1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb->tstamp, ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 1339 sk_refcnt_debug_dec(sk); 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = prandom_u32() % ROLLOVER_HLEN; 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return prandom_u32_max(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1414 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1415 if (i != j) 1416 po->rollover->sock = i; 1417 atomic_long_inc(&po->rollover->num); 1418 if (room == ROOM_LOW) 1419 atomic_long_inc(&po->rollover->num_huge); 1420 return i; 1421 } 1422 1423 if (++i == num) 1424 i = 0; 1425 } while (i != j); 1426 1427 atomic_long_inc(&po->rollover->num_failed); 1428 return idx; 1429 } 1430 1431 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1432 struct sk_buff *skb, 1433 unsigned int num) 1434 { 1435 return skb_get_queue_mapping(skb) % num; 1436 } 1437 1438 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1439 struct sk_buff *skb, 1440 unsigned int num) 1441 { 1442 struct bpf_prog *prog; 1443 unsigned int ret = 0; 1444 1445 rcu_read_lock(); 1446 prog = rcu_dereference(f->bpf_prog); 1447 if (prog) 1448 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1449 rcu_read_unlock(); 1450 1451 return ret; 1452 } 1453 1454 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1455 { 1456 return f->flags & (flag >> 8); 1457 } 1458 1459 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1460 struct packet_type *pt, struct net_device *orig_dev) 1461 { 1462 struct packet_fanout *f = pt->af_packet_priv; 1463 unsigned int num = READ_ONCE(f->num_members); 1464 struct net *net = read_pnet(&f->net); 1465 struct packet_sock *po; 1466 unsigned int idx; 1467 1468 if (!net_eq(dev_net(dev), net) || !num) { 1469 kfree_skb(skb); 1470 return 0; 1471 } 1472 1473 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1474 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1475 if (!skb) 1476 return 0; 1477 } 1478 switch (f->type) { 1479 case PACKET_FANOUT_HASH: 1480 default: 1481 idx = fanout_demux_hash(f, skb, num); 1482 break; 1483 case PACKET_FANOUT_LB: 1484 idx = fanout_demux_lb(f, skb, num); 1485 break; 1486 case PACKET_FANOUT_CPU: 1487 idx = fanout_demux_cpu(f, skb, num); 1488 break; 1489 case PACKET_FANOUT_RND: 1490 idx = fanout_demux_rnd(f, skb, num); 1491 break; 1492 case PACKET_FANOUT_QM: 1493 idx = fanout_demux_qm(f, skb, num); 1494 break; 1495 case PACKET_FANOUT_ROLLOVER: 1496 idx = fanout_demux_rollover(f, skb, 0, false, num); 1497 break; 1498 case PACKET_FANOUT_CBPF: 1499 case PACKET_FANOUT_EBPF: 1500 idx = fanout_demux_bpf(f, skb, num); 1501 break; 1502 } 1503 1504 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1505 idx = fanout_demux_rollover(f, skb, idx, true, num); 1506 1507 po = pkt_sk(rcu_dereference(f->arr[idx])); 1508 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1509 } 1510 1511 DEFINE_MUTEX(fanout_mutex); 1512 EXPORT_SYMBOL_GPL(fanout_mutex); 1513 static LIST_HEAD(fanout_list); 1514 static u16 fanout_next_id; 1515 1516 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1517 { 1518 struct packet_fanout *f = po->fanout; 1519 1520 spin_lock(&f->lock); 1521 rcu_assign_pointer(f->arr[f->num_members], sk); 1522 smp_wmb(); 1523 f->num_members++; 1524 if (f->num_members == 1) 1525 dev_add_pack(&f->prot_hook); 1526 spin_unlock(&f->lock); 1527 } 1528 1529 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1530 { 1531 struct packet_fanout *f = po->fanout; 1532 int i; 1533 1534 spin_lock(&f->lock); 1535 for (i = 0; i < f->num_members; i++) { 1536 if (rcu_dereference_protected(f->arr[i], 1537 lockdep_is_held(&f->lock)) == sk) 1538 break; 1539 } 1540 BUG_ON(i >= f->num_members); 1541 rcu_assign_pointer(f->arr[i], 1542 rcu_dereference_protected(f->arr[f->num_members - 1], 1543 lockdep_is_held(&f->lock))); 1544 f->num_members--; 1545 if (f->num_members == 0) 1546 __dev_remove_pack(&f->prot_hook); 1547 spin_unlock(&f->lock); 1548 } 1549 1550 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1551 { 1552 if (sk->sk_family != PF_PACKET) 1553 return false; 1554 1555 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1556 } 1557 1558 static void fanout_init_data(struct packet_fanout *f) 1559 { 1560 switch (f->type) { 1561 case PACKET_FANOUT_LB: 1562 atomic_set(&f->rr_cur, 0); 1563 break; 1564 case PACKET_FANOUT_CBPF: 1565 case PACKET_FANOUT_EBPF: 1566 RCU_INIT_POINTER(f->bpf_prog, NULL); 1567 break; 1568 } 1569 } 1570 1571 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1572 { 1573 struct bpf_prog *old; 1574 1575 spin_lock(&f->lock); 1576 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1577 rcu_assign_pointer(f->bpf_prog, new); 1578 spin_unlock(&f->lock); 1579 1580 if (old) { 1581 synchronize_net(); 1582 bpf_prog_destroy(old); 1583 } 1584 } 1585 1586 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1587 unsigned int len) 1588 { 1589 struct bpf_prog *new; 1590 struct sock_fprog fprog; 1591 int ret; 1592 1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1594 return -EPERM; 1595 1596 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1597 if (ret) 1598 return ret; 1599 1600 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1601 if (ret) 1602 return ret; 1603 1604 __fanout_set_data_bpf(po->fanout, new); 1605 return 0; 1606 } 1607 1608 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1609 unsigned int len) 1610 { 1611 struct bpf_prog *new; 1612 u32 fd; 1613 1614 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1615 return -EPERM; 1616 if (len != sizeof(fd)) 1617 return -EINVAL; 1618 if (copy_from_sockptr(&fd, data, len)) 1619 return -EFAULT; 1620 1621 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1622 if (IS_ERR(new)) 1623 return PTR_ERR(new); 1624 1625 __fanout_set_data_bpf(po->fanout, new); 1626 return 0; 1627 } 1628 1629 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1630 unsigned int len) 1631 { 1632 switch (po->fanout->type) { 1633 case PACKET_FANOUT_CBPF: 1634 return fanout_set_data_cbpf(po, data, len); 1635 case PACKET_FANOUT_EBPF: 1636 return fanout_set_data_ebpf(po, data, len); 1637 default: 1638 return -EINVAL; 1639 } 1640 } 1641 1642 static void fanout_release_data(struct packet_fanout *f) 1643 { 1644 switch (f->type) { 1645 case PACKET_FANOUT_CBPF: 1646 case PACKET_FANOUT_EBPF: 1647 __fanout_set_data_bpf(f, NULL); 1648 } 1649 } 1650 1651 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1652 { 1653 struct packet_fanout *f; 1654 1655 list_for_each_entry(f, &fanout_list, list) { 1656 if (f->id == candidate_id && 1657 read_pnet(&f->net) == sock_net(sk)) { 1658 return false; 1659 } 1660 } 1661 return true; 1662 } 1663 1664 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1665 { 1666 u16 id = fanout_next_id; 1667 1668 do { 1669 if (__fanout_id_is_free(sk, id)) { 1670 *new_id = id; 1671 fanout_next_id = id + 1; 1672 return true; 1673 } 1674 1675 id++; 1676 } while (id != fanout_next_id); 1677 1678 return false; 1679 } 1680 1681 static int fanout_add(struct sock *sk, struct fanout_args *args) 1682 { 1683 struct packet_rollover *rollover = NULL; 1684 struct packet_sock *po = pkt_sk(sk); 1685 u16 type_flags = args->type_flags; 1686 struct packet_fanout *f, *match; 1687 u8 type = type_flags & 0xff; 1688 u8 flags = type_flags >> 8; 1689 u16 id = args->id; 1690 int err; 1691 1692 switch (type) { 1693 case PACKET_FANOUT_ROLLOVER: 1694 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1695 return -EINVAL; 1696 break; 1697 case PACKET_FANOUT_HASH: 1698 case PACKET_FANOUT_LB: 1699 case PACKET_FANOUT_CPU: 1700 case PACKET_FANOUT_RND: 1701 case PACKET_FANOUT_QM: 1702 case PACKET_FANOUT_CBPF: 1703 case PACKET_FANOUT_EBPF: 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 mutex_lock(&fanout_mutex); 1710 1711 err = -EALREADY; 1712 if (po->fanout) 1713 goto out; 1714 1715 if (type == PACKET_FANOUT_ROLLOVER || 1716 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1717 err = -ENOMEM; 1718 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1719 if (!rollover) 1720 goto out; 1721 atomic_long_set(&rollover->num, 0); 1722 atomic_long_set(&rollover->num_huge, 0); 1723 atomic_long_set(&rollover->num_failed, 0); 1724 } 1725 1726 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1727 if (id != 0) { 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 if (!fanout_find_new_id(sk, &id)) { 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 /* ephemeral flag for the first socket in the group: drop it */ 1736 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1737 } 1738 1739 match = NULL; 1740 list_for_each_entry(f, &fanout_list, list) { 1741 if (f->id == id && 1742 read_pnet(&f->net) == sock_net(sk)) { 1743 match = f; 1744 break; 1745 } 1746 } 1747 err = -EINVAL; 1748 if (match) { 1749 if (match->flags != flags) 1750 goto out; 1751 if (args->max_num_members && 1752 args->max_num_members != match->max_num_members) 1753 goto out; 1754 } else { 1755 if (args->max_num_members > PACKET_FANOUT_MAX) 1756 goto out; 1757 if (!args->max_num_members) 1758 /* legacy PACKET_FANOUT_MAX */ 1759 args->max_num_members = 256; 1760 err = -ENOMEM; 1761 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1762 GFP_KERNEL); 1763 if (!match) 1764 goto out; 1765 write_pnet(&match->net, sock_net(sk)); 1766 match->id = id; 1767 match->type = type; 1768 match->flags = flags; 1769 INIT_LIST_HEAD(&match->list); 1770 spin_lock_init(&match->lock); 1771 refcount_set(&match->sk_ref, 0); 1772 fanout_init_data(match); 1773 match->prot_hook.type = po->prot_hook.type; 1774 match->prot_hook.dev = po->prot_hook.dev; 1775 match->prot_hook.func = packet_rcv_fanout; 1776 match->prot_hook.af_packet_priv = match; 1777 match->prot_hook.af_packet_net = read_pnet(&match->net); 1778 match->prot_hook.id_match = match_fanout_group; 1779 match->max_num_members = args->max_num_members; 1780 list_add(&match->list, &fanout_list); 1781 } 1782 err = -EINVAL; 1783 1784 spin_lock(&po->bind_lock); 1785 if (po->running && 1786 match->type == type && 1787 match->prot_hook.type == po->prot_hook.type && 1788 match->prot_hook.dev == po->prot_hook.dev) { 1789 err = -ENOSPC; 1790 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1791 __dev_remove_pack(&po->prot_hook); 1792 1793 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1794 WRITE_ONCE(po->fanout, match); 1795 1796 po->rollover = rollover; 1797 rollover = NULL; 1798 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1799 __fanout_link(sk, po); 1800 err = 0; 1801 } 1802 } 1803 spin_unlock(&po->bind_lock); 1804 1805 if (err && !refcount_read(&match->sk_ref)) { 1806 list_del(&match->list); 1807 kvfree(match); 1808 } 1809 1810 out: 1811 kfree(rollover); 1812 mutex_unlock(&fanout_mutex); 1813 return err; 1814 } 1815 1816 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1817 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1818 * It is the responsibility of the caller to call fanout_release_data() and 1819 * free the returned packet_fanout (after synchronize_net()) 1820 */ 1821 static struct packet_fanout *fanout_release(struct sock *sk) 1822 { 1823 struct packet_sock *po = pkt_sk(sk); 1824 struct packet_fanout *f; 1825 1826 mutex_lock(&fanout_mutex); 1827 f = po->fanout; 1828 if (f) { 1829 po->fanout = NULL; 1830 1831 if (refcount_dec_and_test(&f->sk_ref)) 1832 list_del(&f->list); 1833 else 1834 f = NULL; 1835 } 1836 mutex_unlock(&fanout_mutex); 1837 1838 return f; 1839 } 1840 1841 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1842 struct sk_buff *skb) 1843 { 1844 /* Earlier code assumed this would be a VLAN pkt, double-check 1845 * this now that we have the actual packet in hand. We can only 1846 * do this check on Ethernet devices. 