1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PACKET - implements raw packet sockets. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * 12 * Fixes: 13 * Alan Cox : verify_area() now used correctly 14 * Alan Cox : new skbuff lists, look ma no backlogs! 15 * Alan Cox : tidied skbuff lists. 16 * Alan Cox : Now uses generic datagram routines I 17 * added. Also fixed the peek/read crash 18 * from all old Linux datagram code. 19 * Alan Cox : Uses the improved datagram code. 20 * Alan Cox : Added NULL's for socket options. 21 * Alan Cox : Re-commented the code. 22 * Alan Cox : Use new kernel side addressing 23 * Rob Janssen : Correct MTU usage. 24 * Dave Platt : Counter leaks caused by incorrect 25 * interrupt locking and some slightly 26 * dubious gcc output. Can you read 27 * compiler: it said _VOLATILE_ 28 * Richard Kooijman : Timestamp fixes. 29 * Alan Cox : New buffers. Use sk->mac.raw. 30 * Alan Cox : sendmsg/recvmsg support. 31 * Alan Cox : Protocol setting support 32 * Alexey Kuznetsov : Untied from IPv4 stack. 33 * Cyrus Durgin : Fixed kerneld for kmod. 34 * Michal Ostrowski : Module initialization cleanup. 35 * Ulises Alonso : Frame number limit removal and 36 * packet_set_ring memory leak. 37 * Eric Biederman : Allow for > 8 byte hardware addresses. 38 * The convention is that longer addresses 39 * will simply extend the hardware address 40 * byte arrays at the end of sockaddr_ll 41 * and packet_mreq. 42 * Johann Baudy : Added TX RING. 43 * Chetan Loke : Implemented TPACKET_V3 block abstraction 44 * layer. 45 * Copyright (C) 2011, <lokec@ccs.neu.edu> 46 * 47 * 48 * This program is free software; you can redistribute it and/or 49 * modify it under the terms of the GNU General Public License 50 * as published by the Free Software Foundation; either version 51 * 2 of the License, or (at your option) any later version. 52 * 53 */ 54 55 #include <linux/types.h> 56 #include <linux/mm.h> 57 #include <linux/capability.h> 58 #include <linux/fcntl.h> 59 #include <linux/socket.h> 60 #include <linux/in.h> 61 #include <linux/inet.h> 62 #include <linux/netdevice.h> 63 #include <linux/if_packet.h> 64 #include <linux/wireless.h> 65 #include <linux/kernel.h> 66 #include <linux/kmod.h> 67 #include <linux/slab.h> 68 #include <linux/vmalloc.h> 69 #include <net/net_namespace.h> 70 #include <net/ip.h> 71 #include <net/protocol.h> 72 #include <linux/skbuff.h> 73 #include <net/sock.h> 74 #include <linux/errno.h> 75 #include <linux/timer.h> 76 #include <asm/uaccess.h> 77 #include <asm/ioctls.h> 78 #include <asm/page.h> 79 #include <asm/cacheflush.h> 80 #include <asm/io.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/poll.h> 84 #include <linux/module.h> 85 #include <linux/init.h> 86 #include <linux/mutex.h> 87 #include <linux/if_vlan.h> 88 #include <linux/virtio_net.h> 89 #include <linux/errqueue.h> 90 #include <linux/net_tstamp.h> 91 #include <linux/percpu.h> 92 #ifdef CONFIG_INET 93 #include <net/inet_common.h> 94 #endif 95 #include <linux/bpf.h> 96 97 #include "internal.h" 98 99 /* 100 Assumptions: 101 - if device has no dev->hard_header routine, it adds and removes ll header 102 inside itself. In this case ll header is invisible outside of device, 103 but higher levels still should reserve dev->hard_header_len. 104 Some devices are enough clever to reallocate skb, when header 105 will not fit to reserved space (tunnel), another ones are silly 106 (PPP). 107 - packet socket receives packets with pulled ll header, 108 so that SOCK_RAW should push it back. 109 110 On receive: 111 ----------- 112 113 Incoming, dev->hard_header!=NULL 114 mac_header -> ll header 115 data -> data 116 117 Outgoing, dev->hard_header!=NULL 118 mac_header -> ll header 119 data -> ll header 120 121 Incoming, dev->hard_header==NULL 122 mac_header -> UNKNOWN position. It is very likely, that it points to ll 123 header. PPP makes it, that is wrong, because introduce 124 assymetry between rx and tx paths. 125 data -> data 126 127 Outgoing, dev->hard_header==NULL 128 mac_header -> data. ll header is still not built! 129 data -> data 130 131 Resume 132 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 133 134 135 On transmit: 136 ------------ 137 138 dev->hard_header != NULL 139 mac_header -> ll header 140 data -> ll header 141 142 dev->hard_header == NULL (ll header is added by device, we cannot control it) 143 mac_header -> data 144 data -> data 145 146 We should set nh.raw on output to correct posistion, 147 packet classifier depends on it. 148 */ 149 150 /* Private packet socket structures. */ 151 152 /* identical to struct packet_mreq except it has 153 * a longer address field. 154 */ 155 struct packet_mreq_max { 156 int mr_ifindex; 157 unsigned short mr_type; 158 unsigned short mr_alen; 159 unsigned char mr_address[MAX_ADDR_LEN]; 160 }; 161 162 union tpacket_uhdr { 163 struct tpacket_hdr *h1; 164 struct tpacket2_hdr *h2; 165 struct tpacket3_hdr *h3; 166 void *raw; 167 }; 168 169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 170 int closing, int tx_ring); 171 172 #define V3_ALIGNMENT (8) 173 174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 175 176 #define BLK_PLUS_PRIV(sz_of_priv) \ 177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 178 179 #define PGV_FROM_VMALLOC 1 180 181 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 182 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 183 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 184 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 185 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 186 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 187 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 188 189 struct packet_sock; 190 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg); 191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 192 struct packet_type *pt, struct net_device *orig_dev); 193 194 static void *packet_previous_frame(struct packet_sock *po, 195 struct packet_ring_buffer *rb, 196 int status); 197 static void packet_increment_head(struct packet_ring_buffer *buff); 198 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *, 199 struct tpacket_block_desc *); 200 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 201 struct packet_sock *); 202 static void prb_retire_current_block(struct tpacket_kbdq_core *, 203 struct packet_sock *, unsigned int status); 204 static int prb_queue_frozen(struct tpacket_kbdq_core *); 205 static void prb_open_block(struct tpacket_kbdq_core *, 206 struct tpacket_block_desc *); 207 static void prb_retire_rx_blk_timer_expired(unsigned long); 208 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 209 static void prb_init_blk_timer(struct packet_sock *, 210 struct tpacket_kbdq_core *, 211 void (*func) (unsigned long)); 212 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 213 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 214 struct tpacket3_hdr *); 215 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 216 struct tpacket3_hdr *); 217 static void packet_flush_mclist(struct sock *sk); 218 219 struct packet_skb_cb { 220 union { 221 struct sockaddr_pkt pkt; 222 union { 223 /* Trick: alias skb original length with 224 * ll.sll_family and ll.protocol in order 225 * to save room. 226 */ 227 unsigned int origlen; 228 struct sockaddr_ll ll; 229 }; 230 } sa; 231 }; 232 233 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 234 235 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 236 #define GET_PBLOCK_DESC(x, bid) \ 237 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 238 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 239 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 240 #define GET_NEXT_PRB_BLK_NUM(x) \ 241 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 242 ((x)->kactive_blk_num+1) : 0) 243 244 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 245 static void __fanout_link(struct sock *sk, struct packet_sock *po); 246 247 static int packet_direct_xmit(struct sk_buff *skb) 248 { 249 struct net_device *dev = skb->dev; 250 netdev_features_t features; 251 struct netdev_queue *txq; 252 int ret = NETDEV_TX_BUSY; 253 254 if (unlikely(!netif_running(dev) || 255 !netif_carrier_ok(dev))) 256 goto drop; 257 258 features = netif_skb_features(skb); 259 if (skb_needs_linearize(skb, features) && 260 __skb_linearize(skb)) 261 goto drop; 262 263 txq = skb_get_tx_queue(dev, skb); 264 265 local_bh_disable(); 266 267 HARD_TX_LOCK(dev, txq, smp_processor_id()); 268 if (!netif_xmit_frozen_or_drv_stopped(txq)) 269 ret = netdev_start_xmit(skb, dev, txq, false); 270 HARD_TX_UNLOCK(dev, txq); 271 272 local_bh_enable(); 273 274 if (!dev_xmit_complete(ret)) 275 kfree_skb(skb); 276 277 return ret; 278 drop: 279 atomic_long_inc(&dev->tx_dropped); 280 kfree_skb(skb); 281 return NET_XMIT_DROP; 282 } 283 284 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 285 { 286 struct net_device *dev; 287 288 rcu_read_lock(); 289 dev = rcu_dereference(po->cached_dev); 290 if (likely(dev)) 291 dev_hold(dev); 292 rcu_read_unlock(); 293 294 return dev; 295 } 296 297 static void packet_cached_dev_assign(struct packet_sock *po, 298 struct net_device *dev) 299 { 300 rcu_assign_pointer(po->cached_dev, dev); 301 } 302 303 static void packet_cached_dev_reset(struct packet_sock *po) 304 { 305 RCU_INIT_POINTER(po->cached_dev, NULL); 306 } 307 308 static bool packet_use_direct_xmit(const struct packet_sock *po) 309 { 310 return po->xmit == packet_direct_xmit; 311 } 312 313 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 314 { 315 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues; 316 } 317 318 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb) 319 { 320 const struct net_device_ops *ops = dev->netdev_ops; 321 u16 queue_index; 322 323 if (ops->ndo_select_queue) { 324 queue_index = ops->ndo_select_queue(dev, skb, NULL, 325 __packet_pick_tx_queue); 326 queue_index = netdev_cap_txqueue(dev, queue_index); 327 } else { 328 queue_index = __packet_pick_tx_queue(dev, skb); 329 } 330 331 skb_set_queue_mapping(skb, queue_index); 332 } 333 334 /* register_prot_hook must be invoked with the po->bind_lock held, 335 * or from a context in which asynchronous accesses to the packet 336 * socket is not possible (packet_create()). 337 */ 338 static void register_prot_hook(struct sock *sk) 339 { 340 struct packet_sock *po = pkt_sk(sk); 341 342 if (!po->running) { 343 if (po->fanout) 344 __fanout_link(sk, po); 345 else 346 dev_add_pack(&po->prot_hook); 347 348 sock_hold(sk); 349 po->running = 1; 350 } 351 } 352 353 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock 354 * held. If the sync parameter is true, we will temporarily drop 355 * the po->bind_lock and do a synchronize_net to make sure no 356 * asynchronous packet processing paths still refer to the elements 357 * of po->prot_hook. If the sync parameter is false, it is the 358 * callers responsibility to take care of this. 359 */ 360 static void __unregister_prot_hook(struct sock *sk, bool sync) 361 { 362 struct packet_sock *po = pkt_sk(sk); 363 364 po->running = 0; 365 366 if (po->fanout) 367 __fanout_unlink(sk, po); 368 else 369 __dev_remove_pack(&po->prot_hook); 370 371 __sock_put(sk); 372 373 if (sync) { 374 spin_unlock(&po->bind_lock); 375 synchronize_net(); 376 spin_lock(&po->bind_lock); 377 } 378 } 379 380 static void unregister_prot_hook(struct sock *sk, bool sync) 381 { 382 struct packet_sock *po = pkt_sk(sk); 383 384 if (po->running) 385 __unregister_prot_hook(sk, sync); 386 } 387 388 static inline struct page * __pure pgv_to_page(void *addr) 389 { 390 if (is_vmalloc_addr(addr)) 391 return vmalloc_to_page(addr); 392 return virt_to_page(addr); 393 } 394 395 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 396 { 397 union tpacket_uhdr h; 398 399 h.raw = frame; 400 switch (po->tp_version) { 401 case TPACKET_V1: 402 h.h1->tp_status = status; 403 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 404 break; 405 case TPACKET_V2: 406 h.h2->tp_status = status; 407 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 408 break; 409 case TPACKET_V3: 410 default: 411 WARN(1, "TPACKET version not supported.\n"); 412 BUG(); 413 } 414 415 smp_wmb(); 416 } 417 418 static int __packet_get_status(struct packet_sock *po, void *frame) 419 { 420 union tpacket_uhdr h; 421 422 smp_rmb(); 423 424 h.raw = frame; 425 switch (po->tp_version) { 426 case TPACKET_V1: 427 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 428 return h.h1->tp_status; 429 case TPACKET_V2: 430 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 431 return h.h2->tp_status; 432 case TPACKET_V3: 433 default: 434 WARN(1, "TPACKET version not supported.\n"); 435 BUG(); 436 return 0; 437 } 438 } 439 440 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts, 441 unsigned int flags) 442 { 443 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 444 445 if (shhwtstamps && 446 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 447 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts)) 448 return TP_STATUS_TS_RAW_HARDWARE; 449 450 if (ktime_to_timespec_cond(skb->tstamp, ts)) 451 return TP_STATUS_TS_SOFTWARE; 452 453 return 0; 454 } 455 456 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 457 struct sk_buff *skb) 458 { 459 union tpacket_uhdr h; 460 struct timespec ts; 461 __u32 ts_status; 462 463 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 464 return 0; 465 466 h.raw = frame; 467 switch (po->tp_version) { 468 case TPACKET_V1: 469 h.h1->tp_sec = ts.tv_sec; 470 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 471 break; 472 case TPACKET_V2: 473 h.h2->tp_sec = ts.tv_sec; 474 h.h2->tp_nsec = ts.tv_nsec; 475 break; 476 case TPACKET_V3: 477 default: 478 WARN(1, "TPACKET version not supported.