xref: /openbmc/linux/net/packet/af_packet.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #include <linux/ethtool.h>
50 #include <linux/types.h>
51 #include <linux/mm.h>
52 #include <linux/capability.h>
53 #include <linux/fcntl.h>
54 #include <linux/socket.h>
55 #include <linux/in.h>
56 #include <linux/inet.h>
57 #include <linux/netdevice.h>
58 #include <linux/if_packet.h>
59 #include <linux/wireless.h>
60 #include <linux/kernel.h>
61 #include <linux/kmod.h>
62 #include <linux/slab.h>
63 #include <linux/vmalloc.h>
64 #include <net/net_namespace.h>
65 #include <net/ip.h>
66 #include <net/protocol.h>
67 #include <linux/skbuff.h>
68 #include <net/sock.h>
69 #include <linux/errno.h>
70 #include <linux/timer.h>
71 #include <linux/uaccess.h>
72 #include <asm/ioctls.h>
73 #include <asm/page.h>
74 #include <asm/cacheflush.h>
75 #include <asm/io.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/poll.h>
79 #include <linux/module.h>
80 #include <linux/init.h>
81 #include <linux/mutex.h>
82 #include <linux/if_vlan.h>
83 #include <linux/virtio_net.h>
84 #include <linux/errqueue.h>
85 #include <linux/net_tstamp.h>
86 #include <linux/percpu.h>
87 #ifdef CONFIG_INET
88 #include <net/inet_common.h>
89 #endif
90 #include <linux/bpf.h>
91 #include <net/compat.h>
92 
93 #include "internal.h"
94 
95 /*
96    Assumptions:
97    - If the device has no dev->header_ops->create, there is no LL header
98      visible above the device. In this case, its hard_header_len should be 0.
99      The device may prepend its own header internally. In this case, its
100      needed_headroom should be set to the space needed for it to add its
101      internal header.
102      For example, a WiFi driver pretending to be an Ethernet driver should
103      set its hard_header_len to be the Ethernet header length, and set its
104      needed_headroom to be (the real WiFi header length - the fake Ethernet
105      header length).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev_has_header(dev) == true
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev_has_header(dev) == true
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev_has_header(dev) == false
121    mac_header -> data
122      However drivers often make it point to the ll header.
123      This is incorrect because the ll header should be invisible to us.
124    data       -> data
125 
126 Outgoing, dev_has_header(dev) == false
127    mac_header -> data. ll header is invisible to us.
128    data       -> data
129 
130 Resume
131   If dev_has_header(dev) == false we are unable to restore the ll header,
132     because it is invisible to us.
133 
134 
135 On transmit:
136 ------------
137 
138 dev_has_header(dev) == true
139    mac_header -> ll header
140    data       -> ll header
141 
142 dev_has_header(dev) == false (ll header is invisible to us)
143    mac_header -> data
144    data       -> data
145 
146    We should set network_header on output to the correct position,
147    packet classifier depends on it.
148  */
149 
150 /* Private packet socket structures. */
151 
152 /* identical to struct packet_mreq except it has
153  * a longer address field.
154  */
155 struct packet_mreq_max {
156 	int		mr_ifindex;
157 	unsigned short	mr_type;
158 	unsigned short	mr_alen;
159 	unsigned char	mr_address[MAX_ADDR_LEN];
160 };
161 
162 union tpacket_uhdr {
163 	struct tpacket_hdr  *h1;
164 	struct tpacket2_hdr *h2;
165 	struct tpacket3_hdr *h3;
166 	void *raw;
167 };
168 
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 		int closing, int tx_ring);
171 
172 #define V3_ALIGNMENT	(8)
173 
174 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175 
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178 
179 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
180 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
181 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
182 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
183 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
184 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
185 
186 struct packet_sock;
187 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
188 		       struct packet_type *pt, struct net_device *orig_dev);
189 
190 static void *packet_previous_frame(struct packet_sock *po,
191 		struct packet_ring_buffer *rb,
192 		int status);
193 static void packet_increment_head(struct packet_ring_buffer *buff);
194 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
195 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
196 			struct packet_sock *);
197 static void prb_retire_current_block(struct tpacket_kbdq_core *,
198 		struct packet_sock *, unsigned int status);
199 static int prb_queue_frozen(struct tpacket_kbdq_core *);
200 static void prb_open_block(struct tpacket_kbdq_core *,
201 		struct tpacket_block_desc *);
202 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
203 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
204 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
205 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
206 		struct tpacket3_hdr *);
207 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
208 		struct tpacket3_hdr *);
209 static void packet_flush_mclist(struct sock *sk);
210 static u16 packet_pick_tx_queue(struct sk_buff *skb);
211 
212 struct packet_skb_cb {
213 	union {
214 		struct sockaddr_pkt pkt;
215 		union {
216 			/* Trick: alias skb original length with
217 			 * ll.sll_family and ll.protocol in order
218 			 * to save room.
219 			 */
220 			unsigned int origlen;
221 			struct sockaddr_ll ll;
222 		};
223 	} sa;
224 };
225 
226 #define vio_le() virtio_legacy_is_little_endian()
227 
228 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
229 
230 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
231 #define GET_PBLOCK_DESC(x, bid)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
233 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
234 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
235 #define GET_NEXT_PRB_BLK_NUM(x) \
236 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
237 	((x)->kactive_blk_num+1) : 0)
238 
239 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
240 static void __fanout_link(struct sock *sk, struct packet_sock *po);
241 
242 static int packet_direct_xmit(struct sk_buff *skb)
243 {
244 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
245 }
246 
247 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
248 {
249 	struct net_device *dev;
250 
251 	rcu_read_lock();
252 	dev = rcu_dereference(po->cached_dev);
253 	if (likely(dev))
254 		dev_hold(dev);
255 	rcu_read_unlock();
256 
257 	return dev;
258 }
259 
260 static void packet_cached_dev_assign(struct packet_sock *po,
261 				     struct net_device *dev)
262 {
263 	rcu_assign_pointer(po->cached_dev, dev);
264 }
265 
266 static void packet_cached_dev_reset(struct packet_sock *po)
267 {
268 	RCU_INIT_POINTER(po->cached_dev, NULL);
269 }
270 
271 static bool packet_use_direct_xmit(const struct packet_sock *po)
272 {
273 	return po->xmit == packet_direct_xmit;
274 }
275 
276 static u16 packet_pick_tx_queue(struct sk_buff *skb)
277 {
278 	struct net_device *dev = skb->dev;
279 	const struct net_device_ops *ops = dev->netdev_ops;
280 	int cpu = raw_smp_processor_id();
281 	u16 queue_index;
282 
283 #ifdef CONFIG_XPS
284 	skb->sender_cpu = cpu + 1;
285 #endif
286 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
287 	if (ops->ndo_select_queue) {
288 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
289 		queue_index = netdev_cap_txqueue(dev, queue_index);
290 	} else {
291 		queue_index = netdev_pick_tx(dev, skb, NULL);
292 	}
293 
294 	return queue_index;
295 }
296 
297 /* __register_prot_hook must be invoked through register_prot_hook
298  * or from a context in which asynchronous accesses to the packet
299  * socket is not possible (packet_create()).
300  */
301 static void __register_prot_hook(struct sock *sk)
302 {
303 	struct packet_sock *po = pkt_sk(sk);
304 
305 	if (!po->running) {
306 		if (po->fanout)
307 			__fanout_link(sk, po);
308 		else
309 			dev_add_pack(&po->prot_hook);
310 
311 		sock_hold(sk);
312 		po->running = 1;
313 	}
314 }
315 
316 static void register_prot_hook(struct sock *sk)
317 {
318 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
319 	__register_prot_hook(sk);
320 }
321 
322 /* If the sync parameter is true, we will temporarily drop
323  * the po->bind_lock and do a synchronize_net to make sure no
324  * asynchronous packet processing paths still refer to the elements
325  * of po->prot_hook.  If the sync parameter is false, it is the
326  * callers responsibility to take care of this.
327  */
328 static void __unregister_prot_hook(struct sock *sk, bool sync)
329 {
330 	struct packet_sock *po = pkt_sk(sk);
331 
332 	lockdep_assert_held_once(&po->bind_lock);
333 
334 	po->running = 0;
335 
336 	if (po->fanout)
337 		__fanout_unlink(sk, po);
338 	else
339 		__dev_remove_pack(&po->prot_hook);
340 
341 	__sock_put(sk);
342 
343 	if (sync) {
344 		spin_unlock(&po->bind_lock);
345 		synchronize_net();
346 		spin_lock(&po->bind_lock);
347 	}
348 }
349 
350 static void unregister_prot_hook(struct sock *sk, bool sync)
351 {
352 	struct packet_sock *po = pkt_sk(sk);
353 
354 	if (po->running)
355 		__unregister_prot_hook(sk, sync);
356 }
357 
358 static inline struct page * __pure pgv_to_page(void *addr)
359 {
360 	if (is_vmalloc_addr(addr))
361 		return vmalloc_to_page(addr);
362 	return virt_to_page(addr);
363 }
364 
365 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
366 {
367 	union tpacket_uhdr h;
368 
369 	h.raw = frame;
370 	switch (po->tp_version) {
371 	case TPACKET_V1:
372 		h.h1->tp_status = status;
373 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
374 		break;
375 	case TPACKET_V2:
376 		h.h2->tp_status = status;
377 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
378 		break;
379 	case TPACKET_V3:
380 		h.h3->tp_status = status;
381 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
382 		break;
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	smp_wmb();
389 }
390 
391 static int __packet_get_status(const struct packet_sock *po, void *frame)
392 {
393 	union tpacket_uhdr h;
394 
395 	smp_rmb();
396 
397 	h.raw = frame;
398 	switch (po->tp_version) {
399 	case TPACKET_V1:
400 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
401 		return h.h1->tp_status;
402 	case TPACKET_V2:
403 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
404 		return h.h2->tp_status;
405 	case TPACKET_V3:
406 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
407 		return h.h3->tp_status;
408 	default:
409 		WARN(1, "TPACKET version not supported.\n");
410 		BUG();
411 		return 0;
412 	}
413 }
414 
415 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
416 				   unsigned int flags)
417 {
418 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
419 
420 	if (shhwtstamps &&
421 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
422 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
423 		return TP_STATUS_TS_RAW_HARDWARE;
424 
425 	if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
426 	    ktime_to_timespec64_cond(skb->tstamp, ts))
427 		return TP_STATUS_TS_SOFTWARE;
428 
429 	return 0;
430 }
431 
432 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
433 				    struct sk_buff *skb)
434 {
435 	union tpacket_uhdr h;
436 	struct timespec64 ts;
437 	__u32 ts_status;
438 
439 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
440 		return 0;
441 
442 	h.raw = frame;
443 	/*
444 	 * versions 1 through 3 overflow the timestamps in y2106, since they
445 	 * all store the seconds in a 32-bit unsigned integer.
446 	 * If we create a version 4, that should have a 64-bit timestamp,
447 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
448 	 * nanoseconds.
449 	 */
450 	switch (po->tp_version) {
451 	case TPACKET_V1:
452 		h.h1->tp_sec = ts.tv_sec;
453 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
454 		break;
455 	case TPACKET_V2:
456 		h.h2->tp_sec = ts.tv_sec;
457 		h.h2->tp_nsec = ts.tv_nsec;
458 		break;
459 	case TPACKET_V3:
460 		h.h3->tp_sec = ts.tv_sec;
461 		h.h3->tp_nsec = ts.tv_nsec;
462 		break;
463 	default:
464 		WARN(1, "TPACKET version not supported.\n");
465 		BUG();
466 	}
467 
468 	/* one flush is safe, as both fields always lie on the same cacheline */
469 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
470 	smp_wmb();
471 
472 	return ts_status;
473 }
474 
475 static void *packet_lookup_frame(const struct packet_sock *po,
476 				 const struct packet_ring_buffer *rb,
477 				 unsigned int position,
478 				 int status)
479 {
480 	unsigned int pg_vec_pos, frame_offset;
481 	union tpacket_uhdr h;
482 
483 	pg_vec_pos = position / rb->frames_per_block;
484 	frame_offset = position % rb->frames_per_block;
485 
486 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
487 		(frame_offset * rb->frame_size);
488 
489 	if (status != __packet_get_status(po, h.raw))
490 		return NULL;
491 
492 	return h.raw;
493 }
494 
495 static void *packet_current_frame(struct packet_sock *po,
496 		struct packet_ring_buffer *rb,
497 		int status)
498 {
499 	return packet_lookup_frame(po, rb, rb->head, status);
500 }
501 
502 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
503 {
504 	del_timer_sync(&pkc->retire_blk_timer);
505 }
506 
507 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
508 		struct sk_buff_head *rb_queue)
509 {
510 	struct tpacket_kbdq_core *pkc;
511 
512 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
513 
514 	spin_lock_bh(&rb_queue->lock);
515 	pkc->delete_blk_timer = 1;
516 	spin_unlock_bh(&rb_queue->lock);
517 
518 	prb_del_retire_blk_timer(pkc);
519 }
520 
521 static void prb_setup_retire_blk_timer(struct packet_sock *po)
522 {
523 	struct tpacket_kbdq_core *pkc;
524 
525 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
526 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
527 		    0);
528 	pkc->retire_blk_timer.expires = jiffies;
529 }
530 
531 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
532 				int blk_size_in_bytes)
533 {
534 	struct net_device *dev;
535 	unsigned int mbits, div;
536 	struct ethtool_link_ksettings ecmd;
537 	int err;
538 
539 	rtnl_lock();
540 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
541 	if (unlikely(!dev)) {
542 		rtnl_unlock();
543 		return DEFAULT_PRB_RETIRE_TOV;
544 	}
545 	err = __ethtool_get_link_ksettings(dev, &ecmd);
546 	rtnl_unlock();
547 	if (err)
548 		return DEFAULT_PRB_RETIRE_TOV;
549 
550 	/* If the link speed is so slow you don't really
551 	 * need to worry about perf anyways
552 	 */
553 	if (ecmd.base.speed < SPEED_1000 ||
554 	    ecmd.base.speed == SPEED_UNKNOWN)
555 		return DEFAULT_PRB_RETIRE_TOV;
556 
557 	div = ecmd.base.speed / 1000;
558 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
559 
560 	if (div)
561 		mbits /= div;
562 
563 	if (div)
564 		return mbits + 1;
565 	return mbits;
566 }
567 
568 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
569 			union tpacket_req_u *req_u)
570 {
571 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
572 }
573 
574 static void init_prb_bdqc(struct packet_sock *po,
575 			struct packet_ring_buffer *rb,
576 			struct pgv *pg_vec,
577 			union tpacket_req_u *req_u)
578 {
579 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
580 	struct tpacket_block_desc *pbd;
581 
582 	memset(p1, 0x0, sizeof(*p1));
583 
584 	p1->knxt_seq_num = 1;
585 	p1->pkbdq = pg_vec;
586 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
587 	p1->pkblk_start	= pg_vec[0].buffer;
588 	p1->kblk_size = req_u->req3.tp_block_size;
589 	p1->knum_blocks	= req_u->req3.tp_block_nr;
590 	p1->hdrlen = po->tp_hdrlen;
591 	p1->version = po->tp_version;
592 	p1->last_kactive_blk_num = 0;
593 	po->stats.stats3.tp_freeze_q_cnt = 0;
594 	if (req_u->req3.tp_retire_blk_tov)
595 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
596 	else
597 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
598 						req_u->req3.tp_block_size);
599 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
600 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
601 	rwlock_init(&p1->blk_fill_in_prog_lock);
602 
603 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
604 	prb_init_ft_ops(p1, req_u);
605 	prb_setup_retire_blk_timer(po);
606 	prb_open_block(p1, pbd);
607 }
608 
609 /*  Do NOT update the last_blk_num first.
610  *  Assumes sk_buff_head lock is held.
611  */
612 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
613 {
614 	mod_timer(&pkc->retire_blk_timer,
615 			jiffies + pkc->tov_in_jiffies);
616 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
617 }
618 
619 /*
620  * Timer logic:
621  * 1) We refresh the timer only when we open a block.
622  *    By doing this we don't waste cycles refreshing the timer
623  *	  on packet-by-packet basis.
624  *
625  * With a 1MB block-size, on a 1Gbps line, it will take
626  * i) ~8 ms to fill a block + ii) memcpy etc.
627  * In this cut we are not accounting for the memcpy time.
628  *
629  * So, if the user sets the 'tmo' to 10ms then the timer
630  * will never fire while the block is still getting filled
631  * (which is what we want). However, the user could choose
632  * to close a block early and that's fine.
633  *
634  * But when the timer does fire, we check whether or not to refresh it.
635  * Since the tmo granularity is in msecs, it is not too expensive
636  * to refresh the timer, lets say every '8' msecs.
637  * Either the user can set the 'tmo' or we can derive it based on
638  * a) line-speed and b) block-size.
639  * prb_calc_retire_blk_tmo() calculates the tmo.
640  *
641  */
642 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
643 {
644 	struct packet_sock *po =
645 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
646 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
647 	unsigned int frozen;
648 	struct tpacket_block_desc *pbd;
649 
650 	spin_lock(&po->sk.sk_receive_queue.lock);
651 
652 	frozen = prb_queue_frozen(pkc);
653 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
654 
655 	if (unlikely(pkc->delete_blk_timer))
656 		goto out;
657 
658 	/* We only need to plug the race when the block is partially filled.
659 	 * tpacket_rcv:
660 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
661 	 *		copy_bits() is in progress ...
662 	 *		timer fires on other cpu:
663 	 *		we can't retire the current block because copy_bits
664 	 *		is in progress.