1847 */ 1848 if (unlikely(dev->type != ARPHRD_ETHER)) 1849 return false; 1850 1851 skb_reset_mac_header(skb); 1852 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1853 } 1854 1855 static const struct proto_ops packet_ops; 1856 1857 static const struct proto_ops packet_ops_spkt; 1858 1859 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1860 struct packet_type *pt, struct net_device *orig_dev) 1861 { 1862 struct sock *sk; 1863 struct sockaddr_pkt *spkt; 1864 1865 /* 1866 * When we registered the protocol we saved the socket in the data 1867 * field for just this event. 1868 */ 1869 1870 sk = pt->af_packet_priv; 1871 1872 /* 1873 * Yank back the headers [hope the device set this 1874 * right or kerboom...] 1875 * 1876 * Incoming packets have ll header pulled, 1877 * push it back. 1878 * 1879 * For outgoing ones skb->data == skb_mac_header(skb) 1880 * so that this procedure is noop. 1881 */ 1882 1883 if (skb->pkt_type == PACKET_LOOPBACK) 1884 goto out; 1885 1886 if (!net_eq(dev_net(dev), sock_net(sk))) 1887 goto out; 1888 1889 skb = skb_share_check(skb, GFP_ATOMIC); 1890 if (skb == NULL) 1891 goto oom; 1892 1893 /* drop any routing info */ 1894 skb_dst_drop(skb); 1895 1896 /* drop conntrack reference */ 1897 nf_reset_ct(skb); 1898 1899 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1900 1901 skb_push(skb, skb->data - skb_mac_header(skb)); 1902 1903 /* 1904 * The SOCK_PACKET socket receives _all_ frames. 1905 */ 1906 1907 spkt->spkt_family = dev->type; 1908 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1909 spkt->spkt_protocol = skb->protocol; 1910 1911 /* 1912 * Charge the memory to the socket. This is done specifically 1913 * to prevent sockets using all the memory up. 1914 */ 1915 1916 if (sock_queue_rcv_skb(sk, skb) == 0) 1917 return 0; 1918 1919 out: 1920 kfree_skb(skb); 1921 oom: 1922 return 0; 1923 } 1924 1925 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1926 { 1927 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1928 sock->type == SOCK_RAW) { 1929 skb_reset_mac_header(skb); 1930 skb->protocol = dev_parse_header_protocol(skb); 1931 } 1932 1933 skb_probe_transport_header(skb); 1934 } 1935 1936 /* 1937 * Output a raw packet to a device layer. This bypasses all the other 1938 * protocol layers and you must therefore supply it with a complete frame 1939 */ 1940 1941 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1942 size_t len) 1943 { 1944 struct sock *sk = sock->sk; 1945 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1946 struct sk_buff *skb = NULL; 1947 struct net_device *dev; 1948 struct sockcm_cookie sockc; 1949 __be16 proto = 0; 1950 int err; 1951 int extra_len = 0; 1952 1953 /* 1954 * Get and verify the address. 1955 */ 1956 1957 if (saddr) { 1958 if (msg->msg_namelen < sizeof(struct sockaddr)) 1959 return -EINVAL; 1960 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1961 proto = saddr->spkt_protocol; 1962 } else 1963 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1964 1965 /* 1966 * Find the device first to size check it 1967 */ 1968 1969 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1970 retry: 1971 rcu_read_lock(); 1972 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1973 err = -ENODEV; 1974 if (dev == NULL) 1975 goto out_unlock; 1976 1977 err = -ENETDOWN; 1978 if (!(dev->flags & IFF_UP)) 1979 goto out_unlock; 1980 1981 /* 1982 * You may not queue a frame bigger than the mtu. This is the lowest level 1983 * raw protocol and you must do your own fragmentation at this level. 1984 */ 1985 1986 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1987 if (!netif_supports_nofcs(dev)) { 1988 err = -EPROTONOSUPPORT; 1989 goto out_unlock; 1990 } 1991 extra_len = 4; /* We're doing our own CRC */ 1992 } 1993 1994 err = -EMSGSIZE; 1995 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1996 goto out_unlock; 1997 1998 if (!skb) { 1999 size_t reserved = LL_RESERVED_SPACE(dev); 2000 int tlen = dev->needed_tailroom; 2001 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2002 2003 rcu_read_unlock(); 2004 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2005 if (skb == NULL) 2006 return -ENOBUFS; 2007 /* FIXME: Save some space for broken drivers that write a hard 2008 * header at transmission time by themselves. PPP is the notable 2009 * one here. This should really be fixed at the driver level. 2010 */ 2011 skb_reserve(skb, reserved); 2012 skb_reset_network_header(skb); 2013 2014 /* Try to align data part correctly */ 2015 if (hhlen) { 2016 skb->data -= hhlen; 2017 skb->tail -= hhlen; 2018 if (len < hhlen) 2019 skb_reset_network_header(skb); 2020 } 2021 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2022 if (err) 2023 goto out_free; 2024 goto retry; 2025 } 2026 2027 if (!dev_validate_header(dev, skb->data, len)) { 2028 err = -EINVAL; 2029 goto out_unlock; 2030 } 2031 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2032 !packet_extra_vlan_len_allowed(dev, skb)) { 2033 err = -EMSGSIZE; 2034 goto out_unlock; 2035 } 2036 2037 sockcm_init(&sockc, sk); 2038 if (msg->msg_controllen) { 2039 err = sock_cmsg_send(sk, msg, &sockc); 2040 if (unlikely(err)) 2041 goto out_unlock; 2042 } 2043 2044 skb->protocol = proto; 2045 skb->dev = dev; 2046 skb->priority = sk->sk_priority; 2047 skb->mark = sk->sk_mark; 2048 skb->tstamp = sockc.transmit_time; 2049 2050 skb_setup_tx_timestamp(skb, sockc.tsflags); 2051 2052 if (unlikely(extra_len == 4)) 2053 skb->no_fcs = 1; 2054 2055 packet_parse_headers(skb, sock); 2056 2057 dev_queue_xmit(skb); 2058 rcu_read_unlock(); 2059 return len; 2060 2061 out_unlock: 2062 rcu_read_unlock(); 2063 out_free: 2064 kfree_skb(skb); 2065 return err; 2066 } 2067 2068 static unsigned int run_filter(struct sk_buff *skb, 2069 const struct sock *sk, 2070 unsigned int res) 2071 { 2072 struct sk_filter *filter; 2073 2074 rcu_read_lock(); 2075 filter = rcu_dereference(sk->sk_filter); 2076 if (filter != NULL) 2077 res = bpf_prog_run_clear_cb(filter->prog, skb); 2078 rcu_read_unlock(); 2079 2080 return res; 2081 } 2082 2083 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2084 size_t *len) 2085 { 2086 struct virtio_net_hdr vnet_hdr; 2087 2088 if (*len < sizeof(vnet_hdr)) 2089 return -EINVAL; 2090 *len -= sizeof(vnet_hdr); 2091 2092 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2093 return -EINVAL; 2094 2095 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2096 } 2097 2098 /* 2099 * This function makes lazy skb cloning in hope that most of packets 2100 * are discarded by BPF. 2101 * 2102 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2103 * and skb->cb are mangled. It works because (and until) packets 2104 * falling here are owned by current CPU. Output packets are cloned 2105 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2106 * sequentially, so that if we return skb to original state on exit, 2107 * we will not harm anyone. 2108 */ 2109 2110 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2111 struct packet_type *pt, struct net_device *orig_dev) 2112 { 2113 struct sock *sk; 2114 struct sockaddr_ll *sll; 2115 struct packet_sock *po; 2116 u8 *skb_head = skb->data; 2117 int skb_len = skb->len; 2118 unsigned int snaplen, res; 2119 bool is_drop_n_account = false; 2120 2121 if (skb->pkt_type == PACKET_LOOPBACK) 2122 goto drop; 2123 2124 sk = pt->af_packet_priv; 2125 po = pkt_sk(sk); 2126 2127 if (!net_eq(dev_net(dev), sock_net(sk))) 2128 goto drop; 2129 2130 skb->dev = dev; 2131 2132 if (dev_has_header(dev)) { 2133 /* The device has an explicit notion of ll header, 2134 * exported to higher levels. 2135 * 2136 * Otherwise, the device hides details of its frame 2137 * structure, so that corresponding packet head is 2138 * never delivered to user. 2139 */ 2140 if (sk->sk_type != SOCK_DGRAM) 2141 skb_push(skb, skb->data - skb_mac_header(skb)); 2142 else if (skb->pkt_type == PACKET_OUTGOING) { 2143 /* Special case: outgoing packets have ll header at head */ 2144 skb_pull(skb, skb_network_offset(skb)); 2145 } 2146 } 2147 2148 snaplen = skb->len; 2149 2150 res = run_filter(skb, sk, snaplen); 2151 if (!res) 2152 goto drop_n_restore; 2153 if (snaplen > res) 2154 snaplen = res; 2155 2156 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2157 goto drop_n_acct; 2158 2159 if (skb_shared(skb)) { 2160 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2161 if (nskb == NULL) 2162 goto drop_n_acct; 2163 2164 if (skb_head != skb->data) { 2165 skb->data = skb_head; 2166 skb->len = skb_len; 2167 } 2168 consume_skb(skb); 2169 skb = nskb; 2170 } 2171 2172 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2173 2174 sll = &PACKET_SKB_CB(skb)->sa.ll; 2175 sll->sll_hatype = dev->type; 2176 sll->sll_pkttype = skb->pkt_type; 2177 if (unlikely(po->origdev)) 2178 sll->sll_ifindex = orig_dev->ifindex; 2179 else 2180 sll->sll_ifindex = dev->ifindex; 2181 2182 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2183 2184 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2185 * Use their space for storing the original skb length. 