xref: /openbmc/linux/net/packet/af_packet.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 
97 #include "internal.h"
98 
99 /*
100    Assumptions:
101    - if device has no dev->hard_header routine, it adds and removes ll header
102      inside itself. In this case ll header is invisible outside of device,
103      but higher levels still should reserve dev->hard_header_len.
104      Some devices are enough clever to reallocate skb, when header
105      will not fit to reserved space (tunnel), another ones are silly
106      (PPP).
107    - packet socket receives packets with pulled ll header,
108      so that SOCK_RAW should push it back.
109 
110 On receive:
111 -----------
112 
113 Incoming, dev->hard_header!=NULL
114    mac_header -> ll header
115    data       -> data
116 
117 Outgoing, dev->hard_header!=NULL
118    mac_header -> ll header
119    data       -> ll header
120 
121 Incoming, dev->hard_header==NULL
122    mac_header -> UNKNOWN position. It is very likely, that it points to ll
123 		 header.  PPP makes it, that is wrong, because introduce
124 		 assymetry between rx and tx paths.
125    data       -> data
126 
127 Outgoing, dev->hard_header==NULL
128    mac_header -> data. ll header is still not built!
129    data       -> data
130 
131 Resume
132   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
133 
134 
135 On transmit:
136 ------------
137 
138 dev->hard_header != NULL
139    mac_header -> ll header
140    data       -> ll header
141 
142 dev->hard_header == NULL (ll header is added by device, we cannot control it)
143    mac_header -> data
144    data       -> data
145 
146    We should set nh.raw on output to correct posistion,
147    packet classifier depends on it.
148  */
149 
150 /* Private packet socket structures. */
151 
152 /* identical to struct packet_mreq except it has
153  * a longer address field.
154  */
155 struct packet_mreq_max {
156 	int		mr_ifindex;
157 	unsigned short	mr_type;
158 	unsigned short	mr_alen;
159 	unsigned char	mr_address[MAX_ADDR_LEN];
160 };
161 
162 union tpacket_uhdr {
163 	struct tpacket_hdr  *h1;
164 	struct tpacket2_hdr *h2;
165 	struct tpacket3_hdr *h3;
166 	void *raw;
167 };
168 
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 		int closing, int tx_ring);
171 
172 #define V3_ALIGNMENT	(8)
173 
174 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175 
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178 
179 #define PGV_FROM_VMALLOC 1
180 
181 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
182 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
183 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
184 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
185 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
186 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
187 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
188 
189 struct packet_sock;
190 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 		       struct packet_type *pt, struct net_device *orig_dev);
193 
194 static void *packet_previous_frame(struct packet_sock *po,
195 		struct packet_ring_buffer *rb,
196 		int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
199 			struct tpacket_block_desc *);
200 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
201 			struct packet_sock *);
202 static void prb_retire_current_block(struct tpacket_kbdq_core *,
203 		struct packet_sock *, unsigned int status);
204 static int prb_queue_frozen(struct tpacket_kbdq_core *);
205 static void prb_open_block(struct tpacket_kbdq_core *,
206 		struct tpacket_block_desc *);
207 static void prb_retire_rx_blk_timer_expired(unsigned long);
208 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
209 static void prb_init_blk_timer(struct packet_sock *,
210 		struct tpacket_kbdq_core *,
211 		void (*func) (unsigned long));
212 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
213 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
214 		struct tpacket3_hdr *);
215 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
216 		struct tpacket3_hdr *);
217 static void packet_flush_mclist(struct sock *sk);
218 
219 struct packet_skb_cb {
220 	union {
221 		struct sockaddr_pkt pkt;
222 		union {
223 			/* Trick: alias skb original length with
224 			 * ll.sll_family and ll.protocol in order
225 			 * to save room.
226 			 */
227 			unsigned int origlen;
228 			struct sockaddr_ll ll;
229 		};
230 	} sa;
231 };
232 
233 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
234 
235 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
236 #define GET_PBLOCK_DESC(x, bid)	\
237 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
238 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
239 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
240 #define GET_NEXT_PRB_BLK_NUM(x) \
241 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
242 	((x)->kactive_blk_num+1) : 0)
243 
244 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
245 static void __fanout_link(struct sock *sk, struct packet_sock *po);
246 
247 static int packet_direct_xmit(struct sk_buff *skb)
248 {
249 	struct net_device *dev = skb->dev;
250 	netdev_features_t features;
251 	struct netdev_queue *txq;
252 	int ret = NETDEV_TX_BUSY;
253 
254 	if (unlikely(!netif_running(dev) ||
255 		     !netif_carrier_ok(dev)))
256 		goto drop;
257 
258 	features = netif_skb_features(skb);
259 	if (skb_needs_linearize(skb, features) &&
260 	    __skb_linearize(skb))
261 		goto drop;
262 
263 	txq = skb_get_tx_queue(dev, skb);
264 
265 	local_bh_disable();
266 
267 	HARD_TX_LOCK(dev, txq, smp_processor_id());
268 	if (!netif_xmit_frozen_or_drv_stopped(txq))
269 		ret = netdev_start_xmit(skb, dev, txq, false);
270 	HARD_TX_UNLOCK(dev, txq);
271 
272 	local_bh_enable();
273 
274 	if (!dev_xmit_complete(ret))
275 		kfree_skb(skb);
276 
277 	return ret;
278 drop:
279 	atomic_long_inc(&dev->tx_dropped);
280 	kfree_skb(skb);
281 	return NET_XMIT_DROP;
282 }
283 
284 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
285 {
286 	struct net_device *dev;
287 
288 	rcu_read_lock();
289 	dev = rcu_dereference(po->cached_dev);
290 	if (likely(dev))
291 		dev_hold(dev);
292 	rcu_read_unlock();
293 
294 	return dev;
295 }
296 
297 static void packet_cached_dev_assign(struct packet_sock *po,
298 				     struct net_device *dev)
299 {
300 	rcu_assign_pointer(po->cached_dev, dev);
301 }
302 
303 static void packet_cached_dev_reset(struct packet_sock *po)
304 {
305 	RCU_INIT_POINTER(po->cached_dev, NULL);
306 }
307 
308 static bool packet_use_direct_xmit(const struct packet_sock *po)
309 {
310 	return po->xmit == packet_direct_xmit;
311 }
312 
313 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
314 {
315 	return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
316 }
317 
318 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
319 {
320 	const struct net_device_ops *ops = dev->netdev_ops;
321 	u16 queue_index;
322 
323 	if (ops->ndo_select_queue) {
324 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
325 						    __packet_pick_tx_queue);
326 		queue_index = netdev_cap_txqueue(dev, queue_index);
327 	} else {
328 		queue_index = __packet_pick_tx_queue(dev, skb);
329 	}
330 
331 	skb_set_queue_mapping(skb, queue_index);
332 }
333 
334 /* register_prot_hook must be invoked with the po->bind_lock held,
335  * or from a context in which asynchronous accesses to the packet
336  * socket is not possible (packet_create()).
337  */
338 static void register_prot_hook(struct sock *sk)
339 {
340 	struct packet_sock *po = pkt_sk(sk);
341 
342 	if (!po->running) {
343 		if (po->fanout)
344 			__fanout_link(sk, po);
345 		else
346 			dev_add_pack(&po->prot_hook);
347 
348 		sock_hold(sk);
349 		po->running = 1;
350 	}
351 }
352 
353 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
354  * held.   If the sync parameter is true, we will temporarily drop
355  * the po->bind_lock and do a synchronize_net to make sure no
356  * asynchronous packet processing paths still refer to the elements
357  * of po->prot_hook.  If the sync parameter is false, it is the
358  * callers responsibility to take care of this.
359  */
360 static void __unregister_prot_hook(struct sock *sk, bool sync)
361 {
362 	struct packet_sock *po = pkt_sk(sk);
363 
364 	po->running = 0;
365 
366 	if (po->fanout)
367 		__fanout_unlink(sk, po);
368 	else
369 		__dev_remove_pack(&po->prot_hook);
370 
371 	__sock_put(sk);
372 
373 	if (sync) {
374 		spin_unlock(&po->bind_lock);
375 		synchronize_net();
376 		spin_lock(&po->bind_lock);
377 	}
378 }
379 
380 static void unregister_prot_hook(struct sock *sk, bool sync)
381 {
382 	struct packet_sock *po = pkt_sk(sk);
383 
384 	if (po->running)
385 		__unregister_prot_hook(sk, sync);
386 }
387 
388 static inline struct page * __pure pgv_to_page(void *addr)
389 {
390 	if (is_vmalloc_addr(addr))
391 		return vmalloc_to_page(addr);
392 	return virt_to_page(addr);
393 }
394 
395 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
396 {
397 	union tpacket_uhdr h;
398 
399 	h.raw = frame;
400 	switch (po->tp_version) {
401 	case TPACKET_V1:
402 		h.h1->tp_status = status;
403 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
404 		break;
405 	case TPACKET_V2:
406 		h.h2->tp_status = status;
407 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
408 		break;
409 	case TPACKET_V3:
410 	default:
411 		WARN(1, "TPACKET version not supported.\n");
412 		BUG();
413 	}
414 
415 	smp_wmb();
416 }
417 
418 static int __packet_get_status(struct packet_sock *po, void *frame)
419 {
420 	union tpacket_uhdr h;
421 
422 	smp_rmb();
423 
424 	h.raw = frame;
425 	switch (po->tp_version) {
426 	case TPACKET_V1:
427 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
428 		return h.h1->tp_status;
429 	case TPACKET_V2:
430 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
431 		return h.h2->tp_status;
432 	case TPACKET_V3:
433 	default:
434 		WARN(1, "TPACKET version not supported.\n");
435 		BUG();
436 		return 0;
437 	}
438 }
439 
440 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
441 				   unsigned int flags)
442 {
443 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
444 
445 	if (shhwtstamps &&
446 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
447 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
448 		return TP_STATUS_TS_RAW_HARDWARE;
449 
450 	if (ktime_to_timespec_cond(skb->tstamp, ts))
451 		return TP_STATUS_TS_SOFTWARE;
452 
453 	return 0;
454 }
455 
456 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
457 				    struct sk_buff *skb)
458 {
459 	union tpacket_uhdr h;
460 	struct timespec ts;
461 	__u32 ts_status;
462 
463 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
464 		return 0;
465 
466 	h.raw = frame;
467 	switch (po->tp_version) {
468 	case TPACKET_V1:
469 		h.h1->tp_sec = ts.tv_sec;
470 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
471 		break;
472 	case TPACKET_V2:
473 		h.h2->tp_sec = ts.tv_sec;
474 		h.h2->tp_nsec = ts.tv_nsec;
475 		break;
476 	case TPACKET_V3:
477 	default:
478 		WARN(1, "TPACKET version not supported.\n");
479 		BUG();
480 	}
481 
482 	/* one flush is safe, as both fields always lie on the same cacheline */
483 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
484 	smp_wmb();
485 
486 	return ts_status;
487 }
488 
489 static void *packet_lookup_frame(struct packet_sock *po,
490 		struct packet_ring_buffer *rb,
491 		unsigned int position,
492 		int status)
493 {
494 	unsigned int pg_vec_pos, frame_offset;
495 	union tpacket_uhdr h;
496 
497 	pg_vec_pos = position / rb->frames_per_block;
498 	frame_offset = position % rb->frames_per_block;
499 
500 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
501 		(frame_offset * rb->frame_size);
502 
503 	if (status != __packet_get_status(po, h.raw))
504 		return NULL;
505 
506 	return h.raw;
507 }
508 
509 static void *packet_current_frame(struct packet_sock *po,
510 		struct packet_ring_buffer *rb,
511 		int status)
512 {
513 	return packet_lookup_frame(po, rb, rb->head, status);
514 }
515 
516 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
517 {
518 	del_timer_sync(&pkc->retire_blk_timer);
519 }
520 
521 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
522 		struct sk_buff_head *rb_queue)
523 {
524 	struct tpacket_kbdq_core *pkc;
525 
526 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
527 
528 	spin_lock_bh(&rb_queue->lock);
529 	pkc->delete_blk_timer = 1;
530 	spin_unlock_bh(&rb_queue->lock);
531 
532 	prb_del_retire_blk_timer(pkc);
533 }
534 
535 static void prb_init_blk_timer(struct packet_sock *po,
536 		struct tpacket_kbdq_core *pkc,
537 		void (*func) (unsigned long))
538 {
539 	init_timer(&pkc->retire_blk_timer);
540 	pkc->retire_blk_timer.data = (long)po;
541 	pkc->retire_blk_timer.function = func;
542 	pkc->retire_blk_timer.expires = jiffies;
543 }
544 
545 static void prb_setup_retire_blk_timer(struct packet_sock *po)
546 {
547 	struct tpacket_kbdq_core *pkc;
548 
549 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
550 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
551 }
552 
553 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
554 				int blk_size_in_bytes)
555 {
556 	struct net_device *dev;
557 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
558 	struct ethtool_cmd ecmd;
559 	int err;
560 	u32 speed;
561 
562 	rtnl_lock();
563 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
564 	if (unlikely(!dev)) {
565 		rtnl_unlock();
566 		return DEFAULT_PRB_RETIRE_TOV;
567 	}
568 	err = __ethtool_get_settings(dev, &ecmd);
569 	speed = ethtool_cmd_speed(&ecmd);
570 	rtnl_unlock();
571 	if (!err) {
572 		/*
573 		 * If the link speed is so slow you don't really
574 		 * need to worry about perf anyways
575 		 */
576 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
577 			return DEFAULT_PRB_RETIRE_TOV;
578 		} else {
579 			msec = 1;
580 			div = speed / 1000;
581 		}
582 	}
583 
584 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
585 
586 	if (div)
587 		mbits /= div;
588 
589 	tmo = mbits * msec;
590 
591 	if (div)
592 		return tmo+1;
593 	return tmo;
594 }
595 
596 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
597 			union tpacket_req_u *req_u)
598 {
599 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
600 }
601 
602 static void init_prb_bdqc(struct packet_sock *po,
603 			struct packet_ring_buffer *rb,
604 			struct pgv *pg_vec,
605 			union tpacket_req_u *req_u)
606 {
607 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
608 	struct tpacket_block_desc *pbd;
609 
610 	memset(p1, 0x0, sizeof(*p1));
611 
612 	p1->knxt_seq_num = 1;
613 	p1->pkbdq = pg_vec;
614 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
615 	p1->pkblk_start	= pg_vec[0].buffer;
616 	p1->kblk_size = req_u->req3.tp_block_size;
617 	p1->knum_blocks	= req_u->req3.tp_block_nr;
618 	p1->hdrlen = po->tp_hdrlen;
619 	p1->version = po->tp_version;
620 	p1->last_kactive_blk_num = 0;
621 	po->stats.stats3.tp_freeze_q_cnt = 0;
622 	if (req_u->req3.tp_retire_blk_tov)
623 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
624 	else
625 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
626 						req_u->req3.tp_block_size);
627 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
628 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
629 
630 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
631 	prb_init_ft_ops(p1, req_u);
632 	prb_setup_retire_blk_timer(po);
633 	prb_open_block(p1, pbd);
634 }
635 
636 /*  Do NOT update the last_blk_num first.
637  *  Assumes sk_buff_head lock is held.
638  */
639 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
640 {
641 	mod_timer(&pkc->retire_blk_timer,
642 			jiffies + pkc->tov_in_jiffies);
643 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
644 }
645 
646 /*
647  * Timer logic:
648  * 1) We refresh the timer only when we open a block.
649  *    By doing this we don't waste cycles refreshing the timer
650  *	  on packet-by-packet basis.
651  *
652  * With a 1MB block-size, on a 1Gbps line, it will take
653  * i) ~8 ms to fill a block + ii) memcpy etc.
654  * In this cut we are not accounting for the memcpy time.
655  *
656  * So, if the user sets the 'tmo' to 10ms then the timer
657  * will never fire while the block is still getting filled
658  * (which is what we want). However, the user could choose
659  * to close a block early and that's fine.
660  *
661  * But when the timer does fire, we check whether or not to refresh it.
662  * Since the tmo granularity is in msecs, it is not too expensive
663  * to refresh the timer, lets say every '8' msecs.
664  * Either the user can set the 'tmo' or we can derive it based on
665  * a) line-speed and b) block-size.
666  * prb_calc_retire_blk_tmo() calculates the tmo.
667  *
668  */
669 static void prb_retire_rx_blk_timer_expired(unsigned long data)
670 {
671 	struct packet_sock *po = (struct packet_sock *)data;
672 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
673 	unsigned int frozen;
674 	struct tpacket_block_desc *pbd;
675 
676 	spin_lock(&po->sk.sk_receive_queue.lock);
677 
678 	frozen = prb_queue_frozen(pkc);
679 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
680 
681 	if (unlikely(pkc->delete_blk_timer))
682 		goto out;
683 
684 	/* We only need to plug the race when the block is partially filled.