665 	 *
666 	 */
667 	if (BLOCK_NUM_PKTS(pbd)) {
668 		/* Waiting for skb_copy_bits to finish... */
669 		write_lock(&pkc->blk_fill_in_prog_lock);
670 		write_unlock(&pkc->blk_fill_in_prog_lock);
671 	}
672 
673 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
674 		if (!frozen) {
675 			if (!BLOCK_NUM_PKTS(pbd)) {
676 				/* An empty block. Just refresh the timer. */
677 				goto refresh_timer;
678 			}
679 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
680 			if (!prb_dispatch_next_block(pkc, po))
681 				goto refresh_timer;
682 			else
683 				goto out;
684 		} else {
685 			/* Case 1. Queue was frozen because user-space was
686 			 *	   lagging behind.
687 			 */
688 			if (prb_curr_blk_in_use(pbd)) {
689 				/*
690 				 * Ok, user-space is still behind.
691 				 * So just refresh the timer.
692 				 */
693 				goto refresh_timer;
694 			} else {
695 			       /* Case 2. queue was frozen,user-space caught up,
696 				* now the link went idle && the timer fired.
697 				* We don't have a block to close.So we open this
698 				* block and restart the timer.
699 				* opening a block thaws the queue,restarts timer
700 				* Thawing/timer-refresh is a side effect.
701 				*/
702 				prb_open_block(pkc, pbd);
703 				goto out;
704 			}
705 		}
706 	}
707 
708 refresh_timer:
709 	_prb_refresh_rx_retire_blk_timer(pkc);
710 
711 out:
712 	spin_unlock(&po->sk.sk_receive_queue.lock);
713 }
714 
715 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
716 		struct tpacket_block_desc *pbd1, __u32 status)
717 {
718 	/* Flush everything minus the block header */
719 
720 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
721 	u8 *start, *end;
722 
723 	start = (u8 *)pbd1;
724 
725 	/* Skip the block header(we know header WILL fit in 4K) */
726 	start += PAGE_SIZE;
727 
728 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
729 	for (; start < end; start += PAGE_SIZE)
730 		flush_dcache_page(pgv_to_page(start));
731 
732 	smp_wmb();
733 #endif
734 
735 	/* Now update the block status. */
736 
737 	BLOCK_STATUS(pbd1) = status;
738 
739 	/* Flush the block header */
740 
741 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
742 	start = (u8 *)pbd1;
743 	flush_dcache_page(pgv_to_page(start));
744 
745 	smp_wmb();
746 #endif
747 }
748 
749 /*
750  * Side effect:
751  *
752  * 1) flush the block
753  * 2) Increment active_blk_num
754  *
755  * Note:We DONT refresh the timer on purpose.
756  *	Because almost always the next block will be opened.
757  */
758 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
759 		struct tpacket_block_desc *pbd1,
760 		struct packet_sock *po, unsigned int stat)
761 {
762 	__u32 status = TP_STATUS_USER | stat;
763 
764 	struct tpacket3_hdr *last_pkt;
765 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
766 	struct sock *sk = &po->sk;
767 
768 	if (atomic_read(&po->tp_drops))
769 		status |= TP_STATUS_LOSING;
770 
771 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
772 	last_pkt->tp_next_offset = 0;
773 
774 	/* Get the ts of the last pkt */
775 	if (BLOCK_NUM_PKTS(pbd1)) {
776 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
777 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
778 	} else {
779 		/* Ok, we tmo'd - so get the current time.
780 		 *
781 		 * It shouldn't really happen as we don't close empty
782 		 * blocks. See prb_retire_rx_blk_timer_expired().
783 		 */
784 		struct timespec64 ts;
785 		ktime_get_real_ts64(&ts);
786 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
787 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
788 	}
789 
790 	smp_wmb();
791 
792 	/* Flush the block */
793 	prb_flush_block(pkc1, pbd1, status);
794 
795 	sk->sk_data_ready(sk);
796 
797 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
798 }
799 
800 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
801 {
802 	pkc->reset_pending_on_curr_blk = 0;
803 }
804 
805 /*
806  * Side effect of opening a block:
807  *
808  * 1) prb_queue is thawed.
809  * 2) retire_blk_timer is refreshed.
810  *
811  */
812 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
813 	struct tpacket_block_desc *pbd1)
814 {
815 	struct timespec64 ts;
816 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
817 
818 	smp_rmb();
819 
820 	/* We could have just memset this but we will lose the
821 	 * flexibility of making the priv area sticky
822 	 */
823 
824 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
825 	BLOCK_NUM_PKTS(pbd1) = 0;
826 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
827 
828 	ktime_get_real_ts64(&ts);
829 
830 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
831 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
832 
833 	pkc1->pkblk_start = (char *)pbd1;
834 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
835 
836 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
837 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
838 
839 	pbd1->version = pkc1->version;
840 	pkc1->prev = pkc1->nxt_offset;
841 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
842 
843 	prb_thaw_queue(pkc1);
844 	_prb_refresh_rx_retire_blk_timer(pkc1);
845 
846 	smp_wmb();
847 }
848 
849 /*
850  * Queue freeze logic:
851  * 1) Assume tp_block_nr = 8 blocks.
852  * 2) At time 't0', user opens Rx ring.
853  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
854  * 4) user-space is either sleeping or processing block '0'.
855  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
856  *    it will close block-7,loop around and try to fill block '0'.
857  *    call-flow:
858  *    __packet_lookup_frame_in_block
859  *      prb_retire_current_block()
860  *      prb_dispatch_next_block()
861  *        |->(BLOCK_STATUS == USER) evaluates to true
862  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
863  * 6) Now there are two cases:
864  *    6.1) Link goes idle right after the queue is frozen.
865  *         But remember, the last open_block() refreshed the timer.
866  *         When this timer expires,it will refresh itself so that we can
867  *         re-open block-0 in near future.
868  *    6.2) Link is busy and keeps on receiving packets. This is a simple
869  *         case and __packet_lookup_frame_in_block will check if block-0
870  *         is free and can now be re-used.
871  */
872 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
873 				  struct packet_sock *po)
874 {
875 	pkc->reset_pending_on_curr_blk = 1;
876 	po->stats.stats3.tp_freeze_q_cnt++;
877 }
878 
879 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
880 
881 /*
882  * If the next block is free then we will dispatch it
883  * and return a good offset.
884  * Else, we will freeze the queue.
885  * So, caller must check the return value.
886  */
887 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
888 		struct packet_sock *po)
889 {
890 	struct tpacket_block_desc *pbd;
891 
892 	smp_rmb();
893 
894 	/* 1. Get current block num */
895 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
896 
897 	/* 2. If this block is currently in_use then freeze the queue */
898 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
899 		prb_freeze_queue(pkc, po);
900 		return NULL;
901 	}
902 
903 	/*
904 	 * 3.
905 	 * open this block and return the offset where the first packet
906 	 * needs to get stored.
907 	 */
908 	prb_open_block(pkc, pbd);
909 	return (void *)pkc->nxt_offset;
910 }
911 
912 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
913 		struct packet_sock *po, unsigned int status)
914 {
915 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
916 
917 	/* retire/close the current block */
918 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
919 		/*
920 		 * Plug the case where copy_bits() is in progress on
921 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
922 		 * have space to copy the pkt in the current block and
923 		 * called prb_retire_current_block()
924 		 *
925 		 * We don't need to worry about the TMO case because
926 		 * the timer-handler already handled this case.
927 		 */
928 		if (!(status & TP_STATUS_BLK_TMO)) {
929 			/* Waiting for skb_copy_bits to finish... */
930 			write_lock(&pkc->blk_fill_in_prog_lock);
931 			write_unlock(&pkc->blk_fill_in_prog_lock);
932 		}
933 		prb_close_block(pkc, pbd, po, status);
934 		return;
935 	}
936 }
937 
938 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
939 {
940 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
941 }
942 
943 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
944 {
945 	return pkc->reset_pending_on_curr_blk;
946 }
947 
948 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
949 	__releases(&pkc->blk_fill_in_prog_lock)
950 {
951 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
952 
953 	read_unlock(&pkc->blk_fill_in_prog_lock);
954 }
955 
956 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
957 			struct tpacket3_hdr *ppd)
958 {
959 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
960 }
961 
962 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
963 			struct tpacket3_hdr *ppd)
964 {
965 	ppd->hv1.tp_rxhash = 0;
966 }
967 
968 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
969 			struct tpacket3_hdr *ppd)
970 {
971 	if (skb_vlan_tag_present(pkc->skb)) {
972 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
973 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
974 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
975 	} else {
976 		ppd->hv1.tp_vlan_tci = 0;
977 		ppd->hv1.tp_vlan_tpid = 0;
978 		ppd->tp_status = TP_STATUS_AVAILABLE;
979 	}
980 }
981 
982 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
983 			struct tpacket3_hdr *ppd)
984 {
985 	ppd->hv1.tp_padding = 0;
986 	prb_fill_vlan_info(pkc, ppd);
987 
988 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
989 		prb_fill_rxhash(pkc, ppd);
990 	else
991 		prb_clear_rxhash(pkc, ppd);
992 }
993 
994 static void prb_fill_curr_block(char *curr,
995 				struct tpacket_kbdq_core *pkc,
996 				struct tpacket_block_desc *pbd,
997 				unsigned int len)
998 	__acquires(&pkc->blk_fill_in_prog_lock)
999 {
1000 	struct tpacket3_hdr *ppd;
1001 
1002 	ppd  = (struct tpacket3_hdr *)curr;
1003 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1004 	pkc->prev = curr;
1005 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1006 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1007 	BLOCK_NUM_PKTS(pbd) += 1;
1008 	read_lock(&pkc->blk_fill_in_prog_lock);
1009 	prb_run_all_ft_ops(pkc, ppd);
1010 }
1011 
1012 /* Assumes caller has the sk->rx_queue.lock */
1013 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1014 					    struct sk_buff *skb,
1015 					    unsigned int len
1016 					    )
1017 {
1018 	struct tpacket_kbdq_core *pkc;
1019 	struct tpacket_block_desc *pbd;
1020 	char *curr, *end;
1021 
1022 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1023 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1024 
1025 	/* Queue is frozen when user space is lagging behind */
1026 	if (prb_queue_frozen(pkc)) {
1027 		/*
1028 		 * Check if that last block which caused the queue to freeze,
1029 		 * is still in_use by user-space.
1030 		 */
1031 		if (prb_curr_blk_in_use(pbd)) {
1032 			/* Can't record this packet */
1033 			return NULL;
1034 		} else {
1035 			/*
1036 			 * Ok, the block was released by user-space.
1037 			 * Now let's open that block.
1038 			 * opening a block also thaws the queue.
1039 			 * Thawing is a side effect.
1040 			 */
1041 			prb_open_block(pkc, pbd);
1042 		}
1043 	}
1044 
1045 	smp_mb();
1046 	curr = pkc->nxt_offset;
1047 	pkc->skb = skb;
1048 	end = (char *)pbd + pkc->kblk_size;
1049 
1050 	/* first try the current block */
1051 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1052 		prb_fill_curr_block(curr, pkc, pbd, len);
1053 		return (void *)curr;
1054 	}
1055 
1056 	/* Ok, close the current block */
1057 	prb_retire_current_block(pkc, po, 0);
1058 
1059 	/* Now, try to dispatch the next block */
1060 	curr = (char *)prb_dispatch_next_block(pkc, po);
1061 	if (curr) {
1062 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1063 		prb_fill_curr_block(curr, pkc, pbd, len);
1064 		return (void *)curr;
1065 	}
1066 
1067 	/*
1068 	 * No free blocks are available.user_space hasn't caught up yet.
1069 	 * Queue was just frozen and now this packet will get dropped.
1070 	 */
1071 	return NULL;
1072 }
1073 
1074 static void *packet_current_rx_frame(struct packet_sock *po,
1075 					    struct sk_buff *skb,
1076 					    int status, unsigned int len)
1077 {
1078 	char *curr = NULL;
1079 	switch (po->tp_version) {
1080 	case TPACKET_V1:
1081 	case TPACKET_V2:
1082 		curr = packet_lookup_frame(po, &po->rx_ring,
1083 					po->rx_ring.head, status);
1084 		return curr;
1085 	case TPACKET_V3:
1086 		return __packet_lookup_frame_in_block(po, skb, len);
1087 	default:
1088 		WARN(1, "TPACKET version not supported\n");
1089 		BUG();
1090 		return NULL;
1091 	}
1092 }
1093 
1094 static void *prb_lookup_block(const struct packet_sock *po,
1095 			      const struct packet_ring_buffer *rb,
1096 			      unsigned int idx,
1097 			      int status)
1098 {
1099 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1100 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1101 
1102 	if (status != BLOCK_STATUS(pbd))
1103 		return NULL;
1104 	return pbd;
1105 }
1106 
1107 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1108 {
1109 	unsigned int prev;
1110 	if (rb->prb_bdqc.kactive_blk_num)
1111 		prev = rb->prb_bdqc.kactive_blk_num-1;
1112 	else
1113 		prev = rb->prb_bdqc.knum_blocks-1;
1114 	return prev;
1115 }
1116 
1117 /* Assumes caller has held the rx_queue.lock */
1118 static void *__prb_previous_block(struct packet_sock *po,
1119 					 struct packet_ring_buffer *rb,
1120 					 int status)
1121 {
1122 	unsigned int previous = prb_previous_blk_num(rb);
1123 	return prb_lookup_block(po, rb, previous, status);
1124 }
1125 
1126 static void *packet_previous_rx_frame(struct packet_sock *po,
1127 					     struct packet_ring_buffer *rb,
1128 					     int status)
1129 {
1130 	if (po->tp_version <= TPACKET_V2)
1131 		return packet_previous_frame(po, rb, status);
1132 
1133 	return __prb_previous_block(po, rb, status);
1134 }
1135 
1136 static void packet_increment_rx_head(struct packet_sock *po,
1137 					    struct packet_ring_buffer *rb)
1138 {
1139 	switch (po->tp_version) {
1140 	case TPACKET_V1:
1141 	case TPACKET_V2:
1142 		return packet_increment_head(rb);
1143 	case TPACKET_V3:
1144 	default:
1145 		WARN(1, "TPACKET version not supported.\n");
1146 		BUG();
1147 		return;
1148 	}
1149 }
1150 
1151 static void *packet_previous_frame(struct packet_sock *po,
1152 		struct packet_ring_buffer *rb,
1153 		int status)
1154 {
1155 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1156 	return packet_lookup_frame(po, rb, previous, status);
1157 }
1158 
1159 static void packet_increment_head(struct packet_ring_buffer *buff)
1160 {
1161 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1162 }
1163 
1164 static void packet_inc_pending(struct packet_ring_buffer *rb)
1165 {
1166 	this_cpu_inc(*rb->pending_refcnt);
1167 }
1168 
1169 static void packet_dec_pending(struct packet_ring_buffer *rb)
1170 {
1171 	this_cpu_dec(*rb->pending_refcnt);
1172 }
1173 
1174 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1175 {
1176 	unsigned int refcnt = 0;
1177 	int cpu;
1178 
1179 	/* We don't use pending refcount in rx_ring. */
1180 	if (rb->pending_refcnt == NULL)
1181 		return 0;
1182 
1183 	for_each_possible_cpu(cpu)
1184 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1185 
1186 	return refcnt;
1187 }
1188 
1189 static int packet_alloc_pending(struct packet_sock *po)
1190 {
1191 	po->rx_ring.pending_refcnt = NULL;
1192 
1193 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1194 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1195 		return -ENOBUFS;
1196 
1197 	return 0;
1198 }
1199 
1200 static void packet_free_pending(struct packet_sock *po)
1201 {
1202 	free_percpu(po->tx_ring.pending_refcnt);
1203 }
1204 
1205 #define ROOM_POW_OFF	2
1206 #define ROOM_NONE	0x0
1207 #define ROOM_LOW	0x1
1208 #define ROOM_NORMAL	0x2
1209 
1210 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1211 {
1212 	int idx, len;
1213 
1214 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1215 	idx = READ_ONCE(po->rx_ring.head);
1216 	if (pow_off)
1217 		idx += len >> pow_off;
1218 	if (idx >= len)
1219 		idx -= len;
1220 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1221 }
1222 
1223 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1224 {
1225 	int idx, len;
1226 
1227 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1228 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1229 	if (pow_off)
1230 		idx += len >> pow_off;
1231 	if (idx >= len)
1232 		idx -= len;
1233 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1234 }
1235 
1236 static int __packet_rcv_has_room(const struct packet_sock *po,
1237 				 const struct sk_buff *skb)
1238 {
1239 	const struct sock *sk = &po->sk;
1240 	int ret = ROOM_NONE;
1241 
1242 	if (po->prot_hook.func != tpacket_rcv) {
1243 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1244 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1245 				   - (skb ? skb->truesize : 0);
