1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/types.h> 53 #include <linux/mm.h> 54 #include <linux/capability.h> 55 #include <linux/fcntl.h> 56 #include <linux/socket.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/if_packet.h> 61 #include <linux/wireless.h> 62 #include <linux/kernel.h> 63 #include <linux/kmod.h> 64 #include <linux/slab.h> 65 #include <linux/vmalloc.h> 66 #include <net/net_namespace.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <linux/skbuff.h> 70 #include <net/sock.h> 71 #include <linux/errno.h> 72 #include <linux/timer.h> 73 #include <linux/uaccess.h> 74 #include <asm/ioctls.h> 75 #include <asm/page.h> 76 #include <asm/cacheflush.h> 77 #include <asm/io.h> 78 #include <linux/proc_fs.h> 79 #include <linux/seq_file.h> 80 #include <linux/poll.h> 81 #include <linux/module.h> 82 #include <linux/init.h> 83 #include <linux/mutex.h> 84 #include <linux/if_vlan.h> 85 #include <linux/virtio_net.h> 86 #include <linux/errqueue.h> 87 #include <linux/net_tstamp.h> 88 #include <linux/percpu.h> 89 #ifdef CONFIG_INET 90 #include <net/inet_common.h> 91 #endif 92 #include <linux/bpf.h> 93 #include <net/compat.h> 94 #include <linux/netfilter_netdev.h> 95 96 #include "internal.h" 97 98 /* 99 Assumptions: 100 - If the device has no dev->header_ops->create, there is no LL header 101 visible above the device. In this case, its hard_header_len should be 0. 102 The device may prepend its own header internally. In this case, its 103 needed_headroom should be set to the space needed for it to add its 104 internal header. 105 For example, a WiFi driver pretending to be an Ethernet driver should 106 set its hard_header_len to be the Ethernet header length, and set its 107 needed_headroom to be (the real WiFi header length - the fake Ethernet 108 header length). 109 - packet socket receives packets with pulled ll header, 110 so that SOCK_RAW should push it back. 111 112 On receive: 113 ----------- 114 115 Incoming, dev_has_header(dev) == true 116 mac_header -> ll header 117 data -> data 118 119 Outgoing, dev_has_header(dev) == true 120 mac_header -> ll header 121 data -> ll header 122 123 Incoming, dev_has_header(dev) == false 124 mac_header -> data 125 However drivers often make it point to the ll header. 126 This is incorrect because the ll header should be invisible to us. 127 data -> data 128 129 Outgoing, dev_has_header(dev) == false 130 mac_header -> data. ll header is invisible to us. 131 data -> data 132 133 Resume 134 If dev_has_header(dev) == false we are unable to restore the ll header, 135 because it is invisible to us. 136 137 138 On transmit: 139 ------------ 140 141 dev_has_header(dev) == true 142 mac_header -> ll header 143 data -> ll header 144 145 dev_has_header(dev) == false (ll header is invisible to us) 146 mac_header -> data 147 data -> data 148 149 We should set network_header on output to the correct position, 150 packet classifier depends on it. 151 */ 152 153 /* Private packet socket structures. */ 154 155 /* identical to struct packet_mreq except it has 156 * a longer address field. 157 */ 158 struct packet_mreq_max { 159 int mr_ifindex; 160 unsigned short mr_type; 161 unsigned short mr_alen; 162 unsigned char mr_address[MAX_ADDR_LEN]; 163 }; 164 165 union tpacket_uhdr { 166 struct tpacket_hdr *h1; 167 struct tpacket2_hdr *h2; 168 struct tpacket3_hdr *h3; 169 void *raw; 170 }; 171 172 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 173 int closing, int tx_ring); 174 175 #define V3_ALIGNMENT (8) 176 177 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 178 179 #define BLK_PLUS_PRIV(sz_of_priv) \ 180 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 181 182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 188 189 struct packet_sock; 190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 191 struct packet_type *pt, struct net_device *orig_dev); 192 193 static void *packet_previous_frame(struct packet_sock *po, 194 struct packet_ring_buffer *rb, 195 int status); 196 static void packet_increment_head(struct packet_ring_buffer *buff); 197 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 198 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 199 struct packet_sock *); 200 static void prb_retire_current_block(struct tpacket_kbdq_core *, 201 struct packet_sock *, unsigned int status); 202 static int prb_queue_frozen(struct tpacket_kbdq_core *); 203 static void prb_open_block(struct tpacket_kbdq_core *, 204 struct tpacket_block_desc *); 205 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 206 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 207 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 208 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 209 struct tpacket3_hdr *); 210 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 211 struct tpacket3_hdr *); 212 static void packet_flush_mclist(struct sock *sk); 213 static u16 packet_pick_tx_queue(struct sk_buff *skb); 214 215 struct packet_skb_cb { 216 union { 217 struct sockaddr_pkt pkt; 218 union { 219 /* Trick: alias skb original length with 220 * ll.sll_family and ll.protocol in order 221 * to save room. 222 */ 223 unsigned int origlen; 224 struct sockaddr_ll ll; 225 }; 226 } sa; 227 }; 228 229 #define vio_le() virtio_legacy_is_little_endian() 230 231 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 232 233 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 234 #define GET_PBLOCK_DESC(x, bid) \ 235 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 236 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 237 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 238 #define GET_NEXT_PRB_BLK_NUM(x) \ 239 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 240 ((x)->kactive_blk_num+1) : 0) 241 242 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 243 static void __fanout_link(struct sock *sk, struct packet_sock *po); 244 245 #ifdef CONFIG_NETFILTER_EGRESS 246 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 247 { 248 struct sk_buff *next, *head = NULL, *tail; 249 int rc; 250 251 rcu_read_lock(); 252 for (; skb != NULL; skb = next) { 253 next = skb->next; 254 skb_mark_not_on_list(skb); 255 256 if (!nf_hook_egress(skb, &rc, skb->dev)) 257 continue; 258 259 if (!head) 260 head = skb; 261 else 262 tail->next = skb; 263 264 tail = skb; 265 } 266 rcu_read_unlock(); 267 268 return head; 269 } 270 #endif 271 272 static int packet_direct_xmit(struct sk_buff *skb) 273 { 274 #ifdef CONFIG_NETFILTER_EGRESS 275 if (nf_hook_egress_active()) { 276 skb = nf_hook_direct_egress(skb); 277 if (!skb) 278 return NET_XMIT_DROP; 279 } 280 #endif 281 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 282 } 283 284 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 285 { 286 struct net_device *dev; 287 288 rcu_read_lock(); 289 dev = rcu_dereference(po->cached_dev); 290 dev_hold(dev); 291 rcu_read_unlock(); 292 293 return dev; 294 } 295 296 static void packet_cached_dev_assign(struct packet_sock *po, 297 struct net_device *dev) 298 { 299 rcu_assign_pointer(po->cached_dev, dev); 300 } 301 302 static void packet_cached_dev_reset(struct packet_sock *po) 303 { 304 RCU_INIT_POINTER(po->cached_dev, NULL); 305 } 306 307 static bool packet_use_direct_xmit(const struct packet_sock *po) 308 { 309 return po->xmit == packet_direct_xmit; 310 } 311 312 static u16 packet_pick_tx_queue(struct sk_buff *skb) 313 { 314 struct net_device *dev = skb->dev; 315 const struct net_device_ops *ops = dev->netdev_ops; 316 int cpu = raw_smp_processor_id(); 317 u16 queue_index; 318 319 #ifdef CONFIG_XPS 320 skb->sender_cpu = cpu + 1; 321 #endif 322 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 323 if (ops->ndo_select_queue) { 324 queue_index = ops->ndo_select_queue(dev, skb, NULL); 325 queue_index = netdev_cap_txqueue(dev, queue_index); 326 } else { 327 queue_index = netdev_pick_tx(dev, skb, NULL); 328 } 329 330 return queue_index; 331 } 332 333 /* __register_prot_hook must be invoked through register_prot_hook 334 * or from a context in which asynchronous accesses to the packet 335 * socket is not possible (packet_create()). 336 */ 337 static void __register_prot_hook(struct sock *sk) 338 { 339 struct packet_sock *po = pkt_sk(sk); 340 341 if (!po->running) { 342 if (po->fanout) 343 __fanout_link(sk, po); 344 else 345 dev_add_pack(&po->prot_hook); 346 347 sock_hold(sk); 348 po->running = 1; 349 } 350 } 351 352 static void register_prot_hook(struct sock *sk) 353 { 354 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 355 __register_prot_hook(sk); 356 } 357 358 /* If the sync parameter is true, we will temporarily drop 359 * the po->bind_lock and do a synchronize_net to make sure no 360 * asynchronous packet processing paths still refer to the elements 361 * of po->prot_hook. If the sync parameter is false, it is the 362 * callers responsibility to take care of this. 363 */ 364 static void __unregister_prot_hook(struct sock *sk, bool sync) 365 { 366 struct packet_sock *po = pkt_sk(sk); 367 368 lockdep_assert_held_once(&po->bind_lock); 369 370 po->running = 0; 371 372 if (po->fanout) 373 __fanout_unlink(sk, po); 374 else 375 __dev_remove_pack(&po->prot_hook); 376 377 __sock_put(sk); 378 379 if (sync) { 380 spin_unlock(&po->bind_lock); 381 synchronize_net(); 382 spin_lock(&po->bind_lock); 383 } 384 } 385 386 static void unregister_prot_hook(struct sock *sk, bool sync) 387 { 388 struct packet_sock *po = pkt_sk(sk); 389 390 if (po->running) 391 __unregister_prot_hook(sk, sync); 392 } 393 394 static inline struct page * __pure pgv_to_page(void *addr) 395 { 396 if (is_vmalloc_addr(addr)) 397 return vmalloc_to_page(addr); 398 return virt_to_page(addr); 399 } 400 401 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 402 { 403 union tpacket_uhdr h; 404 405 h.raw = frame; 406 switch (po->tp_version) { 407 case TPACKET_V1: 408 h.h1->tp_status = status; 409 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 410 break; 411 case TPACKET_V2: 412 h.h2->tp_status = status; 413 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 414 break; 415 case TPACKET_V3: 416 h.h3->tp_status = status; 417 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 418 break; 419 default: 420 WARN(1, "TPACKET version not supported.\n"); 421 BUG(); 422 } 423 424 smp_wmb(); 425 } 426 427 static int __packet_get_status(const struct packet_sock *po, void *frame) 428 { 429 union tpacket_uhdr h; 430 431 smp_rmb(); 432 433 h.raw = frame; 434 switch (po->tp_version) { 435 case TPACKET_V1: 436 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 437 return h.h1->tp_status; 438 case TPACKET_V2: 439 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 440 return h.h2->tp_status; 441 case TPACKET_V3: 442 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 443 return h.h3->tp_status; 444 default: 445 WARN(1, "TPACKET version not supported.\n"); 446 BUG(); 447 return 0; 448 } 449 } 450 451 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 452 unsigned int flags) 453 { 454 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 455 456 if (shhwtstamps && 457 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 458 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 459 return TP_STATUS_TS_RAW_HARDWARE; 460 461 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 462 ktime_to_timespec64_cond(skb->tstamp, ts)) 463 return TP_STATUS_TS_SOFTWARE; 464 465 return 0; 466 } 467 468 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 469 struct sk_buff *skb) 470 { 471 union tpacket_uhdr h; 472 struct timespec64 ts; 473 __u32 ts_status; 474 475 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 476 return 0; 477 478 h.raw = frame; 479 /* 480 * versions 1 through 3 overflow the timestamps in y2106, since they 481 * all store the seconds in a 32-bit unsigned integer. 482 * If we create a version 4, that should have a 64-bit timestamp, 483 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 484 * nanoseconds. 485 */ 486 switch (po->tp_version) { 487 case TPACKET_V1: 488 h.h1->tp_sec = ts.tv_sec; 489 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 490 break; 491 case TPACKET_V2: 492 h.h2->tp_sec = ts.tv_sec; 493 h.h2->tp_nsec = ts.tv_nsec; 494 break; 495 case TPACKET_V3: 496 h.h3->tp_sec = ts.tv_sec; 497 h.h3->tp_nsec = ts.tv_nsec; 498 break; 499 default: 500 WARN(1, "TPACKET version not supported.\n"); 501 BUG(); 502 } 503 504 /* one flush is safe, as both fields always lie on the same cacheline */ 505 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 506 smp_wmb(); 507 508 return ts_status; 509 } 510 511 static void *packet_lookup_frame(const struct packet_sock *po, 512 const struct packet_ring_buffer *rb, 513 unsigned int position, 514 int status) 515 { 516 unsigned int pg_vec_pos, frame_offset; 517 union tpacket_uhdr h; 518 519 pg_vec_pos = position / rb->frames_per_block; 520 frame_offset = position % rb->frames_per_block; 521 522 h.raw = rb->pg_vec[pg_vec_pos].buffer + 523 (frame_offset * rb->frame_size); 524 525 if (status != __packet_get_status(po, h.raw)) 526 return NULL; 527 528 return h.raw; 529 } 530 531 static void *packet_current_frame(struct packet_sock *po, 532 struct packet_ring_buffer *rb, 533 int status) 534 { 535 return packet_lookup_frame(po, rb, rb->head, status); 536 } 537 538 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 539 { 540 del_timer_sync(&pkc->retire_blk_timer); 541 } 542 543 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 544 struct sk_buff_head *rb_queue) 545 { 546 struct tpacket_kbdq_core *pkc; 547 548 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 549 550 spin_lock_bh(&rb_queue->lock); 551 pkc->delete_blk_timer = 1; 552 spin_unlock_bh(&rb_queue->lock); 553 554 prb_del_retire_blk_timer(pkc); 555 } 556 557 static void prb_setup_retire_blk_timer(struct packet_sock *po) 558 { 559 struct tpacket_kbdq_core *pkc; 560 561 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 562 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 563 0); 564 pkc->retire_blk_timer.expires = jiffies; 565 } 566 567 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 568 int blk_size_in_bytes) 569 { 570 struct net_device *dev; 571 unsigned int mbits, div; 572 struct ethtool_link_ksettings ecmd; 573 int err; 574 575 rtnl_lock(); 576 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 577 if (unlikely(!dev)) { 578 rtnl_unlock(); 579 return DEFAULT_PRB_RETIRE_TOV; 580 } 581 err = __ethtool_get_link_ksettings(dev, &ecmd); 582 rtnl_unlock(); 583 if (err) 584 return DEFAULT_PRB_RETIRE_TOV; 585 586 /* If the link speed is so slow you don't really 587 * need to worry about perf anyways 588 */ 589 if (ecmd.base.speed < SPEED_1000 || 590 ecmd.base.speed == SPEED_UNKNOWN) 591 return DEFAULT_PRB_RETIRE_TOV; 592 593 div = ecmd.base.speed / 1000; 594 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 595 596 if (div) 597 mbits /= div; 598 599 if (div) 600 return mbits + 1; 601 return mbits; 602 } 603 604 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 605 union tpacket_req_u *req_u) 606 { 607 p1->feature_req_word = req_u->req3.tp_feature_req_word; 608 } 609 610 static void init_prb_bdqc(struct packet_sock *po, 611 struct packet_ring_buffer *rb, 612 struct pgv *pg_vec, 613 union tpacket_req_u *req_u) 614 { 615 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 616 struct tpacket_block_desc *pbd; 617 618 memset(p1, 0x0, sizeof(*p1)); 619 620 p1->knxt_seq_num = 1; 621 p1->pkbdq = pg_vec; 622 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 623 p1->pkblk_start = pg_vec[0].buffer; 624 p1->kblk_size = req_u->req3.tp_block_size; 625 p1->knum_blocks = req_u->req3.tp_block_nr; 626 p1->hdrlen = po->tp_hdrlen; 627 p1->version = po->tp_version; 628 p1->last_kactive_blk_num = 0; 629 po->stats.stats3.tp_freeze_q_cnt = 0; 630 if (req_u->req3.tp_retire_blk_tov) 631 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 632 else 633 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 634 req_u->req3.tp_block_size); 635 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 636 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 637 rwlock_init(&p1->blk_fill_in_prog_lock); 638 639 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 640 prb_init_ft_ops(p1, req_u); 641 prb_setup_retire_blk_timer(po); 642 prb_open_block(p1, pbd); 643 } 644 645 /* Do NOT update the last_blk_num first. 