685 	 * tpacket_rcv:
686 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
687 	 *		copy_bits() is in progress ...
688 	 *		timer fires on other cpu:
689 	 *		we can't retire the current block because copy_bits
690 	 *		is in progress.
691 	 *
692 	 */
693 	if (BLOCK_NUM_PKTS(pbd)) {
694 		while (atomic_read(&pkc->blk_fill_in_prog)) {
695 			/* Waiting for skb_copy_bits to finish... */
696 			cpu_relax();
697 		}
698 	}
699 
700 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
701 		if (!frozen) {
702 			if (!BLOCK_NUM_PKTS(pbd)) {
703 				/* An empty block. Just refresh the timer. */
704 				goto refresh_timer;
705 			}
706 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
707 			if (!prb_dispatch_next_block(pkc, po))
708 				goto refresh_timer;
709 			else
710 				goto out;
711 		} else {
712 			/* Case 1. Queue was frozen because user-space was
713 			 *	   lagging behind.
714 			 */
715 			if (prb_curr_blk_in_use(pkc, pbd)) {
716 				/*
717 				 * Ok, user-space is still behind.
718 				 * So just refresh the timer.
719 				 */
720 				goto refresh_timer;
721 			} else {
722 			       /* Case 2. queue was frozen,user-space caught up,
723 				* now the link went idle && the timer fired.
724 				* We don't have a block to close.So we open this
725 				* block and restart the timer.
726 				* opening a block thaws the queue,restarts timer
727 				* Thawing/timer-refresh is a side effect.
728 				*/
729 				prb_open_block(pkc, pbd);
730 				goto out;
731 			}
732 		}
733 	}
734 
735 refresh_timer:
736 	_prb_refresh_rx_retire_blk_timer(pkc);
737 
738 out:
739 	spin_unlock(&po->sk.sk_receive_queue.lock);
740 }
741 
742 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
743 		struct tpacket_block_desc *pbd1, __u32 status)
744 {
745 	/* Flush everything minus the block header */
746 
747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
748 	u8 *start, *end;
749 
750 	start = (u8 *)pbd1;
751 
752 	/* Skip the block header(we know header WILL fit in 4K) */
753 	start += PAGE_SIZE;
754 
755 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
756 	for (; start < end; start += PAGE_SIZE)
757 		flush_dcache_page(pgv_to_page(start));
758 
759 	smp_wmb();
760 #endif
761 
762 	/* Now update the block status. */
763 
764 	BLOCK_STATUS(pbd1) = status;
765 
766 	/* Flush the block header */
767 
768 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
769 	start = (u8 *)pbd1;
770 	flush_dcache_page(pgv_to_page(start));
771 
772 	smp_wmb();
773 #endif
774 }
775 
776 /*
777  * Side effect:
778  *
779  * 1) flush the block
780  * 2) Increment active_blk_num
781  *
782  * Note:We DONT refresh the timer on purpose.
783  *	Because almost always the next block will be opened.
784  */
785 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
786 		struct tpacket_block_desc *pbd1,
787 		struct packet_sock *po, unsigned int stat)
788 {
789 	__u32 status = TP_STATUS_USER | stat;
790 
791 	struct tpacket3_hdr *last_pkt;
792 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
793 	struct sock *sk = &po->sk;
794 
795 	if (po->stats.stats3.tp_drops)
796 		status |= TP_STATUS_LOSING;
797 
798 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
799 	last_pkt->tp_next_offset = 0;
800 
801 	/* Get the ts of the last pkt */
802 	if (BLOCK_NUM_PKTS(pbd1)) {
803 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
804 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
805 	} else {
806 		/* Ok, we tmo'd - so get the current time.
807 		 *
808 		 * It shouldn't really happen as we don't close empty
809 		 * blocks. See prb_retire_rx_blk_timer_expired().
810 		 */
811 		struct timespec ts;
812 		getnstimeofday(&ts);
813 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
814 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
815 	}
816 
817 	smp_wmb();
818 
819 	/* Flush the block */
820 	prb_flush_block(pkc1, pbd1, status);
821 
822 	sk->sk_data_ready(sk);
823 
824 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
825 }
826 
827 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
828 {
829 	pkc->reset_pending_on_curr_blk = 0;
830 }
831 
832 /*
833  * Side effect of opening a block:
834  *
835  * 1) prb_queue is thawed.
836  * 2) retire_blk_timer is refreshed.
837  *
838  */
839 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
840 	struct tpacket_block_desc *pbd1)
841 {
842 	struct timespec ts;
843 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
844 
845 	smp_rmb();
846 
847 	/* We could have just memset this but we will lose the
848 	 * flexibility of making the priv area sticky
849 	 */
850 
851 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
852 	BLOCK_NUM_PKTS(pbd1) = 0;
853 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
854 
855 	getnstimeofday(&ts);
856 
857 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
858 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
859 
860 	pkc1->pkblk_start = (char *)pbd1;
861 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
862 
863 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
864 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
865 
866 	pbd1->version = pkc1->version;
867 	pkc1->prev = pkc1->nxt_offset;
868 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
869 
870 	prb_thaw_queue(pkc1);
871 	_prb_refresh_rx_retire_blk_timer(pkc1);
872 
873 	smp_wmb();
874 }
875 
876 /*
877  * Queue freeze logic:
878  * 1) Assume tp_block_nr = 8 blocks.
879  * 2) At time 't0', user opens Rx ring.
880  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
881  * 4) user-space is either sleeping or processing block '0'.
882  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
883  *    it will close block-7,loop around and try to fill block '0'.
884  *    call-flow:
885  *    __packet_lookup_frame_in_block
886  *      prb_retire_current_block()
887  *      prb_dispatch_next_block()
888  *        |->(BLOCK_STATUS == USER) evaluates to true
889  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
890  * 6) Now there are two cases:
891  *    6.1) Link goes idle right after the queue is frozen.
892  *         But remember, the last open_block() refreshed the timer.
893  *         When this timer expires,it will refresh itself so that we can
894  *         re-open block-0 in near future.
895  *    6.2) Link is busy and keeps on receiving packets. This is a simple
896  *         case and __packet_lookup_frame_in_block will check if block-0
897  *         is free and can now be re-used.
898  */
899 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
900 				  struct packet_sock *po)
901 {
902 	pkc->reset_pending_on_curr_blk = 1;
903 	po->stats.stats3.tp_freeze_q_cnt++;
904 }
905 
906 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
907 
908 /*
909  * If the next block is free then we will dispatch it
910  * and return a good offset.
911  * Else, we will freeze the queue.
912  * So, caller must check the return value.
913  */
914 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
915 		struct packet_sock *po)
916 {
917 	struct tpacket_block_desc *pbd;
918 
919 	smp_rmb();
920 
921 	/* 1. Get current block num */
922 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
923 
924 	/* 2. If this block is currently in_use then freeze the queue */
925 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
926 		prb_freeze_queue(pkc, po);
927 		return NULL;
928 	}
929 
930 	/*
931 	 * 3.
932 	 * open this block and return the offset where the first packet
933 	 * needs to get stored.
934 	 */
935 	prb_open_block(pkc, pbd);
936 	return (void *)pkc->nxt_offset;
937 }
938 
939 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
940 		struct packet_sock *po, unsigned int status)
941 {
942 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
943 
944 	/* retire/close the current block */
945 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
946 		/*
947 		 * Plug the case where copy_bits() is in progress on
948 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
949 		 * have space to copy the pkt in the current block and
950 		 * called prb_retire_current_block()
951 		 *
952 		 * We don't need to worry about the TMO case because
953 		 * the timer-handler already handled this case.
954 		 */
955 		if (!(status & TP_STATUS_BLK_TMO)) {
956 			while (atomic_read(&pkc->blk_fill_in_prog)) {
957 				/* Waiting for skb_copy_bits to finish... */
958 				cpu_relax();
959 			}
960 		}
961 		prb_close_block(pkc, pbd, po, status);
962 		return;
963 	}
964 }
965 
966 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
967 				      struct tpacket_block_desc *pbd)
968 {
969 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
970 }
971 
972 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
973 {
974 	return pkc->reset_pending_on_curr_blk;
975 }
976 
977 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
978 {
979 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
980 	atomic_dec(&pkc->blk_fill_in_prog);
981 }
982 
983 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
984 			struct tpacket3_hdr *ppd)
985 {
986 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
987 }
988 
989 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
990 			struct tpacket3_hdr *ppd)
991 {
992 	ppd->hv1.tp_rxhash = 0;
993 }
994 
995 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
996 			struct tpacket3_hdr *ppd)
997 {
998 	if (skb_vlan_tag_present(pkc->skb)) {
999 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1000 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1001 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1002 	} else {
1003 		ppd->hv1.tp_vlan_tci = 0;
1004 		ppd->hv1.tp_vlan_tpid = 0;
1005 		ppd->tp_status = TP_STATUS_AVAILABLE;
1006 	}
1007 }
1008 
1009 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1010 			struct tpacket3_hdr *ppd)
1011 {
1012 	ppd->hv1.tp_padding = 0;
1013 	prb_fill_vlan_info(pkc, ppd);
1014 
1015 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1016 		prb_fill_rxhash(pkc, ppd);
1017 	else
1018 		prb_clear_rxhash(pkc, ppd);
1019 }
1020 
1021 static void prb_fill_curr_block(char *curr,
1022 				struct tpacket_kbdq_core *pkc,
1023 				struct tpacket_block_desc *pbd,
1024 				unsigned int len)
1025 {
1026 	struct tpacket3_hdr *ppd;
1027 
1028 	ppd  = (struct tpacket3_hdr *)curr;
1029 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1030 	pkc->prev = curr;
1031 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1032 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1033 	BLOCK_NUM_PKTS(pbd) += 1;
1034 	atomic_inc(&pkc->blk_fill_in_prog);
1035 	prb_run_all_ft_ops(pkc, ppd);
1036 }
1037 
1038 /* Assumes caller has the sk->rx_queue.lock */
1039 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1040 					    struct sk_buff *skb,
1041 						int status,
1042 					    unsigned int len
1043 					    )
1044 {
1045 	struct tpacket_kbdq_core *pkc;
1046 	struct tpacket_block_desc *pbd;
1047 	char *curr, *end;
1048 
1049 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1050 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1051 
1052 	/* Queue is frozen when user space is lagging behind */
1053 	if (prb_queue_frozen(pkc)) {
1054 		/*
1055 		 * Check if that last block which caused the queue to freeze,
1056 		 * is still in_use by user-space.
1057 		 */
1058 		if (prb_curr_blk_in_use(pkc, pbd)) {
1059 			/* Can't record this packet */
1060 			return NULL;
1061 		} else {
1062 			/*
1063 			 * Ok, the block was released by user-space.
1064 			 * Now let's open that block.
1065 			 * opening a block also thaws the queue.
1066 			 * Thawing is a side effect.
1067 			 */
1068 			prb_open_block(pkc, pbd);
1069 		}
1070 	}
1071 
1072 	smp_mb();
1073 	curr = pkc->nxt_offset;
1074 	pkc->skb = skb;
1075 	end = (char *)pbd + pkc->kblk_size;
1076 
1077 	/* first try the current block */
1078 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1079 		prb_fill_curr_block(curr, pkc, pbd, len);
1080 		return (void *)curr;
1081 	}
1082 
1083 	/* Ok, close the current block */
1084 	prb_retire_current_block(pkc, po, 0);
1085 
1086 	/* Now, try to dispatch the next block */
1087 	curr = (char *)prb_dispatch_next_block(pkc, po);
1088 	if (curr) {
1089 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1090 		prb_fill_curr_block(curr, pkc, pbd, len);
1091 		return (void *)curr;
1092 	}
1093 
1094 	/*
1095 	 * No free blocks are available.user_space hasn't caught up yet.
1096 	 * Queue was just frozen and now this packet will get dropped.
