset_mac_header(skb);
1692 		ehdr = eth_hdr(skb);
1693 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1694 			err = -EMSGSIZE;
1695 			goto out_unlock;
1696 		}
1697 	}
1698 
1699 	skb->protocol = proto;
1700 	skb->dev = dev;
1701 	skb->priority = sk->sk_priority;
1702 	skb->mark = sk->sk_mark;
1703 
1704 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1705 
1706 	if (unlikely(extra_len == 4))
1707 		skb->no_fcs = 1;
1708 
1709 	skb_probe_transport_header(skb, 0);
1710 
1711 	dev_queue_xmit(skb);
1712 	rcu_read_unlock();
1713 	return len;
1714 
1715 out_unlock:
1716 	rcu_read_unlock();
1717 out_free:
1718 	kfree_skb(skb);
1719 	return err;
1720 }
1721 
1722 static unsigned int run_filter(const struct sk_buff *skb,
1723 				      const struct sock *sk,
1724 				      unsigned int res)
1725 {
1726 	struct sk_filter *filter;
1727 
1728 	rcu_read_lock();
1729 	filter = rcu_dereference(sk->sk_filter);
1730 	if (filter != NULL)
1731 		res = SK_RUN_FILTER(filter, skb);
1732 	rcu_read_unlock();
1733 
1734 	return res;
1735 }
1736 
1737 /*
1738  * This function makes lazy skb cloning in hope that most of packets
1739  * are discarded by BPF.
1740  *
1741  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1742  * and skb->cb are mangled. It works because (and until) packets
1743  * falling here are owned by current CPU. Output packets are cloned
1744  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1745  * sequencially, so that if we return skb to original state on exit,
1746  * we will not harm anyone.
1747  */
1748 
1749 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1750 		      struct packet_type *pt, struct net_device *orig_dev)
1751 {
1752 	struct sock *sk;
1753 	struct sockaddr_ll *sll;
1754 	struct packet_sock *po;
1755 	u8 *skb_head = skb->data;
1756 	int skb_len = skb->len;
1757 	unsigned int snaplen, res;
1758 
1759 	if (skb->pkt_type == PACKET_LOOPBACK)
1760 		goto drop;
1761 
1762 	sk = pt->af_packet_priv;
1763 	po = pkt_sk(sk);
1764 
1765 	if (!net_eq(dev_net(dev), sock_net(sk)))
1766 		goto drop;
1767 
1768 	skb->dev = dev;
1769 
1770 	if (dev->header_ops) {
1771 		/* The device has an explicit notion of ll header,
1772 		 * exported to higher levels.
1773 		 *
1774 		 * Otherwise, the device hides details of its frame
1775 		 * structure, so that corresponding packet head is
1776 		 * never delivered to user.
1777 		 */
1778 		if (sk->sk_type != SOCK_DGRAM)
1779 			skb_push(skb, skb->data - skb_mac_header(skb));
1780 		else if (skb->pkt_type == PACKET_OUTGOING) {
1781 			/* Special case: outgoing packets have ll header at head */
1782 			skb_pull(skb, skb_network_offset(skb));
1783 		}
1784 	}
1785 
1786 	snaplen = skb->len;
1787 
1788 	res = run_filter(skb, sk, snaplen);
1789 	if (!res)
1790 		goto drop_n_restore;
1791 	if (snaplen > res)
1792 		snaplen = res;
1793 
1794 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1795 		goto drop_n_acct;
1796 
1797 	if (skb_shared(skb)) {
1798 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1799 		if (nskb == NULL)
1800 			goto drop_n_acct;
1801 
1802 		if (skb_head != skb->data) {
1803 			skb->data = skb_head;
1804 			skb->len = skb_len;
1805 		}
1806 		consume_skb(skb);
1807 		skb = nskb;
1808 	}
1809 
1810 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1811 		     sizeof(skb->cb));
1812 
1813 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1814 	sll->sll_family = AF_PACKET;
1815 	sll->sll_hatype = dev->type;
1816 	sll->sll_protocol = skb->protocol;
1817 	sll->sll_pkttype = skb->pkt_type;
1818 	if (unlikely(po->origdev))
1819 		sll->sll_ifindex = orig_dev->ifindex;
1820 	else
1821 		sll->sll_ifindex = dev->ifindex;
1822 
1823 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1824 
1825 	PACKET_SKB_CB(skb)->origlen = skb->len;
1826 
1827 	if (pskb_trim(skb, snaplen))
1828 		goto drop_n_acct;
1829 
1830 	skb_set_owner_r(skb, sk);
1831 	skb->dev = NULL;
1832 	skb_dst_drop(skb);
1833 
1834 	/* drop conntrack reference */
1835 	nf_reset(skb);
1836 
1837 	spin_lock(&sk->sk_receive_queue.lock);
1838 	po->stats.stats1.tp_packets++;
1839 	skb->dropcount = atomic_read(&sk->sk_drops);
1840 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1841 	spin_unlock(&sk->sk_receive_queue.lock);
1842 	sk->sk_data_ready(sk);
1843 	return 0;
1844 
1845 drop_n_acct:
1846 	spin_lock(&sk->sk_receive_queue.lock);
1847 	po->stats.stats1.tp_drops++;
1848 	atomic_inc(&sk->sk_drops);
1849 	spin_unlock(&sk->sk_receive_queue.lock);
1850 
1851 drop_n_restore:
1852 	if (skb_head != skb->data && skb_shared(skb)) {
1853 		skb->data = skb_head;
1854 		skb->len = skb_len;
1855 	}
1856 drop:
1857 	consume_skb(skb);
1858 	return 0;
1859 }
1860 
1861 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1862 		       struct packet_type *pt, struct net_device *orig_dev)
1863 {
1864 	struct sock *sk;
1865 	struct packet_sock *po;
1866 	struct sockaddr_ll *sll;
1867 	union tpacket_uhdr h;
1868 	u8 *skb_head = skb->data;
1869 	int skb_len = skb->len;
1870 	unsigned int snaplen, res;
1871 	unsigned long status = TP_STATUS_USER;
1872 	unsigned short macoff, netoff, hdrlen;
1873 	struct sk_buff *copy_skb = NULL;
1874 	struct timespec ts;
1875 	__u32 ts_status;
1876 
1877 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
1878 	 * We may add members to them until current aligned size without forcing
1879 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
1880 	 */
1881 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
1882 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
1883 
1884 	if (skb->pkt_type == PACKET_LOOPBACK)
1885 		goto drop;
1886 
1887 	sk = pt->af_packet_priv;
1888 	po = pkt_sk(sk);
1889 
1890 	if (!net_eq(dev_net(dev), sock_net(sk)))
1891 		goto drop;
1892 
1893 	if (dev->header_ops) {
1894 		if (sk->sk_type != SOCK_DGRAM)
1895 			skb_push(skb, skb->data - skb_mac_header(skb));
1896 		else if (skb->pkt_type == PACKET_OUTGOING) {
1897 			/* Special case: outgoing packets have ll header at head */
1898 			skb_pull(skb, skb_network_offset(skb));
1899 		}
1900 	}
1901 
1902 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1903 		status |= TP_STATUS_CSUMNOTREADY;
1904 
1905 	snaplen = skb->len;
1906 
1907 	res = run_filter(skb, sk, snaplen);
1908 	if (!res)
1909 		goto drop_n_restore;
1910 	if (snaplen > res)
1911 		snaplen = res;
1912 
1913 	if (sk->sk_type == SOCK_DGRAM) {
1914 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1915 				  po->tp_reserve;
1916 	} else {
1917 		unsigned int maclen = skb_network_offset(skb);
1918 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1919 				       (maclen < 16 ? 16 : maclen)) +
1920 			po->tp_reserve;
1921 		macoff = netoff - maclen;
1922 	}
1923 	if (po->tp_version <= TPACKET_V2) {
1924 		if (macoff + snaplen > po->rx_ring.frame_size) {
1925 			if (po->copy_thresh &&
1926 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1927 				if (skb_shared(skb)) {
1928 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1929 				} else {
1930 					copy_skb = skb_get(skb);
1931 					skb_head = skb->data;
1932 				}
1933 				if (copy_skb)
1934 					skb_set_owner_r(copy_skb, sk);
1935 			}
1936 			snaplen = po->rx_ring.frame_size - macoff;
1937 			if ((int)snaplen < 0)
1938 				snaplen = 0;
1939 		}
1940 	} else if (unlikely(macoff + snaplen >
1941 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
1942 		u32 nval;
1943 
1944 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
1945 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
1946 			    snaplen, nval, macoff);
1947 		snaplen = nval;
1948 		if (unlikely((int)snaplen < 0)) {
1949 			snaplen = 0;
1950 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
1951 		}
1952 	}
1953 	spin_lock(&sk->sk_receive_queue.lock);
1954 	h.raw = packet_current_rx_frame(po, skb,
1955 					TP_STATUS_KERNEL, (macoff+snaplen));
1956 	if (!h.raw)
1957 		goto ring_is_full;
1958 	if (po->tp_version <= TPACKET_V2) {
1959 		packet_increment_rx_head(po, &po->rx_ring);
1960 	/*
1961 	 * LOSING will be reported till you read the stats,
1962 	 * because it's COR - Clear On Read.
1963 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1964 	 * at packet level.
