1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PACKET - implements raw packet sockets. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * 12 * Fixes: 13 * Alan Cox : verify_area() now used correctly 14 * Alan Cox : new skbuff lists, look ma no backlogs! 15 * Alan Cox : tidied skbuff lists. 16 * Alan Cox : Now uses generic datagram routines I 17 * added. Also fixed the peek/read crash 18 * from all old Linux datagram code. 19 * Alan Cox : Uses the improved datagram code. 20 * Alan Cox : Added NULL's for socket options. 21 * Alan Cox : Re-commented the code. 22 * Alan Cox : Use new kernel side addressing 23 * Rob Janssen : Correct MTU usage. 24 * Dave Platt : Counter leaks caused by incorrect 25 * interrupt locking and some slightly 26 * dubious gcc output. Can you read 27 * compiler: it said _VOLATILE_ 28 * Richard Kooijman : Timestamp fixes. 29 * Alan Cox : New buffers. Use sk->mac.raw. 30 * Alan Cox : sendmsg/recvmsg support. 31 * Alan Cox : Protocol setting support 32 * Alexey Kuznetsov : Untied from IPv4 stack. 33 * Cyrus Durgin : Fixed kerneld for kmod. 34 * Michal Ostrowski : Module initialization cleanup. 35 * Ulises Alonso : Frame number limit removal and 36 * packet_set_ring memory leak. 37 * Eric Biederman : Allow for > 8 byte hardware addresses. 38 * The convention is that longer addresses 39 * will simply extend the hardware address 40 * byte arrays at the end of sockaddr_ll 41 * and packet_mreq. 42 * Johann Baudy : Added TX RING. 43 * Chetan Loke : Implemented TPACKET_V3 block abstraction 44 * layer. 45 * Copyright (C) 2011, <lokec@ccs.neu.edu> 46 * 47 * 48 * This program is free software; you can redistribute it and/or 49 * modify it under the terms of the GNU General Public License 50 * as published by the Free Software Foundation; either version 51 * 2 of the License, or (at your option) any later version. 52 * 53 */ 54 55 #include <linux/types.h> 56 #include <linux/mm.h> 57 #include <linux/capability.h> 58 #include <linux/fcntl.h> 59 #include <linux/socket.h> 60 #include <linux/in.h> 61 #include <linux/inet.h> 62 #include <linux/netdevice.h> 63 #include <linux/if_packet.h> 64 #include <linux/wireless.h> 65 #include <linux/kernel.h> 66 #include <linux/kmod.h> 67 #include <linux/slab.h> 68 #include <linux/vmalloc.h> 69 #include <net/net_namespace.h> 70 #include <net/ip.h> 71 #include <net/protocol.h> 72 #include <linux/skbuff.h> 73 #include <net/sock.h> 74 #include <linux/errno.h> 75 #include <linux/timer.h> 76 #include <linux/uaccess.h> 77 #include <asm/ioctls.h> 78 #include <asm/page.h> 79 #include <asm/cacheflush.h> 80 #include <asm/io.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/poll.h> 84 #include <linux/module.h> 85 #include <linux/init.h> 86 #include <linux/mutex.h> 87 #include <linux/if_vlan.h> 88 #include <linux/virtio_net.h> 89 #include <linux/errqueue.h> 90 #include <linux/net_tstamp.h> 91 #include <linux/percpu.h> 92 #ifdef CONFIG_INET 93 #include <net/inet_common.h> 94 #endif 95 #include <linux/bpf.h> 96 #include <net/compat.h> 97 98 #include "internal.h" 99 100 /* 101 Assumptions: 102 - if device has no dev->hard_header routine, it adds and removes ll header 103 inside itself. In this case ll header is invisible outside of device, 104 but higher levels still should reserve dev->hard_header_len. 105 Some devices are enough clever to reallocate skb, when header 106 will not fit to reserved space (tunnel), another ones are silly 107 (PPP). 108 - packet socket receives packets with pulled ll header, 109 so that SOCK_RAW should push it back. 110 111 On receive: 112 ----------- 113 114 Incoming, dev->hard_header!=NULL 115 mac_header -> ll header 116 data -> data 117 118 Outgoing, dev->hard_header!=NULL 119 mac_header -> ll header 120 data -> ll header 121 122 Incoming, dev->hard_header==NULL 123 mac_header -> UNKNOWN position. It is very likely, that it points to ll 124 header. PPP makes it, that is wrong, because introduce 125 assymetry between rx and tx paths. 126 data -> data 127 128 Outgoing, dev->hard_header==NULL 129 mac_header -> data. ll header is still not built! 130 data -> data 131 132 Resume 133 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 134 135 136 On transmit: 137 ------------ 138 139 dev->hard_header != NULL 140 mac_header -> ll header 141 data -> ll header 142 143 dev->hard_header == NULL (ll header is added by device, we cannot control it) 144 mac_header -> data 145 data -> data 146 147 We should set nh.raw on output to correct posistion, 148 packet classifier depends on it. 149 */ 150 151 /* Private packet socket structures. */ 152 153 /* identical to struct packet_mreq except it has 154 * a longer address field. 155 */ 156 struct packet_mreq_max { 157 int mr_ifindex; 158 unsigned short mr_type; 159 unsigned short mr_alen; 160 unsigned char mr_address[MAX_ADDR_LEN]; 161 }; 162 163 union tpacket_uhdr { 164 struct tpacket_hdr *h1; 165 struct tpacket2_hdr *h2; 166 struct tpacket3_hdr *h3; 167 void *raw; 168 }; 169 170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 171 int closing, int tx_ring); 172 173 #define V3_ALIGNMENT (8) 174 175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 176 177 #define BLK_PLUS_PRIV(sz_of_priv) \ 178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 179 180 #define PGV_FROM_VMALLOC 1 181 182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 188 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(unsigned long); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_init_blk_timer(struct packet_sock *, 209 struct tpacket_kbdq_core *, 210 void (*func) (unsigned long)); 211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 212 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 213 struct tpacket3_hdr *); 214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 215 struct tpacket3_hdr *); 216 static void packet_flush_mclist(struct sock *sk); 217 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb); 218 219 struct packet_skb_cb { 220 union { 221 struct sockaddr_pkt pkt; 222 union { 223 /* Trick: alias skb original length with 224 * ll.sll_family and ll.protocol in order 225 * to save room. 226 */ 227 unsigned int origlen; 228 struct sockaddr_ll ll; 229 }; 230 } sa; 231 }; 232 233 #define vio_le() virtio_legacy_is_little_endian() 234 235 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 236 237 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 238 #define GET_PBLOCK_DESC(x, bid) \ 239 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 240 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 241 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 242 #define GET_NEXT_PRB_BLK_NUM(x) \ 243 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 244 ((x)->kactive_blk_num+1) : 0) 245 246 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 247 static void __fanout_link(struct sock *sk, struct packet_sock *po); 248 249 static int packet_direct_xmit(struct sk_buff *skb) 250 { 251 struct net_device *dev = skb->dev; 252 struct sk_buff *orig_skb = skb; 253 struct netdev_queue *txq; 254 int ret = NETDEV_TX_BUSY; 255 256 if (unlikely(!netif_running(dev) || 257 !netif_carrier_ok(dev))) 258 goto drop; 259 260 skb = validate_xmit_skb_list(skb, dev); 261 if (skb != orig_skb) 262 goto drop; 263 264 packet_pick_tx_queue(dev, skb); 265 txq = skb_get_tx_queue(dev, skb); 266 267 local_bh_disable(); 268 269 HARD_TX_LOCK(dev, txq, smp_processor_id()); 270 if (!netif_xmit_frozen_or_drv_stopped(txq)) 271 ret = netdev_start_xmit(skb, dev, txq, false); 272 HARD_TX_UNLOCK(dev, txq); 273 274 local_bh_enable(); 275 276 if (!dev_xmit_complete(ret)) 277 kfree_skb(skb); 278 279 return ret; 280 drop: 281 atomic_long_inc(&dev->tx_dropped); 282 kfree_skb_list(skb); 283 return NET_XMIT_DROP; 284 } 285 286 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 287 { 288 struct net_device *dev; 289 290 rcu_read_lock(); 291 dev = rcu_dereference(po->cached_dev); 292 if (likely(dev)) 293 dev_hold(dev); 294 rcu_read_unlock(); 295 296 return dev; 297 } 298 299 static void packet_cached_dev_assign(struct packet_sock *po, 300 struct net_device *dev) 301 { 302 rcu_assign_pointer(po->cached_dev, dev); 303 } 304 305 static void packet_cached_dev_reset(struct packet_sock *po) 306 { 307 RCU_INIT_POINTER(po->cached_dev, NULL); 308 } 309 310 static bool packet_use_direct_xmit(const struct packet_sock *po) 311 { 312 return po->xmit == packet_direct_xmit; 313 } 314 315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 316 { 317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues; 318 } 319 320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 321 { 322 const struct net_device_ops *ops = dev->netdev_ops; 323 u16 queue_index; 324 325 if (ops->ndo_select_queue) { 326 queue_index = ops->ndo_select_queue(dev, skb, NULL, 327 __packet_pick_tx_queue); 328 queue_index = netdev_cap_txqueue(dev, queue_index); 329 } else { 330 queue_index = __packet_pick_tx_queue(dev, skb); 331 } 332 333 skb_set_queue_mapping(skb, queue_index); 334 } 335 336 /* register_prot_hook must be invoked with the po->bind_lock held, 337 * or from a context in which asynchronous accesses to the packet 338 * socket is not possible (packet_create()). 339 */ 340 static void register_prot_hook(struct sock *sk) 341 { 342 struct packet_sock *po = pkt_sk(sk); 343 344 if (!po->running) { 345 if (po->fanout) 346 __fanout_link(sk, po); 347 else 348 dev_add_pack(&po->prot_hook); 349 350 sock_hold(sk); 351 po->running = 1; 352 } 353 } 354 355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock 356 * held. If the sync parameter is true, we will temporarily drop 357 * the po->bind_lock and do a synchronize_net to make sure no 358 * asynchronous packet processing paths still refer to the elements 359 * of po->prot_hook. If the sync parameter is false, it is the 360 * callers responsibility to take care of this. 361 */ 362 static void __unregister_prot_hook(struct sock *sk, bool sync) 363 { 364 struct packet_sock *po = pkt_sk(sk); 365 366 po->running = 0; 367 368 if (po->fanout) 369 __fanout_unlink(sk, po); 370 else 371 __dev_remove_pack(&po->prot_hook); 372 373 __sock_put(sk); 374 375 if (sync) { 376 spin_unlock(&po->bind_lock); 377 synchronize_net(); 378 spin_lock(&po->bind_lock); 379 } 380 } 381 382 static void unregister_prot_hook(struct sock *sk, bool sync) 383 { 384 struct packet_sock *po = pkt_sk(sk); 385 386 if (po->running) 387 __unregister_prot_hook(sk, sync); 388 } 389 390 static inline struct page * __pure pgv_to_page(void *addr) 391 { 392 if (is_vmalloc_addr(addr)) 393 return vmalloc_to_page(addr); 394 return virt_to_page(addr); 395 } 396 397 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 398 { 399 union tpacket_uhdr h; 400 401 h.raw = frame; 402 switch (po->tp_version) { 403 case TPACKET_V1: 404 h.h1->tp_status = status; 405 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 406 break; 407 case TPACKET_V2: 408 h.h2->tp_status = status; 409 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 410 break; 411 case TPACKET_V3: 412 h.h3->tp_status = status; 413 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 414 break; 415 default: 416 WARN(1, "TPACKET version not supported.\n"); 417 BUG(); 418 } 419 420 smp_wmb(); 421 } 422 423 static int __packet_get_status(struct packet_sock *po, void *frame) 424 { 425 union tpacket_uhdr h; 426 427 smp_rmb(); 428 429 h.raw = frame; 430 switch (po->tp_version) { 431 case TPACKET_V1: 432 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 433 return h.h1->tp_status; 434 case TPACKET_V2: 435 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 436 return h.h2->tp_status; 437 case TPACKET_V3: 438 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 439 return h.h3->tp_status; 440 default: 441 WARN(1, "TPACKET version not supported.\n"); 442 BUG(); 443 return 0; 444 } 445 } 446 447 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts, 448 unsigned int flags) 449 { 450 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 451 452 if (shhwtstamps && 453 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 454 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts)) 455 return TP_STATUS_TS_RAW_HARDWARE; 456 457 if (ktime_to_timespec_cond(skb->tstamp, ts)) 458 return TP_STATUS_TS_SOFTWARE; 459 460 return 0; 461 } 462 463 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 464 struct sk_buff *skb) 465 { 466 union tpacket_uhdr h; 467 struct timespec ts; 468 __u32 ts_status; 469 470 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 471 return 0; 472 473 h.raw = frame; 474 switch (po->tp_version) { 475 case TPACKET_V1: 476 h.h1->tp_sec = ts.tv_sec; 477 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 478 break; 479 case TPACKET_V2: 480 h.h2->tp_sec = ts.tv_sec; 481 h.h2->tp_nsec = ts.tv_nsec; 482 break; 483 case TPACKET_V3: 484 h.h3->tp_sec = ts.tv_sec; 485 h.h3->tp_nsec = ts.tv_nsec; 486 break; 487 default: 488 WARN(1, "TPACKET version not supported.\n"); 489 BUG(); 490 } 491 492 /* one flush is safe, as both fields always lie on the same cacheline */ 493 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 494 smp_wmb(); 495 496 return ts_status; 497 } 498 499 static void *packet_lookup_frame(struct packet_sock *po, 500 struct packet_ring_buffer *rb, 501 unsigned int position, 502 int status) 503 { 504 unsigned int pg_vec_pos, frame_offset; 505 union tpacket_uhdr h; 506 507 pg_vec_pos = position / rb->frames_per_block; 508 frame_offset = position % rb->frames_per_block; 509 510 h.raw = rb->pg_vec[pg_vec_pos].buffer + 511 (frame_offset * rb->frame_size); 512 513 if (status != __packet_get_status(po, h.raw)) 514 return NULL; 515 516 return h.raw; 517 } 518 519 static void *packet_current_frame(struct packet_sock *po, 520 struct packet_ring_buffer *rb, 521 int status) 522 { 523 return packet_lookup_frame(po, rb, rb->head, status); 524 } 525 526 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 527 { 528 del_timer_sync(&pkc->retire_blk_timer); 529 } 530 531 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 532 struct sk_buff_head *rb_queue) 533 { 534 struct tpacket_kbdq_core *pkc; 535 536 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 537 538 spin_lock_bh(&rb_queue->lock); 539 pkc->delete_blk_timer = 1; 540 spin_unlock_bh(&rb_queue->lock); 541 542 prb_del_retire_blk_timer(pkc); 543 } 544 545 static void prb_init_blk_timer(struct packet_sock *po, 546 struct tpacket_kbdq_core *pkc, 547 void (*func) (unsigned long)) 548 { 549 init_timer(&pkc->retire_blk_timer); 550 pkc->retire_blk_timer.data = (long)po; 551 pkc->retire_blk_timer.function = func; 552 pkc->retire_blk_timer.expires = jiffies; 553 } 554 555 static void prb_setup_retire_blk_timer(struct packet_sock *po) 556 { 557 struct tpacket_kbdq_core *pkc; 558 559 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 560 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired); 561 } 562 563 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 564 int blk_size_in_bytes) 565 { 566 struct net_device *dev; 567 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 568 struct ethtool_link_ksettings ecmd; 569 int err; 570 571 rtnl_lock(); 572 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 573 if (unlikely(!dev)) { 574 rtnl_unlock(); 575 return DEFAULT_PRB_RETIRE_TOV; 576 } 577 err = __ethtool_get_link_ksettings(dev, &ecmd); 578 rtnl_unlock(); 579 if (!err) { 580 /* 581 * If the link speed is so slow you don't really 582 * need to worry about perf anyways 583 */ 584 if (ecmd.base.speed < SPEED_1000 || 585 ecmd.base.speed == SPEED_UNKNOWN) { 586 return DEFAULT_PRB_RETIRE_TOV; 587 } else { 588 msec = 1; 589 div = ecmd.base.speed / 1000; 590 } 591 } 592 593 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 594 595 if (div) 596 mbits /= div; 597 598 tmo = mbits * msec; 599 600 if (div) 601 return tmo+1; 602 return tmo; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 639 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 640 prb_init_ft_ops(p1, req_u); 641 prb_setup_retire_blk_timer(po); 642 prb_open_block(p1, pbd); 643 } 644 645 /* Do NOT update the last_blk_num first. 