1097 	 */
1098 	return NULL;
1099 }
1100 
1101 static void *packet_current_rx_frame(struct packet_sock *po,
1102 					    struct sk_buff *skb,
1103 					    int status, unsigned int len)
1104 {
1105 	char *curr = NULL;
1106 	switch (po->tp_version) {
1107 	case TPACKET_V1:
1108 	case TPACKET_V2:
1109 		curr = packet_lookup_frame(po, &po->rx_ring,
1110 					po->rx_ring.head, status);
1111 		return curr;
1112 	case TPACKET_V3:
1113 		return __packet_lookup_frame_in_block(po, skb, status, len);
1114 	default:
1115 		WARN(1, "TPACKET version not supported\n");
1116 		BUG();
1117 		return NULL;
1118 	}
1119 }
1120 
1121 static void *prb_lookup_block(struct packet_sock *po,
1122 				     struct packet_ring_buffer *rb,
1123 				     unsigned int idx,
1124 				     int status)
1125 {
1126 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1127 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1128 
1129 	if (status != BLOCK_STATUS(pbd))
1130 		return NULL;
1131 	return pbd;
1132 }
1133 
1134 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1135 {
1136 	unsigned int prev;
1137 	if (rb->prb_bdqc.kactive_blk_num)
1138 		prev = rb->prb_bdqc.kactive_blk_num-1;
1139 	else
1140 		prev = rb->prb_bdqc.knum_blocks-1;
1141 	return prev;
1142 }
1143 
1144 /* Assumes caller has held the rx_queue.lock */
1145 static void *__prb_previous_block(struct packet_sock *po,
1146 					 struct packet_ring_buffer *rb,
1147 					 int status)
1148 {
1149 	unsigned int previous = prb_previous_blk_num(rb);
1150 	return prb_lookup_block(po, rb, previous, status);
1151 }
1152 
1153 static void *packet_previous_rx_frame(struct packet_sock *po,
1154 					     struct packet_ring_buffer *rb,
1155 					     int status)
1156 {
1157 	if (po->tp_version <= TPACKET_V2)
1158 		return packet_previous_frame(po, rb, status);
1159 
1160 	return __prb_previous_block(po, rb, status);
1161 }
1162 
1163 static void packet_increment_rx_head(struct packet_sock *po,
1164 					    struct packet_ring_buffer *rb)
1165 {
1166 	switch (po->tp_version) {
1167 	case TPACKET_V1:
1168 	case TPACKET_V2:
1169 		return packet_increment_head(rb);
1170 	case TPACKET_V3:
1171 	default:
1172 		WARN(1, "TPACKET version not supported.\n");
1173 		BUG();
1174 		return;
1175 	}
1176 }
1177 
1178 static void *packet_previous_frame(struct packet_sock *po,
1179 		struct packet_ring_buffer *rb,
1180 		int status)
1181 {
1182 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1183 	return packet_lookup_frame(po, rb, previous, status);
1184 }
1185 
1186 static void packet_increment_head(struct packet_ring_buffer *buff)
1187 {
1188 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1189 }
1190 
1191 static void packet_inc_pending(struct packet_ring_buffer *rb)
1192 {
1193 	this_cpu_inc(*rb->pending_refcnt);
1194 }
1195 
1196 static void packet_dec_pending(struct packet_ring_buffer *rb)
1197 {
1198 	this_cpu_dec(*rb->pending_refcnt);
1199 }
1200 
1201 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1202 {
1203 	unsigned int refcnt = 0;
1204 	int cpu;
1205 
1206 	/* We don't use pending refcount in rx_ring. */
1207 	if (rb->pending_refcnt == NULL)
1208 		return 0;
1209 
1210 	for_each_possible_cpu(cpu)
1211 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1212 
1213 	return refcnt;
1214 }
1215 
1216 static int packet_alloc_pending(struct packet_sock *po)
1217 {
1218 	po->rx_ring.pending_refcnt = NULL;
1219 
1220 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1221 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1222 		return -ENOBUFS;
1223 
1224 	return 0;
1225 }
1226 
1227 static void packet_free_pending(struct packet_sock *po)
1228 {
1229 	free_percpu(po->tx_ring.pending_refcnt);
1230 }
1231 
1232 #define ROOM_POW_OFF	2
1233 #define ROOM_NONE	0x0
1234 #define ROOM_LOW	0x1
1235 #define ROOM_NORMAL	0x2
1236 
1237 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1238 {
1239 	int idx, len;
1240 
1241 	len = po->rx_ring.frame_max + 1;
1242 	idx = po->rx_ring.head;
1243 	if (pow_off)
1244 		idx += len >> pow_off;
1245 	if (idx >= len)
1246 		idx -= len;
1247 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1248 }
1249 
1250 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1251 {
1252 	int idx, len;
1253 
1254 	len = po->rx_ring.prb_bdqc.knum_blocks;
1255 	idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1256 	if (pow_off)
1257 		idx += len >> pow_off;
1258 	if (idx >= len)
1259 		idx -= len;
1260 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1261 }
1262 
1263 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1264 {
1265 	struct sock *sk = &po->sk;
1266 	int ret = ROOM_NONE;
1267 
1268 	if (po->prot_hook.func != tpacket_rcv) {
1269 		int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1270 					  - (skb ? skb->truesize : 0);
1271 		if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1272 			return ROOM_NORMAL;
1273 		else if (avail > 0)
1274 			return ROOM_LOW;
1275 		else
1276 			return ROOM_NONE;
1277 	}
1278 
1279 	if (po->tp_version == TPACKET_V3) {
1280 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1281 			ret = ROOM_NORMAL;
1282 		else if (__tpacket_v3_has_room(po, 0))
1283 			ret = ROOM_LOW;
1284 	} else {
1285 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1286 			ret = ROOM_NORMAL;
1287 		else if (__tpacket_has_room(po, 0))
1288 			ret = ROOM_LOW;
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1295 {
1296 	int ret;
1297 	bool has_room;
1298 
1299 	spin_lock_bh(&po->sk.sk_receive_queue.lock);
1300 	ret = __packet_rcv_has_room(po, skb);
1301 	has_room = ret == ROOM_NORMAL;
1302 	if (po->pressure == has_room)
1303 		po->pressure = !has_room;
1304 	spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1305 
1306 	return ret;
1307 }
1308 
1309 static void packet_sock_destruct(struct sock *sk)
1310 {
1311 	skb_queue_purge(&sk->sk_error_queue);
1312 
1313 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1314 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1315 
1316 	if (!sock_flag(sk, SOCK_DEAD)) {
1317 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1318 		return;
1319 	}
1320 
1321 	sk_refcnt_debug_dec(sk);
1322 }
1323 
1324 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1325 {
1326 	u32 rxhash;
1327 	int i, count = 0;
1328 
1329 	rxhash = skb_get_hash(skb);
1330 	for (i = 0; i < ROLLOVER_HLEN; i++)
1331 		if (po->rollover->history[i] == rxhash)
1332 			count++;
1333 
1334 	po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1335 	return count > (ROLLOVER_HLEN >> 1);
1336 }
1337 
1338 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1339 				      struct sk_buff *skb,
1340 				      unsigned int num)
1341 {
1342 	return reciprocal_scale(skb_get_hash(skb), num);
1343 }
1344 
1345 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1346 				    struct sk_buff *skb,
1347 				    unsigned int num)
1348 {
1349 	unsigned int val = atomic_inc_return(&f->rr_cur);
1350 
1351 	return val % num;
1352 }
1353 
1354 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1355 				     struct sk_buff *skb,
1356 				     unsigned int num)
1357 {
1358 	return smp_processor_id() % num;
1359 }
1360 
1361 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1362 				     struct sk_buff *skb,
1363 				     unsigned int num)
1364 {
1365 	return prandom_u32_max(num);
1366 }
1367 
1368 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1369 					  struct sk_buff *skb,
1370 					  unsigned int idx, bool try_self,
1371 					  unsigned int num)
1372 {
1373 	struct packet_sock *po, *po_next, *po_skip = NULL;
1374 	unsigned int i, j, room = ROOM_NONE;
1375 
1376 	po = pkt_sk(f->arr[idx]);
1377 
1378 	if (try_self) {
1379 		room = packet_rcv_has_room(po, skb);
1380 		if (room == ROOM_NORMAL ||
1381 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1382 			return idx;
1383 		po_skip = po;
1384 	}
1385 
1386 	i = j = min_t(int, po->rollover->sock, num - 1);
1387 	do {
1388 		po_next = pkt_sk(f->arr[i]);
1389 		if (po_next != po_skip && !po_next->pressure &&
1390 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1391 			if (i != j)
1392 				po->rollover->sock = i;
1393 			atomic_long_inc(&po->rollover->num);
1394 			if (room == ROOM_LOW)
1395 				atomic_long_inc(&po->rollover->num_huge);
1396 			return i;
1397 		}
1398 
1399 		if (++i == num)
1400 			i = 0;
1401 	} while (i != j);
1402 
1403 	atomic_long_inc(&po->rollover->num_failed);
1404 	return idx;
1405 }
1406 
1407 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1408 				    struct sk_buff *skb,
1409 				    unsigned int num)
1410 {
1411 	return skb_get_queue_mapping(skb) % num;
1412 }
1413 
1414 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1415 				     struct sk_buff *skb,
1416 				     unsigned int num)
1417 {
1418 	struct bpf_prog *prog;
1419 	unsigned int ret = 0;
1420 
1421 	rcu_read_lock();
1422 	prog = rcu_dereference(f->bpf_prog);
1423 	if (prog)
1424 		ret = BPF_PROG_RUN(prog, skb) % num;
1425 	rcu_read_unlock();
1426 
1427 	return ret;
1428 }
1429 
1430 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1431 {
1432 	return f->flags & (flag >> 8);
1433 }
1434 
1435 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1436 			     struct packet_type *pt, struct net_device *orig_dev)
1437 {
1438 	struct packet_fanout *f = pt->af_packet_priv;
1439 	unsigned int num = READ_ONCE(f->num_members);
1440 	struct packet_sock *po;
1441 	unsigned int idx;
1442 
1443 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1444 	    !num) {
1445 		kfree_skb(skb);
1446 		return 0;
1447 	}
1448 
1449 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1450 		skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1451 		if (!skb)
1452 			return 0;
1453 	}
1454 	switch (f->type) {
1455 	case PACKET_FANOUT_HASH:
1456 	default:
1457 		idx = fanout_demux_hash(f, skb, num);
1458 		break;
1459 	case PACKET_FANOUT_LB:
1460 		idx = fanout_demux_lb(f, skb, num);
1461 		break;
1462 	case PACKET_FANOUT_CPU:
1463 		idx = fanout_demux_cpu(f, skb, num);
1464 		break;
1465 	case PACKET_FANOUT_RND:
1466 		idx = fanout_demux_rnd(f, skb, num);
1467 		break;
1468 	case PACKET_FANOUT_QM:
1469 		idx = fanout_demux_qm(f, skb, num);
1470 		break;
1471 	case PACKET_FANOUT_ROLLOVER:
1472 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1473 		break;
1474 	case PACKET_FANOUT_CBPF:
1475 	case PACKET_FANOUT_EBPF:
1476 		idx = fanout_demux_bpf(f, skb, num);
1477 		break;
1478 	}
1479 
1480 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1481 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1482 
1483 	po = pkt_sk(f->arr[idx]);
1484 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1485 }
1486 
1487 DEFINE_MUTEX(fanout_mutex);
1488 EXPORT_SYMBOL_GPL(fanout_mutex);
1489 static LIST_HEAD(fanout_list);
1490 
1491 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1492 {
1493 	struct packet_fanout *f = po->fanout;
1494 
1495 	spin_lock(&f->lock);
1496 	f->arr[f->num_members] = sk;
1497 	smp_wmb();
1498 	f->num_members++;
1499 	spin_unlock(&f->lock);
1500 }
1501 
1502 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1503 {
1504 	struct packet_fanout *f = po->fanout;
1505 	int i;
1506 
1507 	spin_lock(&f->lock);
1508 	for (i = 0; i < f->num_members; i++) {
1509 		if (f->arr[i] == sk)
1510 			break;
1511 	}
1512 	BUG_ON(i >= f->num_members);
1513 	f->arr[i] = f->arr[f->num_members - 1];
1514 	f->num_members--;
1515 	spin_unlock(&f->lock);
1516 }
1517 
1518 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1519 {
1520 	if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1521 		return true;
1522 
1523 	return false;
1524 }
1525 
1526 static void fanout_init_data(struct packet_fanout *f)
1527 {
1528 	switch (f->type) {
1529 	case PACKET_FANOUT_LB:
1530 		atomic_set(&f->rr_cur, 0);
1531 		break;
1532 	case PACKET_FANOUT_CBPF:
1533 	case PACKET_FANOUT_EBPF:
1534 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1535 		break;
1536 	}
1537 }
1538 
1539 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1540 {
1541 	struct bpf_prog *old;
1542 
1543 	spin_lock(&f->lock);
1544 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1545 	rcu_assign_pointer(f->bpf_prog, new);
1546 	spin_unlock(&f->lock);
1547 
1548 	if (old) {
1549 		synchronize_net();
1550 		bpf_prog_destroy(old);
1551 	}
1552 }
1553 
1554 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1555 				unsigned int len)
1556 {
1557 	struct bpf_prog *new;
1558 	struct sock_fprog fprog;
1559 	int ret;
1560 
1561 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1562 		return -EPERM;
1563 	if (len != sizeof(fprog))
1564 		return -EINVAL;
1565 	if (copy_from_user(&fprog, data, len))
1566 		return -EFAULT;
1567 
1568 	ret = bpf_prog_create_from_user(&new, &fprog, NULL);
1569 	if (ret)
1570 		return ret;
1571 
1572 	__fanout_set_data_bpf(po->fanout, new);
1573 	return 0;
1574 }
1575 
1576 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1577 				unsigned int len)
1578 {
1579 	struct bpf_prog *new;
1580 	u32 fd;
1581 
1582 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1583 		return -EPERM;
1584 	if (len != sizeof(fd))
1585 		return -EINVAL;
1586 	if (copy_from_user(&fd, data, len))
1587 		return -EFAULT;
1588 
1589 	new = bpf_prog_get(fd);
1590 	if (IS_ERR(new))
1591 		return PTR_ERR(new);
1592 	if (new->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1593 		bpf_prog_put(new);
1594 		return -EINVAL;
1595 	}
1596 
1597 	__fanout_set_data_bpf(po->fanout, new);
1598 	return 0;
1599 }
1600 
1601 static int fanout_set_data(struct packet_sock *po, char __user *data,
1602 			   unsigned int len)
1603 {
1604 	switch (po->fanout->type) {
1605 	case PACKET_FANOUT_CBPF:
1606 		return fanout_set_data_cbpf(po, data, len);
1607 	case PACKET_FANOUT_EBPF:
1608 		return fanout_set_data_ebpf(po, data, len);
1609 	default:
1610 		return -EINVAL;
1611 	};
1612 }
1613 
1614 static void fanout_release_data(struct packet_fanout *f)
1615 {
1616 	switch (f->type) {
1617 	case PACKET_FANOUT_CBPF:
1618 	case PACKET_FANOUT_EBPF:
1619 		__fanout_set_data_bpf(f, NULL);
1620 	};
1621 }
1622 
1623 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1624 {
1625 	struct packet_sock *po = pkt_sk(sk);
1626 	struct packet_fanout *f, *match;
1627 	u8 type = type_flags & 0xff;
1628 	u8 flags = type_flags >> 8;
1629 	int err;
1630 
1631 	switch (type) {
1632 	case PACKET_FANOUT_ROLLOVER:
1633 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1634 			return -EINVAL;
1635 	case PACKET_FANOUT_HASH:
1636 	case PACKET_FANOUT_LB:
1637 	case PACKET_FANOUT_CPU:
1638 	case PACKET_FANOUT_RND:
1639 	case PACKET_FANOUT_QM:
1640 	case PACKET_FANOUT_CBPF:
1641 	case PACKET_FANOUT_EBPF:
1642 		break;
1643 	default:
1644 		return -EINVAL;
1645 	}
1646 
1647 	if (!po->running)
1648 		return -EINVAL;
1649 
1650 	if (po->fanout)
1651 		return -EALREADY;
1652 
1653 	if (type == PACKET_FANOUT_ROLLOVER ||
1654 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1655 		po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1656 		if (!po->rollover)
1657 			return -ENOMEM;
1658 		atomic_long_set(&po->rollover->num, 0);
1659 		atomic_long_set(&po->rollover->num_huge, 0);
1660 		atomic_long_set(&po->rollover->num_failed, 0);
1661 	}
1662 
1663 	mutex_lock(&fanout_mutex);
1664 	match = NULL;
1665 	list_for_each_entry(f, &fanout_list, list) {
1666 		if (f->id == id &&
1667 		    read_pnet(&f->net) == sock_net(sk)) {
1668 			match = f;
1669 			break;
1670 		}
1671 	}
1672 	err = -EINVAL;
1673 	if (match && match->flags != flags)
1674 		goto out;
1675 	if (!match) {
1676 		err = -ENOMEM;
1677 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1678 		if (!match)
1679 			goto out;
1680 		write_pnet(&match->net, sock_net(sk));
1681 		match->id = id;
1682 		match->type = type;
1683 		match->flags = flags;
1684 		INIT_LIST_HEAD(&match->list);
1685 		spin_lock_init(&match->lock);
1686 		atomic_set(&match->sk_ref, 0);
1687 		fanout_init_data(match);
1688 		match->prot_hook.type = po->prot_hook.type;
1689 		match->prot_hook.dev = po->prot_hook.dev;
1690 		match->prot_hook.func = packet_rcv_fanout;
1691 		match->prot_hook.af_packet_priv = match;
1692 		match->prot_hook.id_match = match_fanout_group;
1693 		dev_add_pack(&match->prot_hook);
1694 		list_add(&match->list, &fanout_list);
1695 	}
1696 	err = -EINVAL;
1697 	if (match->type == type &&
1698 	    match->prot_hook.type == po->prot_hook.type &&
1699 	    match->prot_hook.dev == po->prot_hook.dev) {
1700 		err = -ENOSPC;
1701 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1702 			__dev_remove_pack(&po->prot_hook);
1703 			po->fanout = match;
1704 			atomic_inc(&match->sk_ref);
1705 			__fanout_link(sk, po);
1706 			err = 0;
1707 		}
1708 	}
1709 out:
1710 	mutex_unlock(&fanout_mutex);
1711 	if (err) {
1712 		kfree(po->rollover);
1713 		po->rollover = NULL;
1714 	}
1715 	return err;
1716 }
1717 
1718 static void fanout_release(struct sock *sk)
1719 {
1720 	struct packet_sock *po = pkt_sk(sk);
1721 	struct packet_fanout *f;
1722 
1723 	f = po->fanout;
1724 	if (!f)
1725 		return;
1726 
1727 	mutex_lock(&fanout_mutex);
1728 	po->fanout = NULL;
1729 
1730 	if (atomic_dec_and_test(&f->sk_ref)) {
1731 		list_del(&f->list);
1732 		dev_remove_pack(&f->prot_hook);
1733 		fanout_release_data(f);
1734 		kfree(f);
1735 	}
1736 	mutex_unlock(&fanout_mutex);
1737 
1738 	if (po->rollover)
1739 		kfree_rcu(po->rollover, rcu);
1740 }
1741 
1742 static const struct proto_ops packet_ops;
1743 
1744 static const struct proto_ops packet_ops_spkt;
1745 
1746 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1747 			   struct packet_type *pt, struct net_device *orig_dev)
1748 {
1749 	struct sock *sk;
1750 	struct sockaddr_pkt *spkt;
1751 
1752 	/*
1753 	 *	When we registered the protocol we saved the socket in the data
1754 	 *	field for just this event.
1755 	 */
1756 
1757 	sk = pt->af_packet_priv;
1758 
1759 	/*
1760 	 *	Yank back the headers [hope the device set this
1761 	 *	right or kerboom...]
1762 	 *
1763 	 *	Incoming packets have ll header pulled,
1764 	 *	push it back.
1765 	 *
1766 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1767 	 *	so that this procedure is noop.
1768 	 */
1769 
1770 	if (skb->pkt_type == PACKET_LOOPBACK)
1771 		goto out;
1772 
1773 	if (!net_eq(dev_net(dev), sock_net(sk)))
1774 		goto out;
1775 
1776 	skb = skb_share_check(skb, GFP_ATOMIC);
1777 	if (skb == NULL)
1778 		goto oom;
1779 
1780 	/* drop any routing info */
1781 	skb_dst_drop(skb);
1782 
1783 	/* drop conntrack reference */
1784 	nf_reset(skb);
1785 
1786 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1787 
1788 	skb_push(skb, skb->data - skb_mac_header(skb));
1789 
1790 	/*
1791 	 *	The SOCK_PACKET socket receives _all_ frames.
1792 	 */
1793 
1794 	spkt->spkt_family = dev->type;
1795 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1796 	spkt->spkt_protocol = skb->protocol;
1797 
1798 	/*
1799 	 *	Charge the memory to the socket. This is done specifically
1800 	 *	to prevent sockets using all the memory up.
