1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #include <linux/ethtool.h> 50 #include <linux/types.h> 51 #include <linux/mm.h> 52 #include <linux/capability.h> 53 #include <linux/fcntl.h> 54 #include <linux/socket.h> 55 #include <linux/in.h> 56 #include <linux/inet.h> 57 #include <linux/netdevice.h> 58 #include <linux/if_packet.h> 59 #include <linux/wireless.h> 60 #include <linux/kernel.h> 61 #include <linux/kmod.h> 62 #include <linux/slab.h> 63 #include <linux/vmalloc.h> 64 #include <net/net_namespace.h> 65 #include <net/ip.h> 66 #include <net/protocol.h> 67 #include <linux/skbuff.h> 68 #include <net/sock.h> 69 #include <linux/errno.h> 70 #include <linux/timer.h> 71 #include <linux/uaccess.h> 72 #include <asm/ioctls.h> 73 #include <asm/page.h> 74 #include <asm/cacheflush.h> 75 #include <asm/io.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/poll.h> 79 #include <linux/module.h> 80 #include <linux/init.h> 81 #include <linux/mutex.h> 82 #include <linux/if_vlan.h> 83 #include <linux/virtio_net.h> 84 #include <linux/errqueue.h> 85 #include <linux/net_tstamp.h> 86 #include <linux/percpu.h> 87 #ifdef CONFIG_INET 88 #include <net/inet_common.h> 89 #endif 90 #include <linux/bpf.h> 91 #include <net/compat.h> 92 93 #include "internal.h" 94 95 /* 96 Assumptions: 97 - If the device has no dev->header_ops->create, there is no LL header 98 visible above the device. In this case, its hard_header_len should be 0. 99 The device may prepend its own header internally. In this case, its 100 needed_headroom should be set to the space needed for it to add its 101 internal header. 102 For example, a WiFi driver pretending to be an Ethernet driver should 103 set its hard_header_len to be the Ethernet header length, and set its 104 needed_headroom to be (the real WiFi header length - the fake Ethernet 105 header length). 106 - packet socket receives packets with pulled ll header, 107 so that SOCK_RAW should push it back. 108 109 On receive: 110 ----------- 111 112 Incoming, dev_has_header(dev) == true 113 mac_header -> ll header 114 data -> data 115 116 Outgoing, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> ll header 119 120 Incoming, dev_has_header(dev) == false 121 mac_header -> data 122 However drivers often make it point to the ll header. 123 This is incorrect because the ll header should be invisible to us. 124 data -> data 125 126 Outgoing, dev_has_header(dev) == false 127 mac_header -> data. ll header is invisible to us. 128 data -> data 129 130 Resume 131 If dev_has_header(dev) == false we are unable to restore the ll header, 132 because it is invisible to us. 133 134 135 On transmit: 136 ------------ 137 138 dev_has_header(dev) == true 139 mac_header -> ll header 140 data -> ll header 141 142 dev_has_header(dev) == false (ll header is invisible to us) 143 mac_header -> data 144 data -> data 145 146 We should set network_header on output to the correct position, 147 packet classifier depends on it. 148 */ 149 150 /* Private packet socket structures. */ 151 152 /* identical to struct packet_mreq except it has 153 * a longer address field. 154 */ 155 struct packet_mreq_max { 156 int mr_ifindex; 157 unsigned short mr_type; 158 unsigned short mr_alen; 159 unsigned char mr_address[MAX_ADDR_LEN]; 160 }; 161 162 union tpacket_uhdr { 163 struct tpacket_hdr *h1; 164 struct tpacket2_hdr *h2; 165 struct tpacket3_hdr *h3; 166 void *raw; 167 }; 168 169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 170 int closing, int tx_ring); 171 172 #define V3_ALIGNMENT (8) 173 174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 175 176 #define BLK_PLUS_PRIV(sz_of_priv) \ 177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 178 179 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 180 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 181 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 182 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 183 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 184 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 185 186 struct packet_sock; 187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 188 struct packet_type *pt, struct net_device *orig_dev); 189 190 static void *packet_previous_frame(struct packet_sock *po, 191 struct packet_ring_buffer *rb, 192 int status); 193 static void packet_increment_head(struct packet_ring_buffer *buff); 194 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 196 struct packet_sock *); 197 static void prb_retire_current_block(struct tpacket_kbdq_core *, 198 struct packet_sock *, unsigned int status); 199 static int prb_queue_frozen(struct tpacket_kbdq_core *); 200 static void prb_open_block(struct tpacket_kbdq_core *, 201 struct tpacket_block_desc *); 202 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 205 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 206 struct tpacket3_hdr *); 207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 208 struct tpacket3_hdr *); 209 static void packet_flush_mclist(struct sock *sk); 210 static u16 packet_pick_tx_queue(struct sk_buff *skb); 211 212 struct packet_skb_cb { 213 union { 214 struct sockaddr_pkt pkt; 215 union { 216 /* Trick: alias skb original length with 217 * ll.sll_family and ll.protocol in order 218 * to save room. 219 */ 220 unsigned int origlen; 221 struct sockaddr_ll ll; 222 }; 223 } sa; 224 }; 225 226 #define vio_le() virtio_legacy_is_little_endian() 227 228 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 229 230 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 231 #define GET_PBLOCK_DESC(x, bid) \ 232 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 234 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 235 #define GET_NEXT_PRB_BLK_NUM(x) \ 236 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 237 ((x)->kactive_blk_num+1) : 0) 238 239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 240 static void __fanout_link(struct sock *sk, struct packet_sock *po); 241 242 static int packet_direct_xmit(struct sk_buff *skb) 243 { 244 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 245 } 246 247 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 248 { 249 struct net_device *dev; 250 251 rcu_read_lock(); 252 dev = rcu_dereference(po->cached_dev); 253 dev_hold(dev); 254 rcu_read_unlock(); 255 256 return dev; 257 } 258 259 static void packet_cached_dev_assign(struct packet_sock *po, 260 struct net_device *dev) 261 { 262 rcu_assign_pointer(po->cached_dev, dev); 263 } 264 265 static void packet_cached_dev_reset(struct packet_sock *po) 266 { 267 RCU_INIT_POINTER(po->cached_dev, NULL); 268 } 269 270 static bool packet_use_direct_xmit(const struct packet_sock *po) 271 { 272 return po->xmit == packet_direct_xmit; 273 } 274 275 static u16 packet_pick_tx_queue(struct sk_buff *skb) 276 { 277 struct net_device *dev = skb->dev; 278 const struct net_device_ops *ops = dev->netdev_ops; 279 int cpu = raw_smp_processor_id(); 280 u16 queue_index; 281 282 #ifdef CONFIG_XPS 283 skb->sender_cpu = cpu + 1; 284 #endif 285 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 286 if (ops->ndo_select_queue) { 287 queue_index = ops->ndo_select_queue(dev, skb, NULL); 288 queue_index = netdev_cap_txqueue(dev, queue_index); 289 } else { 290 queue_index = netdev_pick_tx(dev, skb, NULL); 291 } 292 293 return queue_index; 294 } 295 296 /* __register_prot_hook must be invoked through register_prot_hook 297 * or from a context in which asynchronous accesses to the packet 298 * socket is not possible (packet_create()). 299 */ 300 static void __register_prot_hook(struct sock *sk) 301 { 302 struct packet_sock *po = pkt_sk(sk); 303 304 if (!po->running) { 305 if (po->fanout) 306 __fanout_link(sk, po); 307 else 308 dev_add_pack(&po->prot_hook); 309 310 sock_hold(sk); 311 po->running = 1; 312 } 313 } 314 315 static void register_prot_hook(struct sock *sk) 316 { 317 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 318 __register_prot_hook(sk); 319 } 320 321 /* If the sync parameter is true, we will temporarily drop 322 * the po->bind_lock and do a synchronize_net to make sure no 323 * asynchronous packet processing paths still refer to the elements 324 * of po->prot_hook. If the sync parameter is false, it is the 325 * callers responsibility to take care of this. 326 */ 327 static void __unregister_prot_hook(struct sock *sk, bool sync) 328 { 329 struct packet_sock *po = pkt_sk(sk); 330 331 lockdep_assert_held_once(&po->bind_lock); 332 333 po->running = 0; 334 335 if (po->fanout) 336 __fanout_unlink(sk, po); 337 else 338 __dev_remove_pack(&po->prot_hook); 339 340 __sock_put(sk); 341 342 if (sync) { 343 spin_unlock(&po->bind_lock); 344 synchronize_net(); 345 spin_lock(&po->bind_lock); 346 } 347 } 348 349 static void unregister_prot_hook(struct sock *sk, bool sync) 350 { 351 struct packet_sock *po = pkt_sk(sk); 352 353 if (po->running) 354 __unregister_prot_hook(sk, sync); 355 } 356 357 static inline struct page * __pure pgv_to_page(void *addr) 358 { 359 if (is_vmalloc_addr(addr)) 360 return vmalloc_to_page(addr); 361 return virt_to_page(addr); 362 } 363 364 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 365 { 366 union tpacket_uhdr h; 367 368 h.raw = frame; 369 switch (po->tp_version) { 370 case TPACKET_V1: 371 h.h1->tp_status = status; 372 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 373 break; 374 case TPACKET_V2: 375 h.h2->tp_status = status; 376 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 377 break; 378 case TPACKET_V3: 379 h.h3->tp_status = status; 380 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 381 break; 382 default: 383 WARN(1, "TPACKET version not supported.\n"); 384 BUG(); 385 } 386 387 smp_wmb(); 388 } 389 390 static int __packet_get_status(const struct packet_sock *po, void *frame) 391 { 392 union tpacket_uhdr h; 393 394 smp_rmb(); 395 396 h.raw = frame; 397 switch (po->tp_version) { 398 case TPACKET_V1: 399 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 400 return h.h1->tp_status; 401 case TPACKET_V2: 402 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 403 return h.h2->tp_status; 404 case TPACKET_V3: 405 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 406 return h.h3->tp_status; 407 default: 408 WARN(1, "TPACKET version not supported.\n"); 409 BUG(); 410 return 0; 411 } 412 } 413 414 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 415 unsigned int flags) 416 { 417 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 418 419 if (shhwtstamps && 420 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 421 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 422 return TP_STATUS_TS_RAW_HARDWARE; 423 424 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 425 ktime_to_timespec64_cond(skb->tstamp, ts)) 426 return TP_STATUS_TS_SOFTWARE; 427 428 return 0; 429 } 430 431 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 432 struct sk_buff *skb) 433 { 434 union tpacket_uhdr h; 435 struct timespec64 ts; 436 __u32 ts_status; 437 438 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 439 return 0; 440 441 h.raw = frame; 442 /* 443 * versions 1 through 3 overflow the timestamps in y2106, since they 444 * all store the seconds in a 32-bit unsigned integer. 445 * If we create a version 4, that should have a 64-bit timestamp, 446 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 447 * nanoseconds. 448 */ 449 switch (po->tp_version) { 450 case TPACKET_V1: 451 h.h1->tp_sec = ts.tv_sec; 452 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 453 break; 454 case TPACKET_V2: 455 h.h2->tp_sec = ts.tv_sec; 456 h.h2->tp_nsec = ts.tv_nsec; 457 break; 458 case TPACKET_V3: 459 h.h3->tp_sec = ts.tv_sec; 460 h.h3->tp_nsec = ts.tv_nsec; 461 break; 462 default: 463 WARN(1, "TPACKET version not supported.\n"); 464 BUG(); 465 } 466 467 /* one flush is safe, as both fields always lie on the same cacheline */ 468 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 469 smp_wmb(); 470 471 return ts_status; 472 } 473 474 static void *packet_lookup_frame(const struct packet_sock *po, 475 const struct packet_ring_buffer *rb, 476 unsigned int position, 477 int status) 478 { 479 unsigned int pg_vec_pos, frame_offset; 480 union tpacket_uhdr h; 481 482 pg_vec_pos = position / rb->frames_per_block; 483 frame_offset = position % rb->frames_per_block; 484 485 h.raw = rb->pg_vec[pg_vec_pos].buffer + 486 (frame_offset * rb->frame_size); 487 488 if (status != __packet_get_status(po, h.raw)) 489 return NULL; 490 491 return h.raw; 492 } 493 494 static void *packet_current_frame(struct packet_sock *po, 495 struct packet_ring_buffer *rb, 496 int status) 497 { 498 return packet_lookup_frame(po, rb, rb->head, status); 499 } 500 501 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 502 { 503 del_timer_sync(&pkc->retire_blk_timer); 504 } 505 506 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 507 struct sk_buff_head *rb_queue) 508 { 509 struct tpacket_kbdq_core *pkc; 510 511 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 512 513 spin_lock_bh(&rb_queue->lock); 514 pkc->delete_blk_timer = 1; 515 spin_unlock_bh(&rb_queue->lock); 516 517 prb_del_retire_blk_timer(pkc); 518 } 519 520 static void prb_setup_retire_blk_timer(struct packet_sock *po) 521 { 522 struct tpacket_kbdq_core *pkc; 523 524 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 525 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 526 0); 527 pkc->retire_blk_timer.expires = jiffies; 528 } 529 530 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 531 int blk_size_in_bytes) 532 { 533 struct net_device *dev; 534 unsigned int mbits, div; 535 struct ethtool_link_ksettings ecmd; 536 int err; 537 538 rtnl_lock(); 539 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 540 if (unlikely(!dev)) { 541 rtnl_unlock(); 542 return DEFAULT_PRB_RETIRE_TOV; 543 } 544 err = __ethtool_get_link_ksettings(dev, &ecmd); 545 rtnl_unlock(); 546 if (err) 547 return DEFAULT_PRB_RETIRE_TOV; 548 549 /* If the link speed is so slow you don't really 550 * need to worry about perf anyways 551 */ 552 if (ecmd.base.speed < SPEED_1000 || 553 ecmd.base.speed == SPEED_UNKNOWN) 554 return DEFAULT_PRB_RETIRE_TOV; 555 556 div = ecmd.base.speed / 1000; 557 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 558 559 if (div) 560 mbits /= div; 561 562 if (div) 563 return mbits + 1; 564 return mbits; 565 } 566 567 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 568 union tpacket_req_u *req_u) 569 { 570 p1->feature_req_word = req_u->req3.tp_feature_req_word; 571 } 572 573 static void init_prb_bdqc(struct packet_sock *po, 574 struct packet_ring_buffer *rb, 575 struct pgv *pg_vec, 576 union tpacket_req_u *req_u) 577 { 578 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 579 struct tpacket_block_desc *pbd; 580 581 memset(p1, 0x0, sizeof(*p1)); 582 583 p1->knxt_seq_num = 1; 584 p1->pkbdq = pg_vec; 585 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 586 p1->pkblk_start = pg_vec[0].buffer; 587 p1->kblk_size = req_u->req3.tp_block_size; 588 p1->knum_blocks = req_u->req3.tp_block_nr; 589 p1->hdrlen = po->tp_hdrlen; 590 p1->version = po->tp_version; 591 p1->last_kactive_blk_num = 0; 592 po->stats.stats3.tp_freeze_q_cnt = 0; 593 if (req_u->req3.tp_retire_blk_tov) 594 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 595 else 596 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 597 req_u->req3.tp_block_size); 598 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 599 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 600 rwlock_init(&p1->blk_fill_in_prog_lock); 601 602 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 603 prb_init_ft_ops(p1, req_u); 604 prb_setup_retire_blk_timer(po); 605 prb_open_block(p1, pbd); 606 } 607 608 /* Do NOT update the last_blk_num first. 