646 * Assumes sk_buff_head lock is held. 647 */ 648 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 649 { 650 mod_timer(&pkc->retire_blk_timer, 651 jiffies + pkc->tov_in_jiffies); 652 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 653 } 654 655 /* 656 * Timer logic: 657 * 1) We refresh the timer only when we open a block. 658 * By doing this we don't waste cycles refreshing the timer 659 * on packet-by-packet basis. 660 * 661 * With a 1MB block-size, on a 1Gbps line, it will take 662 * i) ~8 ms to fill a block + ii) memcpy etc. 663 * In this cut we are not accounting for the memcpy time. 664 * 665 * So, if the user sets the 'tmo' to 10ms then the timer 666 * will never fire while the block is still getting filled 667 * (which is what we want). However, the user could choose 668 * to close a block early and that's fine. 669 * 670 * But when the timer does fire, we check whether or not to refresh it. 671 * Since the tmo granularity is in msecs, it is not too expensive 672 * to refresh the timer, lets say every '8' msecs. 673 * Either the user can set the 'tmo' or we can derive it based on 674 * a) line-speed and b) block-size. 675 * prb_calc_retire_blk_tmo() calculates the tmo. 676 * 677 */ 678 static void prb_retire_rx_blk_timer_expired(unsigned long data) 679 { 680 struct packet_sock *po = (struct packet_sock *)data; 681 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 682 unsigned int frozen; 683 struct tpacket_block_desc *pbd; 684 685 spin_lock(&po->sk.sk_receive_queue.lock); 686 687 frozen = prb_queue_frozen(pkc); 688 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 689 690 if (unlikely(pkc->delete_blk_timer)) 691 goto out; 692 693 /* We only need to plug the race when the block is partially filled. 694 * tpacket_rcv: 695 * lock(); increment BLOCK_NUM_PKTS; unlock() 696 * copy_bits() is in progress ... 697 * timer fires on other cpu: 698 * we can't retire the current block because copy_bits 699 * is in progress. 700 * 701 */ 702 if (BLOCK_NUM_PKTS(pbd)) { 703 while (atomic_read(&pkc->blk_fill_in_prog)) { 704 /* Waiting for skb_copy_bits to finish... */ 705 cpu_relax(); 706 } 707 } 708 709 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 710 if (!frozen) { 711 if (!BLOCK_NUM_PKTS(pbd)) { 712 /* An empty block. Just refresh the timer. */ 713 goto refresh_timer; 714 } 715 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 716 if (!prb_dispatch_next_block(pkc, po)) 717 goto refresh_timer; 718 else 719 goto out; 720 } else { 721 /* Case 1. Queue was frozen because user-space was 722 * lagging behind. 723 */ 724 if (prb_curr_blk_in_use(pbd)) { 725 /* 726 * Ok, user-space is still behind. 727 * So just refresh the timer. 728 */ 729 goto refresh_timer; 730 } else { 731 /* Case 2. queue was frozen,user-space caught up, 732 * now the link went idle && the timer fired. 733 * We don't have a block to close.So we open this 734 * block and restart the timer. 735 * opening a block thaws the queue,restarts timer 736 * Thawing/timer-refresh is a side effect. 737 */ 738 prb_open_block(pkc, pbd); 739 goto out; 740 } 741 } 742 } 743 744 refresh_timer: 745 _prb_refresh_rx_retire_blk_timer(pkc); 746 747 out: 748 spin_unlock(&po->sk.sk_receive_queue.lock); 749 } 750 751 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 752 struct tpacket_block_desc *pbd1, __u32 status) 753 { 754 /* Flush everything minus the block header */ 755 756 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 757 u8 *start, *end; 758 759 start = (u8 *)pbd1; 760 761 /* Skip the block header(we know header WILL fit in 4K) */ 762 start += PAGE_SIZE; 763 764 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 765 for (; start < end; start += PAGE_SIZE) 766 flush_dcache_page(pgv_to_page(start)); 767 768 smp_wmb(); 769 #endif 770 771 /* Now update the block status. */ 772 773 BLOCK_STATUS(pbd1) = status; 774 775 /* Flush the block header */ 776 777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 778 start = (u8 *)pbd1; 779 flush_dcache_page(pgv_to_page(start)); 780 781 smp_wmb(); 782 #endif 783 } 784 785 /* 786 * Side effect: 787 * 788 * 1) flush the block 789 * 2) Increment active_blk_num 790 * 791 * Note:We DONT refresh the timer on purpose. 792 * Because almost always the next block will be opened. 793 */ 794 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 795 struct tpacket_block_desc *pbd1, 796 struct packet_sock *po, unsigned int stat) 797 { 798 __u32 status = TP_STATUS_USER | stat; 799 800 struct tpacket3_hdr *last_pkt; 801 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 802 struct sock *sk = &po->sk; 803 804 if (po->stats.stats3.tp_drops) 805 status |= TP_STATUS_LOSING; 806 807 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 808 last_pkt->tp_next_offset = 0; 809 810 /* Get the ts of the last pkt */ 811 if (BLOCK_NUM_PKTS(pbd1)) { 812 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 813 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 814 } else { 815 /* Ok, we tmo'd - so get the current time. 816 * 817 * It shouldn't really happen as we don't close empty 818 * blocks. See prb_retire_rx_blk_timer_expired(). 819 */ 820 struct timespec ts; 821 getnstimeofday(&ts); 822 h1->ts_last_pkt.ts_sec = ts.tv_sec; 823 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 824 } 825 826 smp_wmb(); 827 828 /* Flush the block */ 829 prb_flush_block(pkc1, pbd1, status); 830 831 sk->sk_data_ready(sk); 832 833 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 834 } 835 836 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 837 { 838 pkc->reset_pending_on_curr_blk = 0; 839 } 840 841 /* 842 * Side effect of opening a block: 843 * 844 * 1) prb_queue is thawed. 845 * 2) retire_blk_timer is refreshed. 846 * 847 */ 848 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 849 struct tpacket_block_desc *pbd1) 850 { 851 struct timespec ts; 852 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 853 854 smp_rmb(); 855 856 /* We could have just memset this but we will lose the 857 * flexibility of making the priv area sticky 858 */ 859 860 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 861 BLOCK_NUM_PKTS(pbd1) = 0; 862 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 863 864 getnstimeofday(&ts); 865 866 h1->ts_first_pkt.ts_sec = ts.tv_sec; 867 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 868 869 pkc1->pkblk_start = (char *)pbd1; 870 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 871 872 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 873 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 874 875 pbd1->version = pkc1->version; 876 pkc1->prev = pkc1->nxt_offset; 877 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 878 879 prb_thaw_queue(pkc1); 880 _prb_refresh_rx_retire_blk_timer(pkc1); 881 882 smp_wmb(); 883 } 884 885 /* 886 * Queue freeze logic: 887 * 1) Assume tp_block_nr = 8 blocks. 888 * 2) At time 't0', user opens Rx ring. 889 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 890 * 4) user-space is either sleeping or processing block '0'. 891 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 892 * it will close block-7,loop around and try to fill block '0'. 893 * call-flow: 894 * __packet_lookup_frame_in_block 895 * prb_retire_current_block() 896 * prb_dispatch_next_block() 897 * |->(BLOCK_STATUS == USER) evaluates to true 898 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 899 * 6) Now there are two cases: 900 * 6.1) Link goes idle right after the queue is frozen. 901 * But remember, the last open_block() refreshed the timer. 902 * When this timer expires,it will refresh itself so that we can 903 * re-open block-0 in near future. 904 * 6.2) Link is busy and keeps on receiving packets. This is a simple 905 * case and __packet_lookup_frame_in_block will check if block-0 906 * is free and can now be re-used. 907 */ 908 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 909 struct packet_sock *po) 910 { 911 pkc->reset_pending_on_curr_blk = 1; 912 po->stats.stats3.tp_freeze_q_cnt++; 913 } 914 915 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 916 917 /* 918 * If the next block is free then we will dispatch it 919 * and return a good offset. 920 * Else, we will freeze the queue. 921 * So, caller must check the return value. 922 */ 923 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 924 struct packet_sock *po) 925 { 926 struct tpacket_block_desc *pbd; 927 928 smp_rmb(); 929 930 /* 1. Get current block num */ 931 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 932 933 /* 2. If this block is currently in_use then freeze the queue */ 934 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 935 prb_freeze_queue(pkc, po); 936 return NULL; 937 } 938 939 /* 940 * 3. 941 * open this block and return the offset where the first packet 942 * needs to get stored. 943 */ 944 prb_open_block(pkc, pbd); 945 return (void *)pkc->nxt_offset; 946 } 947 948 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 949 struct packet_sock *po, unsigned int status) 950 { 951 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 952 953 /* retire/close the current block */ 954 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 955 /* 956 * Plug the case where copy_bits() is in progress on 957 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 958 * have space to copy the pkt in the current block and 959 * called prb_retire_current_block() 960 * 961 * We don't need to worry about the TMO case because 962 * the timer-handler already handled this case. 963 */ 964 if (!(status & TP_STATUS_BLK_TMO)) { 965 while (atomic_read(&pkc->blk_fill_in_prog)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 cpu_relax(); 968 } 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 { 987 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 988 atomic_dec(&pkc->blk_fill_in_prog); 989 } 990 991 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 992 struct tpacket3_hdr *ppd) 993 { 994 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 995 } 996 997 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 998 struct tpacket3_hdr *ppd) 999 { 1000 ppd->hv1.tp_rxhash = 0; 1001 } 1002 1003 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1004 struct tpacket3_hdr *ppd) 1005 { 1006 if (skb_vlan_tag_present(pkc->skb)) { 1007 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1008 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1009 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1010 } else { 1011 ppd->hv1.tp_vlan_tci = 0; 1012 ppd->hv1.tp_vlan_tpid = 0; 1013 ppd->tp_status = TP_STATUS_AVAILABLE; 1014 } 1015 } 1016 1017 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1018 struct tpacket3_hdr *ppd) 1019 { 1020 ppd->hv1.tp_padding = 0; 1021 prb_fill_vlan_info(pkc, ppd); 1022 1023 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1024 prb_fill_rxhash(pkc, ppd); 1025 else 1026 prb_clear_rxhash(pkc, ppd); 1027 } 1028 1029 static void prb_fill_curr_block(char *curr, 1030 struct tpacket_kbdq_core *pkc, 1031 struct tpacket_block_desc *pbd, 1032 unsigned int len) 1033 { 1034 struct tpacket3_hdr *ppd; 1035 1036 ppd = (struct tpacket3_hdr *)curr; 1037 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1038 pkc->prev = curr; 1039 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1040 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 BLOCK_NUM_PKTS(pbd) += 1; 1042 atomic_inc(&pkc->blk_fill_in_prog); 1043 prb_run_all_ft_ops(pkc, ppd); 1044 } 1045 1046 /* Assumes caller has the sk->rx_queue.lock */ 1047 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1048 struct sk_buff *skb, 1049 int status, 1050 unsigned int len 1051 ) 1052 { 1053 struct tpacket_kbdq_core *pkc; 1054 struct tpacket_block_desc *pbd; 1055 char *curr, *end; 1056 1057 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1058 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1059 1060 /* Queue is frozen when user space is lagging behind */ 1061 if (prb_queue_frozen(pkc)) { 1062 /* 1063 * Check if that last block which caused the queue to freeze, 1064 * is still in_use by user-space. 1065 */ 1066 if (prb_curr_blk_in_use(pbd)) { 1067 /* Can't record this packet */ 1068 return NULL; 1069 } else { 1070 /* 1071 * Ok, the block was released by user-space. 1072 * Now let's open that block. 1073 * opening a block also thaws the queue. 1074 * Thawing is a side effect. 1075 */ 1076 prb_open_block(pkc, pbd); 1077 } 1078 } 1079 1080 smp_mb(); 1081 curr = pkc->nxt_offset; 1082 pkc->skb = skb; 1083 end = (char *)pbd + pkc->kblk_size; 1084 1085 /* first try the current block */ 1086 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1087 prb_fill_curr_block(curr, pkc, pbd, len); 1088 return (void *)curr; 1089 } 1090 1091 /* Ok, close the current block */ 1092 prb_retire_current_block(pkc, po, 0); 1093 1094 /* Now, try to dispatch the next block */ 1095 curr = (char *)prb_dispatch_next_block(pkc, po); 1096 if (curr) { 1097 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1098 prb_fill_curr_block(curr, pkc, pbd, len); 1099 return (void *)curr; 1100 } 1101 1102 /* 1103 * No free blocks are available.user_space hasn't caught up yet. 1104 * Queue was just frozen and now this packet will get dropped. 