xref: /openbmc/linux/net/packet/af_packet.c (revision 7b6d864b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99    Assumptions:
100    - if device has no dev->hard_header routine, it adds and removes ll header
101      inside itself. In this case ll header is invisible outside of device,
102      but higher levels still should reserve dev->hard_header_len.
103      Some devices are enough clever to reallocate skb, when header
104      will not fit to reserved space (tunnel), another ones are silly
105      (PPP).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev->hard_header!=NULL
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev->hard_header==NULL
121    mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 		 header.  PPP makes it, that is wrong, because introduce
123 		 assymetry between rx and tx paths.
124    data       -> data
125 
126 Outgoing, dev->hard_header==NULL
127    mac_header -> data. ll header is still not built!
128    data       -> data
129 
130 Resume
131   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142    mac_header -> data
143    data       -> data
144 
145    We should set nh.raw on output to correct posistion,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define PGV_FROM_VMALLOC 1
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 		       struct packet_type *pt, struct net_device *orig_dev);
192 
193 static void *packet_previous_frame(struct packet_sock *po,
194 		struct packet_ring_buffer *rb,
195 		int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 			struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 		struct tpacket_kbdq_core *,
210 		void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 		struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 
218 struct packet_skb_cb {
219 	unsigned int origlen;
220 	union {
221 		struct sockaddr_pkt pkt;
222 		struct sockaddr_ll ll;
223 	} sa;
224 };
225 
226 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
227 
228 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid)	\
230 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 	((x)->kactive_blk_num+1) : 0)
236 
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239 
240 /* register_prot_hook must be invoked with the po->bind_lock held,
241  * or from a context in which asynchronous accesses to the packet
242  * socket is not possible (packet_create()).
243  */
244 static void register_prot_hook(struct sock *sk)
245 {
246 	struct packet_sock *po = pkt_sk(sk);
247 	if (!po->running) {
248 		if (po->fanout)
249 			__fanout_link(sk, po);
250 		else
251 			dev_add_pack(&po->prot_hook);
252 		sock_hold(sk);
253 		po->running = 1;
254 	}
255 }
256 
257 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
258  * held.   If the sync parameter is true, we will temporarily drop
259  * the po->bind_lock and do a synchronize_net to make sure no
260  * asynchronous packet processing paths still refer to the elements
261  * of po->prot_hook.  If the sync parameter is false, it is the
262  * callers responsibility to take care of this.
263  */
264 static void __unregister_prot_hook(struct sock *sk, bool sync)
265 {
266 	struct packet_sock *po = pkt_sk(sk);
267 
268 	po->running = 0;
269 	if (po->fanout)
270 		__fanout_unlink(sk, po);
271 	else
272 		__dev_remove_pack(&po->prot_hook);
273 	__sock_put(sk);
274 
275 	if (sync) {
276 		spin_unlock(&po->bind_lock);
277 		synchronize_net();
278 		spin_lock(&po->bind_lock);
279 	}
280 }
281 
282 static void unregister_prot_hook(struct sock *sk, bool sync)
283 {
284 	struct packet_sock *po = pkt_sk(sk);
285 
286 	if (po->running)
287 		__unregister_prot_hook(sk, sync);
288 }
289 
290 static inline __pure struct page *pgv_to_page(void *addr)
291 {
292 	if (is_vmalloc_addr(addr))
293 		return vmalloc_to_page(addr);
294 	return virt_to_page(addr);
295 }
296 
297 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
298 {
299 	union tpacket_uhdr h;
300 
301 	h.raw = frame;
302 	switch (po->tp_version) {
303 	case TPACKET_V1:
304 		h.h1->tp_status = status;
305 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
306 		break;
307 	case TPACKET_V2:
308 		h.h2->tp_status = status;
309 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
310 		break;
311 	case TPACKET_V3:
312 	default:
313 		WARN(1, "TPACKET version not supported.\n");
314 		BUG();
315 	}
316 
317 	smp_wmb();
318 }
319 
320 static int __packet_get_status(struct packet_sock *po, void *frame)
321 {
322 	union tpacket_uhdr h;
323 
324 	smp_rmb();
325 
326 	h.raw = frame;
327 	switch (po->tp_version) {
328 	case TPACKET_V1:
329 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
330 		return h.h1->tp_status;
331 	case TPACKET_V2:
332 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
333 		return h.h2->tp_status;
334 	case TPACKET_V3:
335 	default:
336 		WARN(1, "TPACKET version not supported.\n");
337 		BUG();
338 		return 0;
339 	}
340 }
341 
342 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
343 				   unsigned int flags)
344 {
345 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
346 
347 	if (shhwtstamps) {
348 		if ((flags & SOF_TIMESTAMPING_SYS_HARDWARE) &&
349 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts))
350 			return TP_STATUS_TS_SYS_HARDWARE;
351 		if ((flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
352 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
353 			return TP_STATUS_TS_RAW_HARDWARE;
354 	}
355 
356 	if (ktime_to_timespec_cond(skb->tstamp, ts))
357 		return TP_STATUS_TS_SOFTWARE;
358 
359 	return 0;
360 }
361 
362 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
363 				    struct sk_buff *skb)
364 {
365 	union tpacket_uhdr h;
366 	struct timespec ts;
367 	__u32 ts_status;
368 
369 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
370 		return 0;
371 
372 	h.raw = frame;
373 	switch (po->tp_version) {
374 	case TPACKET_V1:
375 		h.h1->tp_sec = ts.tv_sec;
376 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
377 		break;
378 	case TPACKET_V2:
379 		h.h2->tp_sec = ts.tv_sec;
380 		h.h2->tp_nsec = ts.tv_nsec;
381 		break;
382 	case TPACKET_V3:
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	/* one flush is safe, as both fields always lie on the same cacheline */
389 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
390 	smp_wmb();
391 
392 	return ts_status;
393 }
394 
395 static void *packet_lookup_frame(struct packet_sock *po,
396 		struct packet_ring_buffer *rb,
397 		unsigned int position,
398 		int status)
399 {
400 	unsigned int pg_vec_pos, frame_offset;
401 	union tpacket_uhdr h;
402 
403 	pg_vec_pos = position / rb->frames_per_block;
404 	frame_offset = position % rb->frames_per_block;
405 
406 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
407 		(frame_offset * rb->frame_size);
408 
409 	if (status != __packet_get_status(po, h.raw))
410 		return NULL;
411 
412 	return h.raw;
413 }
414 
415 static void *packet_current_frame(struct packet_sock *po,
416 		struct packet_ring_buffer *rb,
417 		int status)
418 {
419 	return packet_lookup_frame(po, rb, rb->head, status);
420 }
421 
422 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
423 {
424 	del_timer_sync(&pkc->retire_blk_timer);
425 }
426 
427 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
428 		int tx_ring,
429 		struct sk_buff_head *rb_queue)
430 {
431 	struct tpacket_kbdq_core *pkc;
432 
433 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
434 
435 	spin_lock(&rb_queue->lock);
436 	pkc->delete_blk_timer = 1;
437 	spin_unlock(&rb_queue->lock);
438 
439 	prb_del_retire_blk_timer(pkc);
440 }
441 
442 static void prb_init_blk_timer(struct packet_sock *po,
443 		struct tpacket_kbdq_core *pkc,
444 		void (*func) (unsigned long))
445 {
446 	init_timer(&pkc->retire_blk_timer);
447 	pkc->retire_blk_timer.data = (long)po;
448 	pkc->retire_blk_timer.function = func;
449 	pkc->retire_blk_timer.expires = jiffies;
450 }
451 
452 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
453 {
454 	struct tpacket_kbdq_core *pkc;
455 
456 	if (tx_ring)
457 		BUG();
458 
459 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
460 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
461 }
462 
463 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
464 				int blk_size_in_bytes)
465 {
466 	struct net_device *dev;
467 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
468 	struct ethtool_cmd ecmd;
469 	int err;
470 	u32 speed;
471 
472 	rtnl_lock();
473 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
474 	if (unlikely(!dev)) {
475 		rtnl_unlock();
476 		return DEFAULT_PRB_RETIRE_TOV;
477 	}
478 	err = __ethtool_get_settings(dev, &ecmd);
479 	speed = ethtool_cmd_speed(&ecmd);
480 	rtnl_unlock();
481 	if (!err) {
482 		/*
483 		 * If the link speed is so slow you don't really
484 		 * need to worry about perf anyways
485 		 */
486 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
487 			return DEFAULT_PRB_RETIRE_TOV;
488 		} else {
489 			msec = 1;
490 			div = speed / 1000;
491 		}
492 	}
493 
494 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
495 
496 	if (div)
497 		mbits /= div;
498 
499 	tmo = mbits * msec;
500 
501 	if (div)
502 		return tmo+1;
503 	return tmo;
504 }
505 
506 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
507 			union tpacket_req_u *req_u)
508 {
509 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
510 }
511 
512 static void init_prb_bdqc(struct packet_sock *po,
513 			struct packet_ring_buffer *rb,
514 			struct pgv *pg_vec,
515 			union tpacket_req_u *req_u, int tx_ring)
516 {
517 	struct tpacket_kbdq_core *p1 = &rb->prb_bdqc;
518 	struct tpacket_block_desc *pbd;
519 
520 	memset(p1, 0x0, sizeof(*p1));
521 
522 	p1->knxt_seq_num = 1;
523 	p1->pkbdq = pg_vec;
524 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
525 	p1->pkblk_start	= pg_vec[0].buffer;
526 	p1->kblk_size = req_u->req3.tp_block_size;
527 	p1->knum_blocks	= req_u->req3.tp_block_nr;
528 	p1->hdrlen = po->tp_hdrlen;
529 	p1->version = po->tp_version;
530 	p1->last_kactive_blk_num = 0;
531 	po->stats.stats3.tp_freeze_q_cnt = 0;
532 	if (req_u->req3.tp_retire_blk_tov)
533 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
534 	else
535 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
536 						req_u->req3.tp_block_size);
537 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
538 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
539 
540 	prb_init_ft_ops(p1, req_u);
541 	prb_setup_retire_blk_timer(po, tx_ring);
542 	prb_open_block(p1, pbd);
543 }
544 
545 /*  Do NOT update the last_blk_num first.
546  *  Assumes sk_buff_head lock is held.
547  */
548 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
549 {
550 	mod_timer(&pkc->retire_blk_timer,
551 			jiffies + pkc->tov_in_jiffies);
552 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
553 }
554 
555 /*
556  * Timer logic:
557  * 1) We refresh the timer only when we open a block.
558  *    By doing this we don't waste cycles refreshing the timer
559  *	  on packet-by-packet basis.
560  *
561  * With a 1MB block-size, on a 1Gbps line, it will take
562  * i) ~8 ms to fill a block + ii) memcpy etc.
563  * In this cut we are not accounting for the memcpy time.
564  *
565  * So, if the user sets the 'tmo' to 10ms then the timer
566  * will never fire while the block is still getting filled
567  * (which is what we want). However, the user could choose
568  * to close a block early and that's fine.
569  *
570  * But when the timer does fire, we check whether or not to refresh it.
571  * Since the tmo granularity is in msecs, it is not too expensive
572  * to refresh the timer, lets say every '8' msecs.
573  * Either the user can set the 'tmo' or we can derive it based on
574  * a) line-speed and b) block-size.
575  * prb_calc_retire_blk_tmo() calculates the tmo.
576  *
577  */
578 static void prb_retire_rx_blk_timer_expired(unsigned long data)
579 {
580 	struct packet_sock *po = (struct packet_sock *)data;
581 	struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc;
582 	unsigned int frozen;
583 	struct tpacket_block_desc *pbd;
584 
585 	spin_lock(&po->sk.sk_receive_queue.lock);
586 
587 	frozen = prb_queue_frozen(pkc);
588 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
589 
590 	if (unlikely(pkc->delete_blk_timer))
591 		goto out;
592 
593 	/* We only need to plug the race when the block is partially filled.
594 	 * tpacket_rcv:
595 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
596 	 *		copy_bits() is in progress ...
597 	 *		timer fires on other cpu:
598 	 *		we can't retire the current block because copy_bits
599 	 *		is in progress.
600 	 *
601 	 */
602 	if (BLOCK_NUM_PKTS(pbd)) {
603 		while (atomic_read(&pkc->blk_fill_in_prog)) {
604 			/* Waiting for skb_copy_bits to finish... */
605 			cpu_relax();
606 		}
607 	}
608 
609 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
610 		if (!frozen) {
611 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
612 			if (!prb_dispatch_next_block(pkc, po))
613 				goto refresh_timer;
614 			else
615 				goto out;
616 		} else {
617 			/* Case 1. Queue was frozen because user-space was
618 			 *	   lagging behind.
619 			 */
620 			if (prb_curr_blk_in_use(pkc, pbd)) {
621 				/*
622 				 * Ok, user-space is still behind.
623 				 * So just refresh the timer.
624 				 */
625 				goto refresh_timer;
626 			} else {
627 			       /* Case 2. queue was frozen,user-space caught up,
628 				* now the link went idle && the timer fired.
629 				* We don't have a block to close.So we open this
630 				* block and restart the timer.
631 				* opening a block thaws the queue,restarts timer
632 				* Thawing/timer-refresh is a side effect.
633 				*/
634 				prb_open_block(pkc, pbd);
635 				goto out;
636 			}
637 		}
638 	}
639 
640 refresh_timer:
641 	_prb_refresh_rx_retire_blk_timer(pkc);
642 
643 out:
644 	spin_unlock(&po->sk.sk_receive_queue.lock);
645 }
646 
647 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
648 		struct tpacket_block_desc *pbd1, __u32 status)
649 {
650 	/* Flush everything minus the block header */
651 
652 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
653 	u8 *start, *end;
654 
655 	start = (u8 *)pbd1;
656 
657 	/* Skip the block header(we know header WILL fit in 4K) */
658 	start += PAGE_SIZE;
659 
660 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
661 	for (; start < end; start += PAGE_SIZE)
662 		flush_dcache_page(pgv_to_page(start));
663 
664 	smp_wmb();
665 #endif
666 
667 	/* Now update the block status. */
668 
669 	BLOCK_STATUS(pbd1) = status;
670 
671 	/* Flush the block header */
672 
673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
674 	start = (u8 *)pbd1;
675 	flush_dcache_page(pgv_to_page(start));
676 
677 	smp_wmb();
678 #endif
679 }
680 
681 /*
682  * Side effect:
683  *
684  * 1) flush the block
685  * 2) Increment active_blk_num
686  *
687  * Note:We DONT refresh the timer on purpose.