1246 
1247 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1248 			return ROOM_NORMAL;
1249 		else if (avail > 0)
1250 			return ROOM_LOW;
1251 		else
1252 			return ROOM_NONE;
1253 	}
1254 
1255 	if (po->tp_version == TPACKET_V3) {
1256 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1257 			ret = ROOM_NORMAL;
1258 		else if (__tpacket_v3_has_room(po, 0))
1259 			ret = ROOM_LOW;
1260 	} else {
1261 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1262 			ret = ROOM_NORMAL;
1263 		else if (__tpacket_has_room(po, 0))
1264 			ret = ROOM_LOW;
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1271 {
1272 	int pressure, ret;
1273 
1274 	ret = __packet_rcv_has_room(po, skb);
1275 	pressure = ret != ROOM_NORMAL;
1276 
1277 	if (READ_ONCE(po->pressure) != pressure)
1278 		WRITE_ONCE(po->pressure, pressure);
1279 
1280 	return ret;
1281 }
1282 
1283 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1284 {
1285 	if (READ_ONCE(po->pressure) &&
1286 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1287 		WRITE_ONCE(po->pressure,  0);
1288 }
1289 
1290 static void packet_sock_destruct(struct sock *sk)
1291 {
1292 	skb_queue_purge(&sk->sk_error_queue);
1293 
1294 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1295 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1296 
1297 	if (!sock_flag(sk, SOCK_DEAD)) {
1298 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1299 		return;
1300 	}
1301 
1302 	sk_refcnt_debug_dec(sk);
1303 }
1304 
1305 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1306 {
1307 	u32 *history = po->rollover->history;
1308 	u32 victim, rxhash;
1309 	int i, count = 0;
1310 
1311 	rxhash = skb_get_hash(skb);
1312 	for (i = 0; i < ROLLOVER_HLEN; i++)
1313 		if (READ_ONCE(history[i]) == rxhash)
1314 			count++;
1315 
1316 	victim = prandom_u32() % ROLLOVER_HLEN;
1317 
1318 	/* Avoid dirtying the cache line if possible */
1319 	if (READ_ONCE(history[victim]) != rxhash)
1320 		WRITE_ONCE(history[victim], rxhash);
1321 
1322 	return count > (ROLLOVER_HLEN >> 1);
1323 }
1324 
1325 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1326 				      struct sk_buff *skb,
1327 				      unsigned int num)
1328 {
1329 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1330 }
1331 
1332 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1333 				    struct sk_buff *skb,
1334 				    unsigned int num)
1335 {
1336 	unsigned int val = atomic_inc_return(&f->rr_cur);
1337 
1338 	return val % num;
1339 }
1340 
1341 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1342 				     struct sk_buff *skb,
1343 				     unsigned int num)
1344 {
1345 	return smp_processor_id() % num;
1346 }
1347 
1348 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1349 				     struct sk_buff *skb,
1350 				     unsigned int num)
1351 {
1352 	return prandom_u32_max(num);
1353 }
1354 
1355 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1356 					  struct sk_buff *skb,
1357 					  unsigned int idx, bool try_self,
1358 					  unsigned int num)
1359 {
1360 	struct packet_sock *po, *po_next, *po_skip = NULL;
1361 	unsigned int i, j, room = ROOM_NONE;
1362 
1363 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1364 
1365 	if (try_self) {
1366 		room = packet_rcv_has_room(po, skb);
1367 		if (room == ROOM_NORMAL ||
1368 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1369 			return idx;
1370 		po_skip = po;
1371 	}
1372 
1373 	i = j = min_t(int, po->rollover->sock, num - 1);
1374 	do {
1375 		po_next = pkt_sk(rcu_dereference(f->arr[i]));
1376 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1377 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1378 			if (i != j)
1379 				po->rollover->sock = i;
1380 			atomic_long_inc(&po->rollover->num);
1381 			if (room == ROOM_LOW)
1382 				atomic_long_inc(&po->rollover->num_huge);
1383 			return i;
1384 		}
1385 
1386 		if (++i == num)
1387 			i = 0;
1388 	} while (i != j);
1389 
1390 	atomic_long_inc(&po->rollover->num_failed);
1391 	return idx;
1392 }
1393 
1394 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1395 				    struct sk_buff *skb,
1396 				    unsigned int num)
1397 {
1398 	return skb_get_queue_mapping(skb) % num;
1399 }
1400 
1401 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1402 				     struct sk_buff *skb,
1403 				     unsigned int num)
1404 {
1405 	struct bpf_prog *prog;
1406 	unsigned int ret = 0;
1407 
1408 	rcu_read_lock();
1409 	prog = rcu_dereference(f->bpf_prog);
1410 	if (prog)
1411 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1412 	rcu_read_unlock();
1413 
1414 	return ret;
1415 }
1416 
1417 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1418 {
1419 	return f->flags & (flag >> 8);
1420 }
1421 
1422 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1423 			     struct packet_type *pt, struct net_device *orig_dev)
1424 {
1425 	struct packet_fanout *f = pt->af_packet_priv;
1426 	unsigned int num = READ_ONCE(f->num_members);
1427 	struct net *net = read_pnet(&f->net);
1428 	struct packet_sock *po;
1429 	unsigned int idx;
1430 
1431 	if (!net_eq(dev_net(dev), net) || !num) {
1432 		kfree_skb(skb);
1433 		return 0;
1434 	}
1435 
1436 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1437 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1438 		if (!skb)
1439 			return 0;
1440 	}
1441 	switch (f->type) {
1442 	case PACKET_FANOUT_HASH:
1443 	default:
1444 		idx = fanout_demux_hash(f, skb, num);
1445 		break;
1446 	case PACKET_FANOUT_LB:
1447 		idx = fanout_demux_lb(f, skb, num);
1448 		break;
1449 	case PACKET_FANOUT_CPU:
1450 		idx = fanout_demux_cpu(f, skb, num);
1451 		break;
1452 	case PACKET_FANOUT_RND:
1453 		idx = fanout_demux_rnd(f, skb, num);
1454 		break;
1455 	case PACKET_FANOUT_QM:
1456 		idx = fanout_demux_qm(f, skb, num);
1457 		break;
1458 	case PACKET_FANOUT_ROLLOVER:
1459 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1460 		break;
1461 	case PACKET_FANOUT_CBPF:
1462 	case PACKET_FANOUT_EBPF:
1463 		idx = fanout_demux_bpf(f, skb, num);
1464 		break;
1465 	}
1466 
1467 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1468 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1469 
1470 	po = pkt_sk(rcu_dereference(f->arr[idx]));
1471 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1472 }
1473 
1474 DEFINE_MUTEX(fanout_mutex);
1475 EXPORT_SYMBOL_GPL(fanout_mutex);
1476 static LIST_HEAD(fanout_list);
1477 static u16 fanout_next_id;
1478 
1479 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1480 {
1481 	struct packet_fanout *f = po->fanout;
1482 
1483 	spin_lock(&f->lock);
1484 	rcu_assign_pointer(f->arr[f->num_members], sk);
1485 	smp_wmb();
1486 	f->num_members++;
1487 	if (f->num_members == 1)
1488 		dev_add_pack(&f->prot_hook);
1489 	spin_unlock(&f->lock);
1490 }
1491 
1492 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1493 {
1494 	struct packet_fanout *f = po->fanout;
1495 	int i;
1496 
1497 	spin_lock(&f->lock);
1498 	for (i = 0; i < f->num_members; i++) {
1499 		if (rcu_dereference_protected(f->arr[i],
1500 					      lockdep_is_held(&f->lock)) == sk)
1501 			break;
1502 	}
1503 	BUG_ON(i >= f->num_members);
1504 	rcu_assign_pointer(f->arr[i],
1505 			   rcu_dereference_protected(f->arr[f->num_members - 1],
1506 						     lockdep_is_held(&f->lock)));
1507 	f->num_members--;
1508 	if (f->num_members == 0)
1509 		__dev_remove_pack(&f->prot_hook);
1510 	spin_unlock(&f->lock);
1511 }
1512 
1513 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1514 {
1515 	if (sk->sk_family != PF_PACKET)
1516 		return false;
1517 
1518 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1519 }
1520 
1521 static void fanout_init_data(struct packet_fanout *f)
1522 {
1523 	switch (f->type) {
1524 	case PACKET_FANOUT_LB:
1525 		atomic_set(&f->rr_cur, 0);
1526 		break;
1527 	case PACKET_FANOUT_CBPF:
1528 	case PACKET_FANOUT_EBPF:
1529 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1530 		break;
1531 	}
1532 }
1533 
1534 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1535 {
1536 	struct bpf_prog *old;
1537 
1538 	spin_lock(&f->lock);
1539 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1540 	rcu_assign_pointer(f->bpf_prog, new);
1541 	spin_unlock(&f->lock);
1542 
1543 	if (old) {
1544 		synchronize_net();
1545 		bpf_prog_destroy(old);
1546 	}
1547 }
1548 
1549 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1550 				unsigned int len)
1551 {
1552 	struct bpf_prog *new;
1553 	struct sock_fprog fprog;
1554 	int ret;
1555 
1556 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1557 		return -EPERM;
1558 
1559 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1560 	if (ret)
1561 		return ret;
1562 
1563 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1564 	if (ret)
1565 		return ret;
1566 
1567 	__fanout_set_data_bpf(po->fanout, new);
1568 	return 0;
1569 }
1570 
1571 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1572 				unsigned int len)
1573 {
1574 	struct bpf_prog *new;
1575 	u32 fd;
1576 
1577 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1578 		return -EPERM;
1579 	if (len != sizeof(fd))
1580 		return -EINVAL;
1581 	if (copy_from_sockptr(&fd, data, len))
1582 		return -EFAULT;
1583 
1584 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1585 	if (IS_ERR(new))
1586 		return PTR_ERR(new);
1587 
1588 	__fanout_set_data_bpf(po->fanout, new);
1589 	return 0;
1590 }
1591 
1592 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1593 			   unsigned int len)
1594 {
1595 	switch (po->fanout->type) {
1596 	case PACKET_FANOUT_CBPF:
1597 		return fanout_set_data_cbpf(po, data, len);
1598 	case PACKET_FANOUT_EBPF:
1599 		return fanout_set_data_ebpf(po, data, len);
1600 	default:
1601 		return -EINVAL;
1602 	}
1603 }
1604 
1605 static void fanout_release_data(struct packet_fanout *f)
1606 {
1607 	switch (f->type) {
1608 	case PACKET_FANOUT_CBPF:
1609 	case PACKET_FANOUT_EBPF:
1610 		__fanout_set_data_bpf(f, NULL);
1611 	}
1612 }
1613 
1614 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1615 {
1616 	struct packet_fanout *f;
1617 
1618 	list_for_each_entry(f, &fanout_list, list) {
1619 		if (f->id == candidate_id &&
1620 		    read_pnet(&f->net) == sock_net(sk)) {
1621 			return false;
1622 		}
1623 	}
1624 	return true;
1625 }
1626 
1627 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1628 {
1629 	u16 id = fanout_next_id;
1630 
1631 	do {
1632 		if (__fanout_id_is_free(sk, id)) {
1633 			*new_id = id;
1634 			fanout_next_id = id + 1;
1635 			return true;
1636 		}
1637 
1638 		id++;
1639 	} while (id != fanout_next_id);
1640 
1641 	return false;
1642 }
1643 
1644 static int fanout_add(struct sock *sk, struct fanout_args *args)
1645 {
1646 	struct packet_rollover *rollover = NULL;
1647 	struct packet_sock *po = pkt_sk(sk);
1648 	u16 type_flags = args->type_flags;
1649 	struct packet_fanout *f, *match;
1650 	u8 type = type_flags & 0xff;
1651 	u8 flags = type_flags >> 8;
1652 	u16 id = args->id;
1653 	int err;
1654 
1655 	switch (type) {
1656 	case PACKET_FANOUT_ROLLOVER:
1657 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1658 			return -EINVAL;
1659 	case PACKET_FANOUT_HASH:
1660 	case PACKET_FANOUT_LB:
1661 	case PACKET_FANOUT_CPU:
1662 	case PACKET_FANOUT_RND:
1663 	case PACKET_FANOUT_QM:
1664 	case PACKET_FANOUT_CBPF:
1665 	case PACKET_FANOUT_EBPF:
1666 		break;
1667 	default:
1668 		return -EINVAL;
1669 	}
1670 
1671 	mutex_lock(&fanout_mutex);
1672 
1673 	err = -EALREADY;
1674 	if (po->fanout)
1675 		goto out;
1676 
1677 	if (type == PACKET_FANOUT_ROLLOVER ||
1678 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1679 		err = -ENOMEM;
1680 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1681 		if (!rollover)
1682 			goto out;
1683 		atomic_long_set(&rollover->num, 0);
1684 		atomic_long_set(&rollover->num_huge, 0);
1685 		atomic_long_set(&rollover->num_failed, 0);
1686 	}
1687 
1688 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1689 		if (id != 0) {
1690 			err = -EINVAL;
1691 			goto out;
1692 		}
1693 		if (!fanout_find_new_id(sk, &id)) {
1694 			err = -ENOMEM;
1695 			goto out;
1696 		}
1697 		/* ephemeral flag for the first socket in the group: drop it */
1698 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1699 	}
1700 
1701 	match = NULL;
1702 	list_for_each_entry(f, &fanout_list, list) {
1703 		if (f->id == id &&
1704 		    read_pnet(&f->net) == sock_net(sk)) {
1705 			match = f;
1706 			break;
1707 		}
1708 	}
1709 	err = -EINVAL;
1710 	if (match) {
1711 		if (match->flags != flags)
1712 			goto out;
1713 		if (args->max_num_members &&
1714 		    args->max_num_members != match->max_num_members)
1715 			goto out;
1716 	} else {
1717 		if (args->max_num_members > PACKET_FANOUT_MAX)
1718 			goto out;
1719 		if (!args->max_num_members)
1720 			/* legacy PACKET_FANOUT_MAX */
1721 			args->max_num_members = 256;
1722 		err = -ENOMEM;
1723 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1724 				 GFP_KERNEL);
1725 		if (!match)
1726 			goto out;
1727 		write_pnet(&match->net, sock_net(sk));
1728 		match->id = id;
1729 		match->type = type;
1730 		match->flags = flags;
1731 		INIT_LIST_HEAD(&match->list);
1732 		spin_lock_init(&match->lock);
1733 		refcount_set(&match->sk_ref, 0);
1734 		fanout_init_data(match);
1735 		match->prot_hook.type = po->prot_hook.type;
1736 		match->prot_hook.dev = po->prot_hook.dev;
1737 		match->prot_hook.func = packet_rcv_fanout;
1738 		match->prot_hook.af_packet_priv = match;
1739 		match->prot_hook.id_match = match_fanout_group;
1740 		match->max_num_members = args->max_num_members;
1741 		list_add(&match->list, &fanout_list);
1742 	}
1743 	err = -EINVAL;
1744 
1745 	spin_lock(&po->bind_lock);
1746 	if (po->running &&
1747 	    match->type == type &&
1748 	    match->prot_hook.type == po->prot_hook.type &&
1749 	    match->prot_hook.dev == po->prot_hook.dev) {
1750 		err = -ENOSPC;
1751 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1752 			__dev_remove_pack(&po->prot_hook);
1753 			po->fanout = match;
1754 			po->rollover = rollover;
1755 			rollover = NULL;
1756 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1757 			__fanout_link(sk, po);
1758 			err = 0;
1759 		}
1760 	}
1761 	spin_unlock(&po->bind_lock);
1762 
1763 	if (err && !refcount_read(&match->sk_ref)) {
1764 		list_del(&match->list);
1765 		kvfree(match);
1766 	}
1767 
1768 out:
1769 	kfree(rollover);
1770 	mutex_unlock(&fanout_mutex);
1771 	return err;
1772 }
1773 
1774 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1775  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1776  * It is the responsibility of the caller to call fanout_release_data() and
1777  * free the returned packet_fanout (after synchronize_net())
1778  */
1779 static struct packet_fanout *fanout_release(struct sock *sk)
1780 {
1781 	struct packet_sock *po = pkt_sk(sk);
1782 	struct packet_fanout *f;
1783 
1784 	mutex_lock(&fanout_mutex);
1785 	f = po->fanout;
1786 	if (f) {
1787 		po->fanout = NULL;
1788 
1789 		if (refcount_dec_and_test(&f->sk_ref))
1790 			list_del(&f->list);
1791 		else
1792 			f = NULL;
1793 	}
1794 	mutex_unlock(&fanout_mutex);
1795 
1796 	return f;
1797 }
1798 
1799 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1800 					  struct sk_buff *skb)
1801 {
1802 	/* Earlier code assumed this would be a VLAN pkt, double-check
1803 	 * this now that we have the actual packet in hand. We can only
1804 	 * do this check on Ethernet devices.
1805 	 */
1806 	if (unlikely(dev->type != ARPHRD_ETHER))
1807 		return false;
1808 
1809 	skb_reset_mac_header(skb);
1810 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1811 }
1812 
1813 static const struct proto_ops packet_ops;
1814 
1815 static const struct proto_ops packet_ops_spkt;
1816 
1817 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1818 			   struct packet_type *pt, struct net_device *orig_dev)
1819 {
1820 	struct sock *sk;
1821 	struct sockaddr_pkt *spkt;
1822 
1823 	/*
1824 	 *	When we registered the protocol we saved the socket in the data
1825 	 *	field for just this event.
1826 	 */
1827 
1828 	sk = pt->af_packet_priv;
1829 
1830 	/*
1831 	 *	Yank back the headers [hope the device set this
1832 	 *	right or kerboom...]
1833 	 *
1834 	 *	Incoming packets have ll header pulled,
1835 	 *	push it back.
1836 	 *
1837 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1838 	 *	so that this procedure is noop.
1839 	 */
1840 
1841 	if (skb->pkt_type == PACKET_LOOPBACK)
1842 		goto out;
1843 
1844 	if (!net_eq(dev_net(dev), sock_net(sk)))
1845 		goto out;
1846 
1847 	skb = skb_share_check(skb, GFP_ATOMIC);
1848 	if (skb == NULL)
1849 		goto oom;
1850 
1851 	/* drop any routing info */
1852 	skb_dst_drop(skb);
1853 
1854 	/* drop conntrack reference */
1855 	nf_reset_ct(skb);
1856 
1857 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1858 
1859 	skb_push(skb, skb->data - skb_mac_header(skb));
1860 
1861 	/*
1862 	 *	The SOCK_PACKET socket receives _all_ frames.
1863 	 */
1864 
1865 	spkt->spkt_family = dev->type;
1866 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1867 	spkt->spkt_protocol = skb->protocol;
1868 
1869 	/*
1870 	 *	Charge the memory to the socket. This is done specifically
1871 	 *	to prevent sockets using all the memory up.