1105 */ 1106 return NULL; 1107 } 1108 1109 static void *packet_current_rx_frame(struct packet_sock *po, 1110 struct sk_buff *skb, 1111 int status, unsigned int len) 1112 { 1113 char *curr = NULL; 1114 switch (po->tp_version) { 1115 case TPACKET_V1: 1116 case TPACKET_V2: 1117 curr = packet_lookup_frame(po, &po->rx_ring, 1118 po->rx_ring.head, status); 1119 return curr; 1120 case TPACKET_V3: 1121 return __packet_lookup_frame_in_block(po, skb, status, len); 1122 default: 1123 WARN(1, "TPACKET version not supported\n"); 1124 BUG(); 1125 return NULL; 1126 } 1127 } 1128 1129 static void *prb_lookup_block(struct packet_sock *po, 1130 struct packet_ring_buffer *rb, 1131 unsigned int idx, 1132 int status) 1133 { 1134 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1135 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1136 1137 if (status != BLOCK_STATUS(pbd)) 1138 return NULL; 1139 return pbd; 1140 } 1141 1142 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1143 { 1144 unsigned int prev; 1145 if (rb->prb_bdqc.kactive_blk_num) 1146 prev = rb->prb_bdqc.kactive_blk_num-1; 1147 else 1148 prev = rb->prb_bdqc.knum_blocks-1; 1149 return prev; 1150 } 1151 1152 /* Assumes caller has held the rx_queue.lock */ 1153 static void *__prb_previous_block(struct packet_sock *po, 1154 struct packet_ring_buffer *rb, 1155 int status) 1156 { 1157 unsigned int previous = prb_previous_blk_num(rb); 1158 return prb_lookup_block(po, rb, previous, status); 1159 } 1160 1161 static void *packet_previous_rx_frame(struct packet_sock *po, 1162 struct packet_ring_buffer *rb, 1163 int status) 1164 { 1165 if (po->tp_version <= TPACKET_V2) 1166 return packet_previous_frame(po, rb, status); 1167 1168 return __prb_previous_block(po, rb, status); 1169 } 1170 1171 static void packet_increment_rx_head(struct packet_sock *po, 1172 struct packet_ring_buffer *rb) 1173 { 1174 switch (po->tp_version) { 1175 case TPACKET_V1: 1176 case TPACKET_V2: 1177 return packet_increment_head(rb); 1178 case TPACKET_V3: 1179 default: 1180 WARN(1, "TPACKET version not supported.\n"); 1181 BUG(); 1182 return; 1183 } 1184 } 1185 1186 static void *packet_previous_frame(struct packet_sock *po, 1187 struct packet_ring_buffer *rb, 1188 int status) 1189 { 1190 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1191 return packet_lookup_frame(po, rb, previous, status); 1192 } 1193 1194 static void packet_increment_head(struct packet_ring_buffer *buff) 1195 { 1196 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1197 } 1198 1199 static void packet_inc_pending(struct packet_ring_buffer *rb) 1200 { 1201 this_cpu_inc(*rb->pending_refcnt); 1202 } 1203 1204 static void packet_dec_pending(struct packet_ring_buffer *rb) 1205 { 1206 this_cpu_dec(*rb->pending_refcnt); 1207 } 1208 1209 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1210 { 1211 unsigned int refcnt = 0; 1212 int cpu; 1213 1214 /* We don't use pending refcount in rx_ring. */ 1215 if (rb->pending_refcnt == NULL) 1216 return 0; 1217 1218 for_each_possible_cpu(cpu) 1219 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1220 1221 return refcnt; 1222 } 1223 1224 static int packet_alloc_pending(struct packet_sock *po) 1225 { 1226 po->rx_ring.pending_refcnt = NULL; 1227 1228 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1229 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1230 return -ENOBUFS; 1231 1232 return 0; 1233 } 1234 1235 static void packet_free_pending(struct packet_sock *po) 1236 { 1237 free_percpu(po->tx_ring.pending_refcnt); 1238 } 1239 1240 #define ROOM_POW_OFF 2 1241 #define ROOM_NONE 0x0 1242 #define ROOM_LOW 0x1 1243 #define ROOM_NORMAL 0x2 1244 1245 static bool __tpacket_has_room(struct packet_sock *po, int pow_off) 1246 { 1247 int idx, len; 1248 1249 len = po->rx_ring.frame_max + 1; 1250 idx = po->rx_ring.head; 1251 if (pow_off) 1252 idx += len >> pow_off; 1253 if (idx >= len) 1254 idx -= len; 1255 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1256 } 1257 1258 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off) 1259 { 1260 int idx, len; 1261 1262 len = po->rx_ring.prb_bdqc.knum_blocks; 1263 idx = po->rx_ring.prb_bdqc.kactive_blk_num; 1264 if (pow_off) 1265 idx += len >> pow_off; 1266 if (idx >= len) 1267 idx -= len; 1268 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1269 } 1270 1271 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1272 { 1273 struct sock *sk = &po->sk; 1274 int ret = ROOM_NONE; 1275 1276 if (po->prot_hook.func != tpacket_rcv) { 1277 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1278 - (skb ? skb->truesize : 0); 1279 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF)) 1280 return ROOM_NORMAL; 1281 else if (avail > 0) 1282 return ROOM_LOW; 1283 else 1284 return ROOM_NONE; 1285 } 1286 1287 if (po->tp_version == TPACKET_V3) { 1288 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1289 ret = ROOM_NORMAL; 1290 else if (__tpacket_v3_has_room(po, 0)) 1291 ret = ROOM_LOW; 1292 } else { 1293 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } 1298 1299 return ret; 1300 } 1301 1302 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1303 { 1304 int ret; 1305 bool has_room; 1306 1307 spin_lock_bh(&po->sk.sk_receive_queue.lock); 1308 ret = __packet_rcv_has_room(po, skb); 1309 has_room = ret == ROOM_NORMAL; 1310 if (po->pressure == has_room) 1311 po->pressure = !has_room; 1312 spin_unlock_bh(&po->sk.sk_receive_queue.lock); 1313 1314 return ret; 1315 } 1316 1317 static void packet_sock_destruct(struct sock *sk) 1318 { 1319 skb_queue_purge(&sk->sk_error_queue); 1320 1321 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1322 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1323 1324 if (!sock_flag(sk, SOCK_DEAD)) { 1325 pr_err("Attempt to release alive packet socket: %p\n", sk); 1326 return; 1327 } 1328 1329 sk_refcnt_debug_dec(sk); 1330 } 1331 1332 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1333 { 1334 u32 rxhash; 1335 int i, count = 0; 1336 1337 rxhash = skb_get_hash(skb); 1338 for (i = 0; i < ROLLOVER_HLEN; i++) 1339 if (po->rollover->history[i] == rxhash) 1340 count++; 1341 1342 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash; 1343 return count > (ROLLOVER_HLEN >> 1); 1344 } 1345 1346 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1347 struct sk_buff *skb, 1348 unsigned int num) 1349 { 1350 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1351 } 1352 1353 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1354 struct sk_buff *skb, 1355 unsigned int num) 1356 { 1357 unsigned int val = atomic_inc_return(&f->rr_cur); 1358 1359 return val % num; 1360 } 1361 1362 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return smp_processor_id() % num; 1367 } 1368 1369 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 return prandom_u32_max(num); 1374 } 1375 1376 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1377 struct sk_buff *skb, 1378 unsigned int idx, bool try_self, 1379 unsigned int num) 1380 { 1381 struct packet_sock *po, *po_next, *po_skip = NULL; 1382 unsigned int i, j, room = ROOM_NONE; 1383 1384 po = pkt_sk(f->arr[idx]); 1385 1386 if (try_self) { 1387 room = packet_rcv_has_room(po, skb); 1388 if (room == ROOM_NORMAL || 1389 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1390 return idx; 1391 po_skip = po; 1392 } 1393 1394 i = j = min_t(int, po->rollover->sock, num - 1); 1395 do { 1396 po_next = pkt_sk(f->arr[i]); 1397 if (po_next != po_skip && !po_next->pressure && 1398 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1399 if (i != j) 1400 po->rollover->sock = i; 1401 atomic_long_inc(&po->rollover->num); 1402 if (room == ROOM_LOW) 1403 atomic_long_inc(&po->rollover->num_huge); 1404 return i; 1405 } 1406 1407 if (++i == num) 1408 i = 0; 1409 } while (i != j); 1410 1411 atomic_long_inc(&po->rollover->num_failed); 1412 return idx; 1413 } 1414 1415 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1416 struct sk_buff *skb, 1417 unsigned int num) 1418 { 1419 return skb_get_queue_mapping(skb) % num; 1420 } 1421 1422 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1423 struct sk_buff *skb, 1424 unsigned int num) 1425 { 1426 struct bpf_prog *prog; 1427 unsigned int ret = 0; 1428 1429 rcu_read_lock(); 1430 prog = rcu_dereference(f->bpf_prog); 1431 if (prog) 1432 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1433 rcu_read_unlock(); 1434 1435 return ret; 1436 } 1437 1438 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1439 { 1440 return f->flags & (flag >> 8); 1441 } 1442 1443 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1444 struct packet_type *pt, struct net_device *orig_dev) 1445 { 1446 struct packet_fanout *f = pt->af_packet_priv; 1447 unsigned int num = READ_ONCE(f->num_members); 1448 struct net *net = read_pnet(&f->net); 1449 struct packet_sock *po; 1450 unsigned int idx; 1451 1452 if (!net_eq(dev_net(dev), net) || !num) { 1453 kfree_skb(skb); 1454 return 0; 1455 } 1456 1457 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1458 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1459 if (!skb) 1460 return 0; 1461 } 1462 switch (f->type) { 1463 case PACKET_FANOUT_HASH: 1464 default: 1465 idx = fanout_demux_hash(f, skb, num); 1466 break; 1467 case PACKET_FANOUT_LB: 1468 idx = fanout_demux_lb(f, skb, num); 1469 break; 1470 case PACKET_FANOUT_CPU: 1471 idx = fanout_demux_cpu(f, skb, num); 1472 break; 1473 case PACKET_FANOUT_RND: 1474 idx = fanout_demux_rnd(f, skb, num); 1475 break; 1476 case PACKET_FANOUT_QM: 1477 idx = fanout_demux_qm(f, skb, num); 1478 break; 1479 case PACKET_FANOUT_ROLLOVER: 1480 idx = fanout_demux_rollover(f, skb, 0, false, num); 1481 break; 1482 case PACKET_FANOUT_CBPF: 1483 case PACKET_FANOUT_EBPF: 1484 idx = fanout_demux_bpf(f, skb, num); 1485 break; 1486 } 1487 1488 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1489 idx = fanout_demux_rollover(f, skb, idx, true, num); 1490 1491 po = pkt_sk(f->arr[idx]); 1492 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1493 } 1494 1495 DEFINE_MUTEX(fanout_mutex); 1496 EXPORT_SYMBOL_GPL(fanout_mutex); 1497 static LIST_HEAD(fanout_list); 1498 static u16 fanout_next_id; 1499 1500 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1501 { 1502 struct packet_fanout *f = po->fanout; 1503 1504 spin_lock(&f->lock); 1505 f->arr[f->num_members] = sk; 1506 smp_wmb(); 1507 f->num_members++; 1508 if (f->num_members == 1) 1509 dev_add_pack(&f->prot_hook); 1510 spin_unlock(&f->lock); 1511 } 1512 1513 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1514 { 1515 struct packet_fanout *f = po->fanout; 1516 int i; 1517 1518 spin_lock(&f->lock); 1519 for (i = 0; i < f->num_members; i++) { 1520 if (f->arr[i] == sk) 1521 break; 1522 } 1523 BUG_ON(i >= f->num_members); 1524 f->arr[i] = f->arr[f->num_members - 1]; 1525 f->num_members--; 1526 if (f->num_members == 0) 1527 __dev_remove_pack(&f->prot_hook); 1528 spin_unlock(&f->lock); 1529 } 1530 1531 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1532 { 1533 if (sk->sk_family != PF_PACKET) 1534 return false; 1535 1536 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1537 } 1538 1539 static void fanout_init_data(struct packet_fanout *f) 1540 { 1541 switch (f->type) { 1542 case PACKET_FANOUT_LB: 1543 atomic_set(&f->rr_cur, 0); 1544 break; 1545 case PACKET_FANOUT_CBPF: 1546 case PACKET_FANOUT_EBPF: 1547 RCU_INIT_POINTER(f->bpf_prog, NULL); 1548 break; 1549 } 1550 } 1551 1552 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1553 { 1554 struct bpf_prog *old; 1555 1556 spin_lock(&f->lock); 1557 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1558 rcu_assign_pointer(f->bpf_prog, new); 1559 spin_unlock(&f->lock); 1560 1561 if (old) { 1562 synchronize_net(); 1563 bpf_prog_destroy(old); 1564 } 1565 } 1566 1567 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data, 1568 unsigned int len) 1569 { 1570 struct bpf_prog *new; 1571 struct sock_fprog fprog; 1572 int ret; 1573 1574 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1575 return -EPERM; 1576 if (len != sizeof(fprog)) 1577 return -EINVAL; 1578 if (copy_from_user(&fprog, data, len)) 1579 return -EFAULT; 1580 1581 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1582 if (ret) 1583 return ret; 1584 1585 __fanout_set_data_bpf(po->fanout, new); 1586 return 0; 1587 } 1588 1589 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data, 1590 unsigned int len) 1591 { 1592 struct bpf_prog *new; 1593 u32 fd; 1594 1595 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1596 return -EPERM; 1597 if (len != sizeof(fd)) 1598 return -EINVAL; 1599 if (copy_from_user(&fd, data, len)) 1600 return -EFAULT; 1601 1602 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1603 if (IS_ERR(new)) 1604 return PTR_ERR(new); 1605 1606 __fanout_set_data_bpf(po->fanout, new); 1607 return 0; 1608 } 1609 1610 static int fanout_set_data(struct packet_sock *po, char __user *data, 1611 unsigned int len) 1612 { 1613 switch (po->fanout->type) { 1614 case PACKET_FANOUT_CBPF: 1615 return fanout_set_data_cbpf(po, data, len); 1616 case PACKET_FANOUT_EBPF: 1617 return fanout_set_data_ebpf(po, data, len); 1618 default: 1619 return -EINVAL; 1620 }; 1621 } 1622 1623 static void fanout_release_data(struct packet_fanout *f) 1624 { 1625 switch (f->type) { 1626 case PACKET_FANOUT_CBPF: 1627 case PACKET_FANOUT_EBPF: 1628 __fanout_set_data_bpf(f, NULL); 1629 }; 1630 } 1631 1632 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1633 { 1634 struct packet_fanout *f; 1635 1636 list_for_each_entry(f, &fanout_list, list) { 1637 if (f->id == candidate_id && 1638 read_pnet(&f->net) == sock_net(sk)) { 1639 return false; 1640 } 1641 } 1642 return true; 1643 } 1644 1645 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1646 { 1647 u16 id = fanout_next_id; 1648 1649 do { 1650 if (__fanout_id_is_free(sk, id)) { 1651 *new_id = id; 1652 fanout_next_id = id + 1; 1653 return true; 1654 } 1655 1656 id++; 1657 } while (id != fanout_next_id); 1658 1659 return false; 1660 } 1661 1662 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1663 { 1664 struct packet_rollover *rollover = NULL; 1665 struct packet_sock *po = pkt_sk(sk); 1666 struct packet_fanout *f, *match; 1667 u8 type = type_flags & 0xff; 1668 u8 flags = type_flags >> 8; 1669 int err; 1670 1671 switch (type) { 1672 case PACKET_FANOUT_ROLLOVER: 1673 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1674 return -EINVAL; 1675 case PACKET_FANOUT_HASH: 1676 case PACKET_FANOUT_LB: 1677 case PACKET_FANOUT_CPU: 1678 case PACKET_FANOUT_RND: 1679 case PACKET_FANOUT_QM: 1680 case PACKET_FANOUT_CBPF: 1681 case PACKET_FANOUT_EBPF: 1682 break; 1683 default: 1684 return -EINVAL; 1685 } 1686 1687 mutex_lock(&fanout_mutex); 1688 1689 err = -EINVAL; 1690 if (!po->running) 1691 goto out; 1692 1693 err = -EALREADY; 1694 if (po->fanout) 1695 goto out; 1696 1697 if (type == PACKET_FANOUT_ROLLOVER || 1698 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1699 err = -ENOMEM; 1700 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1701 if (!rollover) 1702 goto out; 1703 atomic_long_set(&rollover->num, 0); 1704 atomic_long_set(&rollover->num_huge, 0); 1705 atomic_long_set(&rollover->num_failed, 0); 1706 po->rollover = rollover; 1707 } 1708 1709 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1710 if (id != 0) { 1711 err = -EINVAL; 