1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/ethtool.h> 52 #include <linux/filter.h> 53 #include <linux/types.h> 54 #include <linux/mm.h> 55 #include <linux/capability.h> 56 #include <linux/fcntl.h> 57 #include <linux/socket.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/if_packet.h> 62 #include <linux/wireless.h> 63 #include <linux/kernel.h> 64 #include <linux/kmod.h> 65 #include <linux/slab.h> 66 #include <linux/vmalloc.h> 67 #include <net/net_namespace.h> 68 #include <net/ip.h> 69 #include <net/protocol.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <linux/errno.h> 73 #include <linux/timer.h> 74 #include <linux/uaccess.h> 75 #include <asm/ioctls.h> 76 #include <asm/page.h> 77 #include <asm/cacheflush.h> 78 #include <asm/io.h> 79 #include <linux/proc_fs.h> 80 #include <linux/seq_file.h> 81 #include <linux/poll.h> 82 #include <linux/module.h> 83 #include <linux/init.h> 84 #include <linux/mutex.h> 85 #include <linux/if_vlan.h> 86 #include <linux/virtio_net.h> 87 #include <linux/errqueue.h> 88 #include <linux/net_tstamp.h> 89 #include <linux/percpu.h> 90 #ifdef CONFIG_INET 91 #include <net/inet_common.h> 92 #endif 93 #include <linux/bpf.h> 94 #include <net/compat.h> 95 #include <linux/netfilter_netdev.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - If the device has no dev->header_ops->create, there is no LL header 102 visible above the device. In this case, its hard_header_len should be 0. 103 The device may prepend its own header internally. In this case, its 104 needed_headroom should be set to the space needed for it to add its 105 internal header. 106 For example, a WiFi driver pretending to be an Ethernet driver should 107 set its hard_header_len to be the Ethernet header length, and set its 108 needed_headroom to be (the real WiFi header length - the fake Ethernet 109 header length). 110 - packet socket receives packets with pulled ll header, 111 so that SOCK_RAW should push it back. 112 113 On receive: 114 ----------- 115 116 Incoming, dev_has_header(dev) == true 117 mac_header -> ll header 118 data -> data 119 120 Outgoing, dev_has_header(dev) == true 121 mac_header -> ll header 122 data -> ll header 123 124 Incoming, dev_has_header(dev) == false 125 mac_header -> data 126 However drivers often make it point to the ll header. 127 This is incorrect because the ll header should be invisible to us. 128 data -> data 129 130 Outgoing, dev_has_header(dev) == false 131 mac_header -> data. ll header is invisible to us. 132 data -> data 133 134 Resume 135 If dev_has_header(dev) == false we are unable to restore the ll header, 136 because it is invisible to us. 137 138 139 On transmit: 140 ------------ 141 142 dev_has_header(dev) == true 143 mac_header -> ll header 144 data -> ll header 145 146 dev_has_header(dev) == false (ll header is invisible to us) 147 mac_header -> data 148 data -> data 149 150 We should set network_header on output to the correct position, 151 packet classifier depends on it. 152 */ 153 154 /* Private packet socket structures. */ 155 156 /* identical to struct packet_mreq except it has 157 * a longer address field. 158 */ 159 struct packet_mreq_max { 160 int mr_ifindex; 161 unsigned short mr_type; 162 unsigned short mr_alen; 163 unsigned char mr_address[MAX_ADDR_LEN]; 164 }; 165 166 union tpacket_uhdr { 167 struct tpacket_hdr *h1; 168 struct tpacket2_hdr *h2; 169 struct tpacket3_hdr *h3; 170 void *raw; 171 }; 172 173 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 174 int closing, int tx_ring); 175 176 #define V3_ALIGNMENT (8) 177 178 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 179 180 #define BLK_PLUS_PRIV(sz_of_priv) \ 181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 182 183 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 184 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 185 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 186 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 187 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 188 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 189 190 struct packet_sock; 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 200 struct packet_sock *); 201 static void prb_retire_current_block(struct tpacket_kbdq_core *, 202 struct packet_sock *, unsigned int status); 203 static int prb_queue_frozen(struct tpacket_kbdq_core *); 204 static void prb_open_block(struct tpacket_kbdq_core *, 205 struct tpacket_block_desc *); 206 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 208 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 209 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 210 struct tpacket3_hdr *); 211 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 212 struct tpacket3_hdr *); 213 static void packet_flush_mclist(struct sock *sk); 214 static u16 packet_pick_tx_queue(struct sk_buff *skb); 215 216 struct packet_skb_cb { 217 union { 218 struct sockaddr_pkt pkt; 219 union { 220 /* Trick: alias skb original length with 221 * ll.sll_family and ll.protocol in order 222 * to save room. 223 */ 224 unsigned int origlen; 225 struct sockaddr_ll ll; 226 }; 227 } sa; 228 }; 229 230 #define vio_le() virtio_legacy_is_little_endian() 231 232 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 233 234 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 235 #define GET_PBLOCK_DESC(x, bid) \ 236 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 237 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 238 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 239 #define GET_NEXT_PRB_BLK_NUM(x) \ 240 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 241 ((x)->kactive_blk_num+1) : 0) 242 243 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 244 static void __fanout_link(struct sock *sk, struct packet_sock *po); 245 246 #ifdef CONFIG_NETFILTER_EGRESS 247 static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb) 248 { 249 struct sk_buff *next, *head = NULL, *tail; 250 int rc; 251 252 rcu_read_lock(); 253 for (; skb != NULL; skb = next) { 254 next = skb->next; 255 skb_mark_not_on_list(skb); 256 257 if (!nf_hook_egress(skb, &rc, skb->dev)) 258 continue; 259 260 if (!head) 261 head = skb; 262 else 263 tail->next = skb; 264 265 tail = skb; 266 } 267 rcu_read_unlock(); 268 269 return head; 270 } 271 #endif 272 273 static int packet_direct_xmit(struct sk_buff *skb) 274 { 275 #ifdef CONFIG_NETFILTER_EGRESS 276 if (nf_hook_egress_active()) { 277 skb = nf_hook_direct_egress(skb); 278 if (!skb) 279 return NET_XMIT_DROP; 280 } 281 #endif 282 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 283 } 284 285 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 286 { 287 struct net_device *dev; 288 289 rcu_read_lock(); 290 dev = rcu_dereference(po->cached_dev); 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 packet_pick_tx_queue(struct sk_buff *skb) 314 { 315 struct net_device *dev = skb->dev; 316 const struct net_device_ops *ops = dev->netdev_ops; 317 int cpu = raw_smp_processor_id(); 318 u16 queue_index; 319 320 #ifdef CONFIG_XPS 321 skb->sender_cpu = cpu + 1; 322 #endif 323 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 324 if (ops->ndo_select_queue) { 325 queue_index = ops->ndo_select_queue(dev, skb, NULL); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = netdev_pick_tx(dev, skb, NULL); 329 } 330 331 return queue_index; 332 } 333 334 /* __register_prot_hook must be invoked through register_prot_hook 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void __register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 static void register_prot_hook(struct sock *sk) 354 { 355 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 356 __register_prot_hook(sk); 357 } 358 359 /* If the sync parameter is true, we will temporarily drop 360 * the po->bind_lock and do a synchronize_net to make sure no 361 * asynchronous packet processing paths still refer to the elements 362 * of po->prot_hook. If the sync parameter is false, it is the 363 * callers responsibility to take care of this. 364 */ 365 static void __unregister_prot_hook(struct sock *sk, bool sync) 366 { 367 struct packet_sock *po = pkt_sk(sk); 368 369 lockdep_assert_held_once(&po->bind_lock); 370 371 po->running = 0; 372 373 if (po->fanout) 374 __fanout_unlink(sk, po); 375 else 376 __dev_remove_pack(&po->prot_hook); 377 378 __sock_put(sk); 379 380 if (sync) { 381 spin_unlock(&po->bind_lock); 382 synchronize_net(); 383 spin_lock(&po->bind_lock); 384 } 385 } 386 387 static void unregister_prot_hook(struct sock *sk, bool sync) 388 { 389 struct packet_sock *po = pkt_sk(sk); 390 391 if (po->running) 392 __unregister_prot_hook(sk, sync); 393 } 394 395 static inline struct page * __pure pgv_to_page(void *addr) 396 { 397 if (is_vmalloc_addr(addr)) 398 return vmalloc_to_page(addr); 399 return virt_to_page(addr); 400 } 401 402 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 403 { 404 union tpacket_uhdr h; 405 406 h.raw = frame; 407 switch (po->tp_version) { 408 case TPACKET_V1: 409 h.h1->tp_status = status; 410 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 411 break; 412 case TPACKET_V2: 413 h.h2->tp_status = status; 414 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 415 break; 416 case TPACKET_V3: 417 h.h3->tp_status = status; 418 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 419 break; 420 default: 421 WARN(1, "TPACKET version not supported.\n"); 422 BUG(); 423 } 424 425 smp_wmb(); 426 } 427 428 static int __packet_get_status(const struct packet_sock *po, void *frame) 429 { 430 union tpacket_uhdr h; 431 432 smp_rmb(); 433 434 h.raw = frame; 435 switch (po->tp_version) { 436 case TPACKET_V1: 437 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 438 return h.h1->tp_status; 439 case TPACKET_V2: 440 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 441 return h.h2->tp_status; 442 case TPACKET_V3: 443 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 444 return h.h3->tp_status; 445 default: 446 WARN(1, "TPACKET version not supported.\n"); 447 BUG(); 448 return 0; 449 } 450 } 451 452 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 453 unsigned int flags) 454 { 455 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 456 457 if (shhwtstamps && 458 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 459 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 460 return TP_STATUS_TS_RAW_HARDWARE; 461 462 if ((flags & SOF_TIMESTAMPING_SOFTWARE) && 463 ktime_to_timespec64_cond(skb_tstamp(skb), ts)) 464 return TP_STATUS_TS_SOFTWARE; 465 466 return 0; 467 } 468 469 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 470 struct sk_buff *skb) 471 { 472 union tpacket_uhdr h; 473 struct timespec64 ts; 474 __u32 ts_status; 475 476 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 477 return 0; 478 479 h.raw = frame; 480 /* 481 * versions 1 through 3 overflow the timestamps in y2106, since they 482 * all store the seconds in a 32-bit unsigned integer. 483 * If we create a version 4, that should have a 64-bit timestamp, 484 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 485 * nanoseconds. 486 */ 487 switch (po->tp_version) { 488 case TPACKET_V1: 489 h.h1->tp_sec = ts.tv_sec; 490 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 491 break; 492 case TPACKET_V2: 493 h.h2->tp_sec = ts.tv_sec; 494 h.h2->tp_nsec = ts.tv_nsec; 495 break; 496 case TPACKET_V3: 497 h.h3->tp_sec = ts.tv_sec; 498 h.h3->tp_nsec = ts.tv_nsec; 499 break; 500 default: 501 WARN(1, "TPACKET version not supported.\n"); 502 BUG(); 503 } 504 505 /* one flush is safe, as both fields always lie on the same cacheline */ 506 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 507 smp_wmb(); 508 509 return ts_status; 510 } 511 512 static void *packet_lookup_frame(const struct packet_sock *po, 513 const struct packet_ring_buffer *rb, 514 unsigned int position, 515 int status) 516 { 517 unsigned int pg_vec_pos, frame_offset; 518 union tpacket_uhdr h; 519 520 pg_vec_pos = position / rb->frames_per_block; 521 frame_offset = position % rb->frames_per_block; 522 523 h.raw = rb->pg_vec[pg_vec_pos].buffer + 524 (frame_offset * rb->frame_size); 525 526 if (status != __packet_get_status(po, h.raw)) 527 return NULL; 528 529 return h.raw; 530 } 531 532 static void *packet_current_frame(struct packet_sock *po, 533 struct packet_ring_buffer *rb, 534 int status) 535 { 536 return packet_lookup_frame(po, rb, rb->head, status); 537 } 538 539 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 540 { 541 del_timer_sync(&pkc->retire_blk_timer); 542 } 543 544 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 545 struct sk_buff_head *rb_queue) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 551 spin_lock_bh(&rb_queue->lock); 552 pkc->delete_blk_timer = 1; 553 spin_unlock_bh(&rb_queue->lock); 554 555 prb_del_retire_blk_timer(pkc); 556 } 557 558 static void prb_setup_retire_blk_timer(struct packet_sock *po) 559 { 560 struct tpacket_kbdq_core *pkc; 561 562 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 563 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 564 0); 565 pkc->retire_blk_timer.expires = jiffies; 566 } 567 568 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 569 int blk_size_in_bytes) 570 { 571 struct net_device *dev; 572 unsigned int mbits, div; 573 struct ethtool_link_ksettings ecmd; 574 int err; 575 576 rtnl_lock(); 577 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 578 if (unlikely(!dev)) { 579 rtnl_unlock(); 580 return DEFAULT_PRB_RETIRE_TOV; 581 } 582 err = __ethtool_get_link_ksettings(dev, &ecmd); 583 rtnl_unlock(); 584 if (err) 585 return DEFAULT_PRB_RETIRE_TOV; 586 587 /* If the link speed is so slow you don't really 588 * need to worry about perf anyways 589 */ 590 if (ecmd.base.speed < SPEED_1000 || 591 ecmd.base.speed == SPEED_UNKNOWN) 592 return DEFAULT_PRB_RETIRE_TOV; 593 594 div = ecmd.base.speed / 1000; 595 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 596 597 if (div) 598 mbits /= div; 599 600 if (div) 601 return mbits + 1; 602 return mbits; 603 } 604 605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 606 union tpacket_req_u *req_u) 607 { 608 p1->feature_req_word = req_u->req3.tp_feature_req_word; 609 } 610 611 static void init_prb_bdqc(struct packet_sock *po, 612 struct packet_ring_buffer *rb, 613 struct pgv *pg_vec, 614 union tpacket_req_u *req_u) 615 { 616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 617 struct tpacket_block_desc *pbd; 618 619 memset(p1, 0x0, sizeof(*p1)); 620 621 p1->knxt_seq_num = 1; 622 p1->pkbdq = pg_vec; 623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 624 p1->pkblk_start = pg_vec[0].buffer; 625 p1->kblk_size = req_u->req3.tp_block_size; 626 p1->knum_blocks = req_u->req3.tp_block_nr; 627 p1->hdrlen = po->tp_hdrlen; 628 p1->version = po->tp_version; 629 p1->last_kactive_blk_num = 0; 630 po->stats.stats3.tp_freeze_q_cnt = 0; 631 if (req_u->req3.tp_retire_blk_tov) 632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 633 else 634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 635 req_u->req3.tp_block_size); 636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 638 rwlock_init(&p1->blk_fill_in_prog_lock); 639 640 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 641 prb_init_ft_ops(p1, req_u); 642 prb_setup_retire_blk_timer(po); 643 prb_open_block(p1, pbd); 644 } 645 646 /* Do NOT update the last_blk_num first. 