xref: /openbmc/linux/net/packet/af_packet.c (revision 1c2dd16a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97 
98 #include "internal.h"
99 
100 /*
101    Assumptions:
102    - if device has no dev->hard_header routine, it adds and removes ll header
103      inside itself. In this case ll header is invisible outside of device,
104      but higher levels still should reserve dev->hard_header_len.
105      Some devices are enough clever to reallocate skb, when header
106      will not fit to reserved space (tunnel), another ones are silly
107      (PPP).
108    - packet socket receives packets with pulled ll header,
109      so that SOCK_RAW should push it back.
110 
111 On receive:
112 -----------
113 
114 Incoming, dev->hard_header!=NULL
115    mac_header -> ll header
116    data       -> data
117 
118 Outgoing, dev->hard_header!=NULL
119    mac_header -> ll header
120    data       -> ll header
121 
122 Incoming, dev->hard_header==NULL
123    mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 		 header.  PPP makes it, that is wrong, because introduce
125 		 assymetry between rx and tx paths.
126    data       -> data
127 
128 Outgoing, dev->hard_header==NULL
129    mac_header -> data. ll header is still not built!
130    data       -> data
131 
132 Resume
133   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134 
135 
136 On transmit:
137 ------------
138 
139 dev->hard_header != NULL
140    mac_header -> ll header
141    data       -> ll header
142 
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144    mac_header -> data
145    data       -> data
146 
147    We should set nh.raw on output to correct posistion,
148    packet classifier depends on it.
149  */
150 
151 /* Private packet socket structures. */
152 
153 /* identical to struct packet_mreq except it has
154  * a longer address field.
155  */
156 struct packet_mreq_max {
157 	int		mr_ifindex;
158 	unsigned short	mr_type;
159 	unsigned short	mr_alen;
160 	unsigned char	mr_address[MAX_ADDR_LEN];
161 };
162 
163 union tpacket_uhdr {
164 	struct tpacket_hdr  *h1;
165 	struct tpacket2_hdr *h2;
166 	struct tpacket3_hdr *h3;
167 	void *raw;
168 };
169 
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 		int closing, int tx_ring);
172 
173 #define V3_ALIGNMENT	(8)
174 
175 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176 
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179 
180 #define PGV_FROM_VMALLOC 1
181 
182 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
183 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
184 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
185 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
186 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
187 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
188 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
189 
190 struct packet_sock;
191 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
192 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
193 		       struct packet_type *pt, struct net_device *orig_dev);
194 
195 static void *packet_previous_frame(struct packet_sock *po,
196 		struct packet_ring_buffer *rb,
197 		int status);
198 static void packet_increment_head(struct packet_ring_buffer *buff);
199 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
200 			struct tpacket_block_desc *);
201 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
202 			struct packet_sock *);
203 static void prb_retire_current_block(struct tpacket_kbdq_core *,
204 		struct packet_sock *, unsigned int status);
205 static int prb_queue_frozen(struct tpacket_kbdq_core *);
206 static void prb_open_block(struct tpacket_kbdq_core *,
207 		struct tpacket_block_desc *);
208 static void prb_retire_rx_blk_timer_expired(unsigned long);
209 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
210 static void prb_init_blk_timer(struct packet_sock *,
211 		struct tpacket_kbdq_core *,
212 		void (*func) (unsigned long));
213 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
214 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
217 		struct tpacket3_hdr *);
218 static void packet_flush_mclist(struct sock *sk);
219 
220 struct packet_skb_cb {
221 	union {
222 		struct sockaddr_pkt pkt;
223 		union {
224 			/* Trick: alias skb original length with
225 			 * ll.sll_family and ll.protocol in order
226 			 * to save room.