609 * Assumes sk_buff_head lock is held. 610 */ 611 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 612 { 613 mod_timer(&pkc->retire_blk_timer, 614 jiffies + pkc->tov_in_jiffies); 615 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 616 } 617 618 /* 619 * Timer logic: 620 * 1) We refresh the timer only when we open a block. 621 * By doing this we don't waste cycles refreshing the timer 622 * on packet-by-packet basis. 623 * 624 * With a 1MB block-size, on a 1Gbps line, it will take 625 * i) ~8 ms to fill a block + ii) memcpy etc. 626 * In this cut we are not accounting for the memcpy time. 627 * 628 * So, if the user sets the 'tmo' to 10ms then the timer 629 * will never fire while the block is still getting filled 630 * (which is what we want). However, the user could choose 631 * to close a block early and that's fine. 632 * 633 * But when the timer does fire, we check whether or not to refresh it. 634 * Since the tmo granularity is in msecs, it is not too expensive 635 * to refresh the timer, lets say every '8' msecs. 636 * Either the user can set the 'tmo' or we can derive it based on 637 * a) line-speed and b) block-size. 638 * prb_calc_retire_blk_tmo() calculates the tmo. 639 * 640 */ 641 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 642 { 643 struct packet_sock *po = 644 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 645 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 646 unsigned int frozen; 647 struct tpacket_block_desc *pbd; 648 649 spin_lock(&po->sk.sk_receive_queue.lock); 650 651 frozen = prb_queue_frozen(pkc); 652 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 653 654 if (unlikely(pkc->delete_blk_timer)) 655 goto out; 656 657 /* We only need to plug the race when the block is partially filled. 658 * tpacket_rcv: 659 * lock(); increment BLOCK_NUM_PKTS; unlock() 660 * copy_bits() is in progress ... 661 * timer fires on other cpu: 662 * we can't retire the current block because copy_bits 663 * is in progress. 664 * 665 */ 666 if (BLOCK_NUM_PKTS(pbd)) { 667 /* Waiting for skb_copy_bits to finish... */ 668 write_lock(&pkc->blk_fill_in_prog_lock); 669 write_unlock(&pkc->blk_fill_in_prog_lock); 670 } 671 672 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 673 if (!frozen) { 674 if (!BLOCK_NUM_PKTS(pbd)) { 675 /* An empty block. Just refresh the timer. */ 676 goto refresh_timer; 677 } 678 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 679 if (!prb_dispatch_next_block(pkc, po)) 680 goto refresh_timer; 681 else 682 goto out; 683 } else { 684 /* Case 1. Queue was frozen because user-space was 685 * lagging behind. 686 */ 687 if (prb_curr_blk_in_use(pbd)) { 688 /* 689 * Ok, user-space is still behind. 690 * So just refresh the timer. 691 */ 692 goto refresh_timer; 693 } else { 694 /* Case 2. queue was frozen,user-space caught up, 695 * now the link went idle && the timer fired. 696 * We don't have a block to close.So we open this 697 * block and restart the timer. 698 * opening a block thaws the queue,restarts timer 699 * Thawing/timer-refresh is a side effect. 700 */ 701 prb_open_block(pkc, pbd); 702 goto out; 703 } 704 } 705 } 706 707 refresh_timer: 708 _prb_refresh_rx_retire_blk_timer(pkc); 709 710 out: 711 spin_unlock(&po->sk.sk_receive_queue.lock); 712 } 713 714 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 715 struct tpacket_block_desc *pbd1, __u32 status) 716 { 717 /* Flush everything minus the block header */ 718 719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 720 u8 *start, *end; 721 722 start = (u8 *)pbd1; 723 724 /* Skip the block header(we know header WILL fit in 4K) */ 725 start += PAGE_SIZE; 726 727 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 728 for (; start < end; start += PAGE_SIZE) 729 flush_dcache_page(pgv_to_page(start)); 730 731 smp_wmb(); 732 #endif 733 734 /* Now update the block status. */ 735 736 BLOCK_STATUS(pbd1) = status; 737 738 /* Flush the block header */ 739 740 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 741 start = (u8 *)pbd1; 742 flush_dcache_page(pgv_to_page(start)); 743 744 smp_wmb(); 745 #endif 746 } 747 748 /* 749 * Side effect: 750 * 751 * 1) flush the block 752 * 2) Increment active_blk_num 753 * 754 * Note:We DONT refresh the timer on purpose. 755 * Because almost always the next block will be opened. 756 */ 757 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 758 struct tpacket_block_desc *pbd1, 759 struct packet_sock *po, unsigned int stat) 760 { 761 __u32 status = TP_STATUS_USER | stat; 762 763 struct tpacket3_hdr *last_pkt; 764 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 765 struct sock *sk = &po->sk; 766 767 if (atomic_read(&po->tp_drops)) 768 status |= TP_STATUS_LOSING; 769 770 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 771 last_pkt->tp_next_offset = 0; 772 773 /* Get the ts of the last pkt */ 774 if (BLOCK_NUM_PKTS(pbd1)) { 775 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 776 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 777 } else { 778 /* Ok, we tmo'd - so get the current time. 779 * 780 * It shouldn't really happen as we don't close empty 781 * blocks. See prb_retire_rx_blk_timer_expired(). 782 */ 783 struct timespec64 ts; 784 ktime_get_real_ts64(&ts); 785 h1->ts_last_pkt.ts_sec = ts.tv_sec; 786 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 787 } 788 789 smp_wmb(); 790 791 /* Flush the block */ 792 prb_flush_block(pkc1, pbd1, status); 793 794 sk->sk_data_ready(sk); 795 796 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 797 } 798 799 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 800 { 801 pkc->reset_pending_on_curr_blk = 0; 802 } 803 804 /* 805 * Side effect of opening a block: 806 * 807 * 1) prb_queue is thawed. 808 * 2) retire_blk_timer is refreshed. 809 * 810 */ 811 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 812 struct tpacket_block_desc *pbd1) 813 { 814 struct timespec64 ts; 815 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 816 817 smp_rmb(); 818 819 /* We could have just memset this but we will lose the 820 * flexibility of making the priv area sticky 821 */ 822 823 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 824 BLOCK_NUM_PKTS(pbd1) = 0; 825 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 826 827 ktime_get_real_ts64(&ts); 828 829 h1->ts_first_pkt.ts_sec = ts.tv_sec; 830 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 831 832 pkc1->pkblk_start = (char *)pbd1; 833 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 834 835 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 836 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 837 838 pbd1->version = pkc1->version; 839 pkc1->prev = pkc1->nxt_offset; 840 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 841 842 prb_thaw_queue(pkc1); 843 _prb_refresh_rx_retire_blk_timer(pkc1); 844 845 smp_wmb(); 846 } 847 848 /* 849 * Queue freeze logic: 850 * 1) Assume tp_block_nr = 8 blocks. 851 * 2) At time 't0', user opens Rx ring. 852 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 853 * 4) user-space is either sleeping or processing block '0'. 854 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 855 * it will close block-7,loop around and try to fill block '0'. 856 * call-flow: 857 * __packet_lookup_frame_in_block 858 * prb_retire_current_block() 859 * prb_dispatch_next_block() 860 * |->(BLOCK_STATUS == USER) evaluates to true 861 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 862 * 6) Now there are two cases: 863 * 6.1) Link goes idle right after the queue is frozen. 864 * But remember, the last open_block() refreshed the timer. 865 * When this timer expires,it will refresh itself so that we can 866 * re-open block-0 in near future. 867 * 6.2) Link is busy and keeps on receiving packets. This is a simple 868 * case and __packet_lookup_frame_in_block will check if block-0 869 * is free and can now be re-used. 870 */ 871 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 872 struct packet_sock *po) 873 { 874 pkc->reset_pending_on_curr_blk = 1; 875 po->stats.stats3.tp_freeze_q_cnt++; 876 } 877 878 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 879 880 /* 881 * If the next block is free then we will dispatch it 882 * and return a good offset. 883 * Else, we will freeze the queue. 884 * So, caller must check the return value. 885 */ 886 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 887 struct packet_sock *po) 888 { 889 struct tpacket_block_desc *pbd; 890 891 smp_rmb(); 892 893 /* 1. Get current block num */ 894 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 895 896 /* 2. If this block is currently in_use then freeze the queue */ 897 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 898 prb_freeze_queue(pkc, po); 899 return NULL; 900 } 901 902 /* 903 * 3. 904 * open this block and return the offset where the first packet 905 * needs to get stored. 906 */ 907 prb_open_block(pkc, pbd); 908 return (void *)pkc->nxt_offset; 909 } 910 911 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 912 struct packet_sock *po, unsigned int status) 913 { 914 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 915 916 /* retire/close the current block */ 917 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 918 /* 919 * Plug the case where copy_bits() is in progress on 920 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 921 * have space to copy the pkt in the current block and 922 * called prb_retire_current_block() 923 * 924 * We don't need to worry about the TMO case because 925 * the timer-handler already handled this case. 926 */ 927 if (!(status & TP_STATUS_BLK_TMO)) { 928 /* Waiting for skb_copy_bits to finish... */ 929 write_lock(&pkc->blk_fill_in_prog_lock); 930 write_unlock(&pkc->blk_fill_in_prog_lock); 931 } 932 prb_close_block(pkc, pbd, po, status); 933 return; 934 } 935 } 936 937 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 938 { 939 return TP_STATUS_USER & BLOCK_STATUS(pbd); 940 } 941 942 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 943 { 944 return pkc->reset_pending_on_curr_blk; 945 } 946 947 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 948 __releases(&pkc->blk_fill_in_prog_lock) 949 { 950 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 951 952 read_unlock(&pkc->blk_fill_in_prog_lock); 953 } 954 955 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 956 struct tpacket3_hdr *ppd) 957 { 958 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 959 } 960 961 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 962 struct tpacket3_hdr *ppd) 963 { 964 ppd->hv1.tp_rxhash = 0; 965 } 966 967 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 968 struct tpacket3_hdr *ppd) 969 { 970 if (skb_vlan_tag_present(pkc->skb)) { 971 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 972 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 973 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 974 } else { 975 ppd->hv1.tp_vlan_tci = 0; 976 ppd->hv1.tp_vlan_tpid = 0; 977 ppd->tp_status = TP_STATUS_AVAILABLE; 978 } 979 } 980 981 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 982 struct tpacket3_hdr *ppd) 983 { 984 ppd->hv1.tp_padding = 0; 985 prb_fill_vlan_info(pkc, ppd); 986 987 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 988 prb_fill_rxhash(pkc, ppd); 989 else 990 prb_clear_rxhash(pkc, ppd); 991 } 992 993 static void prb_fill_curr_block(char *curr, 994 struct tpacket_kbdq_core *pkc, 995 struct tpacket_block_desc *pbd, 996 unsigned int len) 997 __acquires(&pkc->blk_fill_in_prog_lock) 998 { 999 struct tpacket3_hdr *ppd; 1000 1001 ppd = (struct tpacket3_hdr *)curr; 1002 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1003 pkc->prev = curr; 1004 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1005 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1006 BLOCK_NUM_PKTS(pbd) += 1; 1007 read_lock(&pkc->blk_fill_in_prog_lock); 1008 prb_run_all_ft_ops(pkc, ppd); 1009 } 1010 1011 /* Assumes caller has the sk->rx_queue.lock */ 1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1013 struct sk_buff *skb, 1014 unsigned int len 1015 ) 1016 { 1017 struct tpacket_kbdq_core *pkc; 1018 struct tpacket_block_desc *pbd; 1019 char *curr, *end; 1020 1021 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1022 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1023 1024 /* Queue is frozen when user space is lagging behind */ 1025 if (prb_queue_frozen(pkc)) { 1026 /* 1027 * Check if that last block which caused the queue to freeze, 1028 * is still in_use by user-space. 1029 */ 1030 if (prb_curr_blk_in_use(pbd)) { 1031 /* Can't record this packet */ 1032 return NULL; 1033 } else { 1034 /* 1035 * Ok, the block was released by user-space. 1036 * Now let's open that block. 1037 * opening a block also thaws the queue. 1038 * Thawing is a side effect. 1039 */ 1040 prb_open_block(pkc, pbd); 1041 } 1042 } 1043 1044 smp_mb(); 1045 curr = pkc->nxt_offset; 1046 pkc->skb = skb; 1047 end = (char *)pbd + pkc->kblk_size; 1048 1049 /* first try the current block */ 1050 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1051 prb_fill_curr_block(curr, pkc, pbd, len); 1052 return (void *)curr; 1053 } 1054 1055 /* Ok, close the current block */ 1056 prb_retire_current_block(pkc, po, 0); 1057 1058 /* Now, try to dispatch the next block */ 1059 curr = (char *)prb_dispatch_next_block(pkc, po); 1060 if (curr) { 1061 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1062 prb_fill_curr_block(curr, pkc, pbd, len); 1063 return (void *)curr; 1064 } 1065 1066 /* 1067 * No free blocks are available.user_space hasn't caught up yet. 1068 * Queue was just frozen and now this packet will get dropped. 1069 */ 1070 return NULL; 1071 } 1072 1073 static void *packet_current_rx_frame(struct packet_sock *po, 1074 struct sk_buff *skb, 1075 int status, unsigned int len) 1076 { 1077 char *curr = NULL; 1078 switch (po->tp_version) { 1079 case TPACKET_V1: 1080 case TPACKET_V2: 1081 curr = packet_lookup_frame(po, &po->rx_ring, 1082 po->rx_ring.head, status); 1083 return curr; 1084 case TPACKET_V3: 1085 return __packet_lookup_frame_in_block(po, skb, len); 1086 default: 1087 WARN(1, "TPACKET version not supported\n"); 1088 BUG(); 1089 return NULL; 1090 } 1091 } 1092 1093 static void *prb_lookup_block(const struct packet_sock *po, 1094 const struct packet_ring_buffer *rb, 1095 unsigned int idx, 1096 int status) 1097 { 1098 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1099 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1100 1101 if (status != BLOCK_STATUS(pbd)) 1102 return NULL; 1103 return pbd; 1104 } 1105 1106 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1107 { 1108 unsigned int prev; 1109 if (rb->prb_bdqc.kactive_blk_num) 1110 prev = rb->prb_bdqc.kactive_blk_num-1; 1111 else 1112 prev = rb->prb_bdqc.knum_blocks-1; 1113 return prev; 1114 } 1115 1116 /* Assumes caller has held the rx_queue.lock */ 1117 static void *__prb_previous_block(struct packet_sock *po, 1118 struct packet_ring_buffer *rb, 1119 int status) 1120 { 1121 unsigned int previous = prb_previous_blk_num(rb); 1122 return prb_lookup_block(po, rb, previous, status); 1123 } 1124 1125 static void *packet_previous_rx_frame(struct packet_sock *po, 1126 struct packet_ring_buffer *rb, 1127 int status) 1128 { 1129 if (po->tp_version <= TPACKET_V2) 1130 return packet_previous_frame(po, rb, status); 1131 1132 return __prb_previous_block(po, rb, status); 1133 } 1134 1135 static void packet_increment_rx_head(struct packet_sock *po, 1136 struct packet_ring_buffer *rb) 1137 { 1138 switch (po->tp_version) { 1139 case TPACKET_V1: 1140 case TPACKET_V2: 1141 return packet_increment_head(rb); 1142 case TPACKET_V3: 1143 default: 1144 WARN(1, "TPACKET version not supported.