1712 goto out; 1713 } 1714 if (!fanout_find_new_id(sk, &id)) { 1715 err = -ENOMEM; 1716 goto out; 1717 } 1718 /* ephemeral flag for the first socket in the group: drop it */ 1719 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1720 } 1721 1722 match = NULL; 1723 list_for_each_entry(f, &fanout_list, list) { 1724 if (f->id == id && 1725 read_pnet(&f->net) == sock_net(sk)) { 1726 match = f; 1727 break; 1728 } 1729 } 1730 err = -EINVAL; 1731 if (match && match->flags != flags) 1732 goto out; 1733 if (!match) { 1734 err = -ENOMEM; 1735 match = kzalloc(sizeof(*match), GFP_KERNEL); 1736 if (!match) 1737 goto out; 1738 write_pnet(&match->net, sock_net(sk)); 1739 match->id = id; 1740 match->type = type; 1741 match->flags = flags; 1742 INIT_LIST_HEAD(&match->list); 1743 spin_lock_init(&match->lock); 1744 refcount_set(&match->sk_ref, 0); 1745 fanout_init_data(match); 1746 match->prot_hook.type = po->prot_hook.type; 1747 match->prot_hook.dev = po->prot_hook.dev; 1748 match->prot_hook.func = packet_rcv_fanout; 1749 match->prot_hook.af_packet_priv = match; 1750 match->prot_hook.id_match = match_fanout_group; 1751 list_add(&match->list, &fanout_list); 1752 } 1753 err = -EINVAL; 1754 if (match->type == type && 1755 match->prot_hook.type == po->prot_hook.type && 1756 match->prot_hook.dev == po->prot_hook.dev) { 1757 err = -ENOSPC; 1758 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1759 __dev_remove_pack(&po->prot_hook); 1760 po->fanout = match; 1761 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1762 __fanout_link(sk, po); 1763 err = 0; 1764 } 1765 } 1766 out: 1767 if (err && rollover) { 1768 kfree(rollover); 1769 po->rollover = NULL; 1770 } 1771 mutex_unlock(&fanout_mutex); 1772 return err; 1773 } 1774 1775 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1776 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1777 * It is the responsibility of the caller to call fanout_release_data() and 1778 * free the returned packet_fanout (after synchronize_net()) 1779 */ 1780 static struct packet_fanout *fanout_release(struct sock *sk) 1781 { 1782 struct packet_sock *po = pkt_sk(sk); 1783 struct packet_fanout *f; 1784 1785 mutex_lock(&fanout_mutex); 1786 f = po->fanout; 1787 if (f) { 1788 po->fanout = NULL; 1789 1790 if (refcount_dec_and_test(&f->sk_ref)) 1791 list_del(&f->list); 1792 else 1793 f = NULL; 1794 1795 if (po->rollover) 1796 kfree_rcu(po->rollover, rcu); 1797 } 1798 mutex_unlock(&fanout_mutex); 1799 1800 return f; 1801 } 1802 1803 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1804 struct sk_buff *skb) 1805 { 1806 /* Earlier code assumed this would be a VLAN pkt, double-check 1807 * this now that we have the actual packet in hand. We can only 1808 * do this check on Ethernet devices. 1809 */ 1810 if (unlikely(dev->type != ARPHRD_ETHER)) 1811 return false; 1812 1813 skb_reset_mac_header(skb); 1814 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1815 } 1816 1817 static const struct proto_ops packet_ops; 1818 1819 static const struct proto_ops packet_ops_spkt; 1820 1821 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1822 struct packet_type *pt, struct net_device *orig_dev) 1823 { 1824 struct sock *sk; 1825 struct sockaddr_pkt *spkt; 1826 1827 /* 1828 * When we registered the protocol we saved the socket in the data 1829 * field for just this event. 1830 */ 1831 1832 sk = pt->af_packet_priv; 1833 1834 /* 1835 * Yank back the headers [hope the device set this 1836 * right or kerboom...] 1837 * 1838 * Incoming packets have ll header pulled, 1839 * push it back. 1840 * 1841 * For outgoing ones skb->data == skb_mac_header(skb) 1842 * so that this procedure is noop. 1843 */ 1844 1845 if (skb->pkt_type == PACKET_LOOPBACK) 1846 goto out; 1847 1848 if (!net_eq(dev_net(dev), sock_net(sk))) 1849 goto out; 1850 1851 skb = skb_share_check(skb, GFP_ATOMIC); 1852 if (skb == NULL) 1853 goto oom; 1854 1855 /* drop any routing info */ 1856 skb_dst_drop(skb); 1857 1858 /* drop conntrack reference */ 1859 nf_reset(skb); 1860 1861 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1862 1863 skb_push(skb, skb->data - skb_mac_header(skb)); 1864 1865 /* 1866 * The SOCK_PACKET socket receives _all_ frames. 1867 */ 1868 1869 spkt->spkt_family = dev->type; 1870 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1871 spkt->spkt_protocol = skb->protocol; 1872 1873 /* 1874 * Charge the memory to the socket. This is done specifically 1875 * to prevent sockets using all the memory up. 1876 */ 1877 1878 if (sock_queue_rcv_skb(sk, skb) == 0) 1879 return 0; 1880 1881 out: 1882 kfree_skb(skb); 1883 oom: 1884 return 0; 1885 } 1886 1887 1888 /* 1889 * Output a raw packet to a device layer. This bypasses all the other 1890 * protocol layers and you must therefore supply it with a complete frame 1891 */ 1892 1893 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1894 size_t len) 1895 { 1896 struct sock *sk = sock->sk; 1897 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1898 struct sk_buff *skb = NULL; 1899 struct net_device *dev; 1900 struct sockcm_cookie sockc; 1901 __be16 proto = 0; 1902 int err; 1903 int extra_len = 0; 1904 1905 /* 1906 * Get and verify the address. 1907 */ 1908 1909 if (saddr) { 1910 if (msg->msg_namelen < sizeof(struct sockaddr)) 1911 return -EINVAL; 1912 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1913 proto = saddr->spkt_protocol; 1914 } else 1915 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1916 1917 /* 1918 * Find the device first to size check it 1919 */ 1920 1921 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1922 retry: 1923 rcu_read_lock(); 1924 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1925 err = -ENODEV; 1926 if (dev == NULL) 1927 goto out_unlock; 1928 1929 err = -ENETDOWN; 1930 if (!(dev->flags & IFF_UP)) 1931 goto out_unlock; 1932 1933 /* 1934 * You may not queue a frame bigger than the mtu. This is the lowest level 1935 * raw protocol and you must do your own fragmentation at this level. 1936 */ 1937 1938 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1939 if (!netif_supports_nofcs(dev)) { 1940 err = -EPROTONOSUPPORT; 1941 goto out_unlock; 1942 } 1943 extra_len = 4; /* We're doing our own CRC */ 1944 } 1945 1946 err = -EMSGSIZE; 1947 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1948 goto out_unlock; 1949 1950 if (!skb) { 1951 size_t reserved = LL_RESERVED_SPACE(dev); 1952 int tlen = dev->needed_tailroom; 1953 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1954 1955 rcu_read_unlock(); 1956 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1957 if (skb == NULL) 1958 return -ENOBUFS; 1959 /* FIXME: Save some space for broken drivers that write a hard 1960 * header at transmission time by themselves. PPP is the notable 1961 * one here. This should really be fixed at the driver level. 1962 */ 1963 skb_reserve(skb, reserved); 1964 skb_reset_network_header(skb); 1965 1966 /* Try to align data part correctly */ 1967 if (hhlen) { 1968 skb->data -= hhlen; 1969 skb->tail -= hhlen; 1970 if (len < hhlen) 1971 skb_reset_network_header(skb); 1972 } 1973 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1974 if (err) 1975 goto out_free; 1976 goto retry; 1977 } 1978 1979 if (!dev_validate_header(dev, skb->data, len)) { 1980 err = -EINVAL; 1981 goto out_unlock; 1982 } 1983 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1984 !packet_extra_vlan_len_allowed(dev, skb)) { 1985 err = -EMSGSIZE; 1986 goto out_unlock; 1987 } 1988 1989 sockc.tsflags = sk->sk_tsflags; 1990 if (msg->msg_controllen) { 1991 err = sock_cmsg_send(sk, msg, &sockc); 1992 if (unlikely(err)) 1993 goto out_unlock; 1994 } 1995 1996 skb->protocol = proto; 1997 skb->dev = dev; 1998 skb->priority = sk->sk_priority; 1999 skb->mark = sk->sk_mark; 2000 2001 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags); 2002 2003 if (unlikely(extra_len == 4)) 2004 skb->no_fcs = 1; 2005 2006 skb_probe_transport_header(skb, 0); 2007 2008 dev_queue_xmit(skb); 2009 rcu_read_unlock(); 2010 return len; 2011 2012 out_unlock: 2013 rcu_read_unlock(); 2014 out_free: 2015 kfree_skb(skb); 2016 return err; 2017 } 2018 2019 static unsigned int run_filter(struct sk_buff *skb, 2020 const struct sock *sk, 2021 unsigned int res) 2022 { 2023 struct sk_filter *filter; 2024 2025 rcu_read_lock(); 2026 filter = rcu_dereference(sk->sk_filter); 2027 if (filter != NULL) 2028 res = bpf_prog_run_clear_cb(filter->prog, skb); 2029 rcu_read_unlock(); 2030 2031 return res; 2032 } 2033 2034 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2035 size_t *len) 2036 { 2037 struct virtio_net_hdr vnet_hdr; 2038 2039 if (*len < sizeof(vnet_hdr)) 2040 return -EINVAL; 2041 *len -= sizeof(vnet_hdr); 2042 2043 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true)) 2044 return -EINVAL; 2045 2046 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2047 } 2048 2049 /* 2050 * This function makes lazy skb cloning in hope that most of packets 2051 * are discarded by BPF. 2052 * 2053 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2054 * and skb->cb are mangled. It works because (and until) packets 2055 * falling here are owned by current CPU. Output packets are cloned 2056 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2057 * sequencially, so that if we return skb to original state on exit, 2058 * we will not harm anyone. 2059 */ 2060 2061 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2062 struct packet_type *pt, struct net_device *orig_dev) 2063 { 2064 struct sock *sk; 2065 struct sockaddr_ll *sll; 2066 struct packet_sock *po; 2067 u8 *skb_head = skb->data; 2068 int skb_len = skb->len; 2069 unsigned int snaplen, res; 2070 bool is_drop_n_account = false; 2071 2072 if (skb->pkt_type == PACKET_LOOPBACK) 2073 goto drop; 2074 2075 sk = pt->af_packet_priv; 2076 po = pkt_sk(sk); 2077 2078 if (!net_eq(dev_net(dev), sock_net(sk))) 2079 goto drop; 2080 2081 skb->dev = dev; 2082 2083 if (dev->header_ops) { 2084 /* The device has an explicit notion of ll header, 2085 * exported to higher levels. 2086 * 2087 * Otherwise, the device hides details of its frame 2088 * structure, so that corresponding packet head is 2089 * never delivered to user. 2090 */ 2091 if (sk->sk_type != SOCK_DGRAM) 2092 skb_push(skb, skb->data - skb_mac_header(skb)); 2093 else if (skb->pkt_type == PACKET_OUTGOING) { 2094 /* Special case: outgoing packets have ll header at head */ 2095 skb_pull(skb, skb_network_offset(skb)); 2096 } 2097 } 2098 2099 snaplen = skb->len; 2100 2101 res = run_filter(skb, sk, snaplen); 2102 if (!res) 2103 goto drop_n_restore; 2104 if (snaplen > res) 2105 snaplen = res; 2106 2107 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2108 goto drop_n_acct; 2109 2110 if (skb_shared(skb)) { 2111 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2112 if (nskb == NULL) 2113 goto drop_n_acct; 2114 2115 if (skb_head != skb->data) { 2116 skb->data = skb_head; 2117 skb->len = skb_len; 2118 } 2119 consume_skb(skb); 2120 skb = nskb; 2121 } 2122 2123 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2124 2125 sll = &PACKET_SKB_CB(skb)->sa.ll; 2126 sll->sll_hatype = dev->type; 2127 sll->sll_pkttype = skb->pkt_type; 2128 if (unlikely(po->origdev)) 2129 sll->sll_ifindex = orig_dev->ifindex; 2130 else 2131 sll->sll_ifindex = dev->ifindex; 2132 2133 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2134 2135 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2136 * Use their space for storing the original skb length. 2137 */ 2138 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2139 2140 if (pskb_trim(skb, snaplen)) 2141 goto drop_n_acct; 2142 2143 skb_set_owner_r(skb, sk); 2144 skb->dev = NULL; 2145 skb_dst_drop(skb); 2146 2147 /* drop conntrack reference */ 2148 nf_reset(skb); 2149 2150 spin_lock(&sk->sk_receive_queue.lock); 2151 po->stats.stats1.tp_packets++; 2152 sock_skb_set_dropcount(sk, skb); 2153 __skb_queue_tail(&sk->sk_receive_queue, skb); 2154 spin_unlock(&sk->sk_receive_queue.lock); 2155 sk->sk_data_ready(sk); 2156 return 0; 2157 2158 drop_n_acct: 2159 is_drop_n_account = true; 2160 spin_lock(&sk->sk_receive_queue.lock); 2161 po->stats.stats1.tp_drops++; 2162 atomic_inc(&sk->sk_drops); 2163 spin_unlock(&sk->sk_receive_queue.lock); 2164 2165 drop_n_restore: 2166 if (skb_head != skb->data && skb_shared(skb)) { 2167 skb->data = skb_head; 2168 skb->len = skb_len; 2169 } 2170 drop: 2171 if (!is_drop_n_account) 2172 consume_skb(skb); 2173 else 2174 kfree_skb(skb); 2175 return 0; 2176 } 2177 2178 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2179 struct packet_type *pt, struct net_device *orig_dev) 2180 { 2181 struct sock *sk; 2182 struct packet_sock *po; 2183 struct sockaddr_ll *sll; 2184 union tpacket_uhdr h; 2185 u8 *skb_head = skb->data; 2186 int skb_len = skb->len; 2187 unsigned int snaplen, res; 2188 unsigned long status = TP_STATUS_USER; 2189 unsigned short macoff, netoff, hdrlen; 2190 struct sk_buff *copy_skb = NULL; 2191 struct timespec ts; 2192 __u32 ts_status; 2193 bool is_drop_n_account = false; 2194 2195 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2196 * We may add members to them until current aligned size without forcing 2197 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2198 */ 2199 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2200 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2201 2202 if (skb->pkt_type == PACKET_LOOPBACK) 2203 goto drop; 2204 2205 sk = pt->af_packet_priv; 2206 po = pkt_sk(sk); 2207 2208 if (!net_eq(dev_net(dev), sock_net(sk))) 2209 goto drop; 2210 2211 if (dev->header_ops) { 2212 if (sk->sk_type != SOCK_DGRAM) 2213 skb_push(skb, skb->data - skb_mac_header(skb)); 2214 else if (skb->pkt_type == PACKET_OUTGOING) { 2215 /* Special case: outgoing packets have ll header at head */ 2216 skb_pull(skb, skb_network_offset(skb)); 2217 } 2218 } 2219 2220 snaplen = skb->len; 2221 2222 res = run_filter(skb, sk, snaplen); 2223 if (!res) 2224 goto drop_n_restore; 2225 2226 if (skb->ip_summed == CHECKSUM_PARTIAL) 2227 status |= TP_STATUS_CSUMNOTREADY; 2228 else if (skb->pkt_type != PACKET_OUTGOING && 2229 (skb->ip_summed == CHECKSUM_COMPLETE || 2230 skb_csum_unnecessary(skb))) 2231 status |= TP_STATUS_CSUM_VALID; 2232 2233 if (snaplen > res) 2234 snaplen = res; 2235 2236 if (sk->sk_type == SOCK_DGRAM) { 2237 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2238 po->tp_reserve; 2239 } else { 2240 unsigned int maclen = skb_network_offset(skb); 2241 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2242 (maclen < 16 ? 