227 			 */
228 			unsigned int origlen;
229 			struct sockaddr_ll ll;
230 		};
231 	} sa;
232 };
233 
234 #define vio_le() virtio_legacy_is_little_endian()
235 
236 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
237 
238 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
239 #define GET_PBLOCK_DESC(x, bid)	\
240 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
241 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
242 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
243 #define GET_NEXT_PRB_BLK_NUM(x) \
244 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
245 	((x)->kactive_blk_num+1) : 0)
246 
247 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
248 static void __fanout_link(struct sock *sk, struct packet_sock *po);
249 
250 static int packet_direct_xmit(struct sk_buff *skb)
251 {
252 	struct net_device *dev = skb->dev;
253 	struct sk_buff *orig_skb = skb;
254 	struct netdev_queue *txq;
255 	int ret = NETDEV_TX_BUSY;
256 
257 	if (unlikely(!netif_running(dev) ||
258 		     !netif_carrier_ok(dev)))
259 		goto drop;
260 
261 	skb = validate_xmit_skb_list(skb, dev);
262 	if (skb != orig_skb)
263 		goto drop;
264 
265 	txq = skb_get_tx_queue(dev, skb);
266 
267 	local_bh_disable();
268 
269 	HARD_TX_LOCK(dev, txq, smp_processor_id());
270 	if (!netif_xmit_frozen_or_drv_stopped(txq))
271 		ret = netdev_start_xmit(skb, dev, txq, false);
272 	HARD_TX_UNLOCK(dev, txq);
273 
274 	local_bh_enable();
275 
276 	if (!dev_xmit_complete(ret))
277 		kfree_skb(skb);
278 
279 	return ret;
280 drop:
281 	atomic_long_inc(&dev->tx_dropped);
282 	kfree_skb_list(skb);
283 	return NET_XMIT_DROP;
284 }
285 
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 	struct net_device *dev;
289 
290 	rcu_read_lock();
291 	dev = rcu_dereference(po->cached_dev);
292 	if (likely(dev))
293 		dev_hold(dev);
294 	rcu_read_unlock();
295 
296 	return dev;
297 }
298 
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 				     struct net_device *dev)
301 {
302 	rcu_assign_pointer(po->cached_dev, dev);
303 }
304 
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 	RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309 
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 	return po->xmit == packet_direct_xmit;
313 }
314 
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 	return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319 
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 	const struct net_device_ops *ops = dev->netdev_ops;
323 	u16 queue_index;
324 
325 	if (ops->ndo_select_queue) {
326 		queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 						    __packet_pick_tx_queue);
328 		queue_index = netdev_cap_txqueue(dev, queue_index);
329 	} else {
330 		queue_index = __packet_pick_tx_queue(dev, skb);
331 	}
332 
333 	skb_set_queue_mapping(skb, queue_index);
334 }
335 
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337  * or from a context in which asynchronous accesses to the packet
338  * socket is not possible (packet_create()).
339  */
340 static void register_prot_hook(struct sock *sk)
341 {
342 	struct packet_sock *po = pkt_sk(sk);
343 
344 	if (!po->running) {
345 		if (po->fanout)
346 			__fanout_link(sk, po);
347 		else
348 			dev_add_pack(&po->prot_hook);
349 
350 		sock_hold(sk);
351 		po->running = 1;
352 	}
353 }
354 
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356  * held.   If the sync parameter is true, we will temporarily drop
357  * the po->bind_lock and do a synchronize_net to make sure no
358  * asynchronous packet processing paths still refer to the elements
359  * of po->prot_hook.  If the sync parameter is false, it is the
360  * callers responsibility to take care of this.
361  */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 	struct packet_sock *po = pkt_sk(sk);
365 
366 	po->running = 0;
367 
368 	if (po->fanout)
369 		__fanout_unlink(sk, po);
370 	else
371 		__dev_remove_pack(&po->prot_hook);
372 
373 	__sock_put(sk);
374 
375 	if (sync) {
376 		spin_unlock(&po->bind_lock);
377 		synchronize_net();
378 		spin_lock(&po->bind_lock);
379 	}
380 }
381 
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 	struct packet_sock *po = pkt_sk(sk);
385 
386 	if (po->running)
387 		__unregister_prot_hook(sk, sync);
388 }
389 
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 	if (is_vmalloc_addr(addr))
393 		return vmalloc_to_page(addr);
394 	return virt_to_page(addr);
395 }
396 
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 	union tpacket_uhdr h;
400 
401 	h.raw = frame;
402 	switch (po->tp_version) {
403 	case TPACKET_V1:
404 		h.h1->tp_status = status;
405 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 		break;
407 	case TPACKET_V2:
408 		h.h2->tp_status = status;
409 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 		break;
411 	case TPACKET_V3:
412 		h.h3->tp_status = status;
413 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
414 		break;
415 	default:
416 		WARN(1, "TPACKET version not supported.\n");
417 		BUG();
418 	}
419 
420 	smp_wmb();
421 }
422 
423 static int __packet_get_status(struct packet_sock *po, void *frame)
424 {
425 	union tpacket_uhdr h;
426 
427 	smp_rmb();
428 
429 	h.raw = frame;
430 	switch (po->tp_version) {
431 	case TPACKET_V1:
432 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
433 		return h.h1->tp_status;
434 	case TPACKET_V2:
435 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
436 		return h.h2->tp_status;
437 	case TPACKET_V3:
438 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
439 		return h.h3->tp_status;
440 	default:
441 		WARN(1, "TPACKET version not supported.\n");