\n"); 479 BUG(); 480 } 481 482 /* one flush is safe, as both fields always lie on the same cacheline */ 483 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 484 smp_wmb(); 485 486 return ts_status; 487 } 488 489 static void *packet_lookup_frame(struct packet_sock *po, 490 struct packet_ring_buffer *rb, 491 unsigned int position, 492 int status) 493 { 494 unsigned int pg_vec_pos, frame_offset; 495 union tpacket_uhdr h; 496 497 pg_vec_pos = position / rb->frames_per_block; 498 frame_offset = position % rb->frames_per_block; 499 500 h.raw = rb->pg_vec[pg_vec_pos].buffer + 501 (frame_offset * rb->frame_size); 502 503 if (status != __packet_get_status(po, h.raw)) 504 return NULL; 505 506 return h.raw; 507 } 508 509 static void *packet_current_frame(struct packet_sock *po, 510 struct packet_ring_buffer *rb, 511 int status) 512 { 513 return packet_lookup_frame(po, rb, rb->head, status); 514 } 515 516 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 517 { 518 del_timer_sync(&pkc->retire_blk_timer); 519 } 520 521 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 522 struct sk_buff_head *rb_queue) 523 { 524 struct tpacket_kbdq_core *pkc; 525 526 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 527 528 spin_lock_bh(&rb_queue->lock); 529 pkc->delete_blk_timer = 1; 530 spin_unlock_bh(&rb_queue->lock); 531 532 prb_del_retire_blk_timer(pkc); 533 } 534 535 static void prb_init_blk_timer(struct packet_sock *po, 536 struct tpacket_kbdq_core *pkc, 537 void (*func) (unsigned long)) 538 { 539 init_timer(&pkc->retire_blk_timer); 540 pkc->retire_blk_timer.data = (long)po; 541 pkc->retire_blk_timer.function = func; 542 pkc->retire_blk_timer.expires = jiffies; 543 } 544 545 static void prb_setup_retire_blk_timer(struct packet_sock *po) 546 { 547 struct tpacket_kbdq_core *pkc; 548 549 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 550 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired); 551 } 552 553 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 554 int blk_size_in_bytes) 555 { 556 struct net_device *dev; 557 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 558 struct ethtool_cmd ecmd; 559 int err; 560 u32 speed; 561 562 rtnl_lock(); 563 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 564 if (unlikely(!dev)) { 565 rtnl_unlock(); 566 return DEFAULT_PRB_RETIRE_TOV; 567 } 568 err = __ethtool_get_settings(dev, &ecmd); 569 speed = ethtool_cmd_speed(&ecmd); 570 rtnl_unlock(); 571 if (!err) { 572 /* 573 * If the link speed is so slow you don't really 574 * need to worry about perf anyways 575 */ 576 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) { 577 return DEFAULT_PRB_RETIRE_TOV; 578 } else { 579 msec = 1; 580 div = speed / 1000; 581 } 582 } 583 584 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 585 586 if (div) 587 mbits /= div; 588 589 tmo = mbits * msec; 590 591 if (div) 592 return tmo+1; 593 return tmo; 594 } 595 596 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 597 union tpacket_req_u *req_u) 598 { 599 p1->feature_req_word = req_u->req3.tp_feature_req_word; 600 } 601 602 static void init_prb_bdqc(struct packet_sock *po, 603 struct packet_ring_buffer *rb, 604 struct pgv *pg_vec, 605 union tpacket_req_u *req_u) 606 { 607 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 608 struct tpacket_block_desc *pbd; 609 610 memset(p1, 0x0, sizeof(*p1)); 611 612 p1->knxt_seq_num = 1; 613 p1->pkbdq = pg_vec; 614 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 615 p1->pkblk_start = pg_vec[0].buffer; 616 p1->kblk_size = req_u->req3.tp_block_size; 617 p1->knum_blocks = req_u->req3.tp_block_nr; 618 p1->hdrlen = po->tp_hdrlen; 619 p1->version = po->tp_version; 620 p1->last_kactive_blk_num = 0; 621 po->stats.stats3.tp_freeze_q_cnt = 0; 622 if (req_u->req3.tp_retire_blk_tov) 623 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 624 else 625 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 626 req_u->req3.tp_block_size); 627 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 628 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 629 630 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 631 prb_init_ft_ops(p1, req_u); 632 prb_setup_retire_blk_timer(po); 633 prb_open_block(p1, pbd); 634 } 635 636 /* Do NOT update the last_blk_num first. 637 * Assumes sk_buff_head lock is held. 638 */ 639 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 640 { 641 mod_timer(&pkc->retire_blk_timer, 642 jiffies + pkc->tov_in_jiffies); 643 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 644 } 645 646 /* 647 * Timer logic: 648 * 1) We refresh the timer only when we open a block. 649 * By doing this we don't waste cycles refreshing the timer 650 * on packet-by-packet basis. 651 * 652 * With a 1MB block-size, on a 1Gbps line, it will take 653 * i) ~8 ms to fill a block + ii) memcpy etc. 654 * In this cut we are not accounting for the memcpy time. 655 * 656 * So, if the user sets the 'tmo' to 10ms then the timer 657 * will never fire while the block is still getting filled 658 * (which is what we want). However, the user could choose 659 * to close a block early and that's fine. 660 * 661 * But when the timer does fire, we check whether or not to refresh it. 662 * Since the tmo granularity is in msecs, it is not too expensive 663 * to refresh the timer, lets say every '8' msecs. 664 * Either the user can set the 'tmo' or we can derive it based on 665 * a) line-speed and b) block-size. 666 * prb_calc_retire_blk_tmo() calculates the tmo. 667 * 668 */ 669 static void prb_retire_rx_blk_timer_expired(unsigned long data) 670 { 671 struct packet_sock *po = (struct packet_sock *)data; 672 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 673 unsigned int frozen; 674 struct tpacket_block_desc *pbd; 675 676 spin_lock(&po->sk.sk_receive_queue.lock); 677 678 frozen = prb_queue_frozen(pkc); 679 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 680 681 if (unlikely(pkc->delete_blk_timer)) 682 goto out; 683 684 /* We only need to plug the race when the block is partially filled. 685 * tpacket_rcv: 686 * lock(); increment BLOCK_NUM_PKTS; unlock() 687 * copy_bits() is in progress ... 688 * timer fires on other cpu: 689 * we can't retire the current block because copy_bits 690 * is in progress. 691 * 692 */ 693 if (BLOCK_NUM_PKTS(pbd)) { 694 while (atomic_read(&pkc->blk_fill_in_prog)) { 695 /* Waiting for skb_copy_bits to finish... */ 696 cpu_relax(); 697 } 698 } 699 700 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 701 if (!frozen) { 702 if (!BLOCK_NUM_PKTS(pbd)) { 703 /* An empty block. Just refresh the timer. */ 704 goto refresh_timer; 705 } 706 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 707 if (!prb_dispatch_next_block(pkc, po)) 708 goto refresh_timer; 709 else 710 goto out; 711 } else { 712 /* Case 1. Queue was frozen because user-space was 713 * lagging behind. 714 */ 715 if (prb_curr_blk_in_use(pkc, pbd)) { 716 /* 717 * Ok, user-space is still behind. 718 * So just refresh the timer. 719 */ 720 goto refresh_timer; 721 } else { 722 /* Case 2. queue was frozen,user-space caught up, 723 * now the link went idle && the timer fired. 724 * We don't have a block to close.So we open this 725 * block and restart the timer. 726 * opening a block thaws the queue,restarts timer 727 * Thawing/timer-refresh is a side effect. 728 */ 729 prb_open_block(pkc, pbd); 730 goto out; 731 } 732 } 733 } 734 735 refresh_timer: 736 _prb_refresh_rx_retire_blk_timer(pkc); 737 738 out: 739 spin_unlock(&po->sk.sk_receive_queue.lock); 740 } 741 742 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 743 struct tpacket_block_desc *pbd1, __u32 status) 744 { 745 /* Flush everything minus the block header */ 746 747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 748 u8 *start, *end; 749 750 start = (u8 *)pbd1; 751 752 /* Skip the block header(we know header WILL fit in 4K) */ 753 start += PAGE_SIZE; 754 755 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 756 for (; start < end; start += PAGE_SIZE) 757 flush_dcache_page(pgv_to_page(start)); 758 759 smp_wmb(); 760 #endif 761 762 /* Now update the block status. */ 763 764 BLOCK_STATUS(pbd1) = status; 765 766 /* Flush the block header */ 767 768 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 769 start = (u8 *)pbd1; 770 flush_dcache_page(pgv_to_page(start)); 771 772 smp_wmb(); 773 #endif 774 } 775 776 /* 777 * Side effect: 778 * 779 * 1) flush the block 780 * 2) Increment active_blk_num 781 * 782 * Note:We DONT refresh the timer on purpose. 783 * Because almost always the next block will be opened. 784 */ 785 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 786 struct tpacket_block_desc *pbd1, 787 struct packet_sock *po, unsigned int stat) 788 { 789 __u32 status = TP_STATUS_USER | stat; 790 791 struct tpacket3_hdr *last_pkt; 792 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 793 struct sock *sk = &po->sk; 794 795 if (po->stats.stats3.tp_drops) 796 status |= TP_STATUS_LOSING; 797 798 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 799 last_pkt->tp_next_offset = 0; 800 801 /* Get the ts of the last pkt */ 802 if (BLOCK_NUM_PKTS(pbd1)) { 803 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 804 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 805 } else { 806 /* Ok, we tmo'd - so get the current time. 807 * 808 * It shouldn't really happen as we don't close empty 809 * blocks. See prb_retire_rx_blk_timer_expired(). 810 */ 811 struct timespec ts; 812 getnstimeofday(&ts); 813 h1->ts_last_pkt.ts_sec = ts.tv_sec; 814 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 815 } 816 817 smp_wmb(); 818 819 /* Flush the block */ 820 prb_flush_block(pkc1, pbd1, status); 821 822 sk->sk_data_ready(sk); 823 824 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 825 } 826 827 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 828 { 829 pkc->reset_pending_on_curr_blk = 0; 830 } 831 832 /* 833 * Side effect of opening a block: 834 * 835 * 1) prb_queue is thawed. 836 * 2) retire_blk_timer is refreshed. 837 * 838 */ 839 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 840 struct tpacket_block_desc *pbd1) 841 { 842 struct timespec ts; 843 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 844 845 smp_rmb(); 846 847 /* We could have just memset this but we will lose the 848 * flexibility of making the priv area sticky 849 */ 850 851 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 852 BLOCK_NUM_PKTS(pbd1) = 0; 853 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 854 855 getnstimeofday(&ts); 856 857 h1->ts_first_pkt.ts_sec = ts.tv_sec; 858 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 859 860 pkc1->pkblk_start = (char *)pbd1; 861 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 862 863 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 864 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 865 866 pbd1->version = pkc1->version; 867 pkc1->prev = pkc1->nxt_offset; 868 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 869 870 prb_thaw_queue(pkc1); 871 _prb_refresh_rx_retire_blk_timer(pkc1); 872 873 smp_wmb(); 874 } 875 876 /* 877 * Queue freeze logic: 878 * 1) Assume tp_block_nr = 8 blocks. 879 * 2) At time 't0', user opens Rx ring. 880 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 881 * 4) user-space is either sleeping or processing block '0'. 882 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 883 * it will close block-7,loop around and try to fill block '0'. 884 * call-flow: 885 * __packet_lookup_frame_in_block 886 * prb_retire_current_block() 887 * prb_dispatch_next_block() 888 * |->(BLOCK_STATUS == USER) evaluates to true 889 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 890 * 6) Now there are two cases: 891 * 6.1) Link goes idle right after the queue is frozen. 892 * But remember, the last open_block() refreshed the timer. 893 * When this timer expires,it will refresh itself so that we can 894 * re-open block-0 in near future. 895 * 6.2) Link is busy and keeps on receiving packets. This is a simple 896 * case and __packet_lookup_frame_in_block will check if block-0 897 * is free and can now be re-used. 898 */ 899 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 900 struct packet_sock *po) 901 { 902 pkc->reset_pending_on_curr_blk = 1; 903 po->stats.stats3.tp_freeze_q_cnt++; 904 } 905 906 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 907 908 /* 909 * If the next block is free then we will dispatch it 910 * and return a good offset. 911 * Else, we will freeze the queue. 912 * So, caller must check the return value. 913 */ 914 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 915 struct packet_sock *po) 916 { 917 struct tpacket_block_desc *pbd; 918 919 smp_rmb(); 920 921 /* 1. Get current block num */ 922 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 923 924 /* 2. If this block is currently in_use then freeze the queue */ 925 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 926 prb_freeze_queue(pkc, po); 927 return NULL; 928 } 929 930 /* 931 * 3. 932 * open this block and return the offset where the first packet 933 * needs to get stored. 934 */ 935 prb_open_block(pkc, pbd); 936 return (void *)pkc->nxt_offset; 937 } 938 939 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 940 struct packet_sock *po, unsigned int status) 941 { 942 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 943 944 /* retire/close the current block */ 945 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 946 /* 947 * Plug the case where copy_bits() is in progress on 948 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 949 * have space to copy the pkt in the current block and 950 * called prb_retire_current_block() 951 * 952 * We don't need to worry about the TMO case because 953 * the timer-handler already handled this case. 954 */ 955 if (!(status & TP_STATUS_BLK_TMO)) { 956 while (atomic_read(&pkc->blk_fill_in_prog)) { 957 /* Waiting for skb_copy_bits to finish... */ 958 cpu_relax(); 959 } 960 } 961 prb_close_block(pkc, pbd, po, status); 962 return; 963 } 964 } 965 966 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc, 967 struct tpacket_block_desc *pbd) 968 { 969 return TP_STATUS_USER & BLOCK_STATUS(pbd); 970 } 971 972 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 973 { 974 return pkc->reset_pending_on_curr_blk; 975 } 976 977 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 978 { 979 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 980 atomic_dec(&pkc->blk_fill_in_prog); 981 } 982 983 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 984 struct tpacket3_hdr *ppd) 985 { 986 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 987 } 988 989 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 990 struct tpacket3_hdr *ppd) 991 { 992 ppd->hv1.tp_rxhash = 0; 993 } 994 995 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 996 struct tpacket3_hdr *ppd) 997 { 998 if (skb_vlan_tag_present(pkc->skb)) { 999 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 1000 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 1001 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 1002 } else { 1003 ppd->hv1.tp_vlan_tci = 0; 1004 ppd->hv1.tp_vlan_tpid = 0; 1005 ppd->tp_status = TP_STATUS_AVAILABLE; 1006 } 1007 } 1008 1009 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 1010 struct tpacket3_hdr *ppd) 1011 { 1012 ppd->hv1.tp_padding = 0; 1013 prb_fill_vlan_info(pkc, ppd); 1014 1015 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 1016 prb_fill_rxhash(pkc, ppd); 1017 else 1018 prb_clear_rxhash(pkc, ppd); 1019 } 1020 1021 static void prb_fill_curr_block(char *curr, 1022 struct tpacket_kbdq_core *pkc, 1023 struct tpacket_block_desc *pbd, 1024 unsigned int len) 1025 { 1026 struct tpacket3_hdr *ppd; 1027 1028 ppd = (struct tpacket3_hdr *)curr; 1029 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1030 pkc->prev = curr; 1031 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1032 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1033 BLOCK_NUM_PKTS(pbd) += 1; 1034 atomic_inc(&pkc->blk_fill_in_prog); 1035 prb_run_all_ft_ops(pkc, ppd); 1036 } 1037 1038 /* Assumes caller has the sk->rx_queue.lock */ 1039 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1040 struct sk_buff *skb, 1041 int status, 1042 unsigned int len 1043 ) 1044 { 1045 struct tpacket_kbdq_core *pkc; 1046 struct tpacket_block_desc *pbd; 1047 char *curr, *end; 1048 1049 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1050 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1051 1052 /* Queue is frozen when user space is lagging behind */ 1053 if (prb_queue_frozen(pkc)) { 1054 /* 1055 * Check if that last block which caused the queue to freeze, 1056 * is still in_use by user-space. 