16 : maclen)) + 2243 po->tp_reserve; 2244 if (po->has_vnet_hdr) 2245 netoff += sizeof(struct virtio_net_hdr); 2246 macoff = netoff - maclen; 2247 } 2248 if (po->tp_version <= TPACKET_V2) { 2249 if (macoff + snaplen > po->rx_ring.frame_size) { 2250 if (po->copy_thresh && 2251 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2252 if (skb_shared(skb)) { 2253 copy_skb = skb_clone(skb, GFP_ATOMIC); 2254 } else { 2255 copy_skb = skb_get(skb); 2256 skb_head = skb->data; 2257 } 2258 if (copy_skb) 2259 skb_set_owner_r(copy_skb, sk); 2260 } 2261 snaplen = po->rx_ring.frame_size - macoff; 2262 if ((int)snaplen < 0) 2263 snaplen = 0; 2264 } 2265 } else if (unlikely(macoff + snaplen > 2266 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2267 u32 nval; 2268 2269 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2270 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2271 snaplen, nval, macoff); 2272 snaplen = nval; 2273 if (unlikely((int)snaplen < 0)) { 2274 snaplen = 0; 2275 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2276 } 2277 } 2278 spin_lock(&sk->sk_receive_queue.lock); 2279 h.raw = packet_current_rx_frame(po, skb, 2280 TP_STATUS_KERNEL, (macoff+snaplen)); 2281 if (!h.raw) 2282 goto drop_n_account; 2283 if (po->tp_version <= TPACKET_V2) { 2284 packet_increment_rx_head(po, &po->rx_ring); 2285 /* 2286 * LOSING will be reported till you read the stats, 2287 * because it's COR - Clear On Read. 2288 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2289 * at packet level. 2290 */ 2291 if (po->stats.stats1.tp_drops) 2292 status |= TP_STATUS_LOSING; 2293 } 2294 po->stats.stats1.tp_packets++; 2295 if (copy_skb) { 2296 status |= TP_STATUS_COPY; 2297 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2298 } 2299 spin_unlock(&sk->sk_receive_queue.lock); 2300 2301 if (po->has_vnet_hdr) { 2302 if (virtio_net_hdr_from_skb(skb, h.raw + macoff - 2303 sizeof(struct virtio_net_hdr), 2304 vio_le(), true)) { 2305 spin_lock(&sk->sk_receive_queue.lock); 2306 goto drop_n_account; 2307 } 2308 } 2309 2310 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2311 2312 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2313 getnstimeofday(&ts); 2314 2315 status |= ts_status; 2316 2317 switch (po->tp_version) { 2318 case TPACKET_V1: 2319 h.h1->tp_len = skb->len; 2320 h.h1->tp_snaplen = snaplen; 2321 h.h1->tp_mac = macoff; 2322 h.h1->tp_net = netoff; 2323 h.h1->tp_sec = ts.tv_sec; 2324 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2325 hdrlen = sizeof(*h.h1); 2326 break; 2327 case TPACKET_V2: 2328 h.h2->tp_len = skb->len; 2329 h.h2->tp_snaplen = snaplen; 2330 h.h2->tp_mac = macoff; 2331 h.h2->tp_net = netoff; 2332 h.h2->tp_sec = ts.tv_sec; 2333 h.h2->tp_nsec = ts.tv_nsec; 2334 if (skb_vlan_tag_present(skb)) { 2335 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2336 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2337 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2338 } else { 2339 h.h2->tp_vlan_tci = 0; 2340 h.h2->tp_vlan_tpid = 0; 2341 } 2342 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2343 hdrlen = sizeof(*h.h2); 2344 break; 2345 case TPACKET_V3: 2346 /* tp_nxt_offset,vlan are already populated above. 2347 * So DONT clear those fields here 2348 */ 2349 h.h3->tp_status |= status; 2350 h.h3->tp_len = skb->len; 2351 h.h3->tp_snaplen = snaplen; 2352 h.h3->tp_mac = macoff; 2353 h.h3->tp_net = netoff; 2354 h.h3->tp_sec = ts.tv_sec; 2355 h.h3->tp_nsec = ts.tv_nsec; 2356 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2357 hdrlen = sizeof(*h.h3); 2358 break; 2359 default: 2360 BUG(); 2361 } 2362 2363 sll = h.raw + TPACKET_ALIGN(hdrlen); 2364 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2365 sll->sll_family = AF_PACKET; 2366 sll->sll_hatype = dev->type; 2367 sll->sll_protocol = skb->protocol; 2368 sll->sll_pkttype = skb->pkt_type; 2369 if (unlikely(po->origdev)) 2370 sll->sll_ifindex = orig_dev->ifindex; 2371 else 2372 sll->sll_ifindex = dev->ifindex; 2373 2374 smp_mb(); 2375 2376 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2377 if (po->tp_version <= TPACKET_V2) { 2378 u8 *start, *end; 2379 2380 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2381 macoff + snaplen); 2382 2383 for (start = h.raw; start < end; start += PAGE_SIZE) 2384 flush_dcache_page(pgv_to_page(start)); 2385 } 2386 smp_wmb(); 2387 #endif 2388 2389 if (po->tp_version <= TPACKET_V2) { 2390 __packet_set_status(po, h.raw, status); 2391 sk->sk_data_ready(sk); 2392 } else { 2393 prb_clear_blk_fill_status(&po->rx_ring); 2394 } 2395 2396 drop_n_restore: 2397 if (skb_head != skb->data && skb_shared(skb)) { 2398 skb->data = skb_head; 2399 skb->len = skb_len; 2400 } 2401 drop: 2402 if (!is_drop_n_account) 2403 consume_skb(skb); 2404 else 2405 kfree_skb(skb); 2406 return 0; 2407 2408 drop_n_account: 2409 is_drop_n_account = true; 2410 po->stats.stats1.tp_drops++; 2411 spin_unlock(&sk->sk_receive_queue.lock); 2412 2413 sk->sk_data_ready(sk); 2414 kfree_skb(copy_skb); 2415 goto drop_n_restore; 2416 } 2417 2418 static void tpacket_destruct_skb(struct sk_buff *skb) 2419 { 2420 struct packet_sock *po = pkt_sk(skb->sk); 2421 2422 if (likely(po->tx_ring.pg_vec)) { 2423 void *ph; 2424 __u32 ts; 2425 2426 ph = skb_shinfo(skb)->destructor_arg; 2427 packet_dec_pending(&po->tx_ring); 2428 2429 ts = __packet_set_timestamp(po, ph, skb); 2430 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2431 } 2432 2433 sock_wfree(skb); 2434 } 2435 2436 static void tpacket_set_protocol(const struct net_device *dev, 2437 struct sk_buff *skb) 2438 { 2439 if (dev->type == ARPHRD_ETHER) { 2440 skb_reset_mac_header(skb); 2441 skb->protocol = eth_hdr(skb)->h_proto; 2442 } 2443 } 2444 2445 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2446 { 2447 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2448 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2449 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2450 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2451 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2452 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2453 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2454 2455 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2456 return -EINVAL; 2457 2458 return 0; 2459 } 2460 2461 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2462 struct virtio_net_hdr *vnet_hdr) 2463 { 2464 if (*len < sizeof(*vnet_hdr)) 2465 return -EINVAL; 2466 *len -= sizeof(*vnet_hdr); 2467 2468 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2469 return -EFAULT; 2470 2471 return __packet_snd_vnet_parse(vnet_hdr, *len); 2472 } 2473 2474 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2475 void *frame, struct net_device *dev, void *data, int tp_len, 2476 __be16 proto, unsigned char *addr, int hlen, int copylen, 2477 const struct sockcm_cookie *sockc) 2478 { 2479 union tpacket_uhdr ph; 2480 int to_write, offset, len, nr_frags, len_max; 2481 struct socket *sock = po->sk.sk_socket; 2482 struct page *page; 2483 int err; 2484 2485 ph.raw = frame; 2486 2487 skb->protocol = proto; 2488 skb->dev = dev; 2489 skb->priority = po->sk.sk_priority; 2490 skb->mark = po->sk.sk_mark; 2491 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags); 2492 skb_shinfo(skb)->destructor_arg = ph.raw; 2493 2494 skb_reserve(skb, hlen); 2495 skb_reset_network_header(skb); 2496 2497 to_write = tp_len; 2498 2499 if (sock->type == SOCK_DGRAM) { 2500 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2501 NULL, tp_len); 2502 if (unlikely(err < 0)) 2503 return -EINVAL; 2504 } else if (copylen) { 2505 int hdrlen = min_t(int, copylen, tp_len); 2506 2507 skb_push(skb, dev->hard_header_len); 2508 skb_put(skb, copylen - dev->hard_header_len); 2509 err = skb_store_bits(skb, 0, data, hdrlen); 2510 if (unlikely(err)) 2511 return err; 2512 if (!dev_validate_header(dev, skb->data, hdrlen)) 2513 return -EINVAL; 2514 if (!skb->protocol) 2515 tpacket_set_protocol(dev, skb); 2516 2517 data += hdrlen; 2518 to_write -= hdrlen; 2519 } 2520 2521 offset = offset_in_page(data); 2522 len_max = PAGE_SIZE - offset; 2523 len = ((to_write > len_max) ? len_max : to_write); 2524 2525 skb->data_len = to_write; 2526 skb->len += to_write; 2527 skb->truesize += to_write; 2528 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2529 2530 while (likely(to_write)) { 2531 nr_frags = skb_shinfo(skb)->nr_frags; 2532 2533 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2534 pr_err("Packet exceed the number of skb frags(%lu)\n", 2535 MAX_SKB_FRAGS); 2536 return -EFAULT; 2537 } 2538 2539 page = pgv_to_page(data); 2540 data += len; 2541 flush_dcache_page(page); 2542 get_page(page); 2543 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2544 to_write -= len; 2545 offset = 0; 2546 len_max = PAGE_SIZE; 2547 len = ((to_write > len_max) ? len_max : to_write); 2548 } 2549 2550 skb_probe_transport_header(skb, 0); 2551 2552 return tp_len; 2553 } 2554 2555 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2556 int size_max, void **data) 2557 { 2558 union tpacket_uhdr ph; 2559 int tp_len, off; 2560 2561 ph.raw = frame; 2562 2563 switch (po->tp_version) { 2564 case TPACKET_V3: 2565 if (ph.h3->tp_next_offset != 0) { 2566 pr_warn_once("variable sized slot not supported"); 2567 return -EINVAL; 2568 } 2569 tp_len = ph.h3->tp_len; 2570 break; 2571 case TPACKET_V2: 2572 tp_len = ph.h2->tp_len; 2573 break; 2574 default: 2575 tp_len = ph.h1->tp_len; 2576 break; 2577 } 2578 if (unlikely(tp_len > size_max)) { 2579 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2580 return -EMSGSIZE; 2581 } 2582 2583 if (unlikely(po->tp_tx_has_off)) { 2584 int off_min, off_max; 2585 2586 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2587 off_max = po->tx_ring.frame_size - tp_len; 2588 if (po->sk.sk_type == SOCK_DGRAM) { 2589 switch (po->tp_version) { 2590 case TPACKET_V3: 2591 off = ph.h3->tp_net; 2592 break; 2593 case TPACKET_V2: 2594 off = ph.h2->tp_net; 2595 break; 2596 default: 2597 off = ph.h1->tp_net; 2598 break; 2599 } 2600 } else { 2601 switch (po->tp_version) { 2602 case TPACKET_V3: 2603 off = ph.h3->tp_mac; 2604 break; 2605 case TPACKET_V2: 2606 off = ph.h2->tp_mac; 2607 break; 2608 default: 2609 off = ph.h1->tp_mac; 2610 break; 2611 } 2612 } 2613 if (unlikely((off < off_min) || (off_max < off))) 2614 return -EINVAL; 2615 } else { 2616 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2617 } 2618 2619 *data = frame + off; 2620 return tp_len; 2621 } 2622 2623 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2624 { 2625 struct sk_buff *skb; 2626 struct net_device *dev; 2627 struct virtio_net_hdr *vnet_hdr = NULL; 2628 struct sockcm_cookie sockc; 2629 __be16 proto; 2630 int err, reserve = 0; 2631 void *ph; 2632 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2633 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2634 int tp_len, size_max; 2635 unsigned char *addr; 2636 void *data; 2637 int len_sum = 0; 2638 int status = TP_STATUS_AVAILABLE; 2639 int hlen, tlen, copylen = 0; 2640 2641 mutex_lock(&po->pg_vec_lock); 2642 2643 if (likely(saddr == NULL)) { 2644 dev = packet_cached_dev_get(po); 2645 proto = po->num; 2646 addr = NULL; 2647 } else { 2648 err = -EINVAL; 2649 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2650 goto out; 2651 if (msg->msg_namelen < (saddr->sll_halen 2652 + offsetof(struct sockaddr_ll, 2653 sll_addr))) 2654 goto out; 2655 proto = saddr->sll_protocol; 2656 addr = saddr->sll_addr; 2657 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2658 } 2659 2660 err = -ENXIO; 2661 if (unlikely(dev == NULL)) 2662 goto out; 2663 err = -ENETDOWN; 2664 if (unlikely(!(dev->flags & IFF_UP))) 2665 goto out_put; 2666 2667 sockc.tsflags = po->sk.sk_tsflags; 2668 if (msg->msg_controllen) { 2669 err = sock_cmsg_send(&po->sk, msg, &sockc); 2670 if (unlikely(err)) 2671 goto out_put; 2672 } 2673 2674 if (po->sk.sk_socket->type == SOCK_RAW) 2675 reserve = dev->hard_header_len; 2676 size_max = po->tx_ring.frame_size 2677 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2678 2679 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2680 size_max = dev->mtu + reserve + VLAN_HLEN; 2681 2682 do { 2683 ph = packet_current_frame(po, &po->tx_ring, 2684 TP_STATUS_SEND_REQUEST); 2685 if (unlikely(ph == NULL)) { 2686 if (need_wait && need_resched()) 2687 schedule(); 2688 continue; 2689 } 2690 2691 skb = NULL; 2692 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2693 if (tp_len < 0) 2694 goto tpacket_error; 2695 2696 status = TP_STATUS_SEND_REQUEST; 2697 hlen = LL_RESERVED_SPACE(dev); 2698 tlen = dev->needed_tailroom; 2699 if (po->has_vnet_hdr) { 2700 vnet_hdr = data; 2701 data += sizeof(*vnet_hdr); 2702 tp_len -= sizeof(*vnet_hdr); 2703 if (tp_len < 0 || 2704 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2705 tp_len = -EINVAL; 2706 goto tpacket_error; 2707 } 2708 copylen = __virtio16_to_cpu(vio_le(), 2709 vnet_hdr->hdr_len); 2710 } 2711 copylen = max_t(int, copylen, dev->hard_header_len); 2712 skb = sock_alloc_send_skb(&po->sk, 2713 hlen + tlen + sizeof(struct sockaddr_ll) + 2714 (copylen - dev->hard_header_len), 2715 !need_wait, &err); 2716 2717 if (unlikely(skb == NULL)) { 2718 /* we assume the socket was initially writeable ... */ 2719 if (likely(len_sum > 0)) 2720 err = len_sum; 2721 goto out_status; 2722 } 2723 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2724 addr, hlen, copylen, &sockc); 2725 if (likely(tp_len >= 0) && 2726 tp_len > dev->mtu + reserve && 2727 !po->has_vnet_hdr && 2728 !packet_extra_vlan_len_allowed(dev, skb)) 2729 tp_len = -EMSGSIZE; 2730 2731 if (unlikely(tp_len < 0)) { 2732 tpacket_error: 2733 if (po->tp_loss) { 2734 __packet_set_status(po, ph, 2735 TP_STATUS_AVAILABLE); 2736 packet_increment_head(&po->tx_ring); 2737 kfree_skb(skb); 2738 continue; 2739 } else { 2740 status = TP_STATUS_WRONG_FORMAT; 2741 err = tp_len; 2742 goto out_status; 2743 } 2744 } 2745 2746 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr, 2747 vio_le())) { 2748 tp_len = -EINVAL; 2749 goto tpacket_error; 2750 } 2751 2752 skb->destructor = tpacket_destruct_skb; 2753 __packet_set_status(po, ph, TP_STATUS_SENDING); 2754 packet_inc_pending(&po->tx_ring); 2755 2756 status = TP_STATUS_SEND_REQUEST; 2757 err = po->xmit(skb); 2758 if (unlikely(err > 0)) { 2759 err = net_xmit_errno(err); 2760 if (err && __packet_get_status(po, ph) == 2761 TP_STATUS_AVAILABLE) { 2762 /* skb was destructed already */ 2763 skb = NULL; 2764 goto out_status; 2765 } 2766 /* 2767 * skb was dropped but not destructed yet; 2768 * let's treat it like congestion or err < 0 2769 */ 2770 err = 0; 2771 } 2772 packet_increment_head(&po->tx_ring); 2773 len_sum += tp_len; 2774 } while (likely((ph != NULL) || 2775 /* Note: packet_read_pending() might be slow if we have 2776 * to call it as it's per_cpu variable, but in fast-path 2777 * we already short-circuit the loop with the first 2778 * condition, and luckily don't have to go that path 2779 * anyway. 