442 		BUG();
443 		return 0;
444 	}
445 }
446 
447 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
448 				   unsigned int flags)
449 {
450 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
451 
452 	if (shhwtstamps &&
453 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
454 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
455 		return TP_STATUS_TS_RAW_HARDWARE;
456 
457 	if (ktime_to_timespec_cond(skb->tstamp, ts))
458 		return TP_STATUS_TS_SOFTWARE;
459 
460 	return 0;
461 }
462 
463 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
464 				    struct sk_buff *skb)
465 {
466 	union tpacket_uhdr h;
467 	struct timespec ts;
468 	__u32 ts_status;
469 
470 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
471 		return 0;
472 
473 	h.raw = frame;
474 	switch (po->tp_version) {
475 	case TPACKET_V1:
476 		h.h1->tp_sec = ts.tv_sec;
477 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
478 		break;
479 	case TPACKET_V2:
480 		h.h2->tp_sec = ts.tv_sec;
481 		h.h2->tp_nsec = ts.tv_nsec;
482 		break;
483 	case TPACKET_V3:
484 		h.h3->tp_sec = ts.tv_sec;
485 		h.h3->tp_nsec = ts.tv_nsec;
486 		break;
487 	default:
488 		WARN(1, "TPACKET version not supported.\n");
489 		BUG();
490 	}
491 
492 	/* one flush is safe, as both fields always lie on the same cacheline */
493 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
494 	smp_wmb();
495 
496 	return ts_status;
497 }
498 
499 static void *packet_lookup_frame(struct packet_sock *po,
500 		struct packet_ring_buffer *rb,
501 		unsigned int position,
502 		int status)
503 {
504 	unsigned int pg_vec_pos, frame_offset;
505 	union tpacket_uhdr h;
506 
507 	pg_vec_pos = position / rb->frames_per_block;
508 	frame_offset = position % rb->frames_per_block;
509 
510 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
511 		(frame_offset * rb->frame_size);
512 
513 	if (status != __packet_get_status(po, h.raw))
514 		return NULL;
515 
516 	return h.raw;
517 }
518 
519 static void *packet_current_frame(struct packet_sock *po,
520 		struct packet_ring_buffer *rb,
521 		int status)
522 {
523 	return packet_lookup_frame(po, rb, rb->head, status);
524 }
525 
526 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
527 {
528 	del_timer_sync(&pkc->retire_blk_timer);
529 }
530 
531 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
532 		struct sk_buff_head *rb_queue)
533 {
534 	struct tpacket_kbdq_core *pkc;
535 
536 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
537 
538 	spin_lock_bh(&rb_queue->lock);
539 	pkc->delete_blk_timer = 1;
540 	spin_unlock_bh(&rb_queue->lock);
541 
542 	prb_del_retire_blk_timer(pkc);
543 }
544 
545 static void prb_init_blk_timer(struct packet_sock *po,
546 		struct tpacket_kbdq_core *pkc,
547 		void (*func) (unsigned long))
548 {
549 	init_timer(&pkc->retire_blk_timer);
550 	pkc->retire_blk_timer.data = (long)po;
551 	pkc->retire_blk_timer.function = func;
552 	pkc->retire_blk_timer.expires = jiffies;
553 }
554 
555 static void prb_setup_retire_blk_timer(struct packet_sock *po)
556 {
557 	struct tpacket_kbdq_core *pkc;
558 
559 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
560 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
561 }
562 
563 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
564 				int blk_size_in_bytes)
565 {
566 	struct net_device *dev;
567 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
568 	struct ethtool_link_ksettings ecmd;
569 	int err;
570 
571 	rtnl_lock();
572 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
573 	if (unlikely(!dev)) {
574 		rtnl_unlock();
575 		return DEFAULT_PRB_RETIRE_TOV;
576 	}
577 	err = __ethtool_get_link_ksettings(dev, &ecmd);
578 	rtnl_unlock();
579 	if (!err) {
580 		/*
581 		 * If the link speed is so slow you don't really
582 		 * need to worry about perf anyways
583 		 */
584 		if (ecmd.base.speed < SPEED_1000 ||
585 		    ecmd.base.speed == SPEED_UNKNOWN) {
586 			return DEFAULT_PRB_RETIRE_TOV;
587 		} else {
588 			msec = 1;
589 			div = ecmd.base.speed / 1000;
590 		}
591 	}
592 
593 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
594 
595 	if (div)
596 		mbits /= div;
597 
598 	tmo = mbits * msec;
599 
600 	if (div)
601 		return tmo+1;
602 	return tmo;
603 }
604 
605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
606 			union tpacket_req_u *req_u)
607 {
608 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
609 }
610 
611 static void init_prb_bdqc(struct packet_sock *po,
612 			struct packet_ring_buffer *rb,
613 			struct pgv *pg_vec,
614 			union tpacket_req_u *req_u)
615 {
616 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
617 	struct tpacket_block_desc *pbd;
618 
619 	memset(p1, 0x0, sizeof(*p1));
620 
621 	p1->knxt_seq_num = 1;
622 	p1->pkbdq = pg_vec;
623 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
624 	p1->pkblk_start	= pg_vec[0].buffer;
625 	p1->kblk_size = req_u->req3.tp_block_size;
626 	p1->knum_blocks	= req_u->req3.tp_block_nr;
627 	p1->hdrlen = po->tp_hdrlen;
628 	p1->version = po->tp_version;
629 	p1->last_kactive_blk_num = 0;
630 	po->stats.stats3.tp_freeze_q_cnt = 0;
631 	if (req_u->req3.tp_retire_blk_tov)
632 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
633 	else
634 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
635 						req_u->req3.tp_block_size);
636 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
637 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
638 
639 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
640 	prb_init_ft_ops(p1, req_u);
641 	prb_setup_retire_blk_timer(po);
642 	prb_open_block(p1, pbd);
643 }
644 
645 /*  Do NOT update the last_blk_num first.