1965 	 */
1966 		if (po->stats.stats1.tp_drops)
1967 			status |= TP_STATUS_LOSING;
1968 	}
1969 	po->stats.stats1.tp_packets++;
1970 	if (copy_skb) {
1971 		status |= TP_STATUS_COPY;
1972 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1973 	}
1974 	spin_unlock(&sk->sk_receive_queue.lock);
1975 
1976 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1977 
1978 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1979 		getnstimeofday(&ts);
1980 
1981 	status |= ts_status;
1982 
1983 	switch (po->tp_version) {
1984 	case TPACKET_V1:
1985 		h.h1->tp_len = skb->len;
1986 		h.h1->tp_snaplen = snaplen;
1987 		h.h1->tp_mac = macoff;
1988 		h.h1->tp_net = netoff;
1989 		h.h1->tp_sec = ts.tv_sec;
1990 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1991 		hdrlen = sizeof(*h.h1);
1992 		break;
1993 	case TPACKET_V2:
1994 		h.h2->tp_len = skb->len;
1995 		h.h2->tp_snaplen = snaplen;
1996 		h.h2->tp_mac = macoff;
1997 		h.h2->tp_net = netoff;
1998 		h.h2->tp_sec = ts.tv_sec;
1999 		h.h2->tp_nsec = ts.tv_nsec;
2000 		if (vlan_tx_tag_present(skb)) {
2001 			h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
2002 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2003 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2004 		} else {
2005 			h.h2->tp_vlan_tci = 0;
2006 			h.h2->tp_vlan_tpid = 0;
2007 		}
2008 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2009 		hdrlen = sizeof(*h.h2);
2010 		break;
2011 	case TPACKET_V3:
2012 		/* tp_nxt_offset,vlan are already populated above.
2013 		 * So DONT clear those fields here
2014 		 */
2015 		h.h3->tp_status |= status;
2016 		h.h3->tp_len = skb->len;
2017 		h.h3->tp_snaplen = snaplen;
2018 		h.h3->tp_mac = macoff;
2019 		h.h3->tp_net = netoff;
2020 		h.h3->tp_sec  = ts.tv_sec;
2021 		h.h3->tp_nsec = ts.tv_nsec;
2022 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2023 		hdrlen = sizeof(*h.h3);
2024 		break;
2025 	default:
2026 		BUG();
2027 	}
2028 
2029 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2030 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2031 	sll->sll_family = AF_PACKET;
2032 	sll->sll_hatype = dev->type;
2033 	sll->sll_protocol = skb->protocol;
2034 	sll->sll_pkttype = skb->pkt_type;
2035 	if (unlikely(po->origdev))
2036 		sll->sll_ifindex = orig_dev->ifindex;
2037 	else
2038 		sll->sll_ifindex = dev->ifindex;
2039 
2040 	smp_mb();
2041 
2042 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2043 	if (po->tp_version <= TPACKET_V2) {
2044 		u8 *start, *end;
2045 
2046 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2047 					macoff + snaplen);
2048 
2049 		for (start = h.raw; start < end; start += PAGE_SIZE)
2050 			flush_dcache_page(pgv_to_page(start));
2051 	}
2052 	smp_wmb();
2053 #endif
2054 
2055 	if (po->tp_version <= TPACKET_V2)
2056 		__packet_set_status(po, h.raw, status);
2057 	else
2058 		prb_clear_blk_fill_status(&po->rx_ring);
2059 
2060 	sk->sk_data_ready(sk);
2061 
2062 drop_n_restore:
2063 	if (skb_head != skb->data && skb_shared(skb)) {
2064 		skb->data = skb_head;
2065 		skb->len = skb_len;
2066 	}
2067 drop:
2068 	kfree_skb(skb);
2069 	return 0;
2070 
2071 ring_is_full:
2072 	po->stats.stats1.tp_drops++;
2073 	spin_unlock(&sk->sk_receive_queue.lock);
2074 
2075 	sk->sk_data_ready(sk);
2076 	kfree_skb(copy_skb);
2077 	goto drop_n_restore;
2078 }
2079 
2080 static void tpacket_destruct_skb(struct sk_buff *skb)
2081 {
2082 	struct packet_sock *po = pkt_sk(skb->sk);
2083 
2084 	if (likely(po->tx_ring.pg_vec)) {
2085 		void *ph;
2086 		__u32 ts;
2087 
2088 		ph = skb_shinfo(skb)->destructor_arg;
2089 		packet_dec_pending(&po->tx_ring);
2090 
2091 		ts = __packet_set_timestamp(po, ph, skb);
2092 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2093 	}
2094 
2095 	sock_wfree(skb);
2096 }
2097 
2098 static bool ll_header_truncated(const struct net_device *dev, int len)
2099 {
2100 	/* net device doesn't like empty head */
2101 	if (unlikely(len <= dev->hard_header_len)) {
2102 		net_warn_ratelimited("%s: packet size is too short (%d < %d)\n",
2103 				     current->comm, len, dev->hard_header_len);
2104 		return true;
2105 	}
2106 
2107 	return false;
2108 }
2109 
2110 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2111 		void *frame, struct net_device *dev, int size_max,
2112 		__be16 proto, unsigned char *addr, int hlen)
2113 {
2114 	union tpacket_uhdr ph;
2115 	int to_write, offset, len, tp_len, nr_frags, len_max;
2116 	struct socket *sock = po->sk.sk_socket;
2117 	struct page *page;
2118 	void *data;
2119 	int err;
2120 
2121 	ph.raw = frame;
2122 
2123 	skb->protocol = proto;
2124 	skb->dev = dev;
2125 	skb->priority = po->sk.sk_priority;
2126 	skb->mark = po->sk.sk_mark;
2127 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2128 	skb_shinfo(skb)->destructor_arg = ph.raw;
2129 
2130 	switch (po->tp_version) {
2131 	case TPACKET_V2:
2132 		tp_len = ph.h2->tp_len;
2133 		break;
2134 	default:
2135 		tp_len = ph.h1->tp_len;
2136 		break;
2137 	}
2138 	if (unlikely(tp_len > size_max)) {
2139 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2140 		return -EMSGSIZE;
2141 	}
2142 
2143 	skb_reserve(skb, hlen);
2144 	skb_reset_network_header(skb);
2145 
2146 	if (!packet_use_direct_xmit(po))
2147 		skb_probe_transport_header(skb, 0);
2148 	if (unlikely(po->tp_tx_has_off)) {
2149 		int off_min, off_max, off;
2150 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2151 		off_max = po->tx_ring.frame_size - tp_len;
2152 		if (sock->type == SOCK_DGRAM) {
2153 			switch (po->tp_version) {
2154 			case TPACKET_V2:
2155 				off = ph.h2->tp_net;
2156 				break;
2157 			default:
2158 				off = ph.h1->tp_net;
2159 				break;
2160 			}
2161 		} else {
2162 			switch (po->tp_version) {
2163 			case TPACKET_V2:
2164 				off = ph.h2->tp_mac;
2165 				break;
2166 			default:
2167 				off = ph.h1->tp_mac;
2168 				break;
2169 			}
2170 		}
2171 		if (unlikely((off < off_min) || (off_max < off)))
2172 			return -EINVAL;
2173 		data = ph.raw + off;
2174 	} else {
2175 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2176 	}
2177 	to_write = tp_len;
2178 
2179 	if (sock->type == SOCK_DGRAM) {
2180 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2181 				NULL, tp_len);
2182 		if (unlikely(err < 0))
2183 			return -EINVAL;
2184 	} else if (dev->hard_header_len) {
2185 		if (ll_header_truncated(dev, tp_len))
2186 			return -EINVAL;
2187 
2188 		skb_push(skb, dev->hard_header_len);
2189 		err = skb_store_bits(skb, 0, data,
2190 				dev->hard_header_len);
2191 		if (unlikely(err))
2192 			return err;
2193 
2194 		data += dev->hard_header_len;
2195 		to_write -= dev->hard_header_len;
2196 	}
2197 
2198 	offset = offset_in_page(data);
2199 	len_max = PAGE_SIZE - offset;
2200 	len = ((to_write > len_max) ? len_max : to_write);
2201 
2202 	skb->data_len = to_write;
2203 	skb->len += to_write;
2204 	skb->truesize += to_write;
2205 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2206 
2207 	while (likely(to_write)) {
2208 		nr_frags = skb_shinfo(skb)->nr_frags;
2209 
2210 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2211 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2212 			       MAX_SKB_FRAGS);
2213 			return -EFAULT;
2214 		}
2215 
2216 		page = pgv_to_page(data);
2217 		data += len;
2218 		flush_dcache_page(page);
2219 		get_page(page);
2220 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2221 		to_write -= len;
2222 		offset = 0;
2223 		len_max = PAGE_SIZE;
2224 		len = ((to_write > len_max) ? len_max : to_write);
2225 	}
2226 
2227 	return tp_len;
2228 }
2229 
2230 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2231 {
2232 	struct sk_buff *skb;
2233 	struct net_device *dev;
2234 	__be16 proto;
2235 	int err, reserve = 0;
2236 	void *ph;
2237 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2238 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2239 	int tp_len, size_max;
2240 	unsigned char *addr;
2241 	int len_sum = 0;
2242 	int status = TP_STATUS_AVAILABLE;
2243 	int hlen, tlen;
2244 
2245 	mutex_lock(&po->pg_vec_lock);
2246 
2247 	if (likely(saddr == NULL)) {
2248 		dev	= packet_cached_dev_get(po);
2249 		proto	= po->num;
2250 		addr	= NULL;
2251 	} else {
2252 		err = -EINVAL;
2253 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2254 			goto out;
2255 		if (msg->msg_namelen < (saddr->sll_halen
2256 					+ offsetof(struct sockaddr_ll,
2257 						sll_addr)))
2258 			goto out;
2259 		proto	= saddr->sll_protocol;
2260 		addr	= saddr->sll_addr;
2261 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2262 	}
2263 
2264 	err = -ENXIO;
2265 	if (unlikely(dev == NULL))
2266 		goto out;
2267 	err = -ENETDOWN;
2268 	if (unlikely(!(dev->flags & IFF_UP)))
2269 		goto out_put;
2270 
2271 	reserve = dev->hard_header_len + VLAN_HLEN;
2272 	size_max = po->tx_ring.frame_size
2273 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2274 
2275 	if (size_max > dev->mtu + reserve)
2276 		size_max = dev->mtu + reserve;
2277 
2278 	do {
2279 		ph = packet_current_frame(po, &po->tx_ring,
2280 					  TP_STATUS_SEND_REQUEST);
2281 		if (unlikely(ph == NULL)) {
2282 			if (need_wait && need_resched())
2283 				schedule();
2284 			continue;
2285 		}
2286 
2287 		status = TP_STATUS_SEND_REQUEST;
2288 		hlen = LL_RESERVED_SPACE(dev);
2289 		tlen = dev->needed_tailroom;
2290 		skb = sock_alloc_send_skb(&po->sk,
2291 				hlen + tlen + sizeof(struct sockaddr_ll),
2292 				0, &err);
2293 
2294 		if (unlikely(skb == NULL))
2295 			goto out_status;
2296 
2297 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2298 					  addr, hlen);
2299 		if (tp_len > dev->mtu + dev->hard_header_len) {
2300 			struct ethhdr *ehdr;
2301 			/* Earlier code assumed this would be a VLAN pkt,
2302 			 * double-check this now that we have the actual
2303 			 * packet in hand.