2780 */ 2781 (need_wait && packet_read_pending(&po->tx_ring)))); 2782 2783 err = len_sum; 2784 goto out_put; 2785 2786 out_status: 2787 __packet_set_status(po, ph, status); 2788 kfree_skb(skb); 2789 out_put: 2790 dev_put(dev); 2791 out: 2792 mutex_unlock(&po->pg_vec_lock); 2793 return err; 2794 } 2795 2796 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2797 size_t reserve, size_t len, 2798 size_t linear, int noblock, 2799 int *err) 2800 { 2801 struct sk_buff *skb; 2802 2803 /* Under a page? Don't bother with paged skb. */ 2804 if (prepad + len < PAGE_SIZE || !linear) 2805 linear = len; 2806 2807 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2808 err, 0); 2809 if (!skb) 2810 return NULL; 2811 2812 skb_reserve(skb, reserve); 2813 skb_put(skb, linear); 2814 skb->data_len = len - linear; 2815 skb->len += len - linear; 2816 2817 return skb; 2818 } 2819 2820 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2821 { 2822 struct sock *sk = sock->sk; 2823 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2824 struct sk_buff *skb; 2825 struct net_device *dev; 2826 __be16 proto; 2827 unsigned char *addr; 2828 int err, reserve = 0; 2829 struct sockcm_cookie sockc; 2830 struct virtio_net_hdr vnet_hdr = { 0 }; 2831 int offset = 0; 2832 struct packet_sock *po = pkt_sk(sk); 2833 int hlen, tlen, linear; 2834 int extra_len = 0; 2835 2836 /* 2837 * Get and verify the address. 2838 */ 2839 2840 if (likely(saddr == NULL)) { 2841 dev = packet_cached_dev_get(po); 2842 proto = po->num; 2843 addr = NULL; 2844 } else { 2845 err = -EINVAL; 2846 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2847 goto out; 2848 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2849 goto out; 2850 proto = saddr->sll_protocol; 2851 addr = saddr->sll_addr; 2852 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2853 } 2854 2855 err = -ENXIO; 2856 if (unlikely(dev == NULL)) 2857 goto out_unlock; 2858 err = -ENETDOWN; 2859 if (unlikely(!(dev->flags & IFF_UP))) 2860 goto out_unlock; 2861 2862 sockc.tsflags = sk->sk_tsflags; 2863 sockc.mark = sk->sk_mark; 2864 if (msg->msg_controllen) { 2865 err = sock_cmsg_send(sk, msg, &sockc); 2866 if (unlikely(err)) 2867 goto out_unlock; 2868 } 2869 2870 if (sock->type == SOCK_RAW) 2871 reserve = dev->hard_header_len; 2872 if (po->has_vnet_hdr) { 2873 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2874 if (err) 2875 goto out_unlock; 2876 } 2877 2878 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2879 if (!netif_supports_nofcs(dev)) { 2880 err = -EPROTONOSUPPORT; 2881 goto out_unlock; 2882 } 2883 extra_len = 4; /* We're doing our own CRC */ 2884 } 2885 2886 err = -EMSGSIZE; 2887 if (!vnet_hdr.gso_type && 2888 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2889 goto out_unlock; 2890 2891 err = -ENOBUFS; 2892 hlen = LL_RESERVED_SPACE(dev); 2893 tlen = dev->needed_tailroom; 2894 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2895 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2896 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2897 msg->msg_flags & MSG_DONTWAIT, &err); 2898 if (skb == NULL) 2899 goto out_unlock; 2900 2901 skb_set_network_header(skb, reserve); 2902 2903 err = -EINVAL; 2904 if (sock->type == SOCK_DGRAM) { 2905 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2906 if (unlikely(offset < 0)) 2907 goto out_free; 2908 } 2909 2910 /* Returns -EFAULT on error */ 2911 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2912 if (err) 2913 goto out_free; 2914 2915 if (sock->type == SOCK_RAW && 2916 !dev_validate_header(dev, skb->data, len)) { 2917 err = -EINVAL; 2918 goto out_free; 2919 } 2920 2921 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags); 2922 2923 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2924 !packet_extra_vlan_len_allowed(dev, skb)) { 2925 err = -EMSGSIZE; 2926 goto out_free; 2927 } 2928 2929 skb->protocol = proto; 2930 skb->dev = dev; 2931 skb->priority = sk->sk_priority; 2932 skb->mark = sockc.mark; 2933 2934 if (po->has_vnet_hdr) { 2935 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 2936 if (err) 2937 goto out_free; 2938 len += sizeof(vnet_hdr); 2939 } 2940 2941 skb_probe_transport_header(skb, reserve); 2942 2943 if (unlikely(extra_len == 4)) 2944 skb->no_fcs = 1; 2945 2946 err = po->xmit(skb); 2947 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2948 goto out_unlock; 2949 2950 dev_put(dev); 2951 2952 return len; 2953 2954 out_free: 2955 kfree_skb(skb); 2956 out_unlock: 2957 if (dev) 2958 dev_put(dev); 2959 out: 2960 return err; 2961 } 2962 2963 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2964 { 2965 struct sock *sk = sock->sk; 2966 struct packet_sock *po = pkt_sk(sk); 2967 2968 if (po->tx_ring.pg_vec) 2969 return tpacket_snd(po, msg); 2970 else 2971 return packet_snd(sock, msg, len); 2972 } 2973 2974 /* 2975 * Close a PACKET socket. This is fairly simple. We immediately go 2976 * to 'closed' state and remove our protocol entry in the device list. 2977 */ 2978 2979 static int packet_release(struct socket *sock) 2980 { 2981 struct sock *sk = sock->sk; 2982 struct packet_sock *po; 2983 struct packet_fanout *f; 2984 struct net *net; 2985 union tpacket_req_u req_u; 2986 2987 if (!sk) 2988 return 0; 2989 2990 net = sock_net(sk); 2991 po = pkt_sk(sk); 2992 2993 mutex_lock(&net->packet.sklist_lock); 2994 sk_del_node_init_rcu(sk); 2995 mutex_unlock(&net->packet.sklist_lock); 2996 2997 preempt_disable(); 2998 sock_prot_inuse_add(net, sk->sk_prot, -1); 2999 preempt_enable(); 3000 3001 spin_lock(&po->bind_lock); 3002 unregister_prot_hook(sk, false); 3003 packet_cached_dev_reset(po); 3004 3005 if (po->prot_hook.dev) { 3006 dev_put(po->prot_hook.dev); 3007 po->prot_hook.dev = NULL; 3008 } 3009 spin_unlock(&po->bind_lock); 3010 3011 packet_flush_mclist(sk); 3012 3013 if (po->rx_ring.pg_vec) { 3014 memset(&req_u, 0, sizeof(req_u)); 3015 packet_set_ring(sk, &req_u, 1, 0); 3016 } 3017 3018 if (po->tx_ring.pg_vec) { 3019 memset(&req_u, 0, sizeof(req_u)); 3020 packet_set_ring(sk, &req_u, 1, 1); 3021 } 3022 3023 f = fanout_release(sk); 3024 3025 synchronize_net(); 3026 3027 if (f) { 3028 fanout_release_data(f); 3029 kfree(f); 3030 } 3031 /* 3032 * Now the socket is dead. No more input will appear. 3033 */ 3034 sock_orphan(sk); 3035 sock->sk = NULL; 3036 3037 /* Purge queues */ 3038 3039 skb_queue_purge(&sk->sk_receive_queue); 3040 packet_free_pending(po); 3041 sk_refcnt_debug_release(sk); 3042 3043 sock_put(sk); 3044 return 0; 3045 } 3046 3047 /* 3048 * Attach a packet hook. 3049 */ 3050 3051 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3052 __be16 proto) 3053 { 3054 struct packet_sock *po = pkt_sk(sk); 3055 struct net_device *dev_curr; 3056 __be16 proto_curr; 3057 bool need_rehook; 3058 struct net_device *dev = NULL; 3059 int ret = 0; 3060 bool unlisted = false; 3061 3062 if (po->fanout) 3063 return -EINVAL; 3064 3065 lock_sock(sk); 3066 spin_lock(&po->bind_lock); 3067 rcu_read_lock(); 3068 3069 if (name) { 3070 dev = dev_get_by_name_rcu(sock_net(sk), name); 3071 if (!dev) { 3072 ret = -ENODEV; 3073 goto out_unlock; 3074 } 3075 } else if (ifindex) { 3076 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3077 if (!dev) { 3078 ret = -ENODEV; 3079 goto out_unlock; 3080 } 3081 } 3082 3083 if (dev) 3084 dev_hold(dev); 3085 3086 proto_curr = po->prot_hook.type; 3087 dev_curr = po->prot_hook.dev; 3088 3089 need_rehook = proto_curr != proto || dev_curr != dev; 3090 3091 if (need_rehook) { 3092 if (po->running) { 3093 rcu_read_unlock(); 3094 __unregister_prot_hook(sk, true); 3095 rcu_read_lock(); 3096 dev_curr = po->prot_hook.dev; 3097 if (dev) 3098 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3099 dev->ifindex); 3100 } 3101 3102 po->num = proto; 3103 po->prot_hook.type = proto; 3104 3105 if (unlikely(unlisted)) { 3106 dev_put(dev); 3107 po->prot_hook.dev = NULL; 3108 po->ifindex = -1; 3109 packet_cached_dev_reset(po); 3110 } else { 3111 po->prot_hook.dev = dev; 3112 po->ifindex = dev ? dev->ifindex : 0; 3113 packet_cached_dev_assign(po, dev); 3114 } 3115 } 3116 if (dev_curr) 3117 dev_put(dev_curr); 3118 3119 if (proto == 0 || !need_rehook) 3120 goto out_unlock; 3121 3122 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3123 register_prot_hook(sk); 3124 } else { 3125 sk->sk_err = ENETDOWN; 3126 if (!sock_flag(sk, SOCK_DEAD)) 3127 sk->sk_error_report(sk); 3128 } 3129 3130 out_unlock: 3131 rcu_read_unlock(); 3132 spin_unlock(&po->bind_lock); 3133 release_sock(sk); 3134 return ret; 3135 } 3136 3137 /* 3138 * Bind a packet socket to a device 3139 */ 3140 3141 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3142 int addr_len) 3143 { 3144 struct sock *sk = sock->sk; 3145 char name[sizeof(uaddr->sa_data) + 1]; 3146 3147 /* 3148 * Check legality 3149 */ 3150 3151 if (addr_len != sizeof(struct sockaddr)) 3152 return -EINVAL; 3153 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3154 * zero-terminated. 3155 */ 3156 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3157 name[sizeof(uaddr->sa_data)] = 0; 3158 3159 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3160 } 3161 3162 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3163 { 3164 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3165 struct sock *sk = sock->sk; 3166 3167 /* 3168 * Check legality 3169 */ 3170 3171 if (addr_len < sizeof(struct sockaddr_ll)) 3172 return -EINVAL; 3173 if (sll->sll_family != AF_PACKET) 3174 return -EINVAL; 3175 3176 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3177 sll->sll_protocol ? : pkt_sk(sk)->num); 3178 } 3179 3180 static struct proto packet_proto = { 3181 .name = "PACKET", 3182 .owner = THIS_MODULE, 3183 .obj_size = sizeof(struct packet_sock), 3184 }; 3185 3186 /* 3187 * Create a packet of type SOCK_PACKET. 3188 */ 3189 3190 static int packet_create(struct net *net, struct socket *sock, int protocol, 3191 int kern) 3192 { 3193 struct sock *sk; 3194 struct packet_sock *po; 3195 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3196 int err; 3197 3198 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3199 return -EPERM; 3200 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3201 sock->type != SOCK_PACKET) 3202 return -ESOCKTNOSUPPORT; 3203 3204 sock->state = SS_UNCONNECTED; 3205 3206 err = -ENOBUFS; 3207 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3208 if (sk == NULL) 3209 goto out; 3210 3211 sock->ops = &packet_ops; 3212 if (sock->type == SOCK_PACKET) 3213 sock->ops = &packet_ops_spkt; 3214 3215 sock_init_data(sock, sk); 3216 3217 po = pkt_sk(sk); 3218 sk->sk_family = PF_PACKET; 3219 po->num = proto; 3220 po->xmit = dev_queue_xmit; 3221 3222 err = packet_alloc_pending(po); 3223 if (err) 3224 goto out2; 3225 3226 packet_cached_dev_reset(po); 3227 3228 sk->sk_destruct = packet_sock_destruct; 3229 sk_refcnt_debug_inc(sk); 3230 3231 /* 3232 * Attach a protocol block 3233 */ 3234 3235 spin_lock_init(&po->bind_lock); 3236 mutex_init(&po->pg_vec_lock); 3237 po->rollover = NULL; 3238 po->prot_hook.func = packet_rcv; 3239 3240 if (sock->type == SOCK_PACKET) 3241 po->prot_hook.func = packet_rcv_spkt; 3242 3243 po->prot_hook.af_packet_priv = sk; 3244 3245 if (proto) { 3246 po->prot_hook.type = proto; 3247 register_prot_hook(sk); 3248 } 3249 3250 mutex_lock(&net->packet.sklist_lock); 3251 sk_add_node_rcu(sk, &net->packet.sklist); 3252 mutex_unlock(&net->packet.sklist_lock); 3253 3254 preempt_disable(); 3255 sock_prot_inuse_add(net, &packet_proto, 1); 3256 preempt_enable(); 3257 3258 return 0; 3259 out2: 3260 sk_free(sk); 3261 out: 3262 return err; 3263 } 3264 3265 /* 3266 * Pull a packet from our receive queue and hand it to the user. 3267 * If necessary we block. 3268 */ 3269 3270 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3271 int flags) 3272 { 3273 struct sock *sk = sock->sk; 3274 struct sk_buff *skb; 3275 int copied, err; 3276 int vnet_hdr_len = 0; 3277 unsigned int origlen = 0; 3278 3279 err = -EINVAL; 3280 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3281 goto out; 3282 3283 #if 0 3284 /* What error should we return now? EUNATTACH? */ 3285 if (pkt_sk(sk)->ifindex < 0) 3286 return -ENODEV; 3287 #endif 3288 3289 if (flags & MSG_ERRQUEUE) { 3290 err = sock_recv_errqueue(sk, msg, len, 3291 SOL_PACKET, PACKET_TX_TIMESTAMP); 3292 goto out; 3293 } 3294 3295 /* 3296 * Call the generic datagram receiver. This handles all sorts 3297 * of horrible races and re-entrancy so we can forget about it 3298 * in the protocol layers. 3299 * 3300 * Now it will return ENETDOWN, if device have just gone down, 3301 * but then it will block. 3302 */ 3303 3304 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3305 3306 /* 3307 * An error occurred so return it. Because skb_recv_datagram() 3308 * handles the blocking we don't see and worry about blocking 3309 * retries. 3310 */ 3311 3312 if (skb == NULL) 3313 goto out; 3314 3315 if (pkt_sk(sk)->pressure) 3316 packet_rcv_has_room(pkt_sk(sk), NULL); 3317 3318 if (pkt_sk(sk)->has_vnet_hdr) { 3319 err = packet_rcv_vnet(msg, skb, &len); 3320 if (err) 3321 goto out_free; 3322 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3323 } 3324 3325 /* You lose any data beyond the buffer you gave. If it worries 3326 * a user program they can ask the device for its MTU 3327 * anyway. 