\n"); 1145 BUG(); 1146 return; 1147 } 1148 } 1149 1150 static void *packet_previous_frame(struct packet_sock *po, 1151 struct packet_ring_buffer *rb, 1152 int status) 1153 { 1154 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1155 return packet_lookup_frame(po, rb, previous, status); 1156 } 1157 1158 static void packet_increment_head(struct packet_ring_buffer *buff) 1159 { 1160 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1161 } 1162 1163 static void packet_inc_pending(struct packet_ring_buffer *rb) 1164 { 1165 this_cpu_inc(*rb->pending_refcnt); 1166 } 1167 1168 static void packet_dec_pending(struct packet_ring_buffer *rb) 1169 { 1170 this_cpu_dec(*rb->pending_refcnt); 1171 } 1172 1173 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1174 { 1175 unsigned int refcnt = 0; 1176 int cpu; 1177 1178 /* We don't use pending refcount in rx_ring. */ 1179 if (rb->pending_refcnt == NULL) 1180 return 0; 1181 1182 for_each_possible_cpu(cpu) 1183 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1184 1185 return refcnt; 1186 } 1187 1188 static int packet_alloc_pending(struct packet_sock *po) 1189 { 1190 po->rx_ring.pending_refcnt = NULL; 1191 1192 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1193 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1194 return -ENOBUFS; 1195 1196 return 0; 1197 } 1198 1199 static void packet_free_pending(struct packet_sock *po) 1200 { 1201 free_percpu(po->tx_ring.pending_refcnt); 1202 } 1203 1204 #define ROOM_POW_OFF 2 1205 #define ROOM_NONE 0x0 1206 #define ROOM_LOW 0x1 1207 #define ROOM_NORMAL 0x2 1208 1209 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1210 { 1211 int idx, len; 1212 1213 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1214 idx = READ_ONCE(po->rx_ring.head); 1215 if (pow_off) 1216 idx += len >> pow_off; 1217 if (idx >= len) 1218 idx -= len; 1219 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1220 } 1221 1222 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1223 { 1224 int idx, len; 1225 1226 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1227 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1228 if (pow_off) 1229 idx += len >> pow_off; 1230 if (idx >= len) 1231 idx -= len; 1232 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1233 } 1234 1235 static int __packet_rcv_has_room(const struct packet_sock *po, 1236 const struct sk_buff *skb) 1237 { 1238 const struct sock *sk = &po->sk; 1239 int ret = ROOM_NONE; 1240 1241 if (po->prot_hook.func != tpacket_rcv) { 1242 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1243 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1244 - (skb ? skb->truesize : 0); 1245 1246 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1247 return ROOM_NORMAL; 1248 else if (avail > 0) 1249 return ROOM_LOW; 1250 else 1251 return ROOM_NONE; 1252 } 1253 1254 if (po->tp_version == TPACKET_V3) { 1255 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1256 ret = ROOM_NORMAL; 1257 else if (__tpacket_v3_has_room(po, 0)) 1258 ret = ROOM_LOW; 1259 } else { 1260 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1261 ret = ROOM_NORMAL; 1262 else if (__tpacket_has_room(po, 0)) 1263 ret = ROOM_LOW; 1264 } 1265 1266 return ret; 1267 } 1268 1269 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1270 { 1271 int pressure, ret; 1272 1273 ret = __packet_rcv_has_room(po, skb); 1274 pressure = ret != ROOM_NORMAL; 1275 1276 if (READ_ONCE(po->pressure) != pressure) 1277 WRITE_ONCE(po->pressure, pressure); 1278 1279 return ret; 1280 } 1281 1282 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1283 { 1284 if (READ_ONCE(po->pressure) && 1285 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1286 WRITE_ONCE(po->pressure, 0); 1287 } 1288 1289 static void packet_sock_destruct(struct sock *sk) 1290 { 1291 skb_queue_purge(&sk->sk_error_queue); 1292 1293 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1294 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1295 1296 if (!sock_flag(sk, SOCK_DEAD)) { 1297 pr_err("Attempt to release alive packet socket: %p\n", sk); 1298 return; 1299 } 1300 1301 sk_refcnt_debug_dec(sk); 1302 } 1303 1304 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1305 { 1306 u32 *history = po->rollover->history; 1307 u32 victim, rxhash; 1308 int i, count = 0; 1309 1310 rxhash = skb_get_hash(skb); 1311 for (i = 0; i < ROLLOVER_HLEN; i++) 1312 if (READ_ONCE(history[i]) == rxhash) 1313 count++; 1314 1315 victim = prandom_u32() % ROLLOVER_HLEN; 1316 1317 /* Avoid dirtying the cache line if possible */ 1318 if (READ_ONCE(history[victim]) != rxhash) 1319 WRITE_ONCE(history[victim], rxhash); 1320 1321 return count > (ROLLOVER_HLEN >> 1); 1322 } 1323 1324 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1325 struct sk_buff *skb, 1326 unsigned int num) 1327 { 1328 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1329 } 1330 1331 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1332 struct sk_buff *skb, 1333 unsigned int num) 1334 { 1335 unsigned int val = atomic_inc_return(&f->rr_cur); 1336 1337 return val % num; 1338 } 1339 1340 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1341 struct sk_buff *skb, 1342 unsigned int num) 1343 { 1344 return smp_processor_id() % num; 1345 } 1346 1347 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1348 struct sk_buff *skb, 1349 unsigned int num) 1350 { 1351 return prandom_u32_max(num); 1352 } 1353 1354 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1355 struct sk_buff *skb, 1356 unsigned int idx, bool try_self, 1357 unsigned int num) 1358 { 1359 struct packet_sock *po, *po_next, *po_skip = NULL; 1360 unsigned int i, j, room = ROOM_NONE; 1361 1362 po = pkt_sk(rcu_dereference(f->arr[idx])); 1363 1364 if (try_self) { 1365 room = packet_rcv_has_room(po, skb); 1366 if (room == ROOM_NORMAL || 1367 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1368 return idx; 1369 po_skip = po; 1370 } 1371 1372 i = j = min_t(int, po->rollover->sock, num - 1); 1373 do { 1374 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1375 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1376 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1377 if (i != j) 1378 po->rollover->sock = i; 1379 atomic_long_inc(&po->rollover->num); 1380 if (room == ROOM_LOW) 1381 atomic_long_inc(&po->rollover->num_huge); 1382 return i; 1383 } 1384 1385 if (++i == num) 1386 i = 0; 1387 } while (i != j); 1388 1389 atomic_long_inc(&po->rollover->num_failed); 1390 return idx; 1391 } 1392 1393 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1394 struct sk_buff *skb, 1395 unsigned int num) 1396 { 1397 return skb_get_queue_mapping(skb) % num; 1398 } 1399 1400 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1401 struct sk_buff *skb, 1402 unsigned int num) 1403 { 1404 struct bpf_prog *prog; 1405 unsigned int ret = 0; 1406 1407 rcu_read_lock(); 1408 prog = rcu_dereference(f->bpf_prog); 1409 if (prog) 1410 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1411 rcu_read_unlock(); 1412 1413 return ret; 1414 } 1415 1416 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1417 { 1418 return f->flags & (flag >> 8); 1419 } 1420 1421 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1422 struct packet_type *pt, struct net_device *orig_dev) 1423 { 1424 struct packet_fanout *f = pt->af_packet_priv; 1425 unsigned int num = READ_ONCE(f->num_members); 1426 struct net *net = read_pnet(&f->net); 1427 struct packet_sock *po; 1428 unsigned int idx; 1429 1430 if (!net_eq(dev_net(dev), net) || !num) { 1431 kfree_skb(skb); 1432 return 0; 1433 } 1434 1435 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1436 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1437 if (!skb) 1438 return 0; 1439 } 1440 switch (f->type) { 1441 case PACKET_FANOUT_HASH: 1442 default: 1443 idx = fanout_demux_hash(f, skb, num); 1444 break; 1445 case PACKET_FANOUT_LB: 1446 idx = fanout_demux_lb(f, skb, num); 1447 break; 1448 case PACKET_FANOUT_CPU: 1449 idx = fanout_demux_cpu(f, skb, num); 1450 break; 1451 case PACKET_FANOUT_RND: 1452 idx = fanout_demux_rnd(f, skb, num); 1453 break; 1454 case PACKET_FANOUT_QM: 1455 idx = fanout_demux_qm(f, skb, num); 1456 break; 1457 case PACKET_FANOUT_ROLLOVER: 1458 idx = fanout_demux_rollover(f, skb, 0, false, num); 1459 break; 1460 case PACKET_FANOUT_CBPF: 1461 case PACKET_FANOUT_EBPF: 1462 idx = fanout_demux_bpf(f, skb, num); 1463 break; 1464 } 1465 1466 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1467 idx = fanout_demux_rollover(f, skb, idx, true, num); 1468 1469 po = pkt_sk(rcu_dereference(f->arr[idx])); 1470 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1471 } 1472 1473 DEFINE_MUTEX(fanout_mutex); 1474 EXPORT_SYMBOL_GPL(fanout_mutex); 1475 static LIST_HEAD(fanout_list); 1476 static u16 fanout_next_id; 1477 1478 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1479 { 1480 struct packet_fanout *f = po->fanout; 1481 1482 spin_lock(&f->lock); 1483 rcu_assign_pointer(f->arr[f->num_members], sk); 1484 smp_wmb(); 1485 f->num_members++; 1486 if (f->num_members == 1) 1487 dev_add_pack(&f->prot_hook); 1488 spin_unlock(&f->lock); 1489 } 1490 1491 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1492 { 1493 struct packet_fanout *f = po->fanout; 1494 int i; 1495 1496 spin_lock(&f->lock); 1497 for (i = 0; i < f->num_members; i++) { 1498 if (rcu_dereference_protected(f->arr[i], 1499 lockdep_is_held(&f->lock)) == sk) 1500 break; 1501 } 1502 BUG_ON(i >= f->num_members); 1503 rcu_assign_pointer(f->arr[i], 1504 rcu_dereference_protected(f->arr[f->num_members - 1], 1505 lockdep_is_held(&f->lock))); 1506 f->num_members--; 1507 if (f->num_members == 0) 1508 __dev_remove_pack(&f->prot_hook); 1509 spin_unlock(&f->lock); 1510 } 1511 1512 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1513 { 1514 if (sk->sk_family != PF_PACKET) 1515 return false; 1516 1517 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1518 } 1519 1520 static void fanout_init_data(struct packet_fanout *f) 1521 { 1522 switch (f->type) { 1523 case PACKET_FANOUT_LB: 1524 atomic_set(&f->rr_cur, 0); 1525 break; 1526 case PACKET_FANOUT_CBPF: 1527 case PACKET_FANOUT_EBPF: 1528 RCU_INIT_POINTER(f->bpf_prog, NULL); 1529 break; 1530 } 1531 } 1532 1533 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1534 { 1535 struct bpf_prog *old; 1536 1537 spin_lock(&f->lock); 1538 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1539 rcu_assign_pointer(f->bpf_prog, new); 1540 spin_unlock(&f->lock); 1541 1542 if (old) { 1543 synchronize_net(); 1544 bpf_prog_destroy(old); 1545 } 1546 } 1547 1548 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1549 unsigned int len) 1550 { 1551 struct bpf_prog *new; 1552 struct sock_fprog fprog; 1553 int ret; 1554 1555 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1556 return -EPERM; 1557 1558 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1559 if (ret) 1560 return ret; 1561 1562 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1563 if (ret) 1564 return ret; 1565 1566 __fanout_set_data_bpf(po->fanout, new); 1567 return 0; 1568 } 1569 1570 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1571 unsigned int len) 1572 { 1573 struct bpf_prog *new; 1574 u32 fd; 1575 1576 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1577 return -EPERM; 1578 if (len != sizeof(fd)) 1579 return -EINVAL; 1580 if (copy_from_sockptr(&fd, data, len)) 1581 return -EFAULT; 1582 1583 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1584 if (IS_ERR(new)) 1585 return PTR_ERR(new); 1586 1587 __fanout_set_data_bpf(po->fanout, new); 1588 return 0; 1589 } 1590 1591 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1592 unsigned int len) 1593 { 1594 switch (po->fanout->type) { 1595 case PACKET_FANOUT_CBPF: 1596 return fanout_set_data_cbpf(po, data, len); 1597 case PACKET_FANOUT_EBPF: 1598 return fanout_set_data_ebpf(po, data, len); 1599 default: 1600 return -EINVAL; 1601 } 1602 } 1603 1604 static void fanout_release_data(struct packet_fanout *f) 1605 { 1606 switch (f->type) { 1607 case PACKET_FANOUT_CBPF: 1608 case PACKET_FANOUT_EBPF: 1609 __fanout_set_data_bpf(f, NULL); 1610 } 1611 } 1612 1613 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1614 { 1615 struct packet_fanout *f; 1616 1617 list_for_each_entry(f, &fanout_list, list) { 1618 if (f->id == candidate_id && 1619 read_pnet(&f->net) == sock_net(sk)) { 1620 return false; 1621 } 1622 } 1623 return true; 1624 } 1625 1626 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1627 { 1628 u16 id = fanout_next_id; 1629 1630 do { 1631 if (__fanout_id_is_free(sk, id)) { 1632 *new_id = id; 1633 fanout_next_id = id + 1; 1634 return true; 1635 } 1636 1637 id++; 1638 } while (id != fanout_next_id); 1639 1640 return false; 1641 } 1642 1643 static int fanout_add(struct sock *sk, struct fanout_args *args) 1644 { 1645 struct packet_rollover *rollover = NULL; 1646 struct packet_sock *po = pkt_sk(sk); 1647 u16 type_flags = args->type_flags; 1648 struct packet_fanout *f, *match; 1649 u8 type = type_flags & 0xff; 1650 u8 flags = type_flags >> 8; 1651 u16 id = args->id; 1652 int err; 1653 1654 switch (type) { 1655 case PACKET_FANOUT_ROLLOVER: 1656 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1657 return -EINVAL; 1658 break; 1659 case PACKET_FANOUT_HASH: 1660 case PACKET_FANOUT_LB: 1661 case PACKET_FANOUT_CPU: 1662 case PACKET_FANOUT_RND: 1663 case PACKET_FANOUT_QM: 1664 case PACKET_FANOUT_CBPF: 1665 case PACKET_FANOUT_EBPF: 1666 break; 1667 default: 1668 return -EINVAL; 1669 } 1670 1671 mutex_lock(&fanout_mutex); 1672 1673 err = -EALREADY; 1674 if (po->fanout) 1675 goto out; 1676 1677 if (type == PACKET_FANOUT_ROLLOVER || 1678 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1679 err = -ENOMEM; 1680 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1681 if (!rollover) 1682 goto out; 1683 atomic_long_set(&rollover->num, 0); 1684 atomic_long_set(&rollover->num_huge, 0); 1685 atomic_long_set(&rollover->num_failed, 0); 1686 } 1687 1688 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1689 if (id != 0) { 1690 err = -EINVAL; 1691 goto out; 1692 } 1693 if (!fanout_find_new_id(sk, &id)) { 1694 err = -ENOMEM; 1695 goto out; 1696 } 1697 /* ephemeral flag for the first socket in the group: drop it */ 1698 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1699 } 1700 1701 match = NULL; 1702 list_for_each_entry(f, &fanout_list, list) { 1703 if (f->id == id && 1704 read_pnet(&f->net) == sock_net(sk)) { 1705 match = f; 1706 break; 1707 } 1708 } 1709 err = -EINVAL; 1710 if (match) { 1711 if (match->flags != flags) 1712 goto out; 1713 if (args->max_num_members && 1714 args->max_num_members != match->max_num_members) 1715 goto out; 1716 } else { 1717 if (args->max_num_members > PACKET_FANOUT_MAX) 1718 goto out; 1719 if (!args->max_num_members) 1720 /* legacy PACKET_FANOUT_MAX */ 1721 args->max_num_members = 256; 1722 err = -ENOMEM; 1723 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1724 GFP_KERNEL); 1725 if (!match) 1726 goto out; 1727 write_pnet(&match->net, sock_net(sk)); 1728 match->id = id; 1729 match->type = type; 1730 match->flags = flags; 1731 INIT_LIST_HEAD(&match->list); 1732 spin_lock_init(&match->lock); 1733 refcount_set(&match->sk_ref, 0); 1734 fanout_init_data(match); 1735 match->prot_hook.type = po->prot_hook.type; 1736 match->prot_hook.dev = po->prot_hook.dev; 1737 match->prot_hook.func = packet_rcv_fanout; 1738 match->prot_hook.af_packet_priv = match; 1739 match->prot_hook.id_match = match_fanout_group; 1740 match->max_num_members = args->max_num_members; 1741 list_add(&match->list, &fanout_list); 1742 } 1743 err = -EINVAL; 1744 1745 spin_lock(&po->bind_lock); 1746 if (po->running && 1747 match->type == type && 1748 match->prot_hook.type == po->prot_hook.type && 1749 match->prot_hook.dev == po->prot_hook.dev) { 1750 err = -ENOSPC; 1751 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1752 __dev_remove_pack(&po->prot_hook); 1753 po->fanout = match; 1754 po->rollover = rollover; 1755 rollover = NULL; 1756 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1757 __fanout_link(sk, po); 1758 err = 0; 1759 } 1760 } 1761 spin_unlock(&po->bind_lock); 1762 1763 if (err && !refcount_read(&match->sk_ref)) { 1764 list_del(&match->list); 1765 kvfree(match); 1766 } 1767 1768 out: 1769 kfree(rollover); 1770 mutex_unlock(&fanout_mutex); 1771 return err; 1772 } 1773 1774 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1775 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1776 * It is the responsibility of the caller to call fanout_release_data() and 1777 * free the returned packet_fanout (after synchronize_net()) 1778 */ 1779 static struct packet_fanout *fanout_release(struct sock *sk) 1780 { 1781 struct packet_sock *po = pkt_sk(sk); 1782 struct packet_fanout *f; 1783 1784 mutex_lock(&fanout_mutex); 1785 f = po->fanout; 1786 if (f) { 1787 po->fanout = NULL; 1788 1789 if (refcount_dec_and_test(&f->sk_ref)) 1790 list_del(&f->list); 1791 else 1792 f = NULL; 1793 } 1794 mutex_unlock(&fanout_mutex); 1795 1796 return f; 1797 } 1798 1799 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1800 struct sk_buff *skb) 1801 { 1802 /* Earlier code assumed this would be a VLAN pkt, double-check 1803 * this now that we have the actual packet in hand. We can only 1804 * do this check on Ethernet devices. 