2186 */ 2187 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2188 2189 if (pskb_trim(skb, snaplen)) 2190 goto drop_n_acct; 2191 2192 skb_set_owner_r(skb, sk); 2193 skb->dev = NULL; 2194 skb_dst_drop(skb); 2195 2196 /* drop conntrack reference */ 2197 nf_reset_ct(skb); 2198 2199 spin_lock(&sk->sk_receive_queue.lock); 2200 po->stats.stats1.tp_packets++; 2201 sock_skb_set_dropcount(sk, skb); 2202 __skb_queue_tail(&sk->sk_receive_queue, skb); 2203 spin_unlock(&sk->sk_receive_queue.lock); 2204 sk->sk_data_ready(sk); 2205 return 0; 2206 2207 drop_n_acct: 2208 is_drop_n_account = true; 2209 atomic_inc(&po->tp_drops); 2210 atomic_inc(&sk->sk_drops); 2211 2212 drop_n_restore: 2213 if (skb_head != skb->data && skb_shared(skb)) { 2214 skb->data = skb_head; 2215 skb->len = skb_len; 2216 } 2217 drop: 2218 if (!is_drop_n_account) 2219 consume_skb(skb); 2220 else 2221 kfree_skb(skb); 2222 return 0; 2223 } 2224 2225 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2226 struct packet_type *pt, struct net_device *orig_dev) 2227 { 2228 struct sock *sk; 2229 struct packet_sock *po; 2230 struct sockaddr_ll *sll; 2231 union tpacket_uhdr h; 2232 u8 *skb_head = skb->data; 2233 int skb_len = skb->len; 2234 unsigned int snaplen, res; 2235 unsigned long status = TP_STATUS_USER; 2236 unsigned short macoff, hdrlen; 2237 unsigned int netoff; 2238 struct sk_buff *copy_skb = NULL; 2239 struct timespec64 ts; 2240 __u32 ts_status; 2241 bool is_drop_n_account = false; 2242 unsigned int slot_id = 0; 2243 bool do_vnet = false; 2244 2245 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2246 * We may add members to them until current aligned size without forcing 2247 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2248 */ 2249 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2250 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2251 2252 if (skb->pkt_type == PACKET_LOOPBACK) 2253 goto drop; 2254 2255 sk = pt->af_packet_priv; 2256 po = pkt_sk(sk); 2257 2258 if (!net_eq(dev_net(dev), sock_net(sk))) 2259 goto drop; 2260 2261 if (dev_has_header(dev)) { 2262 if (sk->sk_type != SOCK_DGRAM) 2263 skb_push(skb, skb->data - skb_mac_header(skb)); 2264 else if (skb->pkt_type == PACKET_OUTGOING) { 2265 /* Special case: outgoing packets have ll header at head */ 2266 skb_pull(skb, skb_network_offset(skb)); 2267 } 2268 } 2269 2270 snaplen = skb->len; 2271 2272 res = run_filter(skb, sk, snaplen); 2273 if (!res) 2274 goto drop_n_restore; 2275 2276 /* If we are flooded, just give up */ 2277 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2278 atomic_inc(&po->tp_drops); 2279 goto drop_n_restore; 2280 } 2281 2282 if (skb->ip_summed == CHECKSUM_PARTIAL) 2283 status |= TP_STATUS_CSUMNOTREADY; 2284 else if (skb->pkt_type != PACKET_OUTGOING && 2285 (skb->ip_summed == CHECKSUM_COMPLETE || 2286 skb_csum_unnecessary(skb))) 2287 status |= TP_STATUS_CSUM_VALID; 2288 2289 if (snaplen > res) 2290 snaplen = res; 2291 2292 if (sk->sk_type == SOCK_DGRAM) { 2293 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2294 po->tp_reserve; 2295 } else { 2296 unsigned int maclen = skb_network_offset(skb); 2297 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2298 (maclen < 16 ? 16 : maclen)) + 2299 po->tp_reserve; 2300 if (po->has_vnet_hdr) { 2301 netoff += sizeof(struct virtio_net_hdr); 2302 do_vnet = true; 2303 } 2304 macoff = netoff - maclen; 2305 } 2306 if (netoff > USHRT_MAX) { 2307 atomic_inc(&po->tp_drops); 2308 goto drop_n_restore; 2309 } 2310 if (po->tp_version <= TPACKET_V2) { 2311 if (macoff + snaplen > po->rx_ring.frame_size) { 2312 if (po->copy_thresh && 2313 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2314 if (skb_shared(skb)) { 2315 copy_skb = skb_clone(skb, GFP_ATOMIC); 2316 } else { 2317 copy_skb = skb_get(skb); 2318 skb_head = skb->data; 2319 } 2320 if (copy_skb) 2321 skb_set_owner_r(copy_skb, sk); 2322 } 2323 snaplen = po->rx_ring.frame_size - macoff; 2324 if ((int)snaplen < 0) { 2325 snaplen = 0; 2326 do_vnet = false; 2327 } 2328 } 2329 } else if (unlikely(macoff + snaplen > 2330 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2331 u32 nval; 2332 2333 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2334 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2335 snaplen, nval, macoff); 2336 snaplen = nval; 2337 if (unlikely((int)snaplen < 0)) { 2338 snaplen = 0; 2339 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2340 do_vnet = false; 2341 } 2342 } 2343 spin_lock(&sk->sk_receive_queue.lock); 2344 h.raw = packet_current_rx_frame(po, skb, 2345 TP_STATUS_KERNEL, (macoff+snaplen)); 2346 if (!h.raw) 2347 goto drop_n_account; 2348 2349 if (po->tp_version <= TPACKET_V2) { 2350 slot_id = po->rx_ring.head; 2351 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2352 goto drop_n_account; 2353 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2354 } 2355 2356 if (do_vnet && 2357 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2358 sizeof(struct virtio_net_hdr), 2359 vio_le(), true, 0)) { 2360 if (po->tp_version == TPACKET_V3) 2361 prb_clear_blk_fill_status(&po->rx_ring); 2362 goto drop_n_account; 2363 } 2364 2365 if (po->tp_version <= TPACKET_V2) { 2366 packet_increment_rx_head(po, &po->rx_ring); 2367 /* 2368 * LOSING will be reported till you read the stats, 2369 * because it's COR - Clear On Read. 2370 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2371 * at packet level. 2372 */ 2373 if (atomic_read(&po->tp_drops)) 2374 status |= TP_STATUS_LOSING; 2375 } 2376 2377 po->stats.stats1.tp_packets++; 2378 if (copy_skb) { 2379 status |= TP_STATUS_COPY; 2380 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2381 } 2382 spin_unlock(&sk->sk_receive_queue.lock); 2383 2384 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2385 2386 /* Always timestamp; prefer an existing software timestamp taken 2387 * closer to the time of capture. 2388 */ 2389 ts_status = tpacket_get_timestamp(skb, &ts, 2390 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2391 if (!ts_status) 2392 ktime_get_real_ts64(&ts); 2393 2394 status |= ts_status; 2395 2396 switch (po->tp_version) { 2397 case TPACKET_V1: 2398 h.h1->tp_len = skb->len; 2399 h.h1->tp_snaplen = snaplen; 2400 h.h1->tp_mac = macoff; 2401 h.h1->tp_net = netoff; 2402 h.h1->tp_sec = ts.tv_sec; 2403 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2404 hdrlen = sizeof(*h.h1); 2405 break; 2406 case TPACKET_V2: 2407 h.h2->tp_len = skb->len; 2408 h.h2->tp_snaplen = snaplen; 2409 h.h2->tp_mac = macoff; 2410 h.h2->tp_net = netoff; 2411 h.h2->tp_sec = ts.tv_sec; 2412 h.h2->tp_nsec = ts.tv_nsec; 2413 if (skb_vlan_tag_present(skb)) { 2414 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2415 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2416 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2417 } else { 2418 h.h2->tp_vlan_tci = 0; 2419 h.h2->tp_vlan_tpid = 0; 2420 } 2421 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2422 hdrlen = sizeof(*h.h2); 2423 break; 2424 case TPACKET_V3: 2425 /* tp_nxt_offset,vlan are already populated above. 2426 * So DONT clear those fields here 2427 */ 2428 h.h3->tp_status |= status; 2429 h.h3->tp_len = skb->len; 2430 h.h3->tp_snaplen = snaplen; 2431 h.h3->tp_mac = macoff; 2432 h.h3->tp_net = netoff; 2433 h.h3->tp_sec = ts.tv_sec; 2434 h.h3->tp_nsec = ts.tv_nsec; 2435 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2436 hdrlen = sizeof(*h.h3); 2437 break; 2438 default: 2439 BUG(); 2440 } 2441 2442 sll = h.raw + TPACKET_ALIGN(hdrlen); 2443 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2444 sll->sll_family = AF_PACKET; 2445 sll->sll_hatype = dev->type; 2446 sll->sll_protocol = skb->protocol; 2447 sll->sll_pkttype = skb->pkt_type; 2448 if (unlikely(po->origdev)) 2449 sll->sll_ifindex = orig_dev->ifindex; 2450 else 2451 sll->sll_ifindex = dev->ifindex; 2452 2453 smp_mb(); 2454 2455 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2456 if (po->tp_version <= TPACKET_V2) { 2457 u8 *start, *end; 2458 2459 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2460 macoff + snaplen); 2461 2462 for (start = h.raw; start < end; start += PAGE_SIZE) 2463 flush_dcache_page(pgv_to_page(start)); 2464 } 2465 smp_wmb(); 2466 #endif 2467 2468 if (po->tp_version <= TPACKET_V2) { 2469 spin_lock(&sk->sk_receive_queue.lock); 2470 __packet_set_status(po, h.raw, status); 2471 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2472 spin_unlock(&sk->sk_receive_queue.lock); 2473 sk->sk_data_ready(sk); 2474 } else if (po->tp_version == TPACKET_V3) { 2475 prb_clear_blk_fill_status(&po->rx_ring); 2476 } 2477 2478 drop_n_restore: 2479 if (skb_head != skb->data && skb_shared(skb)) { 2480 skb->data = skb_head; 2481 skb->len = skb_len; 2482 } 2483 drop: 2484 if (!is_drop_n_account) 2485 consume_skb(skb); 2486 else 2487 kfree_skb(skb); 2488 return 0; 2489 2490 drop_n_account: 2491 spin_unlock(&sk->sk_receive_queue.lock); 2492 atomic_inc(&po->tp_drops); 2493 is_drop_n_account = true; 2494 2495 sk->sk_data_ready(sk); 2496 kfree_skb(copy_skb); 2497 goto drop_n_restore; 2498 } 2499 2500 static void tpacket_destruct_skb(struct sk_buff *skb) 2501 { 2502 struct packet_sock *po = pkt_sk(skb->sk); 2503 2504 if (likely(po->tx_ring.pg_vec)) { 2505 void *ph; 2506 __u32 ts; 2507 2508 ph = skb_zcopy_get_nouarg(skb); 2509 packet_dec_pending(&po->tx_ring); 2510 2511 ts = __packet_set_timestamp(po, ph, skb); 2512 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2513 2514 if (!packet_read_pending(&po->tx_ring)) 2515 complete(&po->skb_completion); 2516 } 2517 2518 sock_wfree(skb); 2519 } 2520 2521 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2522 { 2523 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2524 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2525 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2526 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2527 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2528 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2529 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2530 2531 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2532 return -EINVAL; 2533 2534 return 0; 2535 } 2536 2537 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2538 struct virtio_net_hdr *vnet_hdr) 2539 { 2540 if (*len < sizeof(*vnet_hdr)) 2541 return -EINVAL; 2542 *len -= sizeof(*vnet_hdr); 2543 2544 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2545 return -EFAULT; 2546 2547 return __packet_snd_vnet_parse(vnet_hdr, *len); 2548 } 2549 2550 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2551 void *frame, struct net_device *dev, void *data, int tp_len, 2552 __be16 proto, unsigned char *addr, int hlen, int copylen, 2553 const struct sockcm_cookie *sockc) 2554 { 2555 union tpacket_uhdr ph; 2556 int to_write, offset, len, nr_frags, len_max; 2557 struct socket *sock = po->sk.sk_socket; 2558 struct page *page; 2559 int err; 2560 2561 ph.raw = frame; 2562 2563 skb->protocol = proto; 2564 skb->dev = dev; 2565 skb->priority = po->sk.sk_priority; 2566 skb->mark = po->sk.sk_mark; 2567 skb->tstamp = sockc->transmit_time; 2568 skb_setup_tx_timestamp(skb, sockc->tsflags); 2569 skb_zcopy_set_nouarg(skb, ph.raw); 2570 2571 skb_reserve(skb, hlen); 2572 skb_reset_network_header(skb); 2573 2574 to_write = tp_len; 2575 2576 if (sock->type == SOCK_DGRAM) { 2577 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2578 NULL, tp_len); 2579 if (unlikely(err < 0)) 2580 return -EINVAL; 2581 } else if (copylen) { 2582 int hdrlen = min_t(int, copylen, tp_len); 2583 2584 skb_push(skb, dev->hard_header_len); 2585 skb_put(skb, copylen - dev->hard_header_len); 2586 err = skb_store_bits(skb, 0, data, hdrlen); 2587 if (unlikely(err)) 2588 return err; 2589 if (!dev_validate_header(dev, skb->data, hdrlen)) 2590 return -EINVAL; 2591 2592 data += hdrlen; 2593 to_write -= hdrlen; 2594 } 2595 2596 offset = offset_in_page(data); 2597 