3328 */ 3329 copied = skb->len; 3330 if (copied > len) { 3331 copied = len; 3332 msg->msg_flags |= MSG_TRUNC; 3333 } 3334 3335 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3336 if (err) 3337 goto out_free; 3338 3339 if (sock->type != SOCK_PACKET) { 3340 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3341 3342 /* Original length was stored in sockaddr_ll fields */ 3343 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3344 sll->sll_family = AF_PACKET; 3345 sll->sll_protocol = skb->protocol; 3346 } 3347 3348 sock_recv_ts_and_drops(msg, sk, skb); 3349 3350 if (msg->msg_name) { 3351 /* If the address length field is there to be filled 3352 * in, we fill it in now. 3353 */ 3354 if (sock->type == SOCK_PACKET) { 3355 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3356 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3357 } else { 3358 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3359 3360 msg->msg_namelen = sll->sll_halen + 3361 offsetof(struct sockaddr_ll, sll_addr); 3362 } 3363 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, 3364 msg->msg_namelen); 3365 } 3366 3367 if (pkt_sk(sk)->auxdata) { 3368 struct tpacket_auxdata aux; 3369 3370 aux.tp_status = TP_STATUS_USER; 3371 if (skb->ip_summed == CHECKSUM_PARTIAL) 3372 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3373 else if (skb->pkt_type != PACKET_OUTGOING && 3374 (skb->ip_summed == CHECKSUM_COMPLETE || 3375 skb_csum_unnecessary(skb))) 3376 aux.tp_status |= TP_STATUS_CSUM_VALID; 3377 3378 aux.tp_len = origlen; 3379 aux.tp_snaplen = skb->len; 3380 aux.tp_mac = 0; 3381 aux.tp_net = skb_network_offset(skb); 3382 if (skb_vlan_tag_present(skb)) { 3383 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3384 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3385 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3386 } else { 3387 aux.tp_vlan_tci = 0; 3388 aux.tp_vlan_tpid = 0; 3389 } 3390 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3391 } 3392 3393 /* 3394 * Free or return the buffer as appropriate. Again this 3395 * hides all the races and re-entrancy issues from us. 3396 */ 3397 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3398 3399 out_free: 3400 skb_free_datagram(sk, skb); 3401 out: 3402 return err; 3403 } 3404 3405 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3406 int *uaddr_len, int peer) 3407 { 3408 struct net_device *dev; 3409 struct sock *sk = sock->sk; 3410 3411 if (peer) 3412 return -EOPNOTSUPP; 3413 3414 uaddr->sa_family = AF_PACKET; 3415 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3416 rcu_read_lock(); 3417 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3418 if (dev) 3419 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3420 rcu_read_unlock(); 3421 *uaddr_len = sizeof(*uaddr); 3422 3423 return 0; 3424 } 3425 3426 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3427 int *uaddr_len, int peer) 3428 { 3429 struct net_device *dev; 3430 struct sock *sk = sock->sk; 3431 struct packet_sock *po = pkt_sk(sk); 3432 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3433 3434 if (peer) 3435 return -EOPNOTSUPP; 3436 3437 sll->sll_family = AF_PACKET; 3438 sll->sll_ifindex = po->ifindex; 3439 sll->sll_protocol = po->num; 3440 sll->sll_pkttype = 0; 3441 rcu_read_lock(); 3442 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3443 if (dev) { 3444 sll->sll_hatype = dev->type; 3445 sll->sll_halen = dev->addr_len; 3446 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3447 } else { 3448 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3449 sll->sll_halen = 0; 3450 } 3451 rcu_read_unlock(); 3452 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3453 3454 return 0; 3455 } 3456 3457 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3458 int what) 3459 { 3460 switch (i->type) { 3461 case PACKET_MR_MULTICAST: 3462 if (i->alen != dev->addr_len) 3463 return -EINVAL; 3464 if (what > 0) 3465 return dev_mc_add(dev, i->addr); 3466 else 3467 return dev_mc_del(dev, i->addr); 3468 break; 3469 case PACKET_MR_PROMISC: 3470 return dev_set_promiscuity(dev, what); 3471 case PACKET_MR_ALLMULTI: 3472 return dev_set_allmulti(dev, what); 3473 case PACKET_MR_UNICAST: 3474 if (i->alen != dev->addr_len) 3475 return -EINVAL; 3476 if (what > 0) 3477 return dev_uc_add(dev, i->addr); 3478 else 3479 return dev_uc_del(dev, i->addr); 3480 break; 3481 default: 3482 break; 3483 } 3484 return 0; 3485 } 3486 3487 static void packet_dev_mclist_delete(struct net_device *dev, 3488 struct packet_mclist **mlp) 3489 { 3490 struct packet_mclist *ml; 3491 3492 while ((ml = *mlp) != NULL) { 3493 if (ml->ifindex == dev->ifindex) { 3494 packet_dev_mc(dev, ml, -1); 3495 *mlp = ml->next; 3496 kfree(ml); 3497 } else 3498 mlp = &ml->next; 3499 } 3500 } 3501 3502 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3503 { 3504 struct packet_sock *po = pkt_sk(sk); 3505 struct packet_mclist *ml, *i; 3506 struct net_device *dev; 3507 int err; 3508 3509 rtnl_lock(); 3510 3511 err = -ENODEV; 3512 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3513 if (!dev) 3514 goto done; 3515 3516 err = -EINVAL; 3517 if (mreq->mr_alen > dev->addr_len) 3518 goto done; 3519 3520 err = -ENOBUFS; 3521 i = kmalloc(sizeof(*i), GFP_KERNEL); 3522 if (i == NULL) 3523 goto done; 3524 3525 err = 0; 3526 for (ml = po->mclist; ml; ml = ml->next) { 3527 if (ml->ifindex == mreq->mr_ifindex && 3528 ml->type == mreq->mr_type && 3529 ml->alen == mreq->mr_alen && 3530 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3531 ml->count++; 3532 /* Free the new element ... */ 3533 kfree(i); 3534 goto done; 3535 } 3536 } 3537 3538 i->type = mreq->mr_type; 3539 i->ifindex = mreq->mr_ifindex; 3540 i->alen = mreq->mr_alen; 3541 memcpy(i->addr, mreq->mr_address, i->alen); 3542 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3543 i->count = 1; 3544 i->next = po->mclist; 3545 po->mclist = i; 3546 err = packet_dev_mc(dev, i, 1); 3547 if (err) { 3548 po->mclist = i->next; 3549 kfree(i); 3550 } 3551 3552 done: 3553 rtnl_unlock(); 3554 return err; 3555 } 3556 3557 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3558 { 3559 struct packet_mclist *ml, **mlp; 3560 3561 rtnl_lock(); 3562 3563 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3564 if (ml->ifindex == mreq->mr_ifindex && 3565 ml->type == mreq->mr_type && 3566 ml->alen == mreq->mr_alen && 3567 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3568 if (--ml->count == 0) { 3569 struct net_device *dev; 3570 *mlp = ml->next; 3571 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3572 if (dev) 3573 packet_dev_mc(dev, ml, -1); 3574 kfree(ml); 3575 } 3576 break; 3577 } 3578 } 3579 rtnl_unlock(); 3580 return 0; 3581 } 3582 3583 static void packet_flush_mclist(struct sock *sk) 3584 { 3585 struct packet_sock *po = pkt_sk(sk); 3586 struct packet_mclist *ml; 3587 3588 if (!po->mclist) 3589 return; 3590 3591 rtnl_lock(); 3592 while ((ml = po->mclist) != NULL) { 3593 struct net_device *dev; 3594 3595 po->mclist = ml->next; 3596 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3597 if (dev != NULL) 3598 packet_dev_mc(dev, ml, -1); 3599 kfree(ml); 3600 } 3601 rtnl_unlock(); 3602 } 3603 3604 static int 3605 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3606 { 3607 struct sock *sk = sock->sk; 3608 struct packet_sock *po = pkt_sk(sk); 3609 int ret; 3610 3611 if (level != SOL_PACKET) 3612 return -ENOPROTOOPT; 3613 3614 switch (optname) { 3615 case PACKET_ADD_MEMBERSHIP: 3616 case PACKET_DROP_MEMBERSHIP: 3617 { 3618 struct packet_mreq_max mreq; 3619 int len = optlen; 3620 memset(&mreq, 0, sizeof(mreq)); 3621 if (len < sizeof(struct packet_mreq)) 3622 return -EINVAL; 3623 if (len > sizeof(mreq)) 3624 len = sizeof(mreq); 3625 if (copy_from_user(&mreq, optval, len)) 3626 return -EFAULT; 3627 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3628 return -EINVAL; 3629 if (optname == PACKET_ADD_MEMBERSHIP) 3630 ret = packet_mc_add(sk, &mreq); 3631 else 3632 ret = packet_mc_drop(sk, &mreq); 3633 return ret; 3634 } 3635 3636 case PACKET_RX_RING: 3637 case PACKET_TX_RING: 3638 { 3639 union tpacket_req_u req_u; 3640 int len; 3641 3642 switch (po->tp_version) { 3643 case TPACKET_V1: 3644 case TPACKET_V2: 3645 len = sizeof(req_u.req); 3646 break; 3647 case TPACKET_V3: 3648 default: 3649 len = sizeof(req_u.req3); 3650 break; 3651 } 3652 if (optlen < len) 3653 return -EINVAL; 3654 if (copy_from_user(&req_u.req, optval, len)) 3655 return -EFAULT; 3656 return packet_set_ring(sk, &req_u, 0, 3657 optname == PACKET_TX_RING); 3658 } 3659 case PACKET_COPY_THRESH: 3660 { 3661 int val; 3662 3663 if (optlen != sizeof(val)) 3664 return -EINVAL; 3665 if (copy_from_user(&val, optval, sizeof(val))) 3666 return -EFAULT; 3667 3668 pkt_sk(sk)->copy_thresh = val; 3669 return 0; 3670 } 3671 case PACKET_VERSION: 3672 { 3673 int val; 3674 3675 if (optlen != sizeof(val)) 3676 return -EINVAL; 3677 if (copy_from_user(&val, optval, sizeof(val))) 3678 return -EFAULT; 3679 switch (val) { 3680 case TPACKET_V1: 3681 case TPACKET_V2: 3682 case TPACKET_V3: 3683 break; 3684 default: 3685 return -EINVAL; 3686 } 3687 lock_sock(sk); 3688 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3689 ret = -EBUSY; 3690 } else { 3691 po->tp_version = val; 3692 ret = 0; 3693 } 3694 release_sock(sk); 3695 return ret; 3696 } 3697 case PACKET_RESERVE: 3698 { 3699 unsigned int val; 3700 3701 if (optlen != sizeof(val)) 3702 return -EINVAL; 3703 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3704 return -EBUSY; 3705 if (copy_from_user(&val, optval, sizeof(val))) 3706 return -EFAULT; 3707 if (val > INT_MAX) 3708 return -EINVAL; 3709 po->tp_reserve = val; 3710 return 0; 3711 } 3712 case PACKET_LOSS: 3713 { 3714 unsigned int val; 3715 3716 if (optlen != sizeof(val)) 3717 return -EINVAL; 3718 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3719 return -EBUSY; 3720 if (copy_from_user(&val, optval, sizeof(val))) 3721 return -EFAULT; 3722 po->tp_loss = !!val; 3723 return 0; 3724 } 3725 case PACKET_AUXDATA: 3726 { 3727 int val; 3728 3729 if (optlen < sizeof(val)) 3730 return -EINVAL; 3731 if (copy_from_user(&val, optval, sizeof(val))) 3732 return -EFAULT; 3733 3734 po->auxdata = !!val; 3735 return 0; 3736 } 3737 case PACKET_ORIGDEV: 3738 { 3739 int val; 3740 3741 if (optlen < sizeof(val)) 3742 return -EINVAL; 3743 if (copy_from_user(&val, optval, sizeof(val))) 3744 return -EFAULT; 3745 3746 po->origdev = !!val; 3747 return 0; 3748 } 3749 case PACKET_VNET_HDR: 3750 { 3751 int val; 3752 3753 if (sock->type != SOCK_RAW) 3754 return -EINVAL; 3755 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3756 return -EBUSY; 3757 if (optlen < sizeof(val)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, sizeof(val))) 3760 return -EFAULT; 3761 3762 po->has_vnet_hdr = !!val; 3763 return 0; 3764 } 3765 case PACKET_TIMESTAMP: 3766 { 3767 int val; 3768 3769 if (optlen != sizeof(val)) 3770 return -EINVAL; 3771 if (copy_from_user(&val, optval, sizeof(val))) 3772 return -EFAULT; 3773 3774 po->tp_tstamp = val; 3775 return 0; 3776 } 3777 case PACKET_FANOUT: 3778 { 3779 int val; 3780 3781 if (optlen != sizeof(val)) 3782 return -EINVAL; 3783 if (copy_from_user(&val, optval, sizeof(val))) 3784 return -EFAULT; 3785 3786 return fanout_add(sk, val & 0xffff, val >> 16); 3787 } 3788 case PACKET_FANOUT_DATA: 3789 { 3790 if (!po->fanout) 3791 return -EINVAL; 3792 3793 return fanout_set_data(po, optval, optlen); 3794 } 3795 case PACKET_TX_HAS_OFF: 3796 { 3797 unsigned int val; 3798 3799 if (optlen != sizeof(val)) 3800 return -EINVAL; 3801 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3802 return -EBUSY; 3803 if (copy_from_user(&val, optval, sizeof(val))) 3804 return -EFAULT; 3805 po->tp_tx_has_off = !!val; 3806 return 0; 3807 } 3808 case PACKET_QDISC_BYPASS: 3809 { 3810 int val; 3811 3812 if (optlen != sizeof(val)) 3813 return -EINVAL; 3814 if (copy_from_user(&val, optval, sizeof(val))) 3815 return -EFAULT; 3816 3817 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3818 return 0; 3819 } 3820 default: 3821 return -ENOPROTOOPT; 3822 } 3823 } 3824 3825 static int packet_getsockopt(struct socket *sock, int level, int optname, 3826 char __user *optval, int __user *optlen) 3827 { 3828 int len; 3829 int val, lv = sizeof(val); 3830 struct sock *sk = sock->sk; 3831 struct packet_sock *po = pkt_sk(sk); 3832 void *data = &val; 3833 union tpacket_stats_u st; 3834 struct tpacket_rollover_stats rstats; 3835 3836 if (level != SOL_PACKET) 3837 return -ENOPROTOOPT; 3838 3839 if (get_user(len, optlen)) 3840 return -EFAULT; 3841 3842 if (len < 0) 3843 return -EINVAL; 3844 3845 switch (optname) { 3846 case PACKET_STATISTICS: 3847 spin_lock_bh(&sk->sk_receive_queue.lock); 3848 memcpy(&st, &po->stats, sizeof(st)); 3849 memset(&po->stats, 0, sizeof(po->stats)); 3850 spin_unlock_bh(&sk->sk_receive_queue.lock); 3851 3852 if (po->tp_version == TPACKET_V3) { 3853 lv = sizeof(struct tpacket_stats_v3); 3854 st.stats3.tp_packets += st.stats3.tp_drops; 3855 data = &st.stats3; 3856 } else { 3857 lv = sizeof(struct tpacket_stats); 3858 st.stats1.tp_packets += st.stats1.tp_drops; 3859 data = &st.stats1; 3860 } 3861 3862 break; 3863 case PACKET_AUXDATA: 3864 val = po->auxdata; 3865 break; 3866 case PACKET_ORIGDEV: 3867 val = po->origdev; 3868 break; 3869 case PACKET_VNET_HDR: 3870 val = po->has_vnet_hdr; 3871 break; 3872 case PACKET_VERSION: 3873 val = po->tp_version; 3874 break; 3875 case PACKET_HDRLEN: 3876 if (len > sizeof(int)) 3877 len = sizeof(int); 3878 if (len < sizeof(int)) 3879 return -EINVAL; 3880 if (copy_from_user(&val, optval, len)) 3881 return -EFAULT; 3882 switch (val) { 3883 case TPACKET_V1: 3884 val = sizeof(struct tpacket_hdr); 3885 break; 3886 case TPACKET_V2: 3887 val = sizeof(struct tpacket2_hdr); 3888 break; 3889 case TPACKET_V3: 3890 val = sizeof(struct tpacket3_hdr); 3891 break; 3892 default: 3893 return -EINVAL; 3894 } 3895 break; 3896 case PACKET_RESERVE: 3897 val = po->tp_reserve; 3898 break; 3899 case PACKET_LOSS: 3900 val = po->tp_loss; 3901 break; 3902 case PACKET_TIMESTAMP: 3903 val = po->tp_tstamp; 3904 break; 3905 case PACKET_FANOUT: 3906 val = (po->fanout ? 3907 ((u32)po->fanout->id | 3908 ((u32)po->fanout->type << 16) | 3909 ((u32)po->fanout->flags << 24)) : 3910 0); 3911 break; 3912 case PACKET_ROLLOVER_STATS: 3913 if (!po->rollover) 3914 return -EINVAL; 3915 rstats.tp_all = atomic_long_read(&po->rollover->num); 3916 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 3917 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 3918 data = &rstats; 3919 lv = sizeof(rstats); 3920 break; 3921 case PACKET_TX_HAS_OFF: 3922 val = po->tp_tx_has_off; 3923 break; 3924 case PACKET_QDISC_BYPASS: 3925 val = packet_use_direct_xmit(po); 3926 break; 3927 default: 3928 return -ENOPROTOOPT; 3929 } 3930 3931 if (len > lv) 3932 len = lv; 3933 if (put_user(len, optlen)) 3934 return -EFAULT; 3935 if (copy_to_user(optval, data, len)) 3936 return -EFAULT; 3937 return 0; 3938 } 3939 3940 3941 #ifdef CONFIG_COMPAT 3942 static int compat_packet_setsockopt(struct socket *sock, int level, int optname, 3943 char __user *optval, unsigned int optlen) 3944 { 3945 struct packet_sock *po = pkt_sk(sock->sk); 3946 3947 if (level != SOL_PACKET) 3948 return -ENOPROTOOPT; 3949 3950 if (optname == PACKET_FANOUT_DATA && 3951 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) { 3952 optval = (char __user *)get_compat_bpf_fprog(optval); 3953 if (!optval) 3954 return -EFAULT; 3955 optlen = sizeof(struct sock_fprog); 3956 } 3957 3958 return packet_setsockopt(sock, level, optname, optval, optlen); 3959 } 3960 #endif 3961 3962 static int packet_notifier(struct notifier_block *this, 3963 unsigned long msg, void *ptr) 3964 { 3965 struct sock *sk; 3966 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3967 struct net *net = dev_net(dev); 3968 3969 rcu_read_lock(); 3970 sk_for_each_rcu(sk, &net->packet.sklist) { 3971 struct packet_sock *po = pkt_sk(sk); 3972 3973 switch (msg) { 3974 case NETDEV_UNREGISTER: 3975 if (po->mclist) 3976 packet_dev_mclist_delete(dev, &po->mclist); 3977 /* fallthrough */ 3978 3979 case NETDEV_DOWN: 3980 if (dev->ifindex == po->ifindex) { 3981 spin_lock(&po->bind_lock); 3982 if (po->running) { 3983 __unregister_prot_hook(sk, false); 3984 sk->sk_err = ENETDOWN; 3985 if (!sock_flag(sk, SOCK_DEAD)) 3986 sk->sk_error_report(sk); 3987 } 3988 if (msg == NETDEV_UNREGISTER) { 3989 packet_cached_dev_reset(po); 3990 po->ifindex = -1; 3991 if (po->prot_hook.dev) 3992 dev_put(po->prot_hook.dev); 3993 po->prot_hook.dev = NULL; 3994 } 3995 spin_unlock(&po->bind_lock); 3996 } 3997 break; 3998 case NETDEV_UP: 3999 if (dev->ifindex == po->ifindex) { 4000 spin_lock(&po->bind_lock); 4001 if (po->num) 4002 register_prot_hook(sk); 4003 spin_unlock(&po->bind_lock); 4004 } 4005 