647 * Assumes sk_buff_head lock is held. 648 */ 649 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 650 { 651 mod_timer(&pkc->retire_blk_timer, 652 jiffies + pkc->tov_in_jiffies); 653 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 654 } 655 656 /* 657 * Timer logic: 658 * 1) We refresh the timer only when we open a block. 659 * By doing this we don't waste cycles refreshing the timer 660 * on packet-by-packet basis. 661 * 662 * With a 1MB block-size, on a 1Gbps line, it will take 663 * i) ~8 ms to fill a block + ii) memcpy etc. 664 * In this cut we are not accounting for the memcpy time. 665 * 666 * So, if the user sets the 'tmo' to 10ms then the timer 667 * will never fire while the block is still getting filled 668 * (which is what we want). However, the user could choose 669 * to close a block early and that's fine. 670 * 671 * But when the timer does fire, we check whether or not to refresh it. 672 * Since the tmo granularity is in msecs, it is not too expensive 673 * to refresh the timer, lets say every '8' msecs. 674 * Either the user can set the 'tmo' or we can derive it based on 675 * a) line-speed and b) block-size. 676 * prb_calc_retire_blk_tmo() calculates the tmo. 677 * 678 */ 679 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 680 { 681 struct packet_sock *po = 682 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 683 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 684 unsigned int frozen; 685 struct tpacket_block_desc *pbd; 686 687 spin_lock(&po->sk.sk_receive_queue.lock); 688 689 frozen = prb_queue_frozen(pkc); 690 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 691 692 if (unlikely(pkc->delete_blk_timer)) 693 goto out; 694 695 /* We only need to plug the race when the block is partially filled. 696 * tpacket_rcv: 697 * lock(); increment BLOCK_NUM_PKTS; unlock() 698 * copy_bits() is in progress ... 699 * timer fires on other cpu: 700 * we can't retire the current block because copy_bits 701 * is in progress. 702 * 703 */ 704 if (BLOCK_NUM_PKTS(pbd)) { 705 /* Waiting for skb_copy_bits to finish... */ 706 write_lock(&pkc->blk_fill_in_prog_lock); 707 write_unlock(&pkc->blk_fill_in_prog_lock); 708 } 709 710 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 711 if (!frozen) { 712 if (!BLOCK_NUM_PKTS(pbd)) { 713 /* An empty block. Just refresh the timer. */ 714 goto refresh_timer; 715 } 716 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 717 if (!prb_dispatch_next_block(pkc, po)) 718 goto refresh_timer; 719 else 720 goto out; 721 } else { 722 /* Case 1. Queue was frozen because user-space was 723 * lagging behind. 724 */ 725 if (prb_curr_blk_in_use(pbd)) { 726 /* 727 * Ok, user-space is still behind. 728 * So just refresh the timer. 729 */ 730 goto refresh_timer; 731 } else { 732 /* Case 2. queue was frozen,user-space caught up, 733 * now the link went idle && the timer fired. 734 * We don't have a block to close.So we open this 735 * block and restart the timer. 736 * opening a block thaws the queue,restarts timer 737 * Thawing/timer-refresh is a side effect. 738 */ 739 prb_open_block(pkc, pbd); 740 goto out; 741 } 742 } 743 } 744 745 refresh_timer: 746 _prb_refresh_rx_retire_blk_timer(pkc); 747 748 out: 749 spin_unlock(&po->sk.sk_receive_queue.lock); 750 } 751 752 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 753 struct tpacket_block_desc *pbd1, __u32 status) 754 { 755 /* Flush everything minus the block header */ 756 757 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 758 u8 *start, *end; 759 760 start = (u8 *)pbd1; 761 762 /* Skip the block header(we know header WILL fit in 4K) */ 763 start += PAGE_SIZE; 764 765 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 766 for (; start < end; start += PAGE_SIZE) 767 flush_dcache_page(pgv_to_page(start)); 768 769 smp_wmb(); 770 #endif 771 772 /* Now update the block status. */ 773 774 BLOCK_STATUS(pbd1) = status; 775 776 /* Flush the block header */ 777 778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 779 start = (u8 *)pbd1; 780 flush_dcache_page(pgv_to_page(start)); 781 782 smp_wmb(); 783 #endif 784 } 785 786 /* 787 * Side effect: 788 * 789 * 1) flush the block 790 * 2) Increment active_blk_num 791 * 792 * Note:We DONT refresh the timer on purpose. 793 * Because almost always the next block will be opened. 794 */ 795 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 796 struct tpacket_block_desc *pbd1, 797 struct packet_sock *po, unsigned int stat) 798 { 799 __u32 status = TP_STATUS_USER | stat; 800 801 struct tpacket3_hdr *last_pkt; 802 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 803 struct sock *sk = &po->sk; 804 805 if (atomic_read(&po->tp_drops)) 806 status |= TP_STATUS_LOSING; 807 808 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 809 last_pkt->tp_next_offset = 0; 810 811 /* Get the ts of the last pkt */ 812 if (BLOCK_NUM_PKTS(pbd1)) { 813 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 814 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 815 } else { 816 /* Ok, we tmo'd - so get the current time. 817 * 818 * It shouldn't really happen as we don't close empty 819 * blocks. See prb_retire_rx_blk_timer_expired(). 820 */ 821 struct timespec64 ts; 822 ktime_get_real_ts64(&ts); 823 h1->ts_last_pkt.ts_sec = ts.tv_sec; 824 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 825 } 826 827 smp_wmb(); 828 829 /* Flush the block */ 830 prb_flush_block(pkc1, pbd1, status); 831 832 sk->sk_data_ready(sk); 833 834 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 835 } 836 837 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 838 { 839 pkc->reset_pending_on_curr_blk = 0; 840 } 841 842 /* 843 * Side effect of opening a block: 844 * 845 * 1) prb_queue is thawed. 846 * 2) retire_blk_timer is refreshed. 847 * 848 */ 849 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 850 struct tpacket_block_desc *pbd1) 851 { 852 struct timespec64 ts; 853 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 854 855 smp_rmb(); 856 857 /* We could have just memset this but we will lose the 858 * flexibility of making the priv area sticky 859 */ 860 861 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 862 BLOCK_NUM_PKTS(pbd1) = 0; 863 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 865 ktime_get_real_ts64(&ts); 866 867 h1->ts_first_pkt.ts_sec = ts.tv_sec; 868 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 869 870 pkc1->pkblk_start = (char *)pbd1; 871 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 872 873 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 874 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 875 876 pbd1->version = pkc1->version; 877 pkc1->prev = pkc1->nxt_offset; 878 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 879 880 prb_thaw_queue(pkc1); 881 _prb_refresh_rx_retire_blk_timer(pkc1); 882 883 smp_wmb(); 884 } 885 886 /* 887 * Queue freeze logic: 888 * 1) Assume tp_block_nr = 8 blocks. 889 * 2) At time 't0', user opens Rx ring. 890 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 891 * 4) user-space is either sleeping or processing block '0'. 892 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 893 * it will close block-7,loop around and try to fill block '0'. 894 * call-flow: 895 * __packet_lookup_frame_in_block 896 * prb_retire_current_block() 897 * prb_dispatch_next_block() 898 * |->(BLOCK_STATUS == USER) evaluates to true 899 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 900 * 6) Now there are two cases: 901 * 6.1) Link goes idle right after the queue is frozen. 902 * But remember, the last open_block() refreshed the timer. 903 * When this timer expires,it will refresh itself so that we can 904 * re-open block-0 in near future. 905 * 6.2) Link is busy and keeps on receiving packets. This is a simple 906 * case and __packet_lookup_frame_in_block will check if block-0 907 * is free and can now be re-used. 908 */ 909 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 910 struct packet_sock *po) 911 { 912 pkc->reset_pending_on_curr_blk = 1; 913 po->stats.stats3.tp_freeze_q_cnt++; 914 } 915 916 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 917 918 /* 919 * If the next block is free then we will dispatch it 920 * and return a good offset. 921 * Else, we will freeze the queue. 922 * So, caller must check the return value. 923 */ 924 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 925 struct packet_sock *po) 926 { 927 struct tpacket_block_desc *pbd; 928 929 smp_rmb(); 930 931 /* 1. Get current block num */ 932 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 933 934 /* 2. If this block is currently in_use then freeze the queue */ 935 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 936 prb_freeze_queue(pkc, po); 937 return NULL; 938 } 939 940 /* 941 * 3. 942 * open this block and return the offset where the first packet 943 * needs to get stored. 944 */ 945 prb_open_block(pkc, pbd); 946 return (void *)pkc->nxt_offset; 947 } 948 949 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 950 struct packet_sock *po, unsigned int status) 951 { 952 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 953 954 /* retire/close the current block */ 955 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 956 /* 957 * Plug the case where copy_bits() is in progress on 958 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 959 * have space to copy the pkt in the current block and 960 * called prb_retire_current_block() 961 * 962 * We don't need to worry about the TMO case because 963 * the timer-handler already handled this case. 964 */ 965 if (!(status & TP_STATUS_BLK_TMO)) { 966 /* Waiting for skb_copy_bits to finish... */ 967 write_lock(&pkc->blk_fill_in_prog_lock); 968 write_unlock(&pkc->blk_fill_in_prog_lock); 969 } 970 prb_close_block(pkc, pbd, po, status); 971 return; 972 } 973 } 974 975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 976 { 977 return TP_STATUS_USER & BLOCK_STATUS(pbd); 978 } 979 980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 981 { 982 return pkc->reset_pending_on_curr_blk; 983 } 984 985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 986 __releases(&pkc->blk_fill_in_prog_lock) 987 { 988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 989 990 read_unlock(&pkc->blk_fill_in_prog_lock); 991 } 992 993 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 994 struct tpacket3_hdr *ppd) 995 { 996 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 997 } 998 999 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 1000 struct tpacket3_hdr *ppd) 1001 { 1002 ppd->hv1.tp_rxhash = 0; 1003 } 1004 1005 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 1006 struct tpacket3_hdr *ppd) 1007 { 1008 if (skb_vlan_tag_present(pkc->skb)) { 1009 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1010 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1011 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1012 } else { 1013 ppd->hv1.tp_vlan_tci = 0; 1014 ppd->hv1.tp_vlan_tpid = 0; 1015 ppd->tp_status = TP_STATUS_AVAILABLE; 1016 } 1017 } 1018 1019 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1020 struct tpacket3_hdr *ppd) 1021 { 1022 ppd->hv1.tp_padding = 0; 1023 prb_fill_vlan_info(pkc, ppd); 1024 1025 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1026 prb_fill_rxhash(pkc, ppd); 1027 else 1028 prb_clear_rxhash(pkc, ppd); 1029 } 1030 1031 static void prb_fill_curr_block(char *curr, 1032 struct tpacket_kbdq_core *pkc, 1033 struct tpacket_block_desc *pbd, 1034 unsigned int len) 1035 __acquires(&pkc->blk_fill_in_prog_lock) 1036 { 1037 struct tpacket3_hdr *ppd; 1038 1039 ppd = (struct tpacket3_hdr *)curr; 1040 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1041 pkc->prev = curr; 1042 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1043 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1044 BLOCK_NUM_PKTS(pbd) += 1; 1045 read_lock(&pkc->blk_fill_in_prog_lock); 1046 prb_run_all_ft_ops(pkc, ppd); 1047 } 1048 1049 /* Assumes caller has the sk->rx_queue.lock */ 1050 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1051 struct sk_buff *skb, 1052 unsigned int len 1053 ) 1054 { 1055 struct tpacket_kbdq_core *pkc; 1056 struct tpacket_block_desc *pbd; 1057 char *curr, *end; 1058 1059 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1061 1062 /* Queue is frozen when user space is lagging behind */ 1063 if (prb_queue_frozen(pkc)) { 1064 /* 1065 * Check if that last block which caused the queue to freeze, 1066 * is still in_use by user-space. 1067 */ 1068 if (prb_curr_blk_in_use(pbd)) { 1069 /* Can't record this packet */ 1070 return NULL; 1071 } else { 1072 /* 1073 * Ok, the block was released by user-space. 1074 * Now let's open that block. 1075 * opening a block also thaws the queue. 1076 * Thawing is a side effect. 1077 */ 1078 prb_open_block(pkc, pbd); 1079 } 1080 } 1081 1082 smp_mb(); 1083 curr = pkc->nxt_offset; 1084 pkc->skb = skb; 1085 end = (char *)pbd + pkc->kblk_size; 1086 1087 /* first try the current block */ 1088 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1089 prb_fill_curr_block(curr, pkc, pbd, len); 1090 return (void *)curr; 1091 } 1092 1093 /* Ok, close the current block */ 1094 prb_retire_current_block(pkc, po, 0); 1095 1096 /* Now, try to dispatch the next block */ 1097 curr = (char *)prb_dispatch_next_block(pkc, po); 1098 if (curr) { 1099 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1100 prb_fill_curr_block(curr, pkc, pbd, len); 1101 return (void *)curr; 1102 } 1103 1104 /* 1105 * No free blocks are available.user_space hasn't caught up yet. 1106 * Queue was just frozen and now this packet will get dropped. 1107 */ 1108 return NULL; 1109 } 1110 1111 static void *packet_current_rx_frame(struct packet_sock *po, 1112 struct sk_buff *skb, 1113 int status, unsigned int len) 1114 { 1115 char *curr = NULL; 1116 switch (po->tp_version) { 1117 case TPACKET_V1: 1118 case TPACKET_V2: 1119 curr = packet_lookup_frame(po, &po->rx_ring, 1120 po->rx_ring.head, status); 1121 return curr; 1122 case TPACKET_V3: 1123 return __packet_lookup_frame_in_block(po, skb, len); 1124 default: 1125 WARN(1, "TPACKET version not supported\n"); 1126 BUG(); 1127 return NULL; 1128 } 1129 } 1130 1131 static void *prb_lookup_block(const struct packet_sock *po, 1132 const struct packet_ring_buffer *rb, 1133 unsigned int idx, 1134 int status) 1135 { 1136 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1137 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1138 1139 if (status != BLOCK_STATUS(pbd)) 1140 return NULL; 1141 return pbd; 1142 } 1143 1144 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1145 { 1146 unsigned int prev; 1147 if (rb->prb_bdqc.kactive_blk_num) 1148 prev = rb->prb_bdqc.kactive_blk_num-1; 1149 else 1150 prev = rb->prb_bdqc.knum_blocks-1; 1151 return prev; 1152 } 1153 1154 /* Assumes caller has held the rx_queue.lock */ 1155 static void *__prb_previous_block(struct packet_sock *po, 1156 struct packet_ring_buffer *rb, 1157 int status) 1158 { 1159 unsigned int previous = prb_previous_blk_num(rb); 1160 return prb_lookup_block(po, rb, previous, status); 1161 } 1162 1163 static void *packet_previous_rx_frame(struct packet_sock *po, 1164 struct packet_ring_buffer *rb, 1165 int status) 1166 { 1167 if (po->tp_version <= TPACKET_V2) 1168 return packet_previous_frame(po, rb, status); 1169 1170 return __prb_previous_block(po, rb, status); 1171 } 1172 1173 static void packet_increment_rx_head(struct packet_sock *po, 1174 struct packet_ring_buffer *rb) 1175 { 1176 switch (po->tp_version) { 1177 case TPACKET_V1: 1178 case TPACKET_V2: 1179 return packet_increment_head(rb); 1180 case TPACKET_V3: 1181 default: 1182 WARN(1, "TPACKET version not supported.