688  *	Because almost always the next block will be opened.
689  */
690 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
691 		struct tpacket_block_desc *pbd1,
692 		struct packet_sock *po, unsigned int stat)
693 {
694 	__u32 status = TP_STATUS_USER | stat;
695 
696 	struct tpacket3_hdr *last_pkt;
697 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
698 
699 	if (po->stats.stats3.tp_drops)
700 		status |= TP_STATUS_LOSING;
701 
702 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
703 	last_pkt->tp_next_offset = 0;
704 
705 	/* Get the ts of the last pkt */
706 	if (BLOCK_NUM_PKTS(pbd1)) {
707 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
708 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
709 	} else {
710 		/* Ok, we tmo'd - so get the current time */
711 		struct timespec ts;
712 		getnstimeofday(&ts);
713 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
714 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
715 	}
716 
717 	smp_wmb();
718 
719 	/* Flush the block */
720 	prb_flush_block(pkc1, pbd1, status);
721 
722 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
723 }
724 
725 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
726 {
727 	pkc->reset_pending_on_curr_blk = 0;
728 }
729 
730 /*
731  * Side effect of opening a block:
732  *
733  * 1) prb_queue is thawed.
734  * 2) retire_blk_timer is refreshed.
735  *
736  */
737 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
738 	struct tpacket_block_desc *pbd1)
739 {
740 	struct timespec ts;
741 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
742 
743 	smp_rmb();
744 
745 	/* We could have just memset this but we will lose the
746 	 * flexibility of making the priv area sticky
747 	 */
748 
749 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
750 	BLOCK_NUM_PKTS(pbd1) = 0;
751 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
752 
753 	getnstimeofday(&ts);
754 
755 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
756 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
757 
758 	pkc1->pkblk_start = (char *)pbd1;
759 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
760 
761 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
762 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
763 
764 	pbd1->version = pkc1->version;
765 	pkc1->prev = pkc1->nxt_offset;
766 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
767 
768 	prb_thaw_queue(pkc1);
769 	_prb_refresh_rx_retire_blk_timer(pkc1);
770 
771 	smp_wmb();
772 }
773 
774 /*
775  * Queue freeze logic:
776  * 1) Assume tp_block_nr = 8 blocks.
777  * 2) At time 't0', user opens Rx ring.
778  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
779  * 4) user-space is either sleeping or processing block '0'.
780  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
781  *    it will close block-7,loop around and try to fill block '0'.
782  *    call-flow:
783  *    __packet_lookup_frame_in_block
784  *      prb_retire_current_block()
785  *      prb_dispatch_next_block()
786  *        |->(BLOCK_STATUS == USER) evaluates to true
787  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
788  * 6) Now there are two cases:
789  *    6.1) Link goes idle right after the queue is frozen.
790  *         But remember, the last open_block() refreshed the timer.
791  *         When this timer expires,it will refresh itself so that we can
792  *         re-open block-0 in near future.
793  *    6.2) Link is busy and keeps on receiving packets. This is a simple
794  *         case and __packet_lookup_frame_in_block will check if block-0
795  *         is free and can now be re-used.
796  */
797 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
798 				  struct packet_sock *po)
799 {
800 	pkc->reset_pending_on_curr_blk = 1;
801 	po->stats.stats3.tp_freeze_q_cnt++;
802 }
803 
804 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
805 
806 /*
807  * If the next block is free then we will dispatch it
808  * and return a good offset.
809  * Else, we will freeze the queue.
810  * So, caller must check the return value.
811  */
812 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
813 		struct packet_sock *po)
814 {
815 	struct tpacket_block_desc *pbd;
816 
817 	smp_rmb();
818 
819 	/* 1. Get current block num */
820 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
821 
822 	/* 2. If this block is currently in_use then freeze the queue */
823 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
824 		prb_freeze_queue(pkc, po);
825 		return NULL;
826 	}
827 
828 	/*
829 	 * 3.
830 	 * open this block and return the offset where the first packet
831 	 * needs to get stored.
832 	 */
833 	prb_open_block(pkc, pbd);
834 	return (void *)pkc->nxt_offset;
835 }
836 
837 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
838 		struct packet_sock *po, unsigned int status)
839 {
840 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
841 
842 	/* retire/close the current block */
843 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
844 		/*
845 		 * Plug the case where copy_bits() is in progress on
846 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
847 		 * have space to copy the pkt in the current block and
848 		 * called prb_retire_current_block()
849 		 *
850 		 * We don't need to worry about the TMO case because
851 		 * the timer-handler already handled this case.
852 		 */
853 		if (!(status & TP_STATUS_BLK_TMO)) {
854 			while (atomic_read(&pkc->blk_fill_in_prog)) {
855 				/* Waiting for skb_copy_bits to finish... */
856 				cpu_relax();
857 			}
858 		}
859 		prb_close_block(pkc, pbd, po, status);
860 		return;
861 	}
862 }
863 
864 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
865 				      struct tpacket_block_desc *pbd)
866 {
867 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
868 }
869 
870 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
871 {
872 	return pkc->reset_pending_on_curr_blk;
873 }
874 
875 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
876 {
877 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
878 	atomic_dec(&pkc->blk_fill_in_prog);
879 }
880 
881 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
882 			struct tpacket3_hdr *ppd)
883 {
884 	ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb);
885 }
886 
887 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
888 			struct tpacket3_hdr *ppd)
889 {
890 	ppd->hv1.tp_rxhash = 0;
891 }
892 
893 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
894 			struct tpacket3_hdr *ppd)
895 {
896 	if (vlan_tx_tag_present(pkc->skb)) {
897 		ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
898 		ppd->tp_status = TP_STATUS_VLAN_VALID;
899 	} else {
900 		ppd->hv1.tp_vlan_tci = 0;
901 		ppd->tp_status = TP_STATUS_AVAILABLE;
902 	}
903 }
904 
905 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
906 			struct tpacket3_hdr *ppd)
907 {
908 	prb_fill_vlan_info(pkc, ppd);
909 
910 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
911 		prb_fill_rxhash(pkc, ppd);
912 	else
913 		prb_clear_rxhash(pkc, ppd);
914 }
915 
916 static void prb_fill_curr_block(char *curr,
917 				struct tpacket_kbdq_core *pkc,
918 				struct tpacket_block_desc *pbd,
919 				unsigned int len)
920 {
921 	struct tpacket3_hdr *ppd;
922 
923 	ppd  = (struct tpacket3_hdr *)curr;
924 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
925 	pkc->prev = curr;
926 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
927 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
928 	BLOCK_NUM_PKTS(pbd) += 1;
929 	atomic_inc(&pkc->blk_fill_in_prog);
930 	prb_run_all_ft_ops(pkc, ppd);
931 }
932 
933 /* Assumes caller has the sk->rx_queue.lock */
934 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
935 					    struct sk_buff *skb,
936 						int status,
937 					    unsigned int len
938 					    )
939 {
940 	struct tpacket_kbdq_core *pkc;
941 	struct tpacket_block_desc *pbd;
942 	char *curr, *end;
943 
944 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
945 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
946 
947 	/* Queue is frozen when user space is lagging behind */
948 	if (prb_queue_frozen(pkc)) {
949 		/*
950 		 * Check if that last block which caused the queue to freeze,
951 		 * is still in_use by user-space.
952 		 */
953 		if (prb_curr_blk_in_use(pkc, pbd)) {
954 			/* Can't record this packet */
955 			return NULL;
956 		} else {
957 			/*
958 			 * Ok, the block was released by user-space.
959 			 * Now let's open that block.
960 			 * opening a block also thaws the queue.
961 			 * Thawing is a side effect.
962 			 */
963 			prb_open_block(pkc, pbd);
964 		}
965 	}
966 
967 	smp_mb();
968 	curr = pkc->nxt_offset;
969 	pkc->skb = skb;
970 	end = (char *)pbd + pkc->kblk_size;
971 
972 	/* first try the current block */
973 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
974 		prb_fill_curr_block(curr, pkc, pbd, len);
975 		return (void *)curr;
976 	}
977 
978 	/* Ok, close the current block */
979 	prb_retire_current_block(pkc, po, 0);
980 
981 	/* Now, try to dispatch the next block */
982 	curr = (char *)prb_dispatch_next_block(pkc, po);
983 	if (curr) {
984 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
985 		prb_fill_curr_block(curr, pkc, pbd, len);
986 		return (void *)curr;
987 	}
988 
989 	/*
990 	 * No free blocks are available.user_space hasn't caught up yet.
991 	 * Queue was just frozen and now this packet will get dropped.
992 	 */
993 	return NULL;
994 }
995 
996 static void *packet_current_rx_frame(struct packet_sock *po,
997 					    struct sk_buff *skb,
998 					    int status, unsigned int len)
999 {
1000 	char *curr = NULL;
1001 	switch (po->tp_version) {
1002 	case TPACKET_V1:
1003 	case TPACKET_V2:
1004 		curr = packet_lookup_frame(po, &po->rx_ring,
1005 					po->rx_ring.head, status);
1006 		return curr;
1007 	case TPACKET_V3:
1008 		return __packet_lookup_frame_in_block(po, skb, status, len);
1009 	default:
1010 		WARN(1, "TPACKET version not supported\n");
1011 		BUG();
1012 		return NULL;
1013 	}
1014 }
1015 
1016 static void *prb_lookup_block(struct packet_sock *po,
1017 				     struct packet_ring_buffer *rb,
1018 				     unsigned int idx,
1019 				     int status)
1020 {
1021 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1022 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1023 
1024 	if (status != BLOCK_STATUS(pbd))
1025 		return NULL;
1026 	return pbd;
1027 }
1028 
1029 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1030 {
1031 	unsigned int prev;
1032 	if (rb->prb_bdqc.kactive_blk_num)
1033 		prev = rb->prb_bdqc.kactive_blk_num-1;
1034 	else
1035 		prev = rb->prb_bdqc.knum_blocks-1;
1036 	return prev;
1037 }
1038 
1039 /* Assumes caller has held the rx_queue.lock */
1040 static void *__prb_previous_block(struct packet_sock *po,
1041 					 struct packet_ring_buffer *rb,
1042 					 int status)
1043 {
1044 	unsigned int previous = prb_previous_blk_num(rb);
1045 	return prb_lookup_block(po, rb, previous, status);
1046 }
1047 
1048 static void *packet_previous_rx_frame(struct packet_sock *po,
1049 					     struct packet_ring_buffer *rb,
1050 					     int status)
1051 {
1052 	if (po->tp_version <= TPACKET_V2)
1053 		return packet_previous_frame(po, rb, status);
1054 
1055 	return __prb_previous_block(po, rb, status);
1056 }
1057 
1058 static void packet_increment_rx_head(struct packet_sock *po,
1059 					    struct packet_ring_buffer *rb)
1060 {
1061 	switch (po->tp_version) {
1062 	case TPACKET_V1:
1063 	case TPACKET_V2:
1064 		return packet_increment_head(rb);
1065 	case TPACKET_V3:
1066 	default:
1067 		WARN(1, "TPACKET version not supported.\n");
1068 		BUG();
1069 		return;
1070 	}
1071 }
1072 
1073 static void *packet_previous_frame(struct packet_sock *po,
1074 		struct packet_ring_buffer *rb,
1075 		int status)
1076 {
1077 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1078 	return packet_lookup_frame(po, rb, previous, status);
1079 }
1080 
1081 static void packet_increment_head(struct packet_ring_buffer *buff)
1082 {
1083 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1084 }
1085 
1086 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1087 {
1088 	struct sock *sk = &po->sk;
1089 	bool has_room;
1090 
1091 	if (po->prot_hook.func != tpacket_rcv)
1092 		return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1093 			<= sk->sk_rcvbuf;
1094 
1095 	spin_lock(&sk->sk_receive_queue.lock);
1096 	if (po->tp_version == TPACKET_V3)
1097 		has_room = prb_lookup_block(po, &po->rx_ring,
1098 					    po->rx_ring.prb_bdqc.kactive_blk_num,
1099 					    TP_STATUS_KERNEL);
1100 	else
1101 		has_room = packet_lookup_frame(po, &po->rx_ring,
1102 					       po->rx_ring.head,
1103 					       TP_STATUS_KERNEL);
1104 	spin_unlock(&sk->sk_receive_queue.lock);
1105 
1106 	return has_room;
1107 }
1108 
1109 static void packet_sock_destruct(struct sock *sk)
1110 {
1111 	skb_queue_purge(&sk->sk_error_queue);
1112 
1113 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1114 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1115 
1116 	if (!sock_flag(sk, SOCK_DEAD)) {
1117 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1118 		return;
1119 	}
1120 
1121 	sk_refcnt_debug_dec(sk);
1122 }
1123 
1124 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1125 {
1126 	int x = atomic_read(&f->rr_cur) + 1;
1127 
1128 	if (x >= num)
1129 		x = 0;
1130 
1131 	return x;
1132 }
1133 