1805 */ 1806 if (unlikely(dev->type != ARPHRD_ETHER)) 1807 return false; 1808 1809 skb_reset_mac_header(skb); 1810 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1811 } 1812 1813 static const struct proto_ops packet_ops; 1814 1815 static const struct proto_ops packet_ops_spkt; 1816 1817 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1818 struct packet_type *pt, struct net_device *orig_dev) 1819 { 1820 struct sock *sk; 1821 struct sockaddr_pkt *spkt; 1822 1823 /* 1824 * When we registered the protocol we saved the socket in the data 1825 * field for just this event. 1826 */ 1827 1828 sk = pt->af_packet_priv; 1829 1830 /* 1831 * Yank back the headers [hope the device set this 1832 * right or kerboom...] 1833 * 1834 * Incoming packets have ll header pulled, 1835 * push it back. 1836 * 1837 * For outgoing ones skb->data == skb_mac_header(skb) 1838 * so that this procedure is noop. 1839 */ 1840 1841 if (skb->pkt_type == PACKET_LOOPBACK) 1842 goto out; 1843 1844 if (!net_eq(dev_net(dev), sock_net(sk))) 1845 goto out; 1846 1847 skb = skb_share_check(skb, GFP_ATOMIC); 1848 if (skb == NULL) 1849 goto oom; 1850 1851 /* drop any routing info */ 1852 skb_dst_drop(skb); 1853 1854 /* drop conntrack reference */ 1855 nf_reset_ct(skb); 1856 1857 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1858 1859 skb_push(skb, skb->data - skb_mac_header(skb)); 1860 1861 /* 1862 * The SOCK_PACKET socket receives _all_ frames. 1863 */ 1864 1865 spkt->spkt_family = dev->type; 1866 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1867 spkt->spkt_protocol = skb->protocol; 1868 1869 /* 1870 * Charge the memory to the socket. This is done specifically 1871 * to prevent sockets using all the memory up. 1872 */ 1873 1874 if (sock_queue_rcv_skb(sk, skb) == 0) 1875 return 0; 1876 1877 out: 1878 kfree_skb(skb); 1879 oom: 1880 return 0; 1881 } 1882 1883 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1884 { 1885 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1886 sock->type == SOCK_RAW) { 1887 skb_reset_mac_header(skb); 1888 skb->protocol = dev_parse_header_protocol(skb); 1889 } 1890 1891 skb_probe_transport_header(skb); 1892 } 1893 1894 /* 1895 * Output a raw packet to a device layer. This bypasses all the other 1896 * protocol layers and you must therefore supply it with a complete frame 1897 */ 1898 1899 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1900 size_t len) 1901 { 1902 struct sock *sk = sock->sk; 1903 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1904 struct sk_buff *skb = NULL; 1905 struct net_device *dev; 1906 struct sockcm_cookie sockc; 1907 __be16 proto = 0; 1908 int err; 1909 int extra_len = 0; 1910 1911 /* 1912 * Get and verify the address. 1913 */ 1914 1915 if (saddr) { 1916 if (msg->msg_namelen < sizeof(struct sockaddr)) 1917 return -EINVAL; 1918 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1919 proto = saddr->spkt_protocol; 1920 } else 1921 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1922 1923 /* 1924 * Find the device first to size check it 1925 */ 1926 1927 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1928 retry: 1929 rcu_read_lock(); 1930 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1931 err = -ENODEV; 1932 if (dev == NULL) 1933 goto out_unlock; 1934 1935 err = -ENETDOWN; 1936 if (!(dev->flags & IFF_UP)) 1937 goto out_unlock; 1938 1939 /* 1940 * You may not queue a frame bigger than the mtu. This is the lowest level 1941 * raw protocol and you must do your own fragmentation at this level. 1942 */ 1943 1944 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1945 if (!netif_supports_nofcs(dev)) { 1946 err = -EPROTONOSUPPORT; 1947 goto out_unlock; 1948 } 1949 extra_len = 4; /* We're doing our own CRC */ 1950 } 1951 1952 err = -EMSGSIZE; 1953 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1954 goto out_unlock; 1955 1956 if (!skb) { 1957 size_t reserved = LL_RESERVED_SPACE(dev); 1958 int tlen = dev->needed_tailroom; 1959 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1960 1961 rcu_read_unlock(); 1962 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1963 if (skb == NULL) 1964 return -ENOBUFS; 1965 /* FIXME: Save some space for broken drivers that write a hard 1966 * header at transmission time by themselves. PPP is the notable 1967 * one here. This should really be fixed at the driver level. 1968 */ 1969 skb_reserve(skb, reserved); 1970 skb_reset_network_header(skb); 1971 1972 /* Try to align data part correctly */ 1973 if (hhlen) { 1974 skb->data -= hhlen; 1975 skb->tail -= hhlen; 1976 if (len < hhlen) 1977 skb_reset_network_header(skb); 1978 } 1979 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1980 if (err) 1981 goto out_free; 1982 goto retry; 1983 } 1984 1985 if (!dev_validate_header(dev, skb->data, len)) { 1986 err = -EINVAL; 1987 goto out_unlock; 1988 } 1989 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1990 !packet_extra_vlan_len_allowed(dev, skb)) { 1991 err = -EMSGSIZE; 1992 goto out_unlock; 1993 } 1994 1995 sockcm_init(&sockc, sk); 1996 if (msg->msg_controllen) { 1997 err = sock_cmsg_send(sk, msg, &sockc); 1998 if (unlikely(err)) 1999 goto out_unlock; 2000 } 2001 2002 skb->protocol = proto; 2003 skb->dev = dev; 2004 skb->priority = sk->sk_priority; 2005 skb->mark = sk->sk_mark; 2006 skb->tstamp = sockc.transmit_time; 2007 2008 skb_setup_tx_timestamp(skb, sockc.tsflags); 2009 2010 if (unlikely(extra_len == 4)) 2011 skb->no_fcs = 1; 2012 2013 packet_parse_headers(skb, sock); 2014 2015 dev_queue_xmit(skb); 2016 rcu_read_unlock(); 2017 return len; 2018 2019 out_unlock: 2020 rcu_read_unlock(); 2021 out_free: 2022 kfree_skb(skb); 2023 return err; 2024 } 2025 2026 static unsigned int run_filter(struct sk_buff *skb, 2027 const struct sock *sk, 2028 unsigned int res) 2029 { 2030 struct sk_filter *filter; 2031 2032 rcu_read_lock(); 2033 filter = rcu_dereference(sk->sk_filter); 2034 if (filter != NULL) 2035 res = bpf_prog_run_clear_cb(filter->prog, skb); 2036 rcu_read_unlock(); 2037 2038 return res; 2039 } 2040 2041 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2042 size_t *len) 2043 { 2044 struct virtio_net_hdr vnet_hdr; 2045 2046 if (*len < sizeof(vnet_hdr)) 2047 return -EINVAL; 2048 *len -= sizeof(vnet_hdr); 2049 2050 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2051 return -EINVAL; 2052 2053 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2054 } 2055 2056 /* 2057 * This function makes lazy skb cloning in hope that most of packets 2058 * are discarded by BPF. 2059 * 2060 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2061 * and skb->cb are mangled. It works because (and until) packets 2062 * falling here are owned by current CPU. Output packets are cloned 2063 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2064 * sequentially, so that if we return skb to original state on exit, 2065 * we will not harm anyone. 2066 */ 2067 2068 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2069 struct packet_type *pt, struct net_device *orig_dev) 2070 { 2071 struct sock *sk; 2072 struct sockaddr_ll *sll; 2073 struct packet_sock *po; 2074 u8 *skb_head = skb->data; 2075 int skb_len = skb->len; 2076 unsigned int snaplen, res; 2077 bool is_drop_n_account = false; 2078 2079 if (skb->pkt_type == PACKET_LOOPBACK) 2080 goto drop; 2081 2082 sk = pt->af_packet_priv; 2083 po = pkt_sk(sk); 2084 2085 if (!net_eq(dev_net(dev), sock_net(sk))) 2086 goto drop; 2087 2088 skb->dev = dev; 2089 2090 if (dev_has_header(dev)) { 2091 /* The device has an explicit notion of ll header, 2092 * exported to higher levels. 2093 * 2094 * Otherwise, the device hides details of its frame 2095 * structure, so that corresponding packet head is 2096 * never delivered to user. 2097 */ 2098 if (sk->sk_type != SOCK_DGRAM) 2099 skb_push(skb, skb->data - skb_mac_header(skb)); 2100 else if (skb->pkt_type == PACKET_OUTGOING) { 2101 /* Special case: outgoing packets have ll header at head */ 2102 skb_pull(skb, skb_network_offset(skb)); 2103 } 2104 } 2105 2106 snaplen = skb->len; 2107 2108 res = run_filter(skb, sk, snaplen); 2109 if (!res) 2110 goto drop_n_restore; 2111 if (snaplen > res) 2112 snaplen = res; 2113 2114 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2115 goto drop_n_acct; 2116 2117 if (skb_shared(skb)) { 2118 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2119 if (nskb == NULL) 2120 goto drop_n_acct; 2121 2122 if (skb_head != skb->data) { 2123 skb->data = skb_head; 2124 skb->len = skb_len; 2125 } 2126 consume_skb(skb); 2127 skb = nskb; 2128 } 2129 2130 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2131 2132 sll = &PACKET_SKB_CB(skb)->sa.ll; 2133 sll->sll_hatype = dev->type; 2134 sll->sll_pkttype = skb->pkt_type; 2135 if (unlikely(po->origdev)) 2136 sll->sll_ifindex = orig_dev->ifindex; 2137 else 2138 sll->sll_ifindex = dev->ifindex; 2139 2140 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2141 2142 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2143 * Use their space for storing the original skb length. 2144 */ 2145 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2146 2147 if (pskb_trim(skb, snaplen)) 2148 goto drop_n_acct; 2149 2150 skb_set_owner_r(skb, sk); 2151 skb->dev = NULL; 2152 skb_dst_drop(skb); 2153 2154 /* drop conntrack reference */ 2155 nf_reset_ct(skb); 2156 2157 spin_lock(&sk->sk_receive_queue.lock); 2158 po->stats.stats1.tp_packets++; 2159 sock_skb_set_dropcount(sk, skb); 2160 __skb_queue_tail(&sk->sk_receive_queue, skb); 2161 spin_unlock(&sk->sk_receive_queue.lock); 2162 sk->sk_data_ready(sk); 2163 return 0; 2164 2165 drop_n_acct: 2166 is_drop_n_account = true; 2167 atomic_inc(&po->tp_drops); 2168 atomic_inc(&sk->sk_drops); 2169 2170 drop_n_restore: 2171 if (skb_head != skb->data && skb_shared(skb)) { 2172 skb->data = skb_head; 2173 skb->len = skb_len; 2174 } 2175 drop: 2176 if (!is_drop_n_account) 2177 consume_skb(skb); 2178 else 2179 kfree_skb(skb); 2180 return 0; 2181 } 2182 2183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2184 struct packet_type *pt, struct net_device *orig_dev) 2185 { 2186 struct sock *sk; 2187 struct packet_sock *po; 2188 struct sockaddr_ll *sll; 2189 union tpacket_uhdr h; 2190 u8 *skb_head = skb->data; 2191 int skb_len = skb->len; 2192 unsigned int snaplen, res; 2193 unsigned long status = TP_STATUS_USER; 2194 unsigned short macoff, hdrlen; 2195 unsigned int netoff; 2196 struct sk_buff *copy_skb = NULL; 2197 struct timespec64 ts; 2198 __u32 ts_status; 2199 bool is_drop_n_account = false; 2200 unsigned int slot_id = 0; 2201 bool do_vnet = false; 2202 2203 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2204 * We may add members to them until current aligned size without forcing 2205 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2206 */ 2207 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2208 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2209 2210 if (skb->pkt_type == PACKET_LOOPBACK) 2211 goto drop; 2212 2213 sk = pt->af_packet_priv; 2214 po = pkt_sk(sk); 2215 2216 if (!net_eq(dev_net(dev), sock_net(sk))) 2217 goto drop; 2218 2219 if (dev_has_header(dev)) { 2220 if (sk->sk_type != SOCK_DGRAM) 2221 skb_push(skb, skb->data - skb_mac_header(skb)); 2222 else if (skb->pkt_type == PACKET_OUTGOING) { 2223 /* Special case: outgoing packets have ll header at head */ 2224 skb_pull(skb, skb_network_offset(skb)); 2225 } 2226 } 2227 2228 snaplen = skb->len; 2229 2230 res = run_filter(skb, sk, snaplen); 2231 if (!res) 2232 goto drop_n_restore; 2233 2234 /* If we are flooded, just give up */ 2235 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2236 atomic_inc(&po->tp_drops); 2237 goto drop_n_restore; 2238 } 2239 2240 if (skb->ip_summed == CHECKSUM_PARTIAL) 2241 status |= TP_STATUS_CSUMNOTREADY; 2242 else if (skb->pkt_type != PACKET_OUTGOING && 2243 (skb->ip_summed == CHECKSUM_COMPLETE || 2244 skb_csum_unnecessary(skb))) 2245 status |= TP_STATUS_CSUM_VALID; 2246 2247 if (snaplen > res) 2248 snaplen = res; 2249 2250 if (sk->sk_type == SOCK_DGRAM) { 2251 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2252 po->tp_reserve; 2253 } else { 2254 unsigned int maclen = skb_network_offset(skb); 2255 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2256 (maclen < 16 ? 