2304 			 */
2305 
2306 			skb_reset_mac_header(skb);
2307 			ehdr = eth_hdr(skb);
2308 			if (ehdr->h_proto != htons(ETH_P_8021Q))
2309 				tp_len = -EMSGSIZE;
2310 		}
2311 		if (unlikely(tp_len < 0)) {
2312 			if (po->tp_loss) {
2313 				__packet_set_status(po, ph,
2314 						TP_STATUS_AVAILABLE);
2315 				packet_increment_head(&po->tx_ring);
2316 				kfree_skb(skb);
2317 				continue;
2318 			} else {
2319 				status = TP_STATUS_WRONG_FORMAT;
2320 				err = tp_len;
2321 				goto out_status;
2322 			}
2323 		}
2324 
2325 		packet_pick_tx_queue(dev, skb);
2326 
2327 		skb->destructor = tpacket_destruct_skb;
2328 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2329 		packet_inc_pending(&po->tx_ring);
2330 
2331 		status = TP_STATUS_SEND_REQUEST;
2332 		err = po->xmit(skb);
2333 		if (unlikely(err > 0)) {
2334 			err = net_xmit_errno(err);
2335 			if (err && __packet_get_status(po, ph) ==
2336 				   TP_STATUS_AVAILABLE) {
2337 				/* skb was destructed already */
2338 				skb = NULL;
2339 				goto out_status;
2340 			}
2341 			/*
2342 			 * skb was dropped but not destructed yet;
2343 			 * let's treat it like congestion or err < 0
2344 			 */
2345 			err = 0;
2346 		}
2347 		packet_increment_head(&po->tx_ring);
2348 		len_sum += tp_len;
2349 	} while (likely((ph != NULL) ||
2350 		/* Note: packet_read_pending() might be slow if we have
2351 		 * to call it as it's per_cpu variable, but in fast-path
2352 		 * we already short-circuit the loop with the first
2353 		 * condition, and luckily don't have to go that path
2354 		 * anyway.
2355 		 */
2356 		 (need_wait && packet_read_pending(&po->tx_ring))));
2357 
2358 	err = len_sum;
2359 	goto out_put;
2360 
2361 out_status:
2362 	__packet_set_status(po, ph, status);
2363 	kfree_skb(skb);
2364 out_put:
2365 	dev_put(dev);
2366 out:
2367 	mutex_unlock(&po->pg_vec_lock);
2368 	return err;
2369 }
2370 
2371 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2372 				        size_t reserve, size_t len,
2373 				        size_t linear, int noblock,
2374 				        int *err)
2375 {
2376 	struct sk_buff *skb;
2377 
2378 	/* Under a page?  Don't bother with paged skb. */
2379 	if (prepad + len < PAGE_SIZE || !linear)
2380 		linear = len;
2381 
2382 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2383 				   err, 0);
2384 	if (!skb)
2385 		return NULL;
2386 
2387 	skb_reserve(skb, reserve);
2388 	skb_put(skb, linear);
2389 	skb->data_len = len - linear;
2390 	skb->len += len - linear;
2391 
2392 	return skb;
2393 }
2394 
2395 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2396 {
2397 	struct sock *sk = sock->sk;
2398 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2399 	struct sk_buff *skb;
2400 	struct net_device *dev;
2401 	__be16 proto;
2402 	unsigned char *addr;
2403 	int err, reserve = 0;
2404 	struct virtio_net_hdr vnet_hdr = { 0 };
2405 	int offset = 0;
2406 	int vnet_hdr_len;
2407 	struct packet_sock *po = pkt_sk(sk);
2408 	unsigned short gso_type = 0;
2409 	int hlen, tlen;
2410 	int extra_len = 0;
2411 	ssize_t n;
2412 
2413 	/*
2414 	 *	Get and verify the address.
2415 	 */
2416 
2417 	if (likely(saddr == NULL)) {
2418 		dev	= packet_cached_dev_get(po);
2419 		proto	= po->num;
2420 		addr	= NULL;
2421 	} else {
2422 		err = -EINVAL;
2423 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2424 			goto out;
2425 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2426 			goto out;
2427 		proto	= saddr->sll_protocol;
2428 		addr	= saddr->sll_addr;
2429 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2430 	}
2431 
2432 	err = -ENXIO;
2433 	if (unlikely(dev == NULL))
2434 		goto out_unlock;
2435 	err = -ENETDOWN;
2436 	if (unlikely(!(dev->flags & IFF_UP)))
2437 		goto out_unlock;
2438 
2439 	if (sock->type == SOCK_RAW)
2440 		reserve = dev->hard_header_len;
2441 	if (po->has_vnet_hdr) {
2442 		vnet_hdr_len = sizeof(vnet_hdr);
2443 
2444 		err = -EINVAL;
2445 		if (len < vnet_hdr_len)
2446 			goto out_unlock;
2447 
2448 		len -= vnet_hdr_len;
2449 
2450 		err = -EFAULT;
2451 		n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2452 		if (n != vnet_hdr_len)
2453 			goto out_unlock;
2454 
2455 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2456 		    (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2457 		     __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2458 		      __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2459 			vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2460 				 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2461 				__virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2462 
2463 		err = -EINVAL;
2464 		if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2465 			goto out_unlock;
2466 
2467 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2468 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2469 			case VIRTIO_NET_HDR_GSO_TCPV4:
2470 				gso_type = SKB_GSO_TCPV4;
2471 				break;
2472 			case VIRTIO_NET_HDR_GSO_TCPV6:
2473 				gso_type = SKB_GSO_TCPV6;
2474 				break;
2475 			case VIRTIO_NET_HDR_GSO_UDP:
2476 				gso_type = SKB_GSO_UDP;
2477 				break;
2478 			default:
2479 				goto out_unlock;
2480 			}
2481 
2482 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2483 				gso_type |= SKB_GSO_TCP_ECN;
2484 
2485 			if (vnet_hdr.gso_size == 0)
2486 				goto out_unlock;
2487 
2488 		}
2489 	}
2490 
2491 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2492 		if (!netif_supports_nofcs(dev)) {
2493 			err = -EPROTONOSUPPORT;
2494 			goto out_unlock;
2495 		}
2496 		extra_len = 4; /* We're doing our own CRC */
2497 	}
2498 
2499 	err = -EMSGSIZE;
2500 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2501 		goto out_unlock;
2502 
2503 	err = -ENOBUFS;
2504 	hlen = LL_RESERVED_SPACE(dev);
2505 	tlen = dev->needed_tailroom;
2506 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2507 			       __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2508 			       msg->msg_flags & MSG_DONTWAIT, &err);
2509 	if (skb == NULL)
2510 		goto out_unlock;
2511 
2512 	skb_set_network_header(skb, reserve);
2513 
2514 	err = -EINVAL;
2515 	if (sock->type == SOCK_DGRAM) {
2516 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2517 		if (unlikely(offset) < 0)
2518 			goto out_free;
2519 	} else {
2520 		if (ll_header_truncated(dev, len))
2521 			goto out_free;
2522 	}
2523 
2524 	/* Returns -EFAULT on error */
2525 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2526 	if (err)
2527 		goto out_free;
2528 
2529 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2530 
2531 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2532 		/* Earlier code assumed this would be a VLAN pkt,
2533 		 * double-check this now that we have the actual
2534 		 * packet in hand.
2535 		 */
2536 		struct ethhdr *ehdr;
2537 		skb_reset_mac_header(skb);
2538 		ehdr = eth_hdr(skb);
2539 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2540 			err = -EMSGSIZE;
2541 			goto out_free;
2542 		}
2543 	}
2544 
2545 	skb->protocol = proto;
2546 	skb->dev = dev;
2547 	skb->priority = sk->sk_priority;
2548 	skb->mark = sk->sk_mark;
2549 
2550 	packet_pick_tx_queue(dev, skb);
2551 
2552 	if (po->has_vnet_hdr) {
2553 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2554 			u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2555 			u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2556 			if (!skb_partial_csum_set(skb, s, o)) {
2557 				err = -EINVAL;
2558 				goto out_free;
2559 			}
2560 		}
2561 
2562 		skb_shinfo(skb)->gso_size =
2563 			__virtio16_to_cpu(false, vnet_hdr.gso_size);
2564 		skb_shinfo(skb)->gso_type = gso_type;
2565 
2566 		/* Header must be checked, and gso_segs computed. */
2567 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2568 		skb_shinfo(skb)->gso_segs = 0;
2569 
2570 		len += vnet_hdr_len;
2571 	}
2572 
2573 	if (!packet_use_direct_xmit(po))
2574 		skb_probe_transport_header(skb, reserve);
2575 	if (unlikely(extra_len == 4))
2576 		skb->no_fcs = 1;
2577 
2578 	err = po->xmit(skb);
2579 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2580 		goto out_unlock;
2581 
2582 	dev_put(dev);
2583 
2584 	return len;
2585 
2586 out_free:
2587 	kfree_skb(skb);
2588 out_unlock:
2589 	if (dev)
2590 		dev_put(dev);
2591 out:
2592 	return err;
2593 }
2594 
2595 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2596 		struct msghdr *msg, size_t len)
2597 {
2598 	struct sock *sk = sock->sk;
2599 	struct packet_sock *po = pkt_sk(sk);
2600 
2601 	if (po->tx_ring.pg_vec)
2602 		return tpacket_snd(po, msg);
2603 	else
2604 		return packet_snd(sock, msg, len);
2605 }
2606 
2607 /*
2608  *	Close a PACKET socket. This is fairly simple. We immediately go
2609  *	to 'closed' state and remove our protocol entry in the device list.