1134 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1135 				      struct sk_buff *skb,
1136 				      unsigned int num)
1137 {
1138 	return (((u64)skb->rxhash) * num) >> 32;
1139 }
1140 
1141 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1142 				    struct sk_buff *skb,
1143 				    unsigned int num)
1144 {
1145 	int cur, old;
1146 
1147 	cur = atomic_read(&f->rr_cur);
1148 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1149 				     fanout_rr_next(f, num))) != cur)
1150 		cur = old;
1151 	return cur;
1152 }
1153 
1154 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1155 				     struct sk_buff *skb,
1156 				     unsigned int num)
1157 {
1158 	return smp_processor_id() % num;
1159 }
1160 
1161 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1162 					  struct sk_buff *skb,
1163 					  unsigned int idx, unsigned int skip,
1164 					  unsigned int num)
1165 {
1166 	unsigned int i, j;
1167 
1168 	i = j = min_t(int, f->next[idx], num - 1);
1169 	do {
1170 		if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1171 			if (i != j)
1172 				f->next[idx] = i;
1173 			return i;
1174 		}
1175 		if (++i == num)
1176 			i = 0;
1177 	} while (i != j);
1178 
1179 	return idx;
1180 }
1181 
1182 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1183 {
1184 	return f->flags & (flag >> 8);
1185 }
1186 
1187 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1188 			     struct packet_type *pt, struct net_device *orig_dev)
1189 {
1190 	struct packet_fanout *f = pt->af_packet_priv;
1191 	unsigned int num = f->num_members;
1192 	struct packet_sock *po;
1193 	unsigned int idx;
1194 
1195 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1196 	    !num) {
1197 		kfree_skb(skb);
1198 		return 0;
1199 	}
1200 
1201 	switch (f->type) {
1202 	case PACKET_FANOUT_HASH:
1203 	default:
1204 		if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1205 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1206 			if (!skb)
1207 				return 0;
1208 		}
1209 		skb_get_rxhash(skb);
1210 		idx = fanout_demux_hash(f, skb, num);
1211 		break;
1212 	case PACKET_FANOUT_LB:
1213 		idx = fanout_demux_lb(f, skb, num);
1214 		break;
1215 	case PACKET_FANOUT_CPU:
1216 		idx = fanout_demux_cpu(f, skb, num);
1217 		break;
1218 	case PACKET_FANOUT_ROLLOVER:
1219 		idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1220 		break;
1221 	}
1222 
1223 	po = pkt_sk(f->arr[idx]);
1224 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1225 	    unlikely(!packet_rcv_has_room(po, skb))) {
1226 		idx = fanout_demux_rollover(f, skb, idx, idx, num);
1227 		po = pkt_sk(f->arr[idx]);
1228 	}
1229 
1230 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1231 }
1232 
1233 DEFINE_MUTEX(fanout_mutex);
1234 EXPORT_SYMBOL_GPL(fanout_mutex);
1235 static LIST_HEAD(fanout_list);
1236 
1237 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1238 {
1239 	struct packet_fanout *f = po->fanout;
1240 
1241 	spin_lock(&f->lock);
1242 	f->arr[f->num_members] = sk;
1243 	smp_wmb();
1244 	f->num_members++;
1245 	spin_unlock(&f->lock);
1246 }
1247 
1248 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1249 {
1250 	struct packet_fanout *f = po->fanout;
1251 	int i;
1252 
1253 	spin_lock(&f->lock);
1254 	for (i = 0; i < f->num_members; i++) {
1255 		if (f->arr[i] == sk)
1256 			break;
1257 	}
1258 	BUG_ON(i >= f->num_members);
1259 	f->arr[i] = f->arr[f->num_members - 1];
1260 	f->num_members--;
1261 	spin_unlock(&f->lock);
1262 }
1263 
1264 static bool match_fanout_group(struct packet_type *ptype, struct sock * sk)
1265 {
1266 	if (ptype->af_packet_priv == (void*)((struct packet_sock *)sk)->fanout)
1267 		return true;
1268 
1269 	return false;
1270 }
1271 
1272 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1273 {
1274 	struct packet_sock *po = pkt_sk(sk);
1275 	struct packet_fanout *f, *match;
1276 	u8 type = type_flags & 0xff;
1277 	u8 flags = type_flags >> 8;
1278 	int err;
1279 
1280 	switch (type) {
1281 	case PACKET_FANOUT_ROLLOVER:
1282 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1283 			return -EINVAL;
1284 	case PACKET_FANOUT_HASH:
1285 	case PACKET_FANOUT_LB:
1286 	case PACKET_FANOUT_CPU:
1287 		break;
1288 	default:
1289 		return -EINVAL;
1290 	}
1291 
1292 	if (!po->running)
1293 		return -EINVAL;
1294 
1295 	if (po->fanout)
1296 		return -EALREADY;
1297 
1298 	mutex_lock(&fanout_mutex);
1299 	match = NULL;
1300 	list_for_each_entry(f, &fanout_list, list) {
1301 		if (f->id == id &&
1302 		    read_pnet(&f->net) == sock_net(sk)) {
1303 			match = f;
1304 			break;
1305 		}
1306 	}
1307 	err = -EINVAL;
1308 	if (match && match->flags != flags)
1309 		goto out;
1310 	if (!match) {
1311 		err = -ENOMEM;
1312 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1313 		if (!match)
1314 			goto out;
1315 		write_pnet(&match->net, sock_net(sk));
1316 		match->id = id;
1317 		match->type = type;
1318 		match->flags = flags;
1319 		atomic_set(&match->rr_cur, 0);
1320 		INIT_LIST_HEAD(&match->list);
1321 		spin_lock_init(&match->lock);
1322 		atomic_set(&match->sk_ref, 0);
1323 		match->prot_hook.type = po->prot_hook.type;
1324 		match->prot_hook.dev = po->prot_hook.dev;
1325 		match->prot_hook.func = packet_rcv_fanout;
1326 		match->prot_hook.af_packet_priv = match;
1327 		match->prot_hook.id_match = match_fanout_group;
1328 		dev_add_pack(&match->prot_hook);
1329 		list_add(&match->list, &fanout_list);
1330 	}
1331 	err = -EINVAL;
1332 	if (match->type == type &&
1333 	    match->prot_hook.type == po->prot_hook.type &&
1334 	    match->prot_hook.dev == po->prot_hook.dev) {
1335 		err = -ENOSPC;
1336 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1337 			__dev_remove_pack(&po->prot_hook);
1338 			po->fanout = match;
1339 			atomic_inc(&match->sk_ref);
1340 			__fanout_link(sk, po);
1341 			err = 0;
1342 		}
1343 	}
1344 out:
1345 	mutex_unlock(&fanout_mutex);
1346 	return err;
1347 }
1348 
1349 static void fanout_release(struct sock *sk)
1350 {
1351 	struct packet_sock *po = pkt_sk(sk);
1352 	struct packet_fanout *f;
1353 
1354 	f = po->fanout;
1355 	if (!f)
1356 		return;
1357 
1358 	mutex_lock(&fanout_mutex);
1359 	po->fanout = NULL;
1360 
1361 	if (atomic_dec_and_test(&f->sk_ref)) {
1362 		list_del(&f->list);
1363 		dev_remove_pack(&f->prot_hook);
1364 		kfree(f);
1365 	}
1366 	mutex_unlock(&fanout_mutex);
1367 }
1368 
1369 static const struct proto_ops packet_ops;
1370 
1371 static const struct proto_ops packet_ops_spkt;
1372 
1373 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1374 			   struct packet_type *pt, struct net_device *orig_dev)
1375 {
1376 	struct sock *sk;
1377 	struct sockaddr_pkt *spkt;
1378 
1379 	/*
1380 	 *	When we registered the protocol we saved the socket in the data
1381 	 *	field for just this event.
1382 	 */
1383 
1384 	sk = pt->af_packet_priv;
1385 
1386 	/*
1387 	 *	Yank back the headers [hope the device set this
1388 	 *	right or kerboom...]
1389 	 *
1390 	 *	Incoming packets have ll header pulled,
1391 	 *	push it back.
1392 	 *
1393 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1394 	 *	so that this procedure is noop.
1395 	 */
1396 
1397 	if (skb->pkt_type == PACKET_LOOPBACK)
1398 		goto out;
1399 
1400 	if (!net_eq(dev_net(dev), sock_net(sk)))
1401 		goto out;
1402 
1403 	skb = skb_share_check(skb, GFP_ATOMIC);
1404 	if (skb == NULL)
1405 		goto oom;
1406 
1407 	/* drop any routing info */
1408 	skb_dst_drop(skb);
1409 
1410 	/* drop conntrack reference */
1411 	nf_reset(skb);
1412 
1413 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1414 
1415 	skb_push(skb, skb->data - skb_mac_header(skb));
1416 
1417 	/*
1418 	 *	The SOCK_PACKET socket receives _all_ frames.
1419 	 */
1420 
1421 	spkt->spkt_family = dev->type;
1422 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1423 	spkt->spkt_protocol = skb->protocol;
1424 
1425 	/*
1426 	 *	Charge the memory to the socket. This is done specifically
1427 	 *	to prevent sockets using all the memory up.
1428 	 */
1429 
1430 	if (sock_queue_rcv_skb(sk, skb) == 0)
1431 		return 0;
1432 
1433 out:
1434 	kfree_skb(skb);
1435 oom:
1436 	return 0;
1437 }
1438 
1439 
1440 /*
1441  *	Output a raw packet to a device layer. This bypasses all the other
1442  *	protocol layers and you must therefore supply it with a complete frame
1443  */
1444 
1445 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1446 			       struct msghdr *msg, size_t len)
1447 {
1448 	struct sock *sk = sock->sk;
1449 	struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name;
1450 	struct sk_buff *skb = NULL;
1451 	struct net_device *dev;
1452 	__be16 proto = 0;
1453 	int err;
1454 	int extra_len = 0;
1455 
1456 	/*
1457 	 *	Get and verify the address.
1458 	 */
1459 
1460 	if (saddr) {
1461 		if (msg->msg_namelen < sizeof(struct sockaddr))
1462 			return -EINVAL;
1463 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1464 			proto = saddr->spkt_protocol;
1465 	} else
1466 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1467 
1468 	/*
1469 	 *	Find the device first to size check it
1470 	 */
1471 
1472 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1473 retry:
1474 	rcu_read_lock();
1475 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1476 	err = -ENODEV;
1477 	if (dev == NULL)
1478 		goto out_unlock;
1479 
1480 	err = -ENETDOWN;
1481 	if (!(dev->flags & IFF_UP))
1482 		goto out_unlock;
1483 
1484 	/*
1485 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1486 	 * raw protocol and you must do your own fragmentation at this level.
1487 	 */
1488 
1489 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1490 		if (!netif_supports_nofcs(dev)) {
1491 			err = -EPROTONOSUPPORT;
1492 			goto out_unlock;
1493 		}
1494 		extra_len = 4; /* We're doing our own CRC */
1495 	}
1496 
1497 	err = -EMSGSIZE;
1498 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1499 		goto out_unlock;
1500 
1501 	if (!skb) {
1502 		size_t reserved = LL_RESERVED_SPACE(dev);
1503 		int tlen = dev->needed_tailroom;
1504 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1505 
1506 		rcu_read_unlock();
1507 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1508 		if (skb == NULL)
1509 			return -ENOBUFS;
1510 		/* FIXME: Save some space for broken drivers that write a hard
1511 		 * header at transmission time by themselves. PPP is the notable
1512 		 * one here. This should really be fixed at the driver level.
1513 		 */
1514 		skb_reserve(skb, reserved);
1515 		skb_reset_network_header(skb);
1516 
1517 		/* Try to align data part correctly */
1518 		if (hhlen) {
1519 			skb->data -= hhlen;
1520 			skb->tail -= hhlen;
1521 			if (len < hhlen)
1522 				skb_reset_network_header(skb);
1523 		}
1524 		err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1525 		if (err)
1526 			goto out_free;
1527 		goto retry;
1528 	}
1529 
1530 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1531 		/* Earlier code assumed this would be a VLAN pkt,
1532 		 * double-check this now that we have the actual
1533 		 * packet in hand.
1534 		 */
1535 		struct ethhdr *ehdr;
1536 		skb_reset_mac_header(skb);
1537 		ehdr = eth_hdr(skb);
1538 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1539 			err = -EMSGSIZE;
1540 			goto out_unlock;
1541 		}
1542 	}
1543 
1544 	skb->protocol = proto;
1545 	skb->dev = dev;
1546 	skb->priority = sk->sk_priority;
1547 	skb->mark = sk->sk_mark;
1548 
1549 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1550 
1551 	if (unlikely(extra_len == 4))
1552 		skb->no_fcs = 1;
1553 
1554 	skb_probe_transport_header(skb, 0);
1555 
1556 	dev_queue_xmit(skb);
1557 	rcu_read_unlock();
1558 	return len;
1559 
1560 out_unlock:
1561 	rcu_read_unlock();
1562 out_free:
1563 	kfree_skb(skb);
1564 	return err;
1565 }
1566 
1567 static unsigned int run_filter(const struct sk_buff *skb,
1568 				      const struct sock *sk,
1569 				      unsigned int res)
1570 {
1571 	struct sk_filter *filter;
1572 
1573 	rcu_read_lock();
1574 	filter = rcu_dereference(sk->sk_filter);
1575 	if (filter != NULL)
1576 		res = SK_RUN_FILTER(filter, skb);
1577 	rcu_read_unlock();
1578 
1579 	return res;
1580 }
1581 
1582 /*
1583  * This function makes lazy skb cloning in hope that most of packets
1584  * are discarded by BPF.
1585  *
1586  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1587  * and skb->cb are mangled. It works because (and until) packets
1588  * falling here are owned by current CPU. Output packets are cloned
1589  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1590  * sequencially, so that if we return skb to original state on exit,
1591  * we will not harm anyone.
1592  */
1593 
1594 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1595 		      struct packet_type *pt, struct net_device *orig_dev)
1596 {
1597 	struct sock *sk;
1598 	struct sockaddr_ll *sll;
1599 	struct packet_sock *po;
1600 	u8 *skb_head = skb->data;
1601 	int skb_len = skb->len;
1602 	unsigned int snaplen, res;
1603 
1604 	if (skb->pkt_type == PACKET_LOOPBACK)
1605 		goto drop;
1606 
1607 	sk = pt->af_packet_priv;
1608 	po = pkt_sk(sk);
1609 
1610 	if (!net_eq(dev_net(dev), sock_net(sk)))
1611 		goto drop;
1612 
1613 	skb->dev = dev;
1614 
1615 	if (dev->header_ops) {
1616 		/* The device has an explicit notion of ll header,
1617 		 * exported to higher levels.
1618 		 *
1619 		 * Otherwise, the device hides details of its frame
1620 		 * structure, so that corresponding packet head is
1621 		 * never delivered to user.