break; 4006 } 4007 } 4008 rcu_read_unlock(); 4009 return NOTIFY_DONE; 4010 } 4011 4012 4013 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4014 unsigned long arg) 4015 { 4016 struct sock *sk = sock->sk; 4017 4018 switch (cmd) { 4019 case SIOCOUTQ: 4020 { 4021 int amount = sk_wmem_alloc_get(sk); 4022 4023 return put_user(amount, (int __user *)arg); 4024 } 4025 case SIOCINQ: 4026 { 4027 struct sk_buff *skb; 4028 int amount = 0; 4029 4030 spin_lock_bh(&sk->sk_receive_queue.lock); 4031 skb = skb_peek(&sk->sk_receive_queue); 4032 if (skb) 4033 amount = skb->len; 4034 spin_unlock_bh(&sk->sk_receive_queue.lock); 4035 return put_user(amount, (int __user *)arg); 4036 } 4037 case SIOCGSTAMP: 4038 return sock_get_timestamp(sk, (struct timeval __user *)arg); 4039 case SIOCGSTAMPNS: 4040 return sock_get_timestampns(sk, (struct timespec __user *)arg); 4041 4042 #ifdef CONFIG_INET 4043 case SIOCADDRT: 4044 case SIOCDELRT: 4045 case SIOCDARP: 4046 case SIOCGARP: 4047 case SIOCSARP: 4048 case SIOCGIFADDR: 4049 case SIOCSIFADDR: 4050 case SIOCGIFBRDADDR: 4051 case SIOCSIFBRDADDR: 4052 case SIOCGIFNETMASK: 4053 case SIOCSIFNETMASK: 4054 case SIOCGIFDSTADDR: 4055 case SIOCSIFDSTADDR: 4056 case SIOCSIFFLAGS: 4057 return inet_dgram_ops.ioctl(sock, cmd, arg); 4058 #endif 4059 4060 default: 4061 return -ENOIOCTLCMD; 4062 } 4063 return 0; 4064 } 4065 4066 static unsigned int packet_poll(struct file *file, struct socket *sock, 4067 poll_table *wait) 4068 { 4069 struct sock *sk = sock->sk; 4070 struct packet_sock *po = pkt_sk(sk); 4071 unsigned int mask = datagram_poll(file, sock, wait); 4072 4073 spin_lock_bh(&sk->sk_receive_queue.lock); 4074 if (po->rx_ring.pg_vec) { 4075 if (!packet_previous_rx_frame(po, &po->rx_ring, 4076 TP_STATUS_KERNEL)) 4077 mask |= POLLIN | POLLRDNORM; 4078 } 4079 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 4080 po->pressure = 0; 4081 spin_unlock_bh(&sk->sk_receive_queue.lock); 4082 spin_lock_bh(&sk->sk_write_queue.lock); 4083 if (po->tx_ring.pg_vec) { 4084 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4085 mask |= POLLOUT | POLLWRNORM; 4086 } 4087 spin_unlock_bh(&sk->sk_write_queue.lock); 4088 return mask; 4089 } 4090 4091 4092 /* Dirty? Well, I still did not learn better way to account 4093 * for user mmaps. 4094 */ 4095 4096 static void packet_mm_open(struct vm_area_struct *vma) 4097 { 4098 struct file *file = vma->vm_file; 4099 struct socket *sock = file->private_data; 4100 struct sock *sk = sock->sk; 4101 4102 if (sk) 4103 atomic_inc(&pkt_sk(sk)->mapped); 4104 } 4105 4106 static void packet_mm_close(struct vm_area_struct *vma) 4107 { 4108 struct file *file = vma->vm_file; 4109 struct socket *sock = file->private_data; 4110 struct sock *sk = sock->sk; 4111 4112 if (sk) 4113 atomic_dec(&pkt_sk(sk)->mapped); 4114 } 4115 4116 static const struct vm_operations_struct packet_mmap_ops = { 4117 .open = packet_mm_open, 4118 .close = packet_mm_close, 4119 }; 4120 4121 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4122 unsigned int len) 4123 { 4124 int i; 4125 4126 for (i = 0; i < len; i++) { 4127 if (likely(pg_vec[i].buffer)) { 4128 if (is_vmalloc_addr(pg_vec[i].buffer)) 4129 vfree(pg_vec[i].buffer); 4130 else 4131 free_pages((unsigned long)pg_vec[i].buffer, 4132 order); 4133 pg_vec[i].buffer = NULL; 4134 } 4135 } 4136 kfree(pg_vec); 4137 } 4138 4139 static char *alloc_one_pg_vec_page(unsigned long order) 4140 { 4141 char *buffer; 4142 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4143 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4144 4145 buffer = (char *) __get_free_pages(gfp_flags, order); 4146 if (buffer) 4147 return buffer; 4148 4149 /* __get_free_pages failed, fall back to vmalloc */ 4150 buffer = vzalloc((1 << order) * PAGE_SIZE); 4151 if (buffer) 4152 return buffer; 4153 4154 /* vmalloc failed, lets dig into swap here */ 4155 gfp_flags &= ~__GFP_NORETRY; 4156 buffer = (char *) __get_free_pages(gfp_flags, order); 4157 if (buffer) 4158 return buffer; 4159 4160 /* complete and utter failure */ 4161 return NULL; 4162 } 4163 4164 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4165 { 4166 unsigned int block_nr = req->tp_block_nr; 4167 struct pgv *pg_vec; 4168 int i; 4169 4170 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL); 4171 if (unlikely(!pg_vec)) 4172 goto out; 4173 4174 for (i = 0; i < block_nr; i++) { 4175 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4176 if (unlikely(!pg_vec[i].buffer)) 4177 goto out_free_pgvec; 4178 } 4179 4180 out: 4181 return pg_vec; 4182 4183 out_free_pgvec: 4184 free_pg_vec(pg_vec, order, block_nr); 4185 pg_vec = NULL; 4186 goto out; 4187 } 4188 4189 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4190 int closing, int tx_ring) 4191 { 4192 struct pgv *pg_vec = NULL; 4193 struct packet_sock *po = pkt_sk(sk); 4194 int was_running, order = 0; 4195 struct packet_ring_buffer *rb; 4196 struct sk_buff_head *rb_queue; 4197 __be16 num; 4198 int err = -EINVAL; 4199 /* Added to avoid minimal code churn */ 4200 struct tpacket_req *req = &req_u->req; 4201 4202 lock_sock(sk); 4203 4204 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4205 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4206 4207 err = -EBUSY; 4208 if (!closing) { 4209 if (atomic_read(&po->mapped)) 4210 goto out; 4211 if (packet_read_pending(rb)) 4212 goto out; 4213 } 4214 4215 if (req->tp_block_nr) { 4216 /* Sanity tests and some calculations */ 4217 err = -EBUSY; 4218 if (unlikely(rb->pg_vec)) 4219 goto out; 4220 4221 switch (po->tp_version) { 4222 case TPACKET_V1: 4223 po->tp_hdrlen = TPACKET_HDRLEN; 4224 break; 4225 case TPACKET_V2: 4226 po->tp_hdrlen = TPACKET2_HDRLEN; 4227 break; 4228 case TPACKET_V3: 4229 po->tp_hdrlen = TPACKET3_HDRLEN; 4230 break; 4231 } 4232 4233 err = -EINVAL; 4234 if (unlikely((int)req->tp_block_size <= 0)) 4235 goto out; 4236 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4237 goto out; 4238 if (po->tp_version >= TPACKET_V3 && 4239 req->tp_block_size <= 4240 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv)) 4241 goto out; 4242 if (unlikely(req->tp_frame_size < po->tp_hdrlen + 4243 po->tp_reserve)) 4244 goto out; 4245 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4246 goto out; 4247 4248 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4249 if (unlikely(rb->frames_per_block == 0)) 4250 goto out; 4251 if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr)) 4252 goto out; 4253 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4254 req->tp_frame_nr)) 4255 goto out; 4256 4257 err = -ENOMEM; 4258 order = get_order(req->tp_block_size); 4259 pg_vec = alloc_pg_vec(req, order); 4260 if (unlikely(!pg_vec)) 4261 goto out; 4262 switch (po->tp_version) { 4263 case TPACKET_V3: 4264 /* Block transmit is not supported yet */ 4265 if (!tx_ring) { 4266 init_prb_bdqc(po, rb, pg_vec, req_u); 4267 } else { 4268 struct tpacket_req3 *req3 = &req_u->req3; 4269 4270 if (req3->tp_retire_blk_tov || 4271 req3->tp_sizeof_priv || 4272 req3->tp_feature_req_word) { 4273 err = -EINVAL; 4274 goto out; 4275 } 4276 } 4277 break; 4278 default: 4279 break; 4280 } 4281 } 4282 /* Done */ 4283 else { 4284 err = -EINVAL; 4285 if (unlikely(req->tp_frame_nr)) 4286 goto out; 4287 } 4288 4289 4290 /* Detach socket from network */ 4291 spin_lock(&po->bind_lock); 4292 was_running = po->running; 4293 num = po->num; 4294 if (was_running) { 4295 po->num = 0; 4296 __unregister_prot_hook(sk, false); 4297 } 4298 spin_unlock(&po->bind_lock); 4299 4300 synchronize_net(); 4301 4302 err = -EBUSY; 4303 mutex_lock(&po->pg_vec_lock); 4304 if (closing || atomic_read(&po->mapped) == 0) { 4305 err = 0; 4306 spin_lock_bh(&rb_queue->lock); 4307 swap(rb->pg_vec, pg_vec); 4308 rb->frame_max = (req->tp_frame_nr - 1); 4309 rb->head = 0; 4310 rb->frame_size = req->tp_frame_size; 4311 spin_unlock_bh(&rb_queue->lock); 4312 4313 swap(rb->pg_vec_order, order); 4314 swap(rb->pg_vec_len, req->tp_block_nr); 4315 4316 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4317 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4318 tpacket_rcv : packet_rcv; 4319 skb_queue_purge(rb_queue); 4320 if (atomic_read(&po->mapped)) 4321 pr_err("packet_mmap: vma is busy: %d\n", 4322 atomic_read(&po->mapped)); 4323 } 4324 mutex_unlock(&po->pg_vec_lock); 4325 4326 spin_lock(&po->bind_lock); 4327 if (was_running) { 4328 po->num = num; 4329 register_prot_hook(sk); 4330 } 4331 spin_unlock(&po->bind_lock); 4332 if (closing && (po->tp_version > TPACKET_V2)) { 4333 /* Because we don't support block-based V3 on tx-ring */ 4334 if (!tx_ring) 4335 prb_shutdown_retire_blk_timer(po, rb_queue); 4336 } 4337 4338 if (pg_vec) 4339 free_pg_vec(pg_vec, order, req->tp_block_nr); 4340 out: 4341 release_sock(sk); 4342 return err; 4343 } 4344 4345 static int packet_mmap(struct file *file, struct socket *sock, 4346 struct vm_area_struct *vma) 4347 { 4348 struct sock *sk = sock->sk; 4349 struct packet_sock *po = pkt_sk(sk); 4350 unsigned long size, expected_size; 4351 struct packet_ring_buffer *rb; 4352 unsigned long start; 4353 int err = -EINVAL; 4354 int i; 4355 4356 if (vma->vm_pgoff) 4357 return -EINVAL; 4358 4359 mutex_lock(&po->pg_vec_lock); 4360 4361 expected_size = 0; 4362 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4363 if (rb->pg_vec) { 4364 expected_size += rb->pg_vec_len 4365 * rb->pg_vec_pages 4366 * PAGE_SIZE; 4367 } 4368 } 4369 4370 if (expected_size == 0) 4371 goto out; 4372 4373 size = vma->vm_end - vma->vm_start; 4374 if (size != expected_size) 4375 goto out; 4376 4377 start = vma->vm_start; 4378 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4379 if (rb->pg_vec == NULL) 4380 continue; 4381 4382 for (i = 0; i < rb->pg_vec_len; i++) { 4383 struct page *page; 4384 void *kaddr = rb->pg_vec[i].buffer; 4385 int pg_num; 4386 4387 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4388 page = pgv_to_page(kaddr); 4389 err = vm_insert_page(vma, start, page); 4390 if (unlikely(err)) 4391 goto out; 4392 start += PAGE_SIZE; 4393 kaddr += PAGE_SIZE; 4394 } 4395 } 4396 } 4397 4398 atomic_inc(&po->mapped); 4399 vma->vm_ops = &packet_mmap_ops; 4400 err = 0; 4401 4402 out: 4403 mutex_unlock(&po->pg_vec_lock); 4404 return err; 4405 } 4406 4407 static const struct proto_ops packet_ops_spkt = { 4408 .family = PF_PACKET, 4409 .owner = THIS_MODULE, 4410 .release = packet_release, 4411 .bind = packet_bind_spkt, 4412 .connect = sock_no_connect, 4413 .socketpair = sock_no_socketpair, 4414 .accept = sock_no_accept, 4415 .getname = packet_getname_spkt, 4416 .poll = datagram_poll, 4417 .ioctl = packet_ioctl, 4418 .listen = sock_no_listen, 4419 .shutdown = sock_no_shutdown, 4420 .setsockopt = sock_no_setsockopt, 4421 .getsockopt = sock_no_getsockopt, 4422 .sendmsg = packet_sendmsg_spkt, 4423 .recvmsg = packet_recvmsg, 4424 .mmap = sock_no_mmap, 4425 .sendpage = sock_no_sendpage, 4426 }; 4427 4428 static const struct proto_ops packet_ops = { 4429 .family = PF_PACKET, 4430 .owner = THIS_MODULE, 4431 .release = packet_release, 4432 .bind = packet_bind, 4433 .connect = sock_no_connect, 4434 .socketpair = sock_no_socketpair, 4435 .accept = sock_no_accept, 4436 .getname = packet_getname, 4437 .poll = packet_poll, 4438 .ioctl = packet_ioctl, 4439 .listen = sock_no_listen, 4440 .shutdown = sock_no_shutdown, 4441 .setsockopt = packet_setsockopt, 4442 .getsockopt = packet_getsockopt, 4443 #ifdef CONFIG_COMPAT 4444 .compat_setsockopt = compat_packet_setsockopt, 4445 #endif 4446 .sendmsg = packet_sendmsg, 4447 .recvmsg = packet_recvmsg, 4448 .mmap = packet_mmap, 4449 .sendpage = sock_no_sendpage, 4450 }; 4451 4452 static const struct net_proto_family packet_family_ops = { 4453 .family = PF_PACKET, 4454 .create = packet_create, 4455 .owner = THIS_MODULE, 4456 }; 4457 4458 static struct notifier_block packet_netdev_notifier = { 4459 .notifier_call = packet_notifier, 4460 }; 4461 4462 #ifdef CONFIG_PROC_FS 4463 4464 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4465 __acquires(RCU) 4466 { 4467 struct net *net = seq_file_net(seq); 4468 4469 rcu_read_lock(); 4470 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4471 } 4472 4473 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4474 { 4475 struct net *net = seq_file_net(seq); 4476 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4477 } 4478 4479 static void packet_seq_stop(struct seq_file *seq, void *v) 4480 __releases(RCU) 4481 { 4482 rcu_read_unlock(); 4483 } 4484 4485 static int packet_seq_show(struct seq_file *seq, void *v) 4486 { 4487 if (v == SEQ_START_TOKEN) 4488 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4489 else { 4490 struct sock *s = sk_entry(v); 4491 const struct packet_sock *po = pkt_sk(s); 4492 4493 seq_printf(seq, 4494 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4495 s, 4496 refcount_read(&s->sk_refcnt), 4497 s->sk_type, 4498 ntohs(po->num), 4499 po->ifindex, 4500 po->running, 4501 atomic_read(&s->sk_rmem_alloc), 4502 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4503 sock_i_ino(s)); 4504 } 4505 4506 return 0; 4507 } 4508 4509 static const struct seq_operations packet_seq_ops = { 4510 .start = packet_seq_start, 4511 .next = packet_seq_next, 4512 .stop = packet_seq_stop, 4513 .show = packet_seq_show, 4514 }; 4515 4516 static int packet_seq_open(struct inode *inode, struct file *file) 4517 { 4518 return seq_open_net(inode, file, &packet_seq_ops, 4519 sizeof(struct seq_net_private)); 4520 } 4521 4522 static const struct file_operations packet_seq_fops = { 4523 .owner = THIS_MODULE, 4524 .open = packet_seq_open, 4525 .read = seq_read, 4526 .llseek = seq_lseek, 4527 .release = seq_release_net, 4528 }; 4529 4530 #endif 4531 4532 static int __net_init packet_net_init(struct net *net) 4533 { 4534 mutex_init(&net->packet.sklist_lock); 4535 INIT_HLIST_HEAD(&net->packet.sklist); 4536 4537 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops)) 4538 return -ENOMEM; 4539 4540 return 0; 4541 } 4542 4543 static void __net_exit packet_net_exit(struct net *net) 4544 { 4545 remove_proc_entry("packet", net->proc_net); 4546 } 4547 4548 static struct pernet_operations packet_net_ops = { 4549 .init = packet_net_init, 4550 .exit = packet_net_exit, 4551 }; 4552 4553 4554 static void __exit packet_exit(void) 4555 { 4556 unregister_netdevice_notifier(&packet_netdev_notifier); 4557 unregister_pernet_subsys(&packet_net_ops); 4558 sock_unregister(PF_PACKET); 4559 proto_unregister(&packet_proto); 4560 } 4561 4562 static int __init packet_init(void) 4563 { 4564 int rc = proto_register(&packet_proto, 0); 4565 4566 if (rc != 0) 4567 goto out; 4568 4569 sock_register(&packet_family_ops); 4570 register_pernet_subsys(&packet_net_ops); 4571 register_netdevice_notifier(&packet_netdev_notifier); 4572 out: 4573 return rc; 4574 } 4575 4576 module_init(packet_init); 4577 module_exit(packet_exit); 4578 MODULE_LICENSE("GPL"); 4579 MODULE_ALIAS_NETPROTO(PF_PACKET); 4580