1057 */ 1058 if (prb_curr_blk_in_use(pkc, pbd)) { 1059 /* Can't record this packet */ 1060 return NULL; 1061 } else { 1062 /* 1063 * Ok, the block was released by user-space. 1064 * Now let's open that block. 1065 * opening a block also thaws the queue. 1066 * Thawing is a side effect. 1067 */ 1068 prb_open_block(pkc, pbd); 1069 } 1070 } 1071 1072 smp_mb(); 1073 curr = pkc->nxt_offset; 1074 pkc->skb = skb; 1075 end = (char *)pbd + pkc->kblk_size; 1076 1077 /* first try the current block */ 1078 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1079 prb_fill_curr_block(curr, pkc, pbd, len); 1080 return (void *)curr; 1081 } 1082 1083 /* Ok, close the current block */ 1084 prb_retire_current_block(pkc, po, 0); 1085 1086 /* Now, try to dispatch the next block */ 1087 curr = (char *)prb_dispatch_next_block(pkc, po); 1088 if (curr) { 1089 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1090 prb_fill_curr_block(curr, pkc, pbd, len); 1091 return (void *)curr; 1092 } 1093 1094 /* 1095 * No free blocks are available.user_space hasn't caught up yet. 1096 * Queue was just frozen and now this packet will get dropped. 1097 */ 1098 return NULL; 1099 } 1100 1101 static void *packet_current_rx_frame(struct packet_sock *po, 1102 struct sk_buff *skb, 1103 int status, unsigned int len) 1104 { 1105 char *curr = NULL; 1106 switch (po->tp_version) { 1107 case TPACKET_V1: 1108 case TPACKET_V2: 1109 curr = packet_lookup_frame(po, &po->rx_ring, 1110 po->rx_ring.head, status); 1111 return curr; 1112 case TPACKET_V3: 1113 return __packet_lookup_frame_in_block(po, skb, status, len); 1114 default: 1115 WARN(1, "TPACKET version not supported\n"); 1116 BUG(); 1117 return NULL; 1118 } 1119 } 1120 1121 static void *prb_lookup_block(struct packet_sock *po, 1122 struct packet_ring_buffer *rb, 1123 unsigned int idx, 1124 int status) 1125 { 1126 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1127 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1128 1129 if (status != BLOCK_STATUS(pbd)) 1130 return NULL; 1131 return pbd; 1132 } 1133 1134 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1135 { 1136 unsigned int prev; 1137 if (rb->prb_bdqc.kactive_blk_num) 1138 prev = rb->prb_bdqc.kactive_blk_num-1; 1139 else 1140 prev = rb->prb_bdqc.knum_blocks-1; 1141 return prev; 1142 } 1143 1144 /* Assumes caller has held the rx_queue.lock */ 1145 static void *__prb_previous_block(struct packet_sock *po, 1146 struct packet_ring_buffer *rb, 1147 int status) 1148 { 1149 unsigned int previous = prb_previous_blk_num(rb); 1150 return prb_lookup_block(po, rb, previous, status); 1151 } 1152 1153 static void *packet_previous_rx_frame(struct packet_sock *po, 1154 struct packet_ring_buffer *rb, 1155 int status) 1156 { 1157 if (po->tp_version <= TPACKET_V2) 1158 return packet_previous_frame(po, rb, status); 1159 1160 return __prb_previous_block(po, rb, status); 1161 } 1162 1163 static void packet_increment_rx_head(struct packet_sock *po, 1164 struct packet_ring_buffer *rb) 1165 { 1166 switch (po->tp_version) { 1167 case TPACKET_V1: 1168 case TPACKET_V2: 1169 return packet_increment_head(rb); 1170 case TPACKET_V3: 1171 default: 1172 WARN(1, "TPACKET version not supported.\n"); 1173 BUG(); 1174 return; 1175 } 1176 } 1177 1178 static void *packet_previous_frame(struct packet_sock *po, 1179 struct packet_ring_buffer *rb, 1180 int status) 1181 { 1182 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1183 return packet_lookup_frame(po, rb, previous, status); 1184 } 1185 1186 static void packet_increment_head(struct packet_ring_buffer *buff) 1187 { 1188 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1189 } 1190 1191 static void packet_inc_pending(struct packet_ring_buffer *rb) 1192 { 1193 this_cpu_inc(*rb->pending_refcnt); 1194 } 1195 1196 static void packet_dec_pending(struct packet_ring_buffer *rb) 1197 { 1198 this_cpu_dec(*rb->pending_refcnt); 1199 } 1200 1201 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1202 { 1203 unsigned int refcnt = 0; 1204 int cpu; 1205 1206 /* We don't use pending refcount in rx_ring. */ 1207 if (rb->pending_refcnt == NULL) 1208 return 0; 1209 1210 for_each_possible_cpu(cpu) 1211 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1212 1213 return refcnt; 1214 } 1215 1216 static int packet_alloc_pending(struct packet_sock *po) 1217 { 1218 po->rx_ring.pending_refcnt = NULL; 1219 1220 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1221 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1222 return -ENOBUFS; 1223 1224 return 0; 1225 } 1226 1227 static void packet_free_pending(struct packet_sock *po) 1228 { 1229 free_percpu(po->tx_ring.pending_refcnt); 1230 } 1231 1232 #define ROOM_POW_OFF 2 1233 #define ROOM_NONE 0x0 1234 #define ROOM_LOW 0x1 1235 #define ROOM_NORMAL 0x2 1236 1237 static bool __tpacket_has_room(struct packet_sock *po, int pow_off) 1238 { 1239 int idx, len; 1240 1241 len = po->rx_ring.frame_max + 1; 1242 idx = po->rx_ring.head; 1243 if (pow_off) 1244 idx += len >> pow_off; 1245 if (idx >= len) 1246 idx -= len; 1247 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1248 } 1249 1250 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off) 1251 { 1252 int idx, len; 1253 1254 len = po->rx_ring.prb_bdqc.knum_blocks; 1255 idx = po->rx_ring.prb_bdqc.kactive_blk_num; 1256 if (pow_off) 1257 idx += len >> pow_off; 1258 if (idx >= len) 1259 idx -= len; 1260 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1261 } 1262 1263 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1264 { 1265 struct sock *sk = &po->sk; 1266 int ret = ROOM_NONE; 1267 1268 if (po->prot_hook.func != tpacket_rcv) { 1269 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1270 - (skb ? skb->truesize : 0); 1271 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF)) 1272 return ROOM_NORMAL; 1273 else if (avail > 0) 1274 return ROOM_LOW; 1275 else 1276 return ROOM_NONE; 1277 } 1278 1279 if (po->tp_version == TPACKET_V3) { 1280 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1281 ret = ROOM_NORMAL; 1282 else if (__tpacket_v3_has_room(po, 0)) 1283 ret = ROOM_LOW; 1284 } else { 1285 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1286 ret = ROOM_NORMAL; 1287 else if (__tpacket_has_room(po, 0)) 1288 ret = ROOM_LOW; 1289 } 1290 1291 return ret; 1292 } 1293 1294 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1295 { 1296 int ret; 1297 bool has_room; 1298 1299 spin_lock_bh(&po->sk.sk_receive_queue.lock); 1300 ret = __packet_rcv_has_room(po, skb); 1301 has_room = ret == ROOM_NORMAL; 1302 if (po->pressure == has_room) 1303 po->pressure = !has_room; 1304 spin_unlock_bh(&po->sk.sk_receive_queue.lock); 1305 1306 return ret; 1307 } 1308 1309 static void packet_sock_destruct(struct sock *sk) 1310 { 1311 skb_queue_purge(&sk->sk_error_queue); 1312 1313 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1314 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 1315 1316 if (!sock_flag(sk, SOCK_DEAD)) { 1317 pr_err("Attempt to release alive packet socket: %p\n", sk); 1318 return; 1319 } 1320 1321 sk_refcnt_debug_dec(sk); 1322 } 1323 1324 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1325 { 1326 u32 rxhash; 1327 int i, count = 0; 1328 1329 rxhash = skb_get_hash(skb); 1330 for (i = 0; i < ROLLOVER_HLEN; i++) 1331 if (po->rollover->history[i] == rxhash) 1332 count++; 1333 1334 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash; 1335 return count > (ROLLOVER_HLEN >> 1); 1336 } 1337 1338 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1339 struct sk_buff *skb, 1340 unsigned int num) 1341 { 1342 return reciprocal_scale(skb_get_hash(skb), num); 1343 } 1344 1345 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1346 struct sk_buff *skb, 1347 unsigned int num) 1348 { 1349 unsigned int val = atomic_inc_return(&f->rr_cur); 1350 1351 return val % num; 1352 } 1353 1354 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1355 struct sk_buff *skb, 1356 unsigned int num) 1357 { 1358 return smp_processor_id() % num; 1359 } 1360 1361 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1362 struct sk_buff *skb, 1363 unsigned int num) 1364 { 1365 return prandom_u32_max(num); 1366 } 1367 1368 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1369 struct sk_buff *skb, 1370 unsigned int idx, bool try_self, 1371 unsigned int num) 1372 { 1373 struct packet_sock *po, *po_next, *po_skip = NULL; 1374 unsigned int i, j, room = ROOM_NONE; 1375 1376 po = pkt_sk(f->arr[idx]); 1377 1378 if (try_self) { 1379 room = packet_rcv_has_room(po, skb); 1380 if (room == ROOM_NORMAL || 1381 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1382 return idx; 1383 po_skip = po; 1384 } 1385 1386 i = j = min_t(int, po->rollover->sock, num - 1); 1387 do { 1388 po_next = pkt_sk(f->arr[i]); 1389 if (po_next != po_skip && !po_next->pressure && 1390 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1391 if (i != j) 1392 po->rollover->sock = i; 1393 atomic_long_inc(&po->rollover->num); 1394 if (room == ROOM_LOW) 1395 atomic_long_inc(&po->rollover->num_huge); 1396 return i; 1397 } 1398 1399 if (++i == num) 1400 i = 0; 1401 } while (i != j); 1402 1403 atomic_long_inc(&po->rollover->num_failed); 1404 return idx; 1405 } 1406 1407 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1408 struct sk_buff *skb, 1409 unsigned int num) 1410 { 1411 return skb_get_queue_mapping(skb) % num; 1412 } 1413 1414 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1415 struct sk_buff *skb, 1416 unsigned int num) 1417 { 1418 struct bpf_prog *prog; 1419 unsigned int ret = 0; 1420 1421 rcu_read_lock(); 1422 prog = rcu_dereference(f->bpf_prog); 1423 if (prog) 1424 ret = BPF_PROG_RUN(prog, skb) % num; 1425 rcu_read_unlock(); 1426 1427 return ret; 1428 } 1429 1430 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1431 { 1432 return f->flags & (flag >> 8); 1433 } 1434 1435 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1436 struct packet_type *pt, struct net_device *orig_dev) 1437 { 1438 struct packet_fanout *f = pt->af_packet_priv; 1439 unsigned int num = READ_ONCE(f->num_members); 1440 struct packet_sock *po; 1441 unsigned int idx; 1442 1443 if (!net_eq(dev_net(dev), read_pnet(&f->net)) || 1444 !num) { 1445 kfree_skb(skb); 1446 return 0; 1447 } 1448 1449 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1450 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET); 1451 if (!skb) 1452 return 0; 1453 } 1454 switch (f->type) { 1455 case PACKET_FANOUT_HASH: 1456 default: 1457 idx = fanout_demux_hash(f, skb, num); 1458 break; 1459 case PACKET_FANOUT_LB: 1460 idx = fanout_demux_lb(f, skb, num); 1461 break; 1462 case PACKET_FANOUT_CPU: 1463 idx = fanout_demux_cpu(f, skb, num); 1464 break; 1465 case PACKET_FANOUT_RND: 1466 idx = fanout_demux_rnd(f, skb, num); 1467 break; 1468 case PACKET_FANOUT_QM: 1469 idx = fanout_demux_qm(f, skb, num); 1470 break; 1471 case PACKET_FANOUT_ROLLOVER: 1472 idx = fanout_demux_rollover(f, skb, 0, false, num); 1473 break; 1474 case PACKET_FANOUT_CBPF: 1475 case PACKET_FANOUT_EBPF: 1476 idx = fanout_demux_bpf(f, skb, num); 1477 break; 1478 } 1479 1480 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1481 idx = fanout_demux_rollover(f, skb, idx, true, num); 1482 1483 po = pkt_sk(f->arr[idx]); 1484 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1485 } 1486 1487 DEFINE_MUTEX(fanout_mutex); 1488 EXPORT_SYMBOL_GPL(fanout_mutex); 1489 static LIST_HEAD(fanout_list); 1490 1491 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1492 { 1493 struct packet_fanout *f = po->fanout; 1494 1495 spin_lock(&f->lock); 1496 f->arr[f->num_members] = sk; 1497 smp_wmb(); 1498 f->num_members++; 1499 spin_unlock(&f->lock); 1500 } 1501 1502 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1503 { 1504 struct packet_fanout *f = po->fanout; 1505 int i; 1506 1507 spin_lock(&f->lock); 1508 for (i = 0; i < f->num_members; i++) { 1509 if (f->arr[i] == sk) 1510 break; 1511 } 1512 BUG_ON(i >= f->num_members); 1513 f->arr[i] = f->arr[f->num_members - 1]; 1514 f->num_members--; 1515 spin_unlock(&f->lock); 1516 } 1517 1518 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1519 { 1520 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout) 1521 return true; 1522 1523 return false; 1524 } 1525 1526 static void fanout_init_data(struct packet_fanout *f) 1527 { 1528 switch (f->type) { 1529 case PACKET_FANOUT_LB: 1530 atomic_set(&f->rr_cur, 0); 1531 break; 1532 case PACKET_FANOUT_CBPF: 1533 case PACKET_FANOUT_EBPF: 1534 RCU_INIT_POINTER(f->bpf_prog, NULL); 1535 break; 1536 } 1537 } 1538 1539 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1540 { 1541 struct bpf_prog *old; 1542 1543 spin_lock(&f->lock); 1544 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1545 rcu_assign_pointer(f->bpf_prog, new); 1546 spin_unlock(&f->lock); 1547 1548 if (old) { 1549 synchronize_net(); 1550 bpf_prog_destroy(old); 1551 } 1552 } 1553 1554 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data, 1555 unsigned int len) 1556 { 1557 struct bpf_prog *new; 1558 struct sock_fprog fprog; 1559 int ret; 1560 1561 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1562 return -EPERM; 1563 if (len != sizeof(fprog)) 1564 return -EINVAL; 1565 if (copy_from_user(&fprog, data, len)) 1566 return -EFAULT; 1567 1568 ret = bpf_prog_create_from_user(&new, &fprog, NULL); 1569 if (ret) 1570 return ret; 1571 1572 __fanout_set_data_bpf(po->fanout, new); 1573 return 0; 1574 } 1575 1576 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data, 1577 unsigned int len) 1578 { 1579 struct bpf_prog *new; 1580 u32 fd; 1581 1582 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1583 return -EPERM; 1584 if (len != sizeof(fd)) 1585 return -EINVAL; 1586 if (copy_from_user(&fd, data, len)) 