\n"); 1183 BUG(); 1184 return; 1185 } 1186 } 1187 1188 static void *packet_previous_frame(struct packet_sock *po, 1189 struct packet_ring_buffer *rb, 1190 int status) 1191 { 1192 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1193 return packet_lookup_frame(po, rb, previous, status); 1194 } 1195 1196 static void packet_increment_head(struct packet_ring_buffer *buff) 1197 { 1198 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1199 } 1200 1201 static void packet_inc_pending(struct packet_ring_buffer *rb) 1202 { 1203 this_cpu_inc(*rb->pending_refcnt); 1204 } 1205 1206 static void packet_dec_pending(struct packet_ring_buffer *rb) 1207 { 1208 this_cpu_dec(*rb->pending_refcnt); 1209 } 1210 1211 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1212 { 1213 unsigned int refcnt = 0; 1214 int cpu; 1215 1216 /* We don't use pending refcount in rx_ring. */ 1217 if (rb->pending_refcnt == NULL) 1218 return 0; 1219 1220 for_each_possible_cpu(cpu) 1221 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1222 1223 return refcnt; 1224 } 1225 1226 static int packet_alloc_pending(struct packet_sock *po) 1227 { 1228 po->rx_ring.pending_refcnt = NULL; 1229 1230 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1231 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1232 return -ENOBUFS; 1233 1234 return 0; 1235 } 1236 1237 static void packet_free_pending(struct packet_sock *po) 1238 { 1239 free_percpu(po->tx_ring.pending_refcnt); 1240 } 1241 1242 #define ROOM_POW_OFF 2 1243 #define ROOM_NONE 0x0 1244 #define ROOM_LOW 0x1 1245 #define ROOM_NORMAL 0x2 1246 1247 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1248 { 1249 int idx, len; 1250 1251 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1252 idx = READ_ONCE(po->rx_ring.head); 1253 if (pow_off) 1254 idx += len >> pow_off; 1255 if (idx >= len) 1256 idx -= len; 1257 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1258 } 1259 1260 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1261 { 1262 int idx, len; 1263 1264 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1265 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1266 if (pow_off) 1267 idx += len >> pow_off; 1268 if (idx >= len) 1269 idx -= len; 1270 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1271 } 1272 1273 static int __packet_rcv_has_room(const struct packet_sock *po, 1274 const struct sk_buff *skb) 1275 { 1276 const struct sock *sk = &po->sk; 1277 int ret = ROOM_NONE; 1278 1279 if (po->prot_hook.func != tpacket_rcv) { 1280 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1281 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1282 - (skb ? skb->truesize : 0); 1283 1284 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1285 return ROOM_NORMAL; 1286 else if (avail > 0) 1287 return ROOM_LOW; 1288 else 1289 return ROOM_NONE; 1290 } 1291 1292 if (po->tp_version == TPACKET_V3) { 1293 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1294 ret = ROOM_NORMAL; 1295 else if (__tpacket_v3_has_room(po, 0)) 1296 ret = ROOM_LOW; 1297 } else { 1298 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1299 ret = ROOM_NORMAL; 1300 else if (__tpacket_has_room(po, 0)) 1301 ret = ROOM_LOW; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1308 { 1309 int pressure, ret; 1310 1311 ret = __packet_rcv_has_room(po, skb); 1312 pressure = ret != ROOM_NORMAL; 1313 1314 if (READ_ONCE(po->pressure) != pressure) 1315 WRITE_ONCE(po->pressure, pressure); 1316 1317 return ret; 1318 } 1319 1320 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1321 { 1322 if (READ_ONCE(po->pressure) && 1323 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1324 WRITE_ONCE(po->pressure, 0); 1325 } 1326 1327 static void packet_sock_destruct(struct sock *sk) 1328 { 1329 skb_queue_purge(&sk->sk_error_queue); 1330 1331 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1332 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1333 1334 if (!sock_flag(sk, SOCK_DEAD)) { 1335 pr_err("Attempt to release alive packet socket: %p\n", sk); 1336 return; 1337 } 1338 1339 sk_refcnt_debug_dec(sk); 1340 } 1341 1342 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1343 { 1344 u32 *history = po->rollover->history; 1345 u32 victim, rxhash; 1346 int i, count = 0; 1347 1348 rxhash = skb_get_hash(skb); 1349 for (i = 0; i < ROLLOVER_HLEN; i++) 1350 if (READ_ONCE(history[i]) == rxhash) 1351 count++; 1352 1353 victim = prandom_u32() % ROLLOVER_HLEN; 1354 1355 /* Avoid dirtying the cache line if possible */ 1356 if (READ_ONCE(history[victim]) != rxhash) 1357 WRITE_ONCE(history[victim], rxhash); 1358 1359 return count > (ROLLOVER_HLEN >> 1); 1360 } 1361 1362 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1363 struct sk_buff *skb, 1364 unsigned int num) 1365 { 1366 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1367 } 1368 1369 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1370 struct sk_buff *skb, 1371 unsigned int num) 1372 { 1373 unsigned int val = atomic_inc_return(&f->rr_cur); 1374 1375 return val % num; 1376 } 1377 1378 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1379 struct sk_buff *skb, 1380 unsigned int num) 1381 { 1382 return smp_processor_id() % num; 1383 } 1384 1385 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1386 struct sk_buff *skb, 1387 unsigned int num) 1388 { 1389 return prandom_u32_max(num); 1390 } 1391 1392 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1393 struct sk_buff *skb, 1394 unsigned int idx, bool try_self, 1395 unsigned int num) 1396 { 1397 struct packet_sock *po, *po_next, *po_skip = NULL; 1398 unsigned int i, j, room = ROOM_NONE; 1399 1400 po = pkt_sk(rcu_dereference(f->arr[idx])); 1401 1402 if (try_self) { 1403 room = packet_rcv_has_room(po, skb); 1404 if (room == ROOM_NORMAL || 1405 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1406 return idx; 1407 po_skip = po; 1408 } 1409 1410 i = j = min_t(int, po->rollover->sock, num - 1); 1411 do { 1412 po_next = pkt_sk(rcu_dereference(f->arr[i])); 1413 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1414 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1415 if (i != j) 1416 po->rollover->sock = i; 1417 atomic_long_inc(&po->rollover->num); 1418 if (room == ROOM_LOW) 1419 atomic_long_inc(&po->rollover->num_huge); 1420 return i; 1421 } 1422 1423 if (++i == num) 1424 i = 0; 1425 } while (i != j); 1426 1427 atomic_long_inc(&po->rollover->num_failed); 1428 return idx; 1429 } 1430 1431 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1432 struct sk_buff *skb, 1433 unsigned int num) 1434 { 1435 return skb_get_queue_mapping(skb) % num; 1436 } 1437 1438 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1439 struct sk_buff *skb, 1440 unsigned int num) 1441 { 1442 struct bpf_prog *prog; 1443 unsigned int ret = 0; 1444 1445 rcu_read_lock(); 1446 prog = rcu_dereference(f->bpf_prog); 1447 if (prog) 1448 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1449 rcu_read_unlock(); 1450 1451 return ret; 1452 } 1453 1454 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1455 { 1456 return f->flags & (flag >> 8); 1457 } 1458 1459 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1460 struct packet_type *pt, struct net_device *orig_dev) 1461 { 1462 struct packet_fanout *f = pt->af_packet_priv; 1463 unsigned int num = READ_ONCE(f->num_members); 1464 struct net *net = read_pnet(&f->net); 1465 struct packet_sock *po; 1466 unsigned int idx; 1467 1468 if (!net_eq(dev_net(dev), net) || !num) { 1469 kfree_skb(skb); 1470 return 0; 1471 } 1472 1473 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1474 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1475 if (!skb) 1476 return 0; 1477 } 1478 switch (f->type) { 1479 case PACKET_FANOUT_HASH: 1480 default: 1481 idx = fanout_demux_hash(f, skb, num); 1482 break; 1483 case PACKET_FANOUT_LB: 1484 idx = fanout_demux_lb(f, skb, num); 1485 break; 1486 case PACKET_FANOUT_CPU: 1487 idx = fanout_demux_cpu(f, skb, num); 1488 break; 1489 case PACKET_FANOUT_RND: 1490 idx = fanout_demux_rnd(f, skb, num); 1491 break; 1492 case PACKET_FANOUT_QM: 1493 idx = fanout_demux_qm(f, skb, num); 1494 break; 1495 case PACKET_FANOUT_ROLLOVER: 1496 idx = fanout_demux_rollover(f, skb, 0, false, num); 1497 break; 1498 case PACKET_FANOUT_CBPF: 1499 case PACKET_FANOUT_EBPF: 1500 idx = fanout_demux_bpf(f, skb, num); 1501 break; 1502 } 1503 1504 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1505 idx = fanout_demux_rollover(f, skb, idx, true, num); 1506 1507 po = pkt_sk(rcu_dereference(f->arr[idx])); 1508 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1509 } 1510 1511 DEFINE_MUTEX(fanout_mutex); 1512 EXPORT_SYMBOL_GPL(fanout_mutex); 1513 static LIST_HEAD(fanout_list); 1514 static u16 fanout_next_id; 1515 1516 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1517 { 1518 struct packet_fanout *f = po->fanout; 1519 1520 spin_lock(&f->lock); 1521 rcu_assign_pointer(f->arr[f->num_members], sk); 1522 smp_wmb(); 1523 f->num_members++; 1524 if (f->num_members == 1) 1525 dev_add_pack(&f->prot_hook); 1526 spin_unlock(&f->lock); 1527 } 1528 1529 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1530 { 1531 struct packet_fanout *f = po->fanout; 1532 int i; 1533 1534 spin_lock(&f->lock); 1535 for (i = 0; i < f->num_members; i++) { 1536 if (rcu_dereference_protected(f->arr[i], 1537 lockdep_is_held(&f->lock)) == sk) 1538 break; 1539 } 1540 BUG_ON(i >= f->num_members); 1541 rcu_assign_pointer(f->arr[i], 1542 rcu_dereference_protected(f->arr[f->num_members - 1], 1543 lockdep_is_held(&f->lock))); 1544 f->num_members--; 1545 if (f->num_members == 0) 1546 __dev_remove_pack(&f->prot_hook); 1547 spin_unlock(&f->lock); 1548 } 1549 1550 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1551 { 1552 if (sk->sk_family != PF_PACKET) 1553 return false; 1554 1555 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1556 } 1557 1558 static void fanout_init_data(struct packet_fanout *f) 1559 { 1560 switch (f->type) { 1561 case PACKET_FANOUT_LB: 1562 atomic_set(&f->rr_cur, 0); 1563 break; 1564 case PACKET_FANOUT_CBPF: 1565 case PACKET_FANOUT_EBPF: 1566 RCU_INIT_POINTER(f->bpf_prog, NULL); 1567 break; 1568 } 1569 } 1570 1571 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1572 { 1573 struct bpf_prog *old; 1574 1575 spin_lock(&f->lock); 1576 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1577 rcu_assign_pointer(f->bpf_prog, new); 1578 spin_unlock(&f->lock); 1579 1580 if (old) { 1581 synchronize_net(); 1582 bpf_prog_destroy(old); 1583 } 1584 } 1585 1586 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data, 1587 unsigned int len) 1588 { 1589 struct bpf_prog *new; 1590 struct sock_fprog fprog; 1591 int ret; 1592 1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1594 return -EPERM; 1595 1596 ret = copy_bpf_fprog_from_user(&fprog, data, len); 1597 if (ret) 1598 return ret; 1599 1600 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1601 if (ret) 1602 return ret; 1603 1604 __fanout_set_data_bpf(po->fanout, new); 1605 return 0; 1606 } 1607 1608 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data, 1609 unsigned int len) 1610 { 1611 struct bpf_prog *new; 1612 u32 fd; 1613 1614 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1615 return -EPERM; 1616 if (len != sizeof(fd)) 1617 return -EINVAL; 1618 if (copy_from_sockptr(&fd, data, len)) 1619 return -EFAULT; 1620 1621 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1622 if (IS_ERR(new)) 1623 return PTR_ERR(new); 1624 1625 __fanout_set_data_bpf(po->fanout, new); 1626 return 0; 1627 } 1628 1629 static int fanout_set_data(struct packet_sock *po, sockptr_t data, 1630 unsigned int len) 1631 { 1632 switch (po->fanout->type) { 1633 case PACKET_FANOUT_CBPF: 1634 return fanout_set_data_cbpf(po, data, len); 1635 case PACKET_FANOUT_EBPF: 1636 return fanout_set_data_ebpf(po, data, len); 1637 default: 1638 return -EINVAL; 1639 } 1640 } 1641 1642 static void fanout_release_data(struct packet_fanout *f) 1643 { 1644 switch (f->type) { 1645 case PACKET_FANOUT_CBPF: 1646 case PACKET_FANOUT_EBPF: 1647 __fanout_set_data_bpf(f, NULL); 1648 } 1649 } 1650 1651 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1652 { 1653 struct packet_fanout *f; 1654 1655 list_for_each_entry(f, &fanout_list, list) { 1656 if (f->id == candidate_id && 1657 read_pnet(&f->net) == sock_net(sk)) { 1658 return false; 1659 } 1660 } 1661 return true; 1662 } 1663 1664 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1665 { 1666 u16 id = fanout_next_id; 1667 1668 do { 1669 if (__fanout_id_is_free(sk, id)) { 1670 *new_id = id; 1671 fanout_next_id = id + 1; 1672 return true; 1673 } 1674 1675 id++; 1676 } while (id != fanout_next_id); 1677 1678 return false; 1679 } 1680 1681 static int fanout_add(struct sock *sk, struct fanout_args *args) 1682 { 1683 struct packet_rollover *rollover = NULL; 1684 struct packet_sock *po = pkt_sk(sk); 1685 u16 type_flags = args->type_flags; 1686 struct packet_fanout *f, *match; 1687 u8 type = type_flags & 0xff; 1688 u8 flags = type_flags >> 8; 1689 u16 id = args->id; 1690 int err; 1691 1692 switch (type) { 1693 case PACKET_FANOUT_ROLLOVER: 1694 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1695 return -EINVAL; 1696 break; 1697 case PACKET_FANOUT_HASH: 1698 case PACKET_FANOUT_LB: 1699 case PACKET_FANOUT_CPU: 1700 case PACKET_FANOUT_RND: 1701 case PACKET_FANOUT_QM: 1702 case PACKET_FANOUT_CBPF: 1703 case PACKET_FANOUT_EBPF: 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 mutex_lock(&fanout_mutex); 1710 1711 err = -EALREADY; 1712 if (po->fanout) 1713 goto out; 1714 1715 if (type == PACKET_FANOUT_ROLLOVER || 1716 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1717 err = -ENOMEM; 1718 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1719 if (!rollover) 1720 goto out; 1721 atomic_long_set(&rollover->num, 0); 1722 atomic_long_set(&rollover->num_huge, 0); 1723 atomic_long_set(&rollover->num_failed, 0); 1724 } 1725 1726 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1727 if (id != 0) { 1728 err = -EINVAL; 1729 goto out; 1730 } 1731 if (!fanout_find_new_id(sk, &id)) { 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 /* ephemeral flag for the first socket in the group: drop it */ 1736 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1737 } 1738 1739 match = NULL; 1740 list_for_each_entry(f, &fanout_list, list) { 1741 if (f->id == id && 1742 read_pnet(&f->net) == sock_net(sk)) { 1743 match = f; 1744 break; 1745 } 1746 } 1747 err = -EINVAL; 1748 if (match) { 1749 if (match->flags != flags) 1750 goto out; 1751 if (args->max_num_members && 1752 args->max_num_members != match->max_num_members) 1753 goto out; 1754 } else { 1755 if (args->max_num_members > PACKET_FANOUT_MAX) 1756 goto out; 1757 if (!args->max_num_members) 1758 /* legacy PACKET_FANOUT_MAX */ 1759 args->max_num_members = 256; 1760 err = -ENOMEM; 1761 match = kvzalloc(struct_size(match, arr, args->max_num_members), 1762 GFP_KERNEL); 1763 if (!match) 1764 goto out; 1765 write_pnet(&match->net, sock_net(sk)); 1766 match->id = id; 1767 match->type = type; 1768 match->flags = flags; 1769 INIT_LIST_HEAD(&match->list); 1770 spin_lock_init(&match->lock); 1771 refcount_set(&match->sk_ref, 0); 1772 fanout_init_data(match); 1773 match->prot_hook.type = po->prot_hook.type; 1774 match->prot_hook.dev = po->prot_hook.dev; 1775 match->prot_hook.func = packet_rcv_fanout; 1776 match->prot_hook.af_packet_priv = match; 1777 match->prot_hook.af_packet_net = read_pnet(&match->net); 1778 match->prot_hook.id_match = match_fanout_group; 1779 match->max_num_members = args->max_num_members; 1780 list_add(&match->list, &fanout_list); 1781 } 1782 err = -EINVAL; 1783 1784 spin_lock(&po->bind_lock); 1785 if (po->running && 1786 match->type == type && 1787 match->prot_hook.type == po->prot_hook.type && 1788 match->prot_hook.dev == po->prot_hook.dev) { 1789 err = -ENOSPC; 1790 if (refcount_read(&match->sk_ref) < match->max_num_members) { 1791 __dev_remove_pack(&po->prot_hook); 1792 1793 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */ 1794 WRITE_ONCE(po->fanout, match); 1795 1796 po->rollover = rollover; 1797 rollover = NULL; 1798 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1799 __fanout_link(sk, po); 1800 err = 0; 1801 } 1802 } 1803 spin_unlock(&po->bind_lock); 1804 1805 if (err && !refcount_read(&match->sk_ref)) { 1806 list_del(&match->list); 1807 kvfree(match); 1808 } 1809 1810 out: 1811 kfree(rollover); 1812 mutex_unlock(&fanout_mutex); 1813 return err; 1814 } 1815 1816 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1817 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1818 * It is the responsibility of the caller to call fanout_release_data() and 1819 * free the returned packet_fanout (after synchronize_net()) 1820 */ 1821 static struct packet_fanout *fanout_release(struct sock *sk) 1822 { 1823 struct packet_sock *po = pkt_sk(sk); 1824 struct packet_fanout *f; 1825 1826 mutex_lock(&fanout_mutex); 1827 f = po->fanout; 1828 if (f) { 1829 po->fanout = NULL; 1830 1831 if (refcount_dec_and_test(&f->sk_ref)) 1832 list_del(&f->list); 1833 else 1834 f = NULL; 1835 } 1836 mutex_unlock(&fanout_mutex); 1837 1838 return f; 1839 } 1840 1841 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1842 struct sk_buff *skb) 1843 { 1844 /* Earlier code assumed this would be a VLAN pkt, double-check 1845 * this now that we have the actual packet in hand. We can only 1846 * do this check on Ethernet devices. 