1801 	 */
1802 
1803 	if (sock_queue_rcv_skb(sk, skb) == 0)
1804 		return 0;
1805 
1806 out:
1807 	kfree_skb(skb);
1808 oom:
1809 	return 0;
1810 }
1811 
1812 
1813 /*
1814  *	Output a raw packet to a device layer. This bypasses all the other
1815  *	protocol layers and you must therefore supply it with a complete frame
1816  */
1817 
1818 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1819 			       size_t len)
1820 {
1821 	struct sock *sk = sock->sk;
1822 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1823 	struct sk_buff *skb = NULL;
1824 	struct net_device *dev;
1825 	__be16 proto = 0;
1826 	int err;
1827 	int extra_len = 0;
1828 
1829 	/*
1830 	 *	Get and verify the address.
1831 	 */
1832 
1833 	if (saddr) {
1834 		if (msg->msg_namelen < sizeof(struct sockaddr))
1835 			return -EINVAL;
1836 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1837 			proto = saddr->spkt_protocol;
1838 	} else
1839 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1840 
1841 	/*
1842 	 *	Find the device first to size check it
1843 	 */
1844 
1845 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1846 retry:
1847 	rcu_read_lock();
1848 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1849 	err = -ENODEV;
1850 	if (dev == NULL)
1851 		goto out_unlock;
1852 
1853 	err = -ENETDOWN;
1854 	if (!(dev->flags & IFF_UP))
1855 		goto out_unlock;
1856 
1857 	/*
1858 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1859 	 * raw protocol and you must do your own fragmentation at this level.
1860 	 */
1861 
1862 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1863 		if (!netif_supports_nofcs(dev)) {
1864 			err = -EPROTONOSUPPORT;
1865 			goto out_unlock;
1866 		}
1867 		extra_len = 4; /* We're doing our own CRC */
1868 	}
1869 
1870 	err = -EMSGSIZE;
1871 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1872 		goto out_unlock;
1873 
1874 	if (!skb) {
1875 		size_t reserved = LL_RESERVED_SPACE(dev);
1876 		int tlen = dev->needed_tailroom;
1877 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1878 
1879 		rcu_read_unlock();
1880 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1881 		if (skb == NULL)
1882 			return -ENOBUFS;
1883 		/* FIXME: Save some space for broken drivers that write a hard
1884 		 * header at transmission time by themselves. PPP is the notable
1885 		 * one here. This should really be fixed at the driver level.
1886 		 */
1887 		skb_reserve(skb, reserved);
1888 		skb_reset_network_header(skb);
1889 
1890 		/* Try to align data part correctly */
1891 		if (hhlen) {
1892 			skb->data -= hhlen;
1893 			skb->tail -= hhlen;
1894 			if (len < hhlen)
1895 				skb_reset_network_header(skb);
1896 		}
1897 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1898 		if (err)
1899 			goto out_free;
1900 		goto retry;
1901 	}
1902 
1903 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1904 		/* Earlier code assumed this would be a VLAN pkt,
1905 		 * double-check this now that we have the actual
1906 		 * packet in hand.
1907 		 */
1908 		struct ethhdr *ehdr;
1909 		skb_reset_mac_header(skb);
1910 		ehdr = eth_hdr(skb);
1911 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1912 			err = -EMSGSIZE;
1913 			goto out_unlock;
1914 		}
1915 	}
1916 
1917 	skb->protocol = proto;
1918 	skb->dev = dev;
1919 	skb->priority = sk->sk_priority;
1920 	skb->mark = sk->sk_mark;
1921 
1922 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1923 
1924 	if (unlikely(extra_len == 4))
1925 		skb->no_fcs = 1;
1926 
1927 	skb_probe_transport_header(skb, 0);
1928 
1929 	dev_queue_xmit(skb);
1930 	rcu_read_unlock();
1931 	return len;
1932 
1933 out_unlock:
1934 	rcu_read_unlock();
1935 out_free:
1936 	kfree_skb(skb);
1937 	return err;
1938 }
1939 
1940 static unsigned int run_filter(const struct sk_buff *skb,
1941 				      const struct sock *sk,
1942 				      unsigned int res)
1943 {
1944 	struct sk_filter *filter;
1945 
1946 	rcu_read_lock();
1947 	filter = rcu_dereference(sk->sk_filter);
1948 	if (filter != NULL)
1949 		res = SK_RUN_FILTER(filter, skb);
1950 	rcu_read_unlock();
1951 
1952 	return res;
1953 }
1954 
1955 /*
1956  * This function makes lazy skb cloning in hope that most of packets
1957  * are discarded by BPF.
1958  *
1959  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1960  * and skb->cb are mangled. It works because (and until) packets
1961  * falling here are owned by current CPU. Output packets are cloned
1962  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1963  * sequencially, so that if we return skb to original state on exit,
1964  * we will not harm anyone.
1965  */
1966 
1967 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1968 		      struct packet_type *pt, struct net_device *orig_dev)
1969 {
1970 	struct sock *sk;
1971 	struct sockaddr_ll *sll;
1972 	struct packet_sock *po;
1973 	u8 *skb_head = skb->data;
1974 	int skb_len = skb->len;
1975 	unsigned int snaplen, res;
1976 
1977 	if (skb->pkt_type == PACKET_LOOPBACK)
1978 		goto drop;
1979 
1980 	sk = pt->af_packet_priv;
1981 	po = pkt_sk(sk);
1982 
1983 	if (!net_eq(dev_net(dev), sock_net(sk)))
1984 		goto drop;
1985 
1986 	skb->dev = dev;
1987 
1988 	if (dev->header_ops) {
1989 		/* The device has an explicit notion of ll header,
1990 		 * exported to higher levels.
1991 		 *
1992 		 * Otherwise, the device hides details of its frame
1993 		 * structure, so that corresponding packet head is
1994 		 * never delivered to user.
1995 		 */
1996 		if (sk->sk_type != SOCK_DGRAM)
1997 			skb_push(skb, skb->data - skb_mac_header(skb));
1998 		else if (skb->pkt_type == PACKET_OUTGOING) {
1999 			/* Special case: outgoing packets have ll header at head */
2000 			skb_pull(skb, skb_network_offset(skb));
2001 		}
2002 	}
2003 
2004 	snaplen = skb->len;
2005 
2006 	res = run_filter(skb, sk, snaplen);
2007 	if (!res)
2008 		goto drop_n_restore;
2009 	if (snaplen > res)
2010 		snaplen = res;
2011 
2012 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2013 		goto drop_n_acct;
2014 
2015 	if (skb_shared(skb)) {
2016 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2017 		if (nskb == NULL)
2018 			goto drop_n_acct;
2019 
2020 		if (skb_head != skb->data) {
2021 			skb->data = skb_head;
2022 			skb->len = skb_len;
2023 		}
2024 		consume_skb(skb);
2025 		skb = nskb;
2026 	}
2027 
2028 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2029 
2030 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2031 	sll->sll_hatype = dev->type;
2032 	sll->sll_pkttype = skb->pkt_type;
2033 	if (unlikely(po->origdev))
2034 		sll->sll_ifindex = orig_dev->ifindex;
2035 	else
2036 		sll->sll_ifindex = dev->ifindex;
2037 
2038 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2039 
2040 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2041 	 * Use their space for storing the original skb length.
2042 	 */
2043 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2044 
2045 	if (pskb_trim(skb, snaplen))
2046 		goto drop_n_acct;
2047 
2048 	skb_set_owner_r(skb, sk);
2049 	skb->dev = NULL;
2050 	skb_dst_drop(skb);
2051 
2052 	/* drop conntrack reference */
2053 	nf_reset(skb);
2054 
2055 	spin_lock(&sk->sk_receive_queue.lock);
2056 	po->stats.stats1.tp_packets++;
2057 	sock_skb_set_dropcount(sk, skb);
2058 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2059 	spin_unlock(&sk->sk_receive_queue.lock);
2060 	sk->sk_data_ready(sk);
2061 	return 0;
2062 
2063 drop_n_acct:
2064 	spin_lock(&sk->sk_receive_queue.lock);
2065 	po->stats.stats1.tp_drops++;
2066 	atomic_inc(&sk->sk_drops);
2067 	spin_unlock(&sk->sk_receive_queue.lock);
2068 
2069 drop_n_restore:
2070 	if (skb_head != skb->data && skb_shared(skb)) {
2071 		skb->data = skb_head;
2072 		skb->len = skb_len;
2073 	}
2074 drop:
2075 	consume_skb(skb);
2076 	return 0;
2077 }
2078 
2079 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2080 		       struct packet_type *pt, struct net_device *orig_dev)
2081 {
2082 	struct sock *sk;
2083 	struct packet_sock *po;
2084 	struct sockaddr_ll *sll;
2085 	union tpacket_uhdr h;
2086 	u8 *skb_head = skb->data;
2087 	int skb_len = skb->len;
2088 	unsigned int snaplen, res;
2089 	unsigned long status = TP_STATUS_USER;
2090 	unsigned short macoff, netoff, hdrlen;
2091 	struct sk_buff *copy_skb = NULL;
2092 	struct timespec ts;
2093 	__u32 ts_status;
2094 
2095 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2096 	 * We may add members to them until current aligned size without forcing
2097 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2098 	 */
2099 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2100 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2101 
2102 	if (skb->pkt_type == PACKET_LOOPBACK)
2103 		goto drop;
2104 
2105 	sk = pt->af_packet_priv;
2106 	po = pkt_sk(sk);
2107 
2108 	if (!net_eq(dev_net(dev), sock_net(sk)))
2109 		goto drop;
2110 
2111 	if (dev->header_ops) {
2112 		if (sk->sk_type != SOCK_DGRAM)
2113 			skb_push(skb, skb->data - skb_mac_header(skb));
2114 		else if (skb->pkt_type == PACKET_OUTGOING) {
2115 			/* Special case: outgoing packets have ll header at head */
2116 			skb_pull(skb, skb_network_offset(skb));
2117 		}
2118 	}
2119 
2120 	snaplen = skb->len;
2121 
2122 	res = run_filter(skb, sk, snaplen);
2123 	if (!res)
2124 		goto drop_n_restore;
2125 
2126 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2127 		status |= TP_STATUS_CSUMNOTREADY;
2128 	else if (skb->pkt_type != PACKET_OUTGOING &&
2129 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2130 		  skb_csum_unnecessary(skb)))
2131 		status |= TP_STATUS_CSUM_VALID;
2132 
2133 	if (snaplen > res)
2134 		snaplen = res;
2135 
2136 	if (sk->sk_type == SOCK_DGRAM) {
2137 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2138 				  po->tp_reserve;
2139 	} else {
2140 		unsigned int maclen = skb_network_offset(skb);
2141 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2142 				       (maclen < 16 ? 16 : maclen)) +
2143 			po->tp_reserve;
2144 		macoff = netoff - maclen;
2145 	}
2146 	if (po->tp_version <= TPACKET_V2) {
2147 		if (macoff + snaplen > po->rx_ring.frame_size) {
2148 			if (po->copy_thresh &&
2149 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2150 				if (skb_shared(skb)) {
2151 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2152 				} else {
2153 					copy_skb = skb_get(skb);
2154 					skb_head = skb->data;
2155 				}
2156 				if (copy_skb)
2157 					skb_set_owner_r(copy_skb, sk);
2158 			}
2159 			snaplen = po->rx_ring.frame_size - macoff;
2160 			if ((int)snaplen < 0)
2161 				snaplen = 0;
2162 		}
2163 	} else if (unlikely(macoff + snaplen >
2164 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2165 		u32 nval;
2166 
2167 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2168 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2169 			    snaplen, nval, macoff);
2170 		snaplen = nval;
2171 		if (unlikely((int)snaplen < 0)) {
2172 			snaplen = 0;
2173 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2174 		}
2175 	}
2176 	spin_lock(&sk->sk_receive_queue.lock);
2177 	h.raw = packet_current_rx_frame(po, skb,
2178 					TP_STATUS_KERNEL, (macoff+snaplen));
2179 	if (!h.raw)
2180 		goto ring_is_full;
2181 	if (po->tp_version <= TPACKET_V2) {
2182 		packet_increment_rx_head(po, &po->rx_ring);
2183 	/*
2184 	 * LOSING will be reported till you read the stats,
2185 	 * because it's COR - Clear On Read.
2186 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2187 	 * at packet level.
2188 	 */
2189 		if (po->stats.stats1.tp_drops)
2190 			status |= TP_STATUS_LOSING;
2191 	}
2192 	po->stats.stats1.tp_packets++;
2193 	if (copy_skb) {
2194 		status |= TP_STATUS_COPY;
2195 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2196 	}
2197 	spin_unlock(&sk->sk_receive_queue.lock);
2198 
2199 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2200 
2201 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2202 		getnstimeofday(&ts);
2203 
2204 	status |= ts_status;
2205 
2206 	switch (po->tp_version) {
2207 	case TPACKET_V1:
2208 		h.h1->tp_len = skb->len;
2209 		h.h1->tp_snaplen = snaplen;
2210 		h.h1->tp_mac = macoff;
2211 		h.h1->tp_net = netoff;
2212 		h.h1->tp_sec = ts.tv_sec;
2213 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2214 		hdrlen = sizeof(*h.h1);
2215 		break;
2216 	case TPACKET_V2:
2217 		h.h2->tp_len = skb->len;
2218 		h.h2->tp_snaplen = snaplen;
2219 		h.h2->tp_mac = macoff;
2220 		h.h2->tp_net = netoff;
2221 		h.h2->tp_sec = ts.tv_sec;
2222 		h.h2->tp_nsec = ts.tv_nsec;
2223 		if (skb_vlan_tag_present(skb)) {
2224 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2225 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2226 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2227 		} else {
2228 			h.h2->tp_vlan_tci = 0;
2229 			h.h2->tp_vlan_tpid = 0;
2230 		}
2231 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2232 		hdrlen = sizeof(*h.h2);
2233 		break;
2234 	case TPACKET_V3:
2235 		/* tp_nxt_offset,vlan are already populated above.