2610  */
2611 
2612 static int packet_release(struct socket *sock)
2613 {
2614 	struct sock *sk = sock->sk;
2615 	struct packet_sock *po;
2616 	struct net *net;
2617 	union tpacket_req_u req_u;
2618 
2619 	if (!sk)
2620 		return 0;
2621 
2622 	net = sock_net(sk);
2623 	po = pkt_sk(sk);
2624 
2625 	mutex_lock(&net->packet.sklist_lock);
2626 	sk_del_node_init_rcu(sk);
2627 	mutex_unlock(&net->packet.sklist_lock);
2628 
2629 	preempt_disable();
2630 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2631 	preempt_enable();
2632 
2633 	spin_lock(&po->bind_lock);
2634 	unregister_prot_hook(sk, false);
2635 	packet_cached_dev_reset(po);
2636 
2637 	if (po->prot_hook.dev) {
2638 		dev_put(po->prot_hook.dev);
2639 		po->prot_hook.dev = NULL;
2640 	}
2641 	spin_unlock(&po->bind_lock);
2642 
2643 	packet_flush_mclist(sk);
2644 
2645 	if (po->rx_ring.pg_vec) {
2646 		memset(&req_u, 0, sizeof(req_u));
2647 		packet_set_ring(sk, &req_u, 1, 0);
2648 	}
2649 
2650 	if (po->tx_ring.pg_vec) {
2651 		memset(&req_u, 0, sizeof(req_u));
2652 		packet_set_ring(sk, &req_u, 1, 1);
2653 	}
2654 
2655 	fanout_release(sk);
2656 
2657 	synchronize_net();
2658 	/*
2659 	 *	Now the socket is dead. No more input will appear.
2660 	 */
2661 	sock_orphan(sk);
2662 	sock->sk = NULL;
2663 
2664 	/* Purge queues */
2665 
2666 	skb_queue_purge(&sk->sk_receive_queue);
2667 	packet_free_pending(po);
2668 	sk_refcnt_debug_release(sk);
2669 
2670 	sock_put(sk);
2671 	return 0;
2672 }
2673 
2674 /*
2675  *	Attach a packet hook.
2676  */
2677 
2678 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2679 {
2680 	struct packet_sock *po = pkt_sk(sk);
2681 	const struct net_device *dev_curr;
2682 	__be16 proto_curr;
2683 	bool need_rehook;
2684 
2685 	if (po->fanout) {
2686 		if (dev)
2687 			dev_put(dev);
2688 
2689 		return -EINVAL;
2690 	}
2691 
2692 	lock_sock(sk);
2693 	spin_lock(&po->bind_lock);
2694 
2695 	proto_curr = po->prot_hook.type;
2696 	dev_curr = po->prot_hook.dev;
2697 
2698 	need_rehook = proto_curr != proto || dev_curr != dev;
2699 
2700 	if (need_rehook) {
2701 		unregister_prot_hook(sk, true);
2702 
2703 		po->num = proto;
2704 		po->prot_hook.type = proto;
2705 
2706 		if (po->prot_hook.dev)
2707 			dev_put(po->prot_hook.dev);
2708 
2709 		po->prot_hook.dev = dev;
2710 
2711 		po->ifindex = dev ? dev->ifindex : 0;
2712 		packet_cached_dev_assign(po, dev);
2713 	}
2714 
2715 	if (proto == 0 || !need_rehook)
2716 		goto out_unlock;
2717 
2718 	if (!dev || (dev->flags & IFF_UP)) {
2719 		register_prot_hook(sk);
2720 	} else {
2721 		sk->sk_err = ENETDOWN;
2722 		if (!sock_flag(sk, SOCK_DEAD))
2723 			sk->sk_error_report(sk);
2724 	}
2725 
2726 out_unlock:
2727 	spin_unlock(&po->bind_lock);
2728 	release_sock(sk);
2729 	return 0;
2730 }
2731 
2732 /*
2733  *	Bind a packet socket to a device
2734  */
2735 
2736 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2737 			    int addr_len)
2738 {
2739 	struct sock *sk = sock->sk;
2740 	char name[15];
2741 	struct net_device *dev;
2742 	int err = -ENODEV;
2743 
2744 	/*
2745 	 *	Check legality
2746 	 */
2747 
2748 	if (addr_len != sizeof(struct sockaddr))
2749 		return -EINVAL;
2750 	strlcpy(name, uaddr->sa_data, sizeof(name));
2751 
2752 	dev = dev_get_by_name(sock_net(sk), name);
2753 	if (dev)
2754 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2755 	return err;
2756 }
2757 
2758 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2759 {
2760 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2761 	struct sock *sk = sock->sk;
2762 	struct net_device *dev = NULL;
2763 	int err;
2764 
2765 
2766 	/*
2767 	 *	Check legality
2768 	 */
2769 
2770 	if (addr_len < sizeof(struct sockaddr_ll))
2771 		return -EINVAL;
2772 	if (sll->sll_family != AF_PACKET)
2773 		return -EINVAL;
2774 
2775 	if (sll->sll_ifindex) {
2776 		err = -ENODEV;
2777 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2778 		if (dev == NULL)
2779 			goto out;
2780 	}
2781 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2782 
2783 out:
2784 	return err;
2785 }
2786 
2787 static struct proto packet_proto = {
2788 	.name	  = "PACKET",
2789 	.owner	  = THIS_MODULE,
2790 	.obj_size = sizeof(struct packet_sock),
2791 };
2792 
2793 /*
2794  *	Create a packet of type SOCK_PACKET.
2795  */
2796 
2797 static int packet_create(struct net *net, struct socket *sock, int protocol,
2798 			 int kern)
2799 {
2800 	struct sock *sk;
2801 	struct packet_sock *po;
2802 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2803 	int err;
2804 
2805 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
2806 		return -EPERM;
2807 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2808 	    sock->type != SOCK_PACKET)
2809 		return -ESOCKTNOSUPPORT;
2810 
2811 	sock->state = SS_UNCONNECTED;
2812 
2813 	err = -ENOBUFS;
2814 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2815 	if (sk == NULL)
2816 		goto out;
2817 
2818 	sock->ops = &packet_ops;
2819 	if (sock->type == SOCK_PACKET)
2820 		sock->ops = &packet_ops_spkt;
2821 
2822 	sock_init_data(sock, sk);
2823 
2824 	po = pkt_sk(sk);
2825 	sk->sk_family = PF_PACKET;
2826 	po->num = proto;
2827 	po->xmit = dev_queue_xmit;
2828 
2829 	err = packet_alloc_pending(po);
2830 	if (err)
2831 		goto out2;
2832 
2833 	packet_cached_dev_reset(po);
2834 
2835 	sk->sk_destruct = packet_sock_destruct;
2836 	sk_refcnt_debug_inc(sk);
2837 
2838 	/*
2839 	 *	Attach a protocol block
2840 	 */
2841 
2842 	spin_lock_init(&po->bind_lock);
2843 	mutex_init(&po->pg_vec_lock);
2844 	po->prot_hook.func = packet_rcv;
2845 
2846 	if (sock->type == SOCK_PACKET)
2847 		po->prot_hook.func = packet_rcv_spkt;
2848 
2849 	po->prot_hook.af_packet_priv = sk;
2850 
2851 	if (proto) {
2852 		po->prot_hook.type = proto;
2853 		register_prot_hook(sk);
2854 	}
2855 
2856 	mutex_lock(&net->packet.sklist_lock);
2857 	sk_add_node_rcu(sk, &net->packet.sklist);
2858 	mutex_unlock(&net->packet.sklist_lock);
2859 
2860 	preempt_disable();
2861 	sock_prot_inuse_add(net, &packet_proto, 1);
2862 	preempt_enable();
2863 
2864 	return 0;
2865 out2:
2866 	sk_free(sk);
2867 out:
2868 	return err;
2869 }
2870 
2871 /*
2872  *	Pull a packet from our receive queue and hand it to the user.
2873  *	If necessary we block.
2874  */
2875 
2876 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2877 			  struct msghdr *msg, size_t len, int flags)
2878 {
2879 	struct sock *sk = sock->sk;
2880 	struct sk_buff *skb;
2881 	int copied, err;
2882 	int vnet_hdr_len = 0;
2883 
2884 	err = -EINVAL;
2885 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2886 		goto out;
2887 
2888 #if 0
2889 	/* What error should we return now? EUNATTACH? */
2890 	if (pkt_sk(sk)->ifindex < 0)
2891 		return -ENODEV;
2892 #endif
2893 
2894 	if (flags & MSG_ERRQUEUE) {
2895 		err = sock_recv_errqueue(sk, msg, len,
2896 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
2897 		goto out;
2898 	}
2899 
2900 	/*
2901 	 *	Call the generic datagram receiver. This handles all sorts
2902 	 *	of horrible races and re-entrancy so we can forget about it
2903 	 *	in the protocol layers.
2904 	 *
2905 	 *	Now it will return ENETDOWN, if device have just gone down,
2906 	 *	but then it will block.