646 * Assumes sk_buff_head lock is held. 647 */ 648 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 649 { 650 mod_timer(&pkc->retire_blk_timer, 651 jiffies + pkc->tov_in_jiffies); 652 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 653 } 654 655 /* 656 * Timer logic: 657 * 1) We refresh the timer only when we open a block. 658 * By doing this we don't waste cycles refreshing the timer 659 * on packet-by-packet basis. 660 * 661 * With a 1MB block-size, on a 1Gbps line, it will take 662 * i) ~8 ms to fill a block + ii) memcpy etc. 663 * In this cut we are not accounting for the memcpy time. 664 * 665 * So, if the user sets the 'tmo' to 10ms then the timer 666 * will never fire while the block is still getting filled 667 * (which is what we want). However, the user could choose 668 * to close a block early and that's fine. 669 * 670 * But when the timer does fire, we check whether or not to refresh it. 671 * Since the tmo granularity is in msecs, it is not too expensive 672 * to refresh the timer, lets say every '8' msecs. 673 * Either the user can set the 'tmo' or we can derive it based on 674 * a) line-speed and b) block-size. 675 * prb_calc_retire_blk_tmo() calculates the tmo. 676 * 677 */ 678 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 679 { 680 struct packet_sock *po = 681 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 682 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 683 unsigned int frozen; 684 struct tpacket_block_desc *pbd; 685 686 spin_lock(&po->sk.sk_receive_queue.lock); 687 688 frozen = prb_queue_frozen(pkc); 689 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 690 691 if (unlikely(pkc->delete_blk_timer)) 692 goto out; 693 694 /* We only need to plug the race when the block is partially filled. 695 * tpacket_rcv: 696 * lock(); increment BLOCK_NUM_PKTS; unlock() 697 * copy_bits() is in progress ... 698 * timer fires on other cpu: 699 * we can't retire the current block because copy_bits 700 * is in progress. 701 * 702 */ 703 if (BLOCK_NUM_PKTS(pbd)) { 704 /* Waiting for skb_copy_bits to finish... */ 705 write_lock(&pkc->blk_fill_in_prog_lock); 706 write_unlock(&pkc->blk_fill_in_prog_lock); 707 } 708 709 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 710 if (!frozen) { 711 if (!BLOCK_NUM_PKTS(pbd)) { 712 /* An empty block. Just refresh the timer. */ 713 goto refresh_timer; 714 } 715 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 716 if (!prb_dispatch_next_block(pkc, po)) 717 goto refresh_timer; 718 else 719 goto out; 720 } else { 721 /* Case 1. Queue was frozen because user-space was 722 * lagging behind. 723 */ 724 if (prb_curr_blk_in_use(pbd)) { 725 /* 726 * Ok, user-space is still behind. 727 * So just refresh the timer. 728 */ 729 goto refresh_timer; 730 } else { 731 /* Case 2. queue was frozen,user-space caught up, 732 * now the link went idle && the timer fired. 733 * We don't have a block to close.So we open this 734 * block and restart the timer. 735 * opening a block thaws the queue,restarts timer 736 * Thawing/timer-refresh is a side effect. 737 */ 738 prb_open_block(pkc, pbd); 739 goto out; 740 } 741 } 742 } 743 744 refresh_timer: 745 _prb_refresh_rx_retire_blk_timer(pkc); 746 747 out: 748 spin_unlock(&po->sk.sk_receive_queue.lock); 749 } 750 751 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 752 struct tpacket_block_desc *pbd1, __u32 status) 753 { 754 /* Flush everything minus the block header */ 755 756 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 757 u8 *start, *end; 758 759 start = (u8 *)pbd1; 760 761 /* Skip the block header(we know header WILL fit in 4K) */ 762 start += PAGE_SIZE; 763 764 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 765 for (; start < end; start += PAGE_SIZE) 766 flush_dcache_page(pgv_to_page(start)); 767 768 smp_wmb(); 769 #endif 770 771 /* Now update the block status. */ 772 773 BLOCK_STATUS(pbd1) = status; 774 775 /* Flush the block header */ 776 777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 778 start = (u8 *)pbd1; 779 flush_dcache_page(pgv_to_page(start)); 780 781 smp_wmb(); 782 #endif 783 } 784 785 /* 786 * Side effect: 787 * 788 * 1) flush the block 789 * 2) Increment active_blk_num 790 * 791 * Note:We DONT refresh the timer on purpose. 792 * Because almost always the next block will be opened. 793 */ 794 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 795 struct tpacket_block_desc *pbd1, 796 struct packet_sock *po, unsigned int stat) 797 { 798 __u32 status = TP_STATUS_USER | stat; 799 800 struct tpacket3_hdr *last_pkt; 801 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 802 struct sock *sk = &po->sk; 803 804 if (atomic_read(&po->tp_drops)) 805 status |= TP_STATUS_LOSING; 806 807 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 808 last_pkt->tp_next_offset = 0; 809 810 /* Get the ts of the last pkt */ 811 if (BLOCK_NUM_PKTS(pbd1)) { 812 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 813 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 814 } else { 815 /* Ok, we tmo'd - so get the current time. 816 * 817 * It shouldn't really happen as we don't close empty 818 * blocks. See prb_retire_rx_blk_timer_expired(). 819 */ 820 struct timespec64 ts; 821 ktime_get_real_ts64(&ts); 822 h1->ts_last_pkt.ts_sec = ts.tv_sec; 823 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 824 } 825 826 smp_wmb(); 827 828 /* Flush the block */ 829 prb_flush_block(pkc1, pbd1, status); 830 831 sk->sk_data_ready(sk); 832 833 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 834 } 835 836 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 837 { 838 pkc->reset_pending_on_curr_blk = 0; 839 } 840 841 /* 842 * Side effect of opening a block: 843 * 844 * 1) prb_queue is thawed. 845 * 2) retire_blk_timer is refreshed. 846 * 847 */ 848 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 849 struct tpacket_block_desc *pbd1) 850 { 851 struct timespec64 ts; 852 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 853 854 smp_rmb(); 855 856 /* We could have just memset this but we will lose the 857 * flexibility of making the priv area sticky 858 */ 859 860 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 861 BLOCK_NUM_PKTS(pbd1) = 0; 862 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 863 864 ktime_get_real_ts64(&ts); 865 866 h1->ts_first_pkt.ts_sec = ts.tv_sec; 867 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 868 869 pkc1->pkblk_start = (char *)pbd1; 870 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 871 872 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 873 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 874 875 pbd1->version = pkc1->version; 876 pkc1->prev = pkc1->nxt_offset; 877 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 878 879 prb_thaw_queue(pkc1); 880 _prb_refresh_rx_retire_blk_timer(pkc1); 881 882 smp_wmb(); 883 } 884 885 /* 886 * Queue freeze logic: 887 * 1) Assume tp_block_nr = 8 blocks. 888 * 2) At time 't0', user opens Rx ring. 889 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 890 * 4) user-space is either sleeping or processing block '0'. 891 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 892 * it will close block-7,loop around and try to fill block '0'. 893 * call-flow: 894 * __packet_lookup_frame_in_block 895 * prb_retire_current_block() 896 * prb_dispatch_next_block() 897 * |->(BLOCK_STATUS == USER) evaluates to true 898 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 899 * 6) Now there are two cases: 900 * 6.1) Link goes idle right after the queue is frozen. 901 * But remember, the last open_block() refreshed the timer. 902 * When this timer expires,it will refresh itself so that we can 903 * re-open block-0 in near future. 904 * 6.2) Link is busy and keeps on receiving packets. This is a simple 905 * case and __packet_lookup_frame_in_block will check if block-0 906 * is free and can now be re-used. 907 */ 908 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 909 struct packet_sock *po) 910 { 911 pkc->reset_pending_on_curr_blk = 1; 912 po->stats.stats3.tp_freeze_q_cnt++; 913 } 914 915 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 916 917 /* 918 * If the next block is free then we will dispatch it 919 * and return a good offset. 920 * Else, we will freeze the queue. 921 * So, caller must check the return value. 922 */ 923 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 924 struct packet_sock *po) 925 { 926 struct tpacket_block_desc *pbd; 927 928 smp_rmb(); 929 930 /* 1. Get current block num */ 931 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 932 933 /* 2. If this block is currently in_use then freeze the queue */ 934 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 935 prb_freeze_queue(pkc, po); 936 return NULL; 937 } 938 939 /* 940 * 3. 941 * open this block and return the offset where the first packet 942 * needs to get stored. 943 */ 944 prb_open_block(pkc, pbd); 945 return (void *)pkc->nxt_offset; 946 } 947 948 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 949 struct packet_sock *po, unsigned int status) 950 { 951 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 952 953 /* retire/close the current block */ 954 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 955 /* 956 * Plug the case where copy_bits() is in progress on 957 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 958 * have space to copy the pkt in the current block and 959 * called prb_retire_current_block() 960 * 961 * We don't need to worry about the TMO case because 962 * the timer-handler already handled this case. 963 */ 964 if (!(status & TP_STATUS_BLK_TMO)) { 965 /* Waiting for skb_copy_bits to finish... */ 966 write_lock(&pkc->blk_fill_in_prog_lock); 967 write_unlock(&pkc->blk_fill_in_prog_lock); 968 } 969 prb_close_block(pkc, pbd, po, status); 970 return; 971 } 972 } 973 974 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 975 { 976 return TP_STATUS_USER & BLOCK_STATUS(pbd); 977 } 978 979 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 980 { 981 return pkc->reset_pending_on_curr_blk; 982 } 983 984 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 985 __releases(&pkc->blk_fill_in_prog_lock) 986 { 987 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 988 989 read_unlock(&pkc->blk_fill_in_prog_lock); 990 } 991 992 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 993 struct tpacket3_hdr *ppd) 994 { 995 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 996 } 997 998 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 999 struct tpacket3_hdr *ppd) 1000 { 1001 ppd->hv1.tp_rxhash = 0; 1002 } 1003 1004 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1005 struct tpacket3_hdr *ppd) 1006 { 1007 if (skb_vlan_tag_present(pkc->skb)) { 1008 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1009 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1010 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1011 } else { 1012 ppd->hv1.tp_vlan_tci = 0; 1013 ppd->hv1.tp_vlan_tpid = 0; 1014 ppd->tp_status = TP_STATUS_AVAILABLE; 1015 } 1016 } 1017 1018 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1019 struct tpacket3_hdr *ppd) 1020 { 1021 ppd->hv1.tp_padding = 0; 1022 prb_fill_vlan_info(pkc, ppd); 1023 1024 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1025 prb_fill_rxhash(pkc, ppd); 1026 else 1027 prb_clear_rxhash(pkc, ppd); 1028 } 1029 1030 static void prb_fill_curr_block(char *curr, 1031 struct tpacket_kbdq_core *pkc, 1032 struct tpacket_block_desc *pbd, 1033 unsigned int len) 1034 __acquires(&pkc->blk_fill_in_prog_lock) 1035 { 1036 struct tpacket3_hdr *ppd; 1037 1038 ppd = (struct tpacket3_hdr *)curr; 1039 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1040 pkc->prev = curr; 1041 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1042 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_NUM_PKTS(pbd) += 1; 1044 read_lock(&pkc->blk_fill_in_prog_lock); 1045 prb_run_all_ft_ops(pkc, ppd); 1046 } 1047 1048 /* Assumes caller has the sk->rx_queue.lock */ 1049 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1050 struct sk_buff *skb, 1051 unsigned int len 1052 ) 1053 { 1054 struct tpacket_kbdq_core *pkc; 1055 struct tpacket_block_desc *pbd; 1056 char *curr, *end; 1057 1058 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1059 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1060 1061 /* Queue is frozen when user space is lagging behind */ 1062 if (prb_queue_frozen(pkc)) { 1063 /* 1064 * Check if that last block which caused the queue to freeze, 1065 * is still in_use by user-space. 1066 */ 1067 if (prb_curr_blk_in_use(pbd)) { 1068 /* Can't record this packet */ 1069 return NULL; 1070 } else { 1071 /* 1072 * Ok, the block was released by user-space. 1073 * Now let's open that block. 1074 * opening a block also thaws the queue. 1075 * Thawing is a side effect. 1076 */ 1077 prb_open_block(pkc, pbd); 1078 } 1079 } 1080 1081 smp_mb(); 1082 curr = pkc->nxt_offset; 1083 pkc->skb = skb; 1084 end = (char *)pbd + pkc->kblk_size; 1085 1086 /* first try the current block */ 1087 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1088 prb_fill_curr_block(curr, pkc, pbd, len); 1089 return (void *)curr; 1090 } 1091 1092 /* Ok, close the current block */ 1093 prb_retire_current_block(pkc, po, 0); 1094 1095 /* Now, try to dispatch the next block */ 1096 curr = (char *)prb_dispatch_next_block(pkc, po); 1097 if (curr) { 1098 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1099 prb_fill_curr_block(curr, pkc, pbd, len); 1100 return (void *)curr; 1101 } 1102 1103 /* 1104 * No free blocks are available.user_space hasn't caught up yet. 1105 * Queue was just frozen and now this packet will get dropped. 1106 */ 1107 return NULL; 1108 } 1109 1110 static void *packet_current_rx_frame(struct packet_sock *po, 1111 struct sk_buff *skb, 1112 int status, unsigned int len) 1113 { 1114 char *curr = NULL; 1115 switch (po->tp_version) { 1116 case TPACKET_V1: 1117 case TPACKET_V2: 1118 curr = packet_lookup_frame(po, &po->rx_ring, 1119 po->rx_ring.head, status); 1120 return curr; 1121 case TPACKET_V3: 1122 return __packet_lookup_frame_in_block(po, skb, len); 1123 default: 1124 WARN(1, "TPACKET version not supported\n"); 1125 BUG(); 1126 return NULL; 1127 } 1128 } 1129 1130 static void *prb_lookup_block(const struct packet_sock *po, 1131 const struct packet_ring_buffer *rb, 1132 unsigned int idx, 1133 int status) 1134 { 1135 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1136 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1137 1138 if (status != BLOCK_STATUS(pbd)) 1139 return NULL; 1140 return pbd; 1141 } 1142 1143 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1144 { 1145 unsigned int prev; 1146 if (rb->prb_bdqc.kactive_blk_num) 1147 prev = rb->prb_bdqc.kactive_blk_num-1; 1148 else 1149 prev = rb->prb_bdqc.knum_blocks-1; 1150 return prev; 1151 } 1152 1153 /* Assumes caller has held the rx_queue.lock */ 1154 static void *__prb_previous_block(struct packet_sock *po, 1155 struct packet_ring_buffer *rb, 1156 int status) 1157 { 1158 unsigned int previous = prb_previous_blk_num(rb); 1159 return prb_lookup_block(po, rb, previous, status); 1160 } 1161 1162 static void *packet_previous_rx_frame(struct packet_sock *po, 1163 struct packet_ring_buffer *rb, 1164 int status) 1165 { 1166 if (po->tp_version <= TPACKET_V2) 1167 return packet_previous_frame(po, rb, status); 1168 1169 return __prb_previous_block(po, rb, status); 1170 } 1171 1172 static void packet_increment_rx_head(struct packet_sock *po, 1173 struct packet_ring_buffer *rb) 1174 { 1175 switch (po->tp_version) { 1176 case TPACKET_V1: 1177 case TPACKET_V2: 1178 return packet_increment_head(rb); 1179 case TPACKET_V3: 1180 default: 1181 WARN(1, "TPACKET version not supported.