1847 */ 1848 if (unlikely(dev->type != ARPHRD_ETHER)) 1849 return false; 1850 1851 skb_reset_mac_header(skb); 1852 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1853 } 1854 1855 static const struct proto_ops packet_ops; 1856 1857 static const struct proto_ops packet_ops_spkt; 1858 1859 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1860 struct packet_type *pt, struct net_device *orig_dev) 1861 { 1862 struct sock *sk; 1863 struct sockaddr_pkt *spkt; 1864 1865 /* 1866 * When we registered the protocol we saved the socket in the data 1867 * field for just this event. 1868 */ 1869 1870 sk = pt->af_packet_priv; 1871 1872 /* 1873 * Yank back the headers [hope the device set this 1874 * right or kerboom...] 1875 * 1876 * Incoming packets have ll header pulled, 1877 * push it back. 1878 * 1879 * For outgoing ones skb->data == skb_mac_header(skb) 1880 * so that this procedure is noop. 1881 */ 1882 1883 if (skb->pkt_type == PACKET_LOOPBACK) 1884 goto out; 1885 1886 if (!net_eq(dev_net(dev), sock_net(sk))) 1887 goto out; 1888 1889 skb = skb_share_check(skb, GFP_ATOMIC); 1890 if (skb == NULL) 1891 goto oom; 1892 1893 /* drop any routing info */ 1894 skb_dst_drop(skb); 1895 1896 /* drop conntrack reference */ 1897 nf_reset_ct(skb); 1898 1899 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1900 1901 skb_push(skb, skb->data - skb_mac_header(skb)); 1902 1903 /* 1904 * The SOCK_PACKET socket receives _all_ frames. 1905 */ 1906 1907 spkt->spkt_family = dev->type; 1908 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1909 spkt->spkt_protocol = skb->protocol; 1910 1911 /* 1912 * Charge the memory to the socket. This is done specifically 1913 * to prevent sockets using all the memory up. 1914 */ 1915 1916 if (sock_queue_rcv_skb(sk, skb) == 0) 1917 return 0; 1918 1919 out: 1920 kfree_skb(skb); 1921 oom: 1922 return 0; 1923 } 1924 1925 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1926 { 1927 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1928 sock->type == SOCK_RAW) { 1929 skb_reset_mac_header(skb); 1930 skb->protocol = dev_parse_header_protocol(skb); 1931 } 1932 1933 skb_probe_transport_header(skb); 1934 } 1935 1936 /* 1937 * Output a raw packet to a device layer. This bypasses all the other 1938 * protocol layers and you must therefore supply it with a complete frame 1939 */ 1940 1941 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1942 size_t len) 1943 { 1944 struct sock *sk = sock->sk; 1945 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1946 struct sk_buff *skb = NULL; 1947 struct net_device *dev; 1948 struct sockcm_cookie sockc; 1949 __be16 proto = 0; 1950 int err; 1951 int extra_len = 0; 1952 1953 /* 1954 * Get and verify the address. 1955 */ 1956 1957 if (saddr) { 1958 if (msg->msg_namelen < sizeof(struct sockaddr)) 1959 return -EINVAL; 1960 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1961 proto = saddr->spkt_protocol; 1962 } else 1963 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1964 1965 /* 1966 * Find the device first to size check it 1967 */ 1968 1969 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1970 retry: 1971 rcu_read_lock(); 1972 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1973 err = -ENODEV; 1974 if (dev == NULL) 1975 goto out_unlock; 1976 1977 err = -ENETDOWN; 1978 if (!(dev->flags & IFF_UP)) 1979 goto out_unlock; 1980 1981 /* 1982 * You may not queue a frame bigger than the mtu. This is the lowest level 1983 * raw protocol and you must do your own fragmentation at this level. 1984 */ 1985 1986 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1987 if (!netif_supports_nofcs(dev)) { 1988 err = -EPROTONOSUPPORT; 1989 goto out_unlock; 1990 } 1991 extra_len = 4; /* We're doing our own CRC */ 1992 } 1993 1994 err = -EMSGSIZE; 1995 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1996 goto out_unlock; 1997 1998 if (!skb) { 1999 size_t reserved = LL_RESERVED_SPACE(dev); 2000 int tlen = dev->needed_tailroom; 2001 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 2002 2003 rcu_read_unlock(); 2004 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 2005 if (skb == NULL) 2006 return -ENOBUFS; 2007 /* FIXME: Save some space for broken drivers that write a hard 2008 * header at transmission time by themselves. PPP is the notable 2009 * one here. This should really be fixed at the driver level. 2010 */ 2011 skb_reserve(skb, reserved); 2012 skb_reset_network_header(skb); 2013 2014 /* Try to align data part correctly */ 2015 if (hhlen) { 2016 skb->data -= hhlen; 2017 skb->tail -= hhlen; 2018 if (len < hhlen) 2019 skb_reset_network_header(skb); 2020 } 2021 err = memcpy_from_msg(skb_put(skb, len), msg, len); 2022 if (err) 2023 goto out_free; 2024 goto retry; 2025 } 2026 2027 if (!dev_validate_header(dev, skb->data, len)) { 2028 err = -EINVAL; 2029 goto out_unlock; 2030 } 2031 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 2032 !packet_extra_vlan_len_allowed(dev, skb)) { 2033 err = -EMSGSIZE; 2034 goto out_unlock; 2035 } 2036 2037 sockcm_init(&sockc, sk); 2038 if (msg->msg_controllen) { 2039 err = sock_cmsg_send(sk, msg, &sockc); 2040 if (unlikely(err)) 2041 goto out_unlock; 2042 } 2043 2044 skb->protocol = proto; 2045 skb->dev = dev; 2046 skb->priority = sk->sk_priority; 2047 skb->mark = sk->sk_mark; 2048 skb->tstamp = sockc.transmit_time; 2049 2050 skb_setup_tx_timestamp(skb, sockc.tsflags); 2051 2052 if (unlikely(extra_len == 4)) 2053 skb->no_fcs = 1; 2054 2055 packet_parse_headers(skb, sock); 2056 2057 dev_queue_xmit(skb); 2058 rcu_read_unlock(); 2059 return len; 2060 2061 out_unlock: 2062 rcu_read_unlock(); 2063 out_free: 2064 kfree_skb(skb); 2065 return err; 2066 } 2067 2068 static unsigned int run_filter(struct sk_buff *skb, 2069 const struct sock *sk, 2070 unsigned int res) 2071 { 2072 struct sk_filter *filter; 2073 2074 rcu_read_lock(); 2075 filter = rcu_dereference(sk->sk_filter); 2076 if (filter != NULL) 2077 res = bpf_prog_run_clear_cb(filter->prog, skb); 2078 rcu_read_unlock(); 2079 2080 return res; 2081 } 2082 2083 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2084 size_t *len) 2085 { 2086 struct virtio_net_hdr vnet_hdr; 2087 2088 if (*len < sizeof(vnet_hdr)) 2089 return -EINVAL; 2090 *len -= sizeof(vnet_hdr); 2091 2092 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2093 return -EINVAL; 2094 2095 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2096 } 2097 2098 /* 2099 * This function makes lazy skb cloning in hope that most of packets 2100 * are discarded by BPF. 2101 * 2102 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2103 * and skb->cb are mangled. It works because (and until) packets 2104 * falling here are owned by current CPU. Output packets are cloned 2105 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2106 * sequentially, so that if we return skb to original state on exit, 2107 * we will not harm anyone. 2108 */ 2109 2110 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2111 struct packet_type *pt, struct net_device *orig_dev) 2112 { 2113 struct sock *sk; 2114 struct sockaddr_ll *sll; 2115 struct packet_sock *po; 2116 u8 *skb_head = skb->data; 2117 int skb_len = skb->len; 2118 unsigned int snaplen, res; 2119 bool is_drop_n_account = false; 2120 2121 if (skb->pkt_type == PACKET_LOOPBACK) 2122 goto drop; 2123 2124 sk = pt->af_packet_priv; 2125 po = pkt_sk(sk); 2126 2127 if (!net_eq(dev_net(dev), sock_net(sk))) 2128 goto drop; 2129 2130 skb->dev = dev; 2131 2132 if (dev_has_header(dev)) { 2133 /* The device has an explicit notion of ll header, 2134 * exported to higher levels. 2135 * 2136 * Otherwise, the device hides details of its frame 2137 * structure, so that corresponding packet head is 2138 * never delivered to user. 2139 */ 2140 if (sk->sk_type != SOCK_DGRAM) 2141 skb_push(skb, skb->data - skb_mac_header(skb)); 2142 else if (skb->pkt_type == PACKET_OUTGOING) { 2143 /* Special case: outgoing packets have ll header at head */ 2144 skb_pull(skb, skb_network_offset(skb)); 2145 } 2146 } 2147 2148 snaplen = skb->len; 2149 2150 res = run_filter(skb, sk, snaplen); 2151 if (!res) 2152 goto drop_n_restore; 2153 if (snaplen > res) 2154 snaplen = res; 2155 2156 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2157 goto drop_n_acct; 2158 2159 if (skb_shared(skb)) { 2160 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2161 if (nskb == NULL) 2162 goto drop_n_acct; 2163 2164 if (skb_head != skb->data) { 2165 skb->data = skb_head; 2166 skb->len = skb_len; 2167 } 2168 consume_skb(skb); 2169 skb = nskb; 2170 } 2171 2172 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2173 2174 sll = &PACKET_SKB_CB(skb)->sa.ll; 2175 sll->sll_hatype = dev->type; 2176 sll->sll_pkttype = skb->pkt_type; 2177 if (unlikely(po->origdev)) 2178 sll->sll_ifindex = orig_dev->ifindex; 2179 else 2180 sll->sll_ifindex = dev->ifindex; 2181 2182 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2183 2184 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2185 * Use their space for storing the original skb length. 2186 */ 2187 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2188 2189 if (pskb_trim(skb, snaplen)) 2190 goto drop_n_acct; 2191 2192 skb_set_owner_r(skb, sk); 2193 skb->dev = NULL; 2194 skb_dst_drop(skb); 2195 2196 /* drop conntrack reference */ 2197 nf_reset_ct(skb); 2198 2199 spin_lock(&sk->sk_receive_queue.lock); 2200 po->stats.stats1.tp_packets++; 2201 sock_skb_set_dropcount(sk, skb); 2202 skb_clear_delivery_time(skb); 2203 __skb_queue_tail(&sk->sk_receive_queue, skb); 2204 spin_unlock(&sk->sk_receive_queue.lock); 2205 sk->sk_data_ready(sk); 2206 return 0; 2207 2208 drop_n_acct: 2209 is_drop_n_account = true; 2210 atomic_inc(&po->tp_drops); 2211 atomic_inc(&sk->sk_drops); 2212 2213 drop_n_restore: 2214 if (skb_head != skb->data && skb_shared(skb)) { 2215 skb->data = skb_head; 2216 skb->len = skb_len; 2217 } 2218 drop: 2219 if (!is_drop_n_account) 2220 consume_skb(skb); 2221 else 2222 kfree_skb(skb); 2223 return 0; 2224 } 2225 2226 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2227 struct packet_type *pt, struct net_device *orig_dev) 2228 { 2229 struct sock *sk; 2230 struct packet_sock *po; 2231 struct sockaddr_ll *sll; 2232 union tpacket_uhdr h; 2233 u8 *skb_head = skb->data; 2234 int skb_len = skb->len; 2235 unsigned int snaplen, res; 2236 unsigned long status = TP_STATUS_USER; 2237 unsigned short macoff, hdrlen; 2238 unsigned int netoff; 2239 struct sk_buff *copy_skb = NULL; 2240 struct timespec64 ts; 2241 __u32 ts_status; 2242 bool is_drop_n_account = false; 2243 unsigned int slot_id = 0; 2244 bool do_vnet = false; 2245 2246 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2247 * We may add members to them until current aligned size without forcing 2248 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2249 */ 2250 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2251 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2252 2253 if (skb->pkt_type == PACKET_LOOPBACK) 2254 goto drop; 2255 2256 sk = pt->af_packet_priv; 2257 po = pkt_sk(sk); 2258 2259 if (!net_eq(dev_net(dev), sock_net(sk))) 2260 goto drop; 2261 2262 if (dev_has_header(dev)) { 2263 if (sk->sk_type != SOCK_DGRAM) 2264 skb_push(skb, skb->data - skb_mac_header(skb)); 2265 else if (skb->pkt_type == PACKET_OUTGOING) { 2266 /* Special case: outgoing packets have ll header at head */ 2267 skb_pull(skb, skb_network_offset(skb)); 2268 } 2269 } 2270 2271 snaplen = skb->len; 2272 2273 res = run_filter(skb, sk, snaplen); 2274 if (!res) 2275 goto drop_n_restore; 2276 2277 /* If we are flooded, just give up */ 2278 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2279 atomic_inc(&po->tp_drops); 2280 goto drop_n_restore; 2281 } 2282 2283 if (skb->ip_summed == CHECKSUM_PARTIAL) 2284 status |= TP_STATUS_CSUMNOTREADY; 2285 else if (skb->pkt_type != PACKET_OUTGOING && 2286 (skb->ip_summed == CHECKSUM_COMPLETE || 2287 skb_csum_unnecessary(skb))) 2288 status |= TP_STATUS_CSUM_VALID; 2289 2290 if (snaplen > res) 2291 snaplen = res; 2292 2293 if (sk->sk_type == SOCK_DGRAM) { 2294 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2295 po->tp_reserve; 2296 } else { 2297 unsigned int maclen = skb_network_offset(skb); 2298 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2299 (maclen < 16 ? 16 : maclen)) + 2300 po->tp_reserve; 2301 if (po->has_vnet_hdr) { 2302 netoff += sizeof(struct virtio_net_hdr); 2303 do_vnet = true; 2304 } 2305 macoff = netoff - maclen; 2306 } 2307 if (netoff > USHRT_MAX) { 2308 atomic_inc(&po->tp_drops); 2309 goto drop_n_restore; 2310 } 2311 if (po->tp_version <= TPACKET_V2) { 2312 if (macoff + snaplen > po->rx_ring.frame_size) { 2313 if (po->copy_thresh && 2314 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2315 if (skb_shared(skb)) { 2316 copy_skb = skb_clone(skb, GFP_ATOMIC); 2317 } else { 2318 copy_skb = skb_get(skb); 2319 skb_head = skb->data; 2320 } 2321 if (copy_skb) { 2322 memset(&PACKET_SKB_CB(copy_skb)->sa.ll, 0, 2323 sizeof(PACKET_SKB_CB(copy_skb)->sa.ll)); 2324 skb_set_owner_r(copy_skb, sk); 2325 } 2326 } 2327 snaplen = po->rx_ring.frame_size - macoff; 2328 if ((int)snaplen < 0) { 2329 snaplen = 0; 2330 do_vnet = false; 2331 } 2332 } 2333 } else if (unlikely(macoff + snaplen > 2334 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2335 u32 nval; 2336 2337 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2338 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2339 snaplen, nval, macoff); 2340 snaplen = nval; 2341 if (unlikely((int)snaplen < 0)) { 2342 snaplen = 0; 2343 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2344 do_vnet = false; 2345 } 2346 } 2347 spin_lock(&sk->sk_receive_queue.lock); 2348 h.raw = packet_current_rx_frame(po, skb, 2349 TP_STATUS_KERNEL, (macoff+snaplen)); 2350 if (!h.raw) 2351 goto drop_n_account; 2352 2353 if (po->tp_version <= TPACKET_V2) { 2354 slot_id = po->rx_ring.head; 2355 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2356 goto drop_n_account; 2357 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2358 } 2359 2360 if (do_vnet && 2361 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2362 sizeof(struct virtio_net_hdr), 2363 vio_le(), true, 0)) { 2364 if (po->tp_version == TPACKET_V3) 2365 prb_clear_blk_fill_status(&po->rx_ring); 2366 goto drop_n_account; 2367 } 2368 2369 if (po->tp_version <= TPACKET_V2) { 2370 packet_increment_rx_head(po, &po->rx_ring); 2371 /* 2372 * LOSING will be reported till you read the stats, 2373 * because it's COR - Clear On Read. 2374 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2375 * at packet level. 