2907 	 */
2908 
2909 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2910 
2911 	/*
2912 	 *	An error occurred so return it. Because skb_recv_datagram()
2913 	 *	handles the blocking we don't see and worry about blocking
2914 	 *	retries.
2915 	 */
2916 
2917 	if (skb == NULL)
2918 		goto out;
2919 
2920 	if (pkt_sk(sk)->has_vnet_hdr) {
2921 		struct virtio_net_hdr vnet_hdr = { 0 };
2922 
2923 		err = -EINVAL;
2924 		vnet_hdr_len = sizeof(vnet_hdr);
2925 		if (len < vnet_hdr_len)
2926 			goto out_free;
2927 
2928 		len -= vnet_hdr_len;
2929 
2930 		if (skb_is_gso(skb)) {
2931 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2932 
2933 			/* This is a hint as to how much should be linear. */
2934 			vnet_hdr.hdr_len =
2935 				__cpu_to_virtio16(false, skb_headlen(skb));
2936 			vnet_hdr.gso_size =
2937 				__cpu_to_virtio16(false, sinfo->gso_size);
2938 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2939 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2940 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2941 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2942 			else if (sinfo->gso_type & SKB_GSO_UDP)
2943 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2944 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2945 				goto out_free;
2946 			else
2947 				BUG();
2948 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2949 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2950 		} else
2951 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2952 
2953 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2954 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2955 			vnet_hdr.csum_start = __cpu_to_virtio16(false,
2956 					  skb_checksum_start_offset(skb));
2957 			vnet_hdr.csum_offset = __cpu_to_virtio16(false,
2958 							 skb->csum_offset);
2959 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2960 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2961 		} /* else everything is zero */
2962 
2963 		err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
2964 		if (err < 0)
2965 			goto out_free;
2966 	}
2967 
2968 	/* You lose any data beyond the buffer you gave. If it worries
2969 	 * a user program they can ask the device for its MTU
2970 	 * anyway.
2971 	 */
2972 	copied = skb->len;
2973 	if (copied > len) {
2974 		copied = len;
2975 		msg->msg_flags |= MSG_TRUNC;
2976 	}
2977 
2978 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2979 	if (err)
2980 		goto out_free;
2981 
2982 	sock_recv_ts_and_drops(msg, sk, skb);
2983 
2984 	if (msg->msg_name) {
2985 		/* If the address length field is there to be filled
2986 		 * in, we fill it in now.
2987 		 */
2988 		if (sock->type == SOCK_PACKET) {
2989 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
2990 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
2991 		} else {
2992 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
2993 			msg->msg_namelen = sll->sll_halen +
2994 				offsetof(struct sockaddr_ll, sll_addr);
2995 		}
2996 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2997 		       msg->msg_namelen);
2998 	}
2999 
3000 	if (pkt_sk(sk)->auxdata) {
3001 		struct tpacket_auxdata aux;
3002 
3003 		aux.tp_status = TP_STATUS_USER;
3004 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3005 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3006 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
3007 		aux.tp_snaplen = skb->len;
3008 		aux.tp_mac = 0;
3009 		aux.tp_net = skb_network_offset(skb);
3010 		if (vlan_tx_tag_present(skb)) {
3011 			aux.tp_vlan_tci = vlan_tx_tag_get(skb);
3012 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3013 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3014 		} else {
3015 			aux.tp_vlan_tci = 0;
3016 			aux.tp_vlan_tpid = 0;
3017 		}
3018 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3019 	}
3020 
3021 	/*
3022 	 *	Free or return the buffer as appropriate. Again this
3023 	 *	hides all the races and re-entrancy issues from us.
3024 	 */
3025 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3026 
3027 out_free:
3028 	skb_free_datagram(sk, skb);
3029 out:
3030 	return err;
3031 }
3032 
3033 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3034 			       int *uaddr_len, int peer)
3035 {
3036 	struct net_device *dev;
3037 	struct sock *sk	= sock->sk;
3038 
3039 	if (peer)
3040 		return -EOPNOTSUPP;
3041 
3042 	uaddr->sa_family = AF_PACKET;
3043 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3044 	rcu_read_lock();
3045 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3046 	if (dev)
3047 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3048 	rcu_read_unlock();
3049 	*uaddr_len = sizeof(*uaddr);
3050 
3051 	return 0;
3052 }
3053 
3054 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3055 			  int *uaddr_len, int peer)
3056 {
3057 	struct net_device *dev;
3058 	struct sock *sk = sock->sk;
3059 	struct packet_sock *po = pkt_sk(sk);
3060 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3061 
3062 	if (peer)
3063 		return -EOPNOTSUPP;
3064 
3065 	sll->sll_family = AF_PACKET;
3066 	sll->sll_ifindex = po->ifindex;
3067 	sll->sll_protocol = po->num;
3068 	sll->sll_pkttype = 0;
3069 	rcu_read_lock();
3070 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3071 	if (dev) {
3072 		sll->sll_hatype = dev->type;
3073 		sll->sll_halen = dev->addr_len;
3074 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3075 	} else {
3076 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3077 		sll->sll_halen = 0;
3078 	}
3079 	rcu_read_unlock();
3080 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3081 
3082 	return 0;
3083 }
3084 
3085 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3086 			 int what)
3087 {
3088 	switch (i->type) {
3089 	case PACKET_MR_MULTICAST:
3090 		if (i->alen != dev->addr_len)
3091 			return -EINVAL;
3092 		if (what > 0)
3093 			return dev_mc_add(dev, i->addr);
3094 		else
3095 			return dev_mc_del(dev, i->addr);
3096 		break;
3097 	case PACKET_MR_PROMISC:
3098 		return dev_set_promiscuity(dev, what);
3099 	case PACKET_MR_ALLMULTI:
3100 		return dev_set_allmulti(dev, what);
3101 	case PACKET_MR_UNICAST:
3102 		if (i->alen != dev->addr_len)
3103 			return -EINVAL;
3104 		if (what > 0)
3105 			return dev_uc_add(dev, i->addr);
3106 		else
3107 			return dev_uc_del(dev, i->addr);
3108 		break;
3109 	default:
3110 		break;
3111 	}
3112 	return 0;
3113 }
3114 
3115 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
3116 {
3117 	for ( ; i; i = i->next) {
3118 		if (i->ifindex == dev->ifindex)
3119 			packet_dev_mc(dev, i, what);
3120 	}
3121 }
3122 
3123 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3124 {
3125 	struct packet_sock *po = pkt_sk(sk);
3126 	struct packet_mclist *ml, *i;
3127 	struct net_device *dev;
3128 	int err;
3129 
3130 	rtnl_lock();
3131 
3132 	err = -ENODEV;
3133 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3134 	if (!dev)
3135 		goto done;
3136 
3137 	err = -EINVAL;
3138 	if (mreq->mr_alen > dev->addr_len)
3139 		goto done;
3140 
3141 	err = -ENOBUFS;
3142 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3143 	if (i == NULL)
3144 		goto done;
3145 
3146 	err = 0;
3147 	for (ml = po->mclist; ml; ml = ml->next) {
3148 		if (ml->ifindex == mreq->mr_ifindex &&
3149 		    ml->type == mreq->mr_type &&
3150 		    ml->alen == mreq->mr_alen &&
3151 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3152 			ml->count++;
3153 			/* Free the new element ... */
3154 			kfree(i);
3155 			goto done;
3156 		}
3157 	}
3158 
3159 	i->type = mreq->mr_type;
3160 	i->ifindex = mreq->mr_ifindex;
3161 	i->alen = mreq->mr_alen;
3162 	memcpy(i->addr, mreq->mr_address, i->alen);
3163 	i->count = 1;
3164 	i->next = po->mclist;
3165 	po->mclist = i;
3166 	err = packet_dev_mc(dev, i, 1);
3167 	if (err) {
3168 		po->mclist = i->next;
3169 		kfree(i);
3170 	}
3171 
3172 done:
3173 	rtnl_unlock();
3174 	return err;
3175 }
3176 
3177 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3178 {
3179 	struct packet_mclist *ml, **mlp;
3180 
3181 	rtnl_lock();
3182 
3183 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3184 		if (ml->ifindex == mreq->mr_ifindex &&