1622 		 */
1623 		if (sk->sk_type != SOCK_DGRAM)
1624 			skb_push(skb, skb->data - skb_mac_header(skb));
1625 		else if (skb->pkt_type == PACKET_OUTGOING) {
1626 			/* Special case: outgoing packets have ll header at head */
1627 			skb_pull(skb, skb_network_offset(skb));
1628 		}
1629 	}
1630 
1631 	snaplen = skb->len;
1632 
1633 	res = run_filter(skb, sk, snaplen);
1634 	if (!res)
1635 		goto drop_n_restore;
1636 	if (snaplen > res)
1637 		snaplen = res;
1638 
1639 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1640 		goto drop_n_acct;
1641 
1642 	if (skb_shared(skb)) {
1643 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1644 		if (nskb == NULL)
1645 			goto drop_n_acct;
1646 
1647 		if (skb_head != skb->data) {
1648 			skb->data = skb_head;
1649 			skb->len = skb_len;
1650 		}
1651 		consume_skb(skb);
1652 		skb = nskb;
1653 	}
1654 
1655 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1656 		     sizeof(skb->cb));
1657 
1658 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1659 	sll->sll_family = AF_PACKET;
1660 	sll->sll_hatype = dev->type;
1661 	sll->sll_protocol = skb->protocol;
1662 	sll->sll_pkttype = skb->pkt_type;
1663 	if (unlikely(po->origdev))
1664 		sll->sll_ifindex = orig_dev->ifindex;
1665 	else
1666 		sll->sll_ifindex = dev->ifindex;
1667 
1668 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1669 
1670 	PACKET_SKB_CB(skb)->origlen = skb->len;
1671 
1672 	if (pskb_trim(skb, snaplen))
1673 		goto drop_n_acct;
1674 
1675 	skb_set_owner_r(skb, sk);
1676 	skb->dev = NULL;
1677 	skb_dst_drop(skb);
1678 
1679 	/* drop conntrack reference */
1680 	nf_reset(skb);
1681 
1682 	spin_lock(&sk->sk_receive_queue.lock);
1683 	po->stats.stats1.tp_packets++;
1684 	skb->dropcount = atomic_read(&sk->sk_drops);
1685 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1686 	spin_unlock(&sk->sk_receive_queue.lock);
1687 	sk->sk_data_ready(sk, skb->len);
1688 	return 0;
1689 
1690 drop_n_acct:
1691 	spin_lock(&sk->sk_receive_queue.lock);
1692 	po->stats.stats1.tp_drops++;
1693 	atomic_inc(&sk->sk_drops);
1694 	spin_unlock(&sk->sk_receive_queue.lock);
1695 
1696 drop_n_restore:
1697 	if (skb_head != skb->data && skb_shared(skb)) {
1698 		skb->data = skb_head;
1699 		skb->len = skb_len;
1700 	}
1701 drop:
1702 	consume_skb(skb);
1703 	return 0;
1704 }
1705 
1706 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1707 		       struct packet_type *pt, struct net_device *orig_dev)
1708 {
1709 	struct sock *sk;
1710 	struct packet_sock *po;
1711 	struct sockaddr_ll *sll;
1712 	union tpacket_uhdr h;
1713 	u8 *skb_head = skb->data;
1714 	int skb_len = skb->len;
1715 	unsigned int snaplen, res;
1716 	unsigned long status = TP_STATUS_USER;
1717 	unsigned short macoff, netoff, hdrlen;
1718 	struct sk_buff *copy_skb = NULL;
1719 	struct timespec ts;
1720 	__u32 ts_status;
1721 
1722 	if (skb->pkt_type == PACKET_LOOPBACK)
1723 		goto drop;
1724 
1725 	sk = pt->af_packet_priv;
1726 	po = pkt_sk(sk);
1727 
1728 	if (!net_eq(dev_net(dev), sock_net(sk)))
1729 		goto drop;
1730 
1731 	if (dev->header_ops) {
1732 		if (sk->sk_type != SOCK_DGRAM)
1733 			skb_push(skb, skb->data - skb_mac_header(skb));
1734 		else if (skb->pkt_type == PACKET_OUTGOING) {
1735 			/* Special case: outgoing packets have ll header at head */
1736 			skb_pull(skb, skb_network_offset(skb));
1737 		}
1738 	}
1739 
1740 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1741 		status |= TP_STATUS_CSUMNOTREADY;
1742 
1743 	snaplen = skb->len;
1744 
1745 	res = run_filter(skb, sk, snaplen);
1746 	if (!res)
1747 		goto drop_n_restore;
1748 	if (snaplen > res)
1749 		snaplen = res;
1750 
1751 	if (sk->sk_type == SOCK_DGRAM) {
1752 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1753 				  po->tp_reserve;
1754 	} else {
1755 		unsigned int maclen = skb_network_offset(skb);
1756 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1757 				       (maclen < 16 ? 16 : maclen)) +
1758 			po->tp_reserve;
1759 		macoff = netoff - maclen;
1760 	}
1761 	if (po->tp_version <= TPACKET_V2) {
1762 		if (macoff + snaplen > po->rx_ring.frame_size) {
1763 			if (po->copy_thresh &&
1764 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1765 				if (skb_shared(skb)) {
1766 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1767 				} else {
1768 					copy_skb = skb_get(skb);
1769 					skb_head = skb->data;
1770 				}
1771 				if (copy_skb)
1772 					skb_set_owner_r(copy_skb, sk);
1773 			}
1774 			snaplen = po->rx_ring.frame_size - macoff;
1775 			if ((int)snaplen < 0)
1776 				snaplen = 0;
1777 		}
1778 	}
1779 	spin_lock(&sk->sk_receive_queue.lock);
1780 	h.raw = packet_current_rx_frame(po, skb,
1781 					TP_STATUS_KERNEL, (macoff+snaplen));
1782 	if (!h.raw)
1783 		goto ring_is_full;
1784 	if (po->tp_version <= TPACKET_V2) {
1785 		packet_increment_rx_head(po, &po->rx_ring);
1786 	/*
1787 	 * LOSING will be reported till you read the stats,
1788 	 * because it's COR - Clear On Read.
1789 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1790 	 * at packet level.
1791 	 */
1792 		if (po->stats.stats1.tp_drops)
1793 			status |= TP_STATUS_LOSING;
1794 	}
1795 	po->stats.stats1.tp_packets++;
1796 	if (copy_skb) {
1797 		status |= TP_STATUS_COPY;
1798 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1799 	}
1800 	spin_unlock(&sk->sk_receive_queue.lock);
1801 
1802 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1803 
1804 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1805 		getnstimeofday(&ts);
1806 
1807 	status |= ts_status;
1808 
1809 	switch (po->tp_version) {
1810 	case TPACKET_V1:
1811 		h.h1->tp_len = skb->len;
1812 		h.h1->tp_snaplen = snaplen;
1813 		h.h1->tp_mac = macoff;
1814 		h.h1->tp_net = netoff;
1815 		h.h1->tp_sec = ts.tv_sec;
1816 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1817 		hdrlen = sizeof(*h.h1);
1818 		break;
1819 	case TPACKET_V2:
1820 		h.h2->tp_len = skb->len;
1821 		h.h2->tp_snaplen = snaplen;
1822 		h.h2->tp_mac = macoff;
1823 		h.h2->tp_net = netoff;
1824 		h.h2->tp_sec = ts.tv_sec;
1825 		h.h2->tp_nsec = ts.tv_nsec;
1826 		if (vlan_tx_tag_present(skb)) {
1827 			h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1828 			status |= TP_STATUS_VLAN_VALID;
1829 		} else {
1830 			h.h2->tp_vlan_tci = 0;
1831 		}
1832 		h.h2->tp_padding = 0;
1833 		hdrlen = sizeof(*h.h2);
1834 		break;
1835 	case TPACKET_V3:
1836 		/* tp_nxt_offset,vlan are already populated above.
1837 		 * So DONT clear those fields here
1838 		 */
1839 		h.h3->tp_status |= status;
1840 		h.h3->tp_len = skb->len;
1841 		h.h3->tp_snaplen = snaplen;
1842 		h.h3->tp_mac = macoff;
1843 		h.h3->tp_net = netoff;
1844 		h.h3->tp_sec  = ts.tv_sec;
1845 		h.h3->tp_nsec = ts.tv_nsec;
1846 		hdrlen = sizeof(*h.h3);
1847 		break;
1848 	default:
1849 		BUG();
1850 	}
1851 
1852 	sll = h.raw + TPACKET_ALIGN(hdrlen);
1853 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1854 	sll->sll_family = AF_PACKET;
1855 	sll->sll_hatype = dev->type;
1856 	sll->sll_protocol = skb->protocol;
1857 	sll->sll_pkttype = skb->pkt_type;
1858 	if (unlikely(po->origdev))
1859 		sll->sll_ifindex = orig_dev->ifindex;
1860 	else
1861 		sll->sll_ifindex = dev->ifindex;
1862 
1863 	smp_mb();
1864 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
1865 	{
1866 		u8 *start, *end;
1867 
1868 		if (po->tp_version <= TPACKET_V2) {
1869 			end = (u8 *)PAGE_ALIGN((unsigned long)h.raw
1870 				+ macoff + snaplen);
1871 			for (start = h.raw; start < end; start += PAGE_SIZE)
1872 				flush_dcache_page(pgv_to_page(start));
1873 		}
1874 		smp_wmb();
1875 	}
1876 #endif
1877 	if (po->tp_version <= TPACKET_V2)
1878 		__packet_set_status(po, h.raw, status);
1879 	else
1880 		prb_clear_blk_fill_status(&po->rx_ring);
1881 
1882 	sk->sk_data_ready(sk, 0);
1883 
1884 drop_n_restore:
1885 	if (skb_head != skb->data && skb_shared(skb)) {
1886 		skb->data = skb_head;
1887 		skb->len = skb_len;
1888 	}
1889 drop:
1890 	kfree_skb(skb);
1891 	return 0;
1892 
1893 ring_is_full:
1894 	po->stats.stats1.tp_drops++;
1895 	spin_unlock(&sk->sk_receive_queue.lock);
1896 
1897 	sk->sk_data_ready(sk, 0);
1898 	kfree_skb(copy_skb);
1899 	goto drop_n_restore;
1900 }
1901 
1902 static void tpacket_destruct_skb(struct sk_buff *skb)
1903 {
1904 	struct packet_sock *po = pkt_sk(skb->sk);
1905 	void *ph;
1906 
1907 	if (likely(po->tx_ring.pg_vec)) {
1908 		__u32 ts;
1909 
1910 		ph = skb_shinfo(skb)->destructor_arg;
1911 		BUG_ON(atomic_read(&po->tx_ring.pending) == 0);
1912 		atomic_dec(&po->tx_ring.pending);
1913 
1914 		ts = __packet_set_timestamp(po, ph, skb);
1915 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
1916 	}
1917 
1918 	sock_wfree(skb);
1919 }
1920 
1921 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
1922 		void *frame, struct net_device *dev, int size_max,
1923 		__be16 proto, unsigned char *addr, int hlen)
1924 {
1925 	union tpacket_uhdr ph;
1926 	int to_write, offset, len, tp_len, nr_frags, len_max;
1927 	struct socket *sock = po->sk.sk_socket;
1928 	struct page *page;
1929 	void *data;
1930 	int err;
1931 
1932 	ph.raw = frame;
1933 
1934 	skb->protocol = proto;
1935 	skb->dev = dev;
1936 	skb->priority = po->sk.sk_priority;
1937 	skb->mark = po->sk.sk_mark;
1938 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
1939 	skb_shinfo(skb)->destructor_arg = ph.raw;
1940 
1941 	switch (po->tp_version) {
1942 	case TPACKET_V2:
1943 		tp_len = ph.h2->tp_len;
1944 		break;
1945 	default:
1946 		tp_len = ph.h1->tp_len;
1947 		break;
1948 	}
1949 	if (unlikely(tp_len > size_max)) {
1950 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
1951 		return -EMSGSIZE;
1952 	}
1953 
1954 	skb_reserve(skb, hlen);
1955 	skb_reset_network_header(skb);
1956 	skb_probe_transport_header(skb, 0);
1957 
1958 	if (po->tp_tx_has_off) {
1959 		int off_min, off_max, off;
1960 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
1961 		off_max = po->tx_ring.frame_size - tp_len;
1962 		if (sock->type == SOCK_DGRAM) {
1963 			switch (po->tp_version) {
1964 			case TPACKET_V2:
1965 				off = ph.h2->tp_net;
1966 				break;
1967 			default:
1968 				off = ph.h1->tp_net;
1969 				break;
1970 			}
1971 		} else {
1972 			switch (po->tp_version) {
1973 			case TPACKET_V2:
1974 				off = ph.h2->tp_mac;
1975 				break;
1976 			default:
1977 				off = ph.h1->tp_mac;
1978 				break;
1979 			}
1980 		}
1981 		if (unlikely((off < off_min) || (off_max < off)))
1982 			return -EINVAL;
1983 		data = ph.raw + off;
1984 	} else {
1985 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
1986 	}
1987 	to_write = tp_len;
1988 
1989 	if (sock->type == SOCK_DGRAM) {
1990 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
1991 				NULL, tp_len);
1992 		if (unlikely(err < 0))
1993 			return -EINVAL;
1994 	} else if (dev->hard_header_len) {
1995 		/* net device doesn't like empty head */
1996 		if (unlikely(tp_len <= dev->hard_header_len)) {
1997 			pr_err("packet size is too short (%d < %d)\n",
1998 			       tp_len, dev->hard_header_len);
1999 			return -EINVAL;
2000 		}
2001 
2002 		skb_push(skb, dev->hard_header_len);
2003 		err = skb_store_bits(skb, 0, data,
2004 				dev->hard_header_len);
2005 		if (unlikely(err))
2006 			return err;
2007 
2008 		data += dev->hard_header_len;
2009 		to_write -= dev->hard_header_len;
2010 	}
2011 
2012 	offset = offset_in_page(data);
2013 	len_max = PAGE_SIZE - offset;
2014 	len = ((to_write > len_max) ? len_max : to_write);
2015 
2016 	skb->data_len = to_write;
2017 	skb->len += to_write;
2018 	skb->truesize += to_write;
2019 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2020 
2021 	while (likely(to_write)) {
2022 		nr_frags = skb_shinfo(skb)->nr_frags;
2023 
2024 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2025 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2026 			       MAX_SKB_FRAGS);
2027 			return -EFAULT;
2028 		}
2029 
2030 		page = pgv_to_page(data);
2031 		data += len;
2032 		flush_dcache_page(page);
2033 		get_page(page);
2034 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2035 		to_write -= len;
2036 		offset = 0;
2037 		len_max = PAGE_SIZE;
2038 		len = ((to_write > len_max) ? len_max : to_write);
2039 	}
2040 
2041 	return tp_len;
2042 }
2043 
2044 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2045 {
2046 	struct sk_buff *skb;
2047 	struct net_device *dev;
2048 	__be16 proto;
2049 	bool need_rls_dev = false;
2050 	int err, reserve = 0;
2051 	void *ph;
2052 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2053 	int tp_len, size_max;
2054 	unsigned char *addr;
2055 	int len_sum = 0;
2056 	int status = TP_STATUS_AVAILABLE;
2057 	int hlen, tlen;
2058 
2059 	mutex_lock(&po->pg_vec_lock);
2060 
2061 	if (saddr == NULL) {
2062 		dev = po->prot_hook.dev;
2063 		proto	= po->num;
2064 		addr	= NULL;
2065 	} else {
2066 		err = -EINVAL;
2067 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2068 			goto out;
2069 		if (msg->msg_namelen < (saddr->sll_halen