646  *  Assumes sk_buff_head lock is held.
647  */
648 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
649 {
650 	mod_timer(&pkc->retire_blk_timer,
651 			jiffies + pkc->tov_in_jiffies);
652 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
653 }
654 
655 /*
656  * Timer logic:
657  * 1) We refresh the timer only when we open a block.
658  *    By doing this we don't waste cycles refreshing the timer
659  *	  on packet-by-packet basis.
660  *
661  * With a 1MB block-size, on a 1Gbps line, it will take
662  * i) ~8 ms to fill a block + ii) memcpy etc.
663  * In this cut we are not accounting for the memcpy time.
664  *
665  * So, if the user sets the 'tmo' to 10ms then the timer
666  * will never fire while the block is still getting filled
667  * (which is what we want). However, the user could choose
668  * to close a block early and that's fine.
669  *
670  * But when the timer does fire, we check whether or not to refresh it.
671  * Since the tmo granularity is in msecs, it is not too expensive
672  * to refresh the timer, lets say every '8' msecs.
673  * Either the user can set the 'tmo' or we can derive it based on
674  * a) line-speed and b) block-size.
675  * prb_calc_retire_blk_tmo() calculates the tmo.
676  *
677  */
678 static void prb_retire_rx_blk_timer_expired(unsigned long data)
679 {
680 	struct packet_sock *po = (struct packet_sock *)data;
681 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
682 	unsigned int frozen;
683 	struct tpacket_block_desc *pbd;
684 
685 	spin_lock(&po->sk.sk_receive_queue.lock);
686 
687 	frozen = prb_queue_frozen(pkc);
688 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
689 
690 	if (unlikely(pkc->delete_blk_timer))
691 		goto out;
692 
693 	/* We only need to plug the race when the block is partially filled.
694 	 * tpacket_rcv:
695 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
696 	 *		copy_bits() is in progress ...
697 	 *		timer fires on other cpu:
698 	 *		we can't retire the current block because copy_bits
699 	 *		is in progress.
700 	 *
701 	 */
702 	if (BLOCK_NUM_PKTS(pbd)) {
703 		while (atomic_read(&pkc->blk_fill_in_prog)) {
704 			/* Waiting for skb_copy_bits to finish... */
705 			cpu_relax();
706 		}
707 	}
708 
709 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
710 		if (!frozen) {
711 			if (!BLOCK_NUM_PKTS(pbd)) {
712 				/* An empty block. Just refresh the timer. */
713 				goto refresh_timer;
714 			}
715 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
716 			if (!prb_dispatch_next_block(pkc, po))
717 				goto refresh_timer;
718 			else
719 				goto out;
720 		} else {
721 			/* Case 1. Queue was frozen because user-space was
722 			 *	   lagging behind.
723 			 */
724 			if (prb_curr_blk_in_use(pkc, pbd)) {
725 				/*
726 				 * Ok, user-space is still behind.
727 				 * So just refresh the timer.
728 				 */
729 				goto refresh_timer;
730 			} else {
731 			       /* Case 2. queue was frozen,user-space caught up,
732 				* now the link went idle && the timer fired.
733 				* We don't have a block to close.So we open this
734 				* block and restart the timer.
735 				* opening a block thaws the queue,restarts timer
736 				* Thawing/timer-refresh is a side effect.