2236 		 * So DONT clear those fields here
2237 		 */
2238 		h.h3->tp_status |= status;
2239 		h.h3->tp_len = skb->len;
2240 		h.h3->tp_snaplen = snaplen;
2241 		h.h3->tp_mac = macoff;
2242 		h.h3->tp_net = netoff;
2243 		h.h3->tp_sec  = ts.tv_sec;
2244 		h.h3->tp_nsec = ts.tv_nsec;
2245 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2246 		hdrlen = sizeof(*h.h3);
2247 		break;
2248 	default:
2249 		BUG();
2250 	}
2251 
2252 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2253 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2254 	sll->sll_family = AF_PACKET;
2255 	sll->sll_hatype = dev->type;
2256 	sll->sll_protocol = skb->protocol;
2257 	sll->sll_pkttype = skb->pkt_type;
2258 	if (unlikely(po->origdev))
2259 		sll->sll_ifindex = orig_dev->ifindex;
2260 	else
2261 		sll->sll_ifindex = dev->ifindex;
2262 
2263 	smp_mb();
2264 
2265 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2266 	if (po->tp_version <= TPACKET_V2) {
2267 		u8 *start, *end;
2268 
2269 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2270 					macoff + snaplen);
2271 
2272 		for (start = h.raw; start < end; start += PAGE_SIZE)
2273 			flush_dcache_page(pgv_to_page(start));
2274 	}
2275 	smp_wmb();
2276 #endif
2277 
2278 	if (po->tp_version <= TPACKET_V2) {
2279 		__packet_set_status(po, h.raw, status);
2280 		sk->sk_data_ready(sk);
2281 	} else {
2282 		prb_clear_blk_fill_status(&po->rx_ring);
2283 	}
2284 
2285 drop_n_restore:
2286 	if (skb_head != skb->data && skb_shared(skb)) {
2287 		skb->data = skb_head;
2288 		skb->len = skb_len;
2289 	}
2290 drop:
2291 	kfree_skb(skb);
2292 	return 0;
2293 
2294 ring_is_full:
2295 	po->stats.stats1.tp_drops++;
2296 	spin_unlock(&sk->sk_receive_queue.lock);
2297 
2298 	sk->sk_data_ready(sk);
2299 	kfree_skb(copy_skb);
2300 	goto drop_n_restore;
2301 }
2302 
2303 static void tpacket_destruct_skb(struct sk_buff *skb)
2304 {
2305 	struct packet_sock *po = pkt_sk(skb->sk);
2306 
2307 	if (likely(po->tx_ring.pg_vec)) {
2308 		void *ph;
2309 		__u32 ts;
2310 
2311 		ph = skb_shinfo(skb)->destructor_arg;
2312 		packet_dec_pending(&po->tx_ring);
2313 
2314 		ts = __packet_set_timestamp(po, ph, skb);
2315 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2316 	}
2317 
2318 	sock_wfree(skb);
2319 }
2320 
2321 static bool ll_header_truncated(const struct net_device *dev, int len)
2322 {
2323 	/* net device doesn't like empty head */
2324 	if (unlikely(len <= dev->hard_header_len)) {
2325 		net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2326 				     current->comm, len, dev->hard_header_len);
2327 		return true;
2328 	}
2329 
2330 	return false;
2331 }
2332 
2333 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2334 		void *frame, struct net_device *dev, int size_max,
2335 		__be16 proto, unsigned char *addr, int hlen)
2336 {
2337 	union tpacket_uhdr ph;
2338 	int to_write, offset, len, tp_len, nr_frags, len_max;
2339 	struct socket *sock = po->sk.sk_socket;
2340 	struct page *page;
2341 	void *data;
2342 	int err;
2343 
2344 	ph.raw = frame;
2345 
2346 	skb->protocol = proto;
2347 	skb->dev = dev;
2348 	skb->priority = po->sk.sk_priority;
2349 	skb->mark = po->sk.sk_mark;
2350 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2351 	skb_shinfo(skb)->destructor_arg = ph.raw;
2352 
2353 	switch (po->tp_version) {
2354 	case TPACKET_V2:
2355 		tp_len = ph.h2->tp_len;
2356 		break;
2357 	default:
2358 		tp_len = ph.h1->tp_len;
2359 		break;
2360 	}
2361 	if (unlikely(tp_len > size_max)) {
2362 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2363 		return -EMSGSIZE;
2364 	}
2365 
2366 	skb_reserve(skb, hlen);
2367 	skb_reset_network_header(skb);
2368 
2369 	if (!packet_use_direct_xmit(po))
2370 		skb_probe_transport_header(skb, 0);
2371 	if (unlikely(po->tp_tx_has_off)) {
2372 		int off_min, off_max, off;
2373 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2374 		off_max = po->tx_ring.frame_size - tp_len;
2375 		if (sock->type == SOCK_DGRAM) {
2376 			switch (po->tp_version) {
2377 			case TPACKET_V2:
2378 				off = ph.h2->tp_net;
2379 				break;
2380 			default:
2381 				off = ph.h1->tp_net;
2382 				break;
2383 			}
2384 		} else {
2385 			switch (po->tp_version) {
2386 			case TPACKET_V2:
2387 				off = ph.h2->tp_mac;
2388 				break;
2389 			default:
2390 				off = ph.h1->tp_mac;
2391 				break;
2392 			}
2393 		}
2394 		if (unlikely((off < off_min) || (off_max < off)))
2395 			return -EINVAL;
2396 		data = ph.raw + off;
2397 	} else {
2398 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2399 	}
2400 	to_write = tp_len;
2401 
2402 	if (sock->type == SOCK_DGRAM) {
2403 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2404 				NULL, tp_len);
2405 		if (unlikely(err < 0))
2406 			return -EINVAL;
2407 	} else if (dev->hard_header_len) {
2408 		if (ll_header_truncated(dev, tp_len))
2409 			return -EINVAL;
2410 
2411 		skb_push(skb, dev->hard_header_len);
2412 		err = skb_store_bits(skb, 0, data,
2413 				dev->hard_header_len);
2414 		if (unlikely(err))
2415 			return err;
2416 
2417 		data += dev->hard_header_len;
2418 		to_write -= dev->hard_header_len;
2419 	}
2420 
2421 	offset = offset_in_page(data);
2422 	len_max = PAGE_SIZE - offset;
2423 	len = ((to_write > len_max) ? len_max : to_write);
2424 
2425 	skb->data_len = to_write;
2426 	skb->len += to_write;
2427 	skb->truesize += to_write;
2428 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2429 
2430 	while (likely(to_write)) {
2431 		nr_frags = skb_shinfo(skb)->nr_frags;
2432 
2433 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2434 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2435 			       MAX_SKB_FRAGS);
2436 			return -EFAULT;
2437 		}
2438 
2439 		page = pgv_to_page(data);
2440 		data += len;
2441 		flush_dcache_page(page);
2442 		get_page(page);
2443 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2444 		to_write -= len;
2445 		offset = 0;
2446 		len_max = PAGE_SIZE;
2447 		len = ((to_write > len_max) ? len_max : to_write);
2448 	}
2449 
2450 	return tp_len;
2451 }
2452 
2453 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2454 {
2455 	struct sk_buff *skb;
2456 	struct net_device *dev;
2457 	__be16 proto;
2458 	int err, reserve = 0;
2459 	void *ph;
2460 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2461 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2462 	int tp_len, size_max;
2463 	unsigned char *addr;
2464 	int len_sum = 0;
2465 	int status = TP_STATUS_AVAILABLE;
2466 	int hlen, tlen;
2467 
2468 	mutex_lock(&po->pg_vec_lock);
2469 
2470 	if (likely(saddr == NULL)) {
2471 		dev	= packet_cached_dev_get(po);
2472 		proto	= po->num;
2473 		addr	= NULL;
2474 	} else {
2475 		err = -EINVAL;
2476 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2477 			goto out;
2478 		if (msg->msg_namelen < (saddr->sll_halen
2479 					+ offsetof(struct sockaddr_ll,
2480 						sll_addr)))
2481 			goto out;
2482 		proto	= saddr->sll_protocol;
2483 		addr	= saddr->sll_addr;
2484 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2485 	}
2486 
2487 	err = -ENXIO;
2488 	if (unlikely(dev == NULL))
2489 		goto out;
2490 	err = -ENETDOWN;
2491 	if (unlikely(!(dev->flags & IFF_UP)))
2492 		goto out_put;
2493 
2494 	reserve = dev->hard_header_len + VLAN_HLEN;
2495 	size_max = po->tx_ring.frame_size
2496 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2497 
2498 	if (size_max > dev->mtu + reserve)
2499 		size_max = dev->mtu + reserve;
2500 
2501 	do {
2502 		ph = packet_current_frame(po, &po->tx_ring,
2503 					  TP_STATUS_SEND_REQUEST);
2504 		if (unlikely(ph == NULL)) {
2505 			if (need_wait && need_resched())
2506 				schedule();
2507 			continue;
2508 		}
2509 
2510 		status = TP_STATUS_SEND_REQUEST;
2511 		hlen = LL_RESERVED_SPACE(dev);
2512 		tlen = dev->needed_tailroom;
2513 		skb = sock_alloc_send_skb(&po->sk,
2514 				hlen + tlen + sizeof(struct sockaddr_ll),
2515 				!need_wait, &err);
2516 
2517 		if (unlikely(skb == NULL)) {
2518 			/* we assume the socket was initially writeable ... */
2519 			if (likely(len_sum > 0))
2520 				err = len_sum;
2521 			goto out_status;
2522 		}
2523 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2524 					  addr, hlen);
2525 		if (likely(tp_len >= 0) &&
2526 		    tp_len > dev->mtu + dev->hard_header_len) {
2527 			struct ethhdr *ehdr;
2528 			/* Earlier code assumed this would be a VLAN pkt,
2529 			 * double-check this now that we have the actual
2530 			 * packet in hand.
2531 			 */
2532 
2533 			skb_reset_mac_header(skb);
2534 			ehdr = eth_hdr(skb);
2535 			if (ehdr->h_proto != htons(ETH_P_8021Q))
2536 				tp_len = -EMSGSIZE;
2537 		}
2538 		if (unlikely(tp_len < 0)) {
2539 			if (po->tp_loss) {
2540 				__packet_set_status(po, ph,
2541 						TP_STATUS_AVAILABLE);
2542 				packet_increment_head(&po->tx_ring);
2543 				kfree_skb(skb);
2544 				continue;
2545 			} else {
2546 				status = TP_STATUS_WRONG_FORMAT;
2547 				err = tp_len;
2548 				goto out_status;
2549 			}
2550 		}
2551 
2552 		packet_pick_tx_queue(dev, skb);
2553 
2554 		skb->destructor = tpacket_destruct_skb;
2555 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2556 		packet_inc_pending(&po->tx_ring);
2557 
2558 		status = TP_STATUS_SEND_REQUEST;
2559 		err = po->xmit(skb);
2560 		if (unlikely(err > 0)) {
2561 			err = net_xmit_errno(err);
2562 			if (err && __packet_get_status(po, ph) ==
2563 				   TP_STATUS_AVAILABLE) {
2564 				/* skb was destructed already */
2565 				skb = NULL;
2566 				goto out_status;
2567 			}
2568 			/*
2569 			 * skb was dropped but not destructed yet;
2570 			 * let's treat it like congestion or err < 0
2571 			 */
2572 			err = 0;
2573 		}
2574 		packet_increment_head(&po->tx_ring);
2575 		len_sum += tp_len;
2576 	} while (likely((ph != NULL) ||
2577 		/* Note: packet_read_pending() might be slow if we have
2578 		 * to call it as it's per_cpu variable, but in fast-path
2579 		 * we already short-circuit the loop with the first
2580 		 * condition, and luckily don't have to go that path
2581 		 * anyway.
2582 		 */
2583 		 (need_wait && packet_read_pending(&po->tx_ring))));
2584 
2585 	err = len_sum;
2586 	goto out_put;
2587 
2588 out_status:
2589 	__packet_set_status(po, ph, status);
2590 	kfree_skb(skb);
2591 out_put:
2592 	dev_put(dev);
2593 out:
2594 	mutex_unlock(&po->pg_vec_lock);
2595 	return err;
2596 }
2597 
2598 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2599 				        size_t reserve, size_t len,
2600 				        size_t linear, int noblock,
2601 				        int *err)
2602 {
2603 	struct sk_buff *skb;
2604 
2605 	/* Under a page?  Don't bother with paged skb. */
2606 	if (prepad + len < PAGE_SIZE || !linear)
2607 		linear = len;
2608 
2609 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2610 				   err, 0);
2611 	if (!skb)
2612 		return NULL;
2613 
2614 	skb_reserve(skb, reserve);
2615 	skb_put(skb, linear);
2616 	skb->data_len = len - linear;
2617 	skb->len += len - linear;
2618 
2619 	return skb;
2620 }
2621 
2622 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2623 {
2624 	struct sock *sk = sock->sk;
2625 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2626 	struct sk_buff *skb;
2627 	struct net_device *dev;
2628 	__be16 proto;
2629 	unsigned char *addr;
2630 	int err, reserve = 0;
2631 	struct virtio_net_hdr vnet_hdr = { 0 };
2632 	int offset = 0;
2633 	int vnet_hdr_len;
2634 	struct packet_sock *po = pkt_sk(sk);
2635 	unsigned short gso_type = 0;
2636 	int hlen, tlen;
2637 	int extra_len = 0;
2638 	ssize_t n;
2639 
2640 	/*
2641 	 *	Get and verify the address.
2642 	 */
2643 
2644 	if (likely(saddr == NULL)) {
2645 		dev	= packet_cached_dev_get(po);
2646 		proto	= po->num;
2647 		addr	= NULL;
2648 	} else {
2649 		err = -EINVAL;
2650 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2651 			goto out;
2652 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2653 			goto out;
2654 		proto	= saddr->sll_protocol;
2655 		addr	= saddr->sll_addr;
2656 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2657 	}
2658 
2659 	err = -ENXIO;
2660 	if (unlikely(dev == NULL))
2661 		goto out_unlock;
2662 	err = -ENETDOWN;
2663 	if (unlikely(!(dev->flags & IFF_UP)))
2664 		goto out_unlock;
2665 
2666 	if (sock->type == SOCK_RAW)
2667 		reserve = dev->hard_header_len;
2668 	if (po->has_vnet_hdr) {
2669 		vnet_hdr_len = sizeof(vnet_hdr);
2670 
2671 		err = -EINVAL;
2672 		if (len < vnet_hdr_len)
2673 			goto out_unlock;
2674 
2675 		len -= vnet_hdr_len;
2676 
2677 		err = -EFAULT;
2678 		n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2679 		if (n != vnet_hdr_len)
2680 			goto out_unlock;
2681 
2682 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2683 		    (__virtio16_to_cpu(false, vnet_hdr.csum_start) +
2684 		     __virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2 >
2685 		      __virtio16_to_cpu(false, vnet_hdr.hdr_len)))
2686 			vnet_hdr.hdr_len = __cpu_to_virtio16(false,
2687 				 __virtio16_to_cpu(false, vnet_hdr.csum_start) +
2688 				__virtio16_to_cpu(false, vnet_hdr.csum_offset) + 2);
2689 
2690 		err = -EINVAL;
2691 		if (__virtio16_to_cpu(false, vnet_hdr.hdr_len) > len)
2692 			goto out_unlock;
2693 
2694 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2695 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2696 			case VIRTIO_NET_HDR_GSO_TCPV4:
2697 				gso_type = SKB_GSO_TCPV4;
2698 				break;
2699 			case VIRTIO_NET_HDR_GSO_TCPV6:
2700 				gso_type = SKB_GSO_TCPV6;
2701 				break;
2702 			case VIRTIO_NET_HDR_GSO_UDP:
2703 				gso_type = SKB_GSO_UDP;
2704 				break;
2705 			default:
2706 				goto out_unlock;
2707 			}
2708 
2709 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2710 				gso_type |= SKB_GSO_TCP_ECN;
2711 
2712 			if (vnet_hdr.gso_size == 0)
2713 				goto out_unlock;
2714 
2715 		}
2716 	}
2717 
2718 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2719 		if (!netif_supports_nofcs(dev)) {
2720 			err = -EPROTONOSUPPORT;
2721 			goto out_unlock;
2722 		}
2723 		extra_len = 4; /* We're doing our own CRC */
2724 	}
2725 
2726 	err = -EMSGSIZE;
2727 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2728 		goto out_unlock;
2729 
2730 	err = -ENOBUFS;
2731 	hlen = LL_RESERVED_SPACE(dev);
2732 	tlen = dev->needed_tailroom;
2733 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2734 			       __virtio16_to_cpu(false, vnet_hdr.hdr_len),
2735 			       msg->msg_flags & MSG_DONTWAIT, &err);
2736 	if (skb == NULL)
2737 		goto out_unlock;
2738 
2739 	skb_set_network_header(skb, reserve);
2740 
2741 	err = -EINVAL;
2742 	if (sock->type == SOCK_DGRAM) {
2743 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2744 		if (unlikely(offset < 0))
2745 			goto out_free;
2746 	} else {
2747 		if (ll_header_truncated(dev, len))
2748 			goto out_free;
2749 	}
2750 
2751 	/* Returns -EFAULT on error */
2752 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2753 	if (err)
2754 		goto out_free;
2755 
2756 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2757 
2758 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2759 		/* Earlier code assumed this would be a VLAN pkt,
2760 		 * double-check this now that we have the actual
2761 		 * packet in hand.
2762 		 */
2763 		struct ethhdr *ehdr;
2764 		skb_reset_mac_header(skb);
2765 		ehdr = eth_hdr(skb);
2766 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2767 			err = -EMSGSIZE;
2768 			goto out_free;
2769 		}
2770 	}
2771 
2772 	skb->protocol = proto;
2773 	skb->dev = dev;
2774 	skb->priority = sk->sk_priority;
2775 	skb->mark = sk->sk_mark;
2776 
2777 	packet_pick_tx_queue(dev, skb);
2778 
2779 	if (po->has_vnet_hdr) {
2780 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2781 			u16 s = __virtio16_to_cpu(false, vnet_hdr.csum_start);
2782 			u16 o = __virtio16_to_cpu(false, vnet_hdr.csum_offset);
2783 			if (!skb_partial_csum_set(skb, s, o)) {
2784 				err = -EINVAL;
2785 				goto out_free;
2786 			}
2787 		}
2788 
2789 		skb_shinfo(skb)->gso_size =
2790 			__virtio16_to_cpu(false, vnet_hdr.gso_size);
2791 		skb_shinfo(skb)->gso_type = gso_type;
2792 
2793 		/* Header must be checked, and gso_segs computed. */
2794 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2795 		skb_shinfo(skb)->gso_segs = 0;
2796 
2797 		len += vnet_hdr_len;
2798 	}
2799 
2800 	if (!packet_use_direct_xmit(po))
2801 		skb_probe_transport_header(skb, reserve);
2802 	if (unlikely(extra_len == 4))
2803 		skb->no_fcs = 1;
2804 
2805 	err = po->xmit(skb);
2806 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2807 		goto out_unlock;
2808 
2809 	dev_put(dev);
2810 
2811 	return len;
2812 
2813 out_free:
2814 	kfree_skb(skb);
2815 out_unlock:
2816 	if (dev)
2817 		dev_put(dev);
2818 out:
2819 	return err;
2820 }
2821 
2822 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2823 {
2824 	struct sock *sk = sock->sk;
2825 	struct packet_sock *po = pkt_sk(sk);
2826 
2827 	if (po->tx_ring.pg_vec)
2828 		return tpacket_snd(po, msg);
2829 	else
2830 		return packet_snd(sock, msg, len);
2831 }
2832 
2833 /*
2834  *	Close a PACKET socket. This is fairly simple. We immediately go
2835  *	to 'closed' state and remove our protocol entry in the device list.