len_max = PAGE_SIZE - offset; 2598 len = ((to_write > len_max) ? len_max : to_write); 2599 2600 skb->data_len = to_write; 2601 skb->len += to_write; 2602 skb->truesize += to_write; 2603 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2604 2605 while (likely(to_write)) { 2606 nr_frags = skb_shinfo(skb)->nr_frags; 2607 2608 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2609 pr_err("Packet exceed the number of skb frags(%lu)\n", 2610 MAX_SKB_FRAGS); 2611 return -EFAULT; 2612 } 2613 2614 page = pgv_to_page(data); 2615 data += len; 2616 flush_dcache_page(page); 2617 get_page(page); 2618 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2619 to_write -= len; 2620 offset = 0; 2621 len_max = PAGE_SIZE; 2622 len = ((to_write > len_max) ? len_max : to_write); 2623 } 2624 2625 packet_parse_headers(skb, sock); 2626 2627 return tp_len; 2628 } 2629 2630 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2631 int size_max, void **data) 2632 { 2633 union tpacket_uhdr ph; 2634 int tp_len, off; 2635 2636 ph.raw = frame; 2637 2638 switch (po->tp_version) { 2639 case TPACKET_V3: 2640 if (ph.h3->tp_next_offset != 0) { 2641 pr_warn_once("variable sized slot not supported"); 2642 return -EINVAL; 2643 } 2644 tp_len = ph.h3->tp_len; 2645 break; 2646 case TPACKET_V2: 2647 tp_len = ph.h2->tp_len; 2648 break; 2649 default: 2650 tp_len = ph.h1->tp_len; 2651 break; 2652 } 2653 if (unlikely(tp_len > size_max)) { 2654 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2655 return -EMSGSIZE; 2656 } 2657 2658 if (unlikely(po->tp_tx_has_off)) { 2659 int off_min, off_max; 2660 2661 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2662 off_max = po->tx_ring.frame_size - tp_len; 2663 if (po->sk.sk_type == SOCK_DGRAM) { 2664 switch (po->tp_version) { 2665 case TPACKET_V3: 2666 off = ph.h3->tp_net; 2667 break; 2668 case TPACKET_V2: 2669 off = ph.h2->tp_net; 2670 break; 2671 default: 2672 off = ph.h1->tp_net; 2673 break; 2674 } 2675 } else { 2676 switch (po->tp_version) { 2677 case TPACKET_V3: 2678 off = ph.h3->tp_mac; 2679 break; 2680 case TPACKET_V2: 2681 off = ph.h2->tp_mac; 2682 break; 2683 default: 2684 off = ph.h1->tp_mac; 2685 break; 2686 } 2687 } 2688 if (unlikely((off < off_min) || (off_max < off))) 2689 return -EINVAL; 2690 } else { 2691 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2692 } 2693 2694 *data = frame + off; 2695 return tp_len; 2696 } 2697 2698 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2699 { 2700 struct sk_buff *skb = NULL; 2701 struct net_device *dev; 2702 struct virtio_net_hdr *vnet_hdr = NULL; 2703 struct sockcm_cookie sockc; 2704 __be16 proto; 2705 int err, reserve = 0; 2706 void *ph; 2707 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2708 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2709 unsigned char *addr = NULL; 2710 int tp_len, size_max; 2711 void *data; 2712 int len_sum = 0; 2713 int status = TP_STATUS_AVAILABLE; 2714 int hlen, tlen, copylen = 0; 2715 long timeo = 0; 2716 2717 mutex_lock(&po->pg_vec_lock); 2718 2719 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2720 * we need to confirm it under protection of pg_vec_lock. 2721 */ 2722 if (unlikely(!po->tx_ring.pg_vec)) { 2723 err = -EBUSY; 2724 goto out; 2725 } 2726 if (likely(saddr == NULL)) { 2727 dev = packet_cached_dev_get(po); 2728 proto = READ_ONCE(po->num); 2729 } else { 2730 err = -EINVAL; 2731 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2732 goto out; 2733 if (msg->msg_namelen < (saddr->sll_halen 2734 + offsetof(struct sockaddr_ll, 2735 sll_addr))) 2736 goto out; 2737 proto = saddr->sll_protocol; 2738 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2739 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2740 if (dev && msg->msg_namelen < dev->addr_len + 2741 offsetof(struct sockaddr_ll, sll_addr)) 2742 goto out_put; 2743 addr = saddr->sll_addr; 2744 } 2745 } 2746 2747 err = -ENXIO; 2748 if (unlikely(dev == NULL)) 2749 goto out; 2750 err = -ENETDOWN; 2751 if (unlikely(!(dev->flags & IFF_UP))) 2752 goto out_put; 2753 2754 sockcm_init(&sockc, &po->sk); 2755 if (msg->msg_controllen) { 2756 err = sock_cmsg_send(&po->sk, msg, &sockc); 2757 if (unlikely(err)) 2758 goto out_put; 2759 } 2760 2761 if (po->sk.sk_socket->type == SOCK_RAW) 2762 reserve = dev->hard_header_len; 2763 size_max = po->tx_ring.frame_size 2764 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2765 2766 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2767 size_max = dev->mtu + reserve + VLAN_HLEN; 2768 2769 reinit_completion(&po->skb_completion); 2770 2771 do { 2772 ph = packet_current_frame(po, &po->tx_ring, 2773 TP_STATUS_SEND_REQUEST); 2774 if (unlikely(ph == NULL)) { 2775 if (need_wait && skb) { 2776 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2777 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2778 if (timeo <= 0) { 2779 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2780 goto out_put; 2781 } 2782 } 2783 /* check for additional frames */ 2784 continue; 2785 } 2786 2787 skb = NULL; 2788 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2789 if (tp_len < 0) 2790 goto tpacket_error; 2791 2792 status = TP_STATUS_SEND_REQUEST; 2793 hlen = LL_RESERVED_SPACE(dev); 2794 tlen = dev->needed_tailroom; 2795 if (po->has_vnet_hdr) { 2796 vnet_hdr = data; 2797 data += sizeof(*vnet_hdr); 2798 tp_len -= sizeof(*vnet_hdr); 2799 if (tp_len < 0 || 2800 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2801 tp_len = -EINVAL; 2802 goto tpacket_error; 2803 } 2804 copylen = __virtio16_to_cpu(vio_le(), 2805 vnet_hdr->hdr_len); 2806 } 2807 copylen = max_t(int, copylen, dev->hard_header_len); 2808 skb = sock_alloc_send_skb(&po->sk, 2809 hlen + tlen + sizeof(struct sockaddr_ll) + 2810 (copylen - dev->hard_header_len), 2811 !need_wait, &err); 2812 2813 if (unlikely(skb == NULL)) { 2814 /* we assume the socket was initially writeable ... */ 2815 if (likely(len_sum > 0)) 2816 err = len_sum; 2817 goto out_status; 2818 } 2819 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2820 addr, hlen, copylen, &sockc); 2821 if (likely(tp_len >= 0) && 2822 tp_len > dev->mtu + reserve && 2823 !po->has_vnet_hdr && 2824 !packet_extra_vlan_len_allowed(dev, skb)) 2825 tp_len = -EMSGSIZE; 2826 2827 if (unlikely(tp_len < 0)) { 2828 tpacket_error: 2829 if (po->tp_loss) { 2830 __packet_set_status(po, ph, 2831 TP_STATUS_AVAILABLE); 2832 packet_increment_head(&po->tx_ring); 2833 kfree_skb(skb); 2834 continue; 2835 } else { 2836 status = TP_STATUS_WRONG_FORMAT; 2837 err = tp_len; 2838 goto out_status; 2839 } 2840 } 2841 2842 if (po->has_vnet_hdr) { 2843 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2844 tp_len = -EINVAL; 2845 goto tpacket_error; 2846 } 2847 virtio_net_hdr_set_proto(skb, vnet_hdr); 2848 } 2849 2850 skb->destructor = tpacket_destruct_skb; 2851 __packet_set_status(po, ph, TP_STATUS_SENDING); 2852 packet_inc_pending(&po->tx_ring); 2853 2854 status = TP_STATUS_SEND_REQUEST; 2855 err = po->xmit(skb); 2856 if (unlikely(err > 0)) { 2857 err = net_xmit_errno(err); 2858 if (err && __packet_get_status(po, ph) == 2859 TP_STATUS_AVAILABLE) { 2860 /* skb was destructed already */ 2861 skb = NULL; 2862 goto out_status; 2863 } 2864 /* 2865 * skb was dropped but not destructed yet; 2866 * let's treat it like congestion or err < 0 2867 */ 2868 err = 0; 2869 } 2870 packet_increment_head(&po->tx_ring); 2871 len_sum += tp_len; 2872 } while (likely((ph != NULL) || 2873 /* Note: packet_read_pending() might be slow if we have 2874 * to call it as it's per_cpu variable, but in fast-path 2875 * we already short-circuit the loop with the first 2876 * condition, and luckily don't have to go that path 2877 * anyway. 2878 */ 2879 (need_wait && packet_read_pending(&po->tx_ring)))); 2880 2881 err = len_sum; 2882 goto out_put; 2883 2884 out_status: 2885 __packet_set_status(po, ph, status); 2886 kfree_skb(skb); 2887 out_put: 2888 dev_put(dev); 2889 out: 2890 mutex_unlock(&po->pg_vec_lock); 2891 return err; 2892 } 2893 2894 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2895 size_t reserve, size_t len, 2896 size_t linear, int noblock, 2897 int *err) 2898 { 2899 struct sk_buff *skb; 2900 2901 /* Under a page? Don't bother with paged skb. */ 2902 if (prepad + len < PAGE_SIZE || !linear) 2903 linear = len; 2904 2905 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2906 err, 0); 2907 if (!skb) 2908 return NULL; 2909 2910 skb_reserve(skb, reserve); 2911 skb_put(skb, linear); 2912 skb->data_len = len - linear; 2913 skb->len += len - linear; 2914 2915 return skb; 2916 } 2917 2918 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2919 { 2920 struct sock *sk = sock->sk; 2921 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2922 struct sk_buff *skb; 2923 struct net_device *dev; 2924 __be16 proto; 2925 unsigned char *addr = NULL; 2926 int err, reserve = 0; 2927 struct sockcm_cookie sockc; 2928 struct virtio_net_hdr vnet_hdr = { 0 }; 2929 int offset = 0; 2930 struct packet_sock *po = pkt_sk(sk); 2931 bool has_vnet_hdr = false; 2932 int hlen, tlen, linear; 2933 int extra_len = 0; 2934 2935 /* 2936 * Get and verify the address. 2937 */ 2938 2939 if (likely(saddr == NULL)) { 2940 dev = packet_cached_dev_get(po); 2941 proto = READ_ONCE(po->num); 2942 } else { 2943 err = -EINVAL; 2944 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2945 goto out; 2946 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2947 goto out; 2948 proto = saddr->sll_protocol; 2949 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2950 if (sock->type == SOCK_DGRAM) { 2951 if (dev && msg->msg_namelen < dev->addr_len + 2952 offsetof(struct sockaddr_ll, sll_addr)) 2953 goto out_unlock; 2954 addr = saddr->sll_addr; 2955 } 2956 } 2957 2958 err = -ENXIO; 2959 if (unlikely(dev == NULL)) 2960 goto out_unlock; 2961 err = -ENETDOWN; 2962 if (unlikely(!