1587 return -EFAULT; 1588 1589 new = bpf_prog_get(fd); 1590 if (IS_ERR(new)) 1591 return PTR_ERR(new); 1592 if (new->type != BPF_PROG_TYPE_SOCKET_FILTER) { 1593 bpf_prog_put(new); 1594 return -EINVAL; 1595 } 1596 1597 __fanout_set_data_bpf(po->fanout, new); 1598 return 0; 1599 } 1600 1601 static int fanout_set_data(struct packet_sock *po, char __user *data, 1602 unsigned int len) 1603 { 1604 switch (po->fanout->type) { 1605 case PACKET_FANOUT_CBPF: 1606 return fanout_set_data_cbpf(po, data, len); 1607 case PACKET_FANOUT_EBPF: 1608 return fanout_set_data_ebpf(po, data, len); 1609 default: 1610 return -EINVAL; 1611 }; 1612 } 1613 1614 static void fanout_release_data(struct packet_fanout *f) 1615 { 1616 switch (f->type) { 1617 case PACKET_FANOUT_CBPF: 1618 case PACKET_FANOUT_EBPF: 1619 __fanout_set_data_bpf(f, NULL); 1620 }; 1621 } 1622 1623 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1624 { 1625 struct packet_sock *po = pkt_sk(sk); 1626 struct packet_fanout *f, *match; 1627 u8 type = type_flags & 0xff; 1628 u8 flags = type_flags >> 8; 1629 int err; 1630 1631 switch (type) { 1632 case PACKET_FANOUT_ROLLOVER: 1633 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1634 return -EINVAL; 1635 case PACKET_FANOUT_HASH: 1636 case PACKET_FANOUT_LB: 1637 case PACKET_FANOUT_CPU: 1638 case PACKET_FANOUT_RND: 1639 case PACKET_FANOUT_QM: 1640 case PACKET_FANOUT_CBPF: 1641 case PACKET_FANOUT_EBPF: 1642 break; 1643 default: 1644 return -EINVAL; 1645 } 1646 1647 if (!po->running) 1648 return -EINVAL; 1649 1650 if (po->fanout) 1651 return -EALREADY; 1652 1653 if (type == PACKET_FANOUT_ROLLOVER || 1654 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1655 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL); 1656 if (!po->rollover) 1657 return -ENOMEM; 1658 atomic_long_set(&po->rollover->num, 0); 1659 atomic_long_set(&po->rollover->num_huge, 0); 1660 atomic_long_set(&po->rollover->num_failed, 0); 1661 } 1662 1663 mutex_lock(&fanout_mutex); 1664 match = NULL; 1665 list_for_each_entry(f, &fanout_list, list) { 1666 if (f->id == id && 1667 read_pnet(&f->net) == sock_net(sk)) { 1668 match = f; 1669 break; 1670 } 1671 } 1672 err = -EINVAL; 1673 if (match && match->flags != flags) 1674 goto out; 1675 if (!match) { 1676 err = -ENOMEM; 1677 match = kzalloc(sizeof(*match), GFP_KERNEL); 1678 if (!match) 1679 goto out; 1680 write_pnet(&match->net, sock_net(sk)); 1681 match->id = id; 1682 match->type = type; 1683 match->flags = flags; 1684 INIT_LIST_HEAD(&match->list); 1685 spin_lock_init(&match->lock); 1686 atomic_set(&match->sk_ref, 0); 1687 fanout_init_data(match); 1688 match->prot_hook.type = po->prot_hook.type; 1689 match->prot_hook.dev = po->prot_hook.dev; 1690 match->prot_hook.func = packet_rcv_fanout; 1691 match->prot_hook.af_packet_priv = match; 1692 match->prot_hook.id_match = match_fanout_group; 1693 dev_add_pack(&match->prot_hook); 1694 list_add(&match->list, &fanout_list); 1695 } 1696 err = -EINVAL; 1697 if (match->type == type && 1698 match->prot_hook.type == po->prot_hook.type && 1699 match->prot_hook.dev == po->prot_hook.dev) { 1700 err = -ENOSPC; 1701 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1702 __dev_remove_pack(&po->prot_hook); 1703 po->fanout = match; 1704 atomic_inc(&match->sk_ref); 1705 __fanout_link(sk, po); 1706 err = 0; 1707 } 1708 } 1709 out: 1710 mutex_unlock(&fanout_mutex); 1711 if (err) { 1712 kfree(po->rollover); 1713 po->rollover = NULL; 1714 } 1715 return err; 1716 } 1717 1718 static void fanout_release(struct sock *sk) 1719 { 1720 struct packet_sock *po = pkt_sk(sk); 1721 struct packet_fanout *f; 1722 1723 f = po->fanout; 1724 if (!f) 1725 return; 1726 1727 mutex_lock(&fanout_mutex); 1728 po->fanout = NULL; 1729 1730 if (atomic_dec_and_test(&f->sk_ref)) { 1731 list_del(&f->list); 1732 dev_remove_pack(&f->prot_hook); 1733 fanout_release_data(f); 1734 kfree(f); 1735 } 1736 mutex_unlock(&fanout_mutex); 1737 1738 if (po->rollover) 1739 kfree_rcu(po->rollover, rcu); 1740 } 1741 1742 static const struct proto_ops packet_ops; 1743 1744 static const struct proto_ops packet_ops_spkt; 1745 1746 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1747 struct packet_type *pt, struct net_device *orig_dev) 1748 { 1749 struct sock *sk; 1750 struct sockaddr_pkt *spkt; 1751 1752 /* 1753 * When we registered the protocol we saved the socket in the data 1754 * field for just this event. 1755 */ 1756 1757 sk = pt->af_packet_priv; 1758 1759 /* 1760 * Yank back the headers [hope the device set this 1761 * right or kerboom...] 1762 * 1763 * Incoming packets have ll header pulled, 1764 * push it back. 1765 * 1766 * For outgoing ones skb->data == skb_mac_header(skb) 1767 * so that this procedure is noop. 1768 */ 1769 1770 if (skb->pkt_type == PACKET_LOOPBACK) 1771 goto out; 1772 1773 if (!net_eq(dev_net(dev), sock_net(sk))) 1774 goto out; 1775 1776 skb = skb_share_check(skb, GFP_ATOMIC); 1777 if (skb == NULL) 1778 goto oom; 1779 1780 /* drop any routing info */ 1781 skb_dst_drop(skb); 1782 1783 /* drop conntrack reference */ 1784 nf_reset(skb); 1785 1786 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1787 1788 skb_push(skb, skb->data - skb_mac_header(skb)); 1789 1790 /* 1791 * The SOCK_PACKET socket receives _all_ frames. 1792 */ 1793 1794 spkt->spkt_family = dev->type; 1795 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1796 spkt->spkt_protocol = skb->protocol; 1797 1798 /* 1799 * Charge the memory to the socket. This is done specifically 1800 * to prevent sockets using all the memory up. 1801 */ 1802 1803 if (sock_queue_rcv_skb(sk, skb) == 0) 1804 return 0; 1805 1806 out: 1807 kfree_skb(skb); 1808 oom: 1809 return 0; 1810 } 1811 1812 1813 /* 1814 * Output a raw packet to a device layer. This bypasses all the other 1815 * protocol layers and you must therefore supply it with a complete frame 1816 */ 1817 1818 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1819 size_t len) 1820 { 1821 struct sock *sk = sock->sk; 1822 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1823 struct sk_buff *skb = NULL; 1824 struct net_device *dev; 1825 __be16 proto = 0; 1826 int err; 1827 int extra_len = 0; 1828 1829 /* 1830 * Get and verify the address. 1831 */ 1832 1833 if (saddr) { 1834 if (msg->msg_namelen < sizeof(struct sockaddr)) 1835 return -EINVAL; 1836 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1837 proto = saddr->spkt_protocol; 1838 } else 1839 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1840 1841 /* 1842 * Find the device first to size check it 1843 */ 1844 1845 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1846 retry: 1847 rcu_read_lock(); 1848 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1849 err = -ENODEV; 1850 if (dev == NULL) 1851 goto out_unlock; 1852 1853 err = -ENETDOWN; 1854 if (!(dev->flags & IFF_UP)) 1855 goto out_unlock; 1856 1857 /* 1858 * You may not queue a frame bigger than the mtu. This is the lowest level 1859 * raw protocol and you must do your own fragmentation at this level. 1860 */ 1861 1862 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1863 if (!netif_supports_nofcs(dev)) { 1864 err = -EPROTONOSUPPORT; 1865 goto out_unlock; 1866 } 1867 extra_len = 4; /* We're doing our own CRC */ 1868 } 1869 1870 err = -EMSGSIZE; 1871 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1872 goto out_unlock; 1873 1874 if (!skb) { 1875 size_t reserved = LL_RESERVED_SPACE(dev); 1876 int tlen = dev->needed_tailroom; 1877 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1878 1879 rcu_read_unlock(); 1880 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1881 if (skb == NULL) 1882 return -ENOBUFS; 1883 /* FIXME: Save some space for broken drivers that write a hard 1884 * header at transmission time by themselves. PPP is the notable 1885 * one here. This should really be fixed at the driver level. 1886 */ 1887 skb_reserve(skb, reserved); 1888 skb_reset_network_header(skb); 1889 1890 /* Try to align data part correctly */ 1891 if (hhlen) { 1892 skb->data -= hhlen; 1893 skb->tail -= hhlen; 1894 if (len < hhlen) 1895 skb_reset_network_header(skb); 1896 } 1897 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1898 if (err) 1899 goto out_free; 1900 goto retry; 1901 } 1902 1903 if (len > (dev->mtu + dev->hard_header_len + extra_len)) { 1904 /* Earlier code assumed this would be a VLAN pkt, 1905 * double-check this now that we have the actual 1906 * packet in hand. 1907 */ 1908 struct ethhdr *ehdr; 1909 skb_reset_mac_header(skb); 1910 ehdr = eth_hdr(skb); 1911 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 1912 err = -EMSGSIZE; 1913 goto out_unlock; 1914 } 1915 } 1916 1917 skb->protocol = proto; 1918 skb->dev = dev; 1919 skb->priority = sk->sk_priority; 1920 skb->mark = sk->sk_mark; 1921 1922 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 1923 1924 if (unlikely(extra_len == 4)) 1925 skb->no_fcs = 1; 1926 1927 skb_probe_transport_header(skb, 0); 1928 1929 dev_queue_xmit(skb); 1930 rcu_read_unlock(); 1931 return len; 1932 1933 out_unlock: 1934 rcu_read_unlock(); 1935 out_free: 1936 kfree_skb(skb); 1937 return err; 1938 } 1939 1940 static unsigned int run_filter(const struct sk_buff *skb, 1941 const struct sock *sk, 1942 unsigned int res) 1943 { 1944 struct sk_filter *filter; 1945 1946 rcu_read_lock(); 1947 filter = rcu_dereference(sk->sk_filter); 1948 if (filter != NULL) 1949 res = SK_RUN_FILTER(filter, skb); 1950 rcu_read_unlock(); 1951 1952 return res; 1953 } 1954 1955 /* 1956 * This function makes lazy skb cloning in hope that most of packets 1957 * are discarded by BPF. 1958 * 1959 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 1960 * and skb->cb are mangled. It works because (and until) packets 1961 * falling here are owned by current CPU. Output packets are cloned 1962 * by dev_queue_xmit_nit(), input packets are processed by net_bh 1963 * sequencially, so that if we return skb to original state on exit, 1964 * we will not harm anyone. 1965 */ 1966 1967 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 1968 struct packet_type *pt, struct net_device *orig_dev) 1969 { 1970 struct sock *sk; 1971 struct sockaddr_ll *sll; 1972 struct packet_sock *po; 1973 u8 *skb_head = skb->data; 1974 int skb_len = skb->len; 1975 unsigned int snaplen, res; 1976 1977 if (skb->pkt_type == PACKET_LOOPBACK) 1978 goto drop; 1979 1980 sk = pt->af_packet_priv; 1981 po = pkt_sk(sk); 1982 1983 if (!net_eq(dev_net(dev), sock_net(sk))) 1984 goto drop; 1985 1986 skb->dev = dev; 1987 1988 if (dev->header_ops) { 1989 /* The device has an explicit notion of ll header, 1990 * exported to higher levels. 1991 * 1992 * Otherwise, the device hides details of its frame 1993 * structure, so that corresponding packet head is 1994 * never delivered to user. 1995 */ 1996 if (sk->sk_type != SOCK_DGRAM) 1997 skb_push(skb, skb->data - skb_mac_header(skb)); 1998 else if (skb->pkt_type == PACKET_OUTGOING) { 1999 /* Special case: outgoing packets have ll header at head */ 2000 skb_pull(skb, skb_network_offset(skb)); 2001 } 2002 } 2003 2004 snaplen = skb->len; 2005 2006 res = run_filter(skb, sk, snaplen); 2007 if (!res) 2008 goto drop_n_restore; 2009 if (snaplen > res) 2010 snaplen = res; 2011 2012 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2013 goto drop_n_acct; 2014 2015 if (skb_shared(skb)) { 2016 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2017 if (nskb == NULL) 2018 goto drop_n_acct; 2019 2020 if (skb_head != skb->data) { 2021 skb->data = skb_head; 2022 skb->len = skb_len; 2023 } 2024 consume_skb(skb); 2025 skb = nskb; 2026 } 2027 2028 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2029 2030 sll = &PACKET_SKB_CB(skb)->sa.ll; 2031 sll->sll_hatype = dev->type; 2032 sll->sll_pkttype = skb->pkt_type; 2033 if (unlikely(po->origdev)) 2034 sll->sll_ifindex = orig_dev->ifindex; 2035 else 2036 sll->sll_ifindex = dev->ifindex; 2037 2038 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2039 2040 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2041 * Use their space for storing the original skb length. 2042 */ 2043 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2044 2045 if (pskb_trim(skb, snaplen)) 2046 goto drop_n_acct; 2047 2048 skb_set_owner_r(skb, sk); 2049 skb->dev = NULL; 2050 skb_dst_drop(skb); 2051 2052 /* drop conntrack reference */ 2053 nf_reset(skb); 2054 2055 spin_lock(&sk->sk_receive_queue.lock); 2056 po->stats.stats1.tp_packets++; 2057 sock_skb_set_dropcount(sk, skb); 2058 __skb_queue_tail(&sk->sk_receive_queue, skb); 2059 spin_unlock(&sk->sk_receive_queue.lock); 2060 sk->sk_data_ready(sk); 2061 return 0; 2062 2063 drop_n_acct: 2064 spin_lock(&sk->sk_receive_queue.lock); 2065 po->stats.stats1.tp_drops++; 2066 atomic_inc(&sk->sk_drops); 2067 spin_unlock(&sk->sk_receive_queue.lock); 2068 2069 drop_n_restore: 2070 if (skb_head != skb->data && skb_shared(skb)) { 2071 skb->data = skb_head; 2072 skb->len = skb_len; 2073 } 2074 drop: 2075 consume_skb(skb); 2076 return 0; 2077 } 2078 2079 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2080 struct packet_type *pt, struct net_device *orig_dev) 2081 { 2082 struct sock *sk; 2083 struct packet_sock *po; 2084 struct sockaddr_ll *sll; 2085 union tpacket_uhdr h; 2086 u8 *skb_head = skb->data; 2087 int skb_len = skb->len; 2088 unsigned int snaplen, res; 2089 unsigned long status = TP_STATUS_USER; 2090 unsigned short macoff, netoff, hdrlen; 2091 struct sk_buff *copy_skb = NULL; 2092 struct timespec ts; 2093 __u32 ts_status; 2094 2095 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2096 * We may add members to them until current aligned size without forcing 2097 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2098 */ 2099 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2100 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2101 2102 if (skb->pkt_type == PACKET_LOOPBACK) 2103 goto drop; 2104 2105 sk = pt->af_packet_priv; 2106 po = pkt_sk(sk); 2107 2108 if (!net_eq(dev_net(dev), sock_net(sk))) 2109 goto drop; 2110 2111 if (dev->header_ops) { 2112 if (sk->sk_type != SOCK_DGRAM) 2113 skb_push(skb, skb->data - skb_mac_header(skb)); 2114 else if (skb->pkt_type == PACKET_OUTGOING) { 2115 /* Special case: outgoing packets have ll header at head */ 2116 skb_pull(skb, skb_network_offset(skb)); 2117 } 2118 } 2119 2120 snaplen = skb->len; 2121 2122 res = run_filter(skb, sk, snaplen); 2123 if (!res) 2124 goto drop_n_restore; 2125 2126 if (skb->ip_summed == CHECKSUM_PARTIAL) 2127 status |= TP_STATUS_CSUMNOTREADY; 2128 else if (skb->pkt_type != PACKET_OUTGOING && 2129 (skb->ip_summed == CHECKSUM_COMPLETE || 2130 skb_csum_unnecessary(skb))) 2131 status |= TP_STATUS_CSUM_VALID; 2132 2133 if (snaplen > res) 2134 snaplen = res; 2135 2136 if (sk->sk_type == SOCK_DGRAM) { 2137 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2138 po->tp_reserve; 2139 } else { 2140 unsigned int maclen = skb_network_offset(skb); 2141 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2142 (maclen < 16 ? 