737 				*/
738 				prb_open_block(pkc, pbd);
739 				goto out;
740 			}
741 		}
742 	}
743 
744 refresh_timer:
745 	_prb_refresh_rx_retire_blk_timer(pkc);
746 
747 out:
748 	spin_unlock(&po->sk.sk_receive_queue.lock);
749 }
750 
751 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
752 		struct tpacket_block_desc *pbd1, __u32 status)
753 {
754 	/* Flush everything minus the block header */
755 
756 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
757 	u8 *start, *end;
758 
759 	start = (u8 *)pbd1;
760 
761 	/* Skip the block header(we know header WILL fit in 4K) */
762 	start += PAGE_SIZE;
763 
764 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
765 	for (; start < end; start += PAGE_SIZE)
766 		flush_dcache_page(pgv_to_page(start));
767 
768 	smp_wmb();
769 #endif
770 
771 	/* Now update the block status. */
772 
773 	BLOCK_STATUS(pbd1) = status;
774 
775 	/* Flush the block header */
776 
777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
778 	start = (u8 *)pbd1;
779 	flush_dcache_page(pgv_to_page(start));
780 
781 	smp_wmb();
782 #endif
783 }
784 
785 /*
786  * Side effect:
787  *
788  * 1) flush the block
789  * 2) Increment active_blk_num
790  *
791  * Note:We DONT refresh the timer on purpose.
792  *	Because almost always the next block will be opened.
793  */
794 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
795 		struct tpacket_block_desc *pbd1,
796 		struct packet_sock *po, unsigned int stat)
797 {
798 	__u32 status = TP_STATUS_USER | stat;
799 
800 	struct tpacket3_hdr *last_pkt;
801 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
802 	struct sock *sk = &po->sk;
803 
804 	if (po->stats.stats3.tp_drops)
805 		status |= TP_STATUS_LOSING;
806 
807 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
808 	last_pkt->tp_next_offset = 0;
809 
810 	/* Get the ts of the last pkt */
811 	if (BLOCK_NUM_PKTS(pbd1)) {
812 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
813 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
814 	} else {
815 		/* Ok, we tmo'd - so get the current time.
816 		 *
817 		 * It shouldn't really happen as we don't close empty
818 		 * blocks. See prb_retire_rx_blk_timer_expired().
819 		 */
820 		struct timespec ts;
821 		getnstimeofday(&ts);
822 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
823 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
824 	}
825 
826 	smp_wmb();
827 
828 	/* Flush the block */
829 	prb_flush_block(pkc1, pbd1, status);
830 
831 	sk->sk_data_ready(sk);
832 
833 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
834 }
835 
836 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
837 {
838 	pkc->reset_pending_on_curr_blk = 0;
839 }
840 
841 /*
842  * Side effect of opening a block:
843  *
844  * 1) prb_queue is thawed.
845  * 2) retire_blk_timer is refreshed.
846  *
847  */
848 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
849 	struct tpacket_block_desc *pbd1)
850 {
851 	struct timespec ts;
852 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
853 
854 	smp_rmb();
855 
856 	/* We could have just memset this but we will lose the
857 	 * flexibility of making the priv area sticky
858 	 */
859 
860 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
861 	BLOCK_NUM_PKTS(pbd1) = 0;
862 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863 
864 	getnstimeofday(&ts);
865 
866 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
867 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
868 
869 	pkc1->pkblk_start = (char *)pbd1;
870 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
871 
872 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
873 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
874 
875 	pbd1->version = pkc1->version;
876 	pkc1->prev = pkc1->nxt_offset;
877 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
878 
879 	prb_thaw_queue(pkc1);
880 	_prb_refresh_rx_retire_blk_timer(pkc1);
881 
882 	smp_wmb();
883 }
884 
885 /*
886  * Queue freeze logic:
887  * 1) Assume tp_block_nr = 8 blocks.
888  * 2) At time 't0', user opens Rx ring.
889  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
890  * 4) user-space is either sleeping or processing block '0'.
891  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
892  *    it will close block-7,loop around and try to fill block '0'.
893  *    call-flow:
894  *    __packet_lookup_frame_in_block
895  *      prb_retire_current_block()
896  *      prb_dispatch_next_block()
897  *        |->(BLOCK_STATUS == USER) evaluates to true
898  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
899  * 6) Now there are two cases:
900  *    6.1) Link goes idle right after the queue is frozen.
901  *         But remember, the last open_block() refreshed the timer.
902  *         When this timer expires,it will refresh itself so that we can
903  *         re-open block-0 in near future.
904  *    6.2) Link is busy and keeps on receiving packets. This is a simple
905  *         case and __packet_lookup_frame_in_block will check if block-0
906  *         is free and can now be re-used.
907  */
908 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
909 				  struct packet_sock *po)
910 {
911 	pkc->reset_pending_on_curr_blk = 1;
912 	po->stats.stats3.tp_freeze_q_cnt++;
913 }
914 
915 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
916 
917 /*
918  * If the next block is free then we will dispatch it
919  * and return a good offset.