\n"); 1182 BUG(); 1183 return; 1184 } 1185 } 1186 1187 static void *packet_previous_frame(struct packet_sock *po, 1188 struct packet_ring_buffer *rb, 1189 int status) 1190 { 1191 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1192 return packet_lookup_frame(po, rb, previous, status); 1193 } 1194 1195 static void packet_increment_head(struct packet_ring_buffer *buff) 1196 { 1197 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1198 } 1199 1200 static void packet_inc_pending(struct packet_ring_buffer *rb) 1201 { 1202 this_cpu_inc(*rb->pending_refcnt); 1203 } 1204 1205 static void packet_dec_pending(struct packet_ring_buffer *rb) 1206 { 1207 this_cpu_dec(*rb->pending_refcnt); 1208 } 1209 1210 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1211 { 1212 unsigned int refcnt = 0; 1213 int cpu; 1214 1215 /* We don't use pending refcount in rx_ring. */ 1216 if (rb->pending_refcnt == NULL) 1217 return 0; 1218 1219 for_each_possible_cpu(cpu) 1220 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1221 1222 return refcnt; 1223 } 1224 1225 static int packet_alloc_pending(struct packet_sock *po) 1226 { 1227 po->rx_ring.pending_refcnt = NULL; 1228 1229 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1230 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1231 return -ENOBUFS; 1232 1233 return 0; 1234 } 1235 1236 static void packet_free_pending(struct packet_sock *po) 1237 { 1238 free_percpu(po->tx_ring.pending_refcnt); 1239 } 1240 1241 #define ROOM_POW_OFF 2 1242 #define ROOM_NONE 0x0 1243 #define ROOM_LOW 0x1 1244 #define ROOM_NORMAL 0x2 1245 1246 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1247 { 1248 int idx, len; 1249 1250 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1251 idx = READ_ONCE(po->rx_ring.head); 1252 if (pow_off) 1253 idx += len >> pow_off; 1254 if (idx >= len) 1255 idx -= len; 1256 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1257 } 1258 1259 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1260 { 1261 int idx, len; 1262 1263 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1264 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1265 if (pow_off) 1266 idx += len >> pow_off; 1267 if (idx >= len) 1268 idx -= len; 1269 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1270 } 1271 1272 static int __packet_rcv_has_room(const struct packet_sock *po, 1273 const struct sk_buff *skb) 1274 { 1275 const struct sock *sk = &po->sk; 1276 int ret = ROOM_NONE; 1277 1278 if (po->prot_hook.func != tpacket_rcv) { 1279 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1280 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1281 - (skb ? skb->truesize : 0); 1282 1283 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1284 return ROOM_NORMAL; 1285 else if (avail > 0) 1286 return ROOM_LOW; 1287 else 1288 return ROOM_NONE; 1289 } 1290 1291 if (po->tp_version == TPACKET_V3) { 1292 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1293 ret = ROOM_NORMAL; 1294 else if (__tpacket_v3_has_room(po, 0)) 1295 ret = ROOM_LOW; 1296 } else { 1297 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1298 ret = ROOM_NORMAL; 1299 else if (__tpacket_has_room(po, 0)) 1300 ret = ROOM_LOW; 1301 } 1302 1303 return ret; 1304 } 1305 1306 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1307 { 1308 int pressure, ret; 1309 1310 ret = __packet_rcv_has_room(po, skb); 1311 pressure = ret != ROOM_NORMAL; 1312 1313 if (READ_ONCE(po->pressure) != pressure) 1314 WRITE_ONCE(po->pressure, pressure); 1315 1316 return ret; 1317 } 1318 1319 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1320 { 1321 if (READ_ONCE(po->pressure) && 1322 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1323 WRITE_ONCE(po->pressure, 0); 1324 } 1325 1326 static void packet_sock_destruct(struct sock *sk) 1327 { 1328 skb_queue_purge(&sk->sk_error_queue); 1329 1330 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1331 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1332 1333 if (!sock_flag(sk, SOCK_DEAD)) { 1334 pr_err("Attempt to release alive packet socket: %p\n", sk); 1335 return; 1336 } 1337 1338 sk_refcnt_debug_dec(sk); 1339 } 1340 1341 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1342 { 1343 u32 *history = po->rollover->history; 1344 u32 victim, rxhash; 1345 int i, count = 0; 1346 1347 rxhash = skb_get_hash(skb); 1348 for (i = 0; i < ROLLOVER_HLEN; i++) 1349 if (READ_ONCE(history[i]) == rxhash) 1350 count++; 1351 1352 victim = prandom_u32() % ROLLOVER_HLEN; 1353 1354 /* Avoid dirtying the cache line if possible */ 1355 if (READ_ONCE(history[victim]) != rxhash) 1356 WRITE_ONCE(history[victim], rxhash); 1357 1358 return count > (ROLLOVER_HLEN >> 1); 1359 } 1360 1361 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1362 struct sk_buff *skb, 1363 unsigned int num) 1364 { 1365 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1366 } 1367 1368 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1369 struct sk_buff *skb, 1370 unsigned int num) 1371 { 1372 unsigned int val = atomic_inc_return(&f->rr_cur); 1373 1374 return val % num; 1375 } 1376 1377 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1378 struct sk_buff *skb, 1379 unsigned int num) 1380 { 1381 return smp_processor_id() % num; 1382 } 1383 1384 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1385 struct sk_buff *skb, 1386 unsigned int num) 1387 { 1388 return prandom_u32_max(num); 1389 } 1390 1391 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1392 struct sk_buff *skb, 1393 unsigned int idx, bool try_self, 1394 unsigned int num) 1395 { 1396 struct packet_sock *po, *po_next, *po_skip = NULL; 1397 unsigned int i, j, room = ROOM_NONE; 1398 1399 po = pkt_sk(rcu_dereference(f->arr[idx])); 1400 1401 if (try_self) { 1402 room = packet_rcv_has_room(po, skb); 1403 if (room == ROOM_NORMAL || 1404 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1405 return idx; 1406 po_skip = po; 1407 } 1408 1409 i = j = min_t(int, po->rollover->sock, num - 1); 1410 do { 1411 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1412 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1413 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1414 if (i != j) 1415 po->rollover->sock = i; 1416 atomic_long_inc(&po->rollover->num); 1417 if (room == ROOM_LOW) 1418 atomic_long_inc(&po->rollover->num_huge); 1419 return i; 1420 } 1421 1422 if (++i == num) 1423 i = 0; 1424 } while (i != j); 1425 1426 atomic_long_inc(&po->rollover->num_failed); 1427 return idx; 1428 } 1429 1430 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1431 struct sk_buff *skb, 1432 unsigned int num) 1433 { 1434 return skb_get_queue_mapping(skb) % num; 1435 } 1436 1437 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1438 struct sk_buff *skb, 1439 unsigned int num) 1440 { 1441 struct bpf_prog *prog; 1442 unsigned int ret = 0; 1443 1444 rcu_read_lock(); 1445 prog = rcu_dereference(f->bpf_prog); 1446 if (prog) 1447 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1448 rcu_read_unlock(); 1449 1450 return ret; 1451 } 1452 1453 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1454 { 1455 return f->flags & (flag >> 8); 1456 } 1457 1458 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1459 struct packet_type *pt, struct net_device *orig_dev) 1460 { 1461 struct packet_fanout *f = pt->af_packet_priv; 1462 unsigned int num = READ_ONCE(f->num_members); 1463 struct net *net = read_pnet(&f->net); 1464 struct packet_sock *po; 1465 unsigned int idx; 1466 1467 if (!net_eq(dev_net(dev), net) || !num) { 1468 kfree_skb(skb); 1469 return 0; 1470 } 1471 1472 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1473 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1474 if (!skb) 1475 return 0; 1476 } 1477 switch (f->type) { 1478 case PACKET_FANOUT_HASH: 1479 default: 1480 idx = fanout_demux_hash(f, skb, num); 1481 break; 1482 case PACKET_FANOUT_LB: 1483 idx = fanout_demux_lb(f, skb, num); 1484 break; 1485 case PACKET_FANOUT_CPU: 1486 idx = fanout_demux_cpu(f, skb, num); 1487 break; 1488 case PACKET_FANOUT_RND: 1489 idx = fanout_demux_rnd(f, skb, num); 1490 break; 1491 case PACKET_FANOUT_QM: 1492 idx = fanout_demux_qm(f, skb, num); 1493 break; 1494 case PACKET_FANOUT_ROLLOVER: 1495 idx = fanout_demux_rollover(f, skb, 0, false, num); 1496 break; 1497 case PACKET_FANOUT_CBPF: 1498 case PACKET_FANOUT_EBPF: 1499 idx = fanout_demux_bpf(f, skb, num); 1500 break; 1501 } 1502 1503 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1504 idx = fanout_demux_rollover(f, skb, idx, true, num); 1505 1506 po = pkt_sk(rcu_dereference(f->arr[idx])); 1507 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1508 } 1509 1510 DEFINE_MUTEX(fanout_mutex); 1511 EXPORT_SYMBOL_GPL(fanout_mutex); 1512 static LIST_HEAD(fanout_list); 1513 static u16 fanout_next_id; 1514 1515 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1516 { 1517 struct packet_fanout *f = po->fanout; 1518 1519 spin_lock(&f->lock); 1520 rcu_assign_pointer(f->arr[f->num_members], sk); 1521 smp_wmb(); 1522 f->num_members++; 1523 if (f->num_members == 1) 1524 dev_add_pack(&f->prot_hook); 1525 spin_unlock(&f->lock); 1526 } 1527 1528 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1529 { 1530 struct packet_fanout *f = po->fanout; 1531 int i; 1532 1533 spin_lock(&f->lock); 1534 for (i = 0; i < f->num_members; i++) { 1535 if (rcu_dereference_protected(f->arr[i], 1536 lockdep_is_held(&f->lock)) == sk) 1537 break; 1538 } 1539 BUG_ON(i >= f->num_members); 1540 rcu_assign_pointer(f->arr[i], 1541 rcu_dereference_protected(f->arr[f->num_members - 1], 1542 lockdep_is_held(&f->lock))); 1543 f->num_members--; 1544 if (f->num_members == 0) 1545 __dev_remove_pack(&f->prot_hook); 1546 spin_unlock(&f->lock); 1547 } 1548 1549 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1550 { 1551 if (sk->sk_family != PF_PACKET) 1552 return false; 1553 1554 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1555 } 1556 1557 static void fanout_init_data(struct packet_fanout *f) 1558 { 1559 switch (f->type) { 1560 case PACKET_FANOUT_LB: 1561 atomic_set(&f->rr_cur, 0); 1562 break; 1563 case PACKET_FANOUT_CBPF: 1564 case PACKET_FANOUT_EBPF: 1565 RCU_INIT_POINTER(f->bpf_prog, NULL); 1566 break; 1567 } 1568 } 1569 1570 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1571 { 1572 struct bpf_prog *old; 1573 1574 spin_lock(&f->lock); 1575 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1576 rcu_assign_pointer(f->bpf_prog, new); 1577 spin_unlock(&f->lock); 1578 1579 if (old) { 1580 synchronize_net(); 1581 bpf_prog_destroy(old); 1582 } 1583 } 1584 1585 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1586 unsigned int len) 1587 { 1588 struct bpf_prog *new; 1589 struct sock_fprog fprog; 1590 int ret; 1591 1592 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1593 return -EPERM; 1594 1595 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1596 if (ret) 1597 return ret; 1598 1599 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1600 if (ret) 1601 return ret; 1602 1603 __fanout_set_data_bpf(po->fanout, new); 1604 return 0; 1605 } 1606 1607 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1608 unsigned int len) 1609 { 1610 struct bpf_prog *new; 1611 u32 fd; 1612 1613 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1614 return -EPERM; 1615 if (len != sizeof(fd)) 1616 return -EINVAL; 1617 if (copy_from_sockptr(&fd, data, len)) 1618 return -EFAULT; 1619 1620 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1621 if (IS_ERR(new)) 1622 return PTR_ERR(new); 1623 1624 __fanout_set_data_bpf(po->fanout, new); 1625 return 0; 1626 } 1627 1628 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1629 unsigned int len) 1630 { 1631 switch (po->fanout->type) { 1632 case PACKET_FANOUT_CBPF: 1633 return fanout_set_data_cbpf(po, data, len); 1634 case PACKET_FANOUT_EBPF: 1635 return fanout_set_data_ebpf(po, data, len); 1636 default: 1637 return -EINVAL; 1638 } 1639 } 1640 1641 static void fanout_release_data(struct packet_fanout *f) 1642 { 1643 switch (f->type) { 1644 case PACKET_FANOUT_CBPF: 1645 case PACKET_FANOUT_EBPF: 1646 __fanout_set_data_bpf(f, NULL); 1647 } 1648 } 1649 1650 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1651 { 1652 struct packet_fanout *f; 1653 1654 list_for_each_entry(f, &fanout_list, list) { 1655 if (f->id == candidate_id && 1656 read_pnet(&f->net) == sock_net(sk)) { 1657 return false; 1658 } 1659 } 1660 return true; 1661 } 1662 1663 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1664 { 1665 u16 id = fanout_next_id; 1666 1667 do { 1668 if (__fanout_id_is_free(sk, id)) { 1669 *new_id = id; 1670 fanout_next_id = id + 1; 1671 return true; 1672 } 1673 1674 id++; 1675 } while (id != fanout_next_id); 1676 1677 return false; 1678 } 1679 1680 static int fanout_add(struct sock *sk, struct fanout_args *args) 1681 { 1682 struct packet_rollover *rollover = NULL; 1683 struct packet_sock *po = pkt_sk(sk); 1684 u16 type_flags = args->type_flags; 1685 struct packet_fanout *f, *match; 1686 u8 type = type_flags & 0xff; 1687 u8 flags = type_flags >> 8; 1688 u16 id = args->id; 1689 int err; 1690 1691 switch (type) { 1692 case PACKET_FANOUT_ROLLOVER: 1693 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1694 return -EINVAL; 1695 break; 1696 case PACKET_FANOUT_HASH: 1697 case PACKET_FANOUT_LB: 1698 case PACKET_FANOUT_CPU: 1699 case PACKET_FANOUT_RND: 1700 case PACKET_FANOUT_QM: 1701 case PACKET_FANOUT_CBPF: 1702 case PACKET_FANOUT_EBPF: 1703 break; 1704 default: 1705 return -EINVAL; 1706 } 1707 1708 mutex_lock(&fanout_mutex); 1709 1710 err = -EALREADY; 1711 if (po->fanout) 1712 goto out; 1713 1714 if (type == PACKET_FANOUT_ROLLOVER || 1715 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1716 err = -ENOMEM; 1717 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1718 if (!rollover) 1719 goto out; 1720 atomic_long_set(&rollover->num, 0); 1721 atomic_long_set(&rollover->num_huge, 0); 1722 atomic_long_set(&rollover->num_failed, 0); 1723 } 1724 1725 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1726 if (id != 0) { 1727 err = -EINVAL; 1728 goto out; 1729 } 1730 if (!fanout_find_new_id(sk, &id)) { 1731 err = -ENOMEM; 1732 goto out; 1733 } 1734 /* ephemeral flag for the first socket in the group: drop it */ 1735 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1736 } 1737 1738 match = NULL; 1739 list_for_each_entry(f, &fanout_list, list) { 1740 if (f->id == id && 1741 read_pnet(&f->net) == sock_net(sk)) { 1742 match = f; 1743 break; 1744 } 1745 } 1746 err = -EINVAL; 1747 if (match) { 1748 if (match->flags != flags) 1749 goto out; 1750 if (args->max_num_members && 1751 args->max_num_members != match->max_num_members) 1752 goto out; 1753 } else { 1754 if (args->max_num_members > PACKET_FANOUT_MAX) 1755 goto out; 1756 if (!args->max_num_members) 1757 /* legacy PACKET_FANOUT_MAX */ 1758 args->max_num_members = 256; 1759 err = -ENOMEM; 1760 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1761 GFP_KERNEL); 1762 if (!match) 1763 goto out; 1764 write_pnet(&match->net, sock_net(sk)); 1765 match->id = id; 1766 match->type = type; 1767 match->flags = flags; 1768 INIT_LIST_HEAD(&match->list); 1769 spin_lock_init(&match->lock); 1770 refcount_set(&match->sk_ref, 0); 1771 fanout_init_data(match); 1772 match->prot_hook.type = po->prot_hook.type; 1773 match->prot_hook.dev = po->prot_hook.dev; 1774 match->prot_hook.func = packet_rcv_fanout; 1775 match->prot_hook.af_packet_priv = match; 1776 match->prot_hook.id_match = match_fanout_group; 1777 match->max_num_members = args->max_num_members; 1778 list_add(&match->list, &fanout_list); 1779 } 1780 err = -EINVAL; 1781 1782 spin_lock(&po->bind_lock); 1783 if (po->running && 1784 match->type == type && 1785 match->prot_hook.type == po->prot_hook.type && 1786 match->prot_hook.dev == po->prot_hook.dev) { 1787 err = -ENOSPC; 1788 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1789 __dev_remove_pack(&po->prot_hook); 1790 po->fanout = match; 1791 po->rollover = rollover; 1792 rollover = NULL; 1793 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1794 __fanout_link(sk, po); 1795 err = 0; 1796 } 1797 } 1798 spin_unlock(&po->bind_lock); 1799 1800 if (err && !refcount_read(&match->sk_ref)) { 1801 list_del(&match->list); 1802 kvfree(match); 1803 } 1804 1805 out: 1806 kfree(rollover); 1807 mutex_unlock(&fanout_mutex); 1808 return err; 1809 } 1810 1811 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1812 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1813 * It is the responsibility of the caller to call fanout_release_data() and 1814 * free the returned packet_fanout (after synchronize_net()) 1815 */ 1816 static struct packet_fanout *fanout_release(struct sock *sk) 1817 { 1818 struct packet_sock *po = pkt_sk(sk); 1819 struct packet_fanout *f; 1820 1821 mutex_lock(&fanout_mutex); 1822 f = po->fanout; 1823 if (f) { 1824 po->fanout = NULL; 1825 1826 if (refcount_dec_and_test(&f->sk_ref)) 1827 list_del(&f->list); 1828 else 1829 f = NULL; 1830 } 1831 mutex_unlock(&fanout_mutex); 1832 1833 return f; 1834 } 1835 1836 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1837 struct sk_buff *skb) 1838 { 1839 /* Earlier code assumed this would be a VLAN pkt, double-check 1840 * this now that we have the actual packet in hand. We can only 1841 * do this check on Ethernet devices. 1842 */ 1843 if (unlikely(dev->type != ARPHRD_ETHER)) 1844 return false; 1845 1846 skb_reset_mac_header(skb); 1847 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1848 } 1849 1850 static const struct proto_ops packet_ops; 1851 1852 static const struct proto_ops packet_ops_spkt; 1853 1854 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1855 struct packet_type *pt, struct net_device *orig_dev) 1856 { 1857 struct sock *sk; 1858 struct sockaddr_pkt *spkt; 1859 1860 /* 1861 * When we registered the protocol we saved the socket in the data 1862 * field for just this event. 1863 */ 1864 1865 sk = pt->af_packet_priv; 1866 1867 /* 1868 * Yank back the headers [hope the device set this 1869 * right or kerboom...] 1870 * 1871 * Incoming packets have ll header pulled, 1872 * push it back. 1873 * 1874 * For outgoing ones skb->data == skb_mac_header(skb) 1875 * so that this procedure is noop. 1876 */ 1877 1878 if (skb->pkt_type == PACKET_LOOPBACK) 1879 goto out; 1880 1881 if (!net_eq(dev_net(dev), sock_net(sk))) 1882 goto out; 1883 1884 skb = skb_share_check(skb, GFP_ATOMIC); 1885 if (skb == NULL) 1886 goto oom; 1887 1888 /* drop any routing info */ 1889 skb_dst_drop(skb); 1890 1891 /* drop conntrack reference */ 1892 nf_reset_ct(skb); 1893 1894 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1895 1896 skb_push(skb, skb->data - skb_mac_header(skb)); 1897 1898 /* 1899 * The SOCK_PACKET socket receives _all_ frames. 1900 */ 1901 1902 spkt->spkt_family = dev->type; 1903 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1904 spkt->spkt_protocol = skb->protocol; 1905 1906 /* 1907 * Charge the memory to the socket. This is done specifically 1908 * to prevent sockets using all the memory up. 1909 */ 1910 1911 if (sock_queue_rcv_skb(sk, skb) == 0) 1912 return 0; 1913 1914 out: 1915 kfree_skb(skb); 1916 oom: 1917 return 0; 1918 } 1919 1920 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1921 { 1922 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1923 sock->type == SOCK_RAW) { 1924 skb_reset_mac_header(skb); 1925 skb->protocol = dev_parse_header_protocol(skb); 1926 } 1927 1928 skb_probe_transport_header(skb); 1929 } 1930 1931 /* 1932 * Output a raw packet to a device layer. This bypasses all the other 1933 * protocol layers and you must therefore supply it with a complete frame 1934 */ 1935 1936 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1937 size_t len) 1938 { 1939 struct sock *sk = sock->sk; 1940 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1941 struct sk_buff *skb = NULL; 1942 struct net_device *dev; 1943 struct sockcm_cookie sockc; 1944 __be16 proto = 0; 1945 int err; 1946 int extra_len = 0; 1947 1948 /* 1949 * Get and verify the address. 1950 */ 1951 1952 if (saddr) { 1953 if (msg->msg_namelen < sizeof(struct sockaddr)) 1954 return -EINVAL; 1955 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1956 proto = saddr->spkt_protocol; 1957 } else 1958 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1959 1960 /* 1961 * Find the device first to size check it 1962 */ 1963 1964 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1965 retry: 1966 rcu_read_lock(); 1967 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1968 err = -ENODEV; 1969 if (dev == NULL) 1970 goto out_unlock; 1971 1972 err = -ENETDOWN; 1973 if (!(dev->flags & IFF_UP)) 1974 goto out_unlock; 1975 1976 /* 1977 * You may not queue a frame bigger than the mtu. This is the lowest level 1978 * raw protocol and you must do your own fragmentation at this level. 1979 */ 1980 1981 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1982 if (!netif_supports_nofcs(dev)) { 1983 err = -EPROTONOSUPPORT; 1984 goto out_unlock; 1985 } 1986 extra_len = 4; /* We're doing our own CRC */ 1987 } 1988 1989 err = -EMSGSIZE; 1990 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1991 goto out_unlock; 1992 1993 if (!skb) { 1994 size_t reserved = LL_RESERVED_SPACE(dev); 1995 int tlen = dev->needed_tailroom; 1996 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1997 1998 rcu_read_unlock(); 1999 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2000 if (skb == NULL) 2001 return -ENOBUFS; 2002 /* FIXME: Save some space for broken drivers that write a hard 2003 * header at transmission time by themselves. PPP is the notable 2004 * one here. This should really be fixed at the driver level. 2005 */ 2006 skb_reserve(skb, reserved); 2007 skb_reset_network_header(skb); 2008 2009 /* Try to align data part correctly */ 2010 if (hhlen) { 2011 skb->data -= hhlen; 2012 skb->tail -= hhlen; 2013 if (len < hhlen) 2014 skb_reset_network_header(skb); 2015 } 2016 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2017 if (err) 2018 goto out_free; 2019 goto retry; 2020 } 2021 2022 if (!dev_validate_header(dev, skb->data, len)) { 2023 err = -EINVAL; 2024 goto out_unlock; 2025 } 2026 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2027 !packet_extra_vlan_len_allowed(dev, skb)) { 2028 err = -EMSGSIZE; 2029 goto out_unlock; 2030 } 2031 2032 sockcm_init(&sockc, sk); 2033 if (msg->msg_controllen) { 2034 err = sock_cmsg_send(sk, msg, &sockc); 2035 if (unlikely(err)) 2036 goto out_unlock; 2037 } 2038 2039 skb->protocol = proto; 2040 skb->dev = dev; 2041 skb->priority = sk->sk_priority; 2042 skb->mark = sk->sk_mark; 2043 skb->tstamp = sockc.transmit_time; 2044 2045 skb_setup_tx_timestamp(skb, sockc.tsflags); 2046 2047 if (unlikely(extra_len == 4)) 2048 skb->no_fcs = 1; 2049 2050 packet_parse_headers(skb, sock); 2051 2052 dev_queue_xmit(skb); 2053 rcu_read_unlock(); 2054 return len; 2055 2056 out_unlock: 2057 rcu_read_unlock(); 2058 out_free: 2059 kfree_skb(skb); 2060 return err; 2061 } 2062 2063 static unsigned int run_filter(struct sk_buff *skb, 2064 const struct sock *sk, 2065 unsigned int res) 2066 { 2067 struct sk_filter *filter; 2068 2069 rcu_read_lock(); 2070 filter = rcu_dereference(sk->sk_filter); 2071 if (filter != NULL) 2072 res = bpf_prog_run_clear_cb(filter->prog, skb); 2073 rcu_read_unlock(); 2074 2075 return res; 2076 } 2077 2078 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2079 size_t *len) 2080 { 2081 struct virtio_net_hdr vnet_hdr; 2082 2083 if (*len < sizeof(vnet_hdr)) 2084 return -EINVAL; 2085 *len -= sizeof(vnet_hdr); 2086 2087 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2088 return -EINVAL; 2089 2090 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2091 } 2092 2093 /* 2094 * This function makes lazy skb cloning in hope that most of packets 2095 * are discarded by BPF. 2096 * 2097 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2098 * and skb->cb are mangled. It works because (and until) packets 2099 * falling here are owned by current CPU. Output packets are cloned 2100 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2101 * sequentially, so that if we return skb to original state on exit, 2102 * we will not harm anyone. 2103 */ 2104 2105 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2106 struct packet_type *pt, struct net_device *orig_dev) 2107 { 2108 struct sock *sk; 2109 struct sockaddr_ll *sll; 2110 struct packet_sock *po; 2111 u8 *skb_head = skb->data; 2112 int skb_len = skb->len; 2113 unsigned int snaplen, res; 2114 bool is_drop_n_account = false; 2115 2116 if (skb->pkt_type == PACKET_LOOPBACK) 2117 goto drop; 2118 2119 sk = pt->af_packet_priv; 2120 po = pkt_sk(sk); 2121 2122 if (!net_eq(dev_net(dev), sock_net(sk))) 2123 goto drop; 2124 2125 skb->dev = dev; 2126 2127 if (dev_has_header(dev)) { 2128 /* The device has an explicit notion of ll header, 2129 * exported to higher levels. 2130 * 2131 * Otherwise, the device hides details of its frame 2132 * structure, so that corresponding packet head is 2133 * never delivered to user. 2134 */ 2135 if (sk->sk_type != SOCK_DGRAM) 2136 skb_push(skb, skb->data - skb_mac_header(skb)); 2137 else if (skb->pkt_type == PACKET_OUTGOING) { 2138 /* Special case: outgoing packets have ll header at head */ 2139 skb_pull(skb, skb_network_offset(skb)); 2140 } 2141 } 2142 2143 snaplen = skb->len; 2144 2145 res = run_filter(skb, sk, snaplen); 2146 if (!res) 2147 goto drop_n_restore; 2148 if (snaplen > res) 2149 snaplen = res; 2150 2151 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2152 goto drop_n_acct; 2153 2154 if (skb_shared(skb)) { 2155 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2156 if (nskb == NULL) 2157 goto drop_n_acct; 2158 2159 if (skb_head != skb->data) { 2160 skb->data = skb_head; 2161 skb->len = skb_len; 2162 } 2163 consume_skb(skb); 2164 skb = nskb; 2165 } 2166 2167 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2168 2169 sll = &PACKET_SKB_CB(skb)->sa.ll; 2170 sll->sll_hatype = dev->type; 2171 sll->sll_pkttype = skb->pkt_type; 2172 if (unlikely(po->origdev)) 2173 sll->sll_ifindex = orig_dev->ifindex; 2174 else 2175 sll->sll_ifindex = dev->ifindex; 2176 2177 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2178 2179 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2180 * Use their space for storing the original skb length. 2181 */ 2182 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2183 2184 if (pskb_trim(skb, snaplen)) 2185 goto drop_n_acct; 2186 2187 skb_set_owner_r(skb, sk); 2188 skb->dev = NULL; 2189 skb_dst_drop(skb); 2190 2191 /* drop conntrack reference */ 2192 nf_reset_ct(skb); 2193 2194 spin_lock(&sk->sk_receive_queue.lock); 2195 po->stats.stats1.tp_packets++; 2196 sock_skb_set_dropcount(sk, skb); 2197 __skb_queue_tail(&sk->sk_receive_queue, skb); 2198 spin_unlock(&sk->sk_receive_queue.lock); 2199 sk->sk_data_ready(sk); 2200 return 0; 2201 2202 drop_n_acct: 2203 is_drop_n_account = true; 2204 atomic_inc(&po->tp_drops); 2205 atomic_inc(&sk->sk_drops); 2206 2207 drop_n_restore: 2208 if (skb_head != skb->data && skb_shared(skb)) { 2209 skb->data = skb_head; 2210 skb->len = skb_len; 2211 } 2212 drop: 2213 if (!is_drop_n_account) 2214 consume_skb(skb); 2215 else 2216 kfree_skb(skb); 2217 return 0; 2218 } 2219 2220 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2221 struct packet_type *pt, struct net_device *orig_dev) 2222 { 2223 struct sock *sk; 2224 struct packet_sock *po; 2225 struct sockaddr_ll *sll; 2226 union tpacket_uhdr h; 2227 u8 *skb_head = skb->data; 2228 int skb_len = skb->len; 2229 unsigned int snaplen, res; 2230 unsigned long status = TP_STATUS_USER; 2231 unsigned short macoff, hdrlen; 2232 unsigned int netoff; 2233 struct sk_buff *copy_skb = NULL; 2234 struct timespec64 ts; 2235 __u32 ts_status; 2236 bool is_drop_n_account = false; 2237 unsigned int slot_id = 0; 2238 bool do_vnet = false; 2239 2240 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2241 * We may add members to them until current aligned size without forcing 2242 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2243 */ 2244 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2245 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2246 2247 if (skb->pkt_type == PACKET_LOOPBACK) 2248 goto drop; 2249 2250 sk = pt->af_packet_priv; 2251 po = pkt_sk(sk); 2252 2253 if (!net_eq(dev_net(dev), sock_net(sk))) 2254 goto drop; 2255 2256 if (dev_has_header(dev)) { 2257 if (sk->sk_type != SOCK_DGRAM) 2258 skb_push(skb, skb->data - skb_mac_header(skb)); 2259 else if (skb->pkt_type == PACKET_OUTGOING) { 2260 /* Special case: outgoing packets have ll header at head */ 2261 skb_pull(skb, skb_network_offset(skb)); 2262 } 2263 } 2264 2265 snaplen = skb->len; 2266 2267 res = run_filter(skb, sk, snaplen); 2268 if (!res) 2269 goto drop_n_restore; 2270 2271 /* If we are flooded, just give up */ 2272 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2273 atomic_inc(&po->tp_drops); 2274 goto drop_n_restore; 2275 } 2276 2277 if (skb->ip_summed == CHECKSUM_PARTIAL) 2278 status |= TP_STATUS_CSUMNOTREADY; 2279 else if (skb->pkt_type != PACKET_OUTGOING && 2280 (skb->ip_summed == CHECKSUM_COMPLETE || 2281 skb_csum_unnecessary(skb))) 2282 status |= TP_STATUS_CSUM_VALID; 2283 2284 if (snaplen > res) 2285 snaplen = res; 2286 2287 if (sk->sk_type == SOCK_DGRAM) { 2288 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2289 po->tp_reserve; 2290 } else { 2291 unsigned int maclen = skb_network_offset(skb); 2292 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2293 (maclen < 16 ? 