16 : maclen)) + 2257 po->tp_reserve; 2258 if (po->has_vnet_hdr) { 2259 netoff += sizeof(struct virtio_net_hdr); 2260 do_vnet = true; 2261 } 2262 macoff = netoff - maclen; 2263 } 2264 if (netoff > USHRT_MAX) { 2265 atomic_inc(&po->tp_drops); 2266 goto drop_n_restore; 2267 } 2268 if (po->tp_version <= TPACKET_V2) { 2269 if (macoff + snaplen > po->rx_ring.frame_size) { 2270 if (po->copy_thresh && 2271 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2272 if (skb_shared(skb)) { 2273 copy_skb = skb_clone(skb, GFP_ATOMIC); 2274 } else { 2275 copy_skb = skb_get(skb); 2276 skb_head = skb->data; 2277 } 2278 if (copy_skb) 2279 skb_set_owner_r(copy_skb, sk); 2280 } 2281 snaplen = po->rx_ring.frame_size - macoff; 2282 if ((int)snaplen < 0) { 2283 snaplen = 0; 2284 do_vnet = false; 2285 } 2286 } 2287 } else if (unlikely(macoff + snaplen > 2288 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2289 u32 nval; 2290 2291 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2292 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2293 snaplen, nval, macoff); 2294 snaplen = nval; 2295 if (unlikely((int)snaplen < 0)) { 2296 snaplen = 0; 2297 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2298 do_vnet = false; 2299 } 2300 } 2301 spin_lock(&sk->sk_receive_queue.lock); 2302 h.raw = packet_current_rx_frame(po, skb, 2303 TP_STATUS_KERNEL, (macoff+snaplen)); 2304 if (!h.raw) 2305 goto drop_n_account; 2306 2307 if (po->tp_version <= TPACKET_V2) { 2308 slot_id = po->rx_ring.head; 2309 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2310 goto drop_n_account; 2311 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2312 } 2313 2314 if (do_vnet && 2315 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2316 sizeof(struct virtio_net_hdr), 2317 vio_le(), true, 0)) { 2318 if (po->tp_version == TPACKET_V3) 2319 prb_clear_blk_fill_status(&po->rx_ring); 2320 goto drop_n_account; 2321 } 2322 2323 if (po->tp_version <= TPACKET_V2) { 2324 packet_increment_rx_head(po, &po->rx_ring); 2325 /* 2326 * LOSING will be reported till you read the stats, 2327 * because it's COR - Clear On Read. 2328 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2329 * at packet level. 2330 */ 2331 if (atomic_read(&po->tp_drops)) 2332 status |= TP_STATUS_LOSING; 2333 } 2334 2335 po->stats.stats1.tp_packets++; 2336 if (copy_skb) { 2337 status |= TP_STATUS_COPY; 2338 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2339 } 2340 spin_unlock(&sk->sk_receive_queue.lock); 2341 2342 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2343 2344 /* Always timestamp; prefer an existing software timestamp taken 2345 * closer to the time of capture. 2346 */ 2347 ts_status = tpacket_get_timestamp(skb, &ts, 2348 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2349 if (!ts_status) 2350 ktime_get_real_ts64(&ts); 2351 2352 status |= ts_status; 2353 2354 switch (po->tp_version) { 2355 case TPACKET_V1: 2356 h.h1->tp_len = skb->len; 2357 h.h1->tp_snaplen = snaplen; 2358 h.h1->tp_mac = macoff; 2359 h.h1->tp_net = netoff; 2360 h.h1->tp_sec = ts.tv_sec; 2361 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2362 hdrlen = sizeof(*h.h1); 2363 break; 2364 case TPACKET_V2: 2365 h.h2->tp_len = skb->len; 2366 h.h2->tp_snaplen = snaplen; 2367 h.h2->tp_mac = macoff; 2368 h.h2->tp_net = netoff; 2369 h.h2->tp_sec = ts.tv_sec; 2370 h.h2->tp_nsec = ts.tv_nsec; 2371 if (skb_vlan_tag_present(skb)) { 2372 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2373 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2374 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2375 } else { 2376 h.h2->tp_vlan_tci = 0; 2377 h.h2->tp_vlan_tpid = 0; 2378 } 2379 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2380 hdrlen = sizeof(*h.h2); 2381 break; 2382 case TPACKET_V3: 2383 /* tp_nxt_offset,vlan are already populated above. 2384 * So DONT clear those fields here 2385 */ 2386 h.h3->tp_status |= status; 2387 h.h3->tp_len = skb->len; 2388 h.h3->tp_snaplen = snaplen; 2389 h.h3->tp_mac = macoff; 2390 h.h3->tp_net = netoff; 2391 h.h3->tp_sec = ts.tv_sec; 2392 h.h3->tp_nsec = ts.tv_nsec; 2393 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2394 hdrlen = sizeof(*h.h3); 2395 break; 2396 default: 2397 BUG(); 2398 } 2399 2400 sll = h.raw + TPACKET_ALIGN(hdrlen); 2401 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2402 sll->sll_family = AF_PACKET; 2403 sll->sll_hatype = dev->type; 2404 sll->sll_protocol = skb->protocol; 2405 sll->sll_pkttype = skb->pkt_type; 2406 if (unlikely(po->origdev)) 2407 sll->sll_ifindex = orig_dev->ifindex; 2408 else 2409 sll->sll_ifindex = dev->ifindex; 2410 2411 smp_mb(); 2412 2413 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2414 if (po->tp_version <= TPACKET_V2) { 2415 u8 *start, *end; 2416 2417 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2418 macoff + snaplen); 2419 2420 for (start = h.raw; start < end; start += PAGE_SIZE) 2421 flush_dcache_page(pgv_to_page(start)); 2422 } 2423 smp_wmb(); 2424 #endif 2425 2426 if (po->tp_version <= TPACKET_V2) { 2427 spin_lock(&sk->sk_receive_queue.lock); 2428 __packet_set_status(po, h.raw, status); 2429 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2430 spin_unlock(&sk->sk_receive_queue.lock); 2431 sk->sk_data_ready(sk); 2432 } else if (po->tp_version == TPACKET_V3) { 2433 prb_clear_blk_fill_status(&po->rx_ring); 2434 } 2435 2436 drop_n_restore: 2437 if (skb_head != skb->data && skb_shared(skb)) { 2438 skb->data = skb_head; 2439 skb->len = skb_len; 2440 } 2441 drop: 2442 if (!is_drop_n_account) 2443 consume_skb(skb); 2444 else 2445 kfree_skb(skb); 2446 return 0; 2447 2448 drop_n_account: 2449 spin_unlock(&sk->sk_receive_queue.lock); 2450 atomic_inc(&po->tp_drops); 2451 is_drop_n_account = true; 2452 2453 sk->sk_data_ready(sk); 2454 kfree_skb(copy_skb); 2455 goto drop_n_restore; 2456 } 2457 2458 static void tpacket_destruct_skb(struct sk_buff *skb) 2459 { 2460 struct packet_sock *po = pkt_sk(skb->sk); 2461 2462 if (likely(po->tx_ring.pg_vec)) { 2463 void *ph; 2464 __u32 ts; 2465 2466 ph = skb_zcopy_get_nouarg(skb); 2467 packet_dec_pending(&po->tx_ring); 2468 2469 ts = __packet_set_timestamp(po, ph, skb); 2470 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2471 2472 if (!packet_read_pending(&po->tx_ring)) 2473 complete(&po->skb_completion); 2474 } 2475 2476 sock_wfree(skb); 2477 } 2478 2479 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2480 { 2481 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2482 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2483 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2484 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2485 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2486 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2487 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2488 2489 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2490 return -EINVAL; 2491 2492 return 0; 2493 } 2494 2495 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2496 struct virtio_net_hdr *vnet_hdr) 2497 { 2498 if (*len < sizeof(*vnet_hdr)) 2499 return -EINVAL; 2500 *len -= sizeof(*vnet_hdr); 2501 2502 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2503 return -EFAULT; 2504 2505 return __packet_snd_vnet_parse(vnet_hdr, *len); 2506 } 2507 2508 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2509 void *frame, struct net_device *dev, void *data, int tp_len, 2510 __be16 proto, unsigned char *addr, int hlen, int copylen, 2511 const struct sockcm_cookie *sockc) 2512 { 2513 union tpacket_uhdr ph; 2514 int to_write, offset, len, nr_frags, len_max; 2515 struct socket *sock = po->sk.sk_socket; 2516 struct page *page; 2517 int err; 2518 2519 ph.raw = frame; 2520 2521 skb->protocol = proto; 2522 skb->dev = dev; 2523 skb->priority = po->sk.sk_priority; 2524 skb->mark = po->sk.sk_mark; 2525 skb->tstamp = sockc->transmit_time; 2526 skb_setup_tx_timestamp(skb, sockc->tsflags); 2527 skb_zcopy_set_nouarg(skb, ph.raw); 2528 2529 skb_reserve(skb, hlen); 2530 skb_reset_network_header(skb); 2531 2532 to_write = tp_len; 2533 2534 if (sock->type == SOCK_DGRAM) { 2535 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2536 NULL, tp_len); 2537 if (unlikely(err < 0)) 2538 return -EINVAL; 2539 } else if (copylen) { 2540 int hdrlen = min_t(int, copylen, tp_len); 2541 2542 skb_push(skb, dev->hard_header_len); 2543 skb_put(skb, copylen - dev->hard_header_len); 2544 err = skb_store_bits(skb, 0, data, hdrlen); 2545 if (unlikely(err)) 2546 return err; 2547 if (!dev_validate_header(dev, skb->data, hdrlen)) 2548 return -EINVAL; 2549 2550 data += hdrlen; 2551 to_write -= hdrlen; 2552 } 2553 2554 offset = offset_in_page(data); 2555 len_max = PAGE_SIZE - offset; 2556 len = ((to_write > len_max) ? len_max : to_write); 2557 2558 skb->data_len = to_write; 2559 skb->len += to_write; 2560 skb->truesize += to_write; 2561 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2562 2563 while (likely(to_write)) { 2564 nr_frags = skb_shinfo(skb)->nr_frags; 2565 2566 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2567 pr_err("Packet exceed the number of skb frags(%lu)\n", 2568 MAX_SKB_FRAGS); 2569 return -EFAULT; 2570 } 2571 2572 page = pgv_to_page(data); 2573 data += len; 2574 flush_dcache_page(page); 2575 get_page(page); 2576 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2577 to_write -= len; 2578 offset = 0; 2579 len_max = PAGE_SIZE; 2580 len = ((to_write > len_max) ? len_max : to_write); 2581 } 2582 2583 packet_parse_headers(skb, sock); 2584 2585 return tp_len; 2586 } 2587 2588 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2589 int size_max, void **data) 2590 { 2591 union tpacket_uhdr ph; 2592 int tp_len, off; 2593 2594 ph.raw = frame; 2595 2596 switch (po->tp_version) { 2597 case TPACKET_V3: 2598 if (ph.h3->tp_next_offset != 0) { 2599 pr_warn_once("variable sized slot not supported"); 2600 return -EINVAL; 2601 } 2602 tp_len = ph.h3->tp_len; 2603 break; 2604 case TPACKET_V2: 2605 tp_len = ph.h2->tp_len; 2606 break; 2607 default: 2608 tp_len = ph.h1->tp_len; 2609 break; 2610 } 2611 if (unlikely(tp_len > size_max)) { 2612 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2613 return -EMSGSIZE; 2614 } 2615 2616 if (unlikely(po->tp_tx_has_off)) { 2617 int off_min, off_max; 2618 2619 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2620 off_max = po->tx_ring.frame_size - tp_len; 2621 if (po->sk.sk_type == SOCK_DGRAM) { 2622 switch (po->tp_version) { 2623 case TPACKET_V3: 2624 off = ph.h3->tp_net; 2625 break; 2626 case TPACKET_V2: 2627 off = ph.h2->tp_net; 2628 break; 2629 default: 2630 off = ph.h1->tp_net; 2631 break; 2632 } 2633 } else { 2634 switch (po->tp_version) { 2635 case TPACKET_V3: 2636 off = ph.h3->tp_mac; 2637 break; 2638 case TPACKET_V2: 2639 off = ph.h2->tp_mac; 2640 break; 2641 default: 2642 off = ph.h1->tp_mac; 2643 break; 2644 } 2645 } 2646 if (unlikely((off < off_min) || (off_max < off))) 2647 return -EINVAL; 2648 } else { 2649 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2650 } 2651 2652 *data = frame + off; 2653 return tp_len; 2654 } 2655 2656 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2657 { 2658 struct sk_buff *skb = NULL; 2659 struct net_device *dev; 2660 struct virtio_net_hdr *vnet_hdr = NULL; 2661 struct sockcm_cookie sockc; 2662 __be16 proto; 2663 int err, reserve = 0; 2664 void *ph; 2665 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2666 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2667 unsigned char *addr = NULL; 2668 int tp_len, size_max; 2669 void *data; 2670 int len_sum = 0; 2671 int status = TP_STATUS_AVAILABLE; 2672 int hlen, tlen, copylen = 0; 2673 long timeo = 0; 2674 2675 mutex_lock(&po->pg_vec_lock); 2676 2677 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2678 * we need to confirm it under protection of pg_vec_lock. 2679 */ 2680 if (unlikely(!po->tx_ring.pg_vec)) { 2681 err = -EBUSY; 2682 goto out; 2683 } 2684 if (likely(saddr == NULL)) { 2685 dev = packet_cached_dev_get(po); 2686 proto = READ_ONCE(po->num); 2687 } else { 2688 err = -EINVAL; 2689 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2690 goto out; 2691 if (msg->msg_namelen < (saddr->sll_halen 2692 + offsetof(struct sockaddr_ll, 2693 sll_addr))) 2694 goto out; 2695 proto = saddr->sll_protocol; 2696 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2697 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2698 if (dev && msg->msg_namelen < dev->addr_len + 2699 offsetof(struct sockaddr_ll, sll_addr)) 2700 goto out_put; 2701 addr = saddr->sll_addr; 2702 } 2703 } 2704 2705 err = -ENXIO; 2706 if (unlikely(dev == NULL)) 2707 goto out; 2708 err = -ENETDOWN; 2709 if (unlikely(!(dev->flags & IFF_UP))) 2710 goto out_put; 2711 2712 sockcm_init(&sockc, &po->sk); 2713 if (msg->msg_controllen) { 2714 err = sock_cmsg_send(&po->sk, msg, &sockc); 2715 if (unlikely(err)) 2716 goto out_put; 2717 } 2718 2719 if (po->sk.sk_socket->type == SOCK_RAW) 2720 reserve = dev->hard_header_len; 2721 size_max = po->tx_ring.frame_size 2722 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2723 2724 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2725 size_max = dev->mtu + reserve + VLAN_HLEN; 2726 2727 reinit_completion(&po->skb_completion); 2728 2729 do { 2730 ph = packet_current_frame(po, &po->tx_ring, 2731 TP_STATUS_SEND_REQUEST); 2732 if (unlikely(ph == NULL)) { 2733 if (need_wait && skb) { 2734 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2735 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2736 if (timeo <= 0) { 2737 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2738 goto out_put; 2739 } 2740 } 2741 /* check for additional frames */ 2742 continue; 2743 } 2744 2745 skb = NULL; 2746 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2747 if (tp_len < 0) 2748 goto tpacket_error; 2749 2750 status = TP_STATUS_SEND_REQUEST; 2751 hlen = LL_RESERVED_SPACE(dev); 2752 tlen = dev->needed_tailroom; 2753 if (po->has_vnet_hdr) { 2754 vnet_hdr = data; 2755 data += sizeof(*vnet_hdr); 2756 tp_len -= sizeof(*vnet_hdr); 2757 if (tp_len < 0 || 2758 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2759 tp_len = -EINVAL; 2760 goto tpacket_error; 2761 } 2762 copylen = __virtio16_to_cpu(vio_le(), 2763 vnet_hdr->hdr_len); 2764 } 2765 copylen = max_t(int, copylen, dev->hard_header_len); 2766 skb = sock_alloc_send_skb(&po->sk, 2767 hlen + tlen + sizeof(struct sockaddr_ll) + 2768 (copylen - dev->hard_header_len), 2769 !need_wait, &err); 2770 2771 if (unlikely(skb == NULL)) { 2772 /* we assume the socket was initially writeable ... */ 2773 if (likely(len_sum > 0)) 2774 err = len_sum; 2775 goto out_status; 2776 } 2777 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2778 addr, hlen, copylen, &sockc); 2779 if (likely(tp_len >= 0) && 2780 tp_len > dev->mtu + reserve && 2781 !po->has_vnet_hdr && 2782 !packet_extra_vlan_len_allowed(dev, skb)) 2783 tp_len = -EMSGSIZE; 2784 2785 if (unlikely(tp_len < 0)) { 2786 tpacket_error: 2787 if (po->tp_loss) { 2788 __packet_set_status(po, ph, 2789 TP_STATUS_AVAILABLE); 2790 packet_increment_head(&po->tx_ring); 2791 kfree_skb(skb); 2792 continue; 2793 } else { 2794 status = TP_STATUS_WRONG_FORMAT; 2795 err = tp_len; 2796 goto out_status; 2797 } 2798 } 2799 2800 if (po->has_vnet_hdr) { 2801 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2802 tp_len = -EINVAL; 2803 goto tpacket_error; 2804 } 2805 virtio_net_hdr_set_proto(skb, vnet_hdr); 2806 } 2807 2808 skb->destructor = tpacket_destruct_skb; 2809 __packet_set_status(po, ph, TP_STATUS_SENDING); 2810 packet_inc_pending(&po->tx_ring); 2811 2812 status = TP_STATUS_SEND_REQUEST; 2813 err = po->xmit(skb); 2814 if (unlikely(err > 0)) { 2815 err = net_xmit_errno(err); 2816 if (err && __packet_get_status(po, ph) == 2817 TP_STATUS_AVAILABLE) { 2818 /* skb was destructed already */ 2819 skb = NULL; 2820 goto out_status; 2821 } 2822 /* 2823 * skb was dropped but not destructed yet; 2824 * let's treat it like congestion or err < 0 2825 */ 2826 err = 0; 2827 } 2828 packet_increment_head(&po->tx_ring); 2829 len_sum += tp_len; 2830 } while (likely((ph != NULL) || 2831 /* Note: packet_read_pending() might be slow if we have 2832 * to call it as it's per_cpu variable, but in fast-path 2833 * we already short-circuit the loop with the first 2834 * condition, and luckily don't have to go that path 2835 * anyway. 