2376 */ 2377 if (atomic_read(&po->tp_drops)) 2378 status |= TP_STATUS_LOSING; 2379 } 2380 2381 po->stats.stats1.tp_packets++; 2382 if (copy_skb) { 2383 status |= TP_STATUS_COPY; 2384 skb_clear_delivery_time(copy_skb); 2385 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2386 } 2387 spin_unlock(&sk->sk_receive_queue.lock); 2388 2389 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2390 2391 /* Always timestamp; prefer an existing software timestamp taken 2392 * closer to the time of capture. 2393 */ 2394 ts_status = tpacket_get_timestamp(skb, &ts, 2395 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE); 2396 if (!ts_status) 2397 ktime_get_real_ts64(&ts); 2398 2399 status |= ts_status; 2400 2401 switch (po->tp_version) { 2402 case TPACKET_V1: 2403 h.h1->tp_len = skb->len; 2404 h.h1->tp_snaplen = snaplen; 2405 h.h1->tp_mac = macoff; 2406 h.h1->tp_net = netoff; 2407 h.h1->tp_sec = ts.tv_sec; 2408 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2409 hdrlen = sizeof(*h.h1); 2410 break; 2411 case TPACKET_V2: 2412 h.h2->tp_len = skb->len; 2413 h.h2->tp_snaplen = snaplen; 2414 h.h2->tp_mac = macoff; 2415 h.h2->tp_net = netoff; 2416 h.h2->tp_sec = ts.tv_sec; 2417 h.h2->tp_nsec = ts.tv_nsec; 2418 if (skb_vlan_tag_present(skb)) { 2419 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2420 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2421 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2422 } else { 2423 h.h2->tp_vlan_tci = 0; 2424 h.h2->tp_vlan_tpid = 0; 2425 } 2426 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2427 hdrlen = sizeof(*h.h2); 2428 break; 2429 case TPACKET_V3: 2430 /* tp_nxt_offset,vlan are already populated above. 2431 * So DONT clear those fields here 2432 */ 2433 h.h3->tp_status |= status; 2434 h.h3->tp_len = skb->len; 2435 h.h3->tp_snaplen = snaplen; 2436 h.h3->tp_mac = macoff; 2437 h.h3->tp_net = netoff; 2438 h.h3->tp_sec = ts.tv_sec; 2439 h.h3->tp_nsec = ts.tv_nsec; 2440 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2441 hdrlen = sizeof(*h.h3); 2442 break; 2443 default: 2444 BUG(); 2445 } 2446 2447 sll = h.raw + TPACKET_ALIGN(hdrlen); 2448 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2449 sll->sll_family = AF_PACKET; 2450 sll->sll_hatype = dev->type; 2451 sll->sll_protocol = skb->protocol; 2452 sll->sll_pkttype = skb->pkt_type; 2453 if (unlikely(po->origdev)) 2454 sll->sll_ifindex = orig_dev->ifindex; 2455 else 2456 sll->sll_ifindex = dev->ifindex; 2457 2458 smp_mb(); 2459 2460 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2461 if (po->tp_version <= TPACKET_V2) { 2462 u8 *start, *end; 2463 2464 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2465 macoff + snaplen); 2466 2467 for (start = h.raw; start < end; start += PAGE_SIZE) 2468 flush_dcache_page(pgv_to_page(start)); 2469 } 2470 smp_wmb(); 2471 #endif 2472 2473 if (po->tp_version <= TPACKET_V2) { 2474 spin_lock(&sk->sk_receive_queue.lock); 2475 __packet_set_status(po, h.raw, status); 2476 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2477 spin_unlock(&sk->sk_receive_queue.lock); 2478 sk->sk_data_ready(sk); 2479 } else if (po->tp_version == TPACKET_V3) { 2480 prb_clear_blk_fill_status(&po->rx_ring); 2481 } 2482 2483 drop_n_restore: 2484 if (skb_head != skb->data && skb_shared(skb)) { 2485 skb->data = skb_head; 2486 skb->len = skb_len; 2487 } 2488 drop: 2489 if (!is_drop_n_account) 2490 consume_skb(skb); 2491 else 2492 kfree_skb(skb); 2493 return 0; 2494 2495 drop_n_account: 2496 spin_unlock(&sk->sk_receive_queue.lock); 2497 atomic_inc(&po->tp_drops); 2498 is_drop_n_account = true; 2499 2500 sk->sk_data_ready(sk); 2501 kfree_skb(copy_skb); 2502 goto drop_n_restore; 2503 } 2504 2505 static void tpacket_destruct_skb(struct sk_buff *skb) 2506 { 2507 struct packet_sock *po = pkt_sk(skb->sk); 2508 2509 if (likely(po->tx_ring.pg_vec)) { 2510 void *ph; 2511 __u32 ts; 2512 2513 ph = skb_zcopy_get_nouarg(skb); 2514 packet_dec_pending(&po->tx_ring); 2515 2516 ts = __packet_set_timestamp(po, ph, skb); 2517 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2518 2519 if (!packet_read_pending(&po->tx_ring)) 2520 complete(&po->skb_completion); 2521 } 2522 2523 sock_wfree(skb); 2524 } 2525 2526 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2527 { 2528 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2529 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2530 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2531 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2532 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2533 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2534 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2535 2536 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2537 return -EINVAL; 2538 2539 return 0; 2540 } 2541 2542 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2543 struct virtio_net_hdr *vnet_hdr) 2544 { 2545 if (*len < sizeof(*vnet_hdr)) 2546 return -EINVAL; 2547 *len -= sizeof(*vnet_hdr); 2548 2549 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2550 return -EFAULT; 2551 2552 return __packet_snd_vnet_parse(vnet_hdr, *len); 2553 } 2554 2555 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2556 void *frame, struct net_device *dev, void *data, int tp_len, 2557 __be16 proto, unsigned char *addr, int hlen, int copylen, 2558 const struct sockcm_cookie *sockc) 2559 { 2560 union tpacket_uhdr ph; 2561 int to_write, offset, len, nr_frags, len_max; 2562 struct socket *sock = po->sk.sk_socket; 2563 struct page *page; 2564 int err; 2565 2566 ph.raw = frame; 2567 2568 skb->protocol = proto; 2569 skb->dev = dev; 2570 skb->priority = po->sk.sk_priority; 2571 skb->mark = po->sk.sk_mark; 2572 skb->tstamp = sockc->transmit_time; 2573 skb_setup_tx_timestamp(skb, sockc->tsflags); 2574 skb_zcopy_set_nouarg(skb, ph.raw); 2575 2576 skb_reserve(skb, hlen); 2577 skb_reset_network_header(skb); 2578 2579 to_write = tp_len; 2580 2581 if (sock->type == SOCK_DGRAM) { 2582 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2583 NULL, tp_len); 2584 if (unlikely(err < 0)) 2585 return -EINVAL; 2586 } else if (copylen) { 2587 int hdrlen = min_t(int, copylen, tp_len); 2588 2589 skb_push(skb, dev->hard_header_len); 2590 skb_put(skb, copylen - dev->hard_header_len); 2591 err = skb_store_bits(skb, 0, data, hdrlen); 2592 if (unlikely(err)) 2593 return err; 2594 if (!dev_validate_header(dev, skb->data, hdrlen)) 2595 return -EINVAL; 2596 2597 data += hdrlen; 2598 to_write -= hdrlen; 2599 } 2600 2601 offset = offset_in_page(data); 2602 len_max = PAGE_SIZE - offset; 2603 len = ((to_write > len_max) ? len_max : to_write); 2604 2605 skb->data_len = to_write; 2606 skb->len += to_write; 2607 skb->truesize += to_write; 2608 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2609 2610 while (likely(to_write)) { 2611 nr_frags = skb_shinfo(skb)->nr_frags; 2612 2613 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2614 pr_err("Packet exceed the number of skb frags(%lu)\n", 2615 MAX_SKB_FRAGS); 2616 return -EFAULT; 2617 } 2618 2619 page = pgv_to_page(data); 2620 data += len; 2621 flush_dcache_page(page); 2622 get_page(page); 2623 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2624 to_write -= len; 2625 offset = 0; 2626 len_max = PAGE_SIZE; 2627 len = ((to_write > len_max) ? len_max : to_write); 2628 } 2629 2630 packet_parse_headers(skb, sock); 2631 2632 return tp_len; 2633 } 2634 2635 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2636 int size_max, void **data) 2637 { 2638 union tpacket_uhdr ph; 2639 int tp_len, off; 2640 2641 ph.raw = frame; 2642 2643 switch (po->tp_version) { 2644 case TPACKET_V3: 2645 if (ph.h3->tp_next_offset != 0) { 2646 pr_warn_once("variable sized slot not supported"); 2647 return -EINVAL; 2648 } 2649 tp_len = ph.h3->tp_len; 2650 break; 2651 case TPACKET_V2: 2652 tp_len = ph.h2->tp_len; 2653 break; 2654 default: 2655 tp_len = ph.h1->tp_len; 2656 break; 2657 } 2658 if (unlikely(tp_len > size_max)) { 2659 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2660 return -EMSGSIZE; 2661 } 2662 2663 if (unlikely(po->tp_tx_has_off)) { 2664 int off_min, off_max; 2665 2666 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2667 off_max = po->tx_ring.frame_size - tp_len; 2668 if (po->sk.sk_type == SOCK_DGRAM) { 2669 switch (po->tp_version) { 2670 case TPACKET_V3: 2671 off = ph.h3->tp_net; 2672 break; 2673 case TPACKET_V2: 2674 off = ph.h2->tp_net; 2675 break; 2676 default: 2677 off = ph.h1->tp_net; 2678 break; 2679 } 2680 } else { 2681 switch (po->tp_version) { 2682 case TPACKET_V3: 2683 off = ph.h3->tp_mac; 2684 break; 2685 case TPACKET_V2: 2686 off = ph.h2->tp_mac; 2687 break; 2688 default: 2689 off = ph.h1->tp_mac; 2690 break; 2691 } 2692 } 2693 if (unlikely((off < off_min) || (off_max < off))) 2694 return -EINVAL; 2695 } else { 2696 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2697 } 2698 2699 *data = frame + off; 2700 return tp_len; 2701 } 2702 2703 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2704 { 2705 struct sk_buff *skb = NULL; 2706 struct net_device *dev; 2707 struct virtio_net_hdr *vnet_hdr = NULL; 2708 struct sockcm_cookie sockc; 2709 __be16 proto; 2710 int err, reserve = 0; 2711 void *ph; 2712 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2713 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2714 unsigned char *addr = NULL; 2715 int tp_len, size_max; 2716 void *data; 2717 int len_sum = 0; 2718 int status = TP_STATUS_AVAILABLE; 2719 int hlen, tlen, copylen = 0; 2720 long timeo = 0; 2721 2722 mutex_lock(&po->pg_vec_lock); 2723 2724 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2725 * we need to confirm it under protection of pg_vec_lock. 2726 */ 2727 if (unlikely(!po->tx_ring.pg_vec)) { 2728 err = -EBUSY; 2729 goto out; 2730 } 2731 if (likely(saddr == NULL)) { 2732 dev = packet_cached_dev_get(po); 2733 proto = READ_ONCE(po->num); 2734 } else { 2735 err = -EINVAL; 2736 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2737 goto out; 2738 if (msg->msg_namelen < (saddr->sll_halen 2739 + offsetof(struct sockaddr_ll, 2740 sll_addr))) 2741 goto out; 2742 proto = saddr->sll_protocol; 2743 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2744 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2745 if (dev && msg->msg_namelen < dev->addr_len + 2746 offsetof(struct sockaddr_ll, sll_addr)) 2747 goto out_put; 2748 addr = saddr->sll_addr; 2749 } 2750 } 2751 2752 err = -ENXIO; 2753 if (unlikely(dev == NULL)) 2754 goto out; 2755 err = -ENETDOWN; 2756 if (unlikely(!(dev->flags & IFF_UP))) 2757 goto out_put; 2758 2759 sockcm_init(&sockc, &po->sk); 2760 if (msg->msg_controllen) { 2761 err = sock_cmsg_send(&po->sk, msg, &sockc); 2762 if (unlikely(err)) 2763 goto out_put; 2764 } 2765 2766 if (po->sk.sk_socket->type == SOCK_RAW) 2767 reserve = dev->hard_header_len; 2768 size_max = po->tx_ring.frame_size 2769 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2770 2771 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2772 size_max = dev->mtu + reserve + VLAN_HLEN; 2773 2774 reinit_completion(&po->skb_completion); 2775 2776 do { 2777 ph = packet_current_frame(po, &po->tx_ring, 2778 TP_STATUS_SEND_REQUEST); 2779 if (unlikely(ph == NULL)) { 2780 if (need_wait && skb) { 2781 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2782 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2783 if (timeo <= 0) { 2784 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2785 goto out_put; 2786 } 2787 } 2788 /* check for additional frames */ 2789 continue; 2790 } 2791 2792 skb = NULL; 2793 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2794 if (tp_len < 0) 2795 goto tpacket_error; 2796 2797 status = TP_STATUS_SEND_REQUEST; 2798 hlen = LL_RESERVED_SPACE(dev); 2799 tlen = dev->needed_tailroom; 2800 if (po->has_vnet_hdr) { 2801 vnet_hdr = data; 2802 data += sizeof(*vnet_hdr); 2803 tp_len -= sizeof(*vnet_hdr); 2804 if (tp_len < 0 || 2805 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2806 tp_len = -EINVAL; 2807 goto tpacket_error; 2808 } 2809 copylen = __virtio16_to_cpu(vio_le(), 2810 vnet_hdr->hdr_len); 2811 } 2812 copylen = max_t(int, copylen, dev->hard_header_len); 2813 skb = sock_alloc_send_skb(&po->sk, 2814 hlen + tlen + sizeof(struct sockaddr_ll) + 2815 (copylen - dev->hard_header_len), 2816 !need_wait, &err); 2817 2818 if (unlikely(skb == NULL)) { 2819 /* we assume the socket was initially writeable ... */ 2820 if (likely(len_sum > 0)) 2821 err = len_sum; 2822 goto out_status; 2823 } 2824 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2825 addr, hlen, copylen, &sockc); 2826 if (likely(tp_len >= 0) && 2827 tp_len > dev->mtu + reserve && 2828 !po->has_vnet_hdr && 2829 !packet_extra_vlan_len_allowed(dev, skb)) 2830 tp_len = -EMSGSIZE; 2831 2832 if (unlikely(tp_len < 0)) { 2833 tpacket_error: 2834 if (po->tp_loss) { 2835 __packet_set_status(po, ph, 2836 TP_STATUS_AVAILABLE); 2837 packet_increment_head(&po->tx_ring); 2838 kfree_skb(skb); 2839 continue; 2840 } else { 2841 status = TP_STATUS_WRONG_FORMAT; 2842 err = tp_len; 2843 goto out_status; 2844 } 2845 } 2846 2847 if (po->has_vnet_hdr) { 2848 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2849 tp_len = -EINVAL; 2850 goto tpacket_error; 2851 } 2852 virtio_net_hdr_set_proto(skb, vnet_hdr); 2853 } 2854 2855 skb->destructor = tpacket_destruct_skb; 2856 __packet_set_status(po, ph, TP_STATUS_SENDING); 2857 packet_inc_pending(&po->tx_ring); 2858 2859 status = TP_STATUS_SEND_REQUEST; 2860 err = po->xmit(skb); 2861 if (unlikely(err != 0)) { 2862 if (err > 0) 2863 err = net_xmit_errno(err); 2864 if (err && __packet_get_status(po, ph) == 2865 TP_STATUS_AVAILABLE) { 2866 /* skb was destructed already */ 2867 skb = NULL; 2868 goto out_status; 2869 } 2870 /* 2871 * skb was dropped but not destructed yet; 2872 * let's treat it like congestion or err < 0 2873 */ 2874 err = 0; 2875 } 2876 packet_increment_head(&po->tx_ring); 2877 len_sum += tp_len; 2878 } while (likely((ph != NULL) || 2879 /* Note: packet_read_pending() might be slow if we have 2880 * to call it as it's per_cpu variable, but in fast-path 2881 * we already short-circuit the loop with the first 2882 * condition, and luckily don't have to go that path 2883 * anyway. 