16 : maclen)) + 2294 po->tp_reserve; 2295 if (po->has_vnet_hdr) { 2296 netoff += sizeof(struct virtio_net_hdr); 2297 do_vnet = true; 2298 } 2299 macoff = netoff - maclen; 2300 } 2301 if (netoff > USHRT_MAX) { 2302 atomic_inc(&po->tp_drops); 2303 goto drop_n_restore; 2304 } 2305 if (po->tp_version <= TPACKET_V2) { 2306 if (macoff + snaplen > po->rx_ring.frame_size) { 2307 if (po->copy_thresh && 2308 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2309 if (skb_shared(skb)) { 2310 copy_skb = skb_clone(skb, GFP_ATOMIC); 2311 } else { 2312 copy_skb = skb_get(skb); 2313 skb_head = skb->data; 2314 } 2315 if (copy_skb) 2316 skb_set_owner_r(copy_skb, sk); 2317 } 2318 snaplen = po->rx_ring.frame_size - macoff; 2319 if ((int)snaplen < 0) { 2320 snaplen = 0; 2321 do_vnet = false; 2322 } 2323 } 2324 } else if (unlikely(macoff + snaplen > 2325 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2326 u32 nval; 2327 2328 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2329 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2330 snaplen, nval, macoff); 2331 snaplen = nval; 2332 if (unlikely((int)snaplen < 0)) { 2333 snaplen = 0; 2334 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2335 do_vnet = false; 2336 } 2337 } 2338 spin_lock(&sk->sk_receive_queue.lock); 2339 h.raw = packet_current_rx_frame(po, skb, 2340 TP_STATUS_KERNEL, (macoff+snaplen)); 2341 if (!h.raw) 2342 goto drop_n_account; 2343 2344 if (po->tp_version <= TPACKET_V2) { 2345 slot_id = po->rx_ring.head; 2346 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2347 goto drop_n_account; 2348 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2349 } 2350 2351 if (do_vnet && 2352 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2353 sizeof(struct virtio_net_hdr), 2354 vio_le(), true, 0)) { 2355 if (po->tp_version == TPACKET_V3) 2356 prb_clear_blk_fill_status(&po->rx_ring); 2357 goto drop_n_account; 2358 } 2359 2360 if (po->tp_version <= TPACKET_V2) { 2361 packet_increment_rx_head(po, &po->rx_ring); 2362 /* 2363 * LOSING will be reported till you read the stats, 2364 * because it's COR - Clear On Read. 2365 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2366 * at packet level. 2367 */ 2368 if (atomic_read(&po->tp_drops)) 2369 status |= TP_STATUS_LOSING; 2370 } 2371 2372 po->stats.stats1.tp_packets++; 2373 if (copy_skb) { 2374 status |= TP_STATUS_COPY; 2375 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2376 } 2377 spin_unlock(&sk->sk_receive_queue.lock); 2378 2379 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2380 2381 /* Always timestamp; prefer an existing software timestamp taken 2382 * closer to the time of capture. 2383 */ 2384 ts_status = tpacket_get_timestamp(skb, &ts, 2385 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2386 if (!ts_status) 2387 ktime_get_real_ts64(&ts); 2388 2389 status |= ts_status; 2390 2391 switch (po->tp_version) { 2392 case TPACKET_V1: 2393 h.h1->tp_len = skb->len; 2394 h.h1->tp_snaplen = snaplen; 2395 h.h1->tp_mac = macoff; 2396 h.h1->tp_net = netoff; 2397 h.h1->tp_sec = ts.tv_sec; 2398 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2399 hdrlen = sizeof(*h.h1); 2400 break; 2401 case TPACKET_V2: 2402 h.h2->tp_len = skb->len; 2403 h.h2->tp_snaplen = snaplen; 2404 h.h2->tp_mac = macoff; 2405 h.h2->tp_net = netoff; 2406 h.h2->tp_sec = ts.tv_sec; 2407 h.h2->tp_nsec = ts.tv_nsec; 2408 if (skb_vlan_tag_present(skb)) { 2409 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2410 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2411 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2412 } else { 2413 h.h2->tp_vlan_tci = 0; 2414 h.h2->tp_vlan_tpid = 0; 2415 } 2416 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2417 hdrlen = sizeof(*h.h2); 2418 break; 2419 case TPACKET_V3: 2420 /* tp_nxt_offset,vlan are already populated above. 2421 * So DONT clear those fields here 2422 */ 2423 h.h3->tp_status |= status; 2424 h.h3->tp_len = skb->len; 2425 h.h3->tp_snaplen = snaplen; 2426 h.h3->tp_mac = macoff; 2427 h.h3->tp_net = netoff; 2428 h.h3->tp_sec = ts.tv_sec; 2429 h.h3->tp_nsec = ts.tv_nsec; 2430 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2431 hdrlen = sizeof(*h.h3); 2432 break; 2433 default: 2434 BUG(); 2435 } 2436 2437 sll = h.raw + TPACKET_ALIGN(hdrlen); 2438 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2439 sll->sll_family = AF_PACKET; 2440 sll->sll_hatype = dev->type; 2441 sll->sll_protocol = skb->protocol; 2442 sll->sll_pkttype = skb->pkt_type; 2443 if (unlikely(po->origdev)) 2444 sll->sll_ifindex = orig_dev->ifindex; 2445 else 2446 sll->sll_ifindex = dev->ifindex; 2447 2448 smp_mb(); 2449 2450 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2451 if (po->tp_version <= TPACKET_V2) { 2452 u8 *start, *end; 2453 2454 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2455 macoff + snaplen); 2456 2457 for (start = h.raw; start < end; start += PAGE_SIZE) 2458 flush_dcache_page(pgv_to_page(start)); 2459 } 2460 smp_wmb(); 2461 #endif 2462 2463 if (po->tp_version <= TPACKET_V2) { 2464 spin_lock(&sk->sk_receive_queue.lock); 2465 __packet_set_status(po, h.raw, status); 2466 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2467 spin_unlock(&sk->sk_receive_queue.lock); 2468 sk->sk_data_ready(sk); 2469 } else if (po->tp_version == TPACKET_V3) { 2470 prb_clear_blk_fill_status(&po->rx_ring); 2471 } 2472 2473 drop_n_restore: 2474 if (skb_head != skb->data && skb_shared(skb)) { 2475 skb->data = skb_head; 2476 skb->len = skb_len; 2477 } 2478 drop: 2479 if (!is_drop_n_account) 2480 consume_skb(skb); 2481 else 2482 kfree_skb(skb); 2483 return 0; 2484 2485 drop_n_account: 2486 spin_unlock(&sk->sk_receive_queue.lock); 2487 atomic_inc(&po->tp_drops); 2488 is_drop_n_account = true; 2489 2490 sk->sk_data_ready(sk); 2491 kfree_skb(copy_skb); 2492 goto drop_n_restore; 2493 } 2494 2495 static void tpacket_destruct_skb(struct sk_buff *skb) 2496 { 2497 struct packet_sock *po = pkt_sk(skb->sk); 2498 2499 if (likely(po->tx_ring.pg_vec)) { 2500 void *ph; 2501 __u32 ts; 2502 2503 ph = skb_zcopy_get_nouarg(skb); 2504 packet_dec_pending(&po->tx_ring); 2505 2506 ts = __packet_set_timestamp(po, ph, skb); 2507 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2508 2509 if (!packet_read_pending(&po->tx_ring)) 2510 complete(&po->skb_completion); 2511 } 2512 2513 sock_wfree(skb); 2514 } 2515 2516 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2517 { 2518 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2519 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2520 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2521 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2522 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2523 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2524 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2525 2526 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2527 return -EINVAL; 2528 2529 return 0; 2530 } 2531 2532 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2533 struct virtio_net_hdr *vnet_hdr) 2534 { 2535 if (*len < sizeof(*vnet_hdr)) 2536 return -EINVAL; 2537 *len -= sizeof(*vnet_hdr); 2538 2539 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2540 return -EFAULT; 2541 2542 return __packet_snd_vnet_parse(vnet_hdr, *len); 2543 } 2544 2545 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2546 void *frame, struct net_device *dev, void *data, int tp_len, 2547 __be16 proto, unsigned char *addr, int hlen, int copylen, 2548 const struct sockcm_cookie *sockc) 2549 { 2550 union tpacket_uhdr ph; 2551 int to_write, offset, len, nr_frags, len_max; 2552 struct socket *sock = po->sk.sk_socket; 2553 struct page *page; 2554 int err; 2555 2556 ph.raw = frame; 2557 2558 skb->protocol = proto; 2559 skb->dev = dev; 2560 skb->priority = po->sk.sk_priority; 2561 skb->mark = po->sk.sk_mark; 2562 skb->tstamp = sockc->transmit_time; 2563 skb_setup_tx_timestamp(skb, sockc->tsflags); 2564 skb_zcopy_set_nouarg(skb, ph.raw); 2565 2566 skb_reserve(skb, hlen); 2567 skb_reset_network_header(skb); 2568 2569 to_write = tp_len; 2570 2571 if (sock->type == SOCK_DGRAM) { 2572 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2573 NULL, tp_len); 2574 if (unlikely(err < 0)) 2575 return -EINVAL; 2576 } else if (copylen) { 2577 int hdrlen = min_t(int, copylen, tp_len); 2578 2579 skb_push(skb, dev->hard_header_len); 2580 skb_put(skb, copylen - dev->hard_header_len); 2581 err = skb_store_bits(skb, 0, data, hdrlen); 2582 if (unlikely(err)) 2583 return err; 2584 if (!dev_validate_header(dev, skb->data, hdrlen)) 2585 return -EINVAL; 2586 2587 data += hdrlen; 2588 to_write -= hdrlen; 2589 } 2590 2591 offset = offset_in_page(data); 2592 len_max = PAGE_SIZE - offset; 2593 len = ((to_write > len_max) ? len_max : to_write); 2594 2595 skb->data_len = to_write; 2596 skb->len += to_write; 2597 skb->truesize += to_write; 2598 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2599 2600 while (likely(to_write)) { 2601 nr_frags = skb_shinfo(skb)->nr_frags; 2602 2603 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2604 pr_err("Packet exceed the number of skb frags(%lu)\n", 2605 MAX_SKB_FRAGS); 2606 return -EFAULT; 2607 } 2608 2609 page = pgv_to_page(data); 2610 data += len; 2611 flush_dcache_page(page); 2612 get_page(page); 2613 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2614 to_write -= len; 2615 offset = 0; 2616 len_max = PAGE_SIZE; 2617 len = ((to_write > len_max) ? len_max : to_write); 2618 } 2619 2620 packet_parse_headers(skb, sock); 2621 2622 return tp_len; 2623 } 2624 2625 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2626 int size_max, void **data) 2627 { 2628 union tpacket_uhdr ph; 2629 int tp_len, off; 2630 2631 ph.raw = frame; 2632 2633 switch (po->tp_version) { 2634 case TPACKET_V3: 2635 if (ph.h3->tp_next_offset != 0) { 2636 pr_warn_once("variable sized slot not supported"); 2637 return -EINVAL; 2638 } 2639 tp_len = ph.h3->tp_len; 2640 break; 2641 case TPACKET_V2: 2642 tp_len = ph.h2->tp_len; 2643 break; 2644 default: 2645 tp_len = ph.h1->tp_len; 2646 break; 2647 } 2648 if (unlikely(tp_len > size_max)) { 2649 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2650 return -EMSGSIZE; 2651 } 2652 2653 if (unlikely(po->tp_tx_has_off)) { 2654 int off_min, off_max; 2655 2656 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2657 off_max = po->tx_ring.frame_size - tp_len; 2658 if (po->sk.sk_type == SOCK_DGRAM) { 2659 switch (po->tp_version) { 2660 case TPACKET_V3: 2661 off = ph.h3->tp_net; 2662 break; 2663 case TPACKET_V2: 2664 off = ph.h2->tp_net; 2665 break; 2666 default: 2667 off = ph.h1->tp_net; 2668 break; 2669 } 2670 } else { 2671 switch (po->tp_version) { 2672 case TPACKET_V3: 2673 off = ph.h3->tp_mac; 2674 break; 2675 case TPACKET_V2: 2676 off = ph.h2->tp_mac; 2677 break; 2678 default: 2679 off = ph.h1->tp_mac; 2680 break; 2681 } 2682 } 2683 if (unlikely((off < off_min) || (off_max < off))) 2684 return -EINVAL; 2685 } else { 2686 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2687 } 2688 2689 *data = frame + off; 2690 return tp_len; 2691 } 2692 2693 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2694 { 2695 struct sk_buff *skb = NULL; 2696 struct net_device *dev; 2697 struct virtio_net_hdr *vnet_hdr = NULL; 2698 struct sockcm_cookie sockc; 2699 __be16 proto; 2700 int err, reserve = 0; 2701 void *ph; 2702 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2703 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2704 unsigned char *addr = NULL; 2705 int tp_len, size_max; 2706 void *data; 2707 int len_sum = 0; 2708 int status = TP_STATUS_AVAILABLE; 2709 int hlen, tlen, copylen = 0; 2710 long timeo = 0; 2711 2712 mutex_lock(&po->pg_vec_lock); 2713 2714 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2715 * we need to confirm it under protection of pg_vec_lock. 2716 */ 2717 if (unlikely(!po->tx_ring.pg_vec)) { 2718 err = -EBUSY; 2719 goto out; 2720 } 2721 if (likely(saddr == NULL)) { 2722 dev = packet_cached_dev_get(po); 2723 proto = READ_ONCE(po->num); 2724 } else { 2725 err = -EINVAL; 2726 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2727 goto out; 2728 if (msg->msg_namelen < (saddr->sll_halen 2729 + offsetof(struct sockaddr_ll, 2730 sll_addr))) 2731 goto out; 2732 proto = saddr->sll_protocol; 2733 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2734 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2735 if (dev && msg->msg_namelen < dev->addr_len + 2736 offsetof(struct sockaddr_ll, sll_addr)) 2737 goto out_put; 2738 addr = saddr->sll_addr; 2739 } 2740 } 2741 2742 err = -ENXIO; 2743 if (unlikely(dev == NULL)) 2744 goto out; 2745 err = -ENETDOWN; 2746 if (unlikely(!(dev->flags & IFF_UP))) 2747 goto out_put; 2748 2749 sockcm_init(&sockc, &po->sk); 2750 if (msg->msg_controllen) { 2751 err = sock_cmsg_send(&po->sk, msg, &sockc); 2752 if (unlikely(err)) 2753 goto out_put; 2754 } 2755 2756 if (po->sk.sk_socket->type == SOCK_RAW) 2757 reserve = dev->hard_header_len; 2758 size_max = po->tx_ring.frame_size 2759 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2760 2761 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2762 size_max = dev->mtu + reserve + VLAN_HLEN; 2763 2764 reinit_completion(&po->skb_completion); 2765 2766 do { 2767 ph = packet_current_frame(po, &po->tx_ring, 2768 TP_STATUS_SEND_REQUEST); 2769 if (unlikely(ph == NULL)) { 2770 if (need_wait && skb) { 2771 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2772 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2773 if (timeo <= 0) { 2774 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2775 goto out_put; 2776 } 2777 } 2778 /* check for additional frames */ 2779 continue; 2780 } 2781 2782 skb = NULL; 2783 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2784 if (tp_len < 0) 2785 goto tpacket_error; 2786 2787 status = TP_STATUS_SEND_REQUEST; 2788 hlen = LL_RESERVED_SPACE(dev); 2789 tlen = dev->needed_tailroom; 2790 if (po->has_vnet_hdr) { 2791 vnet_hdr = data; 2792 data += sizeof(*vnet_hdr); 2793 tp_len -= sizeof(*vnet_hdr); 2794 if (tp_len < 0 || 2795 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2796 tp_len = -EINVAL; 2797 goto tpacket_error; 2798 } 2799 copylen = __virtio16_to_cpu(vio_le(), 2800 vnet_hdr->hdr_len); 2801 } 2802 copylen = max_t(int, copylen, dev->hard_header_len); 2803 skb = sock_alloc_send_skb(&po->sk, 2804 hlen + tlen + sizeof(struct sockaddr_ll) + 2805 (copylen - dev->hard_header_len), 2806 !need_wait, &err); 2807 2808 if (unlikely(skb == NULL)) { 2809 /* we assume the socket was initially writeable ... */ 2810 if (likely(len_sum > 0)) 2811 err = len_sum; 2812 goto out_status; 2813 } 2814 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2815 addr, hlen, copylen, &sockc); 2816 if (likely(tp_len >= 0) && 2817 tp_len > dev->mtu + reserve && 2818 !po->has_vnet_hdr && 2819 !packet_extra_vlan_len_allowed(dev, skb)) 2820 tp_len = -EMSGSIZE; 2821 2822 if (unlikely(tp_len < 0)) { 2823 tpacket_error: 2824 if (po->tp_loss) { 2825 __packet_set_status(po, ph, 2826 TP_STATUS_AVAILABLE); 2827 packet_increment_head(&po->tx_ring); 2828 kfree_skb(skb); 2829 continue; 2830 } else { 2831 status = TP_STATUS_WRONG_FORMAT; 2832 err = tp_len; 2833 goto out_status; 2834 } 2835 } 2836 2837 if (po->has_vnet_hdr) { 2838 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2839 tp_len = -EINVAL; 2840 goto tpacket_error; 2841 } 2842 virtio_net_hdr_set_proto(skb, vnet_hdr); 2843 } 2844 2845 skb->destructor = tpacket_destruct_skb; 2846 __packet_set_status(po, ph, TP_STATUS_SENDING); 2847 packet_inc_pending(&po->tx_ring); 2848 2849 status = TP_STATUS_SEND_REQUEST; 2850 err = po->xmit(skb); 2851 if (unlikely(err > 0)) { 2852 err = net_xmit_errno(err); 2853 if (err && __packet_get_status(po, ph) == 2854 TP_STATUS_AVAILABLE) { 2855 /* skb was destructed already */ 2856 skb = NULL; 2857 goto out_status; 2858 } 2859 /* 2860 * skb was dropped but not destructed yet; 2861 * let's treat it like congestion or err < 0 2862 */ 2863 err = 0; 2864 } 2865 packet_increment_head(&po->tx_ring); 2866 len_sum += tp_len; 2867 } while (likely((ph != NULL) || 2868 /* Note: packet_read_pending() might be slow if we have 2869 * to call it as it's per_cpu variable, but in fast-path 2870 * we already short-circuit the loop with the first 2871 * condition, and luckily don't have to go that path 2872 * anyway. 