1872 	 */
1873 
1874 	if (sock_queue_rcv_skb(sk, skb) == 0)
1875 		return 0;
1876 
1877 out:
1878 	kfree_skb(skb);
1879 oom:
1880 	return 0;
1881 }
1882 
1883 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1884 {
1885 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1886 	    sock->type == SOCK_RAW) {
1887 		skb_reset_mac_header(skb);
1888 		skb->protocol = dev_parse_header_protocol(skb);
1889 	}
1890 
1891 	skb_probe_transport_header(skb);
1892 }
1893 
1894 /*
1895  *	Output a raw packet to a device layer. This bypasses all the other
1896  *	protocol layers and you must therefore supply it with a complete frame
1897  */
1898 
1899 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1900 			       size_t len)
1901 {
1902 	struct sock *sk = sock->sk;
1903 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1904 	struct sk_buff *skb = NULL;
1905 	struct net_device *dev;
1906 	struct sockcm_cookie sockc;
1907 	__be16 proto = 0;
1908 	int err;
1909 	int extra_len = 0;
1910 
1911 	/*
1912 	 *	Get and verify the address.
1913 	 */
1914 
1915 	if (saddr) {
1916 		if (msg->msg_namelen < sizeof(struct sockaddr))
1917 			return -EINVAL;
1918 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1919 			proto = saddr->spkt_protocol;
1920 	} else
1921 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1922 
1923 	/*
1924 	 *	Find the device first to size check it
1925 	 */
1926 
1927 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1928 retry:
1929 	rcu_read_lock();
1930 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1931 	err = -ENODEV;
1932 	if (dev == NULL)
1933 		goto out_unlock;
1934 
1935 	err = -ENETDOWN;
1936 	if (!(dev->flags & IFF_UP))
1937 		goto out_unlock;
1938 
1939 	/*
1940 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1941 	 * raw protocol and you must do your own fragmentation at this level.
1942 	 */
1943 
1944 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1945 		if (!netif_supports_nofcs(dev)) {
1946 			err = -EPROTONOSUPPORT;
1947 			goto out_unlock;
1948 		}
1949 		extra_len = 4; /* We're doing our own CRC */
1950 	}
1951 
1952 	err = -EMSGSIZE;
1953 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1954 		goto out_unlock;
1955 
1956 	if (!skb) {
1957 		size_t reserved = LL_RESERVED_SPACE(dev);
1958 		int tlen = dev->needed_tailroom;
1959 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1960 
1961 		rcu_read_unlock();
1962 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1963 		if (skb == NULL)
1964 			return -ENOBUFS;
1965 		/* FIXME: Save some space for broken drivers that write a hard
1966 		 * header at transmission time by themselves. PPP is the notable
1967 		 * one here. This should really be fixed at the driver level.
1968 		 */
1969 		skb_reserve(skb, reserved);
1970 		skb_reset_network_header(skb);
1971 
1972 		/* Try to align data part correctly */
1973 		if (hhlen) {
1974 			skb->data -= hhlen;
1975 			skb->tail -= hhlen;
1976 			if (len < hhlen)
1977 				skb_reset_network_header(skb);
1978 		}
1979 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1980 		if (err)
1981 			goto out_free;
1982 		goto retry;
1983 	}
1984 
1985 	if (!dev_validate_header(dev, skb->data, len)) {
1986 		err = -EINVAL;
1987 		goto out_unlock;
1988 	}
1989 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1990 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1991 		err = -EMSGSIZE;
1992 		goto out_unlock;
1993 	}
1994 
1995 	sockcm_init(&sockc, sk);
1996 	if (msg->msg_controllen) {
1997 		err = sock_cmsg_send(sk, msg, &sockc);
1998 		if (unlikely(err))
1999 			goto out_unlock;
2000 	}
2001 
2002 	skb->protocol = proto;
2003 	skb->dev = dev;
2004 	skb->priority = sk->sk_priority;
2005 	skb->mark = sk->sk_mark;
2006 	skb->tstamp = sockc.transmit_time;
2007 
2008 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2009 
2010 	if (unlikely(extra_len == 4))
2011 		skb->no_fcs = 1;
2012 
2013 	packet_parse_headers(skb, sock);
2014 
2015 	dev_queue_xmit(skb);
2016 	rcu_read_unlock();
2017 	return len;
2018 
2019 out_unlock:
2020 	rcu_read_unlock();
2021 out_free:
2022 	kfree_skb(skb);
2023 	return err;
2024 }
2025 
2026 static unsigned int run_filter(struct sk_buff *skb,
2027 			       const struct sock *sk,
2028 			       unsigned int res)
2029 {
2030 	struct sk_filter *filter;
2031 
2032 	rcu_read_lock();
2033 	filter = rcu_dereference(sk->sk_filter);
2034 	if (filter != NULL)
2035 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2036 	rcu_read_unlock();
2037 
2038 	return res;
2039 }
2040 
2041 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2042 			   size_t *len)
2043 {
2044 	struct virtio_net_hdr vnet_hdr;
2045 
2046 	if (*len < sizeof(vnet_hdr))
2047 		return -EINVAL;
2048 	*len -= sizeof(vnet_hdr);
2049 
2050 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2051 		return -EINVAL;
2052 
2053 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2054 }
2055 
2056 /*
2057  * This function makes lazy skb cloning in hope that most of packets
2058  * are discarded by BPF.
2059  *
2060  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2061  * and skb->cb are mangled. It works because (and until) packets
2062  * falling here are owned by current CPU. Output packets are cloned
2063  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2064  * sequentially, so that if we return skb to original state on exit,
2065  * we will not harm anyone.
2066  */
2067 
2068 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2069 		      struct packet_type *pt, struct net_device *orig_dev)
2070 {
2071 	struct sock *sk;
2072 	struct sockaddr_ll *sll;
2073 	struct packet_sock *po;
2074 	u8 *skb_head = skb->data;
2075 	int skb_len = skb->len;
2076 	unsigned int snaplen, res;
2077 	bool is_drop_n_account = false;
2078 
2079 	if (skb->pkt_type == PACKET_LOOPBACK)
2080 		goto drop;
2081 
2082 	sk = pt->af_packet_priv;
2083 	po = pkt_sk(sk);
2084 
2085 	if (!net_eq(dev_net(dev), sock_net(sk)))
2086 		goto drop;
2087 
2088 	skb->dev = dev;
2089 
2090 	if (dev_has_header(dev)) {
2091 		/* The device has an explicit notion of ll header,
2092 		 * exported to higher levels.
2093 		 *
2094 		 * Otherwise, the device hides details of its frame
2095 		 * structure, so that corresponding packet head is
2096 		 * never delivered to user.
2097 		 */
2098 		if (sk->sk_type != SOCK_DGRAM)
2099 			skb_push(skb, skb->data - skb_mac_header(skb));
2100 		else if (skb->pkt_type == PACKET_OUTGOING) {
2101 			/* Special case: outgoing packets have ll header at head */
2102 			skb_pull(skb, skb_network_offset(skb));
2103 		}
2104 	}
2105 
2106 	snaplen = skb->len;
2107 
2108 	res = run_filter(skb, sk, snaplen);
2109 	if (!res)
2110 		goto drop_n_restore;
2111 	if (snaplen > res)
2112 		snaplen = res;
2113 
2114 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2115 		goto drop_n_acct;
2116 
2117 	if (skb_shared(skb)) {
2118 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2119 		if (nskb == NULL)
2120 			goto drop_n_acct;
2121 
2122 		if (skb_head != skb->data) {
2123 			skb->data = skb_head;
2124 			skb->len = skb_len;
2125 		}
2126 		consume_skb(skb);
2127 		skb = nskb;
2128 	}
2129 
2130 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2131 
2132 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2133 	sll->sll_hatype = dev->type;
2134 	sll->sll_pkttype = skb->pkt_type;
2135 	if (unlikely(po->origdev))
2136 		sll->sll_ifindex = orig_dev->ifindex;
2137 	else
2138 		sll->sll_ifindex = dev->ifindex;
2139 
2140 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2141 
2142 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2143 	 * Use their space for storing the original skb length.
2144 	 */
2145 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2146 
2147 	if (pskb_trim(skb, snaplen))
2148 		goto drop_n_acct;
2149 
2150 	skb_set_owner_r(skb, sk);
2151 	skb->dev = NULL;
2152 	skb_dst_drop(skb);
2153 
2154 	/* drop conntrack reference */
2155 	nf_reset_ct(skb);
2156 
2157 	spin_lock(&sk->sk_receive_queue.lock);
2158 	po->stats.stats1.tp_packets++;
2159 	sock_skb_set_dropcount(sk, skb);
2160 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2161 	spin_unlock(&sk->sk_receive_queue.lock);
2162 	sk->sk_data_ready(sk);
2163 	return 0;
2164 
2165 drop_n_acct:
2166 	is_drop_n_account = true;
2167 	atomic_inc(&po->tp_drops);
2168 	atomic_inc(&sk->sk_drops);
2169 
2170 drop_n_restore:
2171 	if (skb_head != skb->data && skb_shared(skb)) {
2172 		skb->data = skb_head;
2173 		skb->len = skb_len;
2174 	}
2175 drop:
2176 	if (!is_drop_n_account)
2177 		consume_skb(skb);
2178 	else
2179 		kfree_skb(skb);
2180 	return 0;
2181 }
2182 
2183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2184 		       struct packet_type *pt, struct net_device *orig_dev)
2185 {
2186 	struct sock *sk;
2187 	struct packet_sock *po;
2188 	struct sockaddr_ll *sll;
2189 	union tpacket_uhdr h;
2190 	u8 *skb_head = skb->data;
2191 	int skb_len = skb->len;
2192 	unsigned int snaplen, res;
2193 	unsigned long status = TP_STATUS_USER;
2194 	unsigned short macoff, hdrlen;
2195 	unsigned int netoff;
2196 	struct sk_buff *copy_skb = NULL;
2197 	struct timespec64 ts;
2198 	__u32 ts_status;
2199 	bool is_drop_n_account = false;
2200 	unsigned int slot_id = 0;
2201 	bool do_vnet = false;
2202 
2203 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2204 	 * We may add members to them until current aligned size without forcing
2205 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2206 	 */
2207 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2208 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2209 
2210 	if (skb->pkt_type == PACKET_LOOPBACK)
2211 		goto drop;
2212 
2213 	sk = pt->af_packet_priv;
2214 	po = pkt_sk(sk);
2215 
2216 	if (!net_eq(dev_net(dev), sock_net(sk)))
2217 		goto drop;
2218 
2219 	if (dev_has_header(dev)) {
2220 		if (sk->sk_type != SOCK_DGRAM)
2221 			skb_push(skb, skb->data - skb_mac_header(skb));
2222 		else if (skb->pkt_type == PACKET_OUTGOING) {
2223 			/* Special case: outgoing packets have ll header at head */
2224 			skb_pull(skb, skb_network_offset(skb));
2225 		}
2226 	}
2227 
2228 	snaplen = skb->len;
2229 
2230 	res = run_filter(skb, sk, snaplen);
2231 	if (!res)
2232 		goto drop_n_restore;
2233 
2234 	/* If we are flooded, just give up */
2235 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2236 		atomic_inc(&po->tp_drops);
2237 		goto drop_n_restore;
2238 	}
2239 
2240 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2241 		status |= TP_STATUS_CSUMNOTREADY;
2242 	else if (skb->pkt_type != PACKET_OUTGOING &&
2243 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2244 		  skb_csum_unnecessary(skb)))
2245 		status |= TP_STATUS_CSUM_VALID;
2246 
2247 	if (snaplen > res)
2248 		snaplen = res;
2249 
2250 	if (sk->sk_type == SOCK_DGRAM) {
2251 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2252 				  po->tp_reserve;
2253 	} else {
2254 		unsigned int maclen = skb_network_offset(skb);
2255 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2256 				       (maclen < 16 ? 16 : maclen)) +
2257 				       po->tp_reserve;
2258 		if (po->has_vnet_hdr) {
2259 			netoff += sizeof(struct virtio_net_hdr);
2260 			do_vnet = true;
2261 		}
2262 		macoff = netoff - maclen;
2263 	}
2264 	if (netoff > USHRT_MAX) {
2265 		atomic_inc(&po->tp_drops);
2266 		goto drop_n_restore;
2267 	}
2268 	if (po->tp_version <= TPACKET_V2) {
2269 		if (macoff + snaplen > po->rx_ring.frame_size) {
2270 			if (po->copy_thresh &&
2271 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2272 				if (skb_shared(skb)) {
2273 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2274 				} else {
2275 					copy_skb = skb_get(skb);
2276 					skb_head = skb->data;
2277 				}
2278 				if (copy_skb)
2279 					skb_set_owner_r(copy_skb, sk);
2280 			}
2281 			snaplen = po->rx_ring.frame_size - macoff;
2282 			if ((int)snaplen < 0) {
2283 				snaplen = 0;
2284 				do_vnet = false;
2285 			}
2286 		}
2287 	} else if (unlikely(macoff + snaplen >
2288 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2289 		u32 nval;
2290 
2291 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2292 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2293 			    snaplen, nval, macoff);
2294 		snaplen = nval;
2295 		if (unlikely((int)snaplen < 0)) {
2296 			snaplen = 0;
2297 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2298 			do_vnet = false;
2299 		}
2300 	}
2301 	spin_lock(&sk->sk_receive_queue.lock);
2302 	h.raw = packet_current_rx_frame(po, skb,
2303 					TP_STATUS_KERNEL, (macoff+snaplen));
2304 	if (!h.raw)
2305 		goto drop_n_account;
2306 
2307 	if (po->tp_version <= TPACKET_V2) {
2308 		slot_id = po->rx_ring.head;
2309 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2310 			goto drop_n_account;
2311 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2312 	}
2313 
2314 	if (do_vnet &&
2315 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2316 				    sizeof(struct virtio_net_hdr),
2317 				    vio_le(), true, 0)) {
2318 		if (po->tp_version == TPACKET_V3)
2319 			prb_clear_blk_fill_status(&po->rx_ring);
2320 		goto drop_n_account;
2321 	}
2322 
2323 	if (po->tp_version <= TPACKET_V2) {
2324 		packet_increment_rx_head(po, &po->rx_ring);
2325 	/*
2326 	 * LOSING will be reported till you read the stats,
2327 	 * because it's COR - Clear On Read.
2328 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2329 	 * at packet level.
2330 	 */
2331 		if (atomic_read(&po->tp_drops))
2332 			status |= TP_STATUS_LOSING;
2333 	}
2334 
2335 	po->stats.stats1.tp_packets++;
2336 	if (copy_skb) {
2337 		status |= TP_STATUS_COPY;
2338 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2339 	}
2340 	spin_unlock(&sk->sk_receive_queue.lock);
2341 
2342 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2343 
2344 	/* Always timestamp; prefer an existing software timestamp taken
2345 	 * closer to the time of capture.
2346 	 */
2347 	ts_status = tpacket_get_timestamp(skb, &ts,
2348 					  po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE);
2349 	if (!ts_status)
2350 		ktime_get_real_ts64(&ts);
2351 
2352 	status |= ts_status;
2353 
2354 	switch (po->tp_version) {
2355 	case TPACKET_V1:
2356 		h.h1->tp_len = skb->len;
2357 		h.h1->tp_snaplen = snaplen;
2358 		h.h1->tp_mac = macoff;
2359 		h.h1->tp_net = netoff;
2360 		h.h1->tp_sec = ts.tv_sec;
2361 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2362 		hdrlen = sizeof(*h.h1);
2363 		break;
2364 	case TPACKET_V2:
2365 		h.h2->tp_len = skb->len;
2366 		h.h2->tp_snaplen = snaplen;
2367 		h.h2->tp_mac = macoff;
2368 		h.h2->tp_net = netoff;
2369 		h.h2->tp_sec = ts.tv_sec;
2370 		h.h2->tp_nsec = ts.tv_nsec;
2371 		if (skb_vlan_tag_present(skb)) {
2372 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2373 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2374 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2375 		} else {
2376 			h.h2->tp_vlan_tci = 0;
2377 			h.h2->tp_vlan_tpid = 0;
2378 		}
2379 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2380 		hdrlen = sizeof(*h.h2);
2381 		break;
2382 	case TPACKET_V3:
2383 		/* tp_nxt_offset,vlan are already populated above.