16 : maclen)) + 2143 po->tp_reserve; 2144 macoff = netoff - maclen; 2145 } 2146 if (po->tp_version <= TPACKET_V2) { 2147 if (macoff + snaplen > po->rx_ring.frame_size) { 2148 if (po->copy_thresh && 2149 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2150 if (skb_shared(skb)) { 2151 copy_skb = skb_clone(skb, GFP_ATOMIC); 2152 } else { 2153 copy_skb = skb_get(skb); 2154 skb_head = skb->data; 2155 } 2156 if (copy_skb) 2157 skb_set_owner_r(copy_skb, sk); 2158 } 2159 snaplen = po->rx_ring.frame_size - macoff; 2160 if ((int)snaplen < 0) 2161 snaplen = 0; 2162 } 2163 } else if (unlikely(macoff + snaplen > 2164 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2165 u32 nval; 2166 2167 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2168 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2169 snaplen, nval, macoff); 2170 snaplen = nval; 2171 if (unlikely((int)snaplen < 0)) { 2172 snaplen = 0; 2173 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2174 } 2175 } 2176 spin_lock(&sk->sk_receive_queue.lock); 2177 h.raw = packet_current_rx_frame(po, skb, 2178 TP_STATUS_KERNEL, (macoff+snaplen)); 2179 if (!h.raw) 2180 goto ring_is_full; 2181 if (po->tp_version <= TPACKET_V2) { 2182 packet_increment_rx_head(po, &po->rx_ring); 2183 /* 2184 * LOSING will be reported till you read the stats, 2185 * because it's COR - Clear On Read. 2186 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2187 * at packet level. 2188 */ 2189 if (po->stats.stats1.tp_drops) 2190 status |= TP_STATUS_LOSING; 2191 } 2192 po->stats.stats1.tp_packets++; 2193 if (copy_skb) { 2194 status |= TP_STATUS_COPY; 2195 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2196 } 2197 spin_unlock(&sk->sk_receive_queue.lock); 2198 2199 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2200 2201 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2202 getnstimeofday(&ts); 2203 2204 status |= ts_status; 2205 2206 switch (po->tp_version) { 2207 case TPACKET_V1: 2208 h.h1->tp_len = skb->len; 2209 h.h1->tp_snaplen = snaplen; 2210 h.h1->tp_mac = macoff; 2211 h.h1->tp_net = netoff; 2212 h.h1->tp_sec = ts.tv_sec; 2213 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2214 hdrlen = sizeof(*h.h1); 2215 break; 2216 case TPACKET_V2: 2217 h.h2->tp_len = skb->len; 2218 h.h2->tp_snaplen = snaplen; 2219 h.h2->tp_mac = macoff; 2220 h.h2->tp_net = netoff; 2221 h.h2->tp_sec = ts.tv_sec; 2222 h.h2->tp_nsec = ts.tv_nsec; 2223 if (skb_vlan_tag_present(skb)) { 2224 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2225 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2226 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2227 } else { 2228 h.h2->tp_vlan_tci = 0; 2229 h.h2->tp_vlan_tpid = 0; 2230 } 2231 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2232 hdrlen = sizeof(*h.h2); 2233 break; 2234 case TPACKET_V3: 2235 /* tp_nxt_offset,vlan are already populated above. 2236 * So DONT clear those fields here 2237 */ 2238 h.h3->tp_status |= status; 2239 h.h3->tp_len = skb->len; 2240 h.h3->tp_snaplen = snaplen; 2241 h.h3->tp_mac = macoff; 2242 h.h3->tp_net = netoff; 2243 h.h3->tp_sec = ts.tv_sec; 2244 h.h3->tp_nsec = ts.tv_nsec; 2245 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2246 hdrlen = sizeof(*h.h3); 2247 break; 2248 default: 2249 BUG(); 2250 } 2251 2252 sll = h.raw + TPACKET_ALIGN(hdrlen); 2253 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2254 sll->sll_family = AF_PACKET; 2255 sll->sll_hatype = dev->type; 2256 sll->sll_protocol = skb->protocol; 2257 sll->sll_pkttype = skb->pkt_type; 2258 if (unlikely(po->origdev)) 2259 sll->sll_ifindex = orig_dev->ifindex; 2260 else 2261 sll->sll_ifindex = dev->ifindex; 2262 2263 smp_mb(); 2264 2265 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2266 if (po->tp_version <= TPACKET_V2) { 2267 u8 *start, *end; 2268 2269 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2270 macoff + snaplen); 2271 2272 for (start = h.raw; start < end; start += PAGE_SIZE) 2273 flush_dcache_page(pgv_to_page(start)); 2274 } 2275 smp_wmb(); 2276 #endif 2277 2278 if (po->tp_version <= TPACKET_V2) { 2279 __packet_set_status(po, h.raw, status); 2280 sk->sk_data_ready(sk); 2281 } else { 2282 prb_clear_blk_fill_status(&po->rx_ring); 2283 } 2284 2285 drop_n_restore: 2286 if (skb_head != skb->data && skb_shared(skb)) { 2287 skb->data = skb_head; 2288 skb->len = skb_len; 2289 } 2290 drop: 2291 kfree_skb(skb); 2292 return 0; 2293 2294 ring_is_full: 2295 po->stats.stats1.tp_drops++; 2296 spin_unlock(&sk->sk_receive_queue.lock); 2297 2298 sk->sk_data_ready(sk); 2299 kfree_skb(copy_skb); 2300 goto drop_n_restore; 2301 } 2302 2303 static void tpacket_destruct_skb(struct sk_buff *skb) 2304 { 2305 struct packet_sock *po = pkt_sk(skb->sk); 2306 2307 if (likely(po->tx_ring.pg_vec)) { 2308 void *ph; 2309 __u32 ts; 2310 2311 ph = skb_shinfo(skb)->destructor_arg; 2312 packet_dec_pending(&po->tx_ring); 2313 2314 ts = __packet_set_timestamp(po, ph, skb); 2315 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2316 } 2317 2318 sock_wfree(skb); 2319 } 2320 2321 static bool ll_header_truncated(const struct net_device *dev, int len) 2322 { 2323 /* net device doesn't like empty head */ 2324 if (unlikely(len <= dev->hard_header_len)) { 2325 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n", 2326 current->comm, len, dev->hard_header_len); 2327 return true; 2328 } 2329 2330 return false; 2331 } 2332 2333 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2334 void *frame, struct net_device *dev, int size_max, 2335 __be16 proto, unsigned char *addr, int hlen) 2336 { 2337 union tpacket_uhdr ph; 2338 int to_write, offset, len, tp_len, nr_frags, len_max; 2339 struct socket *sock = po->sk.sk_socket; 2340 struct page *page; 2341 void *data; 2342 int err; 2343 2344 ph.raw = frame; 2345 2346 skb->protocol = proto; 2347 skb->dev = dev; 2348 skb->priority = po->sk.sk_priority; 2349 skb->mark = po->sk.sk_mark; 2350 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags); 2351 skb_shinfo(skb)->destructor_arg = ph.raw; 2352 2353 switch (po->tp_version) { 2354 case TPACKET_V2: 2355 tp_len = ph.h2->tp_len; 2356 break; 2357 default: 2358 tp_len = ph.h1->tp_len; 2359 break; 2360 } 2361 if (unlikely(tp_len > size_max)) { 2362 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2363 return -EMSGSIZE; 2364 } 2365 2366 skb_reserve(skb, hlen); 2367 skb_reset_network_header(skb); 2368 2369 if (!packet_use_direct_xmit(po)) 2370 skb_probe_transport_header(skb, 0); 2371 if (unlikely(po->tp_tx_has_off)) { 2372 int off_min, off_max, off; 2373 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2374 off_max = po->tx_ring.frame_size - tp_len; 2375 if (sock->type == SOCK_DGRAM) { 2376 switch (po->tp_version) { 2377 case TPACKET_V2: 2378 off = ph.h2->tp_net; 2379 break; 2380 default: 2381 off = ph.h1->tp_net; 2382 break; 2383 } 2384 } else { 2385 switch (po->tp_version) { 2386 case TPACKET_V2: 2387 off = ph.h2->tp_mac; 2388 break; 2389 default: 2390 off = ph.h1->tp_mac; 2391 break; 2392 } 2393 } 2394 if (unlikely((off < off_min) || (off_max < off))) 2395 return -EINVAL; 2396 data = ph.raw + off; 2397 } else { 2398 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll); 2399 } 2400 to_write = tp_len; 2401 2402 if (sock->type == SOCK_DGRAM) { 2403 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2404 NULL, tp_len); 2405 if (unlikely(err < 0)) 2406 return -EINVAL; 2407 } else if (dev->hard_header_len) { 2408 if (ll_header_truncated(dev, tp_len)) 2409 return -EINVAL; 2410 2411 skb_push(skb, dev->hard_header_len); 2412 err = skb_store_bits(skb, 0, data, 2413 dev->hard_header_len); 2414 if (unlikely(err)) 2415 return err; 2416 2417 data += dev->hard_header_len; 2418 to_write -= dev->hard_header_len; 2419 } 2420 2421 offset = offset_in_page(data); 2422 len_max = PAGE_SIZE - offset; 2423 len = ((to_write > len_max) ? len_max : to_write); 2424 2425 skb->data_len = to_write; 2426 skb->len += to_write; 2427 skb->truesize += to_write; 2428 atomic_add(to_write, &po->sk.sk_wmem_alloc); 2429 2430 while (likely(to_write)) { 2431 nr_frags = skb_shinfo(skb)->nr_frags; 2432 2433 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2434 pr_err("Packet exceed the number of skb frags(%lu)\n", 2435 MAX_SKB_FRAGS); 2436 return -EFAULT; 2437 } 2438 2439 page = pgv_to_page(data); 2440 data += len; 2441 flush_dcache_page(page); 2442 get_page(page); 2443 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2444 to_write -= len; 2445 offset = 0; 2446 len_max = PAGE_SIZE; 2447 len = ((to_write > len_max) ? len_max : to_write); 2448 } 2449 2450 return tp_len; 2451 } 2452 2453 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2454 { 2455 struct sk_buff *skb; 2456 struct net_device *dev; 2457 __be16 proto; 2458 int err, reserve = 0; 2459 void *ph; 2460 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2461 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2462 int tp_len, size_max; 2463 unsigned char *addr; 2464 int len_sum = 0; 2465 int status = TP_STATUS_AVAILABLE; 2466 int hlen, tlen; 2467 2468 mutex_lock(&po->pg_vec_lock); 2469 2470 if (likely(saddr == NULL)) { 2471 dev = packet_cached_dev_get(po); 2472 proto = po->num; 2473 addr = NULL; 2474 } else { 2475 err = -EINVAL; 2476 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2477 goto out; 2478 if (msg->msg_namelen < (saddr->sll_halen 2479 + offsetof(struct sockaddr_ll, 2480 sll_addr))) 2481 goto out; 2482 proto = saddr->sll_protocol; 2483 addr = saddr->sll_addr; 2484 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2485 } 2486 2487 err = -ENXIO; 2488 if (unlikely(dev == NULL)) 2489 goto out; 2490 err = -ENETDOWN; 2491 if (unlikely(!(dev->flags & IFF_UP))) 2492 goto out_put; 2493 2494 reserve = dev->hard_header_len + VLAN_HLEN; 2495 size_max = po->tx_ring.frame_size 2496 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2497 2498 if (size_max > dev->mtu + reserve) 2499 size_max = dev->mtu + reserve; 2500 2501 do { 2502 ph = packet_current_frame(po, &po->tx_ring, 2503 TP_STATUS_SEND_REQUEST); 2504 if (unlikely(ph == NULL)) { 2505 if (need_wait && need_resched()) 2506 schedule(); 2507 continue; 2508 } 2509 2510 status = TP_STATUS_SEND_REQUEST; 2511 hlen = LL_RESERVED_SPACE(dev); 2512 tlen = dev->needed_tailroom; 2513 skb = sock_alloc_send_skb(&po->sk, 2514 hlen + tlen + sizeof(struct sockaddr_ll), 2515 !need_wait, &err); 2516 2517 if (unlikely(skb == NULL)) { 2518 /* we assume the socket was initially writeable ... */ 2519 if (likely(len_sum > 0)) 2520 err = len_sum; 2521 goto out_status; 2522 } 2523 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto, 2524 addr, hlen); 2525 if (likely(tp_len >= 0) && 2526 tp_len > dev->mtu + dev->hard_header_len) { 2527 struct ethhdr *ehdr; 2528 /* Earlier code assumed this would be a VLAN pkt, 2529 * double-check this now that we have the actual 2530 * packet in hand. 2531 */ 2532 2533 skb_reset_mac_header(skb); 2534 ehdr = eth_hdr(skb); 2535 if (ehdr->h_proto != htons(ETH_P_8021Q)) 2536 tp_len = -EMSGSIZE; 2537 } 2538 if (unlikely(tp_len < 0)) { 2539 if (po->tp_loss) { 2540 __packet_set_status(po, ph, 2541 TP_STATUS_AVAILABLE); 2542 packet_increment_head(&po->tx_ring); 2543 kfree_skb(skb); 2544 continue; 2545 } else { 2546 status = TP_STATUS_WRONG_FORMAT; 2547 err = tp_len; 2548 goto out_status; 2549 } 2550 } 2551 2552 packet_pick_tx_queue(dev, skb); 2553 2554 skb->destructor = tpacket_destruct_skb; 2555 __packet_set_status(po, ph, TP_STATUS_SENDING); 2556 packet_inc_pending(&po->tx_ring); 2557 2558 status = TP_STATUS_SEND_REQUEST; 2559 err = po->xmit(skb); 2560 if (unlikely(err > 0)) { 2561 err = net_xmit_errno(err); 2562 if (err && __packet_get_status(po, ph) == 2563 TP_STATUS_AVAILABLE) { 2564 /* skb was destructed already */ 2565 skb = NULL; 2566 goto out_status; 2567 } 2568 /* 2569 * skb was dropped but not destructed yet; 2570 * let's treat it like congestion or err < 0 2571 */ 2572 err = 0; 2573 } 2574 packet_increment_head(&po->tx_ring); 2575 len_sum += tp_len; 2576 } while (likely((ph != NULL) || 2577 /* Note: packet_read_pending() might be slow if we have 2578 * to call it as it's per_cpu variable, but in fast-path 2579 * we already short-circuit the loop with the first 2580 * condition, and luckily don't have to go that path 2581 * anyway. 2582 */ 2583 (need_wait && packet_read_pending(&po->tx_ring)))); 2584 2585 err = len_sum; 2586 goto out_put; 2587 2588 out_status: 2589 __packet_set_status(po, ph, status); 2590 kfree_skb(skb); 2591 out_put: 2592 dev_put(dev); 2593 out: 2594 mutex_unlock(&po->pg_vec_lock); 2595 return err; 2596 } 2597 2598 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2599 size_t reserve, size_t len, 2600 size_t linear, int noblock, 2601 int *err) 2602 { 2603 struct sk_buff *skb; 2604 2605 /* Under a page? Don't bother with paged skb. */ 2606 if (prepad + len < PAGE_SIZE || !linear) 2607 linear = len; 2608 2609 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2610 err, 0); 2611 if (!skb) 2612 return NULL; 2613 2614 skb_reserve(skb, reserve); 2615 skb_put(skb, linear); 2616 skb->data_len = len - linear; 2617 skb->len += len - linear; 2618 2619 return skb; 2620 } 2621 2622 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2623 { 2624 struct sock *sk = sock->sk; 2625 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2626 struct sk_buff *skb; 2627 struct net_device *dev; 2628 __be16 proto; 2629 unsigned char *addr; 2630 int err, reserve = 0; 2631 struct virtio_net_hdr vnet_hdr = { 0 }; 2632 int offset = 0; 2633 int vnet_hdr_len; 2634 struct packet_sock *po = pkt_sk(sk); 2635 unsigned short gso_type = 0; 2636 int hlen, tlen; 2637 int extra_len = 0; 2638 ssize_t n; 2639 2640 /* 2641 * Get and verify the address. 2642 */ 2643 2644 if (likely(saddr == NULL)) { 2645 dev = packet_cached_dev_get(po); 2646 proto = po->num; 2647 addr = NULL; 2648 } else { 2649 err = -EINVAL; 2650 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2651 goto out; 2652 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2653 goto out; 2654 proto = saddr->sll_protocol; 2655 addr = saddr->sll_addr; 2656 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2657 } 2658 2659 err = -ENXIO; 2660 if (unlikely(dev == NULL)) 2661 goto out_unlock; 2662 err = -ENETDOWN; 2663 if (unlikely(!