2873 */ 2874 (need_wait && packet_read_pending(&po->tx_ring)))); 2875 2876 err = len_sum; 2877 goto out_put; 2878 2879 out_status: 2880 __packet_set_status(po, ph, status); 2881 kfree_skb(skb); 2882 out_put: 2883 dev_put(dev); 2884 out: 2885 mutex_unlock(&po->pg_vec_lock); 2886 return err; 2887 } 2888 2889 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2890 size_t reserve, size_t len, 2891 size_t linear, int noblock, 2892 int *err) 2893 { 2894 struct sk_buff *skb; 2895 2896 /* Under a page? Don't bother with paged skb. */ 2897 if (prepad + len < PAGE_SIZE || !linear) 2898 linear = len; 2899 2900 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2901 err, 0); 2902 if (!skb) 2903 return NULL; 2904 2905 skb_reserve(skb, reserve); 2906 skb_put(skb, linear); 2907 skb->data_len = len - linear; 2908 skb->len += len - linear; 2909 2910 return skb; 2911 } 2912 2913 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2914 { 2915 struct sock *sk = sock->sk; 2916 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2917 struct sk_buff *skb; 2918 struct net_device *dev; 2919 __be16 proto; 2920 unsigned char *addr = NULL; 2921 int err, reserve = 0; 2922 struct sockcm_cookie sockc; 2923 struct virtio_net_hdr vnet_hdr = { 0 }; 2924 int offset = 0; 2925 struct packet_sock *po = pkt_sk(sk); 2926 bool has_vnet_hdr = false; 2927 int hlen, tlen, linear; 2928 int extra_len = 0; 2929 2930 /* 2931 * Get and verify the address. 2932 */ 2933 2934 if (likely(saddr == NULL)) { 2935 dev = packet_cached_dev_get(po); 2936 proto = READ_ONCE(po->num); 2937 } else { 2938 err = -EINVAL; 2939 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2940 goto out; 2941 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2942 goto out; 2943 proto = saddr->sll_protocol; 2944 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2945 if (sock->type == SOCK_DGRAM) { 2946 if (dev && msg->msg_namelen < dev->addr_len + 2947 offsetof(struct sockaddr_ll, sll_addr)) 2948 goto out_unlock; 2949 addr = saddr->sll_addr; 2950 } 2951 } 2952 2953 err = -ENXIO; 2954 if (unlikely(dev == NULL)) 2955 goto out_unlock; 2956 err = -ENETDOWN; 2957 if (unlikely(!(dev->flags & IFF_UP))) 2958 goto out_unlock; 2959 2960 sockcm_init(&sockc, sk); 2961 sockc.mark = sk->sk_mark; 2962 if (msg->msg_controllen) { 2963 err = sock_cmsg_send(sk, msg, &sockc); 2964 if (unlikely(err)) 2965 goto out_unlock; 2966 } 2967 2968 if (sock->type == SOCK_RAW) 2969 reserve = dev->hard_header_len; 2970 if (po->has_vnet_hdr) { 2971 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2972 if (err) 2973 goto out_unlock; 2974 has_vnet_hdr = true; 2975 } 2976 2977 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2978 if (!netif_supports_nofcs(dev)) { 2979 err = -EPROTONOSUPPORT; 2980 goto out_unlock; 2981 } 2982 extra_len = 4; /* We're doing our own CRC */ 2983 } 2984 2985 err = -EMSGSIZE; 2986 if (!vnet_hdr.gso_type && 2987 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2988 goto out_unlock; 2989 2990 err = -ENOBUFS; 2991 hlen = LL_RESERVED_SPACE(dev); 2992 tlen = dev->needed_tailroom; 2993 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2994 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2995 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2996 msg->msg_flags & MSG_DONTWAIT, &err); 2997 if (skb == NULL) 2998 goto out_unlock; 2999 3000 skb_reset_network_header(skb); 3001 3002 err = -EINVAL; 3003 if (sock->type == SOCK_DGRAM) { 3004 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3005 if (unlikely(offset < 0)) 3006 goto out_free; 3007 } else if (reserve) { 3008 skb_reserve(skb, -reserve); 3009 if (len < reserve + sizeof(struct ipv6hdr) && 3010 dev->min_header_len != dev->hard_header_len) 3011 skb_reset_network_header(skb); 3012 } 3013 3014 /* Returns -EFAULT on error */ 3015 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3016 if (err) 3017 goto out_free; 3018 3019 if (sock->type == SOCK_RAW && 3020 !dev_validate_header(dev, skb->data, len)) { 3021 err = -EINVAL; 3022 goto out_free; 3023 } 3024 3025 skb_setup_tx_timestamp(skb, sockc.tsflags); 3026 3027 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3028 !packet_extra_vlan_len_allowed(dev, skb)) { 3029 err = -EMSGSIZE; 3030 goto out_free; 3031 } 3032 3033 skb->protocol = proto; 3034 skb->dev = dev; 3035 skb->priority = sk->sk_priority; 3036 skb->mark = sockc.mark; 3037 skb->tstamp = sockc.transmit_time; 3038 3039 if (has_vnet_hdr) { 3040 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3041 if (err) 3042 goto out_free; 3043 len += sizeof(vnet_hdr); 3044 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3045 } 3046 3047 packet_parse_headers(skb, sock); 3048 3049 if (unlikely(extra_len == 4)) 3050 skb->no_fcs = 1; 3051 3052 err = po->xmit(skb); 3053 if (err > 0 && (err = net_xmit_errno(err)) != 0) 3054 goto out_unlock; 3055 3056 dev_put(dev); 3057 3058 return len; 3059 3060 out_free: 3061 kfree_skb(skb); 3062 out_unlock: 3063 dev_put(dev); 3064 out: 3065 return err; 3066 } 3067 3068 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3069 { 3070 struct sock *sk = sock->sk; 3071 struct packet_sock *po = pkt_sk(sk); 3072 3073 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3074 * tpacket_snd() will redo the check safely. 3075 */ 3076 if (data_race(po->tx_ring.pg_vec)) 3077 return tpacket_snd(po, msg); 3078 3079 return packet_snd(sock, msg, len); 3080 } 3081 3082 /* 3083 * Close a PACKET socket. This is fairly simple. We immediately go 3084 * to 'closed' state and remove our protocol entry in the device list. 3085 */ 3086 3087 static int packet_release(struct socket *sock) 3088 { 3089 struct sock *sk = sock->sk; 3090 struct packet_sock *po; 3091 struct packet_fanout *f; 3092 struct net *net; 3093 union tpacket_req_u req_u; 3094 3095 if (!sk) 3096 return 0; 3097 3098 net = sock_net(sk); 3099 po = pkt_sk(sk); 3100 3101 mutex_lock(&net->packet.sklist_lock); 3102 sk_del_node_init_rcu(sk); 3103 mutex_unlock(&net->packet.sklist_lock); 3104 3105 preempt_disable(); 3106 sock_prot_inuse_add(net, sk->sk_prot, -1); 3107 preempt_enable(); 3108 3109 spin_lock(&po->bind_lock); 3110 unregister_prot_hook(sk, false); 3111 packet_cached_dev_reset(po); 3112 3113 if (po->prot_hook.dev) { 3114 dev_put(po->prot_hook.dev); 3115 po->prot_hook.dev = NULL; 3116 } 3117 spin_unlock(&po->bind_lock); 3118 3119 packet_flush_mclist(sk); 3120 3121 lock_sock(sk); 3122 if (po->rx_ring.pg_vec) { 3123 memset(&req_u, 0, sizeof(req_u)); 3124 packet_set_ring(sk, &req_u, 1, 0); 3125 } 3126 3127 if (po->tx_ring.pg_vec) { 3128 memset(&req_u, 0, sizeof(req_u)); 3129 packet_set_ring(sk, &req_u, 1, 1); 3130 } 3131 release_sock(sk); 3132 3133 f = fanout_release(sk); 3134 3135 synchronize_net(); 3136 3137 kfree(po->rollover); 3138 if (f) { 3139 fanout_release_data(f); 3140 kvfree(f); 3141 } 3142 /* 3143 * Now the socket is dead. No more input will appear. 3144 */ 3145 sock_orphan(sk); 3146 sock->sk = NULL; 3147 3148 /* Purge queues */ 3149 3150 skb_queue_purge(&sk->sk_receive_queue); 3151 packet_free_pending(po); 3152 sk_refcnt_debug_release(sk); 3153 3154 sock_put(sk); 3155 return 0; 3156 } 3157 3158 /* 3159 * Attach a packet hook. 3160 */ 3161 3162 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3163 __be16 proto) 3164 { 3165 struct packet_sock *po = pkt_sk(sk); 3166 struct net_device *dev_curr; 3167 __be16 proto_curr; 3168 bool need_rehook; 3169 struct net_device *dev = NULL; 3170 int ret = 0; 3171 bool unlisted = false; 3172 3173 lock_sock(sk); 3174 spin_lock(&po->bind_lock); 3175 rcu_read_lock(); 3176 3177 if (po->fanout) { 3178 ret = -EINVAL; 3179 goto out_unlock; 3180 } 3181 3182 if (name) { 3183 dev = dev_get_by_name_rcu(sock_net(sk), name); 3184 if (!dev) { 3185 ret = -ENODEV; 3186 goto out_unlock; 3187 } 3188 } else if (ifindex) { 3189 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3190 if (!dev) { 3191 ret = -ENODEV; 3192 goto out_unlock; 3193 } 3194 } 3195 3196 dev_hold(dev); 3197 3198 proto_curr = po->prot_hook.type; 3199 dev_curr = po->prot_hook.dev; 3200 3201 need_rehook = proto_curr != proto || dev_curr != dev; 3202 3203 if (need_rehook) { 3204 if (po->running) { 3205 rcu_read_unlock(); 3206 /* prevents packet_notifier() from calling 3207 * register_prot_hook() 3208 */ 3209 WRITE_ONCE(po->num, 0); 3210 __unregister_prot_hook(sk, true); 3211 rcu_read_lock(); 3212 dev_curr = po->prot_hook.dev; 3213 if (dev) 3214 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3215 dev->ifindex); 3216 } 3217 3218 BUG_ON(po->running); 3219 WRITE_ONCE(po->num, proto); 3220 po->prot_hook.type = proto; 3221 3222 if (unlikely(unlisted)) { 3223 dev_put(dev); 3224 po->prot_hook.dev = NULL; 3225 WRITE_ONCE(po->ifindex, -1); 3226 packet_cached_dev_reset(po); 3227 } else { 3228 po->prot_hook.dev = dev; 3229 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3230 packet_cached_dev_assign(po, dev); 3231 } 3232 } 3233 dev_put(dev_curr); 3234 3235 if (proto == 0 || !need_rehook) 3236 goto out_unlock; 3237 3238 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3239 register_prot_hook(sk); 3240 } else { 3241 sk->sk_err = ENETDOWN; 3242 if (!sock_flag(sk, SOCK_DEAD)) 3243 sk_error_report(sk); 3244 } 3245 3246 out_unlock: 3247 rcu_read_unlock(); 3248 spin_unlock(&po->bind_lock); 3249 release_sock(sk); 3250 return ret; 3251 } 3252 3253 /* 3254 * Bind a packet socket to a device 3255 */ 3256 3257 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3258 int addr_len) 3259 { 3260 struct sock *sk = sock->sk; 3261 char name[sizeof(uaddr->sa_data) + 1]; 3262 3263 /* 3264 * Check legality 3265 */ 3266 3267 if (addr_len != sizeof(struct sockaddr)) 3268 return -EINVAL; 3269 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3270 * zero-terminated. 3271 */ 3272 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3273 name[sizeof(uaddr->sa_data)] = 0; 3274 3275 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3276 } 3277 3278 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3279 { 3280 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3281 struct sock *sk = sock->sk; 3282 3283 /* 3284 * Check legality 3285 */ 3286 3287 if (addr_len < sizeof(struct sockaddr_ll)) 3288 return -EINVAL; 3289 if (sll->sll_family != AF_PACKET) 3290 return -EINVAL; 3291 3292 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3293 sll->sll_protocol ? : pkt_sk(sk)->num); 3294 } 3295 3296 static struct proto packet_proto = { 3297 .name = "PACKET", 3298 .owner = THIS_MODULE, 3299 .obj_size = sizeof(struct packet_sock), 3300 }; 3301 3302 /* 3303 * Create a packet of type SOCK_PACKET. 3304 */ 3305 3306 static int packet_create(struct net *net, struct socket *sock, int protocol, 3307 int kern) 3308 { 3309 struct sock *sk; 3310 struct packet_sock *po; 3311 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3312 int err; 3313 3314 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3315 return -EPERM; 3316 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3317 sock->type != SOCK_PACKET) 3318 return -ESOCKTNOSUPPORT; 3319 3320 sock->state = SS_UNCONNECTED; 3321 3322 err = -ENOBUFS; 3323 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3324 if (sk == NULL) 3325 goto out; 3326 3327 sock->ops = &packet_ops; 3328 if (sock->type == SOCK_PACKET) 3329 sock->ops = &packet_ops_spkt; 3330 3331 sock_init_data(sock, sk); 3332 3333 po = pkt_sk(sk); 3334 init_completion(&po->skb_completion); 3335 sk->sk_family = PF_PACKET; 3336 po->num = proto; 3337 po->xmit = dev_queue_xmit; 3338 3339 err = packet_alloc_pending(po); 3340 if (err) 3341 goto out2; 3342 3343 packet_cached_dev_reset(po); 3344 3345 sk->sk_destruct = packet_sock_destruct; 3346 sk_refcnt_debug_inc(sk); 3347 3348 /* 3349 * Attach a protocol block 3350 */ 3351 3352 spin_lock_init(&po->bind_lock); 3353 mutex_init(&po->pg_vec_lock); 3354 po->rollover = NULL; 3355 po->prot_hook.func = packet_rcv; 3356 3357 if (sock->type == SOCK_PACKET) 3358 po->prot_hook.func = packet_rcv_spkt; 3359 3360 po->prot_hook.af_packet_priv = sk; 3361 3362 if (proto) { 3363 po->prot_hook.type = proto; 3364 __register_prot_hook(sk); 3365 } 3366 3367 mutex_lock(&net->packet.sklist_lock); 3368 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3369 mutex_unlock(&net->packet.sklist_lock); 3370 3371 preempt_disable(); 3372 sock_prot_inuse_add(net, &packet_proto, 1); 3373 preempt_enable(); 3374 3375 return 0; 3376 out2: 3377 sk_free(sk); 3378 out: 3379 return err; 3380 } 3381 3382 /* 3383 * Pull a packet from our receive queue and hand it to the user. 3384 * If necessary we block. 3385 */ 3386 3387 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3388 int flags) 3389 { 3390 struct sock *sk = sock->sk; 3391 struct sk_buff *skb; 3392 int copied, err; 3393 int vnet_hdr_len = 0; 3394 unsigned int origlen = 0; 3395 3396 err = -EINVAL; 3397 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3398 goto out; 3399 3400 #if 0 3401 /* What error should we return now? EUNATTACH? */ 3402 if (pkt_sk(sk)->ifindex < 0) 3403 return -ENODEV; 3404 #endif 3405 3406 if (flags & MSG_ERRQUEUE) { 3407 err = sock_recv_errqueue(sk, msg, len, 3408 SOL_PACKET, PACKET_TX_TIMESTAMP); 3409 goto out; 3410 } 3411 3412 /* 3413 * Call the generic datagram receiver. This handles all sorts 3414 * of horrible races and re-entrancy so we can forget about it 3415 * in the protocol layers. 3416 * 3417 * Now it will return ENETDOWN, if device have just gone down, 3418 * but then it will block. 3419 */ 3420 3421 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3422 3423 /* 3424 * An error occurred so return it. Because skb_recv_datagram() 3425 * handles the blocking we don't see and worry about blocking 3426 * retries. 3427 */ 3428 3429 if (skb == NULL) 3430 goto out; 3431 3432 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3433 3434 if (pkt_sk(sk)->has_vnet_hdr) { 3435 err = packet_rcv_vnet(msg, skb, &len); 3436 if (err) 3437 goto out_free; 3438 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3439 } 3440 3441 /* You lose any data beyond the buffer you gave. If it worries 3442 * a user program they can ask the device for its MTU 3443 * anyway. 