2070 					+ offsetof(struct sockaddr_ll,
2071 						sll_addr)))
2072 			goto out;
2073 		proto	= saddr->sll_protocol;
2074 		addr	= saddr->sll_addr;
2075 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2076 		need_rls_dev = true;
2077 	}
2078 
2079 	err = -ENXIO;
2080 	if (unlikely(dev == NULL))
2081 		goto out;
2082 
2083 	reserve = dev->hard_header_len;
2084 
2085 	err = -ENETDOWN;
2086 	if (unlikely(!(dev->flags & IFF_UP)))
2087 		goto out_put;
2088 
2089 	size_max = po->tx_ring.frame_size
2090 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2091 
2092 	if (size_max > dev->mtu + reserve)
2093 		size_max = dev->mtu + reserve;
2094 
2095 	do {
2096 		ph = packet_current_frame(po, &po->tx_ring,
2097 				TP_STATUS_SEND_REQUEST);
2098 
2099 		if (unlikely(ph == NULL)) {
2100 			schedule();
2101 			continue;
2102 		}
2103 
2104 		status = TP_STATUS_SEND_REQUEST;
2105 		hlen = LL_RESERVED_SPACE(dev);
2106 		tlen = dev->needed_tailroom;
2107 		skb = sock_alloc_send_skb(&po->sk,
2108 				hlen + tlen + sizeof(struct sockaddr_ll),
2109 				0, &err);
2110 
2111 		if (unlikely(skb == NULL))
2112 			goto out_status;
2113 
2114 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2115 				addr, hlen);
2116 
2117 		if (unlikely(tp_len < 0)) {
2118 			if (po->tp_loss) {
2119 				__packet_set_status(po, ph,
2120 						TP_STATUS_AVAILABLE);
2121 				packet_increment_head(&po->tx_ring);
2122 				kfree_skb(skb);
2123 				continue;
2124 			} else {
2125 				status = TP_STATUS_WRONG_FORMAT;
2126 				err = tp_len;
2127 				goto out_status;
2128 			}
2129 		}
2130 
2131 		skb->destructor = tpacket_destruct_skb;
2132 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2133 		atomic_inc(&po->tx_ring.pending);
2134 
2135 		status = TP_STATUS_SEND_REQUEST;
2136 		err = dev_queue_xmit(skb);
2137 		if (unlikely(err > 0)) {
2138 			err = net_xmit_errno(err);
2139 			if (err && __packet_get_status(po, ph) ==
2140 				   TP_STATUS_AVAILABLE) {
2141 				/* skb was destructed already */
2142 				skb = NULL;
2143 				goto out_status;
2144 			}
2145 			/*
2146 			 * skb was dropped but not destructed yet;
2147 			 * let's treat it like congestion or err < 0
2148 			 */
2149 			err = 0;
2150 		}
2151 		packet_increment_head(&po->tx_ring);
2152 		len_sum += tp_len;
2153 	} while (likely((ph != NULL) ||
2154 			((!(msg->msg_flags & MSG_DONTWAIT)) &&
2155 			 (atomic_read(&po->tx_ring.pending))))
2156 		);
2157 
2158 	err = len_sum;
2159 	goto out_put;
2160 
2161 out_status:
2162 	__packet_set_status(po, ph, status);
2163 	kfree_skb(skb);
2164 out_put:
2165 	if (need_rls_dev)
2166 		dev_put(dev);
2167 out:
2168 	mutex_unlock(&po->pg_vec_lock);
2169 	return err;
2170 }
2171 
2172 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2173 				        size_t reserve, size_t len,
2174 				        size_t linear, int noblock,
2175 				        int *err)
2176 {
2177 	struct sk_buff *skb;
2178 
2179 	/* Under a page?  Don't bother with paged skb. */
2180 	if (prepad + len < PAGE_SIZE || !linear)
2181 		linear = len;
2182 
2183 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2184 				   err);
2185 	if (!skb)
2186 		return NULL;
2187 
2188 	skb_reserve(skb, reserve);
2189 	skb_put(skb, linear);
2190 	skb->data_len = len - linear;
2191 	skb->len += len - linear;
2192 
2193 	return skb;
2194 }
2195 
2196 static int packet_snd(struct socket *sock,
2197 			  struct msghdr *msg, size_t len)
2198 {
2199 	struct sock *sk = sock->sk;
2200 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2201 	struct sk_buff *skb;
2202 	struct net_device *dev;
2203 	__be16 proto;
2204 	bool need_rls_dev = false;
2205 	unsigned char *addr;
2206 	int err, reserve = 0;
2207 	struct virtio_net_hdr vnet_hdr = { 0 };
2208 	int offset = 0;
2209 	int vnet_hdr_len;
2210 	struct packet_sock *po = pkt_sk(sk);
2211 	unsigned short gso_type = 0;
2212 	int hlen, tlen;
2213 	int extra_len = 0;
2214 
2215 	/*
2216 	 *	Get and verify the address.
2217 	 */
2218 
2219 	if (saddr == NULL) {
2220 		dev = po->prot_hook.dev;
2221 		proto	= po->num;
2222 		addr	= NULL;
2223 	} else {
2224 		err = -EINVAL;
2225 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2226 			goto out;
2227 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2228 			goto out;
2229 		proto	= saddr->sll_protocol;
2230 		addr	= saddr->sll_addr;
2231 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2232 		need_rls_dev = true;
2233 	}
2234 
2235 	err = -ENXIO;
2236 	if (dev == NULL)
2237 		goto out_unlock;
2238 	if (sock->type == SOCK_RAW)
2239 		reserve = dev->hard_header_len;
2240 
2241 	err = -ENETDOWN;
2242 	if (!(dev->flags & IFF_UP))
2243 		goto out_unlock;
2244 
2245 	if (po->has_vnet_hdr) {
2246 		vnet_hdr_len = sizeof(vnet_hdr);
2247 
2248 		err = -EINVAL;
2249 		if (len < vnet_hdr_len)
2250 			goto out_unlock;
2251 
2252 		len -= vnet_hdr_len;
2253 
2254 		err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2255 				       vnet_hdr_len);
2256 		if (err < 0)
2257 			goto out_unlock;
2258 
2259 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2260 		    (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2261 		      vnet_hdr.hdr_len))
2262 			vnet_hdr.hdr_len = vnet_hdr.csum_start +
2263 						 vnet_hdr.csum_offset + 2;
2264 
2265 		err = -EINVAL;
2266 		if (vnet_hdr.hdr_len > len)
2267 			goto out_unlock;
2268 
2269 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2270 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2271 			case VIRTIO_NET_HDR_GSO_TCPV4:
2272 				gso_type = SKB_GSO_TCPV4;
2273 				break;
2274 			case VIRTIO_NET_HDR_GSO_TCPV6:
2275 				gso_type = SKB_GSO_TCPV6;
2276 				break;
2277 			case VIRTIO_NET_HDR_GSO_UDP:
2278 				gso_type = SKB_GSO_UDP;
2279 				break;
2280 			default:
2281 				goto out_unlock;
2282 			}
2283 
2284 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2285 				gso_type |= SKB_GSO_TCP_ECN;
2286 
2287 			if (vnet_hdr.gso_size == 0)
2288 				goto out_unlock;
2289 
2290 		}
2291 	}
2292 
2293 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2294 		if (!netif_supports_nofcs(dev)) {
2295 			err = -EPROTONOSUPPORT;
2296 			goto out_unlock;
2297 		}
2298 		extra_len = 4; /* We're doing our own CRC */
2299 	}
2300 
2301 	err = -EMSGSIZE;
2302 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2303 		goto out_unlock;
2304 
2305 	err = -ENOBUFS;
2306 	hlen = LL_RESERVED_SPACE(dev);
2307 	tlen = dev->needed_tailroom;
2308 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2309 			       msg->msg_flags & MSG_DONTWAIT, &err);
2310 	if (skb == NULL)
2311 		goto out_unlock;
2312 
2313 	skb_set_network_header(skb, reserve);
2314 
2315 	err = -EINVAL;
2316 	if (sock->type == SOCK_DGRAM &&
2317 	    (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2318 		goto out_free;
2319 
2320 	/* Returns -EFAULT on error */
2321 	err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2322 	if (err)
2323 		goto out_free;
2324 
2325 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2326 
2327 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2328 		/* Earlier code assumed this would be a VLAN pkt,
2329 		 * double-check this now that we have the actual
2330 		 * packet in hand.
2331 		 */
2332 		struct ethhdr *ehdr;
2333 		skb_reset_mac_header(skb);
2334 		ehdr = eth_hdr(skb);
2335 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2336 			err = -EMSGSIZE;
2337 			goto out_free;
2338 		}
2339 	}
2340 
2341 	skb->protocol = proto;
2342 	skb->dev = dev;
2343 	skb->priority = sk->sk_priority;
2344 	skb->mark = sk->sk_mark;
2345 
2346 	if (po->has_vnet_hdr) {
2347 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2348 			if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2349 						  vnet_hdr.csum_offset)) {
2350 				err = -EINVAL;
2351 				goto out_free;
2352 			}
2353 		}
2354 
2355 		skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2356 		skb_shinfo(skb)->gso_type = gso_type;
2357 
2358 		/* Header must be checked, and gso_segs computed. */
2359 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2360 		skb_shinfo(skb)->gso_segs = 0;
2361 
2362 		len += vnet_hdr_len;
2363 	}
2364 
2365 	skb_probe_transport_header(skb, reserve);
2366 
2367 	if (unlikely(extra_len == 4))
2368 		skb->no_fcs = 1;
2369 
2370 	/*
2371 	 *	Now send it
2372 	 */
2373 
2374 	err = dev_queue_xmit(skb);
2375 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2376 		goto out_unlock;
2377 
2378 	if (need_rls_dev)
2379 		dev_put(dev);
2380 
2381 	return len;
2382 
2383 out_free:
2384 	kfree_skb(skb);
2385 out_unlock:
2386 	if (dev && need_rls_dev)
2387 		dev_put(dev);
2388 out:
2389 	return err;
2390 }
2391 
2392 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2393 		struct msghdr *msg, size_t len)
2394 {
2395 	struct sock *sk = sock->sk;
2396 	struct packet_sock *po = pkt_sk(sk);
2397 	if (po->tx_ring.pg_vec)
2398 		return tpacket_snd(po, msg);
2399 	else
2400 		return packet_snd(sock, msg, len);
2401 }
2402 
2403 /*
2404  *	Close a PACKET socket. This is fairly simple. We immediately go
2405  *	to 'closed' state and remove our protocol entry in the device list.
2406  */
2407 
2408 static int packet_release(struct socket *sock)
2409 {
2410 	struct sock *sk = sock->sk;
2411 	struct packet_sock *po;
2412 	struct net *net;
2413 	union tpacket_req_u req_u;
2414 
2415 	if (!sk)
2416 		return 0;
2417 
2418 	net = sock_net(sk);
2419 	po = pkt_sk(sk);
2420 
2421 	mutex_lock(&net->packet.sklist_lock);
2422 	sk_del_node_init_rcu(sk);
2423 	mutex_unlock(&net->packet.sklist_lock);
2424 
2425 	preempt_disable();
2426 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2427 	preempt_enable();
2428 
2429 	spin_lock(&po->bind_lock);
2430 	unregister_prot_hook(sk, false);
2431 	if (po->prot_hook.dev) {
2432 		dev_put(po->prot_hook.dev);
2433 		po->prot_hook.dev = NULL;
2434 	}
2435 	spin_unlock(&po->bind_lock);
2436 
2437 	packet_flush_mclist(sk);
2438 
2439 	if (po->rx_ring.pg_vec) {
2440 		memset(&req_u, 0, sizeof(req_u));
2441 		packet_set_ring(sk, &req_u, 1, 0);
2442 	}
2443 
2444 	if (po->tx_ring.pg_vec) {
2445 		memset(&req_u, 0, sizeof(req_u));
2446 		packet_set_ring(sk, &req_u, 1, 1);
2447 	}
2448 
2449 	fanout_release(sk);
2450 
2451 	synchronize_net();
2452 	/*
2453 	 *	Now the socket is dead. No more input will appear.
2454 	 */
2455 	sock_orphan(sk);
2456 	sock->sk = NULL;
2457 
2458 	/* Purge queues */
2459 
2460 	skb_queue_purge(&sk->sk_receive_queue);
2461 	sk_refcnt_debug_release(sk);
2462 
2463 	sock_put(sk);
2464 	return 0;
2465 }
2466 
2467 /*
2468  *	Attach a packet hook.
2469  */
2470 
2471 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol)
2472 {
2473 	struct packet_sock *po = pkt_sk(sk);
2474 
2475 	if (po->fanout) {
2476 		if (dev)
2477 			dev_put(dev);
2478 
2479 		return -EINVAL;
2480 	}
2481 
2482 	lock_sock(sk);
2483 
2484 	spin_lock(&po->bind_lock);
2485 	unregister_prot_hook(sk, true);
2486 	po->num = protocol;
2487 	po->prot_hook.type = protocol;
2488 	if (po->prot_hook.dev)
2489 		dev_put(po->prot_hook.dev);
2490 	po->prot_hook.dev = dev;
2491 
2492 	po->ifindex = dev ? dev->ifindex : 0;
2493 
2494 	if (protocol == 0)
2495 		goto out_unlock;
2496 
2497 	if (!dev || (dev->flags & IFF_UP)) {
2498 		register_prot_hook(sk);
2499 	} else {
2500 		sk->sk_err = ENETDOWN;
2501 		if (!sock_flag(sk, SOCK_DEAD))
2502 			sk->sk_error_report(sk);
2503 	}
2504 
2505 out_unlock:
2506 	spin_unlock(&po->bind_lock);
2507 	release_sock(sk);
2508 	return 0;
2509 }
2510 
2511 /*
2512  *	Bind a packet socket to a device
2513  */
2514 
2515 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2516 			    int addr_len)
2517 {
2518 	struct sock *sk = sock->sk;
2519 	char name[15];
2520 	struct net_device *dev;
2521 	int err = -ENODEV;
2522 
2523 	/*
2524 	 *	Check legality
2525 	 */
2526 
2527 	if (addr_len != sizeof(struct sockaddr))
2528 		return -EINVAL;
2529 	strlcpy(name, uaddr->sa_data, sizeof(name));
2530 
2531 	dev = dev_get_by_name(sock_net(sk), name);
2532 	if (dev)
2533 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2534 	return err;
2535 }
2536 
2537 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2538 {
2539 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2540 	struct sock *sk = sock->sk;
2541 	struct net_device *dev = NULL;
2542 	int err;
2543 
2544 
2545 	/*
2546 	 *	Check legality
2547 	 */
2548 
2549 	if (addr_len < sizeof(struct sockaddr_ll))
2550 		return -EINVAL;
2551 	if (sll->sll_family != AF_PACKET)
2552 		return -EINVAL;
2553 
2554 	if (sll->sll_ifindex) {
2555 		err = -ENODEV;
2556 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2557 		if (dev == NULL)
2558 			goto out;
2559 	}
2560 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2561 
2562 out:
2563 	return err;
2564 }
2565 
2566 static struct proto packet_proto = {
2567 	.name	  = "PACKET",
2568 	.owner	  = THIS_MODULE,
2569 	.obj_size = sizeof(struct packet_sock),
2570 };
2571 
2572 /*
2573  *	Create a packet of type SOCK_PACKET.