2884 */ 2885 (need_wait && packet_read_pending(&po->tx_ring)))); 2886 2887 err = len_sum; 2888 goto out_put; 2889 2890 out_status: 2891 __packet_set_status(po, ph, status); 2892 kfree_skb(skb); 2893 out_put: 2894 dev_put(dev); 2895 out: 2896 mutex_unlock(&po->pg_vec_lock); 2897 return err; 2898 } 2899 2900 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2901 size_t reserve, size_t len, 2902 size_t linear, int noblock, 2903 int *err) 2904 { 2905 struct sk_buff *skb; 2906 2907 /* Under a page? Don't bother with paged skb. */ 2908 if (prepad + len < PAGE_SIZE || !linear) 2909 linear = len; 2910 2911 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2912 err, 0); 2913 if (!skb) 2914 return NULL; 2915 2916 skb_reserve(skb, reserve); 2917 skb_put(skb, linear); 2918 skb->data_len = len - linear; 2919 skb->len += len - linear; 2920 2921 return skb; 2922 } 2923 2924 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2925 { 2926 struct sock *sk = sock->sk; 2927 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2928 struct sk_buff *skb; 2929 struct net_device *dev; 2930 __be16 proto; 2931 unsigned char *addr = NULL; 2932 int err, reserve = 0; 2933 struct sockcm_cookie sockc; 2934 struct virtio_net_hdr vnet_hdr = { 0 }; 2935 int offset = 0; 2936 struct packet_sock *po = pkt_sk(sk); 2937 bool has_vnet_hdr = false; 2938 int hlen, tlen, linear; 2939 int extra_len = 0; 2940 2941 /* 2942 * Get and verify the address. 2943 */ 2944 2945 if (likely(saddr == NULL)) { 2946 dev = packet_cached_dev_get(po); 2947 proto = READ_ONCE(po->num); 2948 } else { 2949 err = -EINVAL; 2950 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2951 goto out; 2952 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2953 goto out; 2954 proto = saddr->sll_protocol; 2955 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2956 if (sock->type == SOCK_DGRAM) { 2957 if (dev && msg->msg_namelen < dev->addr_len + 2958 offsetof(struct sockaddr_ll, sll_addr)) 2959 goto out_unlock; 2960 addr = saddr->sll_addr; 2961 } 2962 } 2963 2964 err = -ENXIO; 2965 if (unlikely(dev == NULL)) 2966 goto out_unlock; 2967 err = -ENETDOWN; 2968 if (unlikely(!(dev->flags & IFF_UP))) 2969 goto out_unlock; 2970 2971 sockcm_init(&sockc, sk); 2972 sockc.mark = sk->sk_mark; 2973 if (msg->msg_controllen) { 2974 err = sock_cmsg_send(sk, msg, &sockc); 2975 if (unlikely(err)) 2976 goto out_unlock; 2977 } 2978 2979 if (sock->type == SOCK_RAW) 2980 reserve = dev->hard_header_len; 2981 if (po->has_vnet_hdr) { 2982 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2983 if (err) 2984 goto out_unlock; 2985 has_vnet_hdr = true; 2986 } 2987 2988 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2989 if (!netif_supports_nofcs(dev)) { 2990 err = -EPROTONOSUPPORT; 2991 goto out_unlock; 2992 } 2993 extra_len = 4; /* We're doing our own CRC */ 2994 } 2995 2996 err = -EMSGSIZE; 2997 if (!vnet_hdr.gso_type && 2998 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2999 goto out_unlock; 3000 3001 err = -ENOBUFS; 3002 hlen = LL_RESERVED_SPACE(dev); 3003 tlen = dev->needed_tailroom; 3004 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 3005 linear = max(linear, min_t(int, len, dev->hard_header_len)); 3006 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 3007 msg->msg_flags & MSG_DONTWAIT, &err); 3008 if (skb == NULL) 3009 goto out_unlock; 3010 3011 skb_reset_network_header(skb); 3012 3013 err = -EINVAL; 3014 if (sock->type == SOCK_DGRAM) { 3015 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 3016 if (unlikely(offset < 0)) 3017 goto out_free; 3018 } else if (reserve) { 3019 skb_reserve(skb, -reserve); 3020 if (len < reserve + sizeof(struct ipv6hdr) && 3021 dev->min_header_len != dev->hard_header_len) 3022 skb_reset_network_header(skb); 3023 } 3024 3025 /* Returns -EFAULT on error */ 3026 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 3027 if (err) 3028 goto out_free; 3029 3030 if (sock->type == SOCK_RAW && 3031 !dev_validate_header(dev, skb->data, len)) { 3032 err = -EINVAL; 3033 goto out_free; 3034 } 3035 3036 skb_setup_tx_timestamp(skb, sockc.tsflags); 3037 3038 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 3039 !packet_extra_vlan_len_allowed(dev, skb)) { 3040 err = -EMSGSIZE; 3041 goto out_free; 3042 } 3043 3044 skb->protocol = proto; 3045 skb->dev = dev; 3046 skb->priority = sk->sk_priority; 3047 skb->mark = sockc.mark; 3048 skb->tstamp = sockc.transmit_time; 3049 3050 if (has_vnet_hdr) { 3051 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 3052 if (err) 3053 goto out_free; 3054 len += sizeof(vnet_hdr); 3055 virtio_net_hdr_set_proto(skb, &vnet_hdr); 3056 } 3057 3058 packet_parse_headers(skb, sock); 3059 3060 if (unlikely(extra_len == 4)) 3061 skb->no_fcs = 1; 3062 3063 err = po->xmit(skb); 3064 if (unlikely(err != 0)) { 3065 if (err > 0) 3066 err = net_xmit_errno(err); 3067 if (err) 3068 goto out_unlock; 3069 } 3070 3071 dev_put(dev); 3072 3073 return len; 3074 3075 out_free: 3076 kfree_skb(skb); 3077 out_unlock: 3078 dev_put(dev); 3079 out: 3080 return err; 3081 } 3082 3083 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 3084 { 3085 struct sock *sk = sock->sk; 3086 struct packet_sock *po = pkt_sk(sk); 3087 3088 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy. 3089 * tpacket_snd() will redo the check safely. 3090 */ 3091 if (data_race(po->tx_ring.pg_vec)) 3092 return tpacket_snd(po, msg); 3093 3094 return packet_snd(sock, msg, len); 3095 } 3096 3097 /* 3098 * Close a PACKET socket. This is fairly simple. We immediately go 3099 * to 'closed' state and remove our protocol entry in the device list. 3100 */ 3101 3102 static int packet_release(struct socket *sock) 3103 { 3104 struct sock *sk = sock->sk; 3105 struct packet_sock *po; 3106 struct packet_fanout *f; 3107 struct net *net; 3108 union tpacket_req_u req_u; 3109 3110 if (!sk) 3111 return 0; 3112 3113 net = sock_net(sk); 3114 po = pkt_sk(sk); 3115 3116 mutex_lock(&net->packet.sklist_lock); 3117 sk_del_node_init_rcu(sk); 3118 mutex_unlock(&net->packet.sklist_lock); 3119 3120 sock_prot_inuse_add(net, sk->sk_prot, -1); 3121 3122 spin_lock(&po->bind_lock); 3123 unregister_prot_hook(sk, false); 3124 packet_cached_dev_reset(po); 3125 3126 if (po->prot_hook.dev) { 3127 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3128 po->prot_hook.dev = NULL; 3129 } 3130 spin_unlock(&po->bind_lock); 3131 3132 packet_flush_mclist(sk); 3133 3134 lock_sock(sk); 3135 if (po->rx_ring.pg_vec) { 3136 memset(&req_u, 0, sizeof(req_u)); 3137 packet_set_ring(sk, &req_u, 1, 0); 3138 } 3139 3140 if (po->tx_ring.pg_vec) { 3141 memset(&req_u, 0, sizeof(req_u)); 3142 packet_set_ring(sk, &req_u, 1, 1); 3143 } 3144 release_sock(sk); 3145 3146 f = fanout_release(sk); 3147 3148 synchronize_net(); 3149 3150 kfree(po->rollover); 3151 if (f) { 3152 fanout_release_data(f); 3153 kvfree(f); 3154 } 3155 /* 3156 * Now the socket is dead. No more input will appear. 3157 */ 3158 sock_orphan(sk); 3159 sock->sk = NULL; 3160 3161 /* Purge queues */ 3162 3163 skb_queue_purge(&sk->sk_receive_queue); 3164 packet_free_pending(po); 3165 sk_refcnt_debug_release(sk); 3166 3167 sock_put(sk); 3168 return 0; 3169 } 3170 3171 /* 3172 * Attach a packet hook. 3173 */ 3174 3175 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3176 __be16 proto) 3177 { 3178 struct packet_sock *po = pkt_sk(sk); 3179 struct net_device *dev = NULL; 3180 bool unlisted = false; 3181 bool need_rehook; 3182 int ret = 0; 3183 3184 lock_sock(sk); 3185 spin_lock(&po->bind_lock); 3186 rcu_read_lock(); 3187 3188 if (po->fanout) { 3189 ret = -EINVAL; 3190 goto out_unlock; 3191 } 3192 3193 if (name) { 3194 dev = dev_get_by_name_rcu(sock_net(sk), name); 3195 if (!dev) { 3196 ret = -ENODEV; 3197 goto out_unlock; 3198 } 3199 } else if (ifindex) { 3200 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3201 if (!dev) { 3202 ret = -ENODEV; 3203 goto out_unlock; 3204 } 3205 } 3206 3207 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev; 3208 3209 if (need_rehook) { 3210 dev_hold(dev); 3211 if (po->running) { 3212 rcu_read_unlock(); 3213 /* prevents packet_notifier() from calling 3214 * register_prot_hook() 3215 */ 3216 WRITE_ONCE(po->num, 0); 3217 __unregister_prot_hook(sk, true); 3218 rcu_read_lock(); 3219 if (dev) 3220 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3221 dev->ifindex); 3222 } 3223 3224 BUG_ON(po->running); 3225 WRITE_ONCE(po->num, proto); 3226 po->prot_hook.type = proto; 3227 3228 dev_put_track(po->prot_hook.dev, &po->prot_hook.dev_tracker); 3229 3230 if (unlikely(unlisted)) { 3231 po->prot_hook.dev = NULL; 3232 WRITE_ONCE(po->ifindex, -1); 3233 packet_cached_dev_reset(po); 3234 } else { 3235 dev_hold_track(dev, &po->prot_hook.dev_tracker, 3236 GFP_ATOMIC); 3237 po->prot_hook.dev = dev; 3238 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0); 3239 packet_cached_dev_assign(po, dev); 3240 } 3241 dev_put(dev); 3242 } 3243 3244 if (proto == 0 || !need_rehook) 3245 goto out_unlock; 3246 3247 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3248 register_prot_hook(sk); 3249 } else { 3250 sk->sk_err = ENETDOWN; 3251 if (!sock_flag(sk, SOCK_DEAD)) 3252 sk_error_report(sk); 3253 } 3254 3255 out_unlock: 3256 rcu_read_unlock(); 3257 spin_unlock(&po->bind_lock); 3258 release_sock(sk); 3259 return ret; 3260 } 3261 3262 /* 3263 * Bind a packet socket to a device 3264 */ 3265 3266 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3267 int addr_len) 3268 { 3269 struct sock *sk = sock->sk; 3270 char name[sizeof(uaddr->sa_data) + 1]; 3271 3272 /* 3273 * Check legality 3274 */ 3275 3276 if (addr_len != sizeof(struct sockaddr)) 3277 return -EINVAL; 3278 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3279 * zero-terminated. 3280 */ 3281 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3282 name[sizeof(uaddr->sa_data)] = 0; 3283 3284 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3285 } 3286 3287 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3288 { 3289 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3290 struct sock *sk = sock->sk; 3291 3292 /* 3293 * Check legality 3294 */ 3295 3296 if (addr_len < sizeof(struct sockaddr_ll)) 3297 return -EINVAL; 3298 if (sll->sll_family != AF_PACKET) 3299 return -EINVAL; 3300 3301 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3302 sll->sll_protocol ? : pkt_sk(sk)->num); 3303 } 3304 3305 static struct proto packet_proto = { 3306 .name = "PACKET", 3307 .owner = THIS_MODULE, 3308 .obj_size = sizeof(struct packet_sock), 3309 }; 3310 3311 /* 3312 * Create a packet of type SOCK_PACKET. 3313 */ 3314 3315 static int packet_create(struct net *net, struct socket *sock, int protocol, 3316 int kern) 3317 { 3318 struct sock *sk; 3319 struct packet_sock *po; 3320 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3321 int err; 3322 3323 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3324 return -EPERM; 3325 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3326 sock->type != SOCK_PACKET) 3327 return -ESOCKTNOSUPPORT; 3328 3329 sock->state = SS_UNCONNECTED; 3330 3331 err = -ENOBUFS; 3332 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3333 if (sk == NULL) 3334 goto out; 3335 3336 sock->ops = &packet_ops; 3337 if (sock->type == SOCK_PACKET) 3338 sock->ops = &packet_ops_spkt; 3339 3340 sock_init_data(sock, sk); 3341 3342 po = pkt_sk(sk); 3343 init_completion(&po->skb_completion); 3344 sk->sk_family = PF_PACKET; 3345 po->num = proto; 3346 po->xmit = dev_queue_xmit; 3347 3348 err = packet_alloc_pending(po); 3349 if (err) 3350 goto out2; 3351 3352 packet_cached_dev_reset(po); 3353 3354 sk->sk_destruct = packet_sock_destruct; 3355 sk_refcnt_debug_inc(sk); 3356 3357 /* 3358 * Attach a protocol block 3359 */ 3360 3361 spin_lock_init(&po->bind_lock); 3362 mutex_init(&po->pg_vec_lock); 3363 po->rollover = NULL; 3364 po->prot_hook.func = packet_rcv; 3365 3366 if (sock->type == SOCK_PACKET) 3367 po->prot_hook.func = packet_rcv_spkt; 3368 3369 po->prot_hook.af_packet_priv = sk; 3370 po->prot_hook.af_packet_net = sock_net(sk); 3371 3372 if (proto) { 3373 po->prot_hook.type = proto; 3374 __register_prot_hook(sk); 3375 } 3376 3377 mutex_lock(&net->packet.sklist_lock); 3378 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3379 mutex_unlock(&net->packet.sklist_lock); 3380 3381 sock_prot_inuse_add(net, &packet_proto, 1); 3382 3383 return 0; 3384 out2: 3385 sk_free(sk); 3386 out: 3387 return err; 3388 } 3389 3390 /* 3391 * Pull a packet from our receive queue and hand it to the user. 3392 * If necessary we block. 3393 */ 3394 3395 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3396 int flags) 3397 { 3398 struct sock *sk = sock->sk; 3399 struct sk_buff *skb; 3400 int copied, err; 3401 int vnet_hdr_len = 0; 3402 unsigned int origlen = 0; 3403 3404 err = -EINVAL; 3405 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3406 goto out; 3407 3408 #if 0 3409 /* What error should we return now? EUNATTACH? */ 3410 if (pkt_sk(sk)->ifindex < 0) 3411 return -ENODEV; 3412 #endif 3413 3414 if (flags & MSG_ERRQUEUE) { 3415 err = sock_recv_errqueue(sk, msg, len, 3416 SOL_PACKET, PACKET_TX_TIMESTAMP); 3417 goto out; 3418 } 3419 3420 /* 3421 * Call the generic datagram receiver. This handles all sorts 3422 * of horrible races and re-entrancy so we can forget about it 3423 * in the protocol layers. 3424 * 3425 * Now it will return ENETDOWN, if device have just gone down, 3426 * but then it will block. 3427 */ 3428 3429 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3430 3431 /* 3432 * An error occurred so return it. Because skb_recv_datagram() 3433 * handles the blocking we don't see and worry about blocking 3434 * retries. 3435 */ 3436 3437 if (skb == NULL) 3438 goto out; 3439 3440 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3441 3442 if (pkt_sk(sk)->has_vnet_hdr) { 3443 err = packet_rcv_vnet(msg, skb, &len); 3444 if (err) 3445 goto out_free; 3446 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3447 } 3448 3449 /* You lose any data beyond the buffer you gave. If it worries 3450 * a user program they can ask the device for its MTU 3451 * anyway. 