2836 */ 2837 (need_wait && packet_read_pending(&po->tx_ring)))); 2838 2839 err = len_sum; 2840 goto out_put; 2841 2842 out_status: 2843 __packet_set_status(po, ph, status); 2844 kfree_skb(skb); 2845 out_put: 2846 dev_put(dev); 2847 out: 2848 mutex_unlock(&po->pg_vec_lock); 2849 return err; 2850 } 2851 2852 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2853 size_t reserve, size_t len, 2854 size_t linear, int noblock, 2855 int *err) 2856 { 2857 struct sk_buff *skb; 2858 2859 /* Under a page? Don't bother with paged skb. */ 2860 if (prepad + len < PAGE_SIZE || !linear) 2861 linear = len; 2862 2863 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2864 err, 0); 2865 if (!skb) 2866 return NULL; 2867 2868 skb_reserve(skb, reserve); 2869 skb_put(skb, linear); 2870 skb->data_len = len - linear; 2871 skb->len += len - linear; 2872 2873 return skb; 2874 } 2875 2876 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2877 { 2878 struct sock *sk = sock->sk; 2879 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2880 struct sk_buff *skb; 2881 struct net_device *dev; 2882 __be16 proto; 2883 unsigned char *addr = NULL; 2884 int err, reserve = 0; 2885 struct sockcm_cookie sockc; 2886 struct virtio_net_hdr vnet_hdr = { 0 }; 2887 int offset = 0; 2888 struct packet_sock *po = pkt_sk(sk); 2889 bool has_vnet_hdr = false; 2890 int hlen, tlen, linear; 2891 int extra_len = 0; 2892 2893 /* 2894 * Get and verify the address. 2895 */ 2896 2897 if (likely(saddr == NULL)) { 2898 dev = packet_cached_dev_get(po); 2899 proto = READ_ONCE(po->num); 2900 } else { 2901 err = -EINVAL; 2902 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2903 goto out; 2904 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2905 goto out; 2906 proto = saddr->sll_protocol; 2907 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2908 if (sock->type == SOCK_DGRAM) { 2909 if (dev && msg->msg_namelen < dev->addr_len + 2910 offsetof(struct sockaddr_ll, sll_addr)) 2911 goto out_unlock; 2912 addr = saddr->sll_addr; 2913 } 2914 } 2915 2916 err = -ENXIO; 2917 if (unlikely(dev == NULL)) 2918 goto out_unlock; 2919 err = -ENETDOWN; 2920 if (unlikely(!(dev->flags & IFF_UP))) 2921 goto out_unlock; 2922 2923 sockcm_init(&sockc, sk); 2924 sockc.mark = sk->sk_mark; 2925 if (msg->msg_controllen) { 2926 err = sock_cmsg_send(sk, msg, &sockc); 2927 if (unlikely(err)) 2928 goto out_unlock; 2929 } 2930 2931 if (sock->type == SOCK_RAW) 2932 reserve = dev->hard_header_len; 2933 if (po->has_vnet_hdr) { 2934 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2935 if (err) 2936 goto out_unlock; 2937 has_vnet_hdr = true; 2938 } 2939 2940 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2941 if (!netif_supports_nofcs(dev)) { 2942 err = -EPROTONOSUPPORT; 2943 goto out_unlock; 2944 } 2945 extra_len = 4; /* We're doing our own CRC */ 2946 } 2947 2948 err = -EMSGSIZE; 2949 if (!vnet_hdr.gso_type && 2950 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2951 goto out_unlock; 2952 2953 err = -ENOBUFS; 2954 hlen = LL_RESERVED_SPACE(dev); 2955 tlen = dev->needed_tailroom; 2956 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2957 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2958 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2959 msg->msg_flags & MSG_DONTWAIT, &err); 2960 if (skb == NULL) 2961 goto out_unlock; 2962 2963 skb_reset_network_header(skb); 2964 2965 err = -EINVAL; 2966 if (sock->type == SOCK_DGRAM) { 2967 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2968 if (unlikely(offset < 0)) 2969 goto out_free; 2970 } else if (reserve) { 2971 skb_reserve(skb, -reserve); 2972 if (len < reserve + sizeof(struct ipv6hdr) && 2973 dev->min_header_len != dev->hard_header_len) 2974 skb_reset_network_header(skb); 2975 } 2976 2977 /* Returns -EFAULT on error */ 2978 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2979 if (err) 2980 goto out_free; 2981 2982 if (sock->type == SOCK_RAW && 2983 !dev_validate_header(dev, skb->data, len)) { 2984 err = -EINVAL; 2985 goto out_free; 2986 } 2987 2988 skb_setup_tx_timestamp(skb, sockc.tsflags); 2989 2990 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2991 !packet_extra_vlan_len_allowed(dev, skb)) { 2992 err = -EMSGSIZE; 2993 goto out_free; 2994 } 2995 2996 skb->protocol = proto; 2997 skb->dev = dev; 2998 skb->priority = sk->sk_priority; 2999 skb->mark = sockc.mark; 3000 skb->tstamp = sockc.transmit_time; 3001 3002 if (has_vnet_hdr) { 3003 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3004 if (err) 3005 goto out_free; 3006 len += sizeof(vnet_hdr); 3007 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3008 } 3009 3010 packet_parse_headers(skb, sock); 3011 3012 if (unlikely(extra_len == 4)) 3013 skb->no_fcs = 1; 3014 3015 err = po->xmit(skb); 3016 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3017 goto out_unlock; 3018 3019 dev_put(dev); 3020 3021 return len; 3022 3023 out_free: 3024 kfree_skb(skb); 3025 out_unlock: 3026 dev_put(dev); 3027 out: 3028 return err; 3029 } 3030 3031 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3032 { 3033 struct sock *sk = sock->sk; 3034 struct packet_sock *po = pkt_sk(sk); 3035 3036 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3037 * tpacket_snd() will redo the check safely. 3038 */ 3039 if (data_race(po->tx_ring.pg_vec)) 3040 return tpacket_snd(po, msg); 3041 3042 return packet_snd(sock, msg, len); 3043 } 3044 3045 /* 3046 * Close a PACKET socket. This is fairly simple. We immediately go 3047 * to 'closed' state and remove our protocol entry in the device list. 3048 */ 3049 3050 static int packet_release(struct socket *sock) 3051 { 3052 struct sock *sk = sock->sk; 3053 struct packet_sock *po; 3054 struct packet_fanout *f; 3055 struct net *net; 3056 union tpacket_req_u req_u; 3057 3058 if (!sk) 3059 return 0; 3060 3061 net = sock_net(sk); 3062 po = pkt_sk(sk); 3063 3064 mutex_lock(&net->packet.sklist_lock); 3065 sk_del_node_init_rcu(sk); 3066 mutex_unlock(&net->packet.sklist_lock); 3067 3068 preempt_disable(); 3069 sock_prot_inuse_add(net, sk->sk_prot, -1); 3070 preempt_enable(); 3071 3072 spin_lock(&po->bind_lock); 3073 unregister_prot_hook(sk, false); 3074 packet_cached_dev_reset(po); 3075 3076 if (po->prot_hook.dev) { 3077 dev_put(po->prot_hook.dev); 3078 po->prot_hook.dev = NULL; 3079 } 3080 spin_unlock(&po->bind_lock); 3081 3082 packet_flush_mclist(sk); 3083 3084 lock_sock(sk); 3085 if (po->rx_ring.pg_vec) { 3086 memset(&req_u, 0, sizeof(req_u)); 3087 packet_set_ring(sk, &req_u, 1, 0); 3088 } 3089 3090 if (po->tx_ring.pg_vec) { 3091 memset(&req_u, 0, sizeof(req_u)); 3092 packet_set_ring(sk, &req_u, 1, 1); 3093 } 3094 release_sock(sk); 3095 3096 f = fanout_release(sk); 3097 3098 synchronize_net(); 3099 3100 kfree(po->rollover); 3101 if (f) { 3102 fanout_release_data(f); 3103 kvfree(f); 3104 } 3105 /* 3106 * Now the socket is dead. No more input will appear. 3107 */ 3108 sock_orphan(sk); 3109 sock->sk = NULL; 3110 3111 /* Purge queues */ 3112 3113 skb_queue_purge(&sk->sk_receive_queue); 3114 packet_free_pending(po); 3115 sk_refcnt_debug_release(sk); 3116 3117 sock_put(sk); 3118 return 0; 3119 } 3120 3121 /* 3122 * Attach a packet hook. 3123 */ 3124 3125 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3126 __be16 proto) 3127 { 3128 struct packet_sock *po = pkt_sk(sk); 3129 struct net_device *dev_curr; 3130 __be16 proto_curr; 3131 bool need_rehook; 3132 struct net_device *dev = NULL; 3133 int ret = 0; 3134 bool unlisted = false; 3135 3136 lock_sock(sk); 3137 spin_lock(&po->bind_lock); 3138 rcu_read_lock(); 3139 3140 if (po->fanout) { 3141 ret = -EINVAL; 3142 goto out_unlock; 3143 } 3144 3145 if (name) { 3146 dev = dev_get_by_name_rcu(sock_net(sk), name); 3147 if (!dev) { 3148 ret = -ENODEV; 3149 goto out_unlock; 3150 } 3151 } else if (ifindex) { 3152 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3153 if (!dev) { 3154 ret = -ENODEV; 3155 goto out_unlock; 3156 } 3157 } 3158 3159 dev_hold(dev); 3160 3161 proto_curr = po->prot_hook.type; 3162 dev_curr = po->prot_hook.dev; 3163 3164 need_rehook = proto_curr != proto || dev_curr != dev; 3165 3166 if (need_rehook) { 3167 if (po->running) { 3168 rcu_read_unlock(); 3169 /* prevents packet_notifier() from calling 3170 * register_prot_hook() 3171 */ 3172 WRITE_ONCE(po->num, 0); 3173 __unregister_prot_hook(sk, true); 3174 rcu_read_lock(); 3175 dev_curr = po->prot_hook.dev; 3176 if (dev) 3177 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3178 dev->ifindex); 3179 } 3180 3181 BUG_ON(po->running); 3182 WRITE_ONCE(po->num, proto); 3183 po->prot_hook.type = proto; 3184 3185 if (unlikely(unlisted)) { 3186 dev_put(dev); 3187 po->prot_hook.dev = NULL; 3188 WRITE_ONCE(po->ifindex, -1); 3189 packet_cached_dev_reset(po); 3190 } else { 3191 po->prot_hook.dev = dev; 3192 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3193 packet_cached_dev_assign(po, dev); 3194 } 3195 } 3196 dev_put(dev_curr); 3197 3198 if (proto == 0 || !need_rehook) 3199 goto out_unlock; 3200 3201 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3202 register_prot_hook(sk); 3203 } else { 3204 sk->sk_err = ENETDOWN; 3205 if (!sock_flag(sk, SOCK_DEAD)) 3206 sk_error_report(sk); 3207 } 3208 3209 out_unlock: 3210 rcu_read_unlock(); 3211 spin_unlock(&po->bind_lock); 3212 release_sock(sk); 3213 return ret; 3214 } 3215 3216 /* 3217 * Bind a packet socket to a device 3218 */ 3219 3220 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3221 int addr_len) 3222 { 3223 struct sock *sk = sock->sk; 3224 char name[sizeof(uaddr->sa_data) + 1]; 3225 3226 /* 3227 * Check legality 3228 */ 3229 3230 if (addr_len != sizeof(struct sockaddr)) 3231 return -EINVAL; 3232 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3233 * zero-terminated. 3234 */ 3235 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3236 name[sizeof(uaddr->sa_data)] = 0; 3237 3238 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3239 } 3240 3241 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3242 { 3243 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3244 struct sock *sk = sock->sk; 3245 3246 /* 3247 * Check legality 3248 */ 3249 3250 if (addr_len < sizeof(struct sockaddr_ll)) 3251 return -EINVAL; 3252 if (sll->sll_family != AF_PACKET) 3253 return -EINVAL; 3254 3255 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3256 sll->sll_protocol ? : pkt_sk(sk)->num); 3257 } 3258 3259 static struct proto packet_proto = { 3260 .name = "PACKET", 3261 .owner = THIS_MODULE, 3262 .obj_size = sizeof(struct packet_sock), 3263 }; 3264 3265 /* 3266 * Create a packet of type SOCK_PACKET. 3267 */ 3268 3269 static int packet_create(struct net *net, struct socket *sock, int protocol, 3270 int kern) 3271 { 3272 struct sock *sk; 3273 struct packet_sock *po; 3274 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3275 int err; 3276 3277 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3278 return -EPERM; 3279 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3280 sock->type != SOCK_PACKET) 3281 return -ESOCKTNOSUPPORT; 3282 3283 sock->state = SS_UNCONNECTED; 3284 3285 err = -ENOBUFS; 3286 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3287 if (sk == NULL) 3288 goto out; 3289 3290 sock->ops = &packet_ops; 3291 if (sock->type == SOCK_PACKET) 3292 sock->ops = &packet_ops_spkt; 3293 3294 sock_init_data(sock, sk); 3295 3296 po = pkt_sk(sk); 3297 init_completion(&po->skb_completion); 3298 sk->sk_family = PF_PACKET; 3299 po->num = proto; 3300 po->xmit = dev_queue_xmit; 3301 3302 err = packet_alloc_pending(po); 3303 if (err) 3304 goto out2; 3305 3306 packet_cached_dev_reset(po); 3307 3308 sk->sk_destruct = packet_sock_destruct; 3309 sk_refcnt_debug_inc(sk); 3310 3311 /* 3312 * Attach a protocol block 3313 */ 3314 3315 spin_lock_init(&po->bind_lock); 3316 mutex_init(&po->pg_vec_lock); 3317 po->rollover = NULL; 3318 po->prot_hook.func = packet_rcv; 3319 3320 if (sock->type == SOCK_PACKET) 3321 po->prot_hook.func = packet_rcv_spkt; 3322 3323 po->prot_hook.af_packet_priv = sk; 3324 3325 if (proto) { 3326 po->prot_hook.type = proto; 3327 __register_prot_hook(sk); 3328 } 3329 3330 mutex_lock(&net->packet.sklist_lock); 3331 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3332 mutex_unlock(&net->packet.sklist_lock); 3333 3334 preempt_disable(); 3335 sock_prot_inuse_add(net, &packet_proto, 1); 3336 preempt_enable(); 3337 3338 return 0; 3339 out2: 3340 sk_free(sk); 3341 out: 3342 return err; 3343 } 3344 3345 /* 3346 * Pull a packet from our receive queue and hand it to the user. 3347 * If necessary we block. 3348 */ 3349 3350 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3351 int flags) 3352 { 3353 struct sock *sk = sock->sk; 3354 struct sk_buff *skb; 3355 int copied, err; 3356 int vnet_hdr_len = 0; 3357 unsigned int origlen = 0; 3358 3359 err = -EINVAL; 3360 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3361 goto out; 3362 3363 #if 0 3364 /* What error should we return now? EUNATTACH? */ 3365 if (pkt_sk(sk)->ifindex < 0) 3366 return -ENODEV; 3367 #endif 3368 3369 if (flags & MSG_ERRQUEUE) { 3370 err = sock_recv_errqueue(sk, msg, len, 3371 SOL_PACKET, PACKET_TX_TIMESTAMP); 3372 goto out; 3373 } 3374 3375 /* 3376 * Call the generic datagram receiver. This handles all sorts 3377 * of horrible races and re-entrancy so we can forget about it 3378 * in the protocol layers. 3379 * 3380 * Now it will return ENETDOWN, if device have just gone down, 3381 * but then it will block. 3382 */ 3383 3384 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3385 3386 /* 3387 * An error occurred so return it. Because skb_recv_datagram() 3388 * handles the blocking we don't see and worry about blocking 3389 * retries. 3390 */ 3391 3392 if (skb == NULL) 3393 goto out; 3394 3395 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3396 3397 if (pkt_sk(sk)->has_vnet_hdr) { 3398 err = packet_rcv_vnet(msg, skb, &len); 3399 if (err) 3400 goto out_free; 3401 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3402 } 3403 3404 /* You lose any data beyond the buffer you gave. If it worries 3405 * a user program they can ask the device for its MTU 3406 * anyway. 