3444 */ 3445 copied = skb->len; 3446 if (copied > len) { 3447 copied = len; 3448 msg->msg_flags |= MSG_TRUNC; 3449 } 3450 3451 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3452 if (err) 3453 goto out_free; 3454 3455 if (sock->type != SOCK_PACKET) { 3456 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3457 3458 /* Original length was stored in sockaddr_ll fields */ 3459 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3460 sll->sll_family = AF_PACKET; 3461 sll->sll_protocol = skb->protocol; 3462 } 3463 3464 sock_recv_ts_and_drops(msg, sk, skb); 3465 3466 if (msg->msg_name) { 3467 int copy_len; 3468 3469 /* If the address length field is there to be filled 3470 * in, we fill it in now. 3471 */ 3472 if (sock->type == SOCK_PACKET) { 3473 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3474 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3475 copy_len = msg->msg_namelen; 3476 } else { 3477 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3478 3479 msg->msg_namelen = sll->sll_halen + 3480 offsetof(struct sockaddr_ll, sll_addr); 3481 copy_len = msg->msg_namelen; 3482 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3483 memset(msg->msg_name + 3484 offsetof(struct sockaddr_ll, sll_addr), 3485 0, sizeof(sll->sll_addr)); 3486 msg->msg_namelen = sizeof(struct sockaddr_ll); 3487 } 3488 } 3489 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3490 } 3491 3492 if (pkt_sk(sk)->auxdata) { 3493 struct tpacket_auxdata aux; 3494 3495 aux.tp_status = TP_STATUS_USER; 3496 if (skb->ip_summed == CHECKSUM_PARTIAL) 3497 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3498 else if (skb->pkt_type != PACKET_OUTGOING && 3499 (skb->ip_summed == CHECKSUM_COMPLETE || 3500 skb_csum_unnecessary(skb))) 3501 aux.tp_status |= TP_STATUS_CSUM_VALID; 3502 3503 aux.tp_len = origlen; 3504 aux.tp_snaplen = skb->len; 3505 aux.tp_mac = 0; 3506 aux.tp_net = skb_network_offset(skb); 3507 if (skb_vlan_tag_present(skb)) { 3508 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3509 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3510 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3511 } else { 3512 aux.tp_vlan_tci = 0; 3513 aux.tp_vlan_tpid = 0; 3514 } 3515 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3516 } 3517 3518 /* 3519 * Free or return the buffer as appropriate. Again this 3520 * hides all the races and re-entrancy issues from us. 3521 */ 3522 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3523 3524 out_free: 3525 skb_free_datagram(sk, skb); 3526 out: 3527 return err; 3528 } 3529 3530 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3531 int peer) 3532 { 3533 struct net_device *dev; 3534 struct sock *sk = sock->sk; 3535 3536 if (peer) 3537 return -EOPNOTSUPP; 3538 3539 uaddr->sa_family = AF_PACKET; 3540 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3541 rcu_read_lock(); 3542 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3543 if (dev) 3544 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3545 rcu_read_unlock(); 3546 3547 return sizeof(*uaddr); 3548 } 3549 3550 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3551 int peer) 3552 { 3553 struct net_device *dev; 3554 struct sock *sk = sock->sk; 3555 struct packet_sock *po = pkt_sk(sk); 3556 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3557 int ifindex; 3558 3559 if (peer) 3560 return -EOPNOTSUPP; 3561 3562 ifindex = READ_ONCE(po->ifindex); 3563 sll->sll_family = AF_PACKET; 3564 sll->sll_ifindex = ifindex; 3565 sll->sll_protocol = READ_ONCE(po->num); 3566 sll->sll_pkttype = 0; 3567 rcu_read_lock(); 3568 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3569 if (dev) { 3570 sll->sll_hatype = dev->type; 3571 sll->sll_halen = dev->addr_len; 3572 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3573 } else { 3574 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3575 sll->sll_halen = 0; 3576 } 3577 rcu_read_unlock(); 3578 3579 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3580 } 3581 3582 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3583 int what) 3584 { 3585 switch (i->type) { 3586 case PACKET_MR_MULTICAST: 3587 if (i->alen != dev->addr_len) 3588 return -EINVAL; 3589 if (what > 0) 3590 return dev_mc_add(dev, i->addr); 3591 else 3592 return dev_mc_del(dev, i->addr); 3593 break; 3594 case PACKET_MR_PROMISC: 3595 return dev_set_promiscuity(dev, what); 3596 case PACKET_MR_ALLMULTI: 3597 return dev_set_allmulti(dev, what); 3598 case PACKET_MR_UNICAST: 3599 if (i->alen != dev->addr_len) 3600 return -EINVAL; 3601 if (what > 0) 3602 return dev_uc_add(dev, i->addr); 3603 else 3604 return dev_uc_del(dev, i->addr); 3605 break; 3606 default: 3607 break; 3608 } 3609 return 0; 3610 } 3611 3612 static void packet_dev_mclist_delete(struct net_device *dev, 3613 struct packet_mclist **mlp) 3614 { 3615 struct packet_mclist *ml; 3616 3617 while ((ml = *mlp) != NULL) { 3618 if (ml->ifindex == dev->ifindex) { 3619 packet_dev_mc(dev, ml, -1); 3620 *mlp = ml->next; 3621 kfree(ml); 3622 } else 3623 mlp = &ml->next; 3624 } 3625 } 3626 3627 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3628 { 3629 struct packet_sock *po = pkt_sk(sk); 3630 struct packet_mclist *ml, *i; 3631 struct net_device *dev; 3632 int err; 3633 3634 rtnl_lock(); 3635 3636 err = -ENODEV; 3637 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3638 if (!dev) 3639 goto done; 3640 3641 err = -EINVAL; 3642 if (mreq->mr_alen > dev->addr_len) 3643 goto done; 3644 3645 err = -ENOBUFS; 3646 i = kmalloc(sizeof(*i), GFP_KERNEL); 3647 if (i == NULL) 3648 goto done; 3649 3650 err = 0; 3651 for (ml = po->mclist; ml; ml = ml->next) { 3652 if (ml->ifindex == mreq->mr_ifindex && 3653 ml->type == mreq->mr_type && 3654 ml->alen == mreq->mr_alen && 3655 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3656 ml->count++; 3657 /* Free the new element ... */ 3658 kfree(i); 3659 goto done; 3660 } 3661 } 3662 3663 i->type = mreq->mr_type; 3664 i->ifindex = mreq->mr_ifindex; 3665 i->alen = mreq->mr_alen; 3666 memcpy(i->addr, mreq->mr_address, i->alen); 3667 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3668 i->count = 1; 3669 i->next = po->mclist; 3670 po->mclist = i; 3671 err = packet_dev_mc(dev, i, 1); 3672 if (err) { 3673 po->mclist = i->next; 3674 kfree(i); 3675 } 3676 3677 done: 3678 rtnl_unlock(); 3679 return err; 3680 } 3681 3682 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3683 { 3684 struct packet_mclist *ml, **mlp; 3685 3686 rtnl_lock(); 3687 3688 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3689 if (ml->ifindex == mreq->mr_ifindex && 3690 ml->type == mreq->mr_type && 3691 ml->alen == mreq->mr_alen && 3692 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3693 if (--ml->count == 0) { 3694 struct net_device *dev; 3695 *mlp = ml->next; 3696 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3697 if (dev) 3698 packet_dev_mc(dev, ml, -1); 3699 kfree(ml); 3700 } 3701 break; 3702 } 3703 } 3704 rtnl_unlock(); 3705 return 0; 3706 } 3707 3708 static void packet_flush_mclist(struct sock *sk) 3709 { 3710 struct packet_sock *po = pkt_sk(sk); 3711 struct packet_mclist *ml; 3712 3713 if (!po->mclist) 3714 return; 3715 3716 rtnl_lock(); 3717 while ((ml = po->mclist) != NULL) { 3718 struct net_device *dev; 3719 3720 po->mclist = ml->next; 3721 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3722 if (dev != NULL) 3723 packet_dev_mc(dev, ml, -1); 3724 kfree(ml); 3725 } 3726 rtnl_unlock(); 3727 } 3728 3729 static int 3730 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3731 unsigned int optlen) 3732 { 3733 struct sock *sk = sock->sk; 3734 struct packet_sock *po = pkt_sk(sk); 3735 int ret; 3736 3737 if (level != SOL_PACKET) 3738 return -ENOPROTOOPT; 3739 3740 switch (optname) { 3741 case PACKET_ADD_MEMBERSHIP: 3742 case PACKET_DROP_MEMBERSHIP: 3743 { 3744 struct packet_mreq_max mreq; 3745 int len = optlen; 3746 memset(&mreq, 0, sizeof(mreq)); 3747 if (len < sizeof(struct packet_mreq)) 3748 return -EINVAL; 3749 if (len > sizeof(mreq)) 3750 len = sizeof(mreq); 3751 if (copy_from_sockptr(&mreq, optval, len)) 3752 return -EFAULT; 3753 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3754 return -EINVAL; 3755 if (optname == PACKET_ADD_MEMBERSHIP) 3756 ret = packet_mc_add(sk, &mreq); 3757 else 3758 ret = packet_mc_drop(sk, &mreq); 3759 return ret; 3760 } 3761 3762 case PACKET_RX_RING: 3763 case PACKET_TX_RING: 3764 { 3765 union tpacket_req_u req_u; 3766 int len; 3767 3768 lock_sock(sk); 3769 switch (po->tp_version) { 3770 case TPACKET_V1: 3771 case TPACKET_V2: 3772 len = sizeof(req_u.req); 3773 break; 3774 case TPACKET_V3: 3775 default: 3776 len = sizeof(req_u.req3); 3777 break; 3778 } 3779 if (optlen < len) { 3780 ret = -EINVAL; 3781 } else { 3782 if (copy_from_sockptr(&req_u.req, optval, len)) 3783 ret = -EFAULT; 3784 else 3785 ret = packet_set_ring(sk, &req_u, 0, 3786 optname == PACKET_TX_RING); 3787 } 3788 release_sock(sk); 3789 return ret; 3790 } 3791 case PACKET_COPY_THRESH: 3792 { 3793 int val; 3794 3795 if (optlen != sizeof(val)) 3796 return -EINVAL; 3797 if (copy_from_sockptr(&val, optval, sizeof(val))) 3798 return -EFAULT; 3799 3800 pkt_sk(sk)->copy_thresh = val; 3801 return 0; 3802 } 3803 case PACKET_VERSION: 3804 { 3805 int val; 3806 3807 if (optlen != sizeof(val)) 3808 return -EINVAL; 3809 if (copy_from_sockptr(&val, optval, sizeof(val))) 3810 return -EFAULT; 3811 switch (val) { 3812 case TPACKET_V1: 3813 case TPACKET_V2: 3814 case TPACKET_V3: 3815 break; 3816 default: 3817 return -EINVAL; 3818 } 3819 lock_sock(sk); 3820 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3821 ret = -EBUSY; 3822 } else { 3823 po->tp_version = val; 3824 ret = 0; 3825 } 3826 release_sock(sk); 3827 return ret; 3828 } 3829 case PACKET_RESERVE: 3830 { 3831 unsigned int val; 3832 3833 if (optlen != sizeof(val)) 3834 return -EINVAL; 3835 if (copy_from_sockptr(&val, optval, sizeof(val))) 3836 return -EFAULT; 3837 if (val > INT_MAX) 3838 return -EINVAL; 3839 lock_sock(sk); 3840 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3841 ret = -EBUSY; 3842 } else { 3843 po->tp_reserve = val; 3844 ret = 0; 3845 } 3846 release_sock(sk); 3847 return ret; 3848 } 3849 case PACKET_LOSS: 3850 { 3851 unsigned int val; 3852 3853 if (optlen != sizeof(val)) 3854 return -EINVAL; 3855 if (copy_from_sockptr(&val, optval, sizeof(val))) 3856 return -EFAULT; 3857 3858 lock_sock(sk); 3859 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3860 ret = -EBUSY; 3861 } else { 3862 po->tp_loss = !!val; 3863 ret = 0; 3864 } 3865 release_sock(sk); 3866 return ret; 3867 } 3868 case PACKET_AUXDATA: 3869 { 3870 int val; 3871 3872 if (optlen < sizeof(val)) 3873 return -EINVAL; 3874 if (copy_from_sockptr(&val, optval, sizeof(val))) 3875 return -EFAULT; 3876 3877 lock_sock(sk); 3878 po->auxdata = !!val; 3879 release_sock(sk); 3880 return 0; 3881 } 3882 case PACKET_ORIGDEV: 3883 { 3884 int val; 3885 3886 if (optlen < sizeof(val)) 3887 return -EINVAL; 3888 if (copy_from_sockptr(&val, optval, sizeof(val))) 3889 return -EFAULT; 3890 3891 lock_sock(sk); 3892 po->origdev = !!val; 3893 release_sock(sk); 3894 return 0; 3895 } 3896 case PACKET_VNET_HDR: 3897 { 3898 int val; 3899 3900 if (sock->type != SOCK_RAW) 3901 return -EINVAL; 3902 if (optlen < sizeof(val)) 3903 return -EINVAL; 3904 if (copy_from_sockptr(&val, optval, sizeof(val))) 3905 return -EFAULT; 3906 3907 lock_sock(sk); 3908 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3909 ret = -EBUSY; 3910 } else { 3911 po->has_vnet_hdr = !!val; 3912 ret = 0; 3913 } 3914 release_sock(sk); 3915 return ret; 3916 } 3917 case PACKET_TIMESTAMP: 3918 { 3919 int val; 3920 3921 if (optlen != sizeof(val)) 3922 return -EINVAL; 3923 if (copy_from_sockptr(&val, optval, sizeof(val))) 3924 return -EFAULT; 3925 3926 po->tp_tstamp = val; 3927 return 0; 3928 } 3929 case PACKET_FANOUT: 3930 { 3931 struct fanout_args args = { 0 }; 3932 3933 if (optlen != sizeof(int) && optlen != sizeof(args)) 3934 return -EINVAL; 3935 if (copy_from_sockptr(&args, optval, optlen)) 3936 return -EFAULT; 3937 3938 return fanout_add(sk, &args); 3939 } 3940 case PACKET_FANOUT_DATA: 3941 { 3942 if (!po->fanout) 3943 return -EINVAL; 3944 3945 return fanout_set_data(po, optval, optlen); 3946 } 3947 case PACKET_IGNORE_OUTGOING: 3948 { 3949 int val; 3950 3951 if (optlen != sizeof(val)) 3952 return -EINVAL; 3953 if (copy_from_sockptr(&val, optval, sizeof(val))) 3954 return -EFAULT; 3955 if (val < 0 || val > 1) 3956 return -EINVAL; 3957 3958 po->prot_hook.ignore_outgoing = !!val; 3959 return 0; 3960 } 3961 case PACKET_TX_HAS_OFF: 3962 { 3963 unsigned int val; 3964 3965 if (optlen != sizeof(val)) 3966 return -EINVAL; 3967 if (copy_from_sockptr(&val, optval, sizeof(val))) 3968 return -EFAULT; 3969 3970 lock_sock(sk); 3971 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3972 po->tp_tx_has_off = !!val; 3973 3974 release_sock(sk); 3975 return 0; 3976 } 3977 case PACKET_QDISC_BYPASS: 3978 { 3979 int val; 3980 3981 if (optlen != sizeof(val)) 3982 return -EINVAL; 3983 if (copy_from_sockptr(&val, optval, sizeof(val))) 3984 return -EFAULT; 3985 3986 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3987 return 0; 3988 } 3989 default: 3990 return -ENOPROTOOPT; 3991 } 3992 } 3993 3994 static int packet_getsockopt(struct socket *sock, int level, int optname, 3995 char __user *optval, int __user *optlen) 3996 { 3997 int len; 3998 int val, lv = sizeof(val); 3999 struct sock *sk = sock->sk; 4000 struct packet_sock *po = pkt_sk(sk); 4001 void *data = &val; 4002 union tpacket_stats_u st; 4003 struct tpacket_rollover_stats rstats; 4004 int drops; 4005 4006 if (level != SOL_PACKET) 4007 return -ENOPROTOOPT; 4008 4009 if (get_user(len, optlen)) 4010 return -EFAULT; 4011 4012 if (len < 0) 4013 return -EINVAL; 4014 4015 switch (optname) { 4016 case PACKET_STATISTICS: 4017 spin_lock_bh(&sk->sk_receive_queue.lock); 4018 memcpy(&st, &po->stats, sizeof(st)); 4019 memset(&po->stats, 0, sizeof(po->stats)); 4020 spin_unlock_bh(&sk->sk_receive_queue.lock); 4021 drops = atomic_xchg(&po->tp_drops, 0); 4022 4023 if (po->tp_version == TPACKET_V3) { 4024 lv = sizeof(struct tpacket_stats_v3); 4025 st.stats3.tp_drops = drops; 4026 st.stats3.tp_packets += drops; 4027 data = &st.stats3; 4028 } else { 4029 lv = sizeof(struct tpacket_stats); 4030 st.stats1.tp_drops = drops; 4031 st.stats1.tp_packets += drops; 4032 data = &st.stats1; 4033 } 4034 4035 break; 4036 case PACKET_AUXDATA: 4037 val = po->auxdata; 4038 break; 4039 case PACKET_ORIGDEV: 4040 val = po->origdev; 4041 break; 4042 case PACKET_VNET_HDR: 4043 val = po->has_vnet_hdr; 4044 break; 4045 case PACKET_VERSION: 4046 val = po->tp_version; 4047 break; 4048 case PACKET_HDRLEN: 4049 if (len > sizeof(int)) 4050 len = sizeof(int); 4051 if (len < sizeof(int)) 4052 return -EINVAL; 4053 if (copy_from_user(&val, optval, len)) 4054 return -EFAULT; 4055 switch (val) { 4056 case TPACKET_V1: 4057 val = sizeof(struct tpacket_hdr); 4058 break; 4059 case TPACKET_V2: 4060 val = sizeof(struct tpacket2_hdr); 4061 break; 4062 case TPACKET_V3: 4063 val = sizeof(struct tpacket3_hdr); 4064 break; 4065 default: 4066 return -EINVAL; 4067 } 4068 break; 4069 case PACKET_RESERVE: 4070 val = po->tp_reserve; 4071 break; 4072 case PACKET_LOSS: 4073 val = po->tp_loss; 4074 break; 4075 case PACKET_TIMESTAMP: 4076 val = po->tp_tstamp; 4077 break; 4078 case PACKET_FANOUT: 4079 val = (po->fanout ? 