3452 */ 3453 copied = skb->len; 3454 if (copied > len) { 3455 copied = len; 3456 msg->msg_flags |= MSG_TRUNC; 3457 } 3458 3459 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3460 if (err) 3461 goto out_free; 3462 3463 if (sock->type != SOCK_PACKET) { 3464 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3465 3466 /* Original length was stored in sockaddr_ll fields */ 3467 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3468 sll->sll_family = AF_PACKET; 3469 sll->sll_protocol = skb->protocol; 3470 } 3471 3472 sock_recv_ts_and_drops(msg, sk, skb); 3473 3474 if (msg->msg_name) { 3475 const size_t max_len = min(sizeof(skb->cb), 3476 sizeof(struct sockaddr_storage)); 3477 int copy_len; 3478 3479 /* If the address length field is there to be filled 3480 * in, we fill it in now. 3481 */ 3482 if (sock->type == SOCK_PACKET) { 3483 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3484 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3485 copy_len = msg->msg_namelen; 3486 } else { 3487 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3488 3489 msg->msg_namelen = sll->sll_halen + 3490 offsetof(struct sockaddr_ll, sll_addr); 3491 copy_len = msg->msg_namelen; 3492 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3493 memset(msg->msg_name + 3494 offsetof(struct sockaddr_ll, sll_addr), 3495 0, sizeof(sll->sll_addr)); 3496 msg->msg_namelen = sizeof(struct sockaddr_ll); 3497 } 3498 } 3499 if (WARN_ON_ONCE(copy_len > max_len)) { 3500 copy_len = max_len; 3501 msg->msg_namelen = copy_len; 3502 } 3503 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3504 } 3505 3506 if (pkt_sk(sk)->auxdata) { 3507 struct tpacket_auxdata aux; 3508 3509 aux.tp_status = TP_STATUS_USER; 3510 if (skb->ip_summed == CHECKSUM_PARTIAL) 3511 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3512 else if (skb->pkt_type != PACKET_OUTGOING && 3513 (skb->ip_summed == CHECKSUM_COMPLETE || 3514 skb_csum_unnecessary(skb))) 3515 aux.tp_status |= TP_STATUS_CSUM_VALID; 3516 3517 aux.tp_len = origlen; 3518 aux.tp_snaplen = skb->len; 3519 aux.tp_mac = 0; 3520 aux.tp_net = skb_network_offset(skb); 3521 if (skb_vlan_tag_present(skb)) { 3522 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3523 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3524 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3525 } else { 3526 aux.tp_vlan_tci = 0; 3527 aux.tp_vlan_tpid = 0; 3528 } 3529 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3530 } 3531 3532 /* 3533 * Free or return the buffer as appropriate. Again this 3534 * hides all the races and re-entrancy issues from us. 3535 */ 3536 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3537 3538 out_free: 3539 skb_free_datagram(sk, skb); 3540 out: 3541 return err; 3542 } 3543 3544 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3545 int peer) 3546 { 3547 struct net_device *dev; 3548 struct sock *sk = sock->sk; 3549 3550 if (peer) 3551 return -EOPNOTSUPP; 3552 3553 uaddr->sa_family = AF_PACKET; 3554 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3555 rcu_read_lock(); 3556 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex)); 3557 if (dev) 3558 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3559 rcu_read_unlock(); 3560 3561 return sizeof(*uaddr); 3562 } 3563 3564 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3565 int peer) 3566 { 3567 struct net_device *dev; 3568 struct sock *sk = sock->sk; 3569 struct packet_sock *po = pkt_sk(sk); 3570 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3571 int ifindex; 3572 3573 if (peer) 3574 return -EOPNOTSUPP; 3575 3576 ifindex = READ_ONCE(po->ifindex); 3577 sll->sll_family = AF_PACKET; 3578 sll->sll_ifindex = ifindex; 3579 sll->sll_protocol = READ_ONCE(po->num); 3580 sll->sll_pkttype = 0; 3581 rcu_read_lock(); 3582 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3583 if (dev) { 3584 sll->sll_hatype = dev->type; 3585 sll->sll_halen = dev->addr_len; 3586 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3587 } else { 3588 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3589 sll->sll_halen = 0; 3590 } 3591 rcu_read_unlock(); 3592 3593 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3594 } 3595 3596 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3597 int what) 3598 { 3599 switch (i->type) { 3600 case PACKET_MR_MULTICAST: 3601 if (i->alen != dev->addr_len) 3602 return -EINVAL; 3603 if (what > 0) 3604 return dev_mc_add(dev, i->addr); 3605 else 3606 return dev_mc_del(dev, i->addr); 3607 break; 3608 case PACKET_MR_PROMISC: 3609 return dev_set_promiscuity(dev, what); 3610 case PACKET_MR_ALLMULTI: 3611 return dev_set_allmulti(dev, what); 3612 case PACKET_MR_UNICAST: 3613 if (i->alen != dev->addr_len) 3614 return -EINVAL; 3615 if (what > 0) 3616 return dev_uc_add(dev, i->addr); 3617 else 3618 return dev_uc_del(dev, i->addr); 3619 break; 3620 default: 3621 break; 3622 } 3623 return 0; 3624 } 3625 3626 static void packet_dev_mclist_delete(struct net_device *dev, 3627 struct packet_mclist **mlp) 3628 { 3629 struct packet_mclist *ml; 3630 3631 while ((ml = *mlp) != NULL) { 3632 if (ml->ifindex == dev->ifindex) { 3633 packet_dev_mc(dev, ml, -1); 3634 *mlp = ml->next; 3635 kfree(ml); 3636 } else 3637 mlp = &ml->next; 3638 } 3639 } 3640 3641 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3642 { 3643 struct packet_sock *po = pkt_sk(sk); 3644 struct packet_mclist *ml, *i; 3645 struct net_device *dev; 3646 int err; 3647 3648 rtnl_lock(); 3649 3650 err = -ENODEV; 3651 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3652 if (!dev) 3653 goto done; 3654 3655 err = -EINVAL; 3656 if (mreq->mr_alen > dev->addr_len) 3657 goto done; 3658 3659 err = -ENOBUFS; 3660 i = kmalloc(sizeof(*i), GFP_KERNEL); 3661 if (i == NULL) 3662 goto done; 3663 3664 err = 0; 3665 for (ml = po->mclist; ml; ml = ml->next) { 3666 if (ml->ifindex == mreq->mr_ifindex && 3667 ml->type == mreq->mr_type && 3668 ml->alen == mreq->mr_alen && 3669 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3670 ml->count++; 3671 /* Free the new element ... */ 3672 kfree(i); 3673 goto done; 3674 } 3675 } 3676 3677 i->type = mreq->mr_type; 3678 i->ifindex = mreq->mr_ifindex; 3679 i->alen = mreq->mr_alen; 3680 memcpy(i->addr, mreq->mr_address, i->alen); 3681 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3682 i->count = 1; 3683 i->next = po->mclist; 3684 po->mclist = i; 3685 err = packet_dev_mc(dev, i, 1); 3686 if (err) { 3687 po->mclist = i->next; 3688 kfree(i); 3689 } 3690 3691 done: 3692 rtnl_unlock(); 3693 return err; 3694 } 3695 3696 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3697 { 3698 struct packet_mclist *ml, **mlp; 3699 3700 rtnl_lock(); 3701 3702 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3703 if (ml->ifindex == mreq->mr_ifindex && 3704 ml->type == mreq->mr_type && 3705 ml->alen == mreq->mr_alen && 3706 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3707 if (--ml->count == 0) { 3708 struct net_device *dev; 3709 *mlp = ml->next; 3710 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3711 if (dev) 3712 packet_dev_mc(dev, ml, -1); 3713 kfree(ml); 3714 } 3715 break; 3716 } 3717 } 3718 rtnl_unlock(); 3719 return 0; 3720 } 3721 3722 static void packet_flush_mclist(struct sock *sk) 3723 { 3724 struct packet_sock *po = pkt_sk(sk); 3725 struct packet_mclist *ml; 3726 3727 if (!po->mclist) 3728 return; 3729 3730 rtnl_lock(); 3731 while ((ml = po->mclist) != NULL) { 3732 struct net_device *dev; 3733 3734 po->mclist = ml->next; 3735 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3736 if (dev != NULL) 3737 packet_dev_mc(dev, ml, -1); 3738 kfree(ml); 3739 } 3740 rtnl_unlock(); 3741 } 3742 3743 static int 3744 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, 3745 unsigned int optlen) 3746 { 3747 struct sock *sk = sock->sk; 3748 struct packet_sock *po = pkt_sk(sk); 3749 int ret; 3750 3751 if (level != SOL_PACKET) 3752 return -ENOPROTOOPT; 3753 3754 switch (optname) { 3755 case PACKET_ADD_MEMBERSHIP: 3756 case PACKET_DROP_MEMBERSHIP: 3757 { 3758 struct packet_mreq_max mreq; 3759 int len = optlen; 3760 memset(&mreq, 0, sizeof(mreq)); 3761 if (len < sizeof(struct packet_mreq)) 3762 return -EINVAL; 3763 if (len > sizeof(mreq)) 3764 len = sizeof(mreq); 3765 if (copy_from_sockptr(&mreq, optval, len)) 3766 return -EFAULT; 3767 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3768 return -EINVAL; 3769 if (optname == PACKET_ADD_MEMBERSHIP) 3770 ret = packet_mc_add(sk, &mreq); 3771 else 3772 ret = packet_mc_drop(sk, &mreq); 3773 return ret; 3774 } 3775 3776 case PACKET_RX_RING: 3777 case PACKET_TX_RING: 3778 { 3779 union tpacket_req_u req_u; 3780 int len; 3781 3782 lock_sock(sk); 3783 switch (po->tp_version) { 3784 case TPACKET_V1: 3785 case TPACKET_V2: 3786 len = sizeof(req_u.req); 3787 break; 3788 case TPACKET_V3: 3789 default: 3790 len = sizeof(req_u.req3); 3791 break; 3792 } 3793 if (optlen < len) { 3794 ret = -EINVAL; 3795 } else { 3796 if (copy_from_sockptr(&req_u.req, optval, len)) 3797 ret = -EFAULT; 3798 else 3799 ret = packet_set_ring(sk, &req_u, 0, 3800 optname == PACKET_TX_RING); 3801 } 3802 release_sock(sk); 3803 return ret; 3804 } 3805 case PACKET_COPY_THRESH: 3806 { 3807 int val; 3808 3809 if (optlen != sizeof(val)) 3810 return -EINVAL; 3811 if (copy_from_sockptr(&val, optval, sizeof(val))) 3812 return -EFAULT; 3813 3814 pkt_sk(sk)->copy_thresh = val; 3815 return 0; 3816 } 3817 case PACKET_VERSION: 3818 { 3819 int val; 3820 3821 if (optlen != sizeof(val)) 3822 return -EINVAL; 3823 if (copy_from_sockptr(&val, optval, sizeof(val))) 3824 return -EFAULT; 3825 switch (val) { 3826 case TPACKET_V1: 3827 case TPACKET_V2: 3828 case TPACKET_V3: 3829 break; 3830 default: 3831 return -EINVAL; 3832 } 3833 lock_sock(sk); 3834 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3835 ret = -EBUSY; 3836 } else { 3837 po->tp_version = val; 3838 ret = 0; 3839 } 3840 release_sock(sk); 3841 return ret; 3842 } 3843 case PACKET_RESERVE: 3844 { 3845 unsigned int val; 3846 3847 if (optlen != sizeof(val)) 3848 return -EINVAL; 3849 if (copy_from_sockptr(&val, optval, sizeof(val))) 3850 return -EFAULT; 3851 if (val > INT_MAX) 3852 return -EINVAL; 3853 lock_sock(sk); 3854 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3855 ret = -EBUSY; 3856 } else { 3857 po->tp_reserve = val; 3858 ret = 0; 3859 } 3860 release_sock(sk); 3861 return ret; 3862 } 3863 case PACKET_LOSS: 3864 { 3865 unsigned int val; 3866 3867 if (optlen != sizeof(val)) 3868 return -EINVAL; 3869 if (copy_from_sockptr(&val, optval, sizeof(val))) 3870 return -EFAULT; 3871 3872 lock_sock(sk); 3873 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3874 ret = -EBUSY; 3875 } else { 3876 po->tp_loss = !!val; 3877 ret = 0; 3878 } 3879 release_sock(sk); 3880 return ret; 3881 } 3882 case PACKET_AUXDATA: 3883 { 3884 int val; 3885 3886 if (optlen < sizeof(val)) 3887 return -EINVAL; 3888 if (copy_from_sockptr(&val, optval, sizeof(val))) 3889 return -EFAULT; 3890 3891 lock_sock(sk); 3892 po->auxdata = !!val; 3893 release_sock(sk); 3894 return 0; 3895 } 3896 case PACKET_ORIGDEV: 3897 { 3898 int val; 3899 3900 if (optlen < sizeof(val)) 3901 return -EINVAL; 3902 if (copy_from_sockptr(&val, optval, sizeof(val))) 3903 return -EFAULT; 3904 3905 lock_sock(sk); 3906 po->origdev = !!val; 3907 release_sock(sk); 3908 return 0; 3909 } 3910 case PACKET_VNET_HDR: 3911 { 3912 int val; 3913 3914 if (sock->type != SOCK_RAW) 3915 return -EINVAL; 3916 if (optlen < sizeof(val)) 3917 return -EINVAL; 3918 if (copy_from_sockptr(&val, optval, sizeof(val))) 3919 return -EFAULT; 3920 3921 lock_sock(sk); 3922 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3923 ret = -EBUSY; 3924 } else { 3925 po->has_vnet_hdr = !!val; 3926 ret = 0; 3927 } 3928 release_sock(sk); 3929 return ret; 3930 } 3931 case PACKET_TIMESTAMP: 3932 { 3933 int val; 3934 3935 if (optlen != sizeof(val)) 3936 return -EINVAL; 3937 if (copy_from_sockptr(&val, optval, sizeof(val))) 3938 return -EFAULT; 3939 3940 po->tp_tstamp = val; 3941 return 0; 3942 } 3943 case PACKET_FANOUT: 3944 { 3945 struct fanout_args args = { 0 }; 3946 3947 if (optlen != sizeof(int) && optlen != sizeof(args)) 3948 return -EINVAL; 3949 if (copy_from_sockptr(&args, optval, optlen)) 3950 return -EFAULT; 3951 3952 return fanout_add(sk, &args); 3953 } 3954 case PACKET_FANOUT_DATA: 3955 { 3956 /* Paired with the WRITE_ONCE() in fanout_add() */ 3957 if (!READ_ONCE(po->fanout)) 3958 return -EINVAL; 3959 3960 return fanout_set_data(po, optval, optlen); 3961 } 3962 case PACKET_IGNORE_OUTGOING: 3963 { 3964 int val; 3965 3966 if (optlen != sizeof(val)) 3967 return -EINVAL; 3968 if (copy_from_sockptr(&val, optval, sizeof(val))) 3969 return -EFAULT; 3970 if (val < 0 || val > 1) 3971 return -EINVAL; 3972 3973 po->prot_hook.ignore_outgoing = !!val; 3974 return 0; 3975 } 3976 case PACKET_TX_HAS_OFF: 3977 { 3978 unsigned int val; 3979 3980 if (optlen != sizeof(val)) 3981 return -EINVAL; 3982 if (copy_from_sockptr(&val, optval, sizeof(val))) 3983 return -EFAULT; 3984 3985 lock_sock(sk); 3986 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec) 3987 po->tp_tx_has_off = !!val; 3988 3989 release_sock(sk); 3990 return 0; 3991 } 3992 case PACKET_QDISC_BYPASS: 3993 { 3994 int val; 3995 3996 if (optlen != sizeof(val)) 3997 return -EINVAL; 3998 if (copy_from_sockptr(&val, optval, sizeof(val))) 3999 return -EFAULT; 4000 4001 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 4002 return 0; 4003 } 4004 default: 4005 return -ENOPROTOOPT; 4006 } 4007 } 4008 4009 static int packet_getsockopt(struct socket *sock, int level, int optname, 4010 char __user *optval, int __user *optlen) 4011 { 4012 int len; 4013 int val, lv = sizeof(val); 4014 struct sock *sk = sock->sk; 4015 struct packet_sock *po = pkt_sk(sk); 4016 void *data = &val; 4017 union tpacket_stats_u st; 4018 struct tpacket_rollover_stats rstats; 4019 int drops; 4020 4021 if (level != SOL_PACKET) 4022 return -ENOPROTOOPT; 4023 4024 if (get_user(len, optlen)) 4025 return -EFAULT; 4026 4027 if (len < 0) 4028 return -EINVAL; 4029 4030 switch (optname) { 4031 case PACKET_STATISTICS: 4032 spin_lock_bh(&sk->sk_receive_queue.lock); 4033 memcpy(&st, &po->stats, sizeof(st)); 4034 memset(&po->stats, 0, sizeof(po->stats)); 4035 spin_unlock_bh(&sk->sk_receive_queue.lock); 4036 drops = atomic_xchg(&po->tp_drops, 0); 4037 4038 if (po->tp_version == TPACKET_V3) { 4039 lv = sizeof(struct tpacket_stats_v3); 4040 st.stats3.tp_drops = drops; 4041 st.stats3.tp_packets += drops; 4042 data = &st.stats3; 4043 } else { 4044 lv = sizeof(struct tpacket_stats); 4045 st.stats1.tp_drops = drops; 4046 st.stats1.tp_packets += drops; 4047 data = &st.stats1; 4048 } 4049 4050 break; 4051 case PACKET_AUXDATA: 4052 val = po->auxdata; 4053 break; 4054 case PACKET_ORIGDEV: 4055 val = po->origdev; 4056 break; 4057 case PACKET_VNET_HDR: 4058 val = po->has_vnet_hdr; 4059 break; 4060 case PACKET_VERSION: 4061 val = po->tp_version; 4062 break; 4063 case PACKET_HDRLEN: 4064 if (len > sizeof(int)) 4065 len = sizeof(int); 4066 if (len < sizeof(int)) 4067 return -EINVAL; 4068 if (copy_from_user(&val, optval, len)) 4069 return -EFAULT; 4070 switch (val) { 4071 case TPACKET_V1: 4072 val = sizeof(struct tpacket_hdr); 4073 break; 4074 case TPACKET_V2: 4075 val = sizeof(struct tpacket2_hdr); 4076 break; 4077 case TPACKET_V3: 4078 val = sizeof(struct tpacket3_hdr); 4079 break; 4080 default: 4081 return -EINVAL; 4082 } 4083 break; 4084 case PACKET_RESERVE: 4085 val = po->tp_reserve; 4086 break; 4087 case PACKET_LOSS: 4088 val = po->tp_loss; 4089 break; 4090 case PACKET_TIMESTAMP: 4091 val = po->tp_tstamp; 4092 break; 4093 case PACKET_FANOUT: 4094 val = (po->fanout ? 