2574  */
2575 
2576 static int packet_create(struct net *net, struct socket *sock, int protocol,
2577 			 int kern)
2578 {
2579 	struct sock *sk;
2580 	struct packet_sock *po;
2581 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2582 	int err;
2583 
2584 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
2585 		return -EPERM;
2586 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2587 	    sock->type != SOCK_PACKET)
2588 		return -ESOCKTNOSUPPORT;
2589 
2590 	sock->state = SS_UNCONNECTED;
2591 
2592 	err = -ENOBUFS;
2593 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2594 	if (sk == NULL)
2595 		goto out;
2596 
2597 	sock->ops = &packet_ops;
2598 	if (sock->type == SOCK_PACKET)
2599 		sock->ops = &packet_ops_spkt;
2600 
2601 	sock_init_data(sock, sk);
2602 
2603 	po = pkt_sk(sk);
2604 	sk->sk_family = PF_PACKET;
2605 	po->num = proto;
2606 
2607 	sk->sk_destruct = packet_sock_destruct;
2608 	sk_refcnt_debug_inc(sk);
2609 
2610 	/*
2611 	 *	Attach a protocol block
2612 	 */
2613 
2614 	spin_lock_init(&po->bind_lock);
2615 	mutex_init(&po->pg_vec_lock);
2616 	po->prot_hook.func = packet_rcv;
2617 
2618 	if (sock->type == SOCK_PACKET)
2619 		po->prot_hook.func = packet_rcv_spkt;
2620 
2621 	po->prot_hook.af_packet_priv = sk;
2622 
2623 	if (proto) {
2624 		po->prot_hook.type = proto;
2625 		register_prot_hook(sk);
2626 	}
2627 
2628 	mutex_lock(&net->packet.sklist_lock);
2629 	sk_add_node_rcu(sk, &net->packet.sklist);
2630 	mutex_unlock(&net->packet.sklist_lock);
2631 
2632 	preempt_disable();
2633 	sock_prot_inuse_add(net, &packet_proto, 1);
2634 	preempt_enable();
2635 
2636 	return 0;
2637 out:
2638 	return err;
2639 }
2640 
2641 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len)
2642 {
2643 	struct sock_exterr_skb *serr;
2644 	struct sk_buff *skb, *skb2;
2645 	int copied, err;
2646 
2647 	err = -EAGAIN;
2648 	skb = skb_dequeue(&sk->sk_error_queue);
2649 	if (skb == NULL)
2650 		goto out;
2651 
2652 	copied = skb->len;
2653 	if (copied > len) {
2654 		msg->msg_flags |= MSG_TRUNC;
2655 		copied = len;
2656 	}
2657 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2658 	if (err)
2659 		goto out_free_skb;
2660 
2661 	sock_recv_timestamp(msg, sk, skb);
2662 
2663 	serr = SKB_EXT_ERR(skb);
2664 	put_cmsg(msg, SOL_PACKET, PACKET_TX_TIMESTAMP,
2665 		 sizeof(serr->ee), &serr->ee);
2666 
2667 	msg->msg_flags |= MSG_ERRQUEUE;
2668 	err = copied;
2669 
2670 	/* Reset and regenerate socket error */
2671 	spin_lock_bh(&sk->sk_error_queue.lock);
2672 	sk->sk_err = 0;
2673 	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2674 		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2675 		spin_unlock_bh(&sk->sk_error_queue.lock);
2676 		sk->sk_error_report(sk);
2677 	} else
2678 		spin_unlock_bh(&sk->sk_error_queue.lock);
2679 
2680 out_free_skb:
2681 	kfree_skb(skb);
2682 out:
2683 	return err;
2684 }
2685 
2686 /*
2687  *	Pull a packet from our receive queue and hand it to the user.
2688  *	If necessary we block.
2689  */
2690 
2691 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2692 			  struct msghdr *msg, size_t len, int flags)
2693 {
2694 	struct sock *sk = sock->sk;
2695 	struct sk_buff *skb;
2696 	int copied, err;
2697 	struct sockaddr_ll *sll;
2698 	int vnet_hdr_len = 0;
2699 
2700 	err = -EINVAL;
2701 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2702 		goto out;
2703 
2704 #if 0
2705 	/* What error should we return now? EUNATTACH? */
2706 	if (pkt_sk(sk)->ifindex < 0)
2707 		return -ENODEV;
2708 #endif
2709 
2710 	if (flags & MSG_ERRQUEUE) {
2711 		err = packet_recv_error(sk, msg, len);
2712 		goto out;
2713 	}
2714 
2715 	/*
2716 	 *	Call the generic datagram receiver. This handles all sorts
2717 	 *	of horrible races and re-entrancy so we can forget about it
2718 	 *	in the protocol layers.
2719 	 *
2720 	 *	Now it will return ENETDOWN, if device have just gone down,
2721 	 *	but then it will block.
2722 	 */
2723 
2724 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2725 
2726 	/*
2727 	 *	An error occurred so return it. Because skb_recv_datagram()
2728 	 *	handles the blocking we don't see and worry about blocking
2729 	 *	retries.
2730 	 */
2731 
2732 	if (skb == NULL)
2733 		goto out;
2734 
2735 	if (pkt_sk(sk)->has_vnet_hdr) {
2736 		struct virtio_net_hdr vnet_hdr = { 0 };
2737 
2738 		err = -EINVAL;
2739 		vnet_hdr_len = sizeof(vnet_hdr);
2740 		if (len < vnet_hdr_len)
2741 			goto out_free;
2742 
2743 		len -= vnet_hdr_len;
2744 
2745 		if (skb_is_gso(skb)) {
2746 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2747 
2748 			/* This is a hint as to how much should be linear. */
2749 			vnet_hdr.hdr_len = skb_headlen(skb);
2750 			vnet_hdr.gso_size = sinfo->gso_size;
2751 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2752 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2753 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2754 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2755 			else if (sinfo->gso_type & SKB_GSO_UDP)
2756 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2757 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2758 				goto out_free;
2759 			else
2760 				BUG();
2761 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2762 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2763 		} else
2764 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2765 
2766 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2767 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2768 			vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2769 			vnet_hdr.csum_offset = skb->csum_offset;
2770 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2771 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2772 		} /* else everything is zero */
2773 
2774 		err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2775 				     vnet_hdr_len);
2776 		if (err < 0)
2777 			goto out_free;
2778 	}
2779 
2780 	/*
2781 	 *	If the address length field is there to be filled in, we fill
2782 	 *	it in now.
2783 	 */
2784 
2785 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2786 	if (sock->type == SOCK_PACKET)
2787 		msg->msg_namelen = sizeof(struct sockaddr_pkt);
2788 	else
2789 		msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr);
2790 
2791 	/*
2792 	 *	You lose any data beyond the buffer you gave. If it worries a
2793 	 *	user program they can ask the device for its MTU anyway.
2794 	 */
2795 
2796 	copied = skb->len;
2797 	if (copied > len) {
2798 		copied = len;
2799 		msg->msg_flags |= MSG_TRUNC;
2800 	}
2801 
2802 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2803 	if (err)
2804 		goto out_free;
2805 
2806 	sock_recv_ts_and_drops(msg, sk, skb);
2807 
2808 	if (msg->msg_name)
2809 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2810 		       msg->msg_namelen);
2811 
2812 	if (pkt_sk(sk)->auxdata) {
2813 		struct tpacket_auxdata aux;
2814 
2815 		aux.tp_status = TP_STATUS_USER;
2816 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2817 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2818 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2819 		aux.tp_snaplen = skb->len;
2820 		aux.tp_mac = 0;
2821 		aux.tp_net = skb_network_offset(skb);
2822 		if (vlan_tx_tag_present(skb)) {
2823 			aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2824 			aux.tp_status |= TP_STATUS_VLAN_VALID;
2825 		} else {
2826 			aux.tp_vlan_tci = 0;
2827 		}
2828 		aux.tp_padding = 0;
2829 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2830 	}
2831 
2832 	/*
2833 	 *	Free or return the buffer as appropriate. Again this
2834 	 *	hides all the races and re-entrancy issues from us.
2835 	 */
2836 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2837 
2838 out_free:
2839 	skb_free_datagram(sk, skb);
2840 out:
2841 	return err;
2842 }
2843 
2844 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2845 			       int *uaddr_len, int peer)
2846 {
2847 	struct net_device *dev;
2848 	struct sock *sk	= sock->sk;
2849 
2850 	if (peer)
2851 		return -EOPNOTSUPP;
2852 
2853 	uaddr->sa_family = AF_PACKET;
2854 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
2855 	rcu_read_lock();
2856 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
2857 	if (dev)
2858 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
2859 	rcu_read_unlock();
2860 	*uaddr_len = sizeof(*uaddr);
2861 
2862 	return 0;
2863 }
2864 
2865 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
2866 			  int *uaddr_len, int peer)
2867 {
2868 	struct net_device *dev;
2869 	struct sock *sk = sock->sk;
2870 	struct packet_sock *po = pkt_sk(sk);
2871 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
2872 
2873 	if (peer)
2874 		return -EOPNOTSUPP;
2875 
2876 	sll->sll_family = AF_PACKET;
2877 	sll->sll_ifindex = po->ifindex;
2878 	sll->sll_protocol = po->num;
2879 	sll->sll_pkttype = 0;
2880 	rcu_read_lock();
2881 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
2882 	if (dev) {
2883 		sll->sll_hatype = dev->type;
2884 		sll->sll_halen = dev->addr_len;
2885 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
2886 	} else {
2887 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
2888 		sll->sll_halen = 0;
2889 	}
2890 	rcu_read_unlock();
2891 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
2892 
2893 	return 0;
2894 }
2895 
2896 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
2897 			 int what)
2898 {
2899 	switch (i->type) {
2900 	case PACKET_MR_MULTICAST:
2901 		if (i->alen != dev->addr_len)
2902 			return -EINVAL;
2903 		if (what > 0)
2904 			return dev_mc_add(dev, i->addr);
2905 		else
2906 			return dev_mc_del(dev, i->addr);
2907 		break;
2908 	case PACKET_MR_PROMISC:
2909 		return dev_set_promiscuity(dev, what);
2910 		break;
2911 	case PACKET_MR_ALLMULTI:
2912 		return dev_set_allmulti(dev, what);
2913 		break;
2914 	case PACKET_MR_UNICAST:
2915 		if (i->alen != dev->addr_len)
2916 			return -EINVAL;
2917 		if (what > 0)
2918 			return dev_uc_add(dev, i->addr);
2919 		else
2920 			return dev_uc_del(dev, i->addr);
2921 		break;
2922 	default:
2923 		break;
2924 	}
2925 	return 0;
2926 }
2927 
2928 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
2929 {
2930 	for ( ; i; i = i->next) {
2931 		if (i->ifindex == dev->ifindex)
2932 			packet_dev_mc(dev, i, what);
2933 	}
2934 }
2935 
2936 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
2937 {
2938 	struct packet_sock *po = pkt_sk(sk);
2939 	struct packet_mclist *ml, *i;
2940 	struct net_device *dev;
2941 	int err;
2942 
2943 	rtnl_lock();
2944 
2945 	err = -ENODEV;
2946 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
2947 	if (!dev)
2948 		goto done;
2949 
2950 	err = -EINVAL;
2951 	if (mreq->mr_alen > dev->addr_len)
2952 		goto done;
2953 
2954 	err = -ENOBUFS;
2955 	i = kmalloc(sizeof(*i), GFP_KERNEL);
2956 	if (i == NULL)
2957 		goto done;
2958 
2959 	err = 0;
2960 	for (ml = po->mclist; ml; ml = ml->next) {
2961 		if (ml->ifindex == mreq->mr_ifindex &&
2962 		    ml->type == mreq->mr_type &&
2963 		    ml->alen == mreq->mr_alen &&
2964 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2965 			ml->count++;
2966 			/* Free the new element ... */
2967 			kfree(i);
2968 			goto done;
2969 		}
2970 	}
2971 
2972 	i->type = mreq->mr_type;
2973 	i->ifindex = mreq->mr_ifindex;
2974 	i->alen = mreq->mr_alen;
2975 	memcpy(i->addr, mreq->mr_address, i->alen);
2976 	i->count = 1;
2977 	i->next = po->mclist;
2978 	po->mclist = i;
2979 	err = packet_dev_mc(dev, i, 1);
2980 	if (err) {
2981 		po->mclist = i->next;
2982 		kfree(i);
2983 	}
2984 
2985 done:
2986 	rtnl_unlock();
2987 	return err;
2988 }
2989 
2990 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
2991 {
2992 	struct packet_mclist *ml, **mlp;
2993 
2994 	rtnl_lock();
2995 
2996 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