2384 		 * So DONT clear those fields here
2385 		 */
2386 		h.h3->tp_status |= status;
2387 		h.h3->tp_len = skb->len;
2388 		h.h3->tp_snaplen = snaplen;
2389 		h.h3->tp_mac = macoff;
2390 		h.h3->tp_net = netoff;
2391 		h.h3->tp_sec  = ts.tv_sec;
2392 		h.h3->tp_nsec = ts.tv_nsec;
2393 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2394 		hdrlen = sizeof(*h.h3);
2395 		break;
2396 	default:
2397 		BUG();
2398 	}
2399 
2400 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2401 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2402 	sll->sll_family = AF_PACKET;
2403 	sll->sll_hatype = dev->type;
2404 	sll->sll_protocol = skb->protocol;
2405 	sll->sll_pkttype = skb->pkt_type;
2406 	if (unlikely(po->origdev))
2407 		sll->sll_ifindex = orig_dev->ifindex;
2408 	else
2409 		sll->sll_ifindex = dev->ifindex;
2410 
2411 	smp_mb();
2412 
2413 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2414 	if (po->tp_version <= TPACKET_V2) {
2415 		u8 *start, *end;
2416 
2417 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2418 					macoff + snaplen);
2419 
2420 		for (start = h.raw; start < end; start += PAGE_SIZE)
2421 			flush_dcache_page(pgv_to_page(start));
2422 	}
2423 	smp_wmb();
2424 #endif
2425 
2426 	if (po->tp_version <= TPACKET_V2) {
2427 		spin_lock(&sk->sk_receive_queue.lock);
2428 		__packet_set_status(po, h.raw, status);
2429 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2430 		spin_unlock(&sk->sk_receive_queue.lock);
2431 		sk->sk_data_ready(sk);
2432 	} else if (po->tp_version == TPACKET_V3) {
2433 		prb_clear_blk_fill_status(&po->rx_ring);
2434 	}
2435 
2436 drop_n_restore:
2437 	if (skb_head != skb->data && skb_shared(skb)) {
2438 		skb->data = skb_head;
2439 		skb->len = skb_len;
2440 	}
2441 drop:
2442 	if (!is_drop_n_account)
2443 		consume_skb(skb);
2444 	else
2445 		kfree_skb(skb);
2446 	return 0;
2447 
2448 drop_n_account:
2449 	spin_unlock(&sk->sk_receive_queue.lock);
2450 	atomic_inc(&po->tp_drops);
2451 	is_drop_n_account = true;
2452 
2453 	sk->sk_data_ready(sk);
2454 	kfree_skb(copy_skb);
2455 	goto drop_n_restore;
2456 }
2457 
2458 static void tpacket_destruct_skb(struct sk_buff *skb)
2459 {
2460 	struct packet_sock *po = pkt_sk(skb->sk);
2461 
2462 	if (likely(po->tx_ring.pg_vec)) {
2463 		void *ph;
2464 		__u32 ts;
2465 
2466 		ph = skb_zcopy_get_nouarg(skb);
2467 		packet_dec_pending(&po->tx_ring);
2468 
2469 		ts = __packet_set_timestamp(po, ph, skb);
2470 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2471 
2472 		if (!packet_read_pending(&po->tx_ring))
2473 			complete(&po->skb_completion);
2474 	}
2475 
2476 	sock_wfree(skb);
2477 }
2478 
2479 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2480 {
2481 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2482 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2483 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2484 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2485 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2486 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2487 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2488 
2489 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2490 		return -EINVAL;
2491 
2492 	return 0;
2493 }
2494 
2495 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2496 				 struct virtio_net_hdr *vnet_hdr)
2497 {
2498 	if (*len < sizeof(*vnet_hdr))
2499 		return -EINVAL;
2500 	*len -= sizeof(*vnet_hdr);
2501 
2502 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2503 		return -EFAULT;
2504 
2505 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2506 }
2507 
2508 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2509 		void *frame, struct net_device *dev, void *data, int tp_len,
2510 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2511 		const struct sockcm_cookie *sockc)
2512 {
2513 	union tpacket_uhdr ph;
2514 	int to_write, offset, len, nr_frags, len_max;
2515 	struct socket *sock = po->sk.sk_socket;
2516 	struct page *page;
2517 	int err;
2518 
2519 	ph.raw = frame;
2520 
2521 	skb->protocol = proto;
2522 	skb->dev = dev;
2523 	skb->priority = po->sk.sk_priority;
2524 	skb->mark = po->sk.sk_mark;
2525 	skb->tstamp = sockc->transmit_time;
2526 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2527 	skb_zcopy_set_nouarg(skb, ph.raw);
2528 
2529 	skb_reserve(skb, hlen);
2530 	skb_reset_network_header(skb);
2531 
2532 	to_write = tp_len;
2533 
2534 	if (sock->type == SOCK_DGRAM) {
2535 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2536 				NULL, tp_len);
2537 		if (unlikely(err < 0))
2538 			return -EINVAL;
2539 	} else if (copylen) {
2540 		int hdrlen = min_t(int, copylen, tp_len);
2541 
2542 		skb_push(skb, dev->hard_header_len);
2543 		skb_put(skb, copylen - dev->hard_header_len);
2544 		err = skb_store_bits(skb, 0, data, hdrlen);
2545 		if (unlikely(err))
2546 			return err;
2547 		if (!dev_validate_header(dev, skb->data, hdrlen))
2548 			return -EINVAL;
2549 
2550 		data += hdrlen;
2551 		to_write -= hdrlen;
2552 	}
2553 
2554 	offset = offset_in_page(data);
2555 	len_max = PAGE_SIZE - offset;
2556 	len = ((to_write > len_max) ? len_max : to_write);
2557 
2558 	skb->data_len = to_write;
2559 	skb->len += to_write;
2560 	skb->truesize += to_write;
2561 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2562 
2563 	while (likely(to_write)) {
2564 		nr_frags = skb_shinfo(skb)->nr_frags;
2565 
2566 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2567 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2568 			       MAX_SKB_FRAGS);
2569 			return -EFAULT;
2570 		}
2571 
2572 		page = pgv_to_page(data);
2573 		data += len;
2574 		flush_dcache_page(page);
2575 		get_page(page);
2576 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2577 		to_write -= len;
2578 		offset = 0;
2579 		len_max = PAGE_SIZE;
2580 		len = ((to_write > len_max) ? len_max : to_write);
2581 	}
2582 
2583 	packet_parse_headers(skb, sock);
2584 
2585 	return tp_len;
2586 }
2587 
2588 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2589 				int size_max, void **data)
2590 {
2591 	union tpacket_uhdr ph;
2592 	int tp_len, off;
2593 
2594 	ph.raw = frame;
2595 
2596 	switch (po->tp_version) {
2597 	case TPACKET_V3:
2598 		if (ph.h3->tp_next_offset != 0) {
2599 			pr_warn_once("variable sized slot not supported");
2600 			return -EINVAL;
2601 		}
2602 		tp_len = ph.h3->tp_len;
2603 		break;
2604 	case TPACKET_V2:
2605 		tp_len = ph.h2->tp_len;
2606 		break;
2607 	default:
2608 		tp_len = ph.h1->tp_len;
2609 		break;
2610 	}
2611 	if (unlikely(tp_len > size_max)) {
2612 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2613 		return -EMSGSIZE;
2614 	}
2615 
2616 	if (unlikely(po->tp_tx_has_off)) {
2617 		int off_min, off_max;
2618 
2619 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2620 		off_max = po->tx_ring.frame_size - tp_len;
2621 		if (po->sk.sk_type == SOCK_DGRAM) {
2622 			switch (po->tp_version) {
2623 			case TPACKET_V3:
2624 				off = ph.h3->tp_net;
2625 				break;
2626 			case TPACKET_V2:
2627 				off = ph.h2->tp_net;
2628 				break;
2629 			default:
2630 				off = ph.h1->tp_net;
2631 				break;
2632 			}
2633 		} else {
2634 			switch (po->tp_version) {
2635 			case TPACKET_V3:
2636 				off = ph.h3->tp_mac;
2637 				break;
2638 			case TPACKET_V2:
2639 				off = ph.h2->tp_mac;
2640 				break;
2641 			default:
2642 				off = ph.h1->tp_mac;
2643 				break;
2644 			}
2645 		}
2646 		if (unlikely((off < off_min) || (off_max < off)))
2647 			return -EINVAL;
2648 	} else {
2649 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2650 	}
2651 
2652 	*data = frame + off;
2653 	return tp_len;
2654 }
2655 
2656 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2657 {
2658 	struct sk_buff *skb = NULL;
2659 	struct net_device *dev;
2660 	struct virtio_net_hdr *vnet_hdr = NULL;
2661 	struct sockcm_cookie sockc;
2662 	__be16 proto;
2663 	int err, reserve = 0;
2664 	void *ph;
2665 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2666 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2667 	unsigned char *addr = NULL;
2668 	int tp_len, size_max;
2669 	void *data;
2670 	int len_sum = 0;
2671 	int status = TP_STATUS_AVAILABLE;
2672 	int hlen, tlen, copylen = 0;
2673 	long timeo = 0;
2674 
2675 	mutex_lock(&po->pg_vec_lock);
2676 
2677 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2678 	 * we need to confirm it under protection of pg_vec_lock.
2679 	 */
2680 	if (unlikely(!po->tx_ring.pg_vec)) {
2681 		err = -EBUSY;
2682 		goto out;
2683 	}
2684 	if (likely(saddr == NULL)) {
2685 		dev	= packet_cached_dev_get(po);
2686 		proto	= po->num;
2687 	} else {
2688 		err = -EINVAL;
2689 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2690 			goto out;
2691 		if (msg->msg_namelen < (saddr->sll_halen
2692 					+ offsetof(struct sockaddr_ll,
2693 						sll_addr)))
2694 			goto out;
2695 		proto	= saddr->sll_protocol;
2696 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2697 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2698 			if (dev && msg->msg_namelen < dev->addr_len +
2699 				   offsetof(struct sockaddr_ll, sll_addr))
2700 				goto out_put;
2701 			addr = saddr->sll_addr;
2702 		}
2703 	}
2704 
2705 	err = -ENXIO;
2706 	if (unlikely(dev == NULL))
2707 		goto out;
2708 	err = -ENETDOWN;
2709 	if (unlikely(!(dev->flags & IFF_UP)))
2710 		goto out_put;
2711 
2712 	sockcm_init(&sockc, &po->sk);
2713 	if (msg->msg_controllen) {
2714 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2715 		if (unlikely(err))
2716 			goto out_put;
2717 	}
2718 
2719 	if (po->sk.sk_socket->type == SOCK_RAW)
2720 		reserve = dev->hard_header_len;
2721 	size_max = po->tx_ring.frame_size
2722 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2723 
2724 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2725 		size_max = dev->mtu + reserve + VLAN_HLEN;
2726 
2727 	reinit_completion(&po->skb_completion);
2728 
2729 	do {
2730 		ph = packet_current_frame(po, &po->tx_ring,
2731 					  TP_STATUS_SEND_REQUEST);
2732 		if (unlikely(ph == NULL)) {
2733 			if (need_wait && skb) {
2734 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2735 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2736 				if (timeo <= 0) {
2737 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2738 					goto out_put;
2739 				}
2740 			}
2741 			/* check for additional frames */
2742 			continue;
2743 		}
2744 
2745 		skb = NULL;
2746 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2747 		if (tp_len < 0)
2748 			goto tpacket_error;
2749 
2750 		status = TP_STATUS_SEND_REQUEST;
2751 		hlen = LL_RESERVED_SPACE(dev);
2752 		tlen = dev->needed_tailroom;
2753 		if (po->has_vnet_hdr) {
2754 			vnet_hdr = data;
2755 			data += sizeof(*vnet_hdr);
2756 			tp_len -= sizeof(*vnet_hdr);
2757 			if (tp_len < 0 ||
2758 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2759 				tp_len = -EINVAL;
2760 				goto tpacket_error;
2761 			}
2762 			copylen = __virtio16_to_cpu(vio_le(),
2763 						    vnet_hdr->hdr_len);
2764 		}
2765 		copylen = max_t(int, copylen, dev->hard_header_len);
2766 		skb = sock_alloc_send_skb(&po->sk,
2767 				hlen + tlen + sizeof(struct sockaddr_ll) +
2768 				(copylen - dev->hard_header_len),
2769 				!need_wait, &err);
2770 
2771 		if (unlikely(skb == NULL)) {
2772 			/* we assume the socket was initially writeable ... */
2773 			if (likely(len_sum > 0))
2774 				err = len_sum;
2775 			goto out_status;
2776 		}
2777 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2778 					  addr, hlen, copylen, &sockc);
2779 		if (likely(tp_len >= 0) &&
2780 		    tp_len > dev->mtu + reserve &&
2781 		    !po->has_vnet_hdr &&
2782 		    !packet_extra_vlan_len_allowed(dev, skb))
2783 			tp_len = -EMSGSIZE;
2784 
2785 		if (unlikely(tp_len < 0)) {
2786 tpacket_error:
2787 			if (po->tp_loss) {
2788 				__packet_set_status(po, ph,
2789 						TP_STATUS_AVAILABLE);
2790 				packet_increment_head(&po->tx_ring);
2791 				kfree_skb(skb);
2792 				continue;
2793 			} else {
2794 				status = TP_STATUS_WRONG_FORMAT;
2795 				err = tp_len;
2796 				goto out_status;
2797 			}
2798 		}
2799 
2800 		if (po->has_vnet_hdr) {
2801 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2802 				tp_len = -EINVAL;
2803 				goto tpacket_error;
2804 			}
2805 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2806 		}
2807 
2808 		skb->destructor = tpacket_destruct_skb;
2809 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2810 		packet_inc_pending(&po->tx_ring);
2811 
2812 		status = TP_STATUS_SEND_REQUEST;
2813 		err = po->xmit(skb);
2814 		if (unlikely(err > 0)) {
2815 			err = net_xmit_errno(err);
2816 			if (err && __packet_get_status(po, ph) ==
2817 				   TP_STATUS_AVAILABLE) {
2818 				/* skb was destructed already */
2819 				skb = NULL;
2820 				goto out_status;
2821 			}
2822 			/*
2823 			 * skb was dropped but not destructed yet;
2824 			 * let's treat it like congestion or err < 0
2825 			 */
2826 			err = 0;
2827 		}
2828 		packet_increment_head(&po->tx_ring);
2829 		len_sum += tp_len;
2830 	} while (likely((ph != NULL) ||
2831 		/* Note: packet_read_pending() might be slow if we have
2832 		 * to call it as it's per_cpu variable, but in fast-path
2833 		 * we already short-circuit the loop with the first
2834 		 * condition, and luckily don't have to go that path
2835 		 * anyway.
2836 		 */
2837 		 (need_wait && packet_read_pending(&po->tx_ring))));
2838 
2839 	err = len_sum;
2840 	goto out_put;
2841 
2842 out_status:
2843 	__packet_set_status(po, ph, status);
2844 	kfree_skb(skb);
2845 out_put:
2846 	dev_put(dev);
2847 out:
2848 	mutex_unlock(&po->pg_vec_lock);
2849 	return err;
2850 }
2851 
2852 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2853 				        size_t reserve, size_t len,
2854 				        size_t linear, int noblock,
2855 				        int *err)
2856 {
2857 	struct sk_buff *skb;
2858 
2859 	/* Under a page?  Don't bother with paged skb. */
2860 	if (prepad + len < PAGE_SIZE || !linear)
2861 		linear = len;
2862 
2863 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2864 				   err, 0);
2865 	if (!skb)
2866 		return NULL;
2867 
2868 	skb_reserve(skb, reserve);
2869 	skb_put(skb, linear);
2870 	skb->data_len = len - linear;
2871 	skb->len += len - linear;
2872 
2873 	return skb;
2874 }
2875 
2876 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2877 {
2878 	struct sock *sk = sock->sk;
2879 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2880 	struct sk_buff *skb;
2881 	struct net_device *dev;
2882 	__be16 proto;
2883 	unsigned char *addr = NULL;
2884 	int err, reserve = 0;
2885 	struct sockcm_cookie sockc;
2886 	struct virtio_net_hdr vnet_hdr = { 0 };
2887 	int offset = 0;
2888 	struct packet_sock *po = pkt_sk(sk);
2889 	bool has_vnet_hdr = false;
2890 	int hlen, tlen, linear;
2891 	int extra_len = 0;
2892 
2893 	/*
2894 	 *	Get and verify the address.
2895 	 */
2896 
2897 	if (likely(saddr == NULL)) {
2898 		dev	= packet_cached_dev_get(po);
2899 		proto	= po->num;
2900 	} else {
2901 		err = -EINVAL;
2902 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2903 			goto out;
2904 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2905 			goto out;
2906 		proto	= saddr->sll_protocol;
2907 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2908 		if (sock->type == SOCK_DGRAM) {
2909 			if (dev && msg->msg_namelen < dev->addr_len +
2910 				   offsetof(struct sockaddr_ll, sll_addr))
2911 				goto out_unlock;
2912 			addr = saddr->sll_addr;
2913 		}
2914 	}
2915 
2916 	err = -ENXIO;
2917 	if (unlikely(dev == NULL))
2918 		goto out_unlock;
2919 	err = -ENETDOWN;
2920 	if (unlikely(!(dev->flags & IFF_UP)))
2921 		goto out_unlock;
2922 
2923 	sockcm_init(&sockc, sk);
2924 	sockc.mark = sk->sk_mark;
2925 	if (msg->msg_controllen) {
2926 		err = sock_cmsg_send(sk, msg, &sockc);
2927 		if (unlikely(err))
2928 			goto out_unlock;
2929 	}
2930 
2931 	if (sock->type == SOCK_RAW)
2932 		reserve = dev->hard_header_len;
2933 	if (po->has_vnet_hdr) {
2934 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2935 		if (err)
2936 			goto out_unlock;
2937 		has_vnet_hdr = true;
2938 	}
2939 
2940 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2941 		if (!netif_supports_nofcs(dev)) {
2942 			err = -EPROTONOSUPPORT;
2943 			goto out_unlock;
2944 		}
2945 		extra_len = 4; /* We're doing our own CRC */
2946 	}
2947 
2948 	err = -EMSGSIZE;
2949 	if (!vnet_hdr.gso_type &&
2950 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2951 		goto out_unlock;
2952 
2953 	err = -ENOBUFS;
2954 	hlen = LL_RESERVED_SPACE(dev);
2955 	tlen = dev->needed_tailroom;
2956 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2957 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2958 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2959 			       msg->msg_flags & MSG_DONTWAIT, &err);
2960 	if (skb == NULL)
2961 		goto out_unlock;
2962 
2963 	skb_reset_network_header(skb);
2964 
2965 	err = -EINVAL;
2966 	if (sock->type == SOCK_DGRAM) {
2967 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2968 		if (unlikely(offset < 0))
2969 			goto out_free;
2970 	} else if (reserve) {
2971 		skb_reserve(skb, -reserve);
2972 		if (len < reserve + sizeof(struct ipv6hdr) &&
2973 		    dev->min_header_len != dev->hard_header_len)
2974 			skb_reset_network_header(skb);
2975 	}
2976 
2977 	/* Returns -EFAULT on error */
2978 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2979 	if (err)
2980 		goto out_free;
2981 
2982 	if (sock->type == SOCK_RAW &&
2983 	    !dev_validate_header(dev, skb->data, len)) {
2984 		err = -EINVAL;
2985 		goto out_free;
2986 	}
2987 
2988 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2989 
2990 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2991 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2992 		err = -EMSGSIZE;
2993 		goto out_free;
2994 	}
2995 
2996 	skb->protocol = proto;
2997 	skb->dev = dev;
2998 	skb->priority = sk->sk_priority;
2999 	skb->mark = sockc.mark;
3000 	skb->tstamp = sockc.transmit_time;
3001 
3002 	if (has_vnet_hdr) {
3003 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3004 		if (err)
3005 			goto out_free;
3006 		len += sizeof(vnet_hdr);
3007 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
3008 	}
3009 
3010 	packet_parse_headers(skb, sock);
3011 
3012 	if (unlikely(extra_len == 4))
3013 		skb->no_fcs = 1;
3014 
3015 	err = po->xmit(skb);
3016 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3017 		goto out_unlock;
3018 
3019 	dev_put(dev);
3020 
3021 	return len;
3022 
3023 out_free:
3024 	kfree_skb(skb);
3025 out_unlock:
3026 	if (dev)
3027 		dev_put(dev);
3028 out:
3029 	return err;
3030 }
3031 
3032 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3033 {
3034 	struct sock *sk = sock->sk;
3035 	struct packet_sock *po = pkt_sk(sk);
3036 
3037 	if (po->tx_ring.pg_vec)
3038 		return tpacket_snd(po, msg);
3039 	else
3040 		return packet_snd(sock, msg, len);
3041 }
3042 
3043 /*
3044  *	Close a PACKET socket. This is fairly simple. We immediately go
3045  *	to 'closed' state and remove our protocol entry in the device list.