2836  */
2837 
2838 static int packet_release(struct socket *sock)
2839 {
2840 	struct sock *sk = sock->sk;
2841 	struct packet_sock *po;
2842 	struct net *net;
2843 	union tpacket_req_u req_u;
2844 
2845 	if (!sk)
2846 		return 0;
2847 
2848 	net = sock_net(sk);
2849 	po = pkt_sk(sk);
2850 
2851 	mutex_lock(&net->packet.sklist_lock);
2852 	sk_del_node_init_rcu(sk);
2853 	mutex_unlock(&net->packet.sklist_lock);
2854 
2855 	preempt_disable();
2856 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2857 	preempt_enable();
2858 
2859 	spin_lock(&po->bind_lock);
2860 	unregister_prot_hook(sk, false);
2861 	packet_cached_dev_reset(po);
2862 
2863 	if (po->prot_hook.dev) {
2864 		dev_put(po->prot_hook.dev);
2865 		po->prot_hook.dev = NULL;
2866 	}
2867 	spin_unlock(&po->bind_lock);
2868 
2869 	packet_flush_mclist(sk);
2870 
2871 	if (po->rx_ring.pg_vec) {
2872 		memset(&req_u, 0, sizeof(req_u));
2873 		packet_set_ring(sk, &req_u, 1, 0);
2874 	}
2875 
2876 	if (po->tx_ring.pg_vec) {
2877 		memset(&req_u, 0, sizeof(req_u));
2878 		packet_set_ring(sk, &req_u, 1, 1);
2879 	}
2880 
2881 	fanout_release(sk);
2882 
2883 	synchronize_net();
2884 	/*
2885 	 *	Now the socket is dead. No more input will appear.
2886 	 */
2887 	sock_orphan(sk);
2888 	sock->sk = NULL;
2889 
2890 	/* Purge queues */
2891 
2892 	skb_queue_purge(&sk->sk_receive_queue);
2893 	packet_free_pending(po);
2894 	sk_refcnt_debug_release(sk);
2895 
2896 	sock_put(sk);
2897 	return 0;
2898 }
2899 
2900 /*
2901  *	Attach a packet hook.
2902  */
2903 
2904 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2905 {
2906 	struct packet_sock *po = pkt_sk(sk);
2907 	struct net_device *dev_curr;
2908 	__be16 proto_curr;
2909 	bool need_rehook;
2910 
2911 	if (po->fanout) {
2912 		if (dev)
2913 			dev_put(dev);
2914 
2915 		return -EINVAL;
2916 	}
2917 
2918 	lock_sock(sk);
2919 	spin_lock(&po->bind_lock);
2920 
2921 	proto_curr = po->prot_hook.type;
2922 	dev_curr = po->prot_hook.dev;
2923 
2924 	need_rehook = proto_curr != proto || dev_curr != dev;
2925 
2926 	if (need_rehook) {
2927 		unregister_prot_hook(sk, true);
2928 
2929 		po->num = proto;
2930 		po->prot_hook.type = proto;
2931 		po->prot_hook.dev = dev;
2932 
2933 		po->ifindex = dev ? dev->ifindex : 0;
2934 		packet_cached_dev_assign(po, dev);
2935 	}
2936 	if (dev_curr)
2937 		dev_put(dev_curr);
2938 
2939 	if (proto == 0 || !need_rehook)
2940 		goto out_unlock;
2941 
2942 	if (!dev || (dev->flags & IFF_UP)) {
2943 		register_prot_hook(sk);
2944 	} else {
2945 		sk->sk_err = ENETDOWN;
2946 		if (!sock_flag(sk, SOCK_DEAD))
2947 			sk->sk_error_report(sk);
2948 	}
2949 
2950 out_unlock:
2951 	spin_unlock(&po->bind_lock);
2952 	release_sock(sk);
2953 	return 0;
2954 }
2955 
2956 /*
2957  *	Bind a packet socket to a device
2958  */
2959 
2960 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2961 			    int addr_len)
2962 {
2963 	struct sock *sk = sock->sk;
2964 	char name[15];
2965 	struct net_device *dev;
2966 	int err = -ENODEV;
2967 
2968 	/*
2969 	 *	Check legality
2970 	 */
2971 
2972 	if (addr_len != sizeof(struct sockaddr))
2973 		return -EINVAL;
2974 	strlcpy(name, uaddr->sa_data, sizeof(name));
2975 
2976 	dev = dev_get_by_name(sock_net(sk), name);
2977 	if (dev)
2978 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2979 	return err;
2980 }
2981 
2982 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2983 {
2984 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2985 	struct sock *sk = sock->sk;
2986 	struct net_device *dev = NULL;
2987 	int err;
2988 
2989 
2990 	/*
2991 	 *	Check legality
2992 	 */
2993 
2994 	if (addr_len < sizeof(struct sockaddr_ll))
2995 		return -EINVAL;
2996 	if (sll->sll_family != AF_PACKET)
2997 		return -EINVAL;
2998 
2999 	if (sll->sll_ifindex) {
3000 		err = -ENODEV;
3001 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
3002 		if (dev == NULL)
3003 			goto out;
3004 	}
3005 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
3006 
3007 out:
3008 	return err;
3009 }
3010 
3011 static struct proto packet_proto = {
3012 	.name	  = "PACKET",
3013 	.owner	  = THIS_MODULE,
3014 	.obj_size = sizeof(struct packet_sock),
3015 };
3016 
3017 /*
3018  *	Create a packet of type SOCK_PACKET.
3019  */
3020 
3021 static int packet_create(struct net *net, struct socket *sock, int protocol,
3022 			 int kern)
3023 {
3024 	struct sock *sk;
3025 	struct packet_sock *po;
3026 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3027 	int err;
3028 
3029 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3030 		return -EPERM;
3031 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3032 	    sock->type != SOCK_PACKET)
3033 		return -ESOCKTNOSUPPORT;
3034 
3035 	sock->state = SS_UNCONNECTED;
3036 
3037 	err = -ENOBUFS;
3038 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3039 	if (sk == NULL)
3040 		goto out;
3041 
3042 	sock->ops = &packet_ops;
3043 	if (sock->type == SOCK_PACKET)
3044 		sock->ops = &packet_ops_spkt;
3045 
3046 	sock_init_data(sock, sk);
3047 
3048 	po = pkt_sk(sk);
3049 	sk->sk_family = PF_PACKET;
3050 	po->num = proto;
3051 	po->xmit = dev_queue_xmit;
3052 
3053 	err = packet_alloc_pending(po);
3054 	if (err)
3055 		goto out2;
3056 
3057 	packet_cached_dev_reset(po);
3058 
3059 	sk->sk_destruct = packet_sock_destruct;
3060 	sk_refcnt_debug_inc(sk);
3061 
3062 	/*
3063 	 *	Attach a protocol block
3064 	 */
3065 
3066 	spin_lock_init(&po->bind_lock);
3067 	mutex_init(&po->pg_vec_lock);
3068 	po->rollover = NULL;
3069 	po->prot_hook.func = packet_rcv;
3070 
3071 	if (sock->type == SOCK_PACKET)
3072 		po->prot_hook.func = packet_rcv_spkt;
3073 
3074 	po->prot_hook.af_packet_priv = sk;
3075 
3076 	if (proto) {
3077 		po->prot_hook.type = proto;
3078 		register_prot_hook(sk);
3079 	}
3080 
3081 	mutex_lock(&net->packet.sklist_lock);
3082 	sk_add_node_rcu(sk, &net->packet.sklist);
3083 	mutex_unlock(&net->packet.sklist_lock);
3084 
3085 	preempt_disable();
3086 	sock_prot_inuse_add(net, &packet_proto, 1);
3087 	preempt_enable();
3088 
3089 	return 0;
3090 out2:
3091 	sk_free(sk);
3092 out:
3093 	return err;
3094 }
3095 
3096 /*
3097  *	Pull a packet from our receive queue and hand it to the user.
3098  *	If necessary we block.
3099  */
3100 
3101 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3102 			  int flags)
3103 {
3104 	struct sock *sk = sock->sk;
3105 	struct sk_buff *skb;
3106 	int copied, err;
3107 	int vnet_hdr_len = 0;
3108 	unsigned int origlen = 0;
3109 
3110 	err = -EINVAL;
3111 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3112 		goto out;
3113 
3114 #if 0
3115 	/* What error should we return now? EUNATTACH? */
3116 	if (pkt_sk(sk)->ifindex < 0)
3117 		return -ENODEV;
3118 #endif
3119 
3120 	if (flags & MSG_ERRQUEUE) {
3121 		err = sock_recv_errqueue(sk, msg, len,
3122 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3123 		goto out;
3124 	}
3125 
3126 	/*
3127 	 *	Call the generic datagram receiver. This handles all sorts
3128 	 *	of horrible races and re-entrancy so we can forget about it
3129 	 *	in the protocol layers.
3130 	 *
3131 	 *	Now it will return ENETDOWN, if device have just gone down,
3132 	 *	but then it will block.
3133 	 */
3134 
3135 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3136 
3137 	/*
3138 	 *	An error occurred so return it. Because skb_recv_datagram()
3139 	 *	handles the blocking we don't see and worry about blocking
3140 	 *	retries.
3141 	 */
3142 
3143 	if (skb == NULL)
3144 		goto out;
3145 
3146 	if (pkt_sk(sk)->pressure)
3147 		packet_rcv_has_room(pkt_sk(sk), NULL);
3148 
3149 	if (pkt_sk(sk)->has_vnet_hdr) {
3150 		struct virtio_net_hdr vnet_hdr = { 0 };
3151 
3152 		err = -EINVAL;
3153 		vnet_hdr_len = sizeof(vnet_hdr);
3154 		if (len < vnet_hdr_len)
3155 			goto out_free;
3156 
3157 		len -= vnet_hdr_len;
3158 
3159 		if (skb_is_gso(skb)) {
3160 			struct skb_shared_info *sinfo = skb_shinfo(skb);
3161 
3162 			/* This is a hint as to how much should be linear. */
3163 			vnet_hdr.hdr_len =
3164 				__cpu_to_virtio16(false, skb_headlen(skb));
3165 			vnet_hdr.gso_size =
3166 				__cpu_to_virtio16(false, sinfo->gso_size);
3167 			if (sinfo->gso_type & SKB_GSO_TCPV4)
3168 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
3169 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
3170 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
3171 			else if (sinfo->gso_type & SKB_GSO_UDP)
3172 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
3173 			else if (sinfo->gso_type & SKB_GSO_FCOE)
3174 				goto out_free;
3175 			else
3176 				BUG();
3177 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
3178 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
3179 		} else
3180 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
3181 
3182 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3183 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
3184 			vnet_hdr.csum_start = __cpu_to_virtio16(false,
3185 					  skb_checksum_start_offset(skb));
3186 			vnet_hdr.csum_offset = __cpu_to_virtio16(false,
3187 							 skb->csum_offset);
3188 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3189 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
3190 		} /* else everything is zero */
3191 
3192 		err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
3193 		if (err < 0)
3194 			goto out_free;
3195 	}
3196 
3197 	/* You lose any data beyond the buffer you gave. If it worries
3198 	 * a user program they can ask the device for its MTU
3199 	 * anyway.
3200 	 */
3201 	copied = skb->len;
3202 	if (copied > len) {
3203 		copied = len;
3204 		msg->msg_flags |= MSG_TRUNC;
3205 	}
3206 
3207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3208 	if (err)
3209 		goto out_free;
3210 
3211 	if (sock->type != SOCK_PACKET) {
3212 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3213 
3214 		/* Original length was stored in sockaddr_ll fields */
3215 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3216 		sll->sll_family = AF_PACKET;
3217 		sll->sll_protocol = skb->protocol;
3218 	}
3219 
3220 	sock_recv_ts_and_drops(msg, sk, skb);
3221 
3222 	if (msg->msg_name) {
3223 		/* If the address length field is there to be filled
3224 		 * in, we fill it in now.
3225 		 */
3226 		if (sock->type == SOCK_PACKET) {
3227 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3228 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3229 		} else {
3230 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3231 
3232 			msg->msg_namelen = sll->sll_halen +
3233 				offsetof(struct sockaddr_ll, sll_addr);
3234 		}
3235 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3236 		       msg->msg_namelen);
3237 	}
3238 
3239 	if (pkt_sk(sk)->auxdata) {
3240 		struct tpacket_auxdata aux;
3241 
3242 		aux.tp_status = TP_STATUS_USER;
3243 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3244 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3245 		else if (skb->pkt_type != PACKET_OUTGOING &&
3246 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3247 			  skb_csum_unnecessary(skb)))
3248 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3249 
3250 		aux.tp_len = origlen;
3251 		aux.tp_snaplen = skb->len;
3252 		aux.tp_mac = 0;
3253 		aux.tp_net = skb_network_offset(skb);
3254 		if (skb_vlan_tag_present(skb)) {
3255 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3256 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3257 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3258 		} else {
3259 			aux.tp_vlan_tci = 0;
3260 			aux.tp_vlan_tpid = 0;
3261 		}
3262 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3263 	}
3264 
3265 	/*
3266 	 *	Free or return the buffer as appropriate. Again this
3267 	 *	hides all the races and re-entrancy issues from us.