2997 		if (ml->ifindex == mreq->mr_ifindex &&
2998 		    ml->type == mreq->mr_type &&
2999 		    ml->alen == mreq->mr_alen &&
3000 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3001 			if (--ml->count == 0) {
3002 				struct net_device *dev;
3003 				*mlp = ml->next;
3004 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3005 				if (dev)
3006 					packet_dev_mc(dev, ml, -1);
3007 				kfree(ml);
3008 			}
3009 			rtnl_unlock();
3010 			return 0;
3011 		}
3012 	}
3013 	rtnl_unlock();
3014 	return -EADDRNOTAVAIL;
3015 }
3016 
3017 static void packet_flush_mclist(struct sock *sk)
3018 {
3019 	struct packet_sock *po = pkt_sk(sk);
3020 	struct packet_mclist *ml;
3021 
3022 	if (!po->mclist)
3023 		return;
3024 
3025 	rtnl_lock();
3026 	while ((ml = po->mclist) != NULL) {
3027 		struct net_device *dev;
3028 
3029 		po->mclist = ml->next;
3030 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3031 		if (dev != NULL)
3032 			packet_dev_mc(dev, ml, -1);
3033 		kfree(ml);
3034 	}
3035 	rtnl_unlock();
3036 }
3037 
3038 static int
3039 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3040 {
3041 	struct sock *sk = sock->sk;
3042 	struct packet_sock *po = pkt_sk(sk);
3043 	int ret;
3044 
3045 	if (level != SOL_PACKET)
3046 		return -ENOPROTOOPT;
3047 
3048 	switch (optname) {
3049 	case PACKET_ADD_MEMBERSHIP:
3050 	case PACKET_DROP_MEMBERSHIP:
3051 	{
3052 		struct packet_mreq_max mreq;
3053 		int len = optlen;
3054 		memset(&mreq, 0, sizeof(mreq));
3055 		if (len < sizeof(struct packet_mreq))
3056 			return -EINVAL;
3057 		if (len > sizeof(mreq))
3058 			len = sizeof(mreq);
3059 		if (copy_from_user(&mreq, optval, len))
3060 			return -EFAULT;
3061 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3062 			return -EINVAL;
3063 		if (optname == PACKET_ADD_MEMBERSHIP)
3064 			ret = packet_mc_add(sk, &mreq);
3065 		else
3066 			ret = packet_mc_drop(sk, &mreq);
3067 		return ret;
3068 	}
3069 
3070 	case PACKET_RX_RING:
3071 	case PACKET_TX_RING:
3072 	{
3073 		union tpacket_req_u req_u;
3074 		int len;
3075 
3076 		switch (po->tp_version) {
3077 		case TPACKET_V1:
3078 		case TPACKET_V2:
3079 			len = sizeof(req_u.req);
3080 			break;
3081 		case TPACKET_V3:
3082 		default:
3083 			len = sizeof(req_u.req3);
3084 			break;
3085 		}
3086 		if (optlen < len)
3087 			return -EINVAL;
3088 		if (pkt_sk(sk)->has_vnet_hdr)
3089 			return -EINVAL;
3090 		if (copy_from_user(&req_u.req, optval, len))
3091 			return -EFAULT;
3092 		return packet_set_ring(sk, &req_u, 0,
3093 			optname == PACKET_TX_RING);
3094 	}
3095 	case PACKET_COPY_THRESH:
3096 	{
3097 		int val;
3098 
3099 		if (optlen != sizeof(val))
3100 			return -EINVAL;
3101 		if (copy_from_user(&val, optval, sizeof(val)))
3102 			return -EFAULT;
3103 
3104 		pkt_sk(sk)->copy_thresh = val;
3105 		return 0;
3106 	}
3107 	case PACKET_VERSION:
3108 	{
3109 		int val;
3110 
3111 		if (optlen != sizeof(val))
3112 			return -EINVAL;
3113 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3114 			return -EBUSY;
3115 		if (copy_from_user(&val, optval, sizeof(val)))
3116 			return -EFAULT;
3117 		switch (val) {
3118 		case TPACKET_V1:
3119 		case TPACKET_V2:
3120 		case TPACKET_V3:
3121 			po->tp_version = val;
3122 			return 0;
3123 		default:
3124 			return -EINVAL;
3125 		}
3126 	}
3127 	case PACKET_RESERVE:
3128 	{
3129 		unsigned int val;
3130 
3131 		if (optlen != sizeof(val))
3132 			return -EINVAL;
3133 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3134 			return -EBUSY;
3135 		if (copy_from_user(&val, optval, sizeof(val)))
3136 			return -EFAULT;
3137 		po->tp_reserve = val;
3138 		return 0;
3139 	}
3140 	case PACKET_LOSS:
3141 	{
3142 		unsigned int val;
3143 
3144 		if (optlen != sizeof(val))
3145 			return -EINVAL;
3146 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3147 			return -EBUSY;
3148 		if (copy_from_user(&val, optval, sizeof(val)))
3149 			return -EFAULT;
3150 		po->tp_loss = !!val;
3151 		return 0;
3152 	}
3153 	case PACKET_AUXDATA:
3154 	{
3155 		int val;
3156 
3157 		if (optlen < sizeof(val))
3158 			return -EINVAL;
3159 		if (copy_from_user(&val, optval, sizeof(val)))
3160 			return -EFAULT;
3161 
3162 		po->auxdata = !!val;
3163 		return 0;
3164 	}
3165 	case PACKET_ORIGDEV:
3166 	{
3167 		int val;
3168 
3169 		if (optlen < sizeof(val))
3170 			return -EINVAL;
3171 		if (copy_from_user(&val, optval, sizeof(val)))
3172 			return -EFAULT;
3173 
3174 		po->origdev = !!val;
3175 		return 0;
3176 	}
3177 	case PACKET_VNET_HDR:
3178 	{
3179 		int val;
3180 
3181 		if (sock->type != SOCK_RAW)
3182 			return -EINVAL;
3183 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3184 			return -EBUSY;
3185 		if (optlen < sizeof(val))
3186 			return -EINVAL;
3187 		if (copy_from_user(&val, optval, sizeof(val)))
3188 			return -EFAULT;
3189 
3190 		po->has_vnet_hdr = !!val;
3191 		return 0;
3192 	}
3193 	case PACKET_TIMESTAMP:
3194 	{
3195 		int val;
3196 
3197 		if (optlen != sizeof(val))
3198 			return -EINVAL;
3199 		if (copy_from_user(&val, optval, sizeof(val)))
3200 			return -EFAULT;
3201 
3202 		po->tp_tstamp = val;
3203 		return 0;
3204 	}
3205 	case PACKET_FANOUT:
3206 	{
3207 		int val;
3208 
3209 		if (optlen != sizeof(val))
3210 			return -EINVAL;
3211 		if (copy_from_user(&val, optval, sizeof(val)))
3212 			return -EFAULT;
3213 
3214 		return fanout_add(sk, val & 0xffff, val >> 16);
3215 	}
3216 	case PACKET_TX_HAS_OFF:
3217 	{
3218 		unsigned int val;
3219 
3220 		if (optlen != sizeof(val))
3221 			return -EINVAL;
3222 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3223 			return -EBUSY;
3224 		if (copy_from_user(&val, optval, sizeof(val)))
3225 			return -EFAULT;
3226 		po->tp_tx_has_off = !!val;
3227 		return 0;
3228 	}
3229 	default:
3230 		return -ENOPROTOOPT;
3231 	}
3232 }
3233 
3234 static int packet_getsockopt(struct socket *sock, int level, int optname,
3235 			     char __user *optval, int __user *optlen)
3236 {
3237 	int len;
3238 	int val, lv = sizeof(val);
3239 	struct sock *sk = sock->sk;
3240 	struct packet_sock *po = pkt_sk(sk);
3241 	void *data = &val;
3242 	union tpacket_stats_u st;
3243 
3244 	if (level != SOL_PACKET)
3245 		return -ENOPROTOOPT;
3246 
3247 	if (get_user(len, optlen))
3248 		return -EFAULT;
3249 
3250 	if (len < 0)
3251 		return -EINVAL;
3252 
3253 	switch (optname) {
3254 	case PACKET_STATISTICS:
3255 		spin_lock_bh(&sk->sk_receive_queue.lock);
3256 		memcpy(&st, &po->stats, sizeof(st));
3257 		memset(&po->stats, 0, sizeof(po->stats));
3258 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3259 
3260 		if (po->tp_version == TPACKET_V3) {
3261 			lv = sizeof(struct tpacket_stats_v3);
3262 			data = &st.stats3;
3263 		} else {
3264 			lv = sizeof(struct tpacket_stats);
3265 			data = &st.stats1;
3266 		}
3267 
3268 		break;
3269 	case PACKET_AUXDATA:
3270 		val = po->auxdata;
3271 		break;
3272 	case PACKET_ORIGDEV:
3273 		val = po->origdev;
3274 		break;
3275 	case PACKET_VNET_HDR:
3276 		val = po->has_vnet_hdr;
3277 		break;
3278 	case PACKET_VERSION:
3279 		val = po->tp_version;
3280 		break;
3281 	case PACKET_HDRLEN:
3282 		if (len > sizeof(int))
3283 			len = sizeof(int);
3284 		if (copy_from_user(&val, optval, len))
3285 			return -EFAULT;
3286 		switch (val) {
3287 		case TPACKET_V1:
3288 			val = sizeof(struct tpacket_hdr);
3289 			break;
3290 		case TPACKET_V2:
3291 			val = sizeof(struct tpacket2_hdr);
3292 			break;
3293 		case TPACKET_V3:
3294 			val = sizeof(struct tpacket3_hdr);
3295 			break;
3296 		default:
3297 			return -EINVAL;
3298 		}
3299 		break;
3300 	case PACKET_RESERVE:
3301 		val = po->tp_reserve;
3302 		break;
3303 	case PACKET_LOSS:
3304 		val = po->tp_loss;
3305 		break;
3306 	case PACKET_TIMESTAMP:
3307 		val = po->tp_tstamp;
3308 		break;
3309 	case PACKET_FANOUT:
3310 		val = (po->fanout ?
3311 		       ((u32)po->fanout->id |
3312 			((u32)po->fanout->type << 16) |
3313 			((u32)po->fanout->flags << 24)) :
3314 		       0);
3315 		break;
3316 	case PACKET_TX_HAS_OFF:
3317 		val = po->tp_tx_has_off;
3318 		break;
3319 	default:
3320 		return -ENOPROTOOPT;
3321 	}
3322 
3323 	if (len > lv)
3324 		len = lv;
3325 	if (put_user(len, optlen))
3326 		return -EFAULT;
3327 	if (copy_to_user(optval, data, len))
3328 		return -EFAULT;
3329 	return 0;
3330 }
3331 
3332 
3333 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data)
3334 {
3335 	struct sock *sk;
3336 	struct net_device *dev = data;
3337 	struct net *net = dev_net(dev);
3338 
3339 	rcu_read_lock();
3340 	sk_for_each_rcu(sk, &net->packet.sklist) {
3341 		struct packet_sock *po = pkt_sk(sk);
3342 
3343 		switch (msg) {
3344 		case NETDEV_UNREGISTER:
3345 			if (po->mclist)
3346 				packet_dev_mclist(dev, po->mclist, -1);
3347 			/* fallthrough */
3348 
3349 		case NETDEV_DOWN:
3350 			if (dev->ifindex == po->ifindex) {
3351 				spin_lock(&po->bind_lock);
3352 				if (po->running) {
3353 					__unregister_prot_hook(sk, false);
3354 					sk->sk_err = ENETDOWN;
3355 					if (!sock_flag(sk, SOCK_DEAD))
3356 						sk->sk_error_report(sk);
3357 				}
3358 				if (msg == NETDEV_UNREGISTER) {
3359 					po->ifindex = -1;
3360 					if (po->prot_hook.dev)
3361 						dev_put(po->prot_hook.dev);
3362 					po->prot_hook.dev = NULL;
3363 				}
3364 				spin_unlock(&po->bind_lock);
3365 			}
3366 			break;
3367 		case NETDEV_UP:
3368 			if (dev->ifindex == po->ifindex) {
3369 				spin_lock(&po->bind_lock);
3370 				if (po->num)
3371 					register_prot_hook(sk);
3372 				spin_unlock(&po->bind_lock);
3373 			}
3374 			break;
3375 		}
3376 	}
3377 	rcu_read_unlock();
3378 	return NOTIFY_DONE;
3379 }
3380 
3381 
3382 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3383 			unsigned long arg)
3384 {
3385 	struct sock *sk = sock->sk;
3386 
3387 	switch (cmd) {
3388 	case SIOCOUTQ:
3389 	{
3390 		int amount = sk_wmem_alloc_get(sk);
3391 
3392 		return put_user(amount, (int __user *)arg);
3393 	}
3394 	case SIOCINQ:
3395 	{
3396 		struct sk_buff *skb;
3397 		int amount = 0;
3398 
3399 		spin_lock_bh(&sk->sk_receive_queue.lock);
3400 		skb = skb_peek(&sk->sk_receive_queue);
3401 		if (skb)
3402 			amount = skb->len;
3403 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3404 		return put_user(amount, (int __user *)arg);
3405 	}
3406 	case SIOCGSTAMP:
3407 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3408 	case SIOCGSTAMPNS:
3409 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3410 
3411 #ifdef CONFIG_INET
3412 	case SIOCADDRT:
3413 	case SIOCDELRT:
3414 	case SIOCDARP:
3415 	case SIOCGARP:
3416 	case SIOCSARP:
3417 	case SIOCGIFADDR:
3418 	case SIOCSIFADDR:
3419 	case SIOCGIFBRDADDR:
3420 	case SIOCSIFBRDADDR:
3421 	case SIOCGIFNETMASK:
3422 	case SIOCSIFNETMASK:
3423 	case SIOCGIFDSTADDR:
3424 	case SIOCSIFDSTADDR:
3425 	case SIOCSIFFLAGS:
3426 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3427 #endif
3428 
3429 	default:
3430 		return -ENOIOCTLCMD;
3431 	}
3432 	return 0;
3433 }
3434 
3435 static unsigned int packet_poll(struct file *file, struct socket *sock,
3436 				poll_table *wait)
3437 {
3438 	struct sock *sk = sock->sk;
3439 	struct packet_sock *po = pkt_sk(sk);
3440 	unsigned int mask = datagram_poll(file, sock, wait);
3441 
3442 	spin_lock_bh(&sk->sk_receive_queue.lock);
3443 	if (po->rx_ring.pg_vec) {
3444 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3445 			TP_STATUS_KERNEL))
3446 			mask |= POLLIN | POLLRDNORM;
3447 	}
3448 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3449 	spin_lock_bh(&sk->sk_write_queue.lock);
3450 	if (po->tx_ring.pg_vec) {
3451 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3452 			mask |= POLLOUT | POLLWRNORM;
3453 	}
3454 	spin_unlock_bh(&sk->sk_write_queue.lock);
3455 	return mask;
3456 }
3457 
3458 
3459 /* Dirty? Well, I still did not learn better way to account
3460  * for user mmaps.