3046  */
3047 
3048 static int packet_release(struct socket *sock)
3049 {
3050 	struct sock *sk = sock->sk;
3051 	struct packet_sock *po;
3052 	struct packet_fanout *f;
3053 	struct net *net;
3054 	union tpacket_req_u req_u;
3055 
3056 	if (!sk)
3057 		return 0;
3058 
3059 	net = sock_net(sk);
3060 	po = pkt_sk(sk);
3061 
3062 	mutex_lock(&net->packet.sklist_lock);
3063 	sk_del_node_init_rcu(sk);
3064 	mutex_unlock(&net->packet.sklist_lock);
3065 
3066 	preempt_disable();
3067 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3068 	preempt_enable();
3069 
3070 	spin_lock(&po->bind_lock);
3071 	unregister_prot_hook(sk, false);
3072 	packet_cached_dev_reset(po);
3073 
3074 	if (po->prot_hook.dev) {
3075 		dev_put(po->prot_hook.dev);
3076 		po->prot_hook.dev = NULL;
3077 	}
3078 	spin_unlock(&po->bind_lock);
3079 
3080 	packet_flush_mclist(sk);
3081 
3082 	lock_sock(sk);
3083 	if (po->rx_ring.pg_vec) {
3084 		memset(&req_u, 0, sizeof(req_u));
3085 		packet_set_ring(sk, &req_u, 1, 0);
3086 	}
3087 
3088 	if (po->tx_ring.pg_vec) {
3089 		memset(&req_u, 0, sizeof(req_u));
3090 		packet_set_ring(sk, &req_u, 1, 1);
3091 	}
3092 	release_sock(sk);
3093 
3094 	f = fanout_release(sk);
3095 
3096 	synchronize_net();
3097 
3098 	kfree(po->rollover);
3099 	if (f) {
3100 		fanout_release_data(f);
3101 		kvfree(f);
3102 	}
3103 	/*
3104 	 *	Now the socket is dead. No more input will appear.
3105 	 */
3106 	sock_orphan(sk);
3107 	sock->sk = NULL;
3108 
3109 	/* Purge queues */
3110 
3111 	skb_queue_purge(&sk->sk_receive_queue);
3112 	packet_free_pending(po);
3113 	sk_refcnt_debug_release(sk);
3114 
3115 	sock_put(sk);
3116 	return 0;
3117 }
3118 
3119 /*
3120  *	Attach a packet hook.
3121  */
3122 
3123 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3124 			  __be16 proto)
3125 {
3126 	struct packet_sock *po = pkt_sk(sk);
3127 	struct net_device *dev_curr;
3128 	__be16 proto_curr;
3129 	bool need_rehook;
3130 	struct net_device *dev = NULL;
3131 	int ret = 0;
3132 	bool unlisted = false;
3133 
3134 	lock_sock(sk);
3135 	spin_lock(&po->bind_lock);
3136 	rcu_read_lock();
3137 
3138 	if (po->fanout) {
3139 		ret = -EINVAL;
3140 		goto out_unlock;
3141 	}
3142 
3143 	if (name) {
3144 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3145 		if (!dev) {
3146 			ret = -ENODEV;
3147 			goto out_unlock;
3148 		}
3149 	} else if (ifindex) {
3150 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3151 		if (!dev) {
3152 			ret = -ENODEV;
3153 			goto out_unlock;
3154 		}
3155 	}
3156 
3157 	if (dev)
3158 		dev_hold(dev);
3159 
3160 	proto_curr = po->prot_hook.type;
3161 	dev_curr = po->prot_hook.dev;
3162 
3163 	need_rehook = proto_curr != proto || dev_curr != dev;
3164 
3165 	if (need_rehook) {
3166 		if (po->running) {
3167 			rcu_read_unlock();
3168 			/* prevents packet_notifier() from calling
3169 			 * register_prot_hook()
3170 			 */
3171 			po->num = 0;
3172 			__unregister_prot_hook(sk, true);
3173 			rcu_read_lock();
3174 			dev_curr = po->prot_hook.dev;
3175 			if (dev)
3176 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3177 								 dev->ifindex);
3178 		}
3179 
3180 		BUG_ON(po->running);
3181 		po->num = proto;
3182 		po->prot_hook.type = proto;
3183 
3184 		if (unlikely(unlisted)) {
3185 			dev_put(dev);
3186 			po->prot_hook.dev = NULL;
3187 			po->ifindex = -1;
3188 			packet_cached_dev_reset(po);
3189 		} else {
3190 			po->prot_hook.dev = dev;
3191 			po->ifindex = dev ? dev->ifindex : 0;
3192 			packet_cached_dev_assign(po, dev);
3193 		}
3194 	}
3195 	if (dev_curr)
3196 		dev_put(dev_curr);
3197 
3198 	if (proto == 0 || !need_rehook)
3199 		goto out_unlock;
3200 
3201 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3202 		register_prot_hook(sk);
3203 	} else {
3204 		sk->sk_err = ENETDOWN;
3205 		if (!sock_flag(sk, SOCK_DEAD))
3206 			sk->sk_error_report(sk);
3207 	}
3208 
3209 out_unlock:
3210 	rcu_read_unlock();
3211 	spin_unlock(&po->bind_lock);
3212 	release_sock(sk);
3213 	return ret;
3214 }
3215 
3216 /*
3217  *	Bind a packet socket to a device
3218  */
3219 
3220 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3221 			    int addr_len)
3222 {
3223 	struct sock *sk = sock->sk;
3224 	char name[sizeof(uaddr->sa_data) + 1];
3225 
3226 	/*
3227 	 *	Check legality
3228 	 */
3229 
3230 	if (addr_len != sizeof(struct sockaddr))
3231 		return -EINVAL;
3232 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3233 	 * zero-terminated.
3234 	 */
3235 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3236 	name[sizeof(uaddr->sa_data)] = 0;
3237 
3238 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3239 }
3240 
3241 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3242 {
3243 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3244 	struct sock *sk = sock->sk;
3245 
3246 	/*
3247 	 *	Check legality
3248 	 */
3249 
3250 	if (addr_len < sizeof(struct sockaddr_ll))
3251 		return -EINVAL;
3252 	if (sll->sll_family != AF_PACKET)
3253 		return -EINVAL;
3254 
3255 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3256 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3257 }
3258 
3259 static struct proto packet_proto = {
3260 	.name	  = "PACKET",
3261 	.owner	  = THIS_MODULE,
3262 	.obj_size = sizeof(struct packet_sock),
3263 };
3264 
3265 /*
3266  *	Create a packet of type SOCK_PACKET.
3267  */
3268 
3269 static int packet_create(struct net *net, struct socket *sock, int protocol,
3270 			 int kern)
3271 {
3272 	struct sock *sk;
3273 	struct packet_sock *po;
3274 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3275 	int err;
3276 
3277 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3278 		return -EPERM;
3279 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3280 	    sock->type != SOCK_PACKET)
3281 		return -ESOCKTNOSUPPORT;
3282 
3283 	sock->state = SS_UNCONNECTED;
3284 
3285 	err = -ENOBUFS;
3286 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3287 	if (sk == NULL)
3288 		goto out;
3289 
3290 	sock->ops = &packet_ops;
3291 	if (sock->type == SOCK_PACKET)
3292 		sock->ops = &packet_ops_spkt;
3293 
3294 	sock_init_data(sock, sk);
3295 
3296 	po = pkt_sk(sk);
3297 	init_completion(&po->skb_completion);
3298 	sk->sk_family = PF_PACKET;
3299 	po->num = proto;
3300 	po->xmit = dev_queue_xmit;
3301 
3302 	err = packet_alloc_pending(po);
3303 	if (err)
3304 		goto out2;
3305 
3306 	packet_cached_dev_reset(po);
3307 
3308 	sk->sk_destruct = packet_sock_destruct;
3309 	sk_refcnt_debug_inc(sk);
3310 
3311 	/*
3312 	 *	Attach a protocol block
3313 	 */
3314 
3315 	spin_lock_init(&po->bind_lock);
3316 	mutex_init(&po->pg_vec_lock);
3317 	po->rollover = NULL;
3318 	po->prot_hook.func = packet_rcv;
3319 
3320 	if (sock->type == SOCK_PACKET)
3321 		po->prot_hook.func = packet_rcv_spkt;
3322 
3323 	po->prot_hook.af_packet_priv = sk;
3324 
3325 	if (proto) {
3326 		po->prot_hook.type = proto;
3327 		__register_prot_hook(sk);
3328 	}
3329 
3330 	mutex_lock(&net->packet.sklist_lock);
3331 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3332 	mutex_unlock(&net->packet.sklist_lock);
3333 
3334 	preempt_disable();
3335 	sock_prot_inuse_add(net, &packet_proto, 1);
3336 	preempt_enable();
3337 
3338 	return 0;
3339 out2:
3340 	sk_free(sk);
3341 out:
3342 	return err;
3343 }
3344 
3345 /*
3346  *	Pull a packet from our receive queue and hand it to the user.
3347  *	If necessary we block.
3348  */
3349 
3350 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3351 			  int flags)
3352 {
3353 	struct sock *sk = sock->sk;
3354 	struct sk_buff *skb;
3355 	int copied, err;
3356 	int vnet_hdr_len = 0;
3357 	unsigned int origlen = 0;
3358 
3359 	err = -EINVAL;
3360 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3361 		goto out;
3362 
3363 #if 0
3364 	/* What error should we return now? EUNATTACH? */
3365 	if (pkt_sk(sk)->ifindex < 0)
3366 		return -ENODEV;
3367 #endif
3368 
3369 	if (flags & MSG_ERRQUEUE) {
3370 		err = sock_recv_errqueue(sk, msg, len,
3371 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3372 		goto out;
3373 	}
3374 
3375 	/*
3376 	 *	Call the generic datagram receiver. This handles all sorts
3377 	 *	of horrible races and re-entrancy so we can forget about it
3378 	 *	in the protocol layers.
3379 	 *
3380 	 *	Now it will return ENETDOWN, if device have just gone down,
3381 	 *	but then it will block.
3382 	 */
3383 
3384 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3385 
3386 	/*
3387 	 *	An error occurred so return it. Because skb_recv_datagram()
3388 	 *	handles the blocking we don't see and worry about blocking
3389 	 *	retries.
3390 	 */
3391 
3392 	if (skb == NULL)
3393 		goto out;
3394 
3395 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3396 
3397 	if (pkt_sk(sk)->has_vnet_hdr) {
3398 		err = packet_rcv_vnet(msg, skb, &len);
3399 		if (err)
3400 			goto out_free;
3401 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3402 	}
3403 
3404 	/* You lose any data beyond the buffer you gave. If it worries
3405 	 * a user program they can ask the device for its MTU
3406 	 * anyway.
3407 	 */
3408 	copied = skb->len;
3409 	if (copied > len) {
3410 		copied = len;
3411 		msg->msg_flags |= MSG_TRUNC;
3412 	}
3413 
3414 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3415 	if (err)
3416 		goto out_free;
3417 
3418 	if (sock->type != SOCK_PACKET) {
3419 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3420 
3421 		/* Original length was stored in sockaddr_ll fields */
3422 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3423 		sll->sll_family = AF_PACKET;
3424 		sll->sll_protocol = skb->protocol;
3425 	}
3426 
3427 	sock_recv_ts_and_drops(msg, sk, skb);
3428 
3429 	if (msg->msg_name) {
3430 		int copy_len;
3431 
3432 		/* If the address length field is there to be filled
3433 		 * in, we fill it in now.
3434 		 */
3435 		if (sock->type == SOCK_PACKET) {
3436 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3437 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3438 			copy_len = msg->msg_namelen;
3439 		} else {
3440 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3441 
3442 			msg->msg_namelen = sll->sll_halen +
3443 				offsetof(struct sockaddr_ll, sll_addr);
3444 			copy_len = msg->msg_namelen;
3445 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3446 				memset(msg->msg_name +
3447 				       offsetof(struct sockaddr_ll, sll_addr),
3448 				       0, sizeof(sll->sll_addr));
3449 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3450 			}
3451 		}
3452 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3453 	}
3454 
3455 	if (pkt_sk(sk)->auxdata) {
3456 		struct tpacket_auxdata aux;
3457 
3458 		aux.tp_status = TP_STATUS_USER;
3459 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3460 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3461 		else if (skb->pkt_type != PACKET_OUTGOING &&
3462 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3463 			  skb_csum_unnecessary(skb)))
3464 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3465 
3466 		aux.tp_len = origlen;
3467 		aux.tp_snaplen = skb->len;
3468 		aux.tp_mac = 0;
3469 		aux.tp_net = skb_network_offset(skb);
3470 		if (skb_vlan_tag_present(skb)) {
3471 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3472 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3473 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3474 		} else {
3475 			aux.tp_vlan_tci = 0;
3476 			aux.tp_vlan_tpid = 0;
3477 		}
3478 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3479 	}
3480 
3481 	/*
3482 	 *	Free or return the buffer as appropriate. Again this
3483 	 *	hides all the races and re-entrancy issues from us.