3268 	 */
3269 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3270 
3271 out_free:
3272 	skb_free_datagram(sk, skb);
3273 out:
3274 	return err;
3275 }
3276 
3277 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3278 			       int *uaddr_len, int peer)
3279 {
3280 	struct net_device *dev;
3281 	struct sock *sk	= sock->sk;
3282 
3283 	if (peer)
3284 		return -EOPNOTSUPP;
3285 
3286 	uaddr->sa_family = AF_PACKET;
3287 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3288 	rcu_read_lock();
3289 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3290 	if (dev)
3291 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3292 	rcu_read_unlock();
3293 	*uaddr_len = sizeof(*uaddr);
3294 
3295 	return 0;
3296 }
3297 
3298 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3299 			  int *uaddr_len, int peer)
3300 {
3301 	struct net_device *dev;
3302 	struct sock *sk = sock->sk;
3303 	struct packet_sock *po = pkt_sk(sk);
3304 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3305 
3306 	if (peer)
3307 		return -EOPNOTSUPP;
3308 
3309 	sll->sll_family = AF_PACKET;
3310 	sll->sll_ifindex = po->ifindex;
3311 	sll->sll_protocol = po->num;
3312 	sll->sll_pkttype = 0;
3313 	rcu_read_lock();
3314 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3315 	if (dev) {
3316 		sll->sll_hatype = dev->type;
3317 		sll->sll_halen = dev->addr_len;
3318 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3319 	} else {
3320 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3321 		sll->sll_halen = 0;
3322 	}
3323 	rcu_read_unlock();
3324 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3325 
3326 	return 0;
3327 }
3328 
3329 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3330 			 int what)
3331 {
3332 	switch (i->type) {
3333 	case PACKET_MR_MULTICAST:
3334 		if (i->alen != dev->addr_len)
3335 			return -EINVAL;
3336 		if (what > 0)
3337 			return dev_mc_add(dev, i->addr);
3338 		else
3339 			return dev_mc_del(dev, i->addr);
3340 		break;
3341 	case PACKET_MR_PROMISC:
3342 		return dev_set_promiscuity(dev, what);
3343 	case PACKET_MR_ALLMULTI:
3344 		return dev_set_allmulti(dev, what);
3345 	case PACKET_MR_UNICAST:
3346 		if (i->alen != dev->addr_len)
3347 			return -EINVAL;
3348 		if (what > 0)
3349 			return dev_uc_add(dev, i->addr);
3350 		else
3351 			return dev_uc_del(dev, i->addr);
3352 		break;
3353 	default:
3354 		break;
3355 	}
3356 	return 0;
3357 }
3358 
3359 static void packet_dev_mclist_delete(struct net_device *dev,
3360 				     struct packet_mclist **mlp)
3361 {
3362 	struct packet_mclist *ml;
3363 
3364 	while ((ml = *mlp) != NULL) {
3365 		if (ml->ifindex == dev->ifindex) {
3366 			packet_dev_mc(dev, ml, -1);
3367 			*mlp = ml->next;
3368 			kfree(ml);
3369 		} else
3370 			mlp = &ml->next;
3371 	}
3372 }
3373 
3374 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3375 {
3376 	struct packet_sock *po = pkt_sk(sk);
3377 	struct packet_mclist *ml, *i;
3378 	struct net_device *dev;
3379 	int err;
3380 
3381 	rtnl_lock();
3382 
3383 	err = -ENODEV;
3384 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3385 	if (!dev)
3386 		goto done;
3387 
3388 	err = -EINVAL;
3389 	if (mreq->mr_alen > dev->addr_len)
3390 		goto done;
3391 
3392 	err = -ENOBUFS;
3393 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3394 	if (i == NULL)
3395 		goto done;
3396 
3397 	err = 0;
3398 	for (ml = po->mclist; ml; ml = ml->next) {
3399 		if (ml->ifindex == mreq->mr_ifindex &&
3400 		    ml->type == mreq->mr_type &&
3401 		    ml->alen == mreq->mr_alen &&
3402 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3403 			ml->count++;
3404 			/* Free the new element ... */
3405 			kfree(i);
3406 			goto done;
3407 		}
3408 	}
3409 
3410 	i->type = mreq->mr_type;
3411 	i->ifindex = mreq->mr_ifindex;
3412 	i->alen = mreq->mr_alen;
3413 	memcpy(i->addr, mreq->mr_address, i->alen);
3414 	i->count = 1;
3415 	i->next = po->mclist;
3416 	po->mclist = i;
3417 	err = packet_dev_mc(dev, i, 1);
3418 	if (err) {
3419 		po->mclist = i->next;
3420 		kfree(i);
3421 	}
3422 
3423 done:
3424 	rtnl_unlock();
3425 	return err;
3426 }
3427 
3428 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3429 {
3430 	struct packet_mclist *ml, **mlp;
3431 
3432 	rtnl_lock();
3433 
3434 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3435 		if (ml->ifindex == mreq->mr_ifindex &&
3436 		    ml->type == mreq->mr_type &&
3437 		    ml->alen == mreq->mr_alen &&
3438 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3439 			if (--ml->count == 0) {
3440 				struct net_device *dev;
3441 				*mlp = ml->next;
3442 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3443 				if (dev)
3444 					packet_dev_mc(dev, ml, -1);
3445 				kfree(ml);
3446 			}
3447 			break;
3448 		}
3449 	}
3450 	rtnl_unlock();
3451 	return 0;
3452 }
3453 
3454 static void packet_flush_mclist(struct sock *sk)
3455 {
3456 	struct packet_sock *po = pkt_sk(sk);
3457 	struct packet_mclist *ml;
3458 
3459 	if (!po->mclist)
3460 		return;
3461 
3462 	rtnl_lock();
3463 	while ((ml = po->mclist) != NULL) {
3464 		struct net_device *dev;
3465 
3466 		po->mclist = ml->next;
3467 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3468 		if (dev != NULL)
3469 			packet_dev_mc(dev, ml, -1);
3470 		kfree(ml);
3471 	}
3472 	rtnl_unlock();
3473 }
3474 
3475 static int
3476 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3477 {
3478 	struct sock *sk = sock->sk;
3479 	struct packet_sock *po = pkt_sk(sk);
3480 	int ret;
3481 
3482 	if (level != SOL_PACKET)
3483 		return -ENOPROTOOPT;
3484 
3485 	switch (optname) {
3486 	case PACKET_ADD_MEMBERSHIP:
3487 	case PACKET_DROP_MEMBERSHIP:
3488 	{
3489 		struct packet_mreq_max mreq;
3490 		int len = optlen;
3491 		memset(&mreq, 0, sizeof(mreq));
3492 		if (len < sizeof(struct packet_mreq))
3493 			return -EINVAL;
3494 		if (len > sizeof(mreq))
3495 			len = sizeof(mreq);
3496 		if (copy_from_user(&mreq, optval, len))
3497 			return -EFAULT;
3498 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3499 			return -EINVAL;
3500 		if (optname == PACKET_ADD_MEMBERSHIP)
3501 			ret = packet_mc_add(sk, &mreq);
3502 		else
3503 			ret = packet_mc_drop(sk, &mreq);
3504 		return ret;
3505 	}
3506 
3507 	case PACKET_RX_RING:
3508 	case PACKET_TX_RING:
3509 	{
3510 		union tpacket_req_u req_u;
3511 		int len;
3512 
3513 		switch (po->tp_version) {
3514 		case TPACKET_V1:
3515 		case TPACKET_V2:
3516 			len = sizeof(req_u.req);
3517 			break;
3518 		case TPACKET_V3:
3519 		default:
3520 			len = sizeof(req_u.req3);
3521 			break;
3522 		}
3523 		if (optlen < len)
3524 			return -EINVAL;
3525 		if (pkt_sk(sk)->has_vnet_hdr)
3526 			return -EINVAL;
3527 		if (copy_from_user(&req_u.req, optval, len))
3528 			return -EFAULT;
3529 		return packet_set_ring(sk, &req_u, 0,
3530 			optname == PACKET_TX_RING);
3531 	}
3532 	case PACKET_COPY_THRESH:
3533 	{
3534 		int val;
3535 
3536 		if (optlen != sizeof(val))
3537 			return -EINVAL;
3538 		if (copy_from_user(&val, optval, sizeof(val)))
3539 			return -EFAULT;
3540 
3541 		pkt_sk(sk)->copy_thresh = val;
3542 		return 0;
3543 	}
3544 	case PACKET_VERSION:
3545 	{
3546 		int val;
3547 
3548 		if (optlen != sizeof(val))
3549 			return -EINVAL;
3550 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3551 			return -EBUSY;
3552 		if (copy_from_user(&val, optval, sizeof(val)))
3553 			return -EFAULT;
3554 		switch (val) {
3555 		case TPACKET_V1:
3556 		case TPACKET_V2:
3557 		case TPACKET_V3:
3558 			po->tp_version = val;
3559 			return 0;
3560 		default:
3561 			return -EINVAL;
3562 		}
3563 	}
3564 	case PACKET_RESERVE:
3565 	{
3566 		unsigned int val;
3567 
3568 		if (optlen != sizeof(val))
3569 			return -EINVAL;
3570 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3571 			return -EBUSY;
3572 		if (copy_from_user(&val, optval, sizeof(val)))
3573 			return -EFAULT;
3574 		po->tp_reserve = val;
3575 		return 0;
3576 	}
3577 	case PACKET_LOSS:
3578 	{
3579 		unsigned int val;
3580 
3581 		if (optlen != sizeof(val))
3582 			return -EINVAL;
3583 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3584 			return -EBUSY;
3585 		if (copy_from_user(&val, optval, sizeof(val)))
3586 			return -EFAULT;
3587 		po->tp_loss = !!val;
3588 		return 0;
3589 	}
3590 	case PACKET_AUXDATA:
3591 	{
3592 		int val;
3593 
3594 		if (optlen < sizeof(val))
3595 			return -EINVAL;
3596 		if (copy_from_user(&val, optval, sizeof(val)))
3597 			return -EFAULT;
3598 
3599 		po->auxdata = !!val;
3600 		return 0;
3601 	}
3602 	case PACKET_ORIGDEV:
3603 	{
3604 		int val;
3605 
3606 		if (optlen < sizeof(val))
3607 			return -EINVAL;
3608 		if (copy_from_user(&val, optval, sizeof(val)))
3609 			return -EFAULT;
3610 
3611 		po->origdev = !!val;
3612 		return 0;
3613 	}
3614 	case PACKET_VNET_HDR:
3615 	{
3616 		int val;
3617 
3618 		if (sock->type != SOCK_RAW)
3619 			return -EINVAL;
3620 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3621 			return -EBUSY;
3622 		if (optlen < sizeof(val))
3623 			return -EINVAL;
3624 		if (copy_from_user(&val, optval, sizeof(val)))
3625 			return -EFAULT;
3626 
3627 		po->has_vnet_hdr = !!val;
3628 		return 0;
3629 	}
3630 	case PACKET_TIMESTAMP:
3631 	{
3632 		int val;
3633 
3634 		if (optlen != sizeof(val))
3635 			return -EINVAL;
3636 		if (copy_from_user(&val, optval, sizeof(val)))
3637 			return -EFAULT;
3638 
3639 		po->tp_tstamp = val;
3640 		return 0;
3641 	}
3642 	case PACKET_FANOUT:
3643 	{
3644 		int val;
3645 
3646 		if (optlen != sizeof(val))
3647 			return -EINVAL;
3648 		if (copy_from_user(&val, optval, sizeof(val)))
3649 			return -EFAULT;
3650 
3651 		return fanout_add(sk, val & 0xffff, val >> 16);
3652 	}
3653 	case PACKET_FANOUT_DATA:
3654 	{
3655 		if (!po->fanout)
3656 			return -EINVAL;
3657 
3658 		return fanout_set_data(po, optval, optlen);
3659 	}
3660 	case PACKET_TX_HAS_OFF:
3661 	{
3662 		unsigned int val;
3663 
3664 		if (optlen != sizeof(val))
3665 			return -EINVAL;
3666 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3667 			return -EBUSY;
3668 		if (copy_from_user(&val, optval, sizeof(val)))
3669 			return -EFAULT;
3670 		po->tp_tx_has_off = !!val;
3671 		return 0;
3672 	}
3673 	case PACKET_QDISC_BYPASS:
3674 	{
3675 		int val;
3676 
3677 		if (optlen != sizeof(val))
3678 			return -EINVAL;
3679 		if (copy_from_user(&val, optval, sizeof(val)))
3680 			return -EFAULT;
3681 
3682 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3683 		return 0;
3684 	}
3685 	default:
3686 		return -ENOPROTOOPT;
3687 	}
3688 }
3689 
3690 static int packet_getsockopt(struct socket *sock, int level, int optname,
3691 			     char __user *optval, int __user *optlen)
3692 {
3693 	int len;
3694 	int val, lv = sizeof(val);
3695 	struct sock *sk = sock->sk;
3696 	struct packet_sock *po = pkt_sk(sk);
3697 	void *data = &val;
3698 	union tpacket_stats_u st;
3699 	struct tpacket_rollover_stats rstats;
3700 
3701 	if (level != SOL_PACKET)
3702 		return -ENOPROTOOPT;
3703 
3704 	if (get_user(len, optlen))
3705 		return -EFAULT;
3706 
3707 	if (len < 0)
3708 		return -EINVAL;
3709 
3710 	switch (optname) {
3711 	case PACKET_STATISTICS:
3712 		spin_lock_bh(&sk->sk_receive_queue.lock);
3713 		memcpy(&st, &po->stats, sizeof(st));
3714 		memset(&po->stats, 0, sizeof(po->stats));
3715 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3716 
3717 		if (po->tp_version == TPACKET_V3) {
3718 			lv = sizeof(struct tpacket_stats_v3);
3719 			st.stats3.tp_packets += st.stats3.tp_drops;
3720 			data = &st.stats3;
3721 		} else {
3722 			lv = sizeof(struct tpacket_stats);
3723 			st.stats1.tp_packets += st.stats1.tp_drops;
3724 			data = &st.stats1;
3725 		}
3726 
3727 		break;
3728 	case PACKET_AUXDATA:
3729 		val = po->auxdata;
3730 		break;
3731 	case PACKET_ORIGDEV:
3732 		val = po->origdev;
3733 		break;
3734 	case PACKET_VNET_HDR:
3735 		val = po->has_vnet_hdr;
3736 		break;
3737 	case PACKET_VERSION:
3738 		val = po->tp_version;
3739 		break;
3740 	case PACKET_HDRLEN:
3741 		if (len > sizeof(int))
3742 			len = sizeof(int);
3743 		if (copy_from_user(&val, optval, len))
3744 			return -EFAULT;
3745 		switch (val) {
3746 		case TPACKET_V1:
3747 			val = sizeof(struct tpacket_hdr);
3748 			break;
3749 		case TPACKET_V2:
3750 			val = sizeof(struct tpacket2_hdr);
3751 			break;
3752 		case TPACKET_V3:
3753 			val = sizeof(struct tpacket3_hdr);
3754 			break;
3755 		default:
3756 			return -EINVAL;
3757 		}
3758 		break;
3759 	case PACKET_RESERVE:
3760 		val = po->tp_reserve;
3761 		break;
3762 	case PACKET_LOSS:
3763 		val = po->tp_loss;
3764 		break;
3765 	case PACKET_TIMESTAMP:
3766 		val = po->tp_tstamp;
3767 		break;
3768 	case PACKET_FANOUT:
3769 		val = (po->fanout ?
3770 		       ((u32)po->fanout->id |
3771 			((u32)po->fanout->type << 16) |
3772 			((u32)po->fanout->flags << 24)) :
3773 		       0);
3774 		break;
3775 	case PACKET_ROLLOVER_STATS:
3776 		if (!po->rollover)
3777 			return -EINVAL;
3778 		rstats.tp_all = atomic_long_read(&po->rollover->num);
3779 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3780 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3781 		data = &rstats;
3782 		lv = sizeof(rstats);
3783 		break;
3784 	case PACKET_TX_HAS_OFF:
3785 		val = po->tp_tx_has_off;
3786 		break;
3787 	case PACKET_QDISC_BYPASS:
3788 		val = packet_use_direct_xmit(po);
3789 		break;
3790 	default:
3791 		return -ENOPROTOOPT;
3792 	}
3793 
3794 	if (len > lv)
3795 		len = lv;
3796 	if (put_user(len, optlen))
3797 		return -EFAULT;
3798 	if (copy_to_user(optval, data, len))
3799 		return -EFAULT;
3800 	return 0;
3801 }
3802 
3803 
3804 static int packet_notifier(struct notifier_block *this,
3805 			   unsigned long msg, void *ptr)
3806 {
3807 	struct sock *sk;
3808 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3809 	struct net *net = dev_net(dev);
3810 
3811 	rcu_read_lock();
3812 	sk_for_each_rcu(sk, &net->packet.sklist) {
3813 		struct packet_sock *po = pkt_sk(sk);
3814 
3815 		switch (msg) {
3816 		case NETDEV_UNREGISTER:
3817 			if (po->mclist)
3818 				packet_dev_mclist_delete(dev, &po->mclist);
3819 			/* fallthrough */
3820 
3821 		case NETDEV_DOWN:
3822 			if (dev->ifindex == po->ifindex) {
3823 				spin_lock(&po->bind_lock);
3824 				if (po->running) {
3825 					__unregister_prot_hook(sk, false);
3826 					sk->sk_err = ENETDOWN;
3827 					if (!sock_flag(sk, SOCK_DEAD))
3828 						sk->sk_error_report(sk);
3829 				}
3830 				if (msg == NETDEV_UNREGISTER) {
3831 					packet_cached_dev_reset(po);
3832 					po->ifindex = -1;
3833 					if (po->prot_hook.dev)
3834 						dev_put(po->prot_hook.dev);
3835 					po->prot_hook.dev = NULL;
3836 				}
3837 				spin_unlock(&po->bind_lock);
3838 			}
3839 			break;
3840 		case NETDEV_UP:
3841 			if (dev->ifindex == po->ifindex) {
3842 				spin_lock(&po->bind_lock);
3843 				if (po->num)
3844 					register_prot_hook(sk);
3845 				spin_unlock(&po->bind_lock);
3846 			}
3847 			break;
3848 		}
3849 	}
3850 	rcu_read_unlock();
3851 	return NOTIFY_DONE;
3852 }
3853 
3854 
3855 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3856 			unsigned long arg)
3857 {
3858 	struct sock *sk = sock->sk;
3859 
3860 	switch (cmd) {
3861 	case SIOCOUTQ:
3862 	{
3863 		int amount = sk_wmem_alloc_get(sk);
3864 
3865 		return put_user(amount, (int __user *)arg);
3866 	}
3867 	case SIOCINQ:
3868 	{
3869 		struct sk_buff *skb;
3870 		int amount = 0;
3871 
3872 		spin_lock_bh(&sk->sk_receive_queue.lock);
3873 		skb = skb_peek(&sk->sk_receive_queue);
3874 		if (skb)
3875 			amount = skb->len;
3876 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3877 		return put_user(amount, (int __user *)arg);
3878 	}
3879 	case SIOCGSTAMP:
3880 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3881 	case SIOCGSTAMPNS:
3882 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3883 
3884 #ifdef CONFIG_INET
3885 	case SIOCADDRT:
3886 	case SIOCDELRT:
3887 	case SIOCDARP:
3888 	case SIOCGARP:
3889 	case SIOCSARP:
3890 	case SIOCGIFADDR:
3891 	case SIOCSIFADDR:
3892 	case SIOCGIFBRDADDR:
3893 	case SIOCSIFBRDADDR:
3894 	case SIOCGIFNETMASK:
3895 	case SIOCSIFNETMASK:
3896 	case SIOCGIFDSTADDR:
3897 	case SIOCSIFDSTADDR:
3898 	case SIOCSIFFLAGS:
3899 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3900 #endif
3901 
3902 	default:
3903 		return -ENOIOCTLCMD;
3904 	}
3905 	return 0;
3906 }
3907 
3908 static unsigned int packet_poll(struct file *file, struct socket *sock,
3909 				poll_table *wait)
3910 {
3911 	struct sock *sk = sock->sk;
3912 	struct packet_sock *po = pkt_sk(sk);
3913 	unsigned int mask = datagram_poll(file, sock, wait);
3914 
3915 	spin_lock_bh(&sk->sk_receive_queue.lock);
3916 	if (po->rx_ring.pg_vec) {
3917 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3918 			TP_STATUS_KERNEL))
3919 			mask |= POLLIN | POLLRDNORM;
3920 	}
3921 	if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
3922 		po->pressure = 0;
3923 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3924 	spin_lock_bh(&sk->sk_write_queue.lock);
3925 	if (po->tx_ring.pg_vec) {
3926 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3927 			mask |= POLLOUT | POLLWRNORM;
3928 	}
3929 	spin_unlock_bh(&sk->sk_write_queue.lock);
3930 	return mask;
3931 }
3932 
3933 
3934 /* Dirty? Well, I still did not learn better way to account
3935  * for user mmaps.