4095 ((u32)po->fanout->id | 4096 ((u32)po->fanout->type << 16) | 4097 ((u32)po->fanout->flags << 24)) : 4098 0); 4099 break; 4100 case PACKET_IGNORE_OUTGOING: 4101 val = po->prot_hook.ignore_outgoing; 4102 break; 4103 case PACKET_ROLLOVER_STATS: 4104 if (!po->rollover) 4105 return -EINVAL; 4106 rstats.tp_all = atomic_long_read(&po->rollover->num); 4107 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4108 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4109 data = &rstats; 4110 lv = sizeof(rstats); 4111 break; 4112 case PACKET_TX_HAS_OFF: 4113 val = po->tp_tx_has_off; 4114 break; 4115 case PACKET_QDISC_BYPASS: 4116 val = packet_use_direct_xmit(po); 4117 break; 4118 default: 4119 return -ENOPROTOOPT; 4120 } 4121 4122 if (len > lv) 4123 len = lv; 4124 if (put_user(len, optlen)) 4125 return -EFAULT; 4126 if (copy_to_user(optval, data, len)) 4127 return -EFAULT; 4128 return 0; 4129 } 4130 4131 static int packet_notifier(struct notifier_block *this, 4132 unsigned long msg, void *ptr) 4133 { 4134 struct sock *sk; 4135 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4136 struct net *net = dev_net(dev); 4137 4138 rcu_read_lock(); 4139 sk_for_each_rcu(sk, &net->packet.sklist) { 4140 struct packet_sock *po = pkt_sk(sk); 4141 4142 switch (msg) { 4143 case NETDEV_UNREGISTER: 4144 if (po->mclist) 4145 packet_dev_mclist_delete(dev, &po->mclist); 4146 fallthrough; 4147 4148 case NETDEV_DOWN: 4149 if (dev->ifindex == po->ifindex) { 4150 spin_lock(&po->bind_lock); 4151 if (po->running) { 4152 __unregister_prot_hook(sk, false); 4153 sk->sk_err = ENETDOWN; 4154 if (!sock_flag(sk, SOCK_DEAD)) 4155 sk_error_report(sk); 4156 } 4157 if (msg == NETDEV_UNREGISTER) { 4158 packet_cached_dev_reset(po); 4159 WRITE_ONCE(po->ifindex, -1); 4160 dev_put_track(po->prot_hook.dev, 4161 &po->prot_hook.dev_tracker); 4162 po->prot_hook.dev = NULL; 4163 } 4164 spin_unlock(&po->bind_lock); 4165 } 4166 break; 4167 case NETDEV_UP: 4168 if (dev->ifindex == po->ifindex) { 4169 spin_lock(&po->bind_lock); 4170 if (po->num) 4171 register_prot_hook(sk); 4172 spin_unlock(&po->bind_lock); 4173 } 4174 break; 4175 } 4176 } 4177 rcu_read_unlock(); 4178 return NOTIFY_DONE; 4179 } 4180 4181 4182 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4183 unsigned long arg) 4184 { 4185 struct sock *sk = sock->sk; 4186 4187 switch (cmd) { 4188 case SIOCOUTQ: 4189 { 4190 int amount = sk_wmem_alloc_get(sk); 4191 4192 return put_user(amount, (int __user *)arg); 4193 } 4194 case SIOCINQ: 4195 { 4196 struct sk_buff *skb; 4197 int amount = 0; 4198 4199 spin_lock_bh(&sk->sk_receive_queue.lock); 4200 skb = skb_peek(&sk->sk_receive_queue); 4201 if (skb) 4202 amount = skb->len; 4203 spin_unlock_bh(&sk->sk_receive_queue.lock); 4204 return put_user(amount, (int __user *)arg); 4205 } 4206 #ifdef CONFIG_INET 4207 case SIOCADDRT: 4208 case SIOCDELRT: 4209 case SIOCDARP: 4210 case SIOCGARP: 4211 case SIOCSARP: 4212 case SIOCGIFADDR: 4213 case SIOCSIFADDR: 4214 case SIOCGIFBRDADDR: 4215 case SIOCSIFBRDADDR: 4216 case SIOCGIFNETMASK: 4217 case SIOCSIFNETMASK: 4218 case SIOCGIFDSTADDR: 4219 case SIOCSIFDSTADDR: 4220 case SIOCSIFFLAGS: 4221 return inet_dgram_ops.ioctl(sock, cmd, arg); 4222 #endif 4223 4224 default: 4225 return -ENOIOCTLCMD; 4226 } 4227 return 0; 4228 } 4229 4230 static __poll_t packet_poll(struct file *file, struct socket *sock, 4231 poll_table *wait) 4232 { 4233 struct sock *sk = sock->sk; 4234 struct packet_sock *po = pkt_sk(sk); 4235 __poll_t mask = datagram_poll(file, sock, wait); 4236 4237 spin_lock_bh(&sk->sk_receive_queue.lock); 4238 if (po->rx_ring.pg_vec) { 4239 if (!packet_previous_rx_frame(po, &po->rx_ring, 4240 TP_STATUS_KERNEL)) 4241 mask |= EPOLLIN | EPOLLRDNORM; 4242 } 4243 packet_rcv_try_clear_pressure(po); 4244 spin_unlock_bh(&sk->sk_receive_queue.lock); 4245 spin_lock_bh(&sk->sk_write_queue.lock); 4246 if (po->tx_ring.pg_vec) { 4247 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4248 mask |= EPOLLOUT | EPOLLWRNORM; 4249 } 4250 spin_unlock_bh(&sk->sk_write_queue.lock); 4251 return mask; 4252 } 4253 4254 4255 /* Dirty? Well, I still did not learn better way to account 4256 * for user mmaps. 4257 */ 4258 4259 static void packet_mm_open(struct vm_area_struct *vma) 4260 { 4261 struct file *file = vma->vm_file; 4262 struct socket *sock = file->private_data; 4263 struct sock *sk = sock->sk; 4264 4265 if (sk) 4266 atomic_inc(&pkt_sk(sk)->mapped); 4267 } 4268 4269 static void packet_mm_close(struct vm_area_struct *vma) 4270 { 4271 struct file *file = vma->vm_file; 4272 struct socket *sock = file->private_data; 4273 struct sock *sk = sock->sk; 4274 4275 if (sk) 4276 atomic_dec(&pkt_sk(sk)->mapped); 4277 } 4278 4279 static const struct vm_operations_struct packet_mmap_ops = { 4280 .open = packet_mm_open, 4281 .close = packet_mm_close, 4282 }; 4283 4284 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4285 unsigned int len) 4286 { 4287 int i; 4288 4289 for (i = 0; i < len; i++) { 4290 if (likely(pg_vec[i].buffer)) { 4291 if (is_vmalloc_addr(pg_vec[i].buffer)) 4292 vfree(pg_vec[i].buffer); 4293 else 4294 free_pages((unsigned long)pg_vec[i].buffer, 4295 order); 4296 pg_vec[i].buffer = NULL; 4297 } 4298 } 4299 kfree(pg_vec); 4300 } 4301 4302 static char *alloc_one_pg_vec_page(unsigned long order) 4303 { 4304 char *buffer; 4305 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4306 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4307 4308 buffer = (char *) __get_free_pages(gfp_flags, order); 4309 if (buffer) 4310 return buffer; 4311 4312 /* __get_free_pages failed, fall back to vmalloc */ 4313 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4314 if (buffer) 4315 return buffer; 4316 4317 /* vmalloc failed, lets dig into swap here */ 4318 gfp_flags &= ~__GFP_NORETRY; 4319 buffer = (char *) __get_free_pages(gfp_flags, order); 4320 if (buffer) 4321 return buffer; 4322 4323 /* complete and utter failure */ 4324 return NULL; 4325 } 4326 4327 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4328 { 4329 unsigned int block_nr = req->tp_block_nr; 4330 struct pgv *pg_vec; 4331 int i; 4332 4333 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4334 if (unlikely(!pg_vec)) 4335 goto out; 4336 4337 for (i = 0; i < block_nr; i++) { 4338 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4339 if (unlikely(!pg_vec[i].buffer)) 4340 goto out_free_pgvec; 4341 } 4342 4343 out: 4344 return pg_vec; 4345 4346 out_free_pgvec: 4347 free_pg_vec(pg_vec, order, block_nr); 4348 pg_vec = NULL; 4349 goto out; 4350 } 4351 4352 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4353 int closing, int tx_ring) 4354 { 4355 struct pgv *pg_vec = NULL; 4356 struct packet_sock *po = pkt_sk(sk); 4357 unsigned long *rx_owner_map = NULL; 4358 int was_running, order = 0; 4359 struct packet_ring_buffer *rb; 4360 struct sk_buff_head *rb_queue; 4361 __be16 num; 4362 int err; 4363 /* Added to avoid minimal code churn */ 4364 struct tpacket_req *req = &req_u->req; 4365 4366 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4367 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4368 4369 err = -EBUSY; 4370 if (!closing) { 4371 if (atomic_read(&po->mapped)) 4372 goto out; 4373 if (packet_read_pending(rb)) 4374 goto out; 4375 } 4376 4377 if (req->tp_block_nr) { 4378 unsigned int min_frame_size; 4379 4380 /* Sanity tests and some calculations */ 4381 err = -EBUSY; 4382 if (unlikely(rb->pg_vec)) 4383 goto out; 4384 4385 switch (po->tp_version) { 4386 case TPACKET_V1: 4387 po->tp_hdrlen = TPACKET_HDRLEN; 4388 break; 4389 case TPACKET_V2: 4390 po->tp_hdrlen = TPACKET2_HDRLEN; 4391 break; 4392 case TPACKET_V3: 4393 po->tp_hdrlen = TPACKET3_HDRLEN; 4394 break; 4395 } 4396 4397 err = -EINVAL; 4398 if (unlikely((int)req->tp_block_size <= 0)) 4399 goto out; 4400 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4401 goto out; 4402 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4403 if (po->tp_version >= TPACKET_V3 && 4404 req->tp_block_size < 4405 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4406 goto out; 4407 if (unlikely(req->tp_frame_size < min_frame_size)) 4408 goto out; 4409 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4410 goto out; 4411 4412 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4413 if (unlikely(rb->frames_per_block == 0)) 4414 goto out; 4415 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4416 goto out; 4417 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4418 req->tp_frame_nr)) 4419 goto out; 4420 4421 err = -ENOMEM; 4422 order = get_order(req->tp_block_size); 4423 pg_vec = alloc_pg_vec(req, order); 4424 if (unlikely(!pg_vec)) 4425 goto out; 4426 switch (po->tp_version) { 4427 case TPACKET_V3: 4428 /* Block transmit is not supported yet */ 4429 if (!tx_ring) { 4430 init_prb_bdqc(po, rb, pg_vec, req_u); 4431 } else { 4432 struct tpacket_req3 *req3 = &req_u->req3; 4433 4434 if (req3->tp_retire_blk_tov || 4435 req3->tp_sizeof_priv || 4436 req3->tp_feature_req_word) { 4437 err = -EINVAL; 4438 goto out_free_pg_vec; 4439 } 4440 } 4441 break; 4442 default: 4443 if (!tx_ring) { 4444 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4445 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4446 if (!rx_owner_map) 4447 goto out_free_pg_vec; 4448 } 4449 break; 4450 } 4451 } 4452 /* Done */ 4453 else { 4454 err = -EINVAL; 4455 if (unlikely(req->tp_frame_nr)) 4456 goto out; 4457 } 4458 4459 4460 /* Detach socket from network */ 4461 spin_lock(&po->bind_lock); 4462 was_running = po->running; 4463 num = po->num; 4464 if (was_running) { 4465 WRITE_ONCE(po->num, 0); 4466 __unregister_prot_hook(sk, false); 4467 } 4468 spin_unlock(&po->bind_lock); 4469 4470 synchronize_net(); 4471 4472 err = -EBUSY; 4473 mutex_lock(&po->pg_vec_lock); 4474 if (closing || atomic_read(&po->mapped) == 0) { 4475 err = 0; 4476 spin_lock_bh(&rb_queue->lock); 4477 swap(rb->pg_vec, pg_vec); 4478 if (po->tp_version <= TPACKET_V2) 4479 swap(rb->rx_owner_map, rx_owner_map); 4480 rb->frame_max = (req->tp_frame_nr - 1); 4481 rb->head = 0; 4482 rb->frame_size = req->tp_frame_size; 4483 spin_unlock_bh(&rb_queue->lock); 4484 4485 swap(rb->pg_vec_order, order); 4486 swap(rb->pg_vec_len, req->tp_block_nr); 4487 4488 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4489 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4490 tpacket_rcv : packet_rcv; 4491 skb_queue_purge(rb_queue); 4492 if (atomic_read(&po->mapped)) 4493 pr_err("packet_mmap: vma is busy: %d\n", 4494 atomic_read(&po->mapped)); 4495 } 4496 mutex_unlock(&po->pg_vec_lock); 4497 4498 spin_lock(&po->bind_lock); 4499 if (was_running) { 4500 WRITE_ONCE(po->num, num); 4501 register_prot_hook(sk); 4502 } 4503 spin_unlock(&po->bind_lock); 4504 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4505 /* Because we don't support block-based V3 on tx-ring */ 4506 if (!tx_ring) 4507 prb_shutdown_retire_blk_timer(po, rb_queue); 4508 } 4509 4510 out_free_pg_vec: 4511 if (pg_vec) { 4512 bitmap_free(rx_owner_map); 4513 free_pg_vec(pg_vec, order, req->tp_block_nr); 4514 } 4515 out: 4516 return err; 4517 } 4518 4519 static int packet_mmap(struct file *file, struct socket *sock, 4520 struct vm_area_struct *vma) 4521 { 4522 struct sock *sk = sock->sk; 4523 struct packet_sock *po = pkt_sk(sk); 4524 unsigned long size, expected_size; 4525 struct packet_ring_buffer *rb; 4526 unsigned long start; 4527 int err = -EINVAL; 4528 int i; 4529 4530 if (vma->vm_pgoff) 4531 return -EINVAL; 4532 4533 mutex_lock(&po->pg_vec_lock); 4534 4535 expected_size = 0; 4536 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4537 if (rb->pg_vec) { 4538 expected_size += rb->pg_vec_len 4539 * rb->pg_vec_pages 4540 * PAGE_SIZE; 4541 } 4542 } 4543 4544 if (expected_size == 0) 4545 goto out; 4546 4547 size = vma->vm_end - vma->vm_start; 4548 if (size != expected_size) 4549 goto out; 4550 4551 start = vma->vm_start; 4552 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4553 if (rb->pg_vec == NULL) 4554 continue; 4555 4556 for (i = 0; i < rb->pg_vec_len; i++) { 4557 struct page *page; 4558 void *kaddr = rb->pg_vec[i].buffer; 4559 int pg_num; 4560 4561 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4562 page = pgv_to_page(kaddr); 4563 err = vm_insert_page(vma, start, page); 4564 if (unlikely(err)) 4565 goto out; 4566 start += PAGE_SIZE; 4567 kaddr += PAGE_SIZE; 4568 } 4569 } 4570 } 4571 4572 atomic_inc(&po->mapped); 4573 vma->vm_ops = &packet_mmap_ops; 4574 err = 0; 4575 4576 out: 4577 mutex_unlock(&po->pg_vec_lock); 4578 return err; 4579 } 4580 4581 static const struct proto_ops packet_ops_spkt = { 4582 .family = PF_PACKET, 4583 .owner = THIS_MODULE, 4584 .release = packet_release, 4585 .bind = packet_bind_spkt, 4586 .connect = sock_no_connect, 4587 .socketpair = sock_no_socketpair, 4588 .accept = sock_no_accept, 4589 .getname = packet_getname_spkt, 4590 .poll = datagram_poll, 4591 .ioctl = packet_ioctl, 4592 .gettstamp = sock_gettstamp, 4593 .listen = sock_no_listen, 4594 .shutdown = sock_no_shutdown, 4595 .sendmsg = packet_sendmsg_spkt, 4596 .recvmsg = packet_recvmsg, 4597 .mmap = sock_no_mmap, 4598 .sendpage = sock_no_sendpage, 4599 }; 4600 4601 static const struct proto_ops packet_ops = { 4602 .family = PF_PACKET, 4603 .owner = THIS_MODULE, 4604 .release = packet_release, 4605 .bind = packet_bind, 4606 .connect = sock_no_connect, 4607 .socketpair = sock_no_socketpair, 4608 .accept = sock_no_accept, 4609 .getname = packet_getname, 4610 .poll = packet_poll, 4611 .ioctl = packet_ioctl, 4612 .gettstamp = sock_gettstamp, 4613 .listen = sock_no_listen, 4614 .shutdown = sock_no_shutdown, 4615 .setsockopt = packet_setsockopt, 4616 .getsockopt = packet_getsockopt, 4617 .sendmsg = packet_sendmsg, 4618 .recvmsg = packet_recvmsg, 4619 .mmap = packet_mmap, 4620 .sendpage = sock_no_sendpage, 4621 }; 4622 4623 static const struct net_proto_family packet_family_ops = { 4624 .family = PF_PACKET, 4625 .create = packet_create, 4626 .owner = THIS_MODULE, 4627 }; 4628 4629 static struct notifier_block packet_netdev_notifier = { 4630 .notifier_call = packet_notifier, 4631 }; 4632 4633 #ifdef CONFIG_PROC_FS 4634 4635 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4636 __acquires(RCU) 4637 { 4638 struct net *net = seq_file_net(seq); 4639 4640 rcu_read_lock(); 4641 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4642 } 4643 4644 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4645 { 4646 struct net *net = seq_file_net(seq); 4647 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4648 } 4649 4650 static void packet_seq_stop(struct seq_file *seq, void *v) 4651 __releases(RCU) 4652 { 4653 rcu_read_unlock(); 4654 } 4655 4656 static int packet_seq_show(struct seq_file *seq, void *v) 4657 { 4658 if (v == SEQ_START_TOKEN) 4659 seq_printf(seq, 4660 "%*sRefCnt Type Proto Iface R Rmem User Inode\n", 4661 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk"); 4662 else { 4663 struct sock *s = sk_entry(v); 4664 const struct packet_sock *po = pkt_sk(s); 4665 4666 seq_printf(seq, 4667 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4668 s, 4669 refcount_read(&s->sk_refcnt), 4670 s->sk_type, 4671 ntohs(READ_ONCE(po->num)), 4672 READ_ONCE(po->ifindex), 4673 po->running, 4674 atomic_read(&s->sk_rmem_alloc), 4675 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4676 sock_i_ino(s)); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static const struct seq_operations packet_seq_ops = { 4683 .start = packet_seq_start, 4684 .next = packet_seq_next, 4685 .stop = packet_seq_stop, 4686 .show = packet_seq_show, 4687 }; 4688 #endif 4689 4690 static int __net_init packet_net_init(struct net *net) 4691 { 4692 mutex_init(&net->packet.sklist_lock); 4693 INIT_HLIST_HEAD(&net->packet.sklist); 4694 4695 #ifdef CONFIG_PROC_FS 4696 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4697 sizeof(struct seq_net_private))) 4698 return -ENOMEM; 4699 #endif /* CONFIG_PROC_FS */ 4700 4701 return 0; 4702 } 4703 4704 static void __net_exit packet_net_exit(struct net *net) 4705 { 4706 remove_proc_entry("packet", net->proc_net); 4707 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4708 } 4709 4710 static struct pernet_operations packet_net_ops = { 4711 .init = packet_net_init, 4712 .exit = packet_net_exit, 4713 }; 4714 4715 4716 static void __exit packet_exit(void) 4717 { 4718 unregister_netdevice_notifier(&packet_netdev_notifier); 4719 unregister_pernet_subsys(&packet_net_ops); 4720 sock_unregister(PF_PACKET); 4721 proto_unregister(&packet_proto); 4722 } 4723 4724 static int __init packet_init(void) 4725 { 4726 int rc; 4727 4728 rc = proto_register(&packet_proto, 0); 4729 if (rc) 4730 goto out; 4731 rc = sock_register(&packet_family_ops); 4732 if (rc) 4733 goto out_proto; 4734 rc = register_pernet_subsys(&packet_net_ops); 4735 if (rc) 4736 goto out_sock; 4737 rc = register_netdevice_notifier(&packet_netdev_notifier); 4738 if (rc) 4739 goto out_pernet; 4740 4741 return 0; 4742 4743 out_pernet: 4744 unregister_pernet_subsys(&packet_net_ops); 4745 out_sock: 4746 sock_unregister(PF_PACKET); 4747 out_proto: 4748 proto_unregister(&packet_proto); 4749 out: 4750 return rc; 4751 } 4752 4753 module_init(packet_init); 4754 module_exit(packet_exit); 4755 MODULE_LICENSE("GPL"); 4756 MODULE_ALIAS_NETPROTO(PF_PACKET); 4757