(dev->flags & IFF_UP))) 2963 goto out_unlock; 2964 2965 sockcm_init(&sockc, sk); 2966 sockc.mark = sk->sk_mark; 2967 if (msg->msg_controllen) { 2968 err = sock_cmsg_send(sk, msg, &sockc); 2969 if (unlikely(err)) 2970 goto out_unlock; 2971 } 2972 2973 if (sock->type == SOCK_RAW) 2974 reserve = dev->hard_header_len; 2975 if (po->has_vnet_hdr) { 2976 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2977 if (err) 2978 goto out_unlock; 2979 has_vnet_hdr = true; 2980 } 2981 2982 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2983 if (!netif_supports_nofcs(dev)) { 2984 err = -EPROTONOSUPPORT; 2985 goto out_unlock; 2986 } 2987 extra_len = 4; /* We're doing our own CRC */ 2988 } 2989 2990 err = -EMSGSIZE; 2991 if (!vnet_hdr.gso_type && 2992 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2993 goto out_unlock; 2994 2995 err = -ENOBUFS; 2996 hlen = LL_RESERVED_SPACE(dev); 2997 tlen = dev->needed_tailroom; 2998 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2999 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3000 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3001 msg->msg_flags & MSG_DONTWAIT, &err); 3002 if (skb == NULL) 3003 goto out_unlock; 3004 3005 skb_reset_network_header(skb); 3006 3007 err = -EINVAL; 3008 if (sock->type == SOCK_DGRAM) { 3009 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3010 if (unlikely(offset < 0)) 3011 goto out_free; 3012 } else if (reserve) { 3013 skb_reserve(skb, -reserve); 3014 if (len < reserve + sizeof(struct ipv6hdr) && 3015 dev->min_header_len != dev->hard_header_len) 3016 skb_reset_network_header(skb); 3017 } 3018 3019 /* Returns -EFAULT on error */ 3020 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3021 if (err) 3022 goto out_free; 3023 3024 if (sock->type == SOCK_RAW && 3025 !dev_validate_header(dev, skb->data, len)) { 3026 err = -EINVAL; 3027 goto out_free; 3028 } 3029 3030 skb_setup_tx_timestamp(skb, sockc.tsflags); 3031 3032 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3033 !packet_extra_vlan_len_allowed(dev, skb)) { 3034 err = -EMSGSIZE; 3035 goto out_free; 3036 } 3037 3038 skb->protocol = proto; 3039 skb->dev = dev; 3040 skb->priority = sk->sk_priority; 3041 skb->mark = sockc.mark; 3042 skb->tstamp = sockc.transmit_time; 3043 3044 if (has_vnet_hdr) { 3045 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3046 if (err) 3047 goto out_free; 3048 len += sizeof(vnet_hdr); 3049 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3050 } 3051 3052 packet_parse_headers(skb, sock); 3053 3054 if (unlikely(extra_len == 4)) 3055 skb->no_fcs = 1; 3056 3057 err = po->xmit(skb); 3058 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3059 goto out_unlock; 3060 3061 dev_put(dev); 3062 3063 return len; 3064 3065 out_free: 3066 kfree_skb(skb); 3067 out_unlock: 3068 dev_put(dev); 3069 out: 3070 return err; 3071 } 3072 3073 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3074 { 3075 struct sock *sk = sock->sk; 3076 struct packet_sock *po = pkt_sk(sk); 3077 3078 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3079 * tpacket_snd() will redo the check safely. 3080 */ 3081 if (data_race(po->tx_ring.pg_vec)) 3082 return tpacket_snd(po, msg); 3083 3084 return packet_snd(sock, msg, len); 3085 } 3086 3087 /* 3088 * Close a PACKET socket. This is fairly simple. We immediately go 3089 * to 'closed' state and remove our protocol entry in the device list. 3090 */ 3091 3092 static int packet_release(struct socket *sock) 3093 { 3094 struct sock *sk = sock->sk; 3095 struct packet_sock *po; 3096 struct packet_fanout *f; 3097 struct net *net; 3098 union tpacket_req_u req_u; 3099 3100 if (!sk) 3101 return 0; 3102 3103 net = sock_net(sk); 3104 po = pkt_sk(sk); 3105 3106 mutex_lock(&net->packet.sklist_lock); 3107 sk_del_node_init_rcu(sk); 3108 mutex_unlock(&net->packet.sklist_lock); 3109 3110 sock_prot_inuse_add(net, sk->sk_prot, -1); 3111 3112 spin_lock(&po->bind_lock); 3113 unregister_prot_hook(sk, false); 3114 packet_cached_dev_reset(po); 3115 3116 if (po->prot_hook.dev) { 3117 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3118 po->prot_hook.dev = NULL; 3119 } 3120 spin_unlock(&po->bind_lock); 3121 3122 packet_flush_mclist(sk); 3123 3124 lock_sock(sk); 3125 if (po->rx_ring.pg_vec) { 3126 memset(&req_u, 0, sizeof(req_u)); 3127 packet_set_ring(sk, &req_u, 1, 0); 3128 } 3129 3130 if (po->tx_ring.pg_vec) { 3131 memset(&req_u, 0, sizeof(req_u)); 3132 packet_set_ring(sk, &req_u, 1, 1); 3133 } 3134 release_sock(sk); 3135 3136 f = fanout_release(sk); 3137 3138 synchronize_net(); 3139 3140 kfree(po->rollover); 3141 if (f) { 3142 fanout_release_data(f); 3143 kvfree(f); 3144 } 3145 /* 3146 * Now the socket is dead. No more input will appear. 3147 */ 3148 sock_orphan(sk); 3149 sock->sk = NULL; 3150 3151 /* Purge queues */ 3152 3153 skb_queue_purge(&sk->sk_receive_queue); 3154 packet_free_pending(po); 3155 sk_refcnt_debug_release(sk); 3156 3157 sock_put(sk); 3158 return 0; 3159 } 3160 3161 /* 3162 * Attach a packet hook. 3163 */ 3164 3165 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3166 __be16 proto) 3167 { 3168 struct packet_sock *po = pkt_sk(sk); 3169 struct net_device *dev = NULL; 3170 bool unlisted = false; 3171 bool need_rehook; 3172 int ret = 0; 3173 3174 lock_sock(sk); 3175 spin_lock(&po->bind_lock); 3176 rcu_read_lock(); 3177 3178 if (po->fanout) { 3179 ret = -EINVAL; 3180 goto out_unlock; 3181 } 3182 3183 if (name) { 3184 dev = dev_get_by_name_rcu(sock_net(sk), name); 3185 if (!dev) { 3186 ret = -ENODEV; 3187 goto out_unlock; 3188 } 3189 } else if (ifindex) { 3190 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3191 if (!dev) { 3192 ret = -ENODEV; 3193 goto out_unlock; 3194 } 3195 } 3196 3197 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3198 3199 if (need_rehook) { 3200 dev_hold(dev); 3201 if (po->running) { 3202 rcu_read_unlock(); 3203 /* prevents packet_notifier() from calling 3204 * register_prot_hook() 3205 */ 3206 WRITE_ONCE(po->num, 0); 3207 __unregister_prot_hook(sk, true); 3208 rcu_read_lock(); 3209 if (dev) 3210 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3211 dev->ifindex); 3212 } 3213 3214 BUG_ON(po->running); 3215 WRITE_ONCE(po->num, proto); 3216 po->prot_hook.type = proto; 3217 3218 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3219 3220 if (unlikely(unlisted)) { 3221 po->prot_hook.dev = NULL; 3222 WRITE_ONCE(po->ifindex, -1); 3223 packet_cached_dev_reset(po); 3224 } else { 3225 dev_hold_track(dev, &po->prot_hook.dev_tracker, 3226 GFP_ATOMIC); 3227 po->prot_hook.dev = dev; 3228 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3229 packet_cached_dev_assign(po, dev); 3230 } 3231 dev_put(dev); 3232 } 3233 3234 if (proto == 0 || !need_rehook) 3235 goto out_unlock; 3236 3237 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3238 register_prot_hook(sk); 3239 } else { 3240 sk->sk_err = ENETDOWN; 3241 if (!sock_flag(sk, SOCK_DEAD)) 3242 sk_error_report(sk); 3243 } 3244 3245 out_unlock: 3246 rcu_read_unlock(); 3247 spin_unlock(&po->bind_lock); 3248 release_sock(sk); 3249 return ret; 3250 } 3251 3252 /* 3253 * Bind a packet socket to a device 3254 */ 3255 3256 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3257 int addr_len) 3258 { 3259 struct sock *sk = sock->sk; 3260 char name[sizeof(uaddr->sa_data) + 1]; 3261 3262 /* 3263 * Check legality 3264 */ 3265 3266 if (addr_len != sizeof(struct sockaddr)) 3267 return -EINVAL; 3268 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3269 * zero-terminated. 3270 */ 3271 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3272 name[sizeof(uaddr->sa_data)] = 0; 3273 3274 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3275 } 3276 3277 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3278 { 3279 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3280 struct sock *sk = sock->sk; 3281 3282 /* 3283 * Check legality 3284 */ 3285 3286 if (addr_len < sizeof(struct sockaddr_ll)) 3287 return -EINVAL; 3288 if (sll->sll_family != AF_PACKET) 3289 return -EINVAL; 3290 3291 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3292 sll->sll_protocol ? : pkt_sk(sk)->num); 3293 } 3294 3295 static struct proto packet_proto = { 3296 .name = "PACKET", 3297 .owner = THIS_MODULE, 3298 .obj_size = sizeof(struct packet_sock), 3299 }; 3300 3301 /* 3302 * Create a packet of type SOCK_PACKET. 3303 */ 3304 3305 static int packet_create(struct net *net, struct socket *sock, int protocol, 3306 int kern) 3307 { 3308 struct sock *sk; 3309 struct packet_sock *po; 3310 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3311 int err; 3312 3313 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3314 return -EPERM; 3315 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3316 sock->type != SOCK_PACKET) 3317 return -ESOCKTNOSUPPORT; 3318 3319 sock->state = SS_UNCONNECTED; 3320 3321 err = -ENOBUFS; 3322 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3323 if (sk == NULL) 3324 goto out; 3325 3326 sock->ops = &packet_ops; 3327 if (sock->type == SOCK_PACKET) 3328 sock->ops = &packet_ops_spkt; 3329 3330 sock_init_data(sock, sk); 3331 3332 po = pkt_sk(sk); 3333 init_completion(&po->skb_completion); 3334 sk->sk_family = PF_PACKET; 3335 po->num = proto; 3336 po->xmit = dev_queue_xmit; 3337 3338 err = packet_alloc_pending(po); 3339 if (err) 3340 goto out2; 3341 3342 packet_cached_dev_reset(po); 3343 3344 sk->sk_destruct = packet_sock_destruct; 3345 sk_refcnt_debug_inc(sk); 3346 3347 /* 3348 * Attach a protocol block 3349 */ 3350 3351 spin_lock_init(&po->bind_lock); 3352 mutex_init(&po->pg_vec_lock); 3353 po->rollover = NULL; 3354 po->prot_hook.func = packet_rcv; 3355 3356 if (sock->type == SOCK_PACKET) 3357 po->prot_hook.func = packet_rcv_spkt; 3358 3359 po->prot_hook.af_packet_priv = sk; 3360 po->prot_hook.af_packet_net = sock_net(sk); 3361 3362 if (proto) { 3363 po->prot_hook.type = proto; 3364 __register_prot_hook(sk); 3365 } 3366 3367 mutex_lock(&net->packet.sklist_lock); 3368 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3369 mutex_unlock(&net->packet.sklist_lock); 3370 3371 sock_prot_inuse_add(net, &packet_proto, 1); 3372 3373 return 0; 3374 out2: 3375 sk_free(sk); 3376 out: 3377 return err; 3378 } 3379 3380 /* 3381 * Pull a packet from our receive queue and hand it to the user. 3382 * If necessary we block. 3383 */ 3384 3385 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3386 int flags) 3387 { 3388 struct sock *sk = sock->sk; 3389 struct sk_buff *skb; 3390 int copied, err; 3391 int vnet_hdr_len = 0; 3392 unsigned int origlen = 0; 3393 3394 err = -EINVAL; 3395 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3396 goto out; 3397 3398 #if 0 3399 /* What error should we return now? EUNATTACH? */ 3400 if (pkt_sk(sk)->ifindex < 0) 3401 return -ENODEV; 3402 #endif 3403 3404 if (flags & MSG_ERRQUEUE) { 3405 err = sock_recv_errqueue(sk, msg, len, 3406 SOL_PACKET, PACKET_TX_TIMESTAMP); 3407 goto out; 3408 } 3409 3410 /* 3411 * Call the generic datagram receiver. This handles all sorts 3412 * of horrible races and re-entrancy so we can forget about it 3413 * in the protocol layers. 3414 * 3415 * Now it will return ENETDOWN, if device have just gone down, 3416 * but then it will block. 3417 */ 3418 3419 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3420 3421 /* 3422 * An error occurred so return it. Because skb_recv_datagram() 3423 * handles the blocking we don't see and worry about blocking 3424 * retries. 3425 */ 3426 3427 if (skb == NULL) 3428 goto out; 3429 3430 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3431 3432 if (pkt_sk(sk)->has_vnet_hdr) { 3433 err = packet_rcv_vnet(msg, skb, &len); 3434 if (err) 3435 goto out_free; 3436 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3437 } 3438 3439 /* You lose any data beyond the buffer you gave. If it worries 3440 * a user program they can ask the device for its MTU 3441 * anyway. 