(dev->flags & IFF_UP))) 2664 goto out_unlock; 2665 2666 if (sock->type == SOCK_RAW) 2667 reserve = dev->hard_header_len; 2668 if (po->has_vnet_hdr) { 2669 vnet_hdr_len = sizeof(vnet_hdr); 2670 2671 err = -EINVAL; 2672 if (len < vnet_hdr_len) 2673 goto out_unlock; 2674 2675 len -= vnet_hdr_len; 2676 2677 err = -EFAULT; 2678 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter); 2679 if (n != vnet_hdr_len) 2680 goto out_unlock; 2681 2682 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2683 (__virtio16_to_cpu(false, vnet_hdr.csum_start) + 2684 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 > 2685 __virtio16_to_cpu(false, vnet_hdr.hdr_len))) 2686 vnet_hdr.hdr_len = __cpu_to_virtio16(false, 2687 __virtio16_to_cpu(false, vnet_hdr.csum_start) + 2688 __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2); 2689 2690 err = -EINVAL; 2691 if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len) 2692 goto out_unlock; 2693 2694 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) { 2695 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { 2696 case VIRTIO_NET_HDR_GSO_TCPV4: 2697 gso_type = SKB_GSO_TCPV4; 2698 break; 2699 case VIRTIO_NET_HDR_GSO_TCPV6: 2700 gso_type = SKB_GSO_TCPV6; 2701 break; 2702 case VIRTIO_NET_HDR_GSO_UDP: 2703 gso_type = SKB_GSO_UDP; 2704 break; 2705 default: 2706 goto out_unlock; 2707 } 2708 2709 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN) 2710 gso_type |= SKB_GSO_TCP_ECN; 2711 2712 if (vnet_hdr.gso_size == 0) 2713 goto out_unlock; 2714 2715 } 2716 } 2717 2718 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2719 if (!netif_supports_nofcs(dev)) { 2720 err = -EPROTONOSUPPORT; 2721 goto out_unlock; 2722 } 2723 extra_len = 4; /* We're doing our own CRC */ 2724 } 2725 2726 err = -EMSGSIZE; 2727 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2728 goto out_unlock; 2729 2730 err = -ENOBUFS; 2731 hlen = LL_RESERVED_SPACE(dev); 2732 tlen = dev->needed_tailroom; 2733 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, 2734 __virtio16_to_cpu(false, vnet_hdr.hdr_len), 2735 msg->msg_flags & MSG_DONTWAIT, &err); 2736 if (skb == NULL) 2737 goto out_unlock; 2738 2739 skb_set_network_header(skb, reserve); 2740 2741 err = -EINVAL; 2742 if (sock->type == SOCK_DGRAM) { 2743 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2744 if (unlikely(offset < 0)) 2745 goto out_free; 2746 } else { 2747 if (ll_header_truncated(dev, len)) 2748 goto out_free; 2749 } 2750 2751 /* Returns -EFAULT on error */ 2752 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2753 if (err) 2754 goto out_free; 2755 2756 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 2757 2758 if (!gso_type && (len > dev->mtu + reserve + extra_len)) { 2759 /* Earlier code assumed this would be a VLAN pkt, 2760 * double-check this now that we have the actual 2761 * packet in hand. 2762 */ 2763 struct ethhdr *ehdr; 2764 skb_reset_mac_header(skb); 2765 ehdr = eth_hdr(skb); 2766 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 2767 err = -EMSGSIZE; 2768 goto out_free; 2769 } 2770 } 2771 2772 skb->protocol = proto; 2773 skb->dev = dev; 2774 skb->priority = sk->sk_priority; 2775 skb->mark = sk->sk_mark; 2776 2777 packet_pick_tx_queue(dev, skb); 2778 2779 if (po->has_vnet_hdr) { 2780 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 2781 u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start); 2782 u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset); 2783 if (!skb_partial_csum_set(skb, s, o)) { 2784 err = -EINVAL; 2785 goto out_free; 2786 } 2787 } 2788 2789 skb_shinfo(skb)->gso_size = 2790 __virtio16_to_cpu(false, vnet_hdr.gso_size); 2791 skb_shinfo(skb)->gso_type = gso_type; 2792 2793 /* Header must be checked, and gso_segs computed. */ 2794 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2795 skb_shinfo(skb)->gso_segs = 0; 2796 2797 len += vnet_hdr_len; 2798 } 2799 2800 if (!packet_use_direct_xmit(po)) 2801 skb_probe_transport_header(skb, reserve); 2802 if (unlikely(extra_len == 4)) 2803 skb->no_fcs = 1; 2804 2805 err = po->xmit(skb); 2806 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2807 goto out_unlock; 2808 2809 dev_put(dev); 2810 2811 return len; 2812 2813 out_free: 2814 kfree_skb(skb); 2815 out_unlock: 2816 if (dev) 2817 dev_put(dev); 2818 out: 2819 return err; 2820 } 2821 2822 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2823 { 2824 struct sock *sk = sock->sk; 2825 struct packet_sock *po = pkt_sk(sk); 2826 2827 if (po->tx_ring.pg_vec) 2828 return tpacket_snd(po, msg); 2829 else 2830 return packet_snd(sock, msg, len); 2831 } 2832 2833 /* 2834 * Close a PACKET socket. This is fairly simple. We immediately go 2835 * to 'closed' state and remove our protocol entry in the device list. 2836 */ 2837 2838 static int packet_release(struct socket *sock) 2839 { 2840 struct sock *sk = sock->sk; 2841 struct packet_sock *po; 2842 struct net *net; 2843 union tpacket_req_u req_u; 2844 2845 if (!sk) 2846 return 0; 2847 2848 net = sock_net(sk); 2849 po = pkt_sk(sk); 2850 2851 mutex_lock(&net->packet.sklist_lock); 2852 sk_del_node_init_rcu(sk); 2853 mutex_unlock(&net->packet.sklist_lock); 2854 2855 preempt_disable(); 2856 sock_prot_inuse_add(net, sk->sk_prot, -1); 2857 preempt_enable(); 2858 2859 spin_lock(&po->bind_lock); 2860 unregister_prot_hook(sk, false); 2861 packet_cached_dev_reset(po); 2862 2863 if (po->prot_hook.dev) { 2864 dev_put(po->prot_hook.dev); 2865 po->prot_hook.dev = NULL; 2866 } 2867 spin_unlock(&po->bind_lock); 2868 2869 packet_flush_mclist(sk); 2870 2871 if (po->rx_ring.pg_vec) { 2872 memset(&req_u, 0, sizeof(req_u)); 2873 packet_set_ring(sk, &req_u, 1, 0); 2874 } 2875 2876 if (po->tx_ring.pg_vec) { 2877 memset(&req_u, 0, sizeof(req_u)); 2878 packet_set_ring(sk, &req_u, 1, 1); 2879 } 2880 2881 fanout_release(sk); 2882 2883 synchronize_net(); 2884 /* 2885 * Now the socket is dead. No more input will appear. 2886 */ 2887 sock_orphan(sk); 2888 sock->sk = NULL; 2889 2890 /* Purge queues */ 2891 2892 skb_queue_purge(&sk->sk_receive_queue); 2893 packet_free_pending(po); 2894 sk_refcnt_debug_release(sk); 2895 2896 sock_put(sk); 2897 return 0; 2898 } 2899 2900 /* 2901 * Attach a packet hook. 2902 */ 2903 2904 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto) 2905 { 2906 struct packet_sock *po = pkt_sk(sk); 2907 struct net_device *dev_curr; 2908 __be16 proto_curr; 2909 bool need_rehook; 2910 2911 if (po->fanout) { 2912 if (dev) 2913 dev_put(dev); 2914 2915 return -EINVAL; 2916 } 2917 2918 lock_sock(sk); 2919 spin_lock(&po->bind_lock); 2920 2921 proto_curr = po->prot_hook.type; 2922 dev_curr = po->prot_hook.dev; 2923 2924 need_rehook = proto_curr != proto || dev_curr != dev; 2925 2926 if (need_rehook) { 2927 unregister_prot_hook(sk, true); 2928 2929 po->num = proto; 2930 po->prot_hook.type = proto; 2931 po->prot_hook.dev = dev; 2932 2933 po->ifindex = dev ? dev->ifindex : 0; 2934 packet_cached_dev_assign(po, dev); 2935 } 2936 if (dev_curr) 2937 dev_put(dev_curr); 2938 2939 if (proto == 0 || !need_rehook) 2940 goto out_unlock; 2941 2942 if (!dev || (dev->flags & IFF_UP)) { 2943 register_prot_hook(sk); 2944 } else { 2945 sk->sk_err = ENETDOWN; 2946 if (!sock_flag(sk, SOCK_DEAD)) 2947 sk->sk_error_report(sk); 2948 } 2949 2950 out_unlock: 2951 spin_unlock(&po->bind_lock); 2952 release_sock(sk); 2953 return 0; 2954 } 2955 2956 /* 2957 * Bind a packet socket to a device 2958 */ 2959 2960 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 2961 int addr_len) 2962 { 2963 struct sock *sk = sock->sk; 2964 char name[15]; 2965 struct net_device *dev; 2966 int err = -ENODEV; 2967 2968 /* 2969 * Check legality 2970 */ 2971 2972 if (addr_len != sizeof(struct sockaddr)) 2973 return -EINVAL; 2974 strlcpy(name, uaddr->sa_data, sizeof(name)); 2975 2976 dev = dev_get_by_name(sock_net(sk), name); 2977 if (dev) 2978 err = packet_do_bind(sk, dev, pkt_sk(sk)->num); 2979 return err; 2980 } 2981 2982 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2983 { 2984 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 2985 struct sock *sk = sock->sk; 2986 struct net_device *dev = NULL; 2987 int err; 2988 2989 2990 /* 2991 * Check legality 2992 */ 2993 2994 if (addr_len < sizeof(struct sockaddr_ll)) 2995 return -EINVAL; 2996 if (sll->sll_family != AF_PACKET) 2997 return -EINVAL; 2998 2999 if (sll->sll_ifindex) { 3000 err = -ENODEV; 3001 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex); 3002 if (dev == NULL) 3003 goto out; 3004 } 3005 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num); 3006 3007 out: 3008 return err; 3009 } 3010 3011 static struct proto packet_proto = { 3012 .name = "PACKET", 3013 .owner = THIS_MODULE, 3014 .obj_size = sizeof(struct packet_sock), 3015 }; 3016 3017 /* 3018 * Create a packet of type SOCK_PACKET. 3019 */ 3020 3021 static int packet_create(struct net *net, struct socket *sock, int protocol, 3022 int kern) 3023 { 3024 struct sock *sk; 3025 struct packet_sock *po; 3026 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3027 int err; 3028 3029 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3030 return -EPERM; 3031 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3032 sock->type != SOCK_PACKET) 3033 return -ESOCKTNOSUPPORT; 3034 3035 sock->state = SS_UNCONNECTED; 3036 3037 err = -ENOBUFS; 3038 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3039 if (sk == NULL) 3040 goto out; 3041 3042 sock->ops = &packet_ops; 3043 if (sock->type == SOCK_PACKET) 3044 sock->ops = &packet_ops_spkt; 3045 3046 sock_init_data(sock, sk); 3047 3048 po = pkt_sk(sk); 3049 sk->sk_family = PF_PACKET; 3050 po->num = proto; 3051 po->xmit = dev_queue_xmit; 3052 3053 err = packet_alloc_pending(po); 3054 if (err) 3055 goto out2; 3056 3057 packet_cached_dev_reset(po); 3058 3059 sk->sk_destruct = packet_sock_destruct; 3060 sk_refcnt_debug_inc(sk); 3061 3062 /* 3063 * Attach a protocol block 3064 */ 3065 3066 spin_lock_init(&po->bind_lock); 3067 mutex_init(&po->pg_vec_lock); 3068 po->rollover = NULL; 3069 po->prot_hook.func = packet_rcv; 3070 3071 if (sock->type == SOCK_PACKET) 3072 po->prot_hook.func = packet_rcv_spkt; 3073 3074 po->prot_hook.af_packet_priv = sk; 3075 3076 if (proto) { 3077 po->prot_hook.type = proto; 3078 register_prot_hook(sk); 3079 } 3080 3081 mutex_lock(&net->packet.sklist_lock); 3082 sk_add_node_rcu(sk, &net->packet.sklist); 3083 mutex_unlock(&net->packet.sklist_lock); 3084 3085 preempt_disable(); 3086 sock_prot_inuse_add(net, &packet_proto, 1); 3087 preempt_enable(); 3088 3089 return 0; 3090 out2: 3091 sk_free(sk); 3092 out: 3093 return err; 3094 } 3095 3096 /* 3097 * Pull a packet from our receive queue and hand it to the user. 3098 * If necessary we block. 3099 */ 3100 3101 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3102 int flags) 3103 { 3104 struct sock *sk = sock->sk; 3105 struct sk_buff *skb; 3106 int copied, err; 3107 int vnet_hdr_len = 0; 3108 unsigned int origlen = 0; 3109 3110 err = -EINVAL; 3111 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3112 goto out; 3113 3114 #if 0 3115 /* What error should we return now? EUNATTACH? */ 3116 if (pkt_sk(sk)->ifindex < 0) 3117 return -ENODEV; 3118 #endif 3119 3120 if (flags & MSG_ERRQUEUE) { 3121 err = sock_recv_errqueue(sk, msg, len, 3122 SOL_PACKET, PACKET_TX_TIMESTAMP); 3123 goto out; 3124 } 3125 3126 /* 3127 * Call the generic datagram receiver. This handles all sorts 3128 * of horrible races and re-entrancy so we can forget about it 3129 * in the protocol layers. 3130 * 3131 * Now it will return ENETDOWN, if device have just gone down, 3132 * but then it will block. 3133 */ 3134 3135 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3136 3137 /* 3138 * An error occurred so return it. Because skb_recv_datagram() 3139 * handles the blocking we don't see and worry about blocking 3140 * retries. 3141 */ 3142 3143 if (skb == NULL) 3144 goto out; 3145 3146 if (pkt_sk(sk)->pressure) 3147 packet_rcv_has_room(pkt_sk(sk), NULL); 3148 3149 if (pkt_sk(sk)->has_vnet_hdr) { 3150 struct virtio_net_hdr vnet_hdr = { 0 }; 3151 3152 err = -EINVAL; 3153 vnet_hdr_len = sizeof(vnet_hdr); 3154 if (len < vnet_hdr_len) 3155 goto out_free; 3156 3157 len -= vnet_hdr_len; 3158 3159 if (skb_is_gso(skb)) { 3160 struct skb_shared_info *sinfo = skb_shinfo(skb); 3161 3162 /* This is a hint as to how much should be linear. */ 3163 vnet_hdr.hdr_len = 3164 __cpu_to_virtio16(false, skb_headlen(skb)); 3165 vnet_hdr.gso_size = 3166 __cpu_to_virtio16(false, sinfo->gso_size); 3167 if (sinfo->gso_type & SKB_GSO_TCPV4) 3168 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 3169 else if (sinfo->gso_type & SKB_GSO_TCPV6) 3170 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 3171 else if (sinfo->gso_type & SKB_GSO_UDP) 3172 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP; 3173 else if (sinfo->gso_type & SKB_GSO_FCOE) 3174 goto out_free; 3175 else 3176 BUG(); 3177 if (sinfo->gso_type & SKB_GSO_TCP_ECN) 3178 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN; 3179 } else 3180 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE; 3181 3182 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3183 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 3184 vnet_hdr.csum_start = __cpu_to_virtio16(false, 3185 skb_checksum_start_offset(skb)); 3186 vnet_hdr.csum_offset = __cpu_to_virtio16(false, 3187 skb->csum_offset); 3188 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3189 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID; 3190 } /* else everything is zero */ 3191 3192 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len); 3193 if (err < 0) 3194 goto out_free; 3195 } 3196 3197 /* You lose any data beyond the buffer you gave. If it worries 3198 * a user program they can ask the device for its MTU 3199 * anyway. 