920  * Else, we will freeze the queue.
921  * So, caller must check the return value.
922  */
923 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
924 		struct packet_sock *po)
925 {
926 	struct tpacket_block_desc *pbd;
927 
928 	smp_rmb();
929 
930 	/* 1. Get current block num */
931 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
932 
933 	/* 2. If this block is currently in_use then freeze the queue */
934 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
935 		prb_freeze_queue(pkc, po);
936 		return NULL;
937 	}
938 
939 	/*
940 	 * 3.
941 	 * open this block and return the offset where the first packet
942 	 * needs to get stored.
943 	 */
944 	prb_open_block(pkc, pbd);
945 	return (void *)pkc->nxt_offset;
946 }
947 
948 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
949 		struct packet_sock *po, unsigned int status)
950 {
951 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
952 
953 	/* retire/close the current block */
954 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
955 		/*
956 		 * Plug the case where copy_bits() is in progress on
957 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
958 		 * have space to copy the pkt in the current block and
959 		 * called prb_retire_current_block()
960 		 *
961 		 * We don't need to worry about the TMO case because
962 		 * the timer-handler already handled this case.
963 		 */
964 		if (!(status & TP_STATUS_BLK_TMO)) {
965 			while (atomic_read(&pkc->blk_fill_in_prog)) {
966 				/* Waiting for skb_copy_bits to finish... */
967 				cpu_relax();
968 			}
969 		}
970 		prb_close_block(pkc, pbd, po, status);
971 		return;
972 	}
973 }
974 
975 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
976 				      struct tpacket_block_desc *pbd)
977 {
978 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
979 }
980 
981 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
982 {
983 	return pkc->reset_pending_on_curr_blk;
984 }
985 
986 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
987 {
988 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
989 	atomic_dec(&pkc->blk_fill_in_prog);
990 }
991 
992 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
993 			struct tpacket3_hdr *ppd)
994 {
995 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
996 }
997 
998 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
999 			struct tpacket3_hdr *ppd)
1000 {
1001 	ppd->hv1.tp_rxhash = 0;
1002 }
1003 
1004 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1005 			struct tpacket3_hdr *ppd)
1006 {
1007 	if (skb_vlan_tag_present(pkc->skb)) {
1008 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1009 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1010 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1011 	} else {
1012 		ppd->hv1.tp_vlan_tci = 0;
1013 		ppd->hv1.tp_vlan_tpid = 0;
1014 		ppd->tp_status = TP_STATUS_AVAILABLE;
1015 	}
1016 }
1017 
1018 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1019 			struct tpacket3_hdr *ppd)
1020 {
1021 	ppd->hv1.tp_padding = 0;
1022 	prb_fill_vlan_info(pkc, ppd);
1023 
1024 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1025 		prb_fill_rxhash(pkc, ppd);
1026 	else
1027 		prb_clear_rxhash(pkc, ppd);
1028 }
1029 
1030 static void prb_fill_curr_block(char *curr,
1031 				struct tpacket_kbdq_core *pkc,
1032 				struct tpacket_block_desc *pbd,
1033 				unsigned int len)
1034 {
1035 	struct tpacket3_hdr *ppd;
1036 
1037 	ppd  = (struct tpacket3_hdr *)curr;
1038 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 	pkc->prev = curr;
1040 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1041 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1042 	BLOCK_NUM_PKTS(pbd) += 1;
1043 	atomic_inc(&pkc->blk_fill_in_prog);
1044 	prb_run_all_ft_ops(pkc, ppd);
1045 }
1046 
1047 /* Assumes caller has the sk->rx_queue.lock */
1048 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1049 					    struct sk_buff *skb,
1050 						int status,
1051 					    unsigned int len
1052 					    )
1053 {
1054 	struct tpacket_kbdq_core *pkc;
1055 	struct tpacket_block_desc *pbd;
1056 	char *curr, *end;
1057 
1058 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1059 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1060 
1061 	/* Queue is frozen when user space is lagging behind */
1062 	if (prb_queue_frozen(pkc)) {
1063 		/*
1064 		 * Check if that last block which caused the queue to freeze,
1065 		 * is still in_use by user-space.
1066 		 */
1067 		if (prb_curr_blk_in_use(pkc, pbd)) {
1068 			/* Can't record this packet */
1069 			return NULL;
1070 		} else {
1071 			/*
1072 			 * Ok, the block was released by user-space.
1073 			 * Now let's open that block.
1074 			 * opening a block also thaws the queue.
1075 			 * Thawing is a side effect.