3936  */
3937 
3938 static void packet_mm_open(struct vm_area_struct *vma)
3939 {
3940 	struct file *file = vma->vm_file;
3941 	struct socket *sock = file->private_data;
3942 	struct sock *sk = sock->sk;
3943 
3944 	if (sk)
3945 		atomic_inc(&pkt_sk(sk)->mapped);
3946 }
3947 
3948 static void packet_mm_close(struct vm_area_struct *vma)
3949 {
3950 	struct file *file = vma->vm_file;
3951 	struct socket *sock = file->private_data;
3952 	struct sock *sk = sock->sk;
3953 
3954 	if (sk)
3955 		atomic_dec(&pkt_sk(sk)->mapped);
3956 }
3957 
3958 static const struct vm_operations_struct packet_mmap_ops = {
3959 	.open	=	packet_mm_open,
3960 	.close	=	packet_mm_close,
3961 };
3962 
3963 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3964 			unsigned int len)
3965 {
3966 	int i;
3967 
3968 	for (i = 0; i < len; i++) {
3969 		if (likely(pg_vec[i].buffer)) {
3970 			if (is_vmalloc_addr(pg_vec[i].buffer))
3971 				vfree(pg_vec[i].buffer);
3972 			else
3973 				free_pages((unsigned long)pg_vec[i].buffer,
3974 					   order);
3975 			pg_vec[i].buffer = NULL;
3976 		}
3977 	}
3978 	kfree(pg_vec);
3979 }
3980 
3981 static char *alloc_one_pg_vec_page(unsigned long order)
3982 {
3983 	char *buffer;
3984 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3985 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3986 
3987 	buffer = (char *) __get_free_pages(gfp_flags, order);
3988 	if (buffer)
3989 		return buffer;
3990 
3991 	/* __get_free_pages failed, fall back to vmalloc */
3992 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3993 	if (buffer)
3994 		return buffer;
3995 
3996 	/* vmalloc failed, lets dig into swap here */
3997 	gfp_flags &= ~__GFP_NORETRY;
3998 	buffer = (char *) __get_free_pages(gfp_flags, order);
3999 	if (buffer)
4000 		return buffer;
4001 
4002 	/* complete and utter failure */
4003 	return NULL;
4004 }
4005 
4006 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4007 {
4008 	unsigned int block_nr = req->tp_block_nr;
4009 	struct pgv *pg_vec;
4010 	int i;
4011 
4012 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4013 	if (unlikely(!pg_vec))
4014 		goto out;
4015 
4016 	for (i = 0; i < block_nr; i++) {
4017 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4018 		if (unlikely(!pg_vec[i].buffer))
4019 			goto out_free_pgvec;
4020 	}
4021 
4022 out:
4023 	return pg_vec;
4024 
4025 out_free_pgvec:
4026 	free_pg_vec(pg_vec, order, block_nr);
4027 	pg_vec = NULL;
4028 	goto out;
4029 }
4030 
4031 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4032 		int closing, int tx_ring)
4033 {
4034 	struct pgv *pg_vec = NULL;
4035 	struct packet_sock *po = pkt_sk(sk);
4036 	int was_running, order = 0;
4037 	struct packet_ring_buffer *rb;
4038 	struct sk_buff_head *rb_queue;
4039 	__be16 num;
4040 	int err = -EINVAL;
4041 	/* Added to avoid minimal code churn */
4042 	struct tpacket_req *req = &req_u->req;
4043 
4044 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
4045 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
4046 		WARN(1, "Tx-ring is not supported.\n");
4047 		goto out;
4048 	}
4049 
4050 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4051 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4052 
4053 	err = -EBUSY;
4054 	if (!closing) {
4055 		if (atomic_read(&po->mapped))
4056 			goto out;
4057 		if (packet_read_pending(rb))
4058 			goto out;
4059 	}
4060 
4061 	if (req->tp_block_nr) {
4062 		/* Sanity tests and some calculations */
4063 		err = -EBUSY;
4064 		if (unlikely(rb->pg_vec))
4065 			goto out;
4066 
4067 		switch (po->tp_version) {
4068 		case TPACKET_V1:
4069 			po->tp_hdrlen = TPACKET_HDRLEN;
4070 			break;
4071 		case TPACKET_V2:
4072 			po->tp_hdrlen = TPACKET2_HDRLEN;
4073 			break;
4074 		case TPACKET_V3:
4075 			po->tp_hdrlen = TPACKET3_HDRLEN;
4076 			break;
4077 		}
4078 
4079 		err = -EINVAL;
4080 		if (unlikely((int)req->tp_block_size <= 0))
4081 			goto out;
4082 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
4083 			goto out;
4084 		if (po->tp_version >= TPACKET_V3 &&
4085 		    (int)(req->tp_block_size -
4086 			  BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
4087 			goto out;
4088 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4089 					po->tp_reserve))
4090 			goto out;
4091 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4092 			goto out;
4093 
4094 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
4095 		if (unlikely(rb->frames_per_block <= 0))
4096 			goto out;
4097 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4098 					req->tp_frame_nr))
4099 			goto out;
4100 
4101 		err = -ENOMEM;
4102 		order = get_order(req->tp_block_size);
4103 		pg_vec = alloc_pg_vec(req, order);
4104 		if (unlikely(!pg_vec))
4105 			goto out;
4106 		switch (po->tp_version) {
4107 		case TPACKET_V3:
4108 		/* Transmit path is not supported. We checked
4109 		 * it above but just being paranoid
4110 		 */
4111 			if (!tx_ring)
4112 				init_prb_bdqc(po, rb, pg_vec, req_u);
4113 			break;
4114 		default:
4115 			break;
4116 		}
4117 	}
4118 	/* Done */
4119 	else {
4120 		err = -EINVAL;
4121 		if (unlikely(req->tp_frame_nr))
4122 			goto out;
4123 	}
4124 
4125 	lock_sock(sk);
4126 
4127 	/* Detach socket from network */
4128 	spin_lock(&po->bind_lock);
4129 	was_running = po->running;
4130 	num = po->num;
4131 	if (was_running) {
4132 		po->num = 0;
4133 		__unregister_prot_hook(sk, false);
4134 	}
4135 	spin_unlock(&po->bind_lock);
4136 
4137 	synchronize_net();
4138 
4139 	err = -EBUSY;
4140 	mutex_lock(&po->pg_vec_lock);
4141 	if (closing || atomic_read(&po->mapped) == 0) {
4142 		err = 0;
4143 		spin_lock_bh(&rb_queue->lock);
4144 		swap(rb->pg_vec, pg_vec);
4145 		rb->frame_max = (req->tp_frame_nr - 1);
4146 		rb->head = 0;
4147 		rb->frame_size = req->tp_frame_size;
4148 		spin_unlock_bh(&rb_queue->lock);
4149 
4150 		swap(rb->pg_vec_order, order);
4151 		swap(rb->pg_vec_len, req->tp_block_nr);
4152 
4153 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4154 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4155 						tpacket_rcv : packet_rcv;
4156 		skb_queue_purge(rb_queue);
4157 		if (atomic_read(&po->mapped))
4158 			pr_err("packet_mmap: vma is busy: %d\n",
4159 			       atomic_read(&po->mapped));
4160 	}
4161 	mutex_unlock(&po->pg_vec_lock);
4162 
4163 	spin_lock(&po->bind_lock);
4164 	if (was_running) {
4165 		po->num = num;
4166 		register_prot_hook(sk);
4167 	}
4168 	spin_unlock(&po->bind_lock);
4169 	if (closing && (po->tp_version > TPACKET_V2)) {
4170 		/* Because we don't support block-based V3 on tx-ring */
4171 		if (!tx_ring)
4172 			prb_shutdown_retire_blk_timer(po, rb_queue);
4173 	}
4174 	release_sock(sk);
4175 
4176 	if (pg_vec)
4177 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4178 out:
4179 	return err;
4180 }
4181 
4182 static int packet_mmap(struct file *file, struct socket *sock,
4183 		struct vm_area_struct *vma)
4184 {
4185 	struct sock *sk = sock->sk;
4186 	struct packet_sock *po = pkt_sk(sk);
4187 	unsigned long size, expected_size;
4188 	struct packet_ring_buffer *rb;
4189 	unsigned long start;
4190 	int err = -EINVAL;
4191 	int i;
4192 
4193 	if (vma->vm_pgoff)
4194 		return -EINVAL;
4195 
4196 	mutex_lock(&po->pg_vec_lock);
4197 
4198 	expected_size = 0;
4199 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4200 		if (rb->pg_vec) {
4201 			expected_size += rb->pg_vec_len
4202 						* rb->pg_vec_pages
4203 						* PAGE_SIZE;
4204 		}
4205 	}
4206 
4207 	if (expected_size == 0)
4208 		goto out;
4209 
4210 	size = vma->vm_end - vma->vm_start;
4211 	if (size != expected_size)
4212 		goto out;
4213 
4214 	start = vma->vm_start;
4215 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4216 		if (rb->pg_vec == NULL)
4217 			continue;
4218 
4219 		for (i = 0; i < rb->pg_vec_len; i++) {
4220 			struct page *page;
4221 			void *kaddr = rb->pg_vec[i].buffer;
4222 			int pg_num;
4223 
4224 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4225 				page = pgv_to_page(kaddr);
4226 				err = vm_insert_page(vma, start, page);
4227 				if (unlikely(err))
4228 					goto out;
4229 				start += PAGE_SIZE;
4230 				kaddr += PAGE_SIZE;
4231 			}
4232 		}
4233 	}
4234 
4235 	atomic_inc(&po->mapped);
4236 	vma->vm_ops = &packet_mmap_ops;
4237 	err = 0;
4238 
4239 out:
4240 	mutex_unlock(&po->pg_vec_lock);
4241 	return err;
4242 }
4243 
4244 static const struct proto_ops packet_ops_spkt = {
4245 	.family =	PF_PACKET,
4246 	.owner =	THIS_MODULE,
4247 	.release =	packet_release,
4248 	.bind =		packet_bind_spkt,
4249 	.connect =	sock_no_connect,
4250 	.socketpair =	sock_no_socketpair,
4251 	.accept =	sock_no_accept,
4252 	.getname =	packet_getname_spkt,
4253 	.poll =		datagram_poll,
4254 	.ioctl =	packet_ioctl,
4255 	.listen =	sock_no_listen,
4256 	.shutdown =	sock_no_shutdown,
4257 	.setsockopt =	sock_no_setsockopt,
4258 	.getsockopt =	sock_no_getsockopt,
4259 	.sendmsg =	packet_sendmsg_spkt,
4260 	.recvmsg =	packet_recvmsg,
4261 	.mmap =		sock_no_mmap,
4262 	.sendpage =	sock_no_sendpage,
4263 };
4264 
4265 static const struct proto_ops packet_ops = {
4266 	.family =	PF_PACKET,
4267 	.owner =	THIS_MODULE,
4268 	.release =	packet_release,
4269 	.bind =		packet_bind,
4270 	.connect =	sock_no_connect,
4271 	.socketpair =	sock_no_socketpair,
4272 	.accept =	sock_no_accept,
4273 	.getname =	packet_getname,
4274 	.poll =		packet_poll,
4275 	.ioctl =	packet_ioctl,
4276 	.listen =	sock_no_listen,
4277 	.shutdown =	sock_no_shutdown,
4278 	.setsockopt =	packet_setsockopt,
4279 	.getsockopt =	packet_getsockopt,
4280 	.sendmsg =	packet_sendmsg,
4281 	.recvmsg =	packet_recvmsg,
4282 	.mmap =		packet_mmap,
4283 	.sendpage =	sock_no_sendpage,
4284 };
4285 
4286 static const struct net_proto_family packet_family_ops = {
4287 	.family =	PF_PACKET,
4288 	.create =	packet_create,
4289 	.owner	=	THIS_MODULE,
4290 };
4291 
4292 static struct notifier_block packet_netdev_notifier = {
4293 	.notifier_call =	packet_notifier,
4294 };
4295 
4296 #ifdef CONFIG_PROC_FS
4297 
4298 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4299 	__acquires(RCU)
4300 {
4301 	struct net *net = seq_file_net(seq);
4302 
4303 	rcu_read_lock();
4304 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4305 }
4306 
4307 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4308 {
4309 	struct net *net = seq_file_net(seq);
4310 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4311 }
4312 
4313 static void packet_seq_stop(struct seq_file *seq, void *v)
4314 	__releases(RCU)
4315 {
4316 	rcu_read_unlock();
4317 }
4318 
4319 static int packet_seq_show(struct seq_file *seq, void *v)
4320 {
4321 	if (v == SEQ_START_TOKEN)
4322 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4323 	else {
4324 		struct sock *s = sk_entry(v);
4325 		const struct packet_sock *po = pkt_sk(s);
4326 
4327 		seq_printf(seq,
4328 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4329 			   s,
4330 			   atomic_read(&s->sk_refcnt),
4331 			   s->sk_type,
4332 			   ntohs(po->num),
4333 			   po->ifindex,
4334 			   po->running,
4335 			   atomic_read(&s->sk_rmem_alloc),
4336 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4337 			   sock_i_ino(s));
4338 	}
4339 
4340 	return 0;
4341 }
4342 
4343 static const struct seq_operations packet_seq_ops = {
4344 	.start	= packet_seq_start,
4345 	.next	= packet_seq_next,
4346 	.stop	= packet_seq_stop,
4347 	.show	= packet_seq_show,
4348 };
4349 
4350 static int packet_seq_open(struct inode *inode, struct file *file)
4351 {
4352 	return seq_open_net(inode, file, &packet_seq_ops,
4353 			    sizeof(struct seq_net_private));
4354 }
4355 
4356 static const struct file_operations packet_seq_fops = {
4357 	.owner		= THIS_MODULE,
4358 	.open		= packet_seq_open,
4359 	.read		= seq_read,
4360 	.llseek		= seq_lseek,
4361 	.release	= seq_release_net,
4362 };
4363 
4364 #endif
4365 
4366 static int __net_init packet_net_init(struct net *net)
4367 {
4368 	mutex_init(&net->packet.sklist_lock);
4369 	INIT_HLIST_HEAD(&net->packet.sklist);
4370 
4371 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4372 		return -ENOMEM;
4373 
4374 	return 0;
4375 }
4376 
4377 static void __net_exit packet_net_exit(struct net *net)
4378 {
4379 	remove_proc_entry("packet", net->proc_net);
4380 }
4381 
4382 static struct pernet_operations packet_net_ops = {
4383 	.init = packet_net_init,
4384 	.exit = packet_net_exit,
4385 };
4386 
4387 
4388 static void __exit packet_exit(void)
4389 {
4390 	unregister_netdevice_notifier(&packet_netdev_notifier);
4391 	unregister_pernet_subsys(&packet_net_ops);
4392 	sock_unregister(PF_PACKET);
4393 	proto_unregister(&packet_proto);
4394 }
4395 
4396 static int __init packet_init(void)
4397 {
4398 	int rc = proto_register(&packet_proto, 0);
4399 
4400 	if (rc != 0)
4401 		goto out;
4402 
4403 	sock_register(&packet_family_ops);
4404 	register_pernet_subsys(&packet_net_ops);
4405 	register_netdevice_notifier(&packet_netdev_notifier);
4406 out:
4407 	return rc;
4408 }
4409 
4410 module_init(packet_init);
4411 module_exit(packet_exit);
4412 MODULE_LICENSE("GPL");
4413 MODULE_ALIAS_NETPROTO(PF_PACKET);
4414