3200 */ 3201 copied = skb->len; 3202 if (copied > len) { 3203 copied = len; 3204 msg->msg_flags |= MSG_TRUNC; 3205 } 3206 3207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3208 if (err) 3209 goto out_free; 3210 3211 if (sock->type != SOCK_PACKET) { 3212 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3213 3214 /* Original length was stored in sockaddr_ll fields */ 3215 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3216 sll->sll_family = AF_PACKET; 3217 sll->sll_protocol = skb->protocol; 3218 } 3219 3220 sock_recv_ts_and_drops(msg, sk, skb); 3221 3222 if (msg->msg_name) { 3223 /* If the address length field is there to be filled 3224 * in, we fill it in now. 3225 */ 3226 if (sock->type == SOCK_PACKET) { 3227 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3228 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3229 } else { 3230 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3231 3232 msg->msg_namelen = sll->sll_halen + 3233 offsetof(struct sockaddr_ll, sll_addr); 3234 } 3235 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, 3236 msg->msg_namelen); 3237 } 3238 3239 if (pkt_sk(sk)->auxdata) { 3240 struct tpacket_auxdata aux; 3241 3242 aux.tp_status = TP_STATUS_USER; 3243 if (skb->ip_summed == CHECKSUM_PARTIAL) 3244 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3245 else if (skb->pkt_type != PACKET_OUTGOING && 3246 (skb->ip_summed == CHECKSUM_COMPLETE || 3247 skb_csum_unnecessary(skb))) 3248 aux.tp_status |= TP_STATUS_CSUM_VALID; 3249 3250 aux.tp_len = origlen; 3251 aux.tp_snaplen = skb->len; 3252 aux.tp_mac = 0; 3253 aux.tp_net = skb_network_offset(skb); 3254 if (skb_vlan_tag_present(skb)) { 3255 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3256 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3257 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3258 } else { 3259 aux.tp_vlan_tci = 0; 3260 aux.tp_vlan_tpid = 0; 3261 } 3262 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3263 } 3264 3265 /* 3266 * Free or return the buffer as appropriate. Again this 3267 * hides all the races and re-entrancy issues from us. 3268 */ 3269 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3270 3271 out_free: 3272 skb_free_datagram(sk, skb); 3273 out: 3274 return err; 3275 } 3276 3277 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3278 int *uaddr_len, int peer) 3279 { 3280 struct net_device *dev; 3281 struct sock *sk = sock->sk; 3282 3283 if (peer) 3284 return -EOPNOTSUPP; 3285 3286 uaddr->sa_family = AF_PACKET; 3287 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3288 rcu_read_lock(); 3289 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3290 if (dev) 3291 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3292 rcu_read_unlock(); 3293 *uaddr_len = sizeof(*uaddr); 3294 3295 return 0; 3296 } 3297 3298 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3299 int *uaddr_len, int peer) 3300 { 3301 struct net_device *dev; 3302 struct sock *sk = sock->sk; 3303 struct packet_sock *po = pkt_sk(sk); 3304 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3305 3306 if (peer) 3307 return -EOPNOTSUPP; 3308 3309 sll->sll_family = AF_PACKET; 3310 sll->sll_ifindex = po->ifindex; 3311 sll->sll_protocol = po->num; 3312 sll->sll_pkttype = 0; 3313 rcu_read_lock(); 3314 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3315 if (dev) { 3316 sll->sll_hatype = dev->type; 3317 sll->sll_halen = dev->addr_len; 3318 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3319 } else { 3320 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3321 sll->sll_halen = 0; 3322 } 3323 rcu_read_unlock(); 3324 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3325 3326 return 0; 3327 } 3328 3329 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3330 int what) 3331 { 3332 switch (i->type) { 3333 case PACKET_MR_MULTICAST: 3334 if (i->alen != dev->addr_len) 3335 return -EINVAL; 3336 if (what > 0) 3337 return dev_mc_add(dev, i->addr); 3338 else 3339 return dev_mc_del(dev, i->addr); 3340 break; 3341 case PACKET_MR_PROMISC: 3342 return dev_set_promiscuity(dev, what); 3343 case PACKET_MR_ALLMULTI: 3344 return dev_set_allmulti(dev, what); 3345 case PACKET_MR_UNICAST: 3346 if (i->alen != dev->addr_len) 3347 return -EINVAL; 3348 if (what > 0) 3349 return dev_uc_add(dev, i->addr); 3350 else 3351 return dev_uc_del(dev, i->addr); 3352 break; 3353 default: 3354 break; 3355 } 3356 return 0; 3357 } 3358 3359 static void packet_dev_mclist_delete(struct net_device *dev, 3360 struct packet_mclist **mlp) 3361 { 3362 struct packet_mclist *ml; 3363 3364 while ((ml = *mlp) != NULL) { 3365 if (ml->ifindex == dev->ifindex) { 3366 packet_dev_mc(dev, ml, -1); 3367 *mlp = ml->next; 3368 kfree(ml); 3369 } else 3370 mlp = &ml->next; 3371 } 3372 } 3373 3374 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3375 { 3376 struct packet_sock *po = pkt_sk(sk); 3377 struct packet_mclist *ml, *i; 3378 struct net_device *dev; 3379 int err; 3380 3381 rtnl_lock(); 3382 3383 err = -ENODEV; 3384 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3385 if (!dev) 3386 goto done; 3387 3388 err = -EINVAL; 3389 if (mreq->mr_alen > dev->addr_len) 3390 goto done; 3391 3392 err = -ENOBUFS; 3393 i = kmalloc(sizeof(*i), GFP_KERNEL); 3394 if (i == NULL) 3395 goto done; 3396 3397 err = 0; 3398 for (ml = po->mclist; ml; ml = ml->next) { 3399 if (ml->ifindex == mreq->mr_ifindex && 3400 ml->type == mreq->mr_type && 3401 ml->alen == mreq->mr_alen && 3402 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3403 ml->count++; 3404 /* Free the new element ... */ 3405 kfree(i); 3406 goto done; 3407 } 3408 } 3409 3410 i->type = mreq->mr_type; 3411 i->ifindex = mreq->mr_ifindex; 3412 i->alen = mreq->mr_alen; 3413 memcpy(i->addr, mreq->mr_address, i->alen); 3414 i->count = 1; 3415 i->next = po->mclist; 3416 po->mclist = i; 3417 err = packet_dev_mc(dev, i, 1); 3418 if (err) { 3419 po->mclist = i->next; 3420 kfree(i); 3421 } 3422 3423 done: 3424 rtnl_unlock(); 3425 return err; 3426 } 3427 3428 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3429 { 3430 struct packet_mclist *ml, **mlp; 3431 3432 rtnl_lock(); 3433 3434 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3435 if (ml->ifindex == mreq->mr_ifindex && 3436 ml->type == mreq->mr_type && 3437 ml->alen == mreq->mr_alen && 3438 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3439 if (--ml->count == 0) { 3440 struct net_device *dev; 3441 *mlp = ml->next; 3442 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3443 if (dev) 3444 packet_dev_mc(dev, ml, -1); 3445 kfree(ml); 3446 } 3447 break; 3448 } 3449 } 3450 rtnl_unlock(); 3451 return 0; 3452 } 3453 3454 static void packet_flush_mclist(struct sock *sk) 3455 { 3456 struct packet_sock *po = pkt_sk(sk); 3457 struct packet_mclist *ml; 3458 3459 if (!po->mclist) 3460 return; 3461 3462 rtnl_lock(); 3463 while ((ml = po->mclist) != NULL) { 3464 struct net_device *dev; 3465 3466 po->mclist = ml->next; 3467 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3468 if (dev != NULL) 3469 packet_dev_mc(dev, ml, -1); 3470 kfree(ml); 3471 } 3472 rtnl_unlock(); 3473 } 3474 3475 static int 3476 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3477 { 3478 struct sock *sk = sock->sk; 3479 struct packet_sock *po = pkt_sk(sk); 3480 int ret; 3481 3482 if (level != SOL_PACKET) 3483 return -ENOPROTOOPT; 3484 3485 switch (optname) { 3486 case PACKET_ADD_MEMBERSHIP: 3487 case PACKET_DROP_MEMBERSHIP: 3488 { 3489 struct packet_mreq_max mreq; 3490 int len = optlen; 3491 memset(&mreq, 0, sizeof(mreq)); 3492 if (len < sizeof(struct packet_mreq)) 3493 return -EINVAL; 3494 if (len > sizeof(mreq)) 3495 len = sizeof(mreq); 3496 if (copy_from_user(&mreq, optval, len)) 3497 return -EFAULT; 3498 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3499 return -EINVAL; 3500 if (optname == PACKET_ADD_MEMBERSHIP) 3501 ret = packet_mc_add(sk, &mreq); 3502 else 3503 ret = packet_mc_drop(sk, &mreq); 3504 return ret; 3505 } 3506 3507 case PACKET_RX_RING: 3508 case PACKET_TX_RING: 3509 { 3510 union tpacket_req_u req_u; 3511 int len; 3512 3513 switch (po->tp_version) { 3514 case TPACKET_V1: 3515 case TPACKET_V2: 3516 len = sizeof(req_u.req); 3517 break; 3518 case TPACKET_V3: 3519 default: 3520 len = sizeof(req_u.req3); 3521 break; 3522 } 3523 if (optlen < len) 3524 return -EINVAL; 3525 if (pkt_sk(sk)->has_vnet_hdr) 3526 return -EINVAL; 3527 if (copy_from_user(&req_u.req, optval, len)) 3528 return -EFAULT; 3529 return packet_set_ring(sk, &req_u, 0, 3530 optname == PACKET_TX_RING); 3531 } 3532 case PACKET_COPY_THRESH: 3533 { 3534 int val; 3535 3536 if (optlen != sizeof(val)) 3537 return -EINVAL; 3538 if (copy_from_user(&val, optval, sizeof(val))) 3539 return -EFAULT; 3540 3541 pkt_sk(sk)->copy_thresh = val; 3542 return 0; 3543 } 3544 case PACKET_VERSION: 3545 { 3546 int val; 3547 3548 if (optlen != sizeof(val)) 3549 return -EINVAL; 3550 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3551 return -EBUSY; 3552 if (copy_from_user(&val, optval, sizeof(val))) 3553 return -EFAULT; 3554 switch (val) { 3555 case TPACKET_V1: 3556 case TPACKET_V2: 3557 case TPACKET_V3: 3558 po->tp_version = val; 3559 return 0; 3560 default: 3561 return -EINVAL; 3562 } 3563 } 3564 case PACKET_RESERVE: 3565 { 3566 unsigned int val; 3567 3568 if (optlen != sizeof(val)) 3569 return -EINVAL; 3570 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3571 return -EBUSY; 3572 if (copy_from_user(&val, optval, sizeof(val))) 3573 return -EFAULT; 3574 po->tp_reserve = val; 3575 return 0; 3576 } 3577 case PACKET_LOSS: 3578 { 3579 unsigned int val; 3580 3581 if (optlen != sizeof(val)) 3582 return -EINVAL; 3583 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3584 return -EBUSY; 3585 if (copy_from_user(&val, optval, sizeof(val))) 3586 return -EFAULT; 3587 po->tp_loss = !!val; 3588 return 0; 3589 } 3590 case PACKET_AUXDATA: 3591 { 3592 int val; 3593 3594 if (optlen < sizeof(val)) 3595 return -EINVAL; 3596 if (copy_from_user(&val, optval, sizeof(val))) 3597 return -EFAULT; 3598 3599 po->auxdata = !!val; 3600 return 0; 3601 } 3602 case PACKET_ORIGDEV: 3603 { 3604 int val; 3605 3606 if (optlen < sizeof(val)) 3607 return -EINVAL; 3608 if (copy_from_user(&val, optval, sizeof(val))) 3609 return -EFAULT; 3610 3611 po->origdev = !!val; 3612 return 0; 3613 } 3614 case PACKET_VNET_HDR: 3615 { 3616 int val; 3617 3618 if (sock->type != SOCK_RAW) 3619 return -EINVAL; 3620 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3621 return -EBUSY; 3622 if (optlen < sizeof(val)) 3623 return -EINVAL; 3624 if (copy_from_user(&val, optval, sizeof(val))) 3625 return -EFAULT; 3626 3627 po->has_vnet_hdr = !!val; 3628 return 0; 3629 } 3630 case PACKET_TIMESTAMP: 3631 { 3632 int val; 3633 3634 if (optlen != sizeof(val)) 3635 return -EINVAL; 3636 if (copy_from_user(&val, optval, sizeof(val))) 3637 return -EFAULT; 3638 3639 po->tp_tstamp = val; 3640 return 0; 3641 } 3642 case PACKET_FANOUT: 3643 { 3644 int val; 3645 3646 if (optlen != sizeof(val)) 3647 return -EINVAL; 3648 if (copy_from_user(&val, optval, sizeof(val))) 3649 return -EFAULT; 3650 3651 return fanout_add(sk, val & 0xffff, val >> 16); 3652 } 3653 case PACKET_FANOUT_DATA: 3654 { 3655 if (!po->fanout) 3656 return -EINVAL; 3657 3658 return fanout_set_data(po, optval, optlen); 3659 } 3660 case PACKET_TX_HAS_OFF: 3661 { 3662 unsigned int val; 3663 3664 if (optlen != sizeof(val)) 3665 return -EINVAL; 3666 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3667 return -EBUSY; 3668 if (copy_from_user(&val, optval, sizeof(val))) 3669 return -EFAULT; 3670 po->tp_tx_has_off = !!val; 3671 return 0; 3672 } 3673 case PACKET_QDISC_BYPASS: 3674 { 3675 int val; 3676 3677 if (optlen != sizeof(val)) 3678 return -EINVAL; 3679 if (copy_from_user(&val, optval, sizeof(val))) 3680 return -EFAULT; 3681 3682 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3683 return 0; 3684 } 3685 default: 3686 return -ENOPROTOOPT; 3687 } 3688 } 3689 3690 static int packet_getsockopt(struct socket *sock, int level, int optname, 3691 char __user *optval, int __user *optlen) 3692 { 3693 int len; 3694 int val, lv = sizeof(val); 3695 struct sock *sk = sock->sk; 3696 struct packet_sock *po = pkt_sk(sk); 3697 void *data = &val; 3698 union tpacket_stats_u st; 3699 struct tpacket_rollover_stats rstats; 3700 3701 if (level != SOL_PACKET) 3702 return -ENOPROTOOPT; 3703 3704 if (get_user(len, optlen)) 3705 return -EFAULT; 3706 3707 if (len < 0) 3708 return -EINVAL; 3709 3710 switch (optname) { 3711 case PACKET_STATISTICS: 3712 spin_lock_bh(&sk->sk_receive_queue.lock); 3713 memcpy(&st, &po->stats, sizeof(st)); 3714 memset(&po->stats, 0, sizeof(po->stats)); 3715 spin_unlock_bh(&sk->sk_receive_queue.lock); 3716 3717 if (po->tp_version == TPACKET_V3) { 3718 lv = sizeof(struct tpacket_stats_v3); 3719 st.stats3.tp_packets += st.stats3.tp_drops; 3720 data = &st.stats3; 3721 } else { 3722 lv = sizeof(struct tpacket_stats); 3723 st.stats1.tp_packets += st.stats1.tp_drops; 3724 data = &st.stats1; 3725 } 3726 3727 break; 3728 case PACKET_AUXDATA: 3729 val = po->auxdata; 3730 break; 3731 case PACKET_ORIGDEV: 3732 val = po->origdev; 3733 break; 3734 case PACKET_VNET_HDR: 3735 val = po->has_vnet_hdr; 3736 break; 3737 case PACKET_VERSION: 3738 val = po->tp_version; 3739 break; 3740 case PACKET_HDRLEN: 3741 if (len > sizeof(int)) 3742 len = sizeof(int); 3743 if (copy_from_user(&val, optval, len)) 3744 return -EFAULT; 3745 switch (val) { 3746 case TPACKET_V1: 3747 val = sizeof(struct tpacket_hdr); 3748 break; 3749 case TPACKET_V2: 3750 val = sizeof(struct tpacket2_hdr); 3751 break; 3752 case TPACKET_V3: 3753 val = sizeof(struct tpacket3_hdr); 3754 break; 3755 default: 3756 return -EINVAL; 3757 } 3758 break; 3759 case PACKET_RESERVE: 3760 val = po->tp_reserve; 3761 break; 3762 case PACKET_LOSS: 3763 val = po->tp_loss; 3764 break; 3765 case PACKET_TIMESTAMP: 3766 val = po->tp_tstamp; 3767 break; 3768 case PACKET_FANOUT: 3769 val = (po->fanout ? 