3461  */
3462 
3463 static void packet_mm_open(struct vm_area_struct *vma)
3464 {
3465 	struct file *file = vma->vm_file;
3466 	struct socket *sock = file->private_data;
3467 	struct sock *sk = sock->sk;
3468 
3469 	if (sk)
3470 		atomic_inc(&pkt_sk(sk)->mapped);
3471 }
3472 
3473 static void packet_mm_close(struct vm_area_struct *vma)
3474 {
3475 	struct file *file = vma->vm_file;
3476 	struct socket *sock = file->private_data;
3477 	struct sock *sk = sock->sk;
3478 
3479 	if (sk)
3480 		atomic_dec(&pkt_sk(sk)->mapped);
3481 }
3482 
3483 static const struct vm_operations_struct packet_mmap_ops = {
3484 	.open	=	packet_mm_open,
3485 	.close	=	packet_mm_close,
3486 };
3487 
3488 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3489 			unsigned int len)
3490 {
3491 	int i;
3492 
3493 	for (i = 0; i < len; i++) {
3494 		if (likely(pg_vec[i].buffer)) {
3495 			if (is_vmalloc_addr(pg_vec[i].buffer))
3496 				vfree(pg_vec[i].buffer);
3497 			else
3498 				free_pages((unsigned long)pg_vec[i].buffer,
3499 					   order);
3500 			pg_vec[i].buffer = NULL;
3501 		}
3502 	}
3503 	kfree(pg_vec);
3504 }
3505 
3506 static char *alloc_one_pg_vec_page(unsigned long order)
3507 {
3508 	char *buffer = NULL;
3509 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3510 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3511 
3512 	buffer = (char *) __get_free_pages(gfp_flags, order);
3513 
3514 	if (buffer)
3515 		return buffer;
3516 
3517 	/*
3518 	 * __get_free_pages failed, fall back to vmalloc
3519 	 */
3520 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3521 
3522 	if (buffer)
3523 		return buffer;
3524 
3525 	/*
3526 	 * vmalloc failed, lets dig into swap here
3527 	 */
3528 	gfp_flags &= ~__GFP_NORETRY;
3529 	buffer = (char *)__get_free_pages(gfp_flags, order);
3530 	if (buffer)
3531 		return buffer;
3532 
3533 	/*
3534 	 * complete and utter failure
3535 	 */
3536 	return NULL;
3537 }
3538 
3539 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3540 {
3541 	unsigned int block_nr = req->tp_block_nr;
3542 	struct pgv *pg_vec;
3543 	int i;
3544 
3545 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3546 	if (unlikely(!pg_vec))
3547 		goto out;
3548 
3549 	for (i = 0; i < block_nr; i++) {
3550 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3551 		if (unlikely(!pg_vec[i].buffer))
3552 			goto out_free_pgvec;
3553 	}
3554 
3555 out:
3556 	return pg_vec;
3557 
3558 out_free_pgvec:
3559 	free_pg_vec(pg_vec, order, block_nr);
3560 	pg_vec = NULL;
3561 	goto out;
3562 }
3563 
3564 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3565 		int closing, int tx_ring)
3566 {
3567 	struct pgv *pg_vec = NULL;
3568 	struct packet_sock *po = pkt_sk(sk);
3569 	int was_running, order = 0;
3570 	struct packet_ring_buffer *rb;
3571 	struct sk_buff_head *rb_queue;
3572 	__be16 num;
3573 	int err = -EINVAL;
3574 	/* Added to avoid minimal code churn */
3575 	struct tpacket_req *req = &req_u->req;
3576 
3577 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3578 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3579 		WARN(1, "Tx-ring is not supported.\n");
3580 		goto out;
3581 	}
3582 
3583 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3584 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3585 
3586 	err = -EBUSY;
3587 	if (!closing) {
3588 		if (atomic_read(&po->mapped))
3589 			goto out;
3590 		if (atomic_read(&rb->pending))
3591 			goto out;
3592 	}
3593 
3594 	if (req->tp_block_nr) {
3595 		/* Sanity tests and some calculations */
3596 		err = -EBUSY;
3597 		if (unlikely(rb->pg_vec))
3598 			goto out;
3599 
3600 		switch (po->tp_version) {
3601 		case TPACKET_V1:
3602 			po->tp_hdrlen = TPACKET_HDRLEN;
3603 			break;
3604 		case TPACKET_V2:
3605 			po->tp_hdrlen = TPACKET2_HDRLEN;
3606 			break;
3607 		case TPACKET_V3:
3608 			po->tp_hdrlen = TPACKET3_HDRLEN;
3609 			break;
3610 		}
3611 
3612 		err = -EINVAL;
3613 		if (unlikely((int)req->tp_block_size <= 0))
3614 			goto out;
3615 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3616 			goto out;
3617 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3618 					po->tp_reserve))
3619 			goto out;
3620 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3621 			goto out;
3622 
3623 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3624 		if (unlikely(rb->frames_per_block <= 0))
3625 			goto out;
3626 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3627 					req->tp_frame_nr))
3628 			goto out;
3629 
3630 		err = -ENOMEM;
3631 		order = get_order(req->tp_block_size);
3632 		pg_vec = alloc_pg_vec(req, order);
3633 		if (unlikely(!pg_vec))
3634 			goto out;
3635 		switch (po->tp_version) {
3636 		case TPACKET_V3:
3637 		/* Transmit path is not supported. We checked
3638 		 * it above but just being paranoid
3639 		 */
3640 			if (!tx_ring)
3641 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3642 				break;
3643 		default:
3644 			break;
3645 		}
3646 	}
3647 	/* Done */
3648 	else {
3649 		err = -EINVAL;
3650 		if (unlikely(req->tp_frame_nr))
3651 			goto out;
3652 	}
3653 
3654 	lock_sock(sk);
3655 
3656 	/* Detach socket from network */
3657 	spin_lock(&po->bind_lock);
3658 	was_running = po->running;
3659 	num = po->num;
3660 	if (was_running) {
3661 		po->num = 0;
3662 		__unregister_prot_hook(sk, false);
3663 	}
3664 	spin_unlock(&po->bind_lock);
3665 
3666 	synchronize_net();
3667 
3668 	err = -EBUSY;
3669 	mutex_lock(&po->pg_vec_lock);
3670 	if (closing || atomic_read(&po->mapped) == 0) {
3671 		err = 0;
3672 		spin_lock_bh(&rb_queue->lock);
3673 		swap(rb->pg_vec, pg_vec);
3674 		rb->frame_max = (req->tp_frame_nr - 1);
3675 		rb->head = 0;
3676 		rb->frame_size = req->tp_frame_size;
3677 		spin_unlock_bh(&rb_queue->lock);
3678 
3679 		swap(rb->pg_vec_order, order);
3680 		swap(rb->pg_vec_len, req->tp_block_nr);
3681 
3682 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3683 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3684 						tpacket_rcv : packet_rcv;
3685 		skb_queue_purge(rb_queue);
3686 		if (atomic_read(&po->mapped))
3687 			pr_err("packet_mmap: vma is busy: %d\n",
3688 			       atomic_read(&po->mapped));
3689 	}
3690 	mutex_unlock(&po->pg_vec_lock);
3691 
3692 	spin_lock(&po->bind_lock);
3693 	if (was_running) {
3694 		po->num = num;
3695 		register_prot_hook(sk);
3696 	}
3697 	spin_unlock(&po->bind_lock);
3698 	if (closing && (po->tp_version > TPACKET_V2)) {
3699 		/* Because we don't support block-based V3 on tx-ring */
3700 		if (!tx_ring)
3701 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3702 	}
3703 	release_sock(sk);
3704 
3705 	if (pg_vec)
3706 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3707 out:
3708 	return err;
3709 }
3710 
3711 static int packet_mmap(struct file *file, struct socket *sock,
3712 		struct vm_area_struct *vma)
3713 {
3714 	struct sock *sk = sock->sk;
3715 	struct packet_sock *po = pkt_sk(sk);
3716 	unsigned long size, expected_size;
3717 	struct packet_ring_buffer *rb;
3718 	unsigned long start;
3719 	int err = -EINVAL;
3720 	int i;
3721 
3722 	if (vma->vm_pgoff)
3723 		return -EINVAL;
3724 
3725 	mutex_lock(&po->pg_vec_lock);
3726 
3727 	expected_size = 0;
3728 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3729 		if (rb->pg_vec) {
3730 			expected_size += rb->pg_vec_len
3731 						* rb->pg_vec_pages
3732 						* PAGE_SIZE;
3733 		}
3734 	}
3735 
3736 	if (expected_size == 0)
3737 		goto out;
3738 
3739 	size = vma->vm_end - vma->vm_start;
3740 	if (size != expected_size)
3741 		goto out;
3742 
3743 	start = vma->vm_start;
3744 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3745 		if (rb->pg_vec == NULL)
3746 			continue;
3747 
3748 		for (i = 0; i < rb->pg_vec_len; i++) {
3749 			struct page *page;
3750 			void *kaddr = rb->pg_vec[i].buffer;
3751 			int pg_num;
3752 
3753 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3754 				page = pgv_to_page(kaddr);
3755 				err = vm_insert_page(vma, start, page);
3756 				if (unlikely(err))
3757 					goto out;
3758 				start += PAGE_SIZE;
3759 				kaddr += PAGE_SIZE;
3760 			}
3761 		}
3762 	}
3763 
3764 	atomic_inc(&po->mapped);
3765 	vma->vm_ops = &packet_mmap_ops;
3766 	err = 0;
3767 
3768 out:
3769 	mutex_unlock(&po->pg_vec_lock);
3770 	return err;
3771 }
3772 
3773 static const struct proto_ops packet_ops_spkt = {
3774 	.family =	PF_PACKET,
3775 	.owner =	THIS_MODULE,
3776 	.release =	packet_release,
3777 	.bind =		packet_bind_spkt,
3778 	.connect =	sock_no_connect,
3779 	.socketpair =	sock_no_socketpair,
3780 	.accept =	sock_no_accept,
3781 	.getname =	packet_getname_spkt,
3782 	.poll =		datagram_poll,
3783 	.ioctl =	packet_ioctl,
3784 	.listen =	sock_no_listen,
3785 	.shutdown =	sock_no_shutdown,
3786 	.setsockopt =	sock_no_setsockopt,
3787 	.getsockopt =	sock_no_getsockopt,
3788 	.sendmsg =	packet_sendmsg_spkt,
3789 	.recvmsg =	packet_recvmsg,
3790 	.mmap =		sock_no_mmap,
3791 	.sendpage =	sock_no_sendpage,
3792 };
3793 
3794 static const struct proto_ops packet_ops = {
3795 	.family =	PF_PACKET,
3796 	.owner =	THIS_MODULE,
3797 	.release =	packet_release,
3798 	.bind =		packet_bind,
3799 	.connect =	sock_no_connect,
3800 	.socketpair =	sock_no_socketpair,
3801 	.accept =	sock_no_accept,
3802 	.getname =	packet_getname,
3803 	.poll =		packet_poll,
3804 	.ioctl =	packet_ioctl,
3805 	.listen =	sock_no_listen,
3806 	.shutdown =	sock_no_shutdown,
3807 	.setsockopt =	packet_setsockopt,
3808 	.getsockopt =	packet_getsockopt,
3809 	.sendmsg =	packet_sendmsg,
3810 	.recvmsg =	packet_recvmsg,
3811 	.mmap =		packet_mmap,
3812 	.sendpage =	sock_no_sendpage,
3813 };
3814 
3815 static const struct net_proto_family packet_family_ops = {
3816 	.family =	PF_PACKET,
3817 	.create =	packet_create,
3818 	.owner	=	THIS_MODULE,
3819 };
3820 
3821 static struct notifier_block packet_netdev_notifier = {
3822 	.notifier_call =	packet_notifier,
3823 };
3824 
3825 #ifdef CONFIG_PROC_FS
3826 
3827 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3828 	__acquires(RCU)
3829 {
3830 	struct net *net = seq_file_net(seq);
3831 
3832 	rcu_read_lock();
3833 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3834 }
3835 
3836 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3837 {
3838 	struct net *net = seq_file_net(seq);
3839 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
3840 }
3841 
3842 static void packet_seq_stop(struct seq_file *seq, void *v)
3843 	__releases(RCU)
3844 {
3845 	rcu_read_unlock();
3846 }
3847 
3848 static int packet_seq_show(struct seq_file *seq, void *v)
3849 {
3850 	if (v == SEQ_START_TOKEN)
3851 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
3852 	else {
3853 		struct sock *s = sk_entry(v);
3854 		const struct packet_sock *po = pkt_sk(s);
3855 
3856 		seq_printf(seq,
3857 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
3858 			   s,
3859 			   atomic_read(&s->sk_refcnt),
3860 			   s->sk_type,
3861 			   ntohs(po->num),
3862 			   po->ifindex,
3863 			   po->running,
3864 			   atomic_read(&s->sk_rmem_alloc),
3865 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
3866 			   sock_i_ino(s));
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 static const struct seq_operations packet_seq_ops = {
3873 	.start	= packet_seq_start,
3874 	.next	= packet_seq_next,
3875 	.stop	= packet_seq_stop,
3876 	.show	= packet_seq_show,
3877 };
3878 
3879 static int packet_seq_open(struct inode *inode, struct file *file)
3880 {
3881 	return seq_open_net(inode, file, &packet_seq_ops,
3882 			    sizeof(struct seq_net_private));
3883 }
3884 
3885 static const struct file_operations packet_seq_fops = {
3886 	.owner		= THIS_MODULE,
3887 	.open		= packet_seq_open,
3888 	.read		= seq_read,
3889 	.llseek		= seq_lseek,
3890 	.release	= seq_release_net,
3891 };
3892 
3893 #endif
3894 
3895 static int __net_init packet_net_init(struct net *net)
3896 {
3897 	mutex_init(&net->packet.sklist_lock);
3898 	INIT_HLIST_HEAD(&net->packet.sklist);
3899 
3900 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
3901 		return -ENOMEM;
3902 
3903 	return 0;
3904 }
3905 
3906 static void __net_exit packet_net_exit(struct net *net)
3907 {
3908 	remove_proc_entry("packet", net->proc_net);
3909 }
3910 
3911 static struct pernet_operations packet_net_ops = {
3912 	.init = packet_net_init,
3913 	.exit = packet_net_exit,
3914 };
3915 
3916 
3917 static void __exit packet_exit(void)
3918 {
3919 	unregister_netdevice_notifier(&packet_netdev_notifier);
3920 	unregister_pernet_subsys(&packet_net_ops);
3921 	sock_unregister(PF_PACKET);
3922 	proto_unregister(&packet_proto);
3923 }
3924 
3925 static int __init packet_init(void)
3926 {
3927 	int rc = proto_register(&packet_proto, 0);
3928 
3929 	if (rc != 0)
3930 		goto out;
3931 
3932 	sock_register(&packet_family_ops);
3933 	register_pernet_subsys(&packet_net_ops);
3934 	register_netdevice_notifier(&packet_netdev_notifier);
3935 out:
3936 	return rc;
3937 }
3938 
3939 module_init(packet_init);
3940 module_exit(packet_exit);
3941 MODULE_LICENSE("GPL");
3942 MODULE_ALIAS_NETPROTO(PF_PACKET);
3943