3185 		    ml->type == mreq->mr_type &&
3186 		    ml->alen == mreq->mr_alen &&
3187 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3188 			if (--ml->count == 0) {
3189 				struct net_device *dev;
3190 				*mlp = ml->next;
3191 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3192 				if (dev)
3193 					packet_dev_mc(dev, ml, -1);
3194 				kfree(ml);
3195 			}
3196 			rtnl_unlock();
3197 			return 0;
3198 		}
3199 	}
3200 	rtnl_unlock();
3201 	return -EADDRNOTAVAIL;
3202 }
3203 
3204 static void packet_flush_mclist(struct sock *sk)
3205 {
3206 	struct packet_sock *po = pkt_sk(sk);
3207 	struct packet_mclist *ml;
3208 
3209 	if (!po->mclist)
3210 		return;
3211 
3212 	rtnl_lock();
3213 	while ((ml = po->mclist) != NULL) {
3214 		struct net_device *dev;
3215 
3216 		po->mclist = ml->next;
3217 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3218 		if (dev != NULL)
3219 			packet_dev_mc(dev, ml, -1);
3220 		kfree(ml);
3221 	}
3222 	rtnl_unlock();
3223 }
3224 
3225 static int
3226 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3227 {
3228 	struct sock *sk = sock->sk;
3229 	struct packet_sock *po = pkt_sk(sk);
3230 	int ret;
3231 
3232 	if (level != SOL_PACKET)
3233 		return -ENOPROTOOPT;
3234 
3235 	switch (optname) {
3236 	case PACKET_ADD_MEMBERSHIP:
3237 	case PACKET_DROP_MEMBERSHIP:
3238 	{
3239 		struct packet_mreq_max mreq;
3240 		int len = optlen;
3241 		memset(&mreq, 0, sizeof(mreq));
3242 		if (len < sizeof(struct packet_mreq))
3243 			return -EINVAL;
3244 		if (len > sizeof(mreq))
3245 			len = sizeof(mreq);
3246 		if (copy_from_user(&mreq, optval, len))
3247 			return -EFAULT;
3248 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3249 			return -EINVAL;
3250 		if (optname == PACKET_ADD_MEMBERSHIP)
3251 			ret = packet_mc_add(sk, &mreq);
3252 		else
3253 			ret = packet_mc_drop(sk, &mreq);
3254 		return ret;
3255 	}
3256 
3257 	case PACKET_RX_RING:
3258 	case PACKET_TX_RING:
3259 	{
3260 		union tpacket_req_u req_u;
3261 		int len;
3262 
3263 		switch (po->tp_version) {
3264 		case TPACKET_V1:
3265 		case TPACKET_V2:
3266 			len = sizeof(req_u.req);
3267 			break;
3268 		case TPACKET_V3:
3269 		default:
3270 			len = sizeof(req_u.req3);
3271 			break;
3272 		}
3273 		if (optlen < len)
3274 			return -EINVAL;
3275 		if (pkt_sk(sk)->has_vnet_hdr)
3276 			return -EINVAL;
3277 		if (copy_from_user(&req_u.req, optval, len))
3278 			return -EFAULT;
3279 		return packet_set_ring(sk, &req_u, 0,
3280 			optname == PACKET_TX_RING);
3281 	}
3282 	case PACKET_COPY_THRESH:
3283 	{
3284 		int val;
3285 
3286 		if (optlen != sizeof(val))
3287 			return -EINVAL;
3288 		if (copy_from_user(&val, optval, sizeof(val)))
3289 			return -EFAULT;
3290 
3291 		pkt_sk(sk)->copy_thresh = val;
3292 		return 0;
3293 	}
3294 	case PACKET_VERSION:
3295 	{
3296 		int val;
3297 
3298 		if (optlen != sizeof(val))
3299 			return -EINVAL;
3300 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3301 			return -EBUSY;
3302 		if (copy_from_user(&val, optval, sizeof(val)))
3303 			return -EFAULT;
3304 		switch (val) {
3305 		case TPACKET_V1:
3306 		case TPACKET_V2:
3307 		case TPACKET_V3:
3308 			po->tp_version = val;
3309 			return 0;
3310 		default:
3311 			return -EINVAL;
3312 		}
3313 	}
3314 	case PACKET_RESERVE:
3315 	{
3316 		unsigned int val;
3317 
3318 		if (optlen != sizeof(val))
3319 			return -EINVAL;
3320 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3321 			return -EBUSY;
3322 		if (copy_from_user(&val, optval, sizeof(val)))
3323 			return -EFAULT;
3324 		po->tp_reserve = val;
3325 		return 0;
3326 	}
3327 	case PACKET_LOSS:
3328 	{
3329 		unsigned int val;
3330 
3331 		if (optlen != sizeof(val))
3332 			return -EINVAL;
3333 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3334 			return -EBUSY;
3335 		if (copy_from_user(&val, optval, sizeof(val)))
3336 			return -EFAULT;
3337 		po->tp_loss = !!val;
3338 		return 0;
3339 	}
3340 	case PACKET_AUXDATA:
3341 	{
3342 		int val;
3343 
3344 		if (optlen < sizeof(val))
3345 			return -EINVAL;
3346 		if (copy_from_user(&val, optval, sizeof(val)))
3347 			return -EFAULT;
3348 
3349 		po->auxdata = !!val;
3350 		return 0;
3351 	}
3352 	case PACKET_ORIGDEV:
3353 	{
3354 		int val;
3355 
3356 		if (optlen < sizeof(val))
3357 			return -EINVAL;
3358 		if (copy_from_user(&val, optval, sizeof(val)))
3359 			return -EFAULT;
3360 
3361 		po->origdev = !!val;
3362 		return 0;
3363 	}
3364 	case PACKET_VNET_HDR:
3365 	{
3366 		int val;
3367 
3368 		if (sock->type != SOCK_RAW)
3369 			return -EINVAL;
3370 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3371 			return -EBUSY;
3372 		if (optlen < sizeof(val))
3373 			return -EINVAL;
3374 		if (copy_from_user(&val, optval, sizeof(val)))
3375 			return -EFAULT;
3376 
3377 		po->has_vnet_hdr = !!val;
3378 		return 0;
3379 	}
3380 	case PACKET_TIMESTAMP:
3381 	{
3382 		int val;
3383 
3384 		if (optlen != sizeof(val))
3385 			return -EINVAL;
3386 		if (copy_from_user(&val, optval, sizeof(val)))
3387 			return -EFAULT;
3388 
3389 		po->tp_tstamp = val;
3390 		return 0;
3391 	}
3392 	case PACKET_FANOUT:
3393 	{
3394 		int val;
3395 
3396 		if (optlen != sizeof(val))
3397 			return -EINVAL;
3398 		if (copy_from_user(&val, optval, sizeof(val)))
3399 			return -EFAULT;
3400 
3401 		return fanout_add(sk, val & 0xffff, val >> 16);
3402 	}
3403 	case PACKET_TX_HAS_OFF:
3404 	{
3405 		unsigned int val;
3406 
3407 		if (optlen != sizeof(val))
3408 			return -EINVAL;
3409 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3410 			return -EBUSY;
3411 		if (copy_from_user(&val, optval, sizeof(val)))
3412 			return -EFAULT;
3413 		po->tp_tx_has_off = !!val;
3414 		return 0;
3415 	}
3416 	case PACKET_QDISC_BYPASS:
3417 	{
3418 		int val;
3419 
3420 		if (optlen != sizeof(val))
3421 			return -EINVAL;
3422 		if (copy_from_user(&val, optval, sizeof(val)))
3423 			return -EFAULT;
3424 
3425 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3426 		return 0;
3427 	}
3428 	default:
3429 		return -ENOPROTOOPT;
3430 	}
3431 }
3432 
3433 static int packet_getsockopt(struct socket *sock, int level, int optname,
3434 			     char __user *optval, int __user *optlen)
3435 {
3436 	int len;
3437 	int val, lv = sizeof(val);
3438 	struct sock *sk = sock->sk;
3439 	struct packet_sock *po = pkt_sk(sk);
3440 	void *data = &val;
3441 	union tpacket_stats_u st;
3442 
3443 	if (level != SOL_PACKET)
3444 		return -ENOPROTOOPT;
3445 
3446 	if (get_user(len, optlen))
3447 		return -EFAULT;
3448 
3449 	if (len < 0)
3450 		return -EINVAL;
3451 
3452 	switch (optname) {
3453 	case PACKET_STATISTICS:
3454 		spin_lock_bh(&sk->sk_receive_queue.lock);
3455 		memcpy(&st, &po->stats, sizeof(st));
3456 		memset(&po->stats, 0, sizeof(po->stats));
3457 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3458 
3459 		if (po->tp_version == TPACKET_V3) {
3460 			lv = sizeof(struct tpacket_stats_v3);
3461 			st.stats3.tp_packets += st.stats3.tp_drops;
3462 			data = &st.stats3;
3463 		} else {
3464 			lv = sizeof(struct tpacket_stats);
3465 			st.stats1.tp_packets += st.stats1.tp_drops;
3466 			data = &st.stats1;
3467 		}
3468 
3469 		break;
3470 	case PACKET_AUXDATA:
3471 		val = po->auxdata;
3472 		break;
3473 	case PACKET_ORIGDEV:
3474 		val = po->origdev;
3475 		break;
3476 	case PACKET_VNET_HDR:
3477 		val = po->has_vnet_hdr;
3478 		break;
3479 	case PACKET_VERSION:
3480 		val = po->tp_version;
3481 		break;
3482 	case PACKET_HDRLEN:
3483 		if (len > sizeof(int))
3484 			len = sizeof(int);
3485 		if (copy_from_user(&val, optval, len))
3486 			return -EFAULT;
3487 		switch (val) {
3488 		case TPACKET_V1:
3489 			val = sizeof(struct tpacket_hdr);
3490 			break;
3491 		case TPACKET_V2:
3492 			val = sizeof(struct tpacket2_hdr);
3493 			break;
3494 		case TPACKET_V3:
3495 			val = sizeof(struct tpacket3_hdr);
3496 			break;
3497 		default:
3498 			return -EINVAL;
3499 		}
3500 		break;
3501 	case PACKET_RESERVE:
3502 		val = po->tp_reserve;
3503 		break;
3504 	case PACKET_LOSS:
3505 		val = po->tp_loss;
3506 		break;
3507 	case PACKET_TIMESTAMP:
3508 		val = po->tp_tstamp;
3509 		break;
3510 	case PACKET_FANOUT:
3511 		val = (po->fanout ?