4080 ((u32)po->fanout->id | 4081 ((u32)po->fanout->type << 16) | 4082 ((u32)po->fanout->flags << 24)) : 4083 0); 4084 break; 4085 case PACKET_IGNORE_OUTGOING: 4086 val = po->prot_hook.ignore_outgoing; 4087 break; 4088 case PACKET_ROLLOVER_STATS: 4089 if (!po->rollover) 4090 return -EINVAL; 4091 rstats.tp_all = atomic_long_read(&po->rollover->num); 4092 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4093 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4094 data = &rstats; 4095 lv = sizeof(rstats); 4096 break; 4097 case PACKET_TX_HAS_OFF: 4098 val = po->tp_tx_has_off; 4099 break; 4100 case PACKET_QDISC_BYPASS: 4101 val = packet_use_direct_xmit(po); 4102 break; 4103 default: 4104 return -ENOPROTOOPT; 4105 } 4106 4107 if (len > lv) 4108 len = lv; 4109 if (put_user(len, optlen)) 4110 return -EFAULT; 4111 if (copy_to_user(optval, data, len)) 4112 return -EFAULT; 4113 return 0; 4114 } 4115 4116 static int packet_notifier(struct notifier_block *this, 4117 unsigned long msg, void *ptr) 4118 { 4119 struct sock *sk; 4120 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4121 struct net *net = dev_net(dev); 4122 4123 rcu_read_lock(); 4124 sk_for_each_rcu(sk, &net->packet.sklist) { 4125 struct packet_sock *po = pkt_sk(sk); 4126 4127 switch (msg) { 4128 case NETDEV_UNREGISTER: 4129 if (po->mclist) 4130 packet_dev_mclist_delete(dev, &po->mclist); 4131 fallthrough; 4132 4133 case NETDEV_DOWN: 4134 if (dev->ifindex == po->ifindex) { 4135 spin_lock(&po->bind_lock); 4136 if (po->running) { 4137 __unregister_prot_hook(sk, false); 4138 sk->sk_err = ENETDOWN; 4139 if (!sock_flag(sk, SOCK_DEAD)) 4140 sk_error_report(sk); 4141 } 4142 if (msg == NETDEV_UNREGISTER) { 4143 packet_cached_dev_reset(po); 4144 WRITE_ONCE(po->ifindex, -1); 4145 dev_put(po->prot_hook.dev); 4146 po->prot_hook.dev = NULL; 4147 } 4148 spin_unlock(&po->bind_lock); 4149 } 4150 break; 4151 case NETDEV_UP: 4152 if (dev->ifindex == po->ifindex) { 4153 spin_lock(&po->bind_lock); 4154 if (po->num) 4155 register_prot_hook(sk); 4156 spin_unlock(&po->bind_lock); 4157 } 4158 break; 4159 } 4160 } 4161 rcu_read_unlock(); 4162 return NOTIFY_DONE; 4163 } 4164 4165 4166 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4167 unsigned long arg) 4168 { 4169 struct sock *sk = sock->sk; 4170 4171 switch (cmd) { 4172 case SIOCOUTQ: 4173 { 4174 int amount = sk_wmem_alloc_get(sk); 4175 4176 return put_user(amount, (int __user *)arg); 4177 } 4178 case SIOCINQ: 4179 { 4180 struct sk_buff *skb; 4181 int amount = 0; 4182 4183 spin_lock_bh(&sk->sk_receive_queue.lock); 4184 skb = skb_peek(&sk->sk_receive_queue); 4185 if (skb) 4186 amount = skb->len; 4187 spin_unlock_bh(&sk->sk_receive_queue.lock); 4188 return put_user(amount, (int __user *)arg); 4189 } 4190 #ifdef CONFIG_INET 4191 case SIOCADDRT: 4192 case SIOCDELRT: 4193 case SIOCDARP: 4194 case SIOCGARP: 4195 case SIOCSARP: 4196 case SIOCGIFADDR: 4197 case SIOCSIFADDR: 4198 case SIOCGIFBRDADDR: 4199 case SIOCSIFBRDADDR: 4200 case SIOCGIFNETMASK: 4201 case SIOCSIFNETMASK: 4202 case SIOCGIFDSTADDR: 4203 case SIOCSIFDSTADDR: 4204 case SIOCSIFFLAGS: 4205 return inet_dgram_ops.ioctl(sock, cmd, arg); 4206 #endif 4207 4208 default: 4209 return -ENOIOCTLCMD; 4210 } 4211 return 0; 4212 } 4213 4214 static __poll_t packet_poll(struct file *file, struct socket *sock, 4215 poll_table *wait) 4216 { 4217 struct sock *sk = sock->sk; 4218 struct packet_sock *po = pkt_sk(sk); 4219 __poll_t mask = datagram_poll(file, sock, wait); 4220 4221 spin_lock_bh(&sk->sk_receive_queue.lock); 4222 if (po->rx_ring.pg_vec) { 4223 if (!packet_previous_rx_frame(po, &po->rx_ring, 4224 TP_STATUS_KERNEL)) 4225 mask |= EPOLLIN | EPOLLRDNORM; 4226 } 4227 packet_rcv_try_clear_pressure(po); 4228 spin_unlock_bh(&sk->sk_receive_queue.lock); 4229 spin_lock_bh(&sk->sk_write_queue.lock); 4230 if (po->tx_ring.pg_vec) { 4231 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4232 mask |= EPOLLOUT | EPOLLWRNORM; 4233 } 4234 spin_unlock_bh(&sk->sk_write_queue.lock); 4235 return mask; 4236 } 4237 4238 4239 /* Dirty? Well, I still did not learn better way to account 4240 * for user mmaps. 4241 */ 4242 4243 static void packet_mm_open(struct vm_area_struct *vma) 4244 { 4245 struct file *file = vma->vm_file; 4246 struct socket *sock = file->private_data; 4247 struct sock *sk = sock->sk; 4248 4249 if (sk) 4250 atomic_inc(&pkt_sk(sk)->mapped); 4251 } 4252 4253 static void packet_mm_close(struct vm_area_struct *vma) 4254 { 4255 struct file *file = vma->vm_file; 4256 struct socket *sock = file->private_data; 4257 struct sock *sk = sock->sk; 4258 4259 if (sk) 4260 atomic_dec(&pkt_sk(sk)->mapped); 4261 } 4262 4263 static const struct vm_operations_struct packet_mmap_ops = { 4264 .open = packet_mm_open, 4265 .close = packet_mm_close, 4266 }; 4267 4268 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4269 unsigned int len) 4270 { 4271 int i; 4272 4273 for (i = 0; i < len; i++) { 4274 if (likely(pg_vec[i].buffer)) { 4275 if (is_vmalloc_addr(pg_vec[i].buffer)) 4276 vfree(pg_vec[i].buffer); 4277 else 4278 free_pages((unsigned long)pg_vec[i].buffer, 4279 order); 4280 pg_vec[i].buffer = NULL; 4281 } 4282 } 4283 kfree(pg_vec); 4284 } 4285 4286 static char *alloc_one_pg_vec_page(unsigned long order) 4287 { 4288 char *buffer; 4289 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4290 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4291 4292 buffer = (char *) __get_free_pages(gfp_flags, order); 4293 if (buffer) 4294 return buffer; 4295 4296 /* __get_free_pages failed, fall back to vmalloc */ 4297 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4298 if (buffer) 4299 return buffer; 4300 4301 /* vmalloc failed, lets dig into swap here */ 4302 gfp_flags &= ~__GFP_NORETRY; 4303 buffer = (char *) __get_free_pages(gfp_flags, order); 4304 if (buffer) 4305 return buffer; 4306 4307 /* complete and utter failure */ 4308 return NULL; 4309 } 4310 4311 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4312 { 4313 unsigned int block_nr = req->tp_block_nr; 4314 struct pgv *pg_vec; 4315 int i; 4316 4317 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4318 if (unlikely(!pg_vec)) 4319 goto out; 4320 4321 for (i = 0; i < block_nr; i++) { 4322 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4323 if (unlikely(!pg_vec[i].buffer)) 4324 goto out_free_pgvec; 4325 } 4326 4327 out: 4328 return pg_vec; 4329 4330 out_free_pgvec: 4331 free_pg_vec(pg_vec, order, block_nr); 4332 pg_vec = NULL; 4333 goto out; 4334 } 4335 4336 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4337 int closing, int tx_ring) 4338 { 4339 struct pgv *pg_vec = NULL; 4340 struct packet_sock *po = pkt_sk(sk); 4341 unsigned long *rx_owner_map = NULL; 4342 int was_running, order = 0; 4343 struct packet_ring_buffer *rb; 4344 struct sk_buff_head *rb_queue; 4345 __be16 num; 4346 int err; 4347 /* Added to avoid minimal code churn */ 4348 struct tpacket_req *req = &req_u->req; 4349 4350 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4351 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4352 4353 err = -EBUSY; 4354 if (!closing) { 4355 if (atomic_read(&po->mapped)) 4356 goto out; 4357 if (packet_read_pending(rb)) 4358 goto out; 4359 } 4360 4361 if (req->tp_block_nr) { 4362 unsigned int min_frame_size; 4363 4364 /* Sanity tests and some calculations */ 4365 err = -EBUSY; 4366 if (unlikely(rb->pg_vec)) 4367 goto out; 4368 4369 switch (po->tp_version) { 4370 case TPACKET_V1: 4371 po->tp_hdrlen = TPACKET_HDRLEN; 4372 break; 4373 case TPACKET_V2: 4374 po->tp_hdrlen = TPACKET2_HDRLEN; 4375 break; 4376 case TPACKET_V3: 4377 po->tp_hdrlen = TPACKET3_HDRLEN; 4378 break; 4379 } 4380 4381 err = -EINVAL; 4382 if (unlikely((int)req->tp_block_size <= 0)) 4383 goto out; 4384 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4385 goto out; 4386 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4387 if (po->tp_version >= TPACKET_V3 && 4388 req->tp_block_size < 4389 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4390 goto out; 4391 if (unlikely(req->tp_frame_size < min_frame_size)) 4392 goto out; 4393 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4394 goto out; 4395 4396 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4397 if (unlikely(rb->frames_per_block == 0)) 4398 goto out; 4399 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4400 goto out; 4401 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4402 req->tp_frame_nr)) 4403 goto out; 4404 4405 err = -ENOMEM; 4406 order = get_order(req->tp_block_size); 4407 pg_vec = alloc_pg_vec(req, order); 4408 if (unlikely(!pg_vec)) 4409 goto out; 4410 switch (po->tp_version) { 4411 case TPACKET_V3: 4412 /* Block transmit is not supported yet */ 4413 if (!tx_ring) { 4414 init_prb_bdqc(po, rb, pg_vec, req_u); 4415 } else { 4416 struct tpacket_req3 *req3 = &req_u->req3; 4417 4418 if (req3->tp_retire_blk_tov || 4419 req3->tp_sizeof_priv || 4420 req3->tp_feature_req_word) { 4421 err = -EINVAL; 4422 goto out_free_pg_vec; 4423 } 4424 } 4425 break; 4426 default: 4427 if (!tx_ring) { 4428 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4429 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4430 if (!rx_owner_map) 4431 goto out_free_pg_vec; 4432 } 4433 break; 4434 } 4435 } 4436 /* Done */ 4437 else { 4438 err = -EINVAL; 4439 if (unlikely(req->tp_frame_nr)) 4440 goto out; 4441 } 4442 4443 4444 /* Detach socket from network */ 4445 spin_lock(&po->bind_lock); 4446 was_running = po->running; 4447 num = po->num; 4448 if (was_running) { 4449 WRITE_ONCE(po->num, 0); 4450 __unregister_prot_hook(sk, false); 4451 } 4452 spin_unlock(&po->bind_lock); 4453 4454 synchronize_net(); 4455 4456 err = -EBUSY; 4457 mutex_lock(&po->pg_vec_lock); 4458 if (closing || atomic_read(&po->mapped) == 0) { 4459 err = 0; 4460 spin_lock_bh(&rb_queue->lock); 4461 swap(rb->pg_vec, pg_vec); 4462 if (po->tp_version <= TPACKET_V2) 4463 swap(rb->rx_owner_map, rx_owner_map); 4464 rb->frame_max = (req->tp_frame_nr - 1); 4465 rb->head = 0; 4466 rb->frame_size = req->tp_frame_size; 4467 spin_unlock_bh(&rb_queue->lock); 4468 4469 swap(rb->pg_vec_order, order); 4470 swap(rb->pg_vec_len, req->tp_block_nr); 4471 4472 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4473 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4474 tpacket_rcv : packet_rcv; 4475 skb_queue_purge(rb_queue); 4476 if (atomic_read(&po->mapped)) 4477 pr_err("packet_mmap: vma is busy: %d\n", 4478 atomic_read(&po->mapped)); 4479 } 4480 mutex_unlock(&po->pg_vec_lock); 4481 4482 spin_lock(&po->bind_lock); 4483 if (was_running) { 4484 WRITE_ONCE(po->num, num); 4485 register_prot_hook(sk); 4486 } 4487 spin_unlock(&po->bind_lock); 4488 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4489 /* Because we don't support block-based V3 on tx-ring */ 4490 if (!tx_ring) 4491 prb_shutdown_retire_blk_timer(po, rb_queue); 4492 } 4493 4494 out_free_pg_vec: 4495 if (pg_vec) { 4496 bitmap_free(rx_owner_map); 4497 free_pg_vec(pg_vec, order, req->tp_block_nr); 4498 } 4499 out: 4500 return err; 4501 } 4502 4503 static int packet_mmap(struct file *file, struct socket *sock, 4504 struct vm_area_struct *vma) 4505 { 4506 struct sock *sk = sock->sk; 4507 struct packet_sock *po = pkt_sk(sk); 4508 unsigned long size, expected_size; 4509 struct packet_ring_buffer *rb; 4510 unsigned long start; 4511 int err = -EINVAL; 4512 int i; 4513 4514 if (vma->vm_pgoff) 4515 return -EINVAL; 4516 4517 mutex_lock(&po->pg_vec_lock); 4518 4519 expected_size = 0; 4520 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4521 if (rb->pg_vec) { 4522 expected_size += rb->pg_vec_len 4523 * rb->pg_vec_pages 4524 * PAGE_SIZE; 4525 } 4526 } 4527 4528 if (expected_size == 0) 4529 goto out; 4530 4531 size = vma->vm_end - vma->vm_start; 4532 if (size != expected_size) 4533 goto out; 4534 4535 start = vma->vm_start; 4536 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4537 if (rb->pg_vec == NULL) 4538 continue; 4539 4540 for (i = 0; i < rb->pg_vec_len; i++) { 4541 struct page *page; 4542 void *kaddr = rb->pg_vec[i].buffer; 4543 int pg_num; 4544 4545 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4546 page = pgv_to_page(kaddr); 4547 err = vm_insert_page(vma, start, page); 4548 if (unlikely(err)) 4549 goto out; 4550 start += PAGE_SIZE; 4551 kaddr += PAGE_SIZE; 4552 } 4553 } 4554 } 4555 4556 atomic_inc(&po->mapped); 4557 vma->vm_ops = &packet_mmap_ops; 4558 err = 0; 4559 4560 out: 4561 mutex_unlock(&po->pg_vec_lock); 4562 return err; 4563 } 4564 4565 static const struct proto_ops packet_ops_spkt = { 4566 .family = PF_PACKET, 4567 .owner = THIS_MODULE, 4568 .release = packet_release, 4569 .bind = packet_bind_spkt, 4570 .connect = sock_no_connect, 4571 .socketpair = sock_no_socketpair, 4572 .accept = sock_no_accept, 4573 .getname = packet_getname_spkt, 4574 .poll = datagram_poll, 4575 .ioctl = packet_ioctl, 4576 .gettstamp = sock_gettstamp, 4577 .listen = sock_no_listen, 4578 .shutdown = sock_no_shutdown, 4579 .sendmsg = packet_sendmsg_spkt, 4580 .recvmsg = packet_recvmsg, 4581 .mmap = sock_no_mmap, 4582 .sendpage = sock_no_sendpage, 4583 }; 4584 4585 static const struct proto_ops packet_ops = { 4586 .family = PF_PACKET, 4587 .owner = THIS_MODULE, 4588 .release = packet_release, 4589 .bind = packet_bind, 4590 .connect = sock_no_connect, 4591 .socketpair = sock_no_socketpair, 4592 .accept = sock_no_accept, 4593 .getname = packet_getname, 4594 .poll = packet_poll, 4595 .ioctl = packet_ioctl, 4596 .gettstamp = sock_gettstamp, 4597 .listen = sock_no_listen, 4598 .shutdown = sock_no_shutdown, 4599 .setsockopt = packet_setsockopt, 4600 .getsockopt = packet_getsockopt, 4601 .sendmsg = packet_sendmsg, 4602 .recvmsg = packet_recvmsg, 4603 .mmap = packet_mmap, 4604 .sendpage = sock_no_sendpage, 4605 }; 4606 4607 static const struct net_proto_family packet_family_ops = { 4608 .family = PF_PACKET, 4609 .create = packet_create, 4610 .owner = THIS_MODULE, 4611 }; 4612 4613 static struct notifier_block packet_netdev_notifier = { 4614 .notifier_call = packet_notifier, 4615 }; 4616 4617 #ifdef CONFIG_PROC_FS 4618 4619 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4620 __acquires(RCU) 4621 { 4622 struct net *net = seq_file_net(seq); 4623 4624 rcu_read_lock(); 4625 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4626 } 4627 4628 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4629 { 4630 struct net *net = seq_file_net(seq); 4631 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4632 } 4633 4634 static void packet_seq_stop(struct seq_file *seq, void *v) 4635 __releases(RCU) 4636 { 4637 rcu_read_unlock(); 4638 } 4639 4640 static int packet_seq_show(struct seq_file *seq, void *v) 4641 { 4642 if (v == SEQ_START_TOKEN) 4643 seq_printf(seq, 4644 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4645 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4646 else { 4647 struct sock *s = sk_entry(v); 4648 const struct packet_sock *po = pkt_sk(s); 4649 4650 seq_printf(seq, 4651 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4652 s, 4653 refcount_read(&s->sk_refcnt), 4654 s->sk_type, 4655 ntohs(READ_ONCE(po->num)), 4656 READ_ONCE(po->ifindex), 4657 po->running, 4658 atomic_read(&s->sk_rmem_alloc), 4659 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4660 sock_i_ino(s)); 4661 } 4662 4663 return 0; 4664 } 4665 4666 static const struct seq_operations packet_seq_ops = { 4667 .start = packet_seq_start, 4668 .next = packet_seq_next, 4669 .stop = packet_seq_stop, 4670 .show = packet_seq_show, 4671 }; 4672 #endif 4673 4674 static int __net_init packet_net_init(struct net *net) 4675 { 4676 mutex_init(&net->packet.sklist_lock); 4677 INIT_HLIST_HEAD(&net->packet.sklist); 4678 4679 #ifdef CONFIG_PROC_FS 4680 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4681 sizeof(struct seq_net_private))) 4682 return -ENOMEM; 4683 #endif /* CONFIG_PROC_FS */ 4684 4685 return 0; 4686 } 4687 4688 static void __net_exit packet_net_exit(struct net *net) 4689 { 4690 remove_proc_entry("packet", net->proc_net); 4691 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4692 } 4693 4694 static struct pernet_operations packet_net_ops = { 4695 .init = packet_net_init, 4696 .exit = packet_net_exit, 4697 }; 4698 4699 4700 static void __exit packet_exit(void) 4701 { 4702 unregister_netdevice_notifier(&packet_netdev_notifier); 4703 unregister_pernet_subsys(&packet_net_ops); 4704 sock_unregister(PF_PACKET); 4705 proto_unregister(&packet_proto); 4706 } 4707 4708 static int __init packet_init(void) 4709 { 4710 int rc; 4711 4712 rc = proto_register(&packet_proto, 0); 4713 if (rc) 4714 goto out; 4715 rc = sock_register(&packet_family_ops); 4716 if (rc) 4717 goto out_proto; 4718 rc = register_pernet_subsys(&packet_net_ops); 4719 if (rc) 4720 goto out_sock; 4721 rc = register_netdevice_notifier(&packet_netdev_notifier); 4722 if (rc) 4723 goto out_pernet; 4724 4725 return 0; 4726 4727 out_pernet: 4728 unregister_pernet_subsys(&packet_net_ops); 4729 out_sock: 4730 sock_unregister(PF_PACKET); 4731 out_proto: 4732 proto_unregister(&packet_proto); 4733 out: 4734 return rc; 4735 } 4736 4737 module_init(packet_init); 4738 module_exit(packet_exit); 4739 MODULE_LICENSE("GPL"); 4740 MODULE_ALIAS_NETPROTO(PF_PACKET); 4741