3407 */ 3408 copied = skb->len; 3409 if (copied > len) { 3410 copied = len; 3411 msg->msg_flags |= MSG_TRUNC; 3412 } 3413 3414 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3415 if (err) 3416 goto out_free; 3417 3418 if (sock->type != SOCK_PACKET) { 3419 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3420 3421 /* Original length was stored in sockaddr_ll fields */ 3422 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3423 sll->sll_family = AF_PACKET; 3424 sll->sll_protocol = skb->protocol; 3425 } 3426 3427 sock_recv_ts_and_drops(msg, sk, skb); 3428 3429 if (msg->msg_name) { 3430 int copy_len; 3431 3432 /* If the address length field is there to be filled 3433 * in, we fill it in now. 3434 */ 3435 if (sock->type == SOCK_PACKET) { 3436 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3437 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3438 copy_len = msg->msg_namelen; 3439 } else { 3440 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3441 3442 msg->msg_namelen = sll->sll_halen + 3443 offsetof(struct sockaddr_ll, sll_addr); 3444 copy_len = msg->msg_namelen; 3445 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3446 memset(msg->msg_name + 3447 offsetof(struct sockaddr_ll, sll_addr), 3448 0, sizeof(sll->sll_addr)); 3449 msg->msg_namelen = sizeof(struct sockaddr_ll); 3450 } 3451 } 3452 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3453 } 3454 3455 if (pkt_sk(sk)->auxdata) { 3456 struct tpacket_auxdata aux; 3457 3458 aux.tp_status = TP_STATUS_USER; 3459 if (skb->ip_summed == CHECKSUM_PARTIAL) 3460 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3461 else if (skb->pkt_type != PACKET_OUTGOING && 3462 (skb->ip_summed == CHECKSUM_COMPLETE || 3463 skb_csum_unnecessary(skb))) 3464 aux.tp_status |= TP_STATUS_CSUM_VALID; 3465 3466 aux.tp_len = origlen; 3467 aux.tp_snaplen = skb->len; 3468 aux.tp_mac = 0; 3469 aux.tp_net = skb_network_offset(skb); 3470 if (skb_vlan_tag_present(skb)) { 3471 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3472 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3473 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3474 } else { 3475 aux.tp_vlan_tci = 0; 3476 aux.tp_vlan_tpid = 0; 3477 } 3478 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3479 } 3480 3481 /* 3482 * Free or return the buffer as appropriate. Again this 3483 * hides all the races and re-entrancy issues from us. 3484 */ 3485 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3486 3487 out_free: 3488 skb_free_datagram(sk, skb); 3489 out: 3490 return err; 3491 } 3492 3493 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3494 int peer) 3495 { 3496 struct net_device *dev; 3497 struct sock *sk = sock->sk; 3498 3499 if (peer) 3500 return -EOPNOTSUPP; 3501 3502 uaddr->sa_family = AF_PACKET; 3503 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3504 rcu_read_lock(); 3505 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3506 if (dev) 3507 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3508 rcu_read_unlock(); 3509 3510 return sizeof(*uaddr); 3511 } 3512 3513 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3514 int peer) 3515 { 3516 struct net_device *dev; 3517 struct sock *sk = sock->sk; 3518 struct packet_sock *po = pkt_sk(sk); 3519 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3520 int ifindex; 3521 3522 if (peer) 3523 return -EOPNOTSUPP; 3524 3525 ifindex = READ_ONCE(po->ifindex); 3526 sll->sll_family = AF_PACKET; 3527 sll->sll_ifindex = ifindex; 3528 sll->sll_protocol = READ_ONCE(po->num); 3529 sll->sll_pkttype = 0; 3530 rcu_read_lock(); 3531 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3532 if (dev) { 3533 sll->sll_hatype = dev->type; 3534 sll->sll_halen = dev->addr_len; 3535 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3536 } else { 3537 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3538 sll->sll_halen = 0; 3539 } 3540 rcu_read_unlock(); 3541 3542 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3543 } 3544 3545 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3546 int what) 3547 { 3548 switch (i->type) { 3549 case PACKET_MR_MULTICAST: 3550 if (i->alen != dev->addr_len) 3551 return -EINVAL; 3552 if (what > 0) 3553 return dev_mc_add(dev, i->addr); 3554 else 3555 return dev_mc_del(dev, i->addr); 3556 break; 3557 case PACKET_MR_PROMISC: 3558 return dev_set_promiscuity(dev, what); 3559 case PACKET_MR_ALLMULTI: 3560 return dev_set_allmulti(dev, what); 3561 case PACKET_MR_UNICAST: 3562 if (i->alen != dev->addr_len) 3563 return -EINVAL; 3564 if (what > 0) 3565 return dev_uc_add(dev, i->addr); 3566 else 3567 return dev_uc_del(dev, i->addr); 3568 break; 3569 default: 3570 break; 3571 } 3572 return 0; 3573 } 3574 3575 static void packet_dev_mclist_delete(struct net_device *dev, 3576 struct packet_mclist **mlp) 3577 { 3578 struct packet_mclist *ml; 3579 3580 while ((ml = *mlp) != NULL) { 3581 if (ml->ifindex == dev->ifindex) { 3582 packet_dev_mc(dev, ml, -1); 3583 *mlp = ml->next; 3584 kfree(ml); 3585 } else 3586 mlp = &ml->next; 3587 } 3588 } 3589 3590 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3591 { 3592 struct packet_sock *po = pkt_sk(sk); 3593 struct packet_mclist *ml, *i; 3594 struct net_device *dev; 3595 int err; 3596 3597 rtnl_lock(); 3598 3599 err = -ENODEV; 3600 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3601 if (!dev) 3602 goto done; 3603 3604 err = -EINVAL; 3605 if (mreq->mr_alen > dev->addr_len) 3606 goto done; 3607 3608 err = -ENOBUFS; 3609 i = kmalloc(sizeof(*i), GFP_KERNEL); 3610 if (i == NULL) 3611 goto done; 3612 3613 err = 0; 3614 for (ml = po->mclist; ml; ml = ml->next) { 3615 if (ml->ifindex == mreq->mr_ifindex && 3616 ml->type == mreq->mr_type && 3617 ml->alen == mreq->mr_alen && 3618 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3619 ml->count++; 3620 /* Free the new element ... */ 3621 kfree(i); 3622 goto done; 3623 } 3624 } 3625 3626 i->type = mreq->mr_type; 3627 i->ifindex = mreq->mr_ifindex; 3628 i->alen = mreq->mr_alen; 3629 memcpy(i->addr, mreq->mr_address, i->alen); 3630 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3631 i->count = 1; 3632 i->next = po->mclist; 3633 po->mclist = i; 3634 err = packet_dev_mc(dev, i, 1); 3635 if (err) { 3636 po->mclist = i->next; 3637 kfree(i); 3638 } 3639 3640 done: 3641 rtnl_unlock(); 3642 return err; 3643 } 3644 3645 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3646 { 3647 struct packet_mclist *ml, **mlp; 3648 3649 rtnl_lock(); 3650 3651 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3652 if (ml->ifindex == mreq->mr_ifindex && 3653 ml->type == mreq->mr_type && 3654 ml->alen == mreq->mr_alen && 3655 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3656 if (--ml->count == 0) { 3657 struct net_device *dev; 3658 *mlp = ml->next; 3659 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3660 if (dev) 3661 packet_dev_mc(dev, ml, -1); 3662 kfree(ml); 3663 } 3664 break; 3665 } 3666 } 3667 rtnl_unlock(); 3668 return 0; 3669 } 3670 3671 static void packet_flush_mclist(struct sock *sk) 3672 { 3673 struct packet_sock *po = pkt_sk(sk); 3674 struct packet_mclist *ml; 3675 3676 if (!po->mclist) 3677 return; 3678 3679 rtnl_lock(); 3680 while ((ml = po->mclist) != NULL) { 3681 struct net_device *dev; 3682 3683 po->mclist = ml->next; 3684 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3685 if (dev != NULL) 3686 packet_dev_mc(dev, ml, -1); 3687 kfree(ml); 3688 } 3689 rtnl_unlock(); 3690 } 3691 3692 static int 3693 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3694 unsigned int optlen) 3695 { 3696 struct sock *sk = sock->sk; 3697 struct packet_sock *po = pkt_sk(sk); 3698 int ret; 3699 3700 if (level != SOL_PACKET) 3701 return -ENOPROTOOPT; 3702 3703 switch (optname) { 3704 case PACKET_ADD_MEMBERSHIP: 3705 case PACKET_DROP_MEMBERSHIP: 3706 { 3707 struct packet_mreq_max mreq; 3708 int len = optlen; 3709 memset(&mreq, 0, sizeof(mreq)); 3710 if (len < sizeof(struct packet_mreq)) 3711 return -EINVAL; 3712 if (len > sizeof(mreq)) 3713 len = sizeof(mreq); 3714 if (copy_from_sockptr(&mreq, optval, len)) 3715 return -EFAULT; 3716 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3717 return -EINVAL; 3718 if (optname == PACKET_ADD_MEMBERSHIP) 3719 ret = packet_mc_add(sk, &mreq); 3720 else 3721 ret = packet_mc_drop(sk, &mreq); 3722 return ret; 3723 } 3724 3725 case PACKET_RX_RING: 3726 case PACKET_TX_RING: 3727 { 3728 union tpacket_req_u req_u; 3729 int len; 3730 3731 lock_sock(sk); 3732 switch (po->tp_version) { 3733 case TPACKET_V1: 3734 case TPACKET_V2: 3735 len = sizeof(req_u.req); 3736 break; 3737 case TPACKET_V3: 3738 default: 3739 len = sizeof(req_u.req3); 3740 break; 3741 } 3742 if (optlen < len) { 3743 ret = -EINVAL; 3744 } else { 3745 if (copy_from_sockptr(&req_u.req, optval, len)) 3746 ret = -EFAULT; 3747 else 3748 ret = packet_set_ring(sk, &req_u, 0, 3749 optname == PACKET_TX_RING); 3750 } 3751 release_sock(sk); 3752 return ret; 3753 } 3754 case PACKET_COPY_THRESH: 3755 { 3756 int val; 3757 3758 if (optlen != sizeof(val)) 3759 return -EINVAL; 3760 if (copy_from_sockptr(&val, optval, sizeof(val))) 3761 return -EFAULT; 3762 3763 pkt_sk(sk)->copy_thresh = val; 3764 return 0; 3765 } 3766 case PACKET_VERSION: 3767 { 3768 int val; 3769 3770 if (optlen != sizeof(val)) 3771 return -EINVAL; 3772 if (copy_from_sockptr(&val, optval, sizeof(val))) 3773 return -EFAULT; 3774 switch (val) { 3775 case TPACKET_V1: 3776 case TPACKET_V2: 3777 case TPACKET_V3: 3778 break; 3779 default: 3780 return -EINVAL; 3781 } 3782 lock_sock(sk); 3783 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3784 ret = -EBUSY; 3785 } else { 3786 po->tp_version = val; 3787 ret = 0; 3788 } 3789 release_sock(sk); 3790 return ret; 3791 } 3792 case PACKET_RESERVE: 3793 { 3794 unsigned int val; 3795 3796 if (optlen != sizeof(val)) 3797 return -EINVAL; 3798 if (copy_from_sockptr(&val, optval, sizeof(val))) 3799 return -EFAULT; 3800 if (val > INT_MAX) 3801 return -EINVAL; 3802 lock_sock(sk); 3803 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3804 ret = -EBUSY; 3805 } else { 3806 po->tp_reserve = val; 3807 ret = 0; 3808 } 3809 release_sock(sk); 3810 return ret; 3811 } 3812 case PACKET_LOSS: 3813 { 3814 unsigned int val; 3815 3816 if (optlen != sizeof(val)) 3817 return -EINVAL; 3818 if (copy_from_sockptr(&val, optval, sizeof(val))) 3819 return -EFAULT; 3820 3821 lock_sock(sk); 3822 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3823 ret = -EBUSY; 3824 } else { 3825 po->tp_loss = !!val; 3826 ret = 0; 3827 } 3828 release_sock(sk); 3829 return ret; 3830 } 3831 case PACKET_AUXDATA: 3832 { 3833 int val; 3834 3835 if (optlen < sizeof(val)) 3836 return -EINVAL; 3837 if (copy_from_sockptr(&val, optval, sizeof(val))) 3838 return -EFAULT; 3839 3840 lock_sock(sk); 3841 po->auxdata = !!val; 3842 release_sock(sk); 3843 return 0; 3844 } 3845 case PACKET_ORIGDEV: 3846 { 3847 int val; 3848 3849 if (optlen < sizeof(val)) 3850 return -EINVAL; 3851 if (copy_from_sockptr(&val, optval, sizeof(val))) 3852 return -EFAULT; 3853 3854 lock_sock(sk); 3855 po->origdev = !!val; 3856 release_sock(sk); 3857 return 0; 3858 } 3859 case PACKET_VNET_HDR: 3860 { 3861 int val; 3862 3863 if (sock->type != SOCK_RAW) 3864 return -EINVAL; 3865 if (optlen < sizeof(val)) 3866 return -EINVAL; 3867 if (copy_from_sockptr(&val, optval, sizeof(val))) 3868 return -EFAULT; 3869 3870 lock_sock(sk); 3871 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3872 ret = -EBUSY; 3873 } else { 3874 po->has_vnet_hdr = !!val; 3875 ret = 0; 3876 } 3877 release_sock(sk); 3878 return ret; 3879 } 3880 case PACKET_TIMESTAMP: 3881 { 3882 int val; 3883 3884 if (optlen != sizeof(val)) 3885 return -EINVAL; 3886 if (copy_from_sockptr(&val, optval, sizeof(val))) 3887 return -EFAULT; 3888 3889 po->tp_tstamp = val; 3890 return 0; 3891 } 3892 case PACKET_FANOUT: 3893 { 3894 struct fanout_args args = { 0 }; 3895 3896 if (optlen != sizeof(int) && optlen != sizeof(args)) 3897 return -EINVAL; 3898 if (copy_from_sockptr(&args, optval, optlen)) 3899 return -EFAULT; 3900 3901 return fanout_add(sk, &args); 3902 } 3903 case PACKET_FANOUT_DATA: 3904 { 3905 if (!po->fanout) 3906 return -EINVAL; 3907 3908 return fanout_set_data(po, optval, optlen); 3909 } 3910 case PACKET_IGNORE_OUTGOING: 3911 { 3912 int val; 3913 3914 if (optlen != sizeof(val)) 3915 return -EINVAL; 3916 if (copy_from_sockptr(&val, optval, sizeof(val))) 3917 return -EFAULT; 3918 if (val < 0 || val > 1) 3919 return -EINVAL; 3920 3921 po->prot_hook.ignore_outgoing = !!val; 3922 return 0; 3923 } 3924 case PACKET_TX_HAS_OFF: 3925 { 3926 unsigned int val; 3927 3928 if (optlen != sizeof(val)) 3929 return -EINVAL; 3930 if (copy_from_sockptr(&val, optval, sizeof(val))) 3931 return -EFAULT; 3932 3933 lock_sock(sk); 3934 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3935 po->tp_tx_has_off = !!val; 3936 3937 release_sock(sk); 3938 return 0; 3939 } 3940 case PACKET_QDISC_BYPASS: 3941 { 3942 int val; 3943 3944 if (optlen != sizeof(val)) 3945 return -EINVAL; 3946 if (copy_from_sockptr(&val, optval, sizeof(val))) 3947 return -EFAULT; 3948 3949 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3950 return 0; 3951 } 3952 default: 3953 return -ENOPROTOOPT; 3954 } 3955 } 3956 3957 static int packet_getsockopt(struct socket *sock, int level, int optname, 3958 char __user *optval, int __user *optlen) 3959 { 3960 int len; 3961 int val, lv = sizeof(val); 3962 struct sock *sk = sock->sk; 3963 struct packet_sock *po = pkt_sk(sk); 3964 void *data = &val; 3965 union tpacket_stats_u st; 3966 struct tpacket_rollover_stats rstats; 3967 int drops; 3968 3969 if (level != SOL_PACKET) 3970 return -ENOPROTOOPT; 3971 3972 if (get_user(len, optlen)) 3973 return -EFAULT; 3974 3975 if (len < 0) 3976 return -EINVAL; 3977 3978 switch (optname) { 3979 case PACKET_STATISTICS: 3980 spin_lock_bh(&sk->sk_receive_queue.lock); 3981 memcpy(&st, &po->stats, sizeof(st)); 3982 memset(&po->stats, 0, sizeof(po->stats)); 3983 spin_unlock_bh(&sk->sk_receive_queue.lock); 3984 drops = atomic_xchg(&po->tp_drops, 0); 3985 3986 if (po->tp_version == TPACKET_V3) { 3987 lv = sizeof(struct tpacket_stats_v3); 3988 st.stats3.tp_drops = drops; 3989 st.stats3.tp_packets += drops; 3990 data = &st.stats3; 3991 } else { 3992 lv = sizeof(struct tpacket_stats); 3993 st.stats1.tp_drops = drops; 3994 st.stats1.tp_packets += drops; 3995 data = &st.stats1; 3996 } 3997 3998 break; 3999 case PACKET_AUXDATA: 4000 val = po->auxdata; 4001 break; 4002 case PACKET_ORIGDEV: 4003 val = po->origdev; 4004 break; 4005 case PACKET_VNET_HDR: 4006 val = po->has_vnet_hdr; 4007 break; 4008 case PACKET_VERSION: 4009 val = po->tp_version; 4010 break; 4011 case PACKET_HDRLEN: 4012 if (len > sizeof(int)) 4013 len = sizeof(int); 4014 if (len < sizeof(int)) 4015 return -EINVAL; 4016 if (copy_from_user(&val, optval, len)) 4017 return -EFAULT; 4018 switch (val) { 4019 case TPACKET_V1: 4020 val = sizeof(struct tpacket_hdr); 4021 break; 4022 case TPACKET_V2: 4023 val = sizeof(struct tpacket2_hdr); 4024 break; 4025 case TPACKET_V3: 4026 val = sizeof(struct tpacket3_hdr); 4027 break; 4028 default: 4029 return -EINVAL; 4030 } 4031 break; 4032 case PACKET_RESERVE: 4033 val = po->tp_reserve; 4034 break; 4035 case PACKET_LOSS: 4036 val = po->tp_loss; 4037 break; 4038 case PACKET_TIMESTAMP: 4039 val = po->tp_tstamp; 4040 break; 4041 case PACKET_FANOUT: 4042 val = (po->fanout ? 