3484 	 */
3485 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3486 
3487 out_free:
3488 	skb_free_datagram(sk, skb);
3489 out:
3490 	return err;
3491 }
3492 
3493 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3494 			       int peer)
3495 {
3496 	struct net_device *dev;
3497 	struct sock *sk	= sock->sk;
3498 
3499 	if (peer)
3500 		return -EOPNOTSUPP;
3501 
3502 	uaddr->sa_family = AF_PACKET;
3503 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3504 	rcu_read_lock();
3505 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3506 	if (dev)
3507 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3508 	rcu_read_unlock();
3509 
3510 	return sizeof(*uaddr);
3511 }
3512 
3513 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3514 			  int peer)
3515 {
3516 	struct net_device *dev;
3517 	struct sock *sk = sock->sk;
3518 	struct packet_sock *po = pkt_sk(sk);
3519 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3520 
3521 	if (peer)
3522 		return -EOPNOTSUPP;
3523 
3524 	sll->sll_family = AF_PACKET;
3525 	sll->sll_ifindex = po->ifindex;
3526 	sll->sll_protocol = po->num;
3527 	sll->sll_pkttype = 0;
3528 	rcu_read_lock();
3529 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3530 	if (dev) {
3531 		sll->sll_hatype = dev->type;
3532 		sll->sll_halen = dev->addr_len;
3533 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3534 	} else {
3535 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3536 		sll->sll_halen = 0;
3537 	}
3538 	rcu_read_unlock();
3539 
3540 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3541 }
3542 
3543 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3544 			 int what)
3545 {
3546 	switch (i->type) {
3547 	case PACKET_MR_MULTICAST:
3548 		if (i->alen != dev->addr_len)
3549 			return -EINVAL;
3550 		if (what > 0)
3551 			return dev_mc_add(dev, i->addr);
3552 		else
3553 			return dev_mc_del(dev, i->addr);
3554 		break;
3555 	case PACKET_MR_PROMISC:
3556 		return dev_set_promiscuity(dev, what);
3557 	case PACKET_MR_ALLMULTI:
3558 		return dev_set_allmulti(dev, what);
3559 	case PACKET_MR_UNICAST:
3560 		if (i->alen != dev->addr_len)
3561 			return -EINVAL;
3562 		if (what > 0)
3563 			return dev_uc_add(dev, i->addr);
3564 		else
3565 			return dev_uc_del(dev, i->addr);
3566 		break;
3567 	default:
3568 		break;
3569 	}
3570 	return 0;
3571 }
3572 
3573 static void packet_dev_mclist_delete(struct net_device *dev,
3574 				     struct packet_mclist **mlp)
3575 {
3576 	struct packet_mclist *ml;
3577 
3578 	while ((ml = *mlp) != NULL) {
3579 		if (ml->ifindex == dev->ifindex) {
3580 			packet_dev_mc(dev, ml, -1);
3581 			*mlp = ml->next;
3582 			kfree(ml);
3583 		} else
3584 			mlp = &ml->next;
3585 	}
3586 }
3587 
3588 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3589 {
3590 	struct packet_sock *po = pkt_sk(sk);
3591 	struct packet_mclist *ml, *i;
3592 	struct net_device *dev;
3593 	int err;
3594 
3595 	rtnl_lock();
3596 
3597 	err = -ENODEV;
3598 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3599 	if (!dev)
3600 		goto done;
3601 
3602 	err = -EINVAL;
3603 	if (mreq->mr_alen > dev->addr_len)
3604 		goto done;
3605 
3606 	err = -ENOBUFS;
3607 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3608 	if (i == NULL)
3609 		goto done;
3610 
3611 	err = 0;
3612 	for (ml = po->mclist; ml; ml = ml->next) {
3613 		if (ml->ifindex == mreq->mr_ifindex &&
3614 		    ml->type == mreq->mr_type &&
3615 		    ml->alen == mreq->mr_alen &&
3616 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3617 			ml->count++;
3618 			/* Free the new element ... */
3619 			kfree(i);
3620 			goto done;
3621 		}
3622 	}
3623 
3624 	i->type = mreq->mr_type;
3625 	i->ifindex = mreq->mr_ifindex;
3626 	i->alen = mreq->mr_alen;
3627 	memcpy(i->addr, mreq->mr_address, i->alen);
3628 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3629 	i->count = 1;
3630 	i->next = po->mclist;
3631 	po->mclist = i;
3632 	err = packet_dev_mc(dev, i, 1);
3633 	if (err) {
3634 		po->mclist = i->next;
3635 		kfree(i);
3636 	}
3637 
3638 done:
3639 	rtnl_unlock();
3640 	return err;
3641 }
3642 
3643 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3644 {
3645 	struct packet_mclist *ml, **mlp;
3646 
3647 	rtnl_lock();
3648 
3649 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3650 		if (ml->ifindex == mreq->mr_ifindex &&
3651 		    ml->type == mreq->mr_type &&
3652 		    ml->alen == mreq->mr_alen &&
3653 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3654 			if (--ml->count == 0) {
3655 				struct net_device *dev;
3656 				*mlp = ml->next;
3657 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3658 				if (dev)
3659 					packet_dev_mc(dev, ml, -1);
3660 				kfree(ml);
3661 			}
3662 			break;
3663 		}
3664 	}
3665 	rtnl_unlock();
3666 	return 0;
3667 }
3668 
3669 static void packet_flush_mclist(struct sock *sk)
3670 {
3671 	struct packet_sock *po = pkt_sk(sk);
3672 	struct packet_mclist *ml;
3673 
3674 	if (!po->mclist)
3675 		return;
3676 
3677 	rtnl_lock();
3678 	while ((ml = po->mclist) != NULL) {
3679 		struct net_device *dev;
3680 
3681 		po->mclist = ml->next;
3682 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3683 		if (dev != NULL)
3684 			packet_dev_mc(dev, ml, -1);
3685 		kfree(ml);
3686 	}
3687 	rtnl_unlock();
3688 }
3689 
3690 static int
3691 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3692 		  unsigned int optlen)
3693 {
3694 	struct sock *sk = sock->sk;
3695 	struct packet_sock *po = pkt_sk(sk);
3696 	int ret;
3697 
3698 	if (level != SOL_PACKET)
3699 		return -ENOPROTOOPT;
3700 
3701 	switch (optname) {
3702 	case PACKET_ADD_MEMBERSHIP:
3703 	case PACKET_DROP_MEMBERSHIP:
3704 	{
3705 		struct packet_mreq_max mreq;
3706 		int len = optlen;
3707 		memset(&mreq, 0, sizeof(mreq));
3708 		if (len < sizeof(struct packet_mreq))
3709 			return -EINVAL;
3710 		if (len > sizeof(mreq))
3711 			len = sizeof(mreq);
3712 		if (copy_from_sockptr(&mreq, optval, len))
3713 			return -EFAULT;
3714 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3715 			return -EINVAL;
3716 		if (optname == PACKET_ADD_MEMBERSHIP)
3717 			ret = packet_mc_add(sk, &mreq);
3718 		else
3719 			ret = packet_mc_drop(sk, &mreq);
3720 		return ret;
3721 	}
3722 
3723 	case PACKET_RX_RING:
3724 	case PACKET_TX_RING:
3725 	{
3726 		union tpacket_req_u req_u;
3727 		int len;
3728 
3729 		lock_sock(sk);
3730 		switch (po->tp_version) {
3731 		case TPACKET_V1:
3732 		case TPACKET_V2:
3733 			len = sizeof(req_u.req);
3734 			break;
3735 		case TPACKET_V3:
3736 		default:
3737 			len = sizeof(req_u.req3);
3738 			break;
3739 		}
3740 		if (optlen < len) {
3741 			ret = -EINVAL;
3742 		} else {
3743 			if (copy_from_sockptr(&req_u.req, optval, len))
3744 				ret = -EFAULT;
3745 			else
3746 				ret = packet_set_ring(sk, &req_u, 0,
3747 						    optname == PACKET_TX_RING);
3748 		}
3749 		release_sock(sk);
3750 		return ret;
3751 	}
3752 	case PACKET_COPY_THRESH:
3753 	{
3754 		int val;
3755 
3756 		if (optlen != sizeof(val))
3757 			return -EINVAL;
3758 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3759 			return -EFAULT;
3760 
3761 		pkt_sk(sk)->copy_thresh = val;
3762 		return 0;
3763 	}
3764 	case PACKET_VERSION:
3765 	{
3766 		int val;
3767 
3768 		if (optlen != sizeof(val))
3769 			return -EINVAL;
3770 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3771 			return -EFAULT;
3772 		switch (val) {
3773 		case TPACKET_V1:
3774 		case TPACKET_V2:
3775 		case TPACKET_V3:
3776 			break;
3777 		default:
3778 			return -EINVAL;
3779 		}
3780 		lock_sock(sk);
3781 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3782 			ret = -EBUSY;
3783 		} else {
3784 			po->tp_version = val;
3785 			ret = 0;
3786 		}
3787 		release_sock(sk);
3788 		return ret;
3789 	}
3790 	case PACKET_RESERVE:
3791 	{
3792 		unsigned int val;
3793 
3794 		if (optlen != sizeof(val))
3795 			return -EINVAL;
3796 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3797 			return -EFAULT;
3798 		if (val > INT_MAX)
3799 			return -EINVAL;
3800 		lock_sock(sk);
3801 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3802 			ret = -EBUSY;
3803 		} else {
3804 			po->tp_reserve = val;
3805 			ret = 0;
3806 		}
3807 		release_sock(sk);
3808 		return ret;
3809 	}
3810 	case PACKET_LOSS:
3811 	{
3812 		unsigned int val;
3813 
3814 		if (optlen != sizeof(val))
3815 			return -EINVAL;
3816 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3817 			return -EFAULT;
3818 
3819 		lock_sock(sk);
3820 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3821 			ret = -EBUSY;
3822 		} else {
3823 			po->tp_loss = !!val;
3824 			ret = 0;
3825 		}
3826 		release_sock(sk);
3827 		return ret;
3828 	}
3829 	case PACKET_AUXDATA:
3830 	{
3831 		int val;
3832 
3833 		if (optlen < sizeof(val))
3834 			return -EINVAL;
3835 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3836 			return -EFAULT;
3837 
3838 		lock_sock(sk);
3839 		po->auxdata = !!val;
3840 		release_sock(sk);
3841 		return 0;
3842 	}
3843 	case PACKET_ORIGDEV:
3844 	{
3845 		int val;
3846 
3847 		if (optlen < sizeof(val))
3848 			return -EINVAL;
3849 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3850 			return -EFAULT;
3851 
3852 		lock_sock(sk);
3853 		po->origdev = !!val;
3854 		release_sock(sk);
3855 		return 0;
3856 	}
3857 	case PACKET_VNET_HDR:
3858 	{
3859 		int val;
3860 
3861 		if (sock->type != SOCK_RAW)
3862 			return -EINVAL;
3863 		if (optlen < sizeof(val))
3864 			return -EINVAL;
3865 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3866 			return -EFAULT;
3867 
3868 		lock_sock(sk);
3869 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3870 			ret = -EBUSY;
3871 		} else {
3872 			po->has_vnet_hdr = !!val;
3873 			ret = 0;
3874 		}
3875 		release_sock(sk);
3876 		return ret;
3877 	}
3878 	case PACKET_TIMESTAMP:
3879 	{
3880 		int val;
3881 
3882 		if (optlen != sizeof(val))
3883 			return -EINVAL;
3884 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3885 			return -EFAULT;
3886 
3887 		po->tp_tstamp = val;
3888 		return 0;
3889 	}
3890 	case PACKET_FANOUT:
3891 	{
3892 		struct fanout_args args = { 0 };
3893 
3894 		if (optlen != sizeof(int) && optlen != sizeof(args))
3895 			return -EINVAL;
3896 		if (copy_from_sockptr(&args, optval, optlen))
3897 			return -EFAULT;
3898 
3899 		return fanout_add(sk, &args);
3900 	}
3901 	case PACKET_FANOUT_DATA:
3902 	{
3903 		if (!po->fanout)
3904 			return -EINVAL;
3905 
3906 		return fanout_set_data(po, optval, optlen);
3907 	}
3908 	case PACKET_IGNORE_OUTGOING:
3909 	{
3910 		int val;
3911 
3912 		if (optlen != sizeof(val))
3913 			return -EINVAL;
3914 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3915 			return -EFAULT;
3916 		if (val < 0 || val > 1)
3917 			return -EINVAL;
3918 
3919 		po->prot_hook.ignore_outgoing = !!val;
3920 		return 0;
3921 	}
3922 	case PACKET_TX_HAS_OFF:
3923 	{
3924 		unsigned int val;
3925 
3926 		if (optlen != sizeof(val))
3927 			return -EINVAL;
3928 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3929 			return -EFAULT;
3930 
3931 		lock_sock(sk);
3932 		if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
3933 			po->tp_tx_has_off = !!val;
3934 
3935 		release_sock(sk);
3936 		return 0;
3937 	}
3938 	case PACKET_QDISC_BYPASS:
3939 	{
3940 		int val;
3941 
3942 		if (optlen != sizeof(val))
3943 			return -EINVAL;
3944 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3945 			return -EFAULT;
3946 
3947 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3948 		return 0;
3949 	}
3950 	default:
3951 		return -ENOPROTOOPT;
3952 	}
3953 }
3954 
3955 static int packet_getsockopt(struct socket *sock, int level, int optname,
3956 			     char __user *optval, int __user *optlen)
3957 {
3958 	int len;
3959 	int val, lv = sizeof(val);
3960 	struct sock *sk = sock->sk;
3961 	struct packet_sock *po = pkt_sk(sk);
3962 	void *data = &val;
3963 	union tpacket_stats_u st;
3964 	struct tpacket_rollover_stats rstats;
3965 	int drops;
3966 
3967 	if (level != SOL_PACKET)
3968 		return -ENOPROTOOPT;
3969 
3970 	if (get_user(len, optlen))
3971 		return -EFAULT;
3972 
3973 	if (len < 0)
3974 		return -EINVAL;
3975 
3976 	switch (optname) {
3977 	case PACKET_STATISTICS:
3978 		spin_lock_bh(&sk->sk_receive_queue.lock);
3979 		memcpy(&st, &po->stats, sizeof(st));
3980 		memset(&po->stats, 0, sizeof(po->stats));
3981 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3982 		drops = atomic_xchg(&po->tp_drops, 0);
3983 
3984 		if (po->tp_version == TPACKET_V3) {
3985 			lv = sizeof(struct tpacket_stats_v3);
3986 			st.stats3.tp_drops = drops;
3987 			st.stats3.tp_packets += drops;
3988 			data = &st.stats3;
3989 		} else {
3990 			lv = sizeof(struct tpacket_stats);
3991 			st.stats1.tp_drops = drops;
3992 			st.stats1.tp_packets += drops;
3993 			data = &st.stats1;
3994 		}
3995 
3996 		break;
3997 	case PACKET_AUXDATA:
3998 		val = po->auxdata;
3999 		break;
4000 	case PACKET_ORIGDEV:
4001 		val = po->origdev;
4002 		break;
4003 	case PACKET_VNET_HDR:
4004 		val = po->has_vnet_hdr;
4005 		break;
4006 	case PACKET_VERSION:
4007 		val = po->tp_version;
4008 		break;
4009 	case PACKET_HDRLEN:
4010 		if (len > sizeof(int))
4011 			len = sizeof(int);
4012 		if (len < sizeof(int))
4013 			return -EINVAL;
4014 		if (copy_from_user(&val, optval, len))
4015 			return -EFAULT;
4016 		switch (val) {
4017 		case TPACKET_V1:
4018 			val = sizeof(struct tpacket_hdr);
4019 			break;
4020 		case TPACKET_V2:
4021 			val = sizeof(struct tpacket2_hdr);
4022 			break;
4023 		case TPACKET_V3:
4024 			val = sizeof(struct tpacket3_hdr);
4025 			break;
4026 		default:
4027 			return -EINVAL;
4028 		}
4029 		break;
4030 	case PACKET_RESERVE:
4031 		val = po->tp_reserve;
4032 		break;
4033 	case PACKET_LOSS:
4034 		val = po->tp_loss;
4035 		break;
4036 	case PACKET_TIMESTAMP:
4037 		val = po->tp_tstamp;
4038 		break;
4039 	case PACKET_FANOUT:
4040 		val = (po->fanout ?
4041 		       ((u32)po->fanout->id |
4042 			((u32)po->fanout->type << 16) |
4043 			((u32)po->fanout->flags << 24)) :
4044 		       0);
4045 		break;
4046 	case PACKET_IGNORE_OUTGOING:
4047 		val = po->prot_hook.ignore_outgoing;
4048 		break;
4049 	case PACKET_ROLLOVER_STATS:
4050 		if (!po->rollover)
4051 			return -EINVAL;
4052 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4053 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4054 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4055 		data = &rstats;
4056 		lv = sizeof(rstats);
4057 		break;
4058 	case PACKET_TX_HAS_OFF:
4059 		val = po->tp_tx_has_off;
4060 		break;
4061 	case PACKET_QDISC_BYPASS:
4062 		val = packet_use_direct_xmit(po);
4063 		break;
4064 	default:
4065 		return -ENOPROTOOPT;
4066 	}
4067 
4068 	if (len > lv)
4069 		len = lv;
4070 	if (put_user(len, optlen))
4071 		return -EFAULT;
4072 	if (copy_to_user(optval, data, len))
4073 		return -EFAULT;
4074 	return 0;
4075 }
4076 
4077 static int packet_notifier(struct notifier_block *this,
4078 			   unsigned long msg, void *ptr)
4079 {
4080 	struct sock *sk;
4081 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4082 	struct net *net = dev_net(dev);
4083 
4084 	rcu_read_lock();
4085 	sk_for_each_rcu(sk, &net->packet.sklist) {
4086 		struct packet_sock *po = pkt_sk(sk);
4087 
4088 		switch (msg) {
4089 		case NETDEV_UNREGISTER:
4090 			if (po->mclist)
4091 				packet_dev_mclist_delete(dev, &po->mclist);
4092 			fallthrough;
4093 
4094 		case NETDEV_DOWN:
4095 			if (dev->ifindex == po->ifindex) {
4096 				spin_lock(&po->bind_lock);
4097 				if (po->running) {
4098 					__unregister_prot_hook(sk, false);
4099 					sk->sk_err = ENETDOWN;
4100 					if (!sock_flag(sk, SOCK_DEAD))
4101 						sk->sk_error_report(sk);
4102 				}
4103 				if (msg == NETDEV_UNREGISTER) {
4104 					packet_cached_dev_reset(po);
4105 					po->ifindex = -1;
4106 					if (po->prot_hook.dev)
4107 						dev_put(po->prot_hook.dev);
4108 					po->prot_hook.dev = NULL;
4109 				}
4110 				spin_unlock(&po->bind_lock);
4111 			}
4112 			break;
4113 		case NETDEV_UP:
4114 			if (dev->ifindex == po->ifindex) {
4115 				spin_lock(&po->bind_lock);
4116 				if (po->num)
4117 					register_prot_hook(sk);
4118 				spin_unlock(&po->bind_lock);
4119 			}
4120 			break;
4121 		}
4122 	}
4123 	rcu_read_unlock();
4124 	return NOTIFY_DONE;
4125 }
4126 
4127 
4128 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4129 			unsigned long arg)
4130 {
4131 	struct sock *sk = sock->sk;
4132 
4133 	switch (cmd) {
4134 	case SIOCOUTQ:
4135 	{
4136 		int amount = sk_wmem_alloc_get(sk);
4137 
4138 		return put_user(amount, (int __user *)arg);
4139 	}
4140 	case SIOCINQ:
4141 	{
4142 		struct sk_buff *skb;
4143 		int amount = 0;
4144 
4145 		spin_lock_bh(&sk->sk_receive_queue.lock);
4146 		skb = skb_peek(&sk->sk_receive_queue);
4147 		if (skb)
4148 			amount = skb->len;
4149 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4150 		return put_user(amount, (int __user *)arg);
4151 	}
4152 #ifdef CONFIG_INET
4153 	case SIOCADDRT:
4154 	case SIOCDELRT:
4155 	case SIOCDARP:
4156 	case SIOCGARP:
4157 	case SIOCSARP:
4158 	case SIOCGIFADDR:
4159 	case SIOCSIFADDR:
4160 	case SIOCGIFBRDADDR:
4161 	case SIOCSIFBRDADDR:
4162 	case SIOCGIFNETMASK:
4163 	case SIOCSIFNETMASK:
4164 	case SIOCGIFDSTADDR:
4165 	case SIOCSIFDSTADDR:
4166 	case SIOCSIFFLAGS:
4167 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4168 #endif
4169 
4170 	default:
4171 		return -ENOIOCTLCMD;
4172 	}
4173 	return 0;
4174 }
4175 
4176 static __poll_t packet_poll(struct file *file, struct socket *sock,
4177 				poll_table *wait)
4178 {
4179 	struct sock *sk = sock->sk;
4180 	struct packet_sock *po = pkt_sk(sk);
4181 	__poll_t mask = datagram_poll(file, sock, wait);
4182 
4183 	spin_lock_bh(&sk->sk_receive_queue.lock);
4184 	if (po->rx_ring.pg_vec) {
4185 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4186 			TP_STATUS_KERNEL))
4187 			mask |= EPOLLIN | EPOLLRDNORM;
4188 	}
4189 	packet_rcv_try_clear_pressure(po);
4190 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4191 	spin_lock_bh(&sk->sk_write_queue.lock);
4192 	if (po->tx_ring.pg_vec) {
4193 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4194 			mask |= EPOLLOUT | EPOLLWRNORM;
4195 	}
4196 	spin_unlock_bh(&sk->sk_write_queue.lock);
4197 	return mask;
4198 }
4199 
4200 
4201 /* Dirty? Well, I still did not learn better way to account
4202  * for user mmaps.