3512 		       ((u32)po->fanout->id |
3513 			((u32)po->fanout->type << 16) |
3514 			((u32)po->fanout->flags << 24)) :
3515 		       0);
3516 		break;
3517 	case PACKET_TX_HAS_OFF:
3518 		val = po->tp_tx_has_off;
3519 		break;
3520 	case PACKET_QDISC_BYPASS:
3521 		val = packet_use_direct_xmit(po);
3522 		break;
3523 	default:
3524 		return -ENOPROTOOPT;
3525 	}
3526 
3527 	if (len > lv)
3528 		len = lv;
3529 	if (put_user(len, optlen))
3530 		return -EFAULT;
3531 	if (copy_to_user(optval, data, len))
3532 		return -EFAULT;
3533 	return 0;
3534 }
3535 
3536 
3537 static int packet_notifier(struct notifier_block *this,
3538 			   unsigned long msg, void *ptr)
3539 {
3540 	struct sock *sk;
3541 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3542 	struct net *net = dev_net(dev);
3543 
3544 	rcu_read_lock();
3545 	sk_for_each_rcu(sk, &net->packet.sklist) {
3546 		struct packet_sock *po = pkt_sk(sk);
3547 
3548 		switch (msg) {
3549 		case NETDEV_UNREGISTER:
3550 			if (po->mclist)
3551 				packet_dev_mclist(dev, po->mclist, -1);
3552 			/* fallthrough */
3553 
3554 		case NETDEV_DOWN:
3555 			if (dev->ifindex == po->ifindex) {
3556 				spin_lock(&po->bind_lock);
3557 				if (po->running) {
3558 					__unregister_prot_hook(sk, false);
3559 					sk->sk_err = ENETDOWN;
3560 					if (!sock_flag(sk, SOCK_DEAD))
3561 						sk->sk_error_report(sk);
3562 				}
3563 				if (msg == NETDEV_UNREGISTER) {
3564 					packet_cached_dev_reset(po);
3565 					po->ifindex = -1;
3566 					if (po->prot_hook.dev)
3567 						dev_put(po->prot_hook.dev);
3568 					po->prot_hook.dev = NULL;
3569 				}
3570 				spin_unlock(&po->bind_lock);
3571 			}
3572 			break;
3573 		case NETDEV_UP:
3574 			if (dev->ifindex == po->ifindex) {
3575 				spin_lock(&po->bind_lock);
3576 				if (po->num)
3577 					register_prot_hook(sk);
3578 				spin_unlock(&po->bind_lock);
3579 			}
3580 			break;
3581 		}
3582 	}
3583 	rcu_read_unlock();
3584 	return NOTIFY_DONE;
3585 }
3586 
3587 
3588 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3589 			unsigned long arg)
3590 {
3591 	struct sock *sk = sock->sk;
3592 
3593 	switch (cmd) {
3594 	case SIOCOUTQ:
3595 	{
3596 		int amount = sk_wmem_alloc_get(sk);
3597 
3598 		return put_user(amount, (int __user *)arg);
3599 	}
3600 	case SIOCINQ:
3601 	{
3602 		struct sk_buff *skb;
3603 		int amount = 0;
3604 
3605 		spin_lock_bh(&sk->sk_receive_queue.lock);
3606 		skb = skb_peek(&sk->sk_receive_queue);
3607 		if (skb)
3608 			amount = skb->len;
3609 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3610 		return put_user(amount, (int __user *)arg);
3611 	}
3612 	case SIOCGSTAMP:
3613 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3614 	case SIOCGSTAMPNS:
3615 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3616 
3617 #ifdef CONFIG_INET
3618 	case SIOCADDRT:
3619 	case SIOCDELRT:
3620 	case SIOCDARP:
3621 	case SIOCGARP:
3622 	case SIOCSARP:
3623 	case SIOCGIFADDR:
3624 	case SIOCSIFADDR:
3625 	case SIOCGIFBRDADDR:
3626 	case SIOCSIFBRDADDR:
3627 	case SIOCGIFNETMASK:
3628 	case SIOCSIFNETMASK:
3629 	case SIOCGIFDSTADDR:
3630 	case SIOCSIFDSTADDR:
3631 	case SIOCSIFFLAGS:
3632 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3633 #endif
3634 
3635 	default:
3636 		return -ENOIOCTLCMD;
3637 	}
3638 	return 0;
3639 }
3640 
3641 static unsigned int packet_poll(struct file *file, struct socket *sock,
3642 				poll_table *wait)
3643 {
3644 	struct sock *sk = sock->sk;
3645 	struct packet_sock *po = pkt_sk(sk);
3646 	unsigned int mask = datagram_poll(file, sock, wait);
3647 
3648 	spin_lock_bh(&sk->sk_receive_queue.lock);
3649 	if (po->rx_ring.pg_vec) {
3650 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3651 			TP_STATUS_KERNEL))
3652 			mask |= POLLIN | POLLRDNORM;
3653 	}
3654 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3655 	spin_lock_bh(&sk->sk_write_queue.lock);
3656 	if (po->tx_ring.pg_vec) {
3657 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3658 			mask |= POLLOUT | POLLWRNORM;
3659 	}
3660 	spin_unlock_bh(&sk->sk_write_queue.lock);
3661 	return mask;
3662 }
3663 
3664 
3665 /* Dirty? Well, I still did not learn better way to account
3666  * for user mmaps.
3667  */
3668 
3669 static void packet_mm_open(struct vm_area_struct *vma)
3670 {
3671 	struct file *file = vma->vm_file;
3672 	struct socket *sock = file->private_data;
3673 	struct sock *sk = sock->sk;
3674 
3675 	if (sk)
3676 		atomic_inc(&pkt_sk(sk)->mapped);
3677 }
3678 
3679 static void packet_mm_close(struct vm_area_struct *vma)
3680 {
3681 	struct file *file = vma->vm_file;
3682 	struct socket *sock = file->private_data;
3683 	struct sock *sk = sock->sk;
3684 
3685 	if (sk)
3686 		atomic_dec(&pkt_sk(sk)->mapped);
3687 }
3688 
3689 static const struct vm_operations_struct packet_mmap_ops = {
3690 	.open	=	packet_mm_open,
3691 	.close	=	packet_mm_close,
3692 };
3693 
3694 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3695 			unsigned int len)
3696 {
3697 	int i;
3698 
3699 	for (i = 0; i < len; i++) {
3700 		if (likely(pg_vec[i].buffer)) {
3701 			if (is_vmalloc_addr(pg_vec[i].buffer))
3702 				vfree(pg_vec[i].buffer);
3703 			else
3704 				free_pages((unsigned long)pg_vec[i].buffer,
3705 					   order);
3706 			pg_vec[i].buffer = NULL;
3707 		}
3708 	}
3709 	kfree(pg_vec);
3710 }
3711 
3712 static char *alloc_one_pg_vec_page(unsigned long order)
3713 {
3714 	char *buffer;
3715 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3716 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3717 
3718 	buffer = (char *) __get_free_pages(gfp_flags, order);
3719 	if (buffer)
3720 		return buffer;
3721 
3722 	/* __get_free_pages failed, fall back to vmalloc */
3723 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3724 	if (buffer)
3725 		return buffer;
3726 
3727 	/* vmalloc failed, lets dig into swap here */
3728 	gfp_flags &= ~__GFP_NORETRY;
3729 	buffer = (char *) __get_free_pages(gfp_flags, order);
3730 	if (buffer)
3731 		return buffer;
3732 
3733 	/* complete and utter failure */
3734 	return NULL;
3735 }
3736 
3737 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3738 {
3739 	unsigned int block_nr = req->tp_block_nr;
3740 	struct pgv *pg_vec;
3741 	int i;
3742 
3743 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3744 	if (unlikely(!pg_vec))
3745 		goto out;
3746 
3747 	for (i = 0; i < block_nr; i++) {
3748 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3749 		if (unlikely(!pg_vec[i].buffer))
3750 			goto out_free_pgvec;
3751 	}
3752 
3753 out:
3754 	return pg_vec;
3755 
3756 out_free_pgvec:
3757 	free_pg_vec(pg_vec, order, block_nr);
3758 	pg_vec = NULL;
3759 	goto out;
3760 }
3761 
3762 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3763 		int closing, int tx_ring)
3764 {
3765 	struct pgv *pg_vec = NULL;
3766 	struct packet_sock *po = pkt_sk(sk);
3767 	int was_running, order = 0;
3768 	struct packet_ring_buffer *rb;
3769 	struct sk_buff_head *rb_queue;
3770 	__be16 num;
3771 	int err = -EINVAL;
3772 	/* Added to avoid minimal code churn */
3773 	struct tpacket_req *req = &req_u->req;
3774 
3775 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3776 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3777 		WARN(1, "Tx-ring is not supported.\n");
3778 		goto out;
3779 	}
3780 
3781 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3782 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3783 
3784 	err = -EBUSY;
3785 	if (!closing) {
3786 		if (atomic_read(&po->mapped))
3787 			goto out;
3788 		if (packet_read_pending(rb))
3789 			goto out;
3790 	}
3791 
3792 	if (req->tp_block_nr) {
3793 		/* Sanity tests and some calculations */
3794 		err = -EBUSY;
3795 		if (unlikely(rb->pg_vec))
3796 			goto out;
3797 
3798 		switch (po->tp_version) {
3799 		case TPACKET_V1:
3800 			po->tp_hdrlen = TPACKET_HDRLEN;
3801 			break;
3802 		case TPACKET_V2:
3803 			po->tp_hdrlen = TPACKET2_HDRLEN;
3804 			break;
3805 		case TPACKET_V3:
3806 			po->tp_hdrlen = TPACKET3_HDRLEN;
3807 			break;
3808 		}
3809 
3810 		err = -EINVAL;
3811 		if (unlikely((int)req->tp_block_size <= 0))
3812 			goto out;
3813 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3814 			goto out;
3815 		if (po->tp_version >= TPACKET_V3 &&
3816 		    (int)(req->tp_block_size -
3817 			  BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
3818 			goto out;
3819 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3820 					po->tp_reserve))
3821 			goto out;
3822 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3823 			goto out;
3824 
3825 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3826 		if (unlikely(rb->frames_per_block <= 0))
3827 			goto out;