3442 */ 3443 copied = skb->len; 3444 if (copied > len) { 3445 copied = len; 3446 msg->msg_flags |= MSG_TRUNC; 3447 } 3448 3449 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3450 if (err) 3451 goto out_free; 3452 3453 if (sock->type != SOCK_PACKET) { 3454 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3455 3456 /* Original length was stored in sockaddr_ll fields */ 3457 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3458 sll->sll_family = AF_PACKET; 3459 sll->sll_protocol = skb->protocol; 3460 } 3461 3462 sock_recv_ts_and_drops(msg, sk, skb); 3463 3464 if (msg->msg_name) { 3465 int copy_len; 3466 3467 /* If the address length field is there to be filled 3468 * in, we fill it in now. 3469 */ 3470 if (sock->type == SOCK_PACKET) { 3471 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3472 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3473 copy_len = msg->msg_namelen; 3474 } else { 3475 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3476 3477 msg->msg_namelen = sll->sll_halen + 3478 offsetof(struct sockaddr_ll, sll_addr); 3479 copy_len = msg->msg_namelen; 3480 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3481 memset(msg->msg_name + 3482 offsetof(struct sockaddr_ll, sll_addr), 3483 0, sizeof(sll->sll_addr)); 3484 msg->msg_namelen = sizeof(struct sockaddr_ll); 3485 } 3486 } 3487 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3488 } 3489 3490 if (pkt_sk(sk)->auxdata) { 3491 struct tpacket_auxdata aux; 3492 3493 aux.tp_status = TP_STATUS_USER; 3494 if (skb->ip_summed == CHECKSUM_PARTIAL) 3495 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3496 else if (skb->pkt_type != PACKET_OUTGOING && 3497 (skb->ip_summed == CHECKSUM_COMPLETE || 3498 skb_csum_unnecessary(skb))) 3499 aux.tp_status |= TP_STATUS_CSUM_VALID; 3500 3501 aux.tp_len = origlen; 3502 aux.tp_snaplen = skb->len; 3503 aux.tp_mac = 0; 3504 aux.tp_net = skb_network_offset(skb); 3505 if (skb_vlan_tag_present(skb)) { 3506 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3507 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3508 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3509 } else { 3510 aux.tp_vlan_tci = 0; 3511 aux.tp_vlan_tpid = 0; 3512 } 3513 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3514 } 3515 3516 /* 3517 * Free or return the buffer as appropriate. Again this 3518 * hides all the races and re-entrancy issues from us. 3519 */ 3520 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3521 3522 out_free: 3523 skb_free_datagram(sk, skb); 3524 out: 3525 return err; 3526 } 3527 3528 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3529 int peer) 3530 { 3531 struct net_device *dev; 3532 struct sock *sk = sock->sk; 3533 3534 if (peer) 3535 return -EOPNOTSUPP; 3536 3537 uaddr->sa_family = AF_PACKET; 3538 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3539 rcu_read_lock(); 3540 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3541 if (dev) 3542 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3543 rcu_read_unlock(); 3544 3545 return sizeof(*uaddr); 3546 } 3547 3548 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3549 int peer) 3550 { 3551 struct net_device *dev; 3552 struct sock *sk = sock->sk; 3553 struct packet_sock *po = pkt_sk(sk); 3554 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3555 int ifindex; 3556 3557 if (peer) 3558 return -EOPNOTSUPP; 3559 3560 ifindex = READ_ONCE(po->ifindex); 3561 sll->sll_family = AF_PACKET; 3562 sll->sll_ifindex = ifindex; 3563 sll->sll_protocol = READ_ONCE(po->num); 3564 sll->sll_pkttype = 0; 3565 rcu_read_lock(); 3566 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3567 if (dev) { 3568 sll->sll_hatype = dev->type; 3569 sll->sll_halen = dev->addr_len; 3570 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3571 } else { 3572 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3573 sll->sll_halen = 0; 3574 } 3575 rcu_read_unlock(); 3576 3577 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3578 } 3579 3580 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3581 int what) 3582 { 3583 switch (i->type) { 3584 case PACKET_MR_MULTICAST: 3585 if (i->alen != dev->addr_len) 3586 return -EINVAL; 3587 if (what > 0) 3588 return dev_mc_add(dev, i->addr); 3589 else 3590 return dev_mc_del(dev, i->addr); 3591 break; 3592 case PACKET_MR_PROMISC: 3593 return dev_set_promiscuity(dev, what); 3594 case PACKET_MR_ALLMULTI: 3595 return dev_set_allmulti(dev, what); 3596 case PACKET_MR_UNICAST: 3597 if (i->alen != dev->addr_len) 3598 return -EINVAL; 3599 if (what > 0) 3600 return dev_uc_add(dev, i->addr); 3601 else 3602 return dev_uc_del(dev, i->addr); 3603 break; 3604 default: 3605 break; 3606 } 3607 return 0; 3608 } 3609 3610 static void packet_dev_mclist_delete(struct net_device *dev, 3611 struct packet_mclist **mlp) 3612 { 3613 struct packet_mclist *ml; 3614 3615 while ((ml = *mlp) != NULL) { 3616 if (ml->ifindex == dev->ifindex) { 3617 packet_dev_mc(dev, ml, -1); 3618 *mlp = ml->next; 3619 kfree(ml); 3620 } else 3621 mlp = &ml->next; 3622 } 3623 } 3624 3625 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3626 { 3627 struct packet_sock *po = pkt_sk(sk); 3628 struct packet_mclist *ml, *i; 3629 struct net_device *dev; 3630 int err; 3631 3632 rtnl_lock(); 3633 3634 err = -ENODEV; 3635 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3636 if (!dev) 3637 goto done; 3638 3639 err = -EINVAL; 3640 if (mreq->mr_alen > dev->addr_len) 3641 goto done; 3642 3643 err = -ENOBUFS; 3644 i = kmalloc(sizeof(*i), GFP_KERNEL); 3645 if (i == NULL) 3646 goto done; 3647 3648 err = 0; 3649 for (ml = po->mclist; ml; ml = ml->next) { 3650 if (ml->ifindex == mreq->mr_ifindex && 3651 ml->type == mreq->mr_type && 3652 ml->alen == mreq->mr_alen && 3653 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3654 ml->count++; 3655 /* Free the new element ... */ 3656 kfree(i); 3657 goto done; 3658 } 3659 } 3660 3661 i->type = mreq->mr_type; 3662 i->ifindex = mreq->mr_ifindex; 3663 i->alen = mreq->mr_alen; 3664 memcpy(i->addr, mreq->mr_address, i->alen); 3665 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3666 i->count = 1; 3667 i->next = po->mclist; 3668 po->mclist = i; 3669 err = packet_dev_mc(dev, i, 1); 3670 if (err) { 3671 po->mclist = i->next; 3672 kfree(i); 3673 } 3674 3675 done: 3676 rtnl_unlock(); 3677 return err; 3678 } 3679 3680 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3681 { 3682 struct packet_mclist *ml, **mlp; 3683 3684 rtnl_lock(); 3685 3686 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3687 if (ml->ifindex == mreq->mr_ifindex && 3688 ml->type == mreq->mr_type && 3689 ml->alen == mreq->mr_alen && 3690 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3691 if (--ml->count == 0) { 3692 struct net_device *dev; 3693 *mlp = ml->next; 3694 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3695 if (dev) 3696 packet_dev_mc(dev, ml, -1); 3697 kfree(ml); 3698 } 3699 break; 3700 } 3701 } 3702 rtnl_unlock(); 3703 return 0; 3704 } 3705 3706 static void packet_flush_mclist(struct sock *sk) 3707 { 3708 struct packet_sock *po = pkt_sk(sk); 3709 struct packet_mclist *ml; 3710 3711 if (!po->mclist) 3712 return; 3713 3714 rtnl_lock(); 3715 while ((ml = po->mclist) != NULL) { 3716 struct net_device *dev; 3717 3718 po->mclist = ml->next; 3719 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3720 if (dev != NULL) 3721 packet_dev_mc(dev, ml, -1); 3722 kfree(ml); 3723 } 3724 rtnl_unlock(); 3725 } 3726 3727 static int 3728 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3729 unsigned int optlen) 3730 { 3731 struct sock *sk = sock->sk; 3732 struct packet_sock *po = pkt_sk(sk); 3733 int ret; 3734 3735 if (level != SOL_PACKET) 3736 return -ENOPROTOOPT; 3737 3738 switch (optname) { 3739 case PACKET_ADD_MEMBERSHIP: 3740 case PACKET_DROP_MEMBERSHIP: 3741 { 3742 struct packet_mreq_max mreq; 3743 int len = optlen; 3744 memset(&mreq, 0, sizeof(mreq)); 3745 if (len < sizeof(struct packet_mreq)) 3746 return -EINVAL; 3747 if (len > sizeof(mreq)) 3748 len = sizeof(mreq); 3749 if (copy_from_sockptr(&mreq, optval, len)) 3750 return -EFAULT; 3751 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3752 return -EINVAL; 3753 if (optname == PACKET_ADD_MEMBERSHIP) 3754 ret = packet_mc_add(sk, &mreq); 3755 else 3756 ret = packet_mc_drop(sk, &mreq); 3757 return ret; 3758 } 3759 3760 case PACKET_RX_RING: 3761 case PACKET_TX_RING: 3762 { 3763 union tpacket_req_u req_u; 3764 int len; 3765 3766 lock_sock(sk); 3767 switch (po->tp_version) { 3768 case TPACKET_V1: 3769 case TPACKET_V2: 3770 len = sizeof(req_u.req); 3771 break; 3772 case TPACKET_V3: 3773 default: 3774 len = sizeof(req_u.req3); 3775 break; 3776 } 3777 if (optlen < len) { 3778 ret = -EINVAL; 3779 } else { 3780 if (copy_from_sockptr(&req_u.req, optval, len)) 3781 ret = -EFAULT; 3782 else 3783 ret = packet_set_ring(sk, &req_u, 0, 3784 optname == PACKET_TX_RING); 3785 } 3786 release_sock(sk); 3787 return ret; 3788 } 3789 case PACKET_COPY_THRESH: 3790 { 3791 int val; 3792 3793 if (optlen != sizeof(val)) 3794 return -EINVAL; 3795 if (copy_from_sockptr(&val, optval, sizeof(val))) 3796 return -EFAULT; 3797 3798 pkt_sk(sk)->copy_thresh = val; 3799 return 0; 3800 } 3801 case PACKET_VERSION: 3802 { 3803 int val; 3804 3805 if (optlen != sizeof(val)) 3806 return -EINVAL; 3807 if (copy_from_sockptr(&val, optval, sizeof(val))) 3808 return -EFAULT; 3809 switch (val) { 3810 case TPACKET_V1: 3811 case TPACKET_V2: 3812 case TPACKET_V3: 3813 break; 3814 default: 3815 return -EINVAL; 3816 } 3817 lock_sock(sk); 3818 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3819 ret = -EBUSY; 3820 } else { 3821 po->tp_version = val; 3822 ret = 0; 3823 } 3824 release_sock(sk); 3825 return ret; 3826 } 3827 case PACKET_RESERVE: 3828 { 3829 unsigned int val; 3830 3831 if (optlen != sizeof(val)) 3832 return -EINVAL; 3833 if (copy_from_sockptr(&val, optval, sizeof(val))) 3834 return -EFAULT; 3835 if (val > INT_MAX) 3836 return -EINVAL; 3837 lock_sock(sk); 3838 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3839 ret = -EBUSY; 3840 } else { 3841 po->tp_reserve = val; 3842 ret = 0; 3843 } 3844 release_sock(sk); 3845 return ret; 3846 } 3847 case PACKET_LOSS: 3848 { 3849 unsigned int val; 3850 3851 if (optlen != sizeof(val)) 3852 return -EINVAL; 3853 if (copy_from_sockptr(&val, optval, sizeof(val))) 3854 return -EFAULT; 3855 3856 lock_sock(sk); 3857 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3858 ret = -EBUSY; 3859 } else { 3860 po->tp_loss = !!val; 3861 ret = 0; 3862 } 3863 release_sock(sk); 3864 return ret; 3865 } 3866 case PACKET_AUXDATA: 3867 { 3868 int val; 3869 3870 if (optlen < sizeof(val)) 3871 return -EINVAL; 3872 if (copy_from_sockptr(&val, optval, sizeof(val))) 3873 return -EFAULT; 3874 3875 lock_sock(sk); 3876 po->auxdata = !!val; 3877 release_sock(sk); 3878 return 0; 3879 } 3880 case PACKET_ORIGDEV: 3881 { 3882 int val; 3883 3884 if (optlen < sizeof(val)) 3885 return -EINVAL; 