1076 			 */
1077 			prb_open_block(pkc, pbd);
1078 		}
1079 	}
1080 
1081 	smp_mb();
1082 	curr = pkc->nxt_offset;
1083 	pkc->skb = skb;
1084 	end = (char *)pbd + pkc->kblk_size;
1085 
1086 	/* first try the current block */
1087 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1088 		prb_fill_curr_block(curr, pkc, pbd, len);
1089 		return (void *)curr;
1090 	}
1091 
1092 	/* Ok, close the current block */
1093 	prb_retire_current_block(pkc, po, 0);
1094 
1095 	/* Now, try to dispatch the next block */
1096 	curr = (char *)prb_dispatch_next_block(pkc, po);
1097 	if (curr) {
1098 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1099 		prb_fill_curr_block(curr, pkc, pbd, len);
1100 		return (void *)curr;
1101 	}
1102 
1103 	/*
1104 	 * No free blocks are available.user_space hasn't caught up yet.
1105 	 * Queue was just frozen and now this packet will get dropped.
1106 	 */
1107 	return NULL;
1108 }
1109 
1110 static void *packet_current_rx_frame(struct packet_sock *po,
1111 					    struct sk_buff *skb,
1112 					    int status, unsigned int len)
1113 {
1114 	char *curr = NULL;
1115 	switch (po->tp_version) {
1116 	case TPACKET_V1:
1117 	case TPACKET_V2:
1118 		curr = packet_lookup_frame(po, &po->rx_ring,
1119 					po->rx_ring.head, status);
1120 		return curr;
1121 	case TPACKET_V3:
1122 		return __packet_lookup_frame_in_block(po, skb, status, len);
1123 	default:
1124 		WARN(1, "TPACKET version not supported\n");
1125 		BUG();
1126 		return NULL;
1127 	}
1128 }
1129 
1130 static void *prb_lookup_block(struct packet_sock *po,
1131 				     struct packet_ring_buffer *rb,
1132 				     unsigned int idx,
1133 				     int status)
1134 {
1135 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1136 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1137 
1138 	if (status != BLOCK_STATUS(pbd))
1139 		return NULL;
1140 	return pbd;
1141 }
1142 
1143 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1144 {
1145 	unsigned int prev;
1146 	if (rb->prb_bdqc.kactive_blk_num)
1147 		prev = rb->prb_bdqc.kactive_blk_num-1;
1148 	else
1149 		prev = rb->prb_bdqc.knum_blocks-1;
1150 	return prev;
1151 }
1152 
1153 /* Assumes caller has held the rx_queue.lock */
1154 static void *__prb_previous_block(struct packet_sock *po,
1155 					 struct packet_ring_buffer *rb,
1156 					 int status)
1157 {
1158 	unsigned int previous = prb_previous_blk_num(rb);
1159 	return prb_lookup_block(po, rb, previous, status);
1160 }
1161 
1162 static void *packet_previous_rx_frame(struct packet_sock *po,
1163 					     struct packet_ring_buffer *rb,
1164 					     int status)
1165 {
1166 	if (po->tp_version <= TPACKET_V2)
1167 		return packet_previous_frame(po, rb, status);
1168 
1169 	return __prb_previous_block(po, rb, status);
1170 }
1171 
1172 static void packet_increment_rx_head(struct packet_sock *po,
1173 					    struct packet_ring_buffer *rb)
1174 {
1175 	switch (po->tp_version) {
1176 	case TPACKET_V1:
1177 	case TPACKET_V2:
1178 		return packet_increment_head(rb);
1179 	case TPACKET_V3:
1180 	default:
1181 		WARN(1, "TPACKET version not supported.\n");
1182 		BUG();
1183 		return;
1184 	}
1185 }
1186 
1187 static void *packet_previous_frame(struct packet_sock *po,
1188 		struct packet_ring_buffer *rb,
1189 		int status)
1190 {
1191 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1192 	return packet_lookup_frame(po, rb, previous, status);
1193 }
1194 
1195 static void packet_increment_head(struct packet_ring_buffer *buff)
1196 {
1197 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1198 }
1199 
1200 static void packet_inc_pending(struct packet_ring_buffer *rb)
1201 {
1202 	this_cpu_inc(*rb->pending_refcnt);
1203 }
1204 
1205 static void packet_dec_pending(struct packet_ring_buffer *rb)
1206 {
1207 	this_cpu_dec(*rb->pending_refcnt);
1208 }
1209 
1210 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1211 {
1212 	unsigned int refcnt = 0;
1213 	int cpu;
1214 
1215 	/* We don't use pending refcount in rx_ring. */
1216 	if (rb->pending_refcnt == NULL)
1217 		return 0;
1218 
1219 	for_each_possible_cpu(cpu)
1220 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1221 
1222 	return refcnt;
1223 }
1224 
1225 static int packet_alloc_pending(struct packet_sock *po)
1226 {
1227 	po->rx_ring.pending_refcnt = NULL;
1228 