4043 ((u32)po->fanout->id | 4044 ((u32)po->fanout->type << 16) | 4045 ((u32)po->fanout->flags << 24)) : 4046 0); 4047 break; 4048 case PACKET_IGNORE_OUTGOING: 4049 val = po->prot_hook.ignore_outgoing; 4050 break; 4051 case PACKET_ROLLOVER_STATS: 4052 if (!po->rollover) 4053 return -EINVAL; 4054 rstats.tp_all = atomic_long_read(&po->rollover->num); 4055 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4056 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4057 data = &rstats; 4058 lv = sizeof(rstats); 4059 break; 4060 case PACKET_TX_HAS_OFF: 4061 val = po->tp_tx_has_off; 4062 break; 4063 case PACKET_QDISC_BYPASS: 4064 val = packet_use_direct_xmit(po); 4065 break; 4066 default: 4067 return -ENOPROTOOPT; 4068 } 4069 4070 if (len > lv) 4071 len = lv; 4072 if (put_user(len, optlen)) 4073 return -EFAULT; 4074 if (copy_to_user(optval, data, len)) 4075 return -EFAULT; 4076 return 0; 4077 } 4078 4079 static int packet_notifier(struct notifier_block *this, 4080 unsigned long msg, void *ptr) 4081 { 4082 struct sock *sk; 4083 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4084 struct net *net = dev_net(dev); 4085 4086 rcu_read_lock(); 4087 sk_for_each_rcu(sk, &net->packet.sklist) { 4088 struct packet_sock *po = pkt_sk(sk); 4089 4090 switch (msg) { 4091 case NETDEV_UNREGISTER: 4092 if (po->mclist) 4093 packet_dev_mclist_delete(dev, &po->mclist); 4094 fallthrough; 4095 4096 case NETDEV_DOWN: 4097 if (dev->ifindex == po->ifindex) { 4098 spin_lock(&po->bind_lock); 4099 if (po->running) { 4100 __unregister_prot_hook(sk, false); 4101 sk->sk_err = ENETDOWN; 4102 if (!sock_flag(sk, SOCK_DEAD)) 4103 sk_error_report(sk); 4104 } 4105 if (msg == NETDEV_UNREGISTER) { 4106 packet_cached_dev_reset(po); 4107 WRITE_ONCE(po->ifindex, -1); 4108 dev_put(po->prot_hook.dev); 4109 po->prot_hook.dev = NULL; 4110 } 4111 spin_unlock(&po->bind_lock); 4112 } 4113 break; 4114 case NETDEV_UP: 4115 if (dev->ifindex == po->ifindex) { 4116 spin_lock(&po->bind_lock); 4117 if (po->num) 4118 register_prot_hook(sk); 4119 spin_unlock(&po->bind_lock); 4120 } 4121 break; 4122 } 4123 } 4124 rcu_read_unlock(); 4125 return NOTIFY_DONE; 4126 } 4127 4128 4129 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4130 unsigned long arg) 4131 { 4132 struct sock *sk = sock->sk; 4133 4134 switch (cmd) { 4135 case SIOCOUTQ: 4136 { 4137 int amount = sk_wmem_alloc_get(sk); 4138 4139 return put_user(amount, (int __user *)arg); 4140 } 4141 case SIOCINQ: 4142 { 4143 struct sk_buff *skb; 4144 int amount = 0; 4145 4146 spin_lock_bh(&sk->sk_receive_queue.lock); 4147 skb = skb_peek(&sk->sk_receive_queue); 4148 if (skb) 4149 amount = skb->len; 4150 spin_unlock_bh(&sk->sk_receive_queue.lock); 4151 return put_user(amount, (int __user *)arg); 4152 } 4153 #ifdef CONFIG_INET 4154 case SIOCADDRT: 4155 case SIOCDELRT: 4156 case SIOCDARP: 4157 case SIOCGARP: 4158 case SIOCSARP: 4159 case SIOCGIFADDR: 4160 case SIOCSIFADDR: 4161 case SIOCGIFBRDADDR: 4162 case SIOCSIFBRDADDR: 4163 case SIOCGIFNETMASK: 4164 case SIOCSIFNETMASK: 4165 case SIOCGIFDSTADDR: 4166 case SIOCSIFDSTADDR: 4167 case SIOCSIFFLAGS: 4168 return inet_dgram_ops.ioctl(sock, cmd, arg); 4169 #endif 4170 4171 default: 4172 return -ENOIOCTLCMD; 4173 } 4174 return 0; 4175 } 4176 4177 static __poll_t packet_poll(struct file *file, struct socket *sock, 4178 poll_table *wait) 4179 { 4180 struct sock *sk = sock->sk; 4181 struct packet_sock *po = pkt_sk(sk); 4182 __poll_t mask = datagram_poll(file, sock, wait); 4183 4184 spin_lock_bh(&sk->sk_receive_queue.lock); 4185 if (po->rx_ring.pg_vec) { 4186 if (!packet_previous_rx_frame(po, &po->rx_ring, 4187 TP_STATUS_KERNEL)) 4188 mask |= EPOLLIN | EPOLLRDNORM; 4189 } 4190 packet_rcv_try_clear_pressure(po); 4191 spin_unlock_bh(&sk->sk_receive_queue.lock); 4192 spin_lock_bh(&sk->sk_write_queue.lock); 4193 if (po->tx_ring.pg_vec) { 4194 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4195 mask |= EPOLLOUT | EPOLLWRNORM; 4196 } 4197 spin_unlock_bh(&sk->sk_write_queue.lock); 4198 return mask; 4199 } 4200 4201 4202 /* Dirty? Well, I still did not learn better way to account 4203 * for user mmaps. 4204 */ 4205 4206 static void packet_mm_open(struct vm_area_struct *vma) 4207 { 4208 struct file *file = vma->vm_file; 4209 struct socket *sock = file->private_data; 4210 struct sock *sk = sock->sk; 4211 4212 if (sk) 4213 atomic_inc(&pkt_sk(sk)->mapped); 4214 } 4215 4216 static void packet_mm_close(struct vm_area_struct *vma) 4217 { 4218 struct file *file = vma->vm_file; 4219 struct socket *sock = file->private_data; 4220 struct sock *sk = sock->sk; 4221 4222 if (sk) 4223 atomic_dec(&pkt_sk(sk)->mapped); 4224 } 4225 4226 static const struct vm_operations_struct packet_mmap_ops = { 4227 .open = packet_mm_open, 4228 .close = packet_mm_close, 4229 }; 4230 4231 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4232 unsigned int len) 4233 { 4234 int i; 4235 4236 for (i = 0; i < len; i++) { 4237 if (likely(pg_vec[i].buffer)) { 4238 if (is_vmalloc_addr(pg_vec[i].buffer)) 4239 vfree(pg_vec[i].buffer); 4240 else 4241 free_pages((unsigned long)pg_vec[i].buffer, 4242 order); 4243 pg_vec[i].buffer = NULL; 4244 } 4245 } 4246 kfree(pg_vec); 4247 } 4248 4249 static char *alloc_one_pg_vec_page(unsigned long order) 4250 { 4251 char *buffer; 4252 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4253 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4254 4255 buffer = (char *) __get_free_pages(gfp_flags, order); 4256 if (buffer) 4257 return buffer; 4258 4259 /* __get_free_pages failed, fall back to vmalloc */ 4260 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4261 if (buffer) 4262 return buffer; 4263 4264 /* vmalloc failed, lets dig into swap here */ 4265 gfp_flags &= ~__GFP_NORETRY; 4266 buffer = (char *) __get_free_pages(gfp_flags, order); 4267 if (buffer) 4268 return buffer; 4269 4270 /* complete and utter failure */ 4271 return NULL; 4272 } 4273 4274 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4275 { 4276 unsigned int block_nr = req->tp_block_nr; 4277 struct pgv *pg_vec; 4278 int i; 4279 4280 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4281 if (unlikely(!pg_vec)) 4282 goto out; 4283 4284 for (i = 0; i < block_nr; i++) { 4285 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4286 if (unlikely(!pg_vec[i].buffer)) 4287 goto out_free_pgvec; 4288 } 4289 4290 out: 4291 return pg_vec; 4292 4293 out_free_pgvec: 4294 free_pg_vec(pg_vec, order, block_nr); 4295 pg_vec = NULL; 4296 goto out; 4297 } 4298 4299 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4300 int closing, int tx_ring) 4301 { 4302 struct pgv *pg_vec = NULL; 4303 struct packet_sock *po = pkt_sk(sk); 4304 unsigned long *rx_owner_map = NULL; 4305 int was_running, order = 0; 4306 struct packet_ring_buffer *rb; 4307 struct sk_buff_head *rb_queue; 4308 __be16 num; 4309 int err; 4310 /* Added to avoid minimal code churn */ 4311 struct tpacket_req *req = &req_u->req; 4312 4313 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4314 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4315 4316 err = -EBUSY; 4317 if (!closing) { 4318 if (atomic_read(&po->mapped)) 4319 goto out; 4320 if (packet_read_pending(rb)) 4321 goto out; 4322 } 4323 4324 if (req->tp_block_nr) { 4325 unsigned int min_frame_size; 4326 4327 /* Sanity tests and some calculations */ 4328 err = -EBUSY; 4329 if (unlikely(rb->pg_vec)) 4330 goto out; 4331 4332 switch (po->tp_version) { 4333 case TPACKET_V1: 4334 po->tp_hdrlen = TPACKET_HDRLEN; 4335 break; 4336 case TPACKET_V2: 4337 po->tp_hdrlen = TPACKET2_HDRLEN; 4338 break; 4339 case TPACKET_V3: 4340 po->tp_hdrlen = TPACKET3_HDRLEN; 4341 break; 4342 } 4343 4344 err = -EINVAL; 4345 if (unlikely((int)req->tp_block_size <= 0)) 4346 goto out; 4347 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4348 goto out; 4349 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4350 if (po->tp_version >= TPACKET_V3 && 4351 req->tp_block_size < 4352 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4353 goto out; 4354 if (unlikely(req->tp_frame_size < min_frame_size)) 4355 goto out; 4356 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4357 goto out; 4358 4359 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4360 if (unlikely(rb->frames_per_block == 0)) 4361 goto out; 4362 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4363 goto out; 4364 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4365 req->tp_frame_nr)) 4366 goto out; 4367 4368 err = -ENOMEM; 4369 order = get_order(req->tp_block_size); 4370 pg_vec = alloc_pg_vec(req, order); 4371 if (unlikely(!pg_vec)) 4372 goto out; 4373 switch (po->tp_version) { 4374 case TPACKET_V3: 4375 /* Block transmit is not supported yet */ 4376 if (!tx_ring) { 4377 init_prb_bdqc(po, rb, pg_vec, req_u); 4378 } else { 4379 struct tpacket_req3 *req3 = &req_u->req3; 4380 4381 if (req3->tp_retire_blk_tov || 4382 req3->tp_sizeof_priv || 4383 req3->tp_feature_req_word) { 4384 err = -EINVAL; 4385 goto out_free_pg_vec; 4386 } 4387 } 4388 break; 4389 default: 4390 if (!tx_ring) { 4391 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4392 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4393 if (!rx_owner_map) 4394 goto out_free_pg_vec; 4395 } 4396 break; 4397 } 4398 } 4399 /* Done */ 4400 else { 4401 err = -EINVAL; 4402 if (unlikely(req->tp_frame_nr)) 4403 goto out; 4404 } 4405 4406 4407 /* Detach socket from network */ 4408 spin_lock(&po->bind_lock); 4409 was_running = po->running; 4410 num = po->num; 4411 if (was_running) { 4412 WRITE_ONCE(po->num, 0); 4413 __unregister_prot_hook(sk, false); 4414 } 4415 spin_unlock(&po->bind_lock); 4416 4417 synchronize_net(); 4418 4419 err = -EBUSY; 4420 mutex_lock(&po->pg_vec_lock); 4421 if (closing || atomic_read(&po->mapped) == 0) { 4422 err = 0; 4423 spin_lock_bh(&rb_queue->lock); 4424 swap(rb->pg_vec, pg_vec); 4425 if (po->tp_version <= TPACKET_V2) 4426 swap(rb->rx_owner_map, rx_owner_map); 4427 rb->frame_max = (req->tp_frame_nr - 1); 4428 rb->head = 0; 4429 rb->frame_size = req->tp_frame_size; 4430 spin_unlock_bh(&rb_queue->lock); 4431 4432 swap(rb->pg_vec_order, order); 4433 swap(rb->pg_vec_len, req->tp_block_nr); 4434 4435 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4436 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4437 tpacket_rcv : packet_rcv; 4438 skb_queue_purge(rb_queue); 4439 if (atomic_read(&po->mapped)) 4440 pr_err("packet_mmap: vma is busy: %d\n", 4441 atomic_read(&po->mapped)); 4442 } 4443 mutex_unlock(&po->pg_vec_lock); 4444 4445 spin_lock(&po->bind_lock); 4446 if (was_running) { 4447 WRITE_ONCE(po->num, num); 4448 register_prot_hook(sk); 4449 } 4450 spin_unlock(&po->bind_lock); 4451 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4452 /* Because we don't support block-based V3 on tx-ring */ 4453 if (!tx_ring) 4454 prb_shutdown_retire_blk_timer(po, rb_queue); 4455 } 4456 4457 out_free_pg_vec: 4458 bitmap_free(rx_owner_map); 4459 if (pg_vec) 4460 free_pg_vec(pg_vec, order, req->tp_block_nr); 4461 out: 4462 return err; 4463 } 4464 4465 static int packet_mmap(struct file *file, struct socket *sock, 4466 struct vm_area_struct *vma) 4467 { 4468 struct sock *sk = sock->sk; 4469 struct packet_sock *po = pkt_sk(sk); 4470 unsigned long size, expected_size; 4471 struct packet_ring_buffer *rb; 4472 unsigned long start; 4473 int err = -EINVAL; 4474 int i; 4475 4476 if (vma->vm_pgoff) 4477 return -EINVAL; 4478 4479 mutex_lock(&po->pg_vec_lock); 4480 4481 expected_size = 0; 4482 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4483 if (rb->pg_vec) { 4484 expected_size += rb->pg_vec_len 4485 * rb->pg_vec_pages 4486 * PAGE_SIZE; 4487 } 4488 } 4489 4490 if (expected_size == 0) 4491 goto out; 4492 4493 size = vma->vm_end - vma->vm_start; 4494 if (size != expected_size) 4495 goto out; 4496 4497 start = vma->vm_start; 4498 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4499 if (rb->pg_vec == NULL) 4500 continue; 4501 4502 for (i = 0; i < rb->pg_vec_len; i++) { 4503 struct page *page; 4504 void *kaddr = rb->pg_vec[i].buffer; 4505 int pg_num; 4506 4507 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4508 page = pgv_to_page(kaddr); 4509 err = vm_insert_page(vma, start, page); 4510 if (unlikely(err)) 4511 goto out; 4512 start += PAGE_SIZE; 4513 kaddr += PAGE_SIZE; 4514 } 4515 } 4516 } 4517 4518 atomic_inc(&po->mapped); 4519 vma->vm_ops = &packet_mmap_ops; 4520 err = 0; 4521 4522 out: 4523 mutex_unlock(&po->pg_vec_lock); 4524 return err; 4525 } 4526 4527 static const struct proto_ops packet_ops_spkt = { 4528 .family = PF_PACKET, 4529 .owner = THIS_MODULE, 4530 .release = packet_release, 4531 .bind = packet_bind_spkt, 4532 .connect = sock_no_connect, 4533 .socketpair = sock_no_socketpair, 4534 .accept = sock_no_accept, 4535 .getname = packet_getname_spkt, 4536 .poll = datagram_poll, 4537 .ioctl = packet_ioctl, 4538 .gettstamp = sock_gettstamp, 4539 .listen = sock_no_listen, 4540 .shutdown = sock_no_shutdown, 4541 .sendmsg = packet_sendmsg_spkt, 4542 .recvmsg = packet_recvmsg, 4543 .mmap = sock_no_mmap, 4544 .sendpage = sock_no_sendpage, 4545 }; 4546 4547 static const struct proto_ops packet_ops = { 4548 .family = PF_PACKET, 4549 .owner = THIS_MODULE, 4550 .release = packet_release, 4551 .bind = packet_bind, 4552 .connect = sock_no_connect, 4553 .socketpair = sock_no_socketpair, 4554 .accept = sock_no_accept, 4555 .getname = packet_getname, 4556 .poll = packet_poll, 4557 .ioctl = packet_ioctl, 4558 .gettstamp = sock_gettstamp, 4559 .listen = sock_no_listen, 4560 .shutdown = sock_no_shutdown, 4561 .setsockopt = packet_setsockopt, 4562 .getsockopt = packet_getsockopt, 4563 .sendmsg = packet_sendmsg, 4564 .recvmsg = packet_recvmsg, 4565 .mmap = packet_mmap, 4566 .sendpage = sock_no_sendpage, 4567 }; 4568 4569 static const struct net_proto_family packet_family_ops = { 4570 .family = PF_PACKET, 4571 .create = packet_create, 4572 .owner = THIS_MODULE, 4573 }; 4574 4575 static struct notifier_block packet_netdev_notifier = { 4576 .notifier_call = packet_notifier, 4577 }; 4578 4579 #ifdef CONFIG_PROC_FS 4580 4581 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4582 __acquires(RCU) 4583 { 4584 struct net *net = seq_file_net(seq); 4585 4586 rcu_read_lock(); 4587 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4588 } 4589 4590 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4591 { 4592 struct net *net = seq_file_net(seq); 4593 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4594 } 4595 4596 static void packet_seq_stop(struct seq_file *seq, void *v) 4597 __releases(RCU) 4598 { 4599 rcu_read_unlock(); 4600 } 4601 4602 static int packet_seq_show(struct seq_file *seq, void *v) 4603 { 4604 if (v == SEQ_START_TOKEN) 4605 seq_printf(seq, 4606 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4607 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4608 else { 4609 struct sock *s = sk_entry(v); 4610 const struct packet_sock *po = pkt_sk(s); 4611 4612 seq_printf(seq, 4613 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4614 s, 4615 refcount_read(&s->sk_refcnt), 4616 s->sk_type, 4617 ntohs(READ_ONCE(po->num)), 4618 READ_ONCE(po->ifindex), 4619 po->running, 4620 atomic_read(&s->sk_rmem_alloc), 4621 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4622 sock_i_ino(s)); 4623 } 4624 4625 return 0; 4626 } 4627 4628 static const struct seq_operations packet_seq_ops = { 4629 .start = packet_seq_start, 4630 .next = packet_seq_next, 4631 .stop = packet_seq_stop, 4632 .show = packet_seq_show, 4633 }; 4634 #endif 4635 4636 static int __net_init packet_net_init(struct net *net) 4637 { 4638 mutex_init(&net->packet.sklist_lock); 4639 INIT_HLIST_HEAD(&net->packet.sklist); 4640 4641 #ifdef CONFIG_PROC_FS 4642 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4643 sizeof(struct seq_net_private))) 4644 return -ENOMEM; 4645 #endif /* CONFIG_PROC_FS */ 4646 4647 return 0; 4648 } 4649 4650 static void __net_exit packet_net_exit(struct net *net) 4651 { 4652 remove_proc_entry("packet", net->proc_net); 4653 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4654 } 4655 4656 static struct pernet_operations packet_net_ops = { 4657 .init = packet_net_init, 4658 .exit = packet_net_exit, 4659 }; 4660 4661 4662 static void __exit packet_exit(void) 4663 { 4664 unregister_netdevice_notifier(&packet_netdev_notifier); 4665 unregister_pernet_subsys(&packet_net_ops); 4666 sock_unregister(PF_PACKET); 4667 proto_unregister(&packet_proto); 4668 } 4669 4670 static int __init packet_init(void) 4671 { 4672 int rc; 4673 4674 rc = proto_register(&packet_proto, 0); 4675 if (rc) 4676 goto out; 4677 rc = sock_register(&packet_family_ops); 4678 if (rc) 4679 goto out_proto; 4680 rc = register_pernet_subsys(&packet_net_ops); 4681 if (rc) 4682 goto out_sock; 4683 rc = register_netdevice_notifier(&packet_netdev_notifier); 4684 if (rc) 4685 goto out_pernet; 4686 4687 return 0; 4688 4689 out_pernet: 4690 unregister_pernet_subsys(&packet_net_ops); 4691 out_sock: 4692 sock_unregister(PF_PACKET); 4693 out_proto: 4694 proto_unregister(&packet_proto); 4695 out: 4696 return rc; 4697 } 4698 4699 module_init(packet_init); 4700 module_exit(packet_exit); 4701 MODULE_LICENSE("GPL"); 4702 MODULE_ALIAS_NETPROTO(PF_PACKET); 4703