3828 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3829 					req->tp_frame_nr))
3830 			goto out;
3831 
3832 		err = -ENOMEM;
3833 		order = get_order(req->tp_block_size);
3834 		pg_vec = alloc_pg_vec(req, order);
3835 		if (unlikely(!pg_vec))
3836 			goto out;
3837 		switch (po->tp_version) {
3838 		case TPACKET_V3:
3839 		/* Transmit path is not supported. We checked
3840 		 * it above but just being paranoid
3841 		 */
3842 			if (!tx_ring)
3843 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3844 			break;
3845 		default:
3846 			break;
3847 		}
3848 	}
3849 	/* Done */
3850 	else {
3851 		err = -EINVAL;
3852 		if (unlikely(req->tp_frame_nr))
3853 			goto out;
3854 	}
3855 
3856 	lock_sock(sk);
3857 
3858 	/* Detach socket from network */
3859 	spin_lock(&po->bind_lock);
3860 	was_running = po->running;
3861 	num = po->num;
3862 	if (was_running) {
3863 		po->num = 0;
3864 		__unregister_prot_hook(sk, false);
3865 	}
3866 	spin_unlock(&po->bind_lock);
3867 
3868 	synchronize_net();
3869 
3870 	err = -EBUSY;
3871 	mutex_lock(&po->pg_vec_lock);
3872 	if (closing || atomic_read(&po->mapped) == 0) {
3873 		err = 0;
3874 		spin_lock_bh(&rb_queue->lock);
3875 		swap(rb->pg_vec, pg_vec);
3876 		rb->frame_max = (req->tp_frame_nr - 1);
3877 		rb->head = 0;
3878 		rb->frame_size = req->tp_frame_size;
3879 		spin_unlock_bh(&rb_queue->lock);
3880 
3881 		swap(rb->pg_vec_order, order);
3882 		swap(rb->pg_vec_len, req->tp_block_nr);
3883 
3884 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3885 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3886 						tpacket_rcv : packet_rcv;
3887 		skb_queue_purge(rb_queue);
3888 		if (atomic_read(&po->mapped))
3889 			pr_err("packet_mmap: vma is busy: %d\n",
3890 			       atomic_read(&po->mapped));
3891 	}
3892 	mutex_unlock(&po->pg_vec_lock);
3893 
3894 	spin_lock(&po->bind_lock);
3895 	if (was_running) {
3896 		po->num = num;
3897 		register_prot_hook(sk);
3898 	}
3899 	spin_unlock(&po->bind_lock);
3900 	if (closing && (po->tp_version > TPACKET_V2)) {
3901 		/* Because we don't support block-based V3 on tx-ring */
3902 		if (!tx_ring)
3903 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3904 	}
3905 	release_sock(sk);
3906 
3907 	if (pg_vec)
3908 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3909 out:
3910 	return err;
3911 }
3912 
3913 static int packet_mmap(struct file *file, struct socket *sock,
3914 		struct vm_area_struct *vma)
3915 {
3916 	struct sock *sk = sock->sk;
3917 	struct packet_sock *po = pkt_sk(sk);
3918 	unsigned long size, expected_size;
3919 	struct packet_ring_buffer *rb;
3920 	unsigned long start;
3921 	int err = -EINVAL;
3922 	int i;
3923 
3924 	if (vma->vm_pgoff)
3925 		return -EINVAL;
3926 
3927 	mutex_lock(&po->pg_vec_lock);
3928 
3929 	expected_size = 0;
3930 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3931 		if (rb->pg_vec) {
3932 			expected_size += rb->pg_vec_len
3933 						* rb->pg_vec_pages
3934 						* PAGE_SIZE;
3935 		}
3936 	}
3937 
3938 	if (expected_size == 0)
3939 		goto out;
3940 
3941 	size = vma->vm_end - vma->vm_start;
3942 	if (size != expected_size)
3943 		goto out;
3944 
3945 	start = vma->vm_start;
3946 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3947 		if (rb->pg_vec == NULL)
3948 			continue;
3949 
3950 		for (i = 0; i < rb->pg_vec_len; i++) {
3951 			struct page *page;
3952 			void *kaddr = rb->pg_vec[i].buffer;
3953 			int pg_num;
3954 
3955 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3956 				page = pgv_to_page(kaddr);
3957 				err = vm_insert_page(vma, start, page);
3958 				if (unlikely(err))
3959 					goto out;
3960 				start += PAGE_SIZE;
3961 				kaddr += PAGE_SIZE;
3962 			}
3963 		}
3964 	}
3965 
3966 	atomic_inc(&po->mapped);
3967 	vma->vm_ops = &packet_mmap_ops;
3968 	err = 0;
3969 
3970 out:
3971 	mutex_unlock(&po->pg_vec_lock);
3972 	return err;
3973 }
3974 
3975 static const struct proto_ops packet_ops_spkt = {
3976 	.family =	PF_PACKET,
3977 	.owner =	THIS_MODULE,
3978 	.release =	packet_release,
3979 	.bind =		packet_bind_spkt,
3980 	.connect =	sock_no_connect,
3981 	.socketpair =	sock_no_socketpair,
3982 	.accept =	sock_no_accept,
3983 	.getname =	packet_getname_spkt,
3984 	.poll =		datagram_poll,
3985 	.ioctl =	packet_ioctl,
3986 	.listen =	sock_no_listen,
3987 	.shutdown =	sock_no_shutdown,
3988 	.setsockopt =	sock_no_setsockopt,
3989 	.getsockopt =	sock_no_getsockopt,
3990 	.sendmsg =	packet_sendmsg_spkt,
3991 	.recvmsg =	packet_recvmsg,
3992 	.mmap =		sock_no_mmap,
3993 	.sendpage =	sock_no_sendpage,
3994 };
3995 
3996 static const struct proto_ops packet_ops = {
3997 	.family =	PF_PACKET,
3998 	.owner =	THIS_MODULE,
3999 	.release =	packet_release,
4000 	.bind =		packet_bind,
4001 	.connect =	sock_no_connect,
4002 	.socketpair =	sock_no_socketpair,
4003 	.accept =	sock_no_accept,
4004 	.getname =	packet_getname,
4005 	.poll =		packet_poll,
4006 	.ioctl =	packet_ioctl,
4007 	.listen =	sock_no_listen,
4008 	.shutdown =	sock_no_shutdown,
4009 	.setsockopt =	packet_setsockopt,
4010 	.getsockopt =	packet_getsockopt,
4011 	.sendmsg =	packet_sendmsg,
4012 	.recvmsg =	packet_recvmsg,
4013 	.mmap =		packet_mmap,
4014 	.sendpage =	sock_no_sendpage,
4015 };
4016 
4017 static const struct net_proto_family packet_family_ops = {
4018 	.family =	PF_PACKET,
4019 	.create =	packet_create,
4020 	.owner	=	THIS_MODULE,
4021 };
4022 
4023 static struct notifier_block packet_netdev_notifier = {
4024 	.notifier_call =	packet_notifier,
4025 };
4026 
4027 #ifdef CONFIG_PROC_FS
4028 
4029 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4030 	__acquires(RCU)
4031 {
4032 	struct net *net = seq_file_net(seq);
4033 
4034 	rcu_read_lock();
4035 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4036 }
4037 
4038 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4039 {
4040 	struct net *net = seq_file_net(seq);
4041 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4042 }
4043 
4044 static void packet_seq_stop(struct seq_file *seq, void *v)
4045 	__releases(RCU)
4046 {
4047 	rcu_read_unlock();
4048 }
4049 
4050 static int packet_seq_show(struct seq_file *seq, void *v)
4051 {
4052 	if (v == SEQ_START_TOKEN)
4053 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4054 	else {
4055 		struct sock *s = sk_entry(v);
4056 		const struct packet_sock *po = pkt_sk(s);
4057 
4058 		seq_printf(seq,
4059 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4060 			   s,
4061 			   atomic_read(&s->sk_refcnt),
4062 			   s->sk_type,
4063 			   ntohs(po->num),
4064 			   po->ifindex,
4065 			   po->running,
4066 			   atomic_read(&s->sk_rmem_alloc),
4067 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4068 			   sock_i_ino(s));
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 static const struct seq_operations packet_seq_ops = {
4075 	.start	= packet_seq_start,
4076 	.next	= packet_seq_next,
4077 	.stop	= packet_seq_stop,
4078 	.show	= packet_seq_show,
4079 };
4080 
4081 static int packet_seq_open(struct inode *inode, struct file *file)
4082 {
4083 	return seq_open_net(inode, file, &packet_seq_ops,
4084 			    sizeof(struct seq_net_private));
4085 }
4086 
4087 static const struct file_operations packet_seq_fops = {
4088 	.owner		= THIS_MODULE,
4089 	.open		= packet_seq_open,
4090 	.read		= seq_read,
4091 	.llseek		= seq_lseek,
4092 	.release	= seq_release_net,
4093 };
4094 
4095 #endif
4096 
4097 static int __net_init packet_net_init(struct net *net)
4098 {
4099 	mutex_init(&net->packet.sklist_lock);
4100 	INIT_HLIST_HEAD(&net->packet.sklist);
4101 
4102 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4103 		return -ENOMEM;
4104 
4105 	return 0;
4106 }
4107 
4108 static void __net_exit packet_net_exit(struct net *net)
4109 {
4110 	remove_proc_entry("packet", net->proc_net);
4111 }
4112 
4113 static struct pernet_operations packet_net_ops = {
4114 	.init = packet_net_init,
4115 	.exit = packet_net_exit,
4116 };
4117 
4118 
4119 static void __exit packet_exit(void)
4120 {
4121 	unregister_netdevice_notifier(&packet_netdev_notifier);
4122 	unregister_pernet_subsys(&packet_net_ops);
4123 	sock_unregister(PF_PACKET);
4124 	proto_unregister(&packet_proto);
4125 }
4126 
4127 static int __init packet_init(void)
4128 {
4129 	int rc = proto_register(&packet_proto, 0);
4130 
4131 	if (rc != 0)
4132 		goto out;
4133 
4134 	sock_register(&packet_family_ops);
4135 	register_pernet_subsys(&packet_net_ops);
4136 	register_netdevice_notifier(&packet_netdev_notifier);
4137 out:
4138 	return rc;
4139 }
4140 
4141 module_init(packet_init);
4142 module_exit(packet_exit);
4143 MODULE_LICENSE("GPL");
4144 MODULE_ALIAS_NETPROTO(PF_PACKET);
4145