1229 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1230 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1231 		return -ENOBUFS;
1232 
1233 	return 0;
1234 }
1235 
1236 static void packet_free_pending(struct packet_sock *po)
1237 {
1238 	free_percpu(po->tx_ring.pending_refcnt);
1239 }
1240 
1241 #define ROOM_POW_OFF	2
1242 #define ROOM_NONE	0x0
1243 #define ROOM_LOW	0x1
1244 #define ROOM_NORMAL	0x2
1245 
1246 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1247 {
1248 	int idx, len;
1249 
1250 	len = po->rx_ring.frame_max + 1;
1251 	idx = po->rx_ring.head;
1252 	if (pow_off)
1253 		idx += len >> pow_off;
1254 	if (idx >= len)
1255 		idx -= len;
1256 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1257 }
1258 
1259 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1260 {
1261 	int idx, len;
1262 
1263 	len = po->rx_ring.prb_bdqc.knum_blocks;
1264 	idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1265 	if (pow_off)
1266 		idx += len >> pow_off;
1267 	if (idx >= len)
1268 		idx -= len;
1269 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1270 }
1271 
1272 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1273 {
1274 	struct sock *sk = &po->sk;
1275 	int ret = ROOM_NONE;
1276 
1277 	if (po->prot_hook.func != tpacket_rcv) {
1278 		int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1279 					  - (skb ? skb->truesize : 0);
1280 		if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1281 			return ROOM_NORMAL;
1282 		else if (avail > 0)
1283 			return ROOM_LOW;
1284 		else
1285 			return ROOM_NONE;
1286 	}
1287 
1288 	if (po->tp_version == TPACKET_V3) {
1289 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1290 			ret = ROOM_NORMAL;
1291 		else if (__tpacket_v3_has_room(po, 0))
1292 			ret = ROOM_LOW;
1293 	} else {
1294 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1295 			ret = ROOM_NORMAL;
1296 		else if (__tpacket_has_room(po, 0))
1297 			ret = ROOM_LOW;
1298 	}
1299 
1300 	return ret;
1301 }
1302 
1303 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1304 {
1305 	int ret;
1306 	bool has_room;
1307 
1308 	spin_lock_bh(&po->sk.sk_receive_queue.lock);
1309 	ret = __packet_rcv_has_room(po, skb);
1310 	has_room = ret == ROOM_NORMAL;
1311 	if (po->pressure == has_room)
1312 		po->pressure = !has_room;
1313 	spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1314 
1315 	return ret;
1316 }
1317 
1318 static void packet_sock_destruct(struct sock *sk)
1319 {
1320 	skb_queue_purge(&sk->sk_error_queue);
1321 
1322 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1323 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1324 
1325 	if (!sock_flag(sk, SOCK_DEAD)) {
1326 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1327 		return;
1328 	}
1329 
1330 	sk_refcnt_debug_dec(sk);
1331 }
1332 
1333 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1334 {
1335 	u32 rxhash;
1336 	int i, count = 0;
1337 
1338 	rxhash = skb_get_hash(skb);
1339 	for (i = 0; i < ROLLOVER_HLEN; i++)
1340 		if (po->rollover->history[i] == rxhash)
1341 			count++;
1342 
1343 	po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1344 	return count > (ROLLOVER_HLEN >> 1);
1345 }
1346 
1347 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1348 				      struct sk_buff *skb,
1349 				      unsigned int num)
1350 {
1351 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1352 }
1353 
1354 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1355 				    struct sk_buff *skb,
1356 				    unsigned int num)
1357 {
1358 	unsigned int val = atomic_inc_return(&f->rr_cur);
1359 
1360 	return val % num;
1361 }
1362 
1363 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1364 				     struct sk_buff *skb,
1365 				     unsigned int num)
1366 {
1367 	return smp_processor_id() % num;
1368 }
1369 
1370 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1371 				     struct sk_buff *skb,
1372 				     unsigned int num)
1373 {
1374 	return prandom_u32_max(num);
1375 }
1376 
1377 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1378 					  struct sk_buff *skb,
1379 					  unsigned int idx, bool try_self,
1380 					  unsigned int num)
1381 {
1382 	struct packet_sock *po, *po_next, *po_skip = NULL;
1383 	unsigned int i, j, room = ROOM_NONE;
1384 
1385 	po = pkt_sk(f->arr[idx]);
1386 
1387 	if (try_self) {
1388 		room = packet_rcv_has_room(po, skb