4203  */
4204 
4205 static void packet_mm_open(struct vm_area_struct *vma)
4206 {
4207 	struct file *file = vma->vm_file;
4208 	struct socket *sock = file->private_data;
4209 	struct sock *sk = sock->sk;
4210 
4211 	if (sk)
4212 		atomic_inc(&pkt_sk(sk)->mapped);
4213 }
4214 
4215 static void packet_mm_close(struct vm_area_struct *vma)
4216 {
4217 	struct file *file = vma->vm_file;
4218 	struct socket *sock = file->private_data;
4219 	struct sock *sk = sock->sk;
4220 
4221 	if (sk)
4222 		atomic_dec(&pkt_sk(sk)->mapped);
4223 }
4224 
4225 static const struct vm_operations_struct packet_mmap_ops = {
4226 	.open	=	packet_mm_open,
4227 	.close	=	packet_mm_close,
4228 };
4229 
4230 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4231 			unsigned int len)
4232 {
4233 	int i;
4234 
4235 	for (i = 0; i < len; i++) {
4236 		if (likely(pg_vec[i].buffer)) {
4237 			if (is_vmalloc_addr(pg_vec[i].buffer))
4238 				vfree(pg_vec[i].buffer);
4239 			else
4240 				free_pages((unsigned long)pg_vec[i].buffer,
4241 					   order);
4242 			pg_vec[i].buffer = NULL;
4243 		}
4244 	}
4245 	kfree(pg_vec);
4246 }
4247 
4248 static char *alloc_one_pg_vec_page(unsigned long order)
4249 {
4250 	char *buffer;
4251 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4252 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4253 
4254 	buffer = (char *) __get_free_pages(gfp_flags, order);
4255 	if (buffer)
4256 		return buffer;
4257 
4258 	/* __get_free_pages failed, fall back to vmalloc */
4259 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4260 	if (buffer)
4261 		return buffer;
4262 
4263 	/* vmalloc failed, lets dig into swap here */
4264 	gfp_flags &= ~__GFP_NORETRY;
4265 	buffer = (char *) __get_free_pages(gfp_flags, order);
4266 	if (buffer)
4267 		return buffer;
4268 
4269 	/* complete and utter failure */
4270 	return NULL;
4271 }
4272 
4273 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4274 {
4275 	unsigned int block_nr = req->tp_block_nr;
4276 	struct pgv *pg_vec;
4277 	int i;
4278 
4279 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4280 	if (unlikely(!pg_vec))
4281 		goto out;
4282 
4283 	for (i = 0; i < block_nr; i++) {
4284 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4285 		if (unlikely(!pg_vec[i].buffer))
4286 			goto out_free_pgvec;
4287 	}
4288 
4289 out:
4290 	return pg_vec;
4291 
4292 out_free_pgvec:
4293 	free_pg_vec(pg_vec, order, block_nr);
4294 	pg_vec = NULL;
4295 	goto out;
4296 }
4297 
4298 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4299 		int closing, int tx_ring)
4300 {
4301 	struct pgv *pg_vec = NULL;
4302 	struct packet_sock *po = pkt_sk(sk);
4303 	unsigned long *rx_owner_map = NULL;
4304 	int was_running, order = 0;
4305 	struct packet_ring_buffer *rb;
4306 	struct sk_buff_head *rb_queue;
4307 	__be16 num;
4308 	int err;
4309 	/* Added to avoid minimal code churn */
4310 	struct tpacket_req *req = &req_u->req;
4311 
4312 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4313 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4314 
4315 	err = -EBUSY;
4316 	if (!closing) {
4317 		if (atomic_read(&po->mapped))
4318 			goto out;
4319 		if (packet_read_pending(rb))
4320 			goto out;
4321 	}
4322 
4323 	if (req->tp_block_nr) {
4324 		unsigned int min_frame_size;
4325 
4326 		/* Sanity tests and some calculations */
4327 		err = -EBUSY;
4328 		if (unlikely(rb->pg_vec))
4329 			goto out;
4330 
4331 		switch (po->tp_version) {
4332 		case TPACKET_V1:
4333 			po->tp_hdrlen = TPACKET_HDRLEN;
4334 			break;
4335 		case TPACKET_V2:
4336 			po->tp_hdrlen = TPACKET2_HDRLEN;
4337 			break;
4338 		case TPACKET_V3:
4339 			po->tp_hdrlen = TPACKET3_HDRLEN;
4340 			break;
4341 		}
4342 
4343 		err = -EINVAL;
4344 		if (unlikely((int)req->tp_block_size <= 0))
4345 			goto out;
4346 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4347 			goto out;
4348 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4349 		if (po->tp_version >= TPACKET_V3 &&
4350 		    req->tp_block_size <
4351 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4352 			goto out;
4353 		if (unlikely(req->tp_frame_size < min_frame_size))
4354 			goto out;
4355 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4356 			goto out;
4357 
4358 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4359 		if (unlikely(rb->frames_per_block == 0))
4360 			goto out;
4361 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4362 			goto out;
4363 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4364 					req->tp_frame_nr))
4365 			goto out;
4366 
4367 		err = -ENOMEM;
4368 		order = get_order(req->tp_block_size);
4369 		pg_vec = alloc_pg_vec(req, order);
4370 		if (unlikely(!pg_vec))
4371 			goto out;
4372 		switch (po->tp_version) {
4373 		case TPACKET_V3:
4374 			/* Block transmit is not supported yet */
4375 			if (!tx_ring) {
4376 				init_prb_bdqc(po, rb, pg_vec, req_u);
4377 			} else {
4378 				struct tpacket_req3 *req3 = &req_u->req3;
4379 
4380 				if (req3->tp_retire_blk_tov ||
4381 				    req3->tp_sizeof_priv ||
4382 				    req3->tp_feature_req_word) {
4383 					err = -EINVAL;
4384 					goto out_free_pg_vec;
4385 				}
4386 			}
4387 			break;
4388 		default:
4389 			if (!tx_ring) {
4390 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4391 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4392 				if (!rx_owner_map)
4393 					goto out_free_pg_vec;
4394 			}
4395 			break;
4396 		}
4397 	}
4398 	/* Done */
4399 	else {
4400 		err = -EINVAL;
4401 		if (unlikely(req->tp_frame_nr))
4402 			goto out;
4403 	}
4404 
4405 
4406 	/* Detach socket from network */
4407 	spin_lock(&po->bind_lock);
4408 	was_running = po->running;
4409 	num = po->num;
4410 	if (was_running) {
4411 		po->num = 0;
4412 		__unregister_prot_hook(sk, false);
4413 	}
4414 	spin_unlock(&po->bind_lock);
4415 
4416 	synchronize_net();
4417 
4418 	err = -EBUSY;
4419 	mutex_lock(&po->pg_vec_lock);
4420 	if (closing || atomic_read(&po->mapped) == 0) {
4421 		err = 0;
4422 		spin_lock_bh(&rb_queue->lock);
4423 		swap(rb->pg_vec, pg_vec);
4424 		if (po->tp_version <= TPACKET_V2)
4425 			swap(rb->rx_owner_map, rx_owner_map);
4426 		rb->frame_max = (req->tp_frame_nr - 1);
4427 		rb->head = 0;
4428 		rb->frame_size = req->tp_frame_size;
4429 		spin_unlock_bh(&rb_queue->lock);
4430 
4431 		swap(rb->pg_vec_order, order);
4432 		swap(rb->pg_vec_len, req->tp_block_nr);
4433 
4434 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4435 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4436 						tpacket_rcv : packet_rcv;
4437 		skb_queue_purge(rb_queue);
4438 		if (atomic_read(&po->mapped))
4439 			pr_err("packet_mmap: vma is busy: %d\n",
4440 			       atomic_read(&po->mapped));
4441 	}
4442 	mutex_unlock(&po->pg_vec_lock);
4443 
4444 	spin_lock(&po->bind_lock);
4445 	if (was_running) {
4446 		po->num = num;
4447 		register_prot_hook(sk);
4448 	}
4449 	spin_unlock(&po->bind_lock);
4450 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4451 		/* Because we don't support block-based V3 on tx-ring */
4452 		if (!tx_ring)
4453 			prb_shutdown_retire_blk_timer(po, rb_queue);
4454 	}
4455 
4456 out_free_pg_vec:
4457 	bitmap_free(rx_owner_map);
4458 	if (pg_vec)
4459 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4460 out:
4461 	return err;
4462 }
4463 
4464 static int packet_mmap(struct file *file, struct socket *sock,
4465 		struct vm_area_struct *vma)
4466 {
4467 	struct sock *sk = sock->sk;
4468 	struct packet_sock *po = pkt_sk(sk);
4469 	unsigned long size, expected_size;
4470 	struct packet_ring_buffer *rb;
4471 	unsigned long start;
4472 	int err = -EINVAL;
4473 	int i;
4474 
4475 	if (vma->vm_pgoff)
4476 		return -EINVAL;
4477 
4478 	mutex_lock(&po->pg_vec_lock);
4479 
4480 	expected_size = 0;
4481 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4482 		if (rb->pg_vec) {
4483 			expected_size += rb->pg_vec_len
4484 						* rb->pg_vec_pages
4485 						* PAGE_SIZE;
4486 		}
4487 	}
4488 
4489 	if (expected_size == 0)
4490 		goto out;
4491 
4492 	size = vma->vm_end - vma->vm_start;
4493 	if (size != expected_size)
4494 		goto out;
4495 
4496 	start = vma->vm_start;
4497 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4498 		if (rb->pg_vec == NULL)
4499 			continue;
4500 
4501 		for (i = 0; i < rb->pg_vec_len; i++) {
4502 			struct page *page;
4503 			void *kaddr = rb->pg_vec[i].buffer;
4504 			int pg_num;
4505 
4506 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4507 				page = pgv_to_page(kaddr);
4508 				err = vm_insert_page(vma, start, page);
4509 				if (unlikely(err))
4510 					goto out;
4511 				start += PAGE_SIZE;
4512 				kaddr += PAGE_SIZE;
4513 			}
4514 		}
4515 	}
4516 
4517 	atomic_inc(&po->mapped);
4518 	vma->vm_ops = &packet_mmap_ops;
4519 	err = 0;
4520 
4521 out:
4522 	mutex_unlock(&po->pg_vec_lock);
4523 	return err;
4524 }
4525 
4526 static const struct proto_ops packet_ops_spkt = {
4527 	.family =	PF_PACKET,
4528 	.owner =	THIS_MODULE,
4529 	.release =	packet_release,
4530 	.bind =		packet_bind_spkt,
4531 	.connect =	sock_no_connect,
4532 	.socketpair =	sock_no_socketpair,
4533 	.accept =	sock_no_accept,
4534 	.getname =	packet_getname_spkt,
4535 	.poll =		datagram_poll,
4536 	.ioctl =	packet_ioctl,
4537 	.gettstamp =	sock_gettstamp,
4538 	.listen =	sock_no_listen,
4539 	.shutdown =	sock_no_shutdown,
4540 	.sendmsg =	packet_sendmsg_spkt,
4541 	.recvmsg =	packet_recvmsg,
4542 	.mmap =		sock_no_mmap,
4543 	.sendpage =	sock_no_sendpage,
4544 };
4545 
4546 static const struct proto_ops packet_ops = {
4547 	.family =	PF_PACKET,
4548 	.owner =	THIS_MODULE,
4549 	.release =	packet_release,
4550 	.bind =		packet_bind,
4551 	.connect =	sock_no_connect,
4552 	.socketpair =	sock_no_socketpair,
4553 	.accept =	sock_no_accept,
4554 	.getname =	packet_getname,
4555 	.poll =		packet_poll,
4556 	.ioctl =	packet_ioctl,
4557 	.gettstamp =	sock_gettstamp,
4558 	.listen =	sock_no_listen,
4559 	.shutdown =	sock_no_shutdown,
4560 	.setsockopt =	packet_setsockopt,
4561 	.getsockopt =	packet_getsockopt,
4562 	.sendmsg =	packet_sendmsg,
4563 	.recvmsg =	packet_recvmsg,
4564 	.mmap =		packet_mmap,
4565 	.sendpage =	sock_no_sendpage,
4566 };
4567 
4568 static const struct net_proto_family packet_family_ops = {
4569 	.family =	PF_PACKET,
4570 	.create =	packet_create,
4571 	.owner	=	THIS_MODULE,
4572 };
4573 
4574 static struct notifier_block packet_netdev_notifier = {
4575 	.notifier_call =	packet_notifier,
4576 };
4577 
4578 #ifdef CONFIG_PROC_FS
4579 
4580 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4581 	__acquires(RCU)
4582 {
4583 	struct net *net = seq_file_net(seq);
4584 
4585 	rcu_read_lock();
4586 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4587 }
4588 
4589 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4590 {
4591 	struct net *net = seq_file_net(seq);
4592 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4593 }
4594 
4595 static void packet_seq_stop(struct seq_file *seq, void *v)
4596 	__releases(RCU)
4597 {
4598 	rcu_read_unlock();
4599 }
4600 
4601 static int packet_seq_show(struct seq_file *seq, void *v)
4602 {
4603 	if (v == SEQ_START_TOKEN)
4604 		seq_printf(seq,
4605 			   "%*sRefCnt Type Proto  Iface R Rmem   User   Inode\n",
4606 			   IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4607 	else {
4608 		struct sock *s = sk_entry(v);
4609 		const struct packet_sock *po = pkt_sk(s);
4610 
4611 		seq_printf(seq,
4612 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4613 			   s,
4614 			   refcount_read(&s->sk_refcnt),
4615 			   s->sk_type,
4616 			   ntohs(po->num),
4617 			   po->ifindex,
4618 			   po->running,
4619 			   atomic_read(&s->sk_rmem_alloc),
4620 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4621 			   sock_i_ino(s));
4622 	}
4623 
4624 	return 0;
4625 }
4626 
4627 static const struct seq_operations packet_seq_ops = {
4628 	.start	= packet_seq_start,
4629 	.next	= packet_seq_next,
4630 	.stop	= packet_seq_stop,
4631 	.show	= packet_seq_show,
4632 };
4633 #endif
4634 
4635 static int __net_init packet_net_init(struct net *net)
4636 {
4637 	mutex_init(&net->packet.sklist_lock);
4638 	INIT_HLIST_HEAD(&net->packet.sklist);
4639 
4640 #ifdef CONFIG_PROC_FS
4641 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4642 			sizeof(struct seq_net_private)))
4643 		return -ENOMEM;
4644 #endif /* CONFIG_PROC_FS */
4645 
4646 	return 0;
4647 }
4648 
4649 static void __net_exit packet_net_exit(struct net *net)
4650 {
4651 	remove_proc_entry("packet", net->proc_net);
4652 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4653 }
4654 
4655 static struct pernet_operations packet_net_ops = {
4656 	.init = packet_net_init,
4657 	.exit = packet_net_exit,
4658 };
4659 
4660 
4661 static void __exit packet_exit(void)
4662 {
4663 	unregister_netdevice_notifier(&packet_netdev_notifier);
4664 	unregister_pernet_subsys(&packet_net_ops);
4665 	sock_unregister(PF_PACKET);
4666 	proto_unregister(&packet_proto);
4667 }
4668 
4669 static int __init packet_init(void)
4670 {
4671 	int rc;
4672 
4673 	rc = proto_register(&packet_proto, 0);
4674 	if (rc)
4675 		goto out;
4676 	rc = sock_register(&packet_family_ops);
4677 	if (rc)
4678 		goto out_proto;
4679 	rc = register_pernet_subsys(&packet_net_ops);
4680 	if (rc)
4681 		goto out_sock;
4682 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4683 	if (rc)
4684 		goto out_pernet;
4685 
4686 	return 0;
4687 
4688 out_pernet:
4689 	unregister_pernet_subsys(&packet_net_ops);
4690 out_sock:
4691 	sock_unregister(PF_PACKET);
4692 out_proto:
4693 	proto_unregister(&packet_proto);
4694 out:
4695 	return rc;
4696 }
4697 
4698 module_init(packet_init);
4699 module_exit(packet_exit);
4700 MODULE_LICENSE("GPL");
4701 MODULE_ALIAS_NETPROTO(PF_PACKET);
4702