3770 ((u32)po->fanout->id | 3771 ((u32)po->fanout->type << 16) | 3772 ((u32)po->fanout->flags << 24)) : 3773 0); 3774 break; 3775 case PACKET_ROLLOVER_STATS: 3776 if (!po->rollover) 3777 return -EINVAL; 3778 rstats.tp_all = atomic_long_read(&po->rollover->num); 3779 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 3780 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 3781 data = &rstats; 3782 lv = sizeof(rstats); 3783 break; 3784 case PACKET_TX_HAS_OFF: 3785 val = po->tp_tx_has_off; 3786 break; 3787 case PACKET_QDISC_BYPASS: 3788 val = packet_use_direct_xmit(po); 3789 break; 3790 default: 3791 return -ENOPROTOOPT; 3792 } 3793 3794 if (len > lv) 3795 len = lv; 3796 if (put_user(len, optlen)) 3797 return -EFAULT; 3798 if (copy_to_user(optval, data, len)) 3799 return -EFAULT; 3800 return 0; 3801 } 3802 3803 3804 static int packet_notifier(struct notifier_block *this, 3805 unsigned long msg, void *ptr) 3806 { 3807 struct sock *sk; 3808 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3809 struct net *net = dev_net(dev); 3810 3811 rcu_read_lock(); 3812 sk_for_each_rcu(sk, &net->packet.sklist) { 3813 struct packet_sock *po = pkt_sk(sk); 3814 3815 switch (msg) { 3816 case NETDEV_UNREGISTER: 3817 if (po->mclist) 3818 packet_dev_mclist_delete(dev, &po->mclist); 3819 /* fallthrough */ 3820 3821 case NETDEV_DOWN: 3822 if (dev->ifindex == po->ifindex) { 3823 spin_lock(&po->bind_lock); 3824 if (po->running) { 3825 __unregister_prot_hook(sk, false); 3826 sk->sk_err = ENETDOWN; 3827 if (!sock_flag(sk, SOCK_DEAD)) 3828 sk->sk_error_report(sk); 3829 } 3830 if (msg == NETDEV_UNREGISTER) { 3831 packet_cached_dev_reset(po); 3832 po->ifindex = -1; 3833 if (po->prot_hook.dev) 3834 dev_put(po->prot_hook.dev); 3835 po->prot_hook.dev = NULL; 3836 } 3837 spin_unlock(&po->bind_lock); 3838 } 3839 break; 3840 case NETDEV_UP: 3841 if (dev->ifindex == po->ifindex) { 3842 spin_lock(&po->bind_lock); 3843 if (po->num) 3844 register_prot_hook(sk); 3845 spin_unlock(&po->bind_lock); 3846 } 3847 break; 3848 } 3849 } 3850 rcu_read_unlock(); 3851 return NOTIFY_DONE; 3852 } 3853 3854 3855 static int packet_ioctl(struct socket *sock, unsigned int cmd, 3856 unsigned long arg) 3857 { 3858 struct sock *sk = sock->sk; 3859 3860 switch (cmd) { 3861 case SIOCOUTQ: 3862 { 3863 int amount = sk_wmem_alloc_get(sk); 3864 3865 return put_user(amount, (int __user *)arg); 3866 } 3867 case SIOCINQ: 3868 { 3869 struct sk_buff *skb; 3870 int amount = 0; 3871 3872 spin_lock_bh(&sk->sk_receive_queue.lock); 3873 skb = skb_peek(&sk->sk_receive_queue); 3874 if (skb) 3875 amount = skb->len; 3876 spin_unlock_bh(&sk->sk_receive_queue.lock); 3877 return put_user(amount, (int __user *)arg); 3878 } 3879 case SIOCGSTAMP: 3880 return sock_get_timestamp(sk, (struct timeval __user *)arg); 3881 case SIOCGSTAMPNS: 3882 return sock_get_timestampns(sk, (struct timespec __user *)arg); 3883 3884 #ifdef CONFIG_INET 3885 case SIOCADDRT: 3886 case SIOCDELRT: 3887 case SIOCDARP: 3888 case SIOCGARP: 3889 case SIOCSARP: 3890 case SIOCGIFADDR: 3891 case SIOCSIFADDR: 3892 case SIOCGIFBRDADDR: 3893 case SIOCSIFBRDADDR: 3894 case SIOCGIFNETMASK: 3895 case SIOCSIFNETMASK: 3896 case SIOCGIFDSTADDR: 3897 case SIOCSIFDSTADDR: 3898 case SIOCSIFFLAGS: 3899 return inet_dgram_ops.ioctl(sock, cmd, arg); 3900 #endif 3901 3902 default: 3903 return -ENOIOCTLCMD; 3904 } 3905 return 0; 3906 } 3907 3908 static unsigned int packet_poll(struct file *file, struct socket *sock, 3909 poll_table *wait) 3910 { 3911 struct sock *sk = sock->sk; 3912 struct packet_sock *po = pkt_sk(sk); 3913 unsigned int mask = datagram_poll(file, sock, wait); 3914 3915 spin_lock_bh(&sk->sk_receive_queue.lock); 3916 if (po->rx_ring.pg_vec) { 3917 if (!packet_previous_rx_frame(po, &po->rx_ring, 3918 TP_STATUS_KERNEL)) 3919 mask |= POLLIN | POLLRDNORM; 3920 } 3921 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 3922 po->pressure = 0; 3923 spin_unlock_bh(&sk->sk_receive_queue.lock); 3924 spin_lock_bh(&sk->sk_write_queue.lock); 3925 if (po->tx_ring.pg_vec) { 3926 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 3927 mask |= POLLOUT | POLLWRNORM; 3928 } 3929 spin_unlock_bh(&sk->sk_write_queue.lock); 3930 return mask; 3931 } 3932 3933 3934 /* Dirty? Well, I still did not learn better way to account 3935 * for user mmaps. 3936 */ 3937 3938 static void packet_mm_open(struct vm_area_struct *vma) 3939 { 3940 struct file *file = vma->vm_file; 3941 struct socket *sock = file->private_data; 3942 struct sock *sk = sock->sk; 3943 3944 if (sk) 3945 atomic_inc(&pkt_sk(sk)->mapped); 3946 } 3947 3948 static void packet_mm_close(struct vm_area_struct *vma) 3949 { 3950 struct file *file = vma->vm_file; 3951 struct socket *sock = file->private_data; 3952 struct sock *sk = sock->sk; 3953 3954 if (sk) 3955 atomic_dec(&pkt_sk(sk)->mapped); 3956 } 3957 3958 static const struct vm_operations_struct packet_mmap_ops = { 3959 .open = packet_mm_open, 3960 .close = packet_mm_close, 3961 }; 3962 3963 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 3964 unsigned int len) 3965 { 3966 int i; 3967 3968 for (i = 0; i < len; i++) { 3969 if (likely(pg_vec[i].buffer)) { 3970 if (is_vmalloc_addr(pg_vec[i].buffer)) 3971 vfree(pg_vec[i].buffer); 3972 else 3973 free_pages((unsigned long)pg_vec[i].buffer, 3974 order); 3975 pg_vec[i].buffer = NULL; 3976 } 3977 } 3978 kfree(pg_vec); 3979 } 3980 3981 static char *alloc_one_pg_vec_page(unsigned long order) 3982 { 3983 char *buffer; 3984 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 3985 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 3986 3987 buffer = (char *) __get_free_pages(gfp_flags, order); 3988 if (buffer) 3989 return buffer; 3990 3991 /* __get_free_pages failed, fall back to vmalloc */ 3992 buffer = vzalloc((1 << order) * PAGE_SIZE); 3993 if (buffer) 3994 return buffer; 3995 3996 /* vmalloc failed, lets dig into swap here */ 3997 gfp_flags &= ~__GFP_NORETRY; 3998 buffer = (char *) __get_free_pages(gfp_flags, order); 3999 if (buffer) 4000 return buffer; 4001 4002 /* complete and utter failure */ 4003 return NULL; 4004 } 4005 4006 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4007 { 4008 unsigned int block_nr = req->tp_block_nr; 4009 struct pgv *pg_vec; 4010 int i; 4011 4012 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL); 4013 if (unlikely(!pg_vec)) 4014 goto out; 4015 4016 for (i = 0; i < block_nr; i++) { 4017 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4018 if (unlikely(!pg_vec[i].buffer)) 4019 goto out_free_pgvec; 4020 } 4021 4022 out: 4023 return pg_vec; 4024 4025 out_free_pgvec: 4026 free_pg_vec(pg_vec, order, block_nr); 4027 pg_vec = NULL; 4028 goto out; 4029 } 4030 4031 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4032 int closing, int tx_ring) 4033 { 4034 struct pgv *pg_vec = NULL; 4035 struct packet_sock *po = pkt_sk(sk); 4036 int was_running, order = 0; 4037 struct packet_ring_buffer *rb; 4038 struct sk_buff_head *rb_queue; 4039 __be16 num; 4040 int err = -EINVAL; 4041 /* Added to avoid minimal code churn */ 4042 struct tpacket_req *req = &req_u->req; 4043 4044 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */ 4045 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) { 4046 WARN(1, "Tx-ring is not supported.\n"); 4047 goto out; 4048 } 4049 4050 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4051 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4052 4053 err = -EBUSY; 4054 if (!closing) { 4055 if (atomic_read(&po->mapped)) 4056 goto out; 4057 if (packet_read_pending(rb)) 4058 goto out; 4059 } 4060 4061 if (req->tp_block_nr) { 4062 /* Sanity tests and some calculations */ 4063 err = -EBUSY; 4064 if (unlikely(rb->pg_vec)) 4065 goto out; 4066 4067 switch (po->tp_version) { 4068 case TPACKET_V1: 4069 po->tp_hdrlen = TPACKET_HDRLEN; 4070 break; 4071 case TPACKET_V2: 4072 po->tp_hdrlen = TPACKET2_HDRLEN; 4073 break; 4074 case TPACKET_V3: 4075 po->tp_hdrlen = TPACKET3_HDRLEN; 4076 break; 4077 } 4078 4079 err = -EINVAL; 4080 if (unlikely((int)req->tp_block_size <= 0)) 4081 goto out; 4082 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1))) 4083 goto out; 4084 if (po->tp_version >= TPACKET_V3 && 4085 (int)(req->tp_block_size - 4086 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0) 4087 goto out; 4088 if (unlikely(req->tp_frame_size < po->tp_hdrlen + 4089 po->tp_reserve)) 4090 goto out; 4091 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4092 goto out; 4093 4094 rb->frames_per_block = req->tp_block_size/req->tp_frame_size; 4095 if (unlikely(rb->frames_per_block <= 0)) 4096 goto out; 4097 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4098 req->tp_frame_nr)) 4099 goto out; 4100 4101 err = -ENOMEM; 4102 order = get_order(req->tp_block_size); 4103 pg_vec = alloc_pg_vec(req, order); 4104 if (unlikely(!pg_vec)) 4105 goto out; 4106 switch (po->tp_version) { 4107 case TPACKET_V3: 4108 /* Transmit path is not supported. We checked 4109 * it above but just being paranoid 4110 */ 4111 if (!tx_ring) 4112 init_prb_bdqc(po, rb, pg_vec, req_u); 4113 break; 4114 default: 4115 break; 4116 } 4117 } 4118 /* Done */ 4119 else { 4120 err = -EINVAL; 4121 if (unlikely(req->tp_frame_nr)) 4122 goto out; 4123 } 4124 4125 lock_sock(sk); 4126 4127 /* Detach socket from network */ 4128 spin_lock(&po->bind_lock); 4129 was_running = po->running; 4130 num = po->num; 4131 if (was_running) { 4132 po->num = 0; 4133 __unregister_prot_hook(sk, false); 4134 } 4135 spin_unlock(&po->bind_lock); 4136 4137 synchronize_net(); 4138 4139 err = -EBUSY; 4140 mutex_lock(&po->pg_vec_lock); 4141 if (closing || atomic_read(&po->mapped) == 0) { 4142 err = 0; 4143 spin_lock_bh(&rb_queue->lock); 4144 swap(rb->pg_vec, pg_vec); 4145 rb->frame_max = (req->tp_frame_nr - 1); 4146 rb->head = 0; 4147 rb->frame_size = req->tp_frame_size; 4148 spin_unlock_bh(&rb_queue->lock); 4149 4150 swap(rb->pg_vec_order, order); 4151 swap(rb->pg_vec_len, req->tp_block_nr); 4152 4153 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4154 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4155 tpacket_rcv : packet_rcv; 4156 skb_queue_purge(rb_queue); 4157 if (atomic_read(&po->mapped)) 4158 pr_err("packet_mmap: vma is busy: %d\n", 4159 atomic_read(&po->mapped)); 4160 } 4161 mutex_unlock(&po->pg_vec_lock); 4162 4163 spin_lock(&po->bind_lock); 4164 if (was_running) { 4165 po->num = num; 4166 register_prot_hook(sk); 4167 } 4168 spin_unlock(&po->bind_lock); 4169 if (closing && (po->tp_version > TPACKET_V2)) { 4170 /* Because we don't support block-based V3 on tx-ring */ 4171 if (!tx_ring) 4172 prb_shutdown_retire_blk_timer(po, rb_queue); 4173 } 4174 release_sock(sk); 4175 4176 if (pg_vec) 4177 free_pg_vec(pg_vec, order, req->tp_block_nr); 4178 out: 4179 return err; 4180 } 4181 4182 static int packet_mmap(struct file *file, struct socket *sock, 4183 struct vm_area_struct *vma) 4184 { 4185 struct sock *sk = sock->sk; 4186 struct packet_sock *po = pkt_sk(sk); 4187 unsigned long size, expected_size; 4188 struct packet_ring_buffer *rb; 4189 unsigned long start; 4190 int err = -EINVAL; 4191 int i; 4192 4193 if (vma->vm_pgoff) 4194 return -EINVAL; 4195 4196 mutex_lock(&po->pg_vec_lock); 4197 4198 expected_size = 0; 4199 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4200 if (rb->pg_vec) { 4201 expected_size += rb->pg_vec_len 4202 * rb->pg_vec_pages 4203 * PAGE_SIZE; 4204 } 4205 } 4206 4207 if (expected_size == 0) 4208 goto out; 4209 4210 size = vma->vm_end - vma->vm_start; 4211 if (size != expected_size) 4212 goto out; 4213 4214 start = vma->vm_start; 4215 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4216 if (rb->pg_vec == NULL) 4217 continue; 4218 4219 for (i = 0; i < rb->pg_vec_len; i++) { 4220 struct page *page; 4221 void *kaddr = rb->pg_vec[i].buffer; 4222 int pg_num; 4223 4224 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4225 page = pgv_to_page(kaddr); 4226 err = vm_insert_page(vma, start, page); 4227 if (unlikely(err)) 4228 goto out; 4229 start += PAGE_SIZE; 4230 kaddr += PAGE_SIZE; 4231 } 4232 } 4233 } 4234 4235 atomic_inc(&po->mapped); 4236 vma->vm_ops = &packet_mmap_ops; 4237 err = 0; 4238 4239 out: 4240 mutex_unlock(&po->pg_vec_lock); 4241 return err; 4242 } 4243 4244 static const struct proto_ops packet_ops_spkt = { 4245 .family = PF_PACKET, 4246 .owner = THIS_MODULE, 4247 .release = packet_release, 4248 .bind = packet_bind_spkt, 4249 .connect = sock_no_connect, 4250 .socketpair = sock_no_socketpair, 4251 .accept = sock_no_accept, 4252 .getname = packet_getname_spkt, 4253 .poll = datagram_poll, 4254 .ioctl = packet_ioctl, 4255 .listen = sock_no_listen, 4256 .shutdown = sock_no_shutdown, 4257 .setsockopt = sock_no_setsockopt, 4258 .getsockopt = sock_no_getsockopt, 4259 .sendmsg = packet_sendmsg_spkt, 4260 .recvmsg = packet_recvmsg, 4261 .mmap = sock_no_mmap, 4262 .sendpage = sock_no_sendpage, 4263 }; 4264 4265 static const struct proto_ops packet_ops = { 4266 .family = PF_PACKET, 4267 .owner = THIS_MODULE, 4268 .release = packet_release, 4269 .bind = packet_bind, 4270 .connect = sock_no_connect, 4271 .socketpair = sock_no_socketpair, 4272 .accept = sock_no_accept, 4273 .getname = packet_getname, 4274 .poll = packet_poll, 4275 .ioctl = packet_ioctl, 4276 .listen = sock_no_listen, 4277 .shutdown = sock_no_shutdown, 4278 .setsockopt = packet_setsockopt, 4279 .getsockopt = packet_getsockopt, 4280 .sendmsg = packet_sendmsg, 4281 .recvmsg = packet_recvmsg, 4282 .mmap = packet_mmap, 4283 .sendpage = sock_no_sendpage, 4284 }; 4285 4286 static const struct net_proto_family packet_family_ops = { 4287 .family = PF_PACKET, 4288 .create = packet_create, 4289 .owner = THIS_MODULE, 4290 }; 4291 4292 static struct notifier_block packet_netdev_notifier = { 4293 .notifier_call = packet_notifier, 4294 }; 4295 4296 #ifdef CONFIG_PROC_FS 4297 4298 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4299 __acquires(RCU) 4300 { 4301 struct net *net = seq_file_net(seq); 4302 4303 rcu_read_lock(); 4304 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4305 } 4306 4307 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4308 { 4309 struct net *net = seq_file_net(seq); 4310 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4311 } 4312 4313 static void packet_seq_stop(struct seq_file *seq, void *v) 4314 __releases(RCU) 4315 { 4316 rcu_read_unlock(); 4317 } 4318 4319 static int packet_seq_show(struct seq_file *seq, void *v) 4320 { 4321 if (v == SEQ_START_TOKEN) 4322 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4323 else { 4324 struct sock *s = sk_entry(v); 4325 const struct packet_sock *po = pkt_sk(s); 4326 4327 seq_printf(seq, 4328 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4329 s, 4330 atomic_read(&s->sk_refcnt), 4331 s->sk_type, 4332 ntohs(po->num), 4333 po->ifindex, 4334 po->running, 4335 atomic_read(&s->sk_rmem_alloc), 4336 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4337 sock_i_ino(s)); 4338 } 4339 4340 return 0; 4341 } 4342 4343 static const struct seq_operations packet_seq_ops = { 4344 .start = packet_seq_start, 4345 .next = packet_seq_next, 4346 .stop = packet_seq_stop, 4347 .show = packet_seq_show, 4348 }; 4349 4350 static int packet_seq_open(struct inode *inode, struct file *file) 4351 { 4352 return seq_open_net(inode, file, &packet_seq_ops, 4353 sizeof(struct seq_net_private)); 4354 } 4355 4356 static const struct file_operations packet_seq_fops = { 4357 .owner = THIS_MODULE, 4358 .open = packet_seq_open, 4359 .read = seq_read, 4360 .llseek = seq_lseek, 4361 .release = seq_release_net, 4362 }; 4363 4364 #endif 4365 4366 static int __net_init packet_net_init(struct net *net) 4367 { 4368 mutex_init(&net->packet.sklist_lock); 4369 INIT_HLIST_HEAD(&net->packet.sklist); 4370 4371 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops)) 4372 return -ENOMEM; 4373 4374 return 0; 4375 } 4376 4377 static void __net_exit packet_net_exit(struct net *net) 4378 { 4379 remove_proc_entry("packet", net->proc_net); 4380 } 4381 4382 static struct pernet_operations packet_net_ops = { 4383 .init = packet_net_init, 4384 .exit = packet_net_exit, 4385 }; 4386 4387 4388 static void __exit packet_exit(void) 4389 { 4390 unregister_netdevice_notifier(&packet_netdev_notifier); 4391 unregister_pernet_subsys(&packet_net_ops); 4392 sock_unregister(PF_PACKET); 4393 proto_unregister(&packet_proto); 4394 } 4395 4396 static int __init packet_init(void) 4397 { 4398 int rc = proto_register(&packet_proto, 0); 4399 4400 if (rc != 0) 4401 goto out; 4402 4403 sock_register(&packet_family_ops); 4404 register_pernet_subsys(&packet_net_ops); 4405 register_netdevice_notifier(&packet_netdev_notifier); 4406 out: 4407 return rc; 4408 } 4409 4410 module_init(packet_init); 4411 module_exit(packet_exit); 4412 MODULE_LICENSE("GPL"); 4413 MODULE_ALIAS_NETPROTO(PF_PACKET); 4414