3886 if (copy_from_sockptr(&val, optval, sizeof(val))) 3887 return -EFAULT; 3888 3889 lock_sock(sk); 3890 po->origdev = !!val; 3891 release_sock(sk); 3892 return 0; 3893 } 3894 case PACKET_VNET_HDR: 3895 { 3896 int val; 3897 3898 if (sock->type != SOCK_RAW) 3899 return -EINVAL; 3900 if (optlen < sizeof(val)) 3901 return -EINVAL; 3902 if (copy_from_sockptr(&val, optval, sizeof(val))) 3903 return -EFAULT; 3904 3905 lock_sock(sk); 3906 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3907 ret = -EBUSY; 3908 } else { 3909 po->has_vnet_hdr = !!val; 3910 ret = 0; 3911 } 3912 release_sock(sk); 3913 return ret; 3914 } 3915 case PACKET_TIMESTAMP: 3916 { 3917 int val; 3918 3919 if (optlen != sizeof(val)) 3920 return -EINVAL; 3921 if (copy_from_sockptr(&val, optval, sizeof(val))) 3922 return -EFAULT; 3923 3924 po->tp_tstamp = val; 3925 return 0; 3926 } 3927 case PACKET_FANOUT: 3928 { 3929 struct fanout_args args = { 0 }; 3930 3931 if (optlen != sizeof(int) && optlen != sizeof(args)) 3932 return -EINVAL; 3933 if (copy_from_sockptr(&args, optval, optlen)) 3934 return -EFAULT; 3935 3936 return fanout_add(sk, &args); 3937 } 3938 case PACKET_FANOUT_DATA: 3939 { 3940 /* Paired with the WRITE_ONCE() in fanout_add() */ 3941 if (!READ_ONCE(po->fanout)) 3942 return -EINVAL; 3943 3944 return fanout_set_data(po, optval, optlen); 3945 } 3946 case PACKET_IGNORE_OUTGOING: 3947 { 3948 int val; 3949 3950 if (optlen != sizeof(val)) 3951 return -EINVAL; 3952 if (copy_from_sockptr(&val, optval, sizeof(val))) 3953 return -EFAULT; 3954 if (val < 0 || val > 1) 3955 return -EINVAL; 3956 3957 po->prot_hook.ignore_outgoing = !!val; 3958 return 0; 3959 } 3960 case PACKET_TX_HAS_OFF: 3961 { 3962 unsigned int val; 3963 3964 if (optlen != sizeof(val)) 3965 return -EINVAL; 3966 if (copy_from_sockptr(&val, optval, sizeof(val))) 3967 return -EFAULT; 3968 3969 lock_sock(sk); 3970 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3971 po->tp_tx_has_off = !!val; 3972 3973 release_sock(sk); 3974 return 0; 3975 } 3976 case PACKET_QDISC_BYPASS: 3977 { 3978 int val; 3979 3980 if (optlen != sizeof(val)) 3981 return -EINVAL; 3982 if (copy_from_sockptr(&val, optval, sizeof(val))) 3983 return -EFAULT; 3984 3985 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3986 return 0; 3987 } 3988 default: 3989 return -ENOPROTOOPT; 3990 } 3991 } 3992 3993 static int packet_getsockopt(struct socket *sock, int level, int optname, 3994 char __user *optval, int __user *optlen) 3995 { 3996 int len; 3997 int val, lv = sizeof(val); 3998 struct sock *sk = sock->sk; 3999 struct packet_sock *po = pkt_sk(sk); 4000 void *data = &val; 4001 union tpacket_stats_u st; 4002 struct tpacket_rollover_stats rstats; 4003 int drops; 4004 4005 if (level != SOL_PACKET) 4006 return -ENOPROTOOPT; 4007 4008 if (get_user(len, optlen)) 4009 return -EFAULT; 4010 4011 if (len < 0) 4012 return -EINVAL; 4013 4014 switch (optname) { 4015 case PACKET_STATISTICS: 4016 spin_lock_bh(&sk->sk_receive_queue.lock); 4017 memcpy(&st, &po->stats, sizeof(st)); 4018 memset(&po->stats, 0, sizeof(po->stats)); 4019 spin_unlock_bh(&sk->sk_receive_queue.lock); 4020 drops = atomic_xchg(&po->tp_drops, 0); 4021 4022 if (po->tp_version == TPACKET_V3) { 4023 lv = sizeof(struct tpacket_stats_v3); 4024 st.stats3.tp_drops = drops; 4025 st.stats3.tp_packets += drops; 4026 data = &st.stats3; 4027 } else { 4028 lv = sizeof(struct tpacket_stats); 4029 st.stats1.tp_drops = drops; 4030 st.stats1.tp_packets += drops; 4031 data = &st.stats1; 4032 } 4033 4034 break; 4035 case PACKET_AUXDATA: 4036 val = po->auxdata; 4037 break; 4038 case PACKET_ORIGDEV: 4039 val = po->origdev; 4040 break; 4041 case PACKET_VNET_HDR: 4042 val = po->has_vnet_hdr; 4043 break; 4044 case PACKET_VERSION: 4045 val = po->tp_version; 4046 break; 4047 case PACKET_HDRLEN: 4048 if (len > sizeof(int)) 4049 len = sizeof(int); 4050 if (len < sizeof(int)) 4051 return -EINVAL; 4052 if (copy_from_user(&val, optval, len)) 4053 return -EFAULT; 4054 switch (val) { 4055 case TPACKET_V1: 4056 val = sizeof(struct tpacket_hdr); 4057 break; 4058 case TPACKET_V2: 4059 val = sizeof(struct tpacket2_hdr); 4060 break; 4061 case TPACKET_V3: 4062 val = sizeof(struct tpacket3_hdr); 4063 break; 4064 default: 4065 return -EINVAL; 4066 } 4067 break; 4068 case PACKET_RESERVE: 4069 val = po->tp_reserve; 4070 break; 4071 case PACKET_LOSS: 4072 val = po->tp_loss; 4073 break; 4074 case PACKET_TIMESTAMP: 4075 val = po->tp_tstamp; 4076 break; 4077 case PACKET_FANOUT: 4078 val = (po->fanout ? 4079 ((u32)po->fanout->id | 4080 ((u32)po->fanout->type << 16) | 4081 ((u32)po->fanout->flags << 24)) : 4082 0); 4083 break; 4084 case PACKET_IGNORE_OUTGOING: 4085 val = po->prot_hook.ignore_outgoing; 4086 break; 4087 case PACKET_ROLLOVER_STATS: 4088 if (!po->rollover) 4089 return -EINVAL; 4090 rstats.tp_all = atomic_long_read(&po->rollover->num); 4091 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4092 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4093 data = &rstats; 4094 lv = sizeof(rstats); 4095 break; 4096 case PACKET_TX_HAS_OFF: 4097 val = po->tp_tx_has_off; 4098 break; 4099 case PACKET_QDISC_BYPASS: 4100 val = packet_use_direct_xmit(po); 4101 break; 4102 default: 4103 return -ENOPROTOOPT; 4104 } 4105 4106 if (len > lv) 4107 len = lv; 4108 if (put_user(len, optlen)) 4109 return -EFAULT; 4110 if (copy_to_user(optval, data, len)) 4111 return -EFAULT; 4112 return 0; 4113 } 4114 4115 static int packet_notifier(struct notifier_block *this, 4116 unsigned long msg, void *ptr) 4117 { 4118 struct sock *sk; 4119 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4120 struct net *net = dev_net(dev); 4121 4122 rcu_read_lock(); 4123 sk_for_each_rcu(sk, &net->packet.sklist) { 4124 struct packet_sock *po = pkt_sk(sk); 4125 4126 switch (msg) { 4127 case NETDEV_UNREGISTER: 4128 if (po->mclist) 4129 packet_dev_mclist_delete(dev, &po->mclist); 4130 fallthrough; 4131 4132 case NETDEV_DOWN: 4133 if (dev->ifindex == po->ifindex) { 4134 spin_lock(&po->bind_lock); 4135 if (po->running) { 4136 __unregister_prot_hook(sk, false); 4137 sk->sk_err = ENETDOWN; 4138 if (!sock_flag(sk, SOCK_DEAD)) 4139 sk_error_report(sk); 4140 } 4141 if (msg == NETDEV_UNREGISTER) { 4142 packet_cached_dev_reset(po); 4143 WRITE_ONCE(po->ifindex, -1); 4144 dev_put_track(po->prot_hook.dev, 4145 &po->prot_hook.dev_tracker); 4146 po->prot_hook.dev = NULL; 4147 } 4148 spin_unlock(&po->bind_lock); 4149 } 4150 break; 4151 case NETDEV_UP: 4152 if (dev->ifindex == po->ifindex) { 4153 spin_lock(&po->bind_lock); 4154 if (po->num) 4155 register_prot_hook(sk); 4156 spin_unlock(&po->bind_lock); 4157 } 4158 break; 4159 } 4160 } 4161 rcu_read_unlock(); 4162 return NOTIFY_DONE; 4163 } 4164 4165 4166 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4167 unsigned long arg) 4168 { 4169 struct sock *sk = sock->sk; 4170 4171 switch (cmd) { 4172 case SIOCOUTQ: 4173 { 4174 int amount = sk_wmem_alloc_get(sk); 4175 4176 return put_user(amount, (int __user *)arg); 4177 } 4178 case SIOCINQ: 4179 { 4180 struct sk_buff *skb; 4181 int amount = 0; 4182 4183 spin_lock_bh(&sk->sk_receive_queue.lock); 4184 skb = skb_peek(&sk->sk_receive_queue); 4185 if (skb) 4186 amount = skb->len; 4187 spin_unlock_bh(&sk->sk_receive_queue.lock); 4188 return put_user(amount, (int __user *)arg); 4189 } 4190 #ifdef CONFIG_INET 4191 case SIOCADDRT: 4192 case SIOCDELRT: 4193 case SIOCDARP: 4194 case SIOCGARP: 4195 case SIOCSARP: 4196 case SIOCGIFADDR: 4197 case SIOCSIFADDR: 4198 case SIOCGIFBRDADDR: 4199 case SIOCSIFBRDADDR: 4200 case SIOCGIFNETMASK: 4201 case SIOCSIFNETMASK: 4202 case SIOCGIFDSTADDR: 4203 case SIOCSIFDSTADDR: 4204 case SIOCSIFFLAGS: 4205 return inet_dgram_ops.ioctl(sock, cmd, arg); 4206 #endif 4207 4208 default: 4209 return -ENOIOCTLCMD; 4210 } 4211 return 0; 4212 } 4213 4214 static __poll_t packet_poll(struct file *file, struct socket *sock, 4215 poll_table *wait) 4216 { 4217 struct sock *sk = sock->sk; 4218 struct packet_sock *po = pkt_sk(sk); 4219 __poll_t mask = datagram_poll(file, sock, wait); 4220 4221 spin_lock_bh(&sk->sk_receive_queue.lock); 4222 if (po->rx_ring.pg_vec) { 4223 if (!packet_previous_rx_frame(po, &po->rx_ring, 4224 TP_STATUS_KERNEL)) 4225 mask |= EPOLLIN | EPOLLRDNORM; 4226 } 4227 packet_rcv_try_clear_pressure(po); 4228 spin_unlock_bh(&sk->sk_receive_queue.lock); 4229 spin_lock_bh(&sk->sk_write_queue.lock); 4230 if (po->tx_ring.pg_vec) { 4231 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4232 mask |= EPOLLOUT | EPOLLWRNORM; 4233 } 4234 spin_unlock_bh(&sk->sk_write_queue.lock); 4235 return mask; 4236 } 4237 4238 4239 /* Dirty? Well, I still did not learn better way to account 4240 * for user mmaps. 4241 */ 4242 4243 static void packet_mm_open(struct vm_area_struct *vma) 4244 { 4245 struct file *file = vma->vm_file; 4246 struct socket *sock = file->private_data; 4247 struct sock *sk = sock->sk; 4248 4249 if (sk) 4250 atomic_inc(&pkt_sk(sk)->mapped); 4251 } 4252 4253 static void packet_mm_close(struct vm_area_struct *vma) 4254 { 4255 struct file *file = vma->vm_file; 4256 struct socket *sock = file->private_data; 4257 struct sock *sk = sock->sk; 4258 4259 if (sk) 4260 atomic_dec(&pkt_sk(sk)->mapped); 4261 } 4262 4263 static const struct vm_operations_struct packet_mmap_ops = { 4264 .open = packet_mm_open, 4265 .close = packet_mm_close, 4266 }; 4267 4268 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4269 unsigned int len) 4270 { 4271 int i; 4272 4273 for (i = 0; i < len; i++) { 4274 if (likely(pg_vec[i].buffer)) { 4275 if (is_vmalloc_addr(pg_vec[i].buffer)) 4276 vfree(pg_vec[i].buffer); 4277 else 4278 free_pages((unsigned long)pg_vec[i].buffer, 4279 order); 4280 pg_vec[i].buffer = NULL; 4281 } 4282 } 4283 kfree(pg_vec); 4284 } 4285 4286 static char *alloc_one_pg_vec_page(unsigned long order) 4287 { 4288 char *buffer; 4289 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4290 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4291 4292 buffer = (char *) __get_free_pages(gfp_flags, order); 4293 if (buffer) 4294 return buffer; 4295 4296 /* __get_free_pages failed, fall back to vmalloc */ 4297 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4298 if (buffer) 4299 return buffer; 4300 4301 /* vmalloc failed, lets dig into swap here */ 4302 gfp_flags &= ~__GFP_NORETRY; 4303 buffer = (char *) __get_free_pages(gfp_flags, order); 4304 if (buffer) 4305 return buffer; 4306 4307 /* complete and utter failure */ 4308 return NULL; 4309 } 4310 4311 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4312 { 4313 unsigned int block_nr = req->tp_block_nr; 4314 struct pgv *pg_vec; 4315 int i; 4316 4317 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4318 if (unlikely(!pg_vec)) 4319 goto out; 4320 4321 for (i = 0; i < block_nr; i++) { 4322 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4323 if (unlikely(!pg_vec[i].buffer)) 4324 goto out_free_pgvec; 4325 } 4326 4327 out: 4328 return pg_vec; 4329 4330 out_free_pgvec: 4331 free_pg_vec(pg_vec, order, block_nr); 4332 pg_vec = NULL; 4333 goto out; 4334 } 4335 4336 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4337 int closing, int tx_ring) 4338 { 4339 struct pgv *pg_vec = NULL; 4340 struct packet_sock *po = pkt_sk(sk); 4341 unsigned long *rx_owner_map = NULL; 4342 int was_running, order = 0; 4343 struct packet_ring_buffer *rb; 4344 struct sk_buff_head *rb_queue; 4345 __be16 num; 4346 int err; 4347 /* Added to avoid minimal code churn */ 4348 struct tpacket_req *req = &req_u->req; 4349 4350 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4351 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4352 4353 err = -EBUSY; 4354 if (!closing) { 4355 if (atomic_read(&po->mapped)) 4356 goto out; 4357 if (packet_read_pending(rb)) 4358 goto out; 4359 } 4360 4361 if (req->tp_block_nr) { 4362 unsigned int min_frame_size; 4363 4364 /* Sanity tests and some calculations */ 4365 err = -EBUSY; 4366 if (unlikely(rb->pg_vec)) 4367 goto out; 4368 4369 switch (po->tp_version) { 4370 case TPACKET_V1: 4371 po->tp_hdrlen = TPACKET_HDRLEN; 4372 break; 4373 case TPACKET_V2: 4374 po->tp_hdrlen = TPACKET2_HDRLEN; 4375 break; 4376 case TPACKET_V3: 4377 po->tp_hdrlen = TPACKET3_HDRLEN; 4378 break; 4379 } 4380 4381 err = -EINVAL; 4382 if (unlikely((int)req->tp_block_size <= 0)) 4383 goto out; 4384 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4385 goto out; 4386 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4387 if (po->tp_version >= TPACKET_V3 && 4388 req->tp_block_size < 4389 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4390 goto out; 4391 if (unlikely(req->tp_frame_size < min_frame_size)) 4392 goto out; 4393 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4394 goto out; 4395 4396 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4397 if (unlikely(rb->frames_per_block == 0)) 4398 goto out; 4399 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4400 goto out; 4401 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4402 req->tp_frame_nr)) 4403 goto out; 4404 4405 err = -ENOMEM; 4406 order = get_order(req->tp_block_size); 4407 pg_vec = alloc_pg_vec(req, order); 4408 if (unlikely(!pg_vec)) 4409 goto out; 4410 switch (po->tp_version) { 4411 case TPACKET_V3: 4412 /* Block transmit is not supported yet */ 4413 if (!tx_ring) { 4414 init_prb_bdqc(po, rb, pg_vec, req_u); 4415 } else { 4416 struct tpacket_req3 *req3 = &req_u->req3; 4417 4418 if (req3->tp_retire_blk_tov || 4419 req3->tp_sizeof_priv || 4420 req3->tp_feature_req_word) { 4421 err = -EINVAL; 4422 goto out_free_pg_vec; 4423 } 4424 } 4425 break; 4426 default: 4427 if (!tx_ring) { 4428 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4429 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4430 if (!rx_owner_map) 4431 goto out_free_pg_vec; 4432 } 4433 break; 4434 } 4435 } 4436 /* Done */ 4437 else { 4438 err = -EINVAL; 4439 if (unlikely(req->tp_frame_nr)) 4440 goto out; 4441 } 4442 4443 4444 /* Detach socket from network */ 4445 spin_lock(&po->bind_lock); 4446 was_running = po->running; 4447 num = po->num; 4448 if (was_running) { 4449 WRITE_ONCE(po->num, 0); 4450 __unregister_prot_hook(sk, false); 4451 } 4452 spin_unlock(&po->bind_lock); 4453 4454 synchronize_net(); 4455 4456 err = -EBUSY; 4457 mutex_lock(&po->pg_vec_lock); 4458 if (closing || atomic_read(&po->mapped) == 0) { 4459 err = 0; 4460 spin_lock_bh(&rb_queue->lock); 4461 swap(rb->pg_vec, pg_vec); 4462 if (po->tp_version <= TPACKET_V2) 4463 swap(rb->rx_owner_map, rx_owner_map); 4464 rb->frame_max = (req->tp_frame_nr - 1); 4465 rb->head = 0; 4466 rb->frame_size = req->tp_frame_size; 4467 spin_unlock_bh(&rb_queue->lock); 4468 4469 swap(rb->pg_vec_order, order); 4470 swap(rb->pg_vec_len, req->tp_block_nr); 4471 4472 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4473 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4474 tpacket_rcv : packet_rcv; 4475 skb_queue_purge(rb_queue); 4476 if (atomic_read(&po->mapped)) 4477 pr_err("packet_mmap: vma is busy: %d\n", 4478 atomic_read(&po->mapped)); 4479 } 4480 mutex_unlock(&po->pg_vec_lock); 4481 4482 spin_lock(&po->bind_lock); 4483 if (was_running) { 4484 WRITE_ONCE(po->num, num); 4485 register_prot_hook(sk); 4486 } 4487 spin_unlock(&po->bind_lock); 4488 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4489 /* Because we don't support block-based V3 on tx-ring */ 4490 if (!tx_ring) 4491 prb_shutdown_retire_blk_timer(po, rb_queue); 4492 } 4493 4494 out_free_pg_vec: 4495 if (pg_vec) { 4496 bitmap_free(rx_owner_map); 4497 free_pg_vec(pg_vec, order, req->tp_block_nr); 4498 } 4499 out: 4500 return err; 4501 } 4502 4503 static int packet_mmap(struct file *file, struct socket *sock, 4504 struct vm_area_struct *vma) 4505 { 4506 struct sock *sk = sock->sk; 4507 struct packet_sock *po = pkt_sk(sk); 4508 unsigned long size, expected_size; 4509 struct packet_ring_buffer *rb; 4510 unsigned long start; 4511 int err = -EINVAL; 4512 int i; 4513 4514 if (vma->vm_pgoff) 4515 return -EINVAL; 4516 4517 mutex_lock(&po->pg_vec_lock); 4518 4519 expected_size = 0; 4520 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4521 if (rb->pg_vec) { 4522 expected_size += rb->pg_vec_len 4523 * rb->pg_vec_pages 4524 * PAGE_SIZE; 4525 } 4526 } 4527 4528 if (expected_size == 0) 4529 goto out; 4530 4531 size = vma->vm_end - vma->vm_start; 4532 if (size != expected_size) 4533 goto out; 4534 4535 start = vma->vm_start; 4536 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4537 if (rb->pg_vec == NULL) 4538 continue; 4539 4540 for (i = 0; i < rb->pg_vec_len; i++) { 4541 struct page *page; 4542 void *kaddr = rb->pg_vec[i].buffer; 4543 int pg_num; 4544 4545 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4546 page = pgv_to_page(kaddr); 4547 err = vm_insert_page(vma, start, page); 4548 if (unlikely(err)) 4549 goto out; 4550 start += PAGE_SIZE; 4551 kaddr += PAGE_SIZE; 4552 } 4553 } 4554 } 4555 4556 atomic_inc(&po->mapped); 4557 vma->vm_ops = &packet_mmap_ops; 4558 err = 0; 4559 4560 out: 4561 mutex_unlock(&po->pg_vec_lock); 4562 return err; 4563 } 4564 4565 static const struct proto_ops packet_ops_spkt = { 4566 .family = PF_PACKET, 4567 .owner = THIS_MODULE, 4568 .release = packet_release, 4569 .bind = packet_bind_spkt, 4570 .connect = sock_no_connect, 4571 .socketpair = sock_no_socketpair, 4572 .accept = sock_no_accept, 4573 .getname = packet_getname_spkt, 4574 .poll = datagram_poll, 4575 .ioctl = packet_ioctl, 4576 .gettstamp = sock_gettstamp, 4577 .listen = sock_no_listen, 4578 .shutdown = sock_no_shutdown, 4579 .sendmsg = packet_sendmsg_spkt, 4580 .recvmsg = packet_recvmsg, 4581 .mmap = sock_no_mmap, 4582 .sendpage = sock_no_sendpage, 4583 }; 4584 4585 static const struct proto_ops packet_ops = { 4586 .family = PF_PACKET, 4587 .owner = THIS_MODULE, 4588 .release = packet_release, 4589 .bind = packet_bind, 4590 .connect = sock_no_connect, 4591 .socketpair = sock_no_socketpair, 4592 .accept = sock_no_accept, 4593 .getname = packet_getname, 4594 .poll = packet_poll, 4595 .ioctl = packet_ioctl, 4596 .gettstamp = sock_gettstamp, 4597 .listen = sock_no_listen, 4598 .shutdown = sock_no_shutdown, 4599 .setsockopt = packet_setsockopt, 4600 .getsockopt = packet_getsockopt, 4601 .sendmsg = packet_sendmsg, 4602 .recvmsg = packet_recvmsg, 4603 .mmap = packet_mmap, 4604 .sendpage = sock_no_sendpage, 4605 }; 4606 4607 static const struct net_proto_family packet_family_ops = { 4608 .family = PF_PACKET, 4609 .create = packet_create, 4610 .owner = THIS_MODULE, 4611 }; 4612 4613 static struct notifier_block packet_netdev_notifier = { 4614 .notifier_call = packet_notifier, 4615 }; 4616 4617 #ifdef CONFIG_PROC_FS 4618 4619 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4620 __acquires(RCU) 4621 { 4622 struct net *net = seq_file_net(seq); 4623 4624 rcu_read_lock(); 4625 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4626 } 4627 4628 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4629 { 4630 struct net *net = seq_file_net(seq); 4631 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4632 } 4633 4634 static void packet_seq_stop(struct seq_file *seq, void *v) 4635 __releases(RCU) 4636 { 4637 rcu_read_unlock(); 4638 } 4639 4640 static int packet_seq_show(struct seq_file *seq, void *v) 4641 { 4642 if (v == SEQ_START_TOKEN) 4643 seq_printf(seq, 4644 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4645 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4646 else { 4647 struct sock *s = sk_entry(v); 4648 const struct packet_sock *po = pkt_sk(s); 4649 4650 seq_printf(seq, 4651 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4652 s, 4653 refcount_read(&s->sk_refcnt), 4654 s->sk_type, 4655 ntohs(READ_ONCE(po->num)), 4656 READ_ONCE(po->ifindex), 4657 po->running, 4658 atomic_read(&s->sk_rmem_alloc), 4659 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4660 sock_i_ino(s)); 4661 } 4662 4663 return 0; 4664 } 4665 4666 static const struct seq_operations packet_seq_ops = { 4667 .start = packet_seq_start, 4668 .next = packet_seq_next, 4669 .stop = packet_seq_stop, 4670 .show = packet_seq_show, 4671 }; 4672 #endif 4673 4674 static int __net_init packet_net_init(struct net *net) 4675 { 4676 mutex_init(&net->packet.sklist_lock); 4677 INIT_HLIST_HEAD(&net->packet.sklist); 4678 4679 #ifdef CONFIG_PROC_FS 4680 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4681 sizeof(struct seq_net_private))) 4682 return -ENOMEM; 4683 #endif /* CONFIG_PROC_FS */ 4684 4685 return 0; 4686 } 4687 4688 static void __net_exit packet_net_exit(struct net *net) 4689 { 4690 remove_proc_entry("packet", net->proc_net); 4691 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4692 } 4693 4694 static struct pernet_operations packet_net_ops = { 4695 .init = packet_net_init, 4696 .exit = packet_net_exit, 4697 }; 4698 4699 4700 static void __exit packet_exit(void) 4701 { 4702 unregister_netdevice_notifier(&packet_netdev_notifier); 4703 unregister_pernet_subsys(&packet_net_ops); 4704 sock_unregister(PF_PACKET); 4705 proto_unregister(&packet_proto); 4706 } 4707 4708 static int __init packet_init(void) 4709 { 4710 int rc; 4711 4712 rc = proto_register(&packet_proto, 0); 4713 if (rc) 4714 goto out; 4715 rc = sock_register(&packet_family_ops); 4716 if (rc) 4717 goto out_proto; 4718 rc = register_pernet_subsys(&packet_net_ops); 4719 if (rc) 4720 goto out_sock; 4721 rc = register_netdevice_notifier(&packet_netdev_notifier); 4722 if (rc) 4723 goto out_pernet; 4724 4725 return 0; 4726 4727 out_pernet: 4728 unregister_pernet_subsys(&packet_net_ops); 4729 out_sock: 4730 sock_unregister(PF_PACKET); 4731 out_proto: 4732 proto_unregister(&packet_proto); 4733 out: 4734 return rc; 4735 } 4736 4737 module_init(packet_init); 4738 module_exit(packet_exit); 4739 MODULE_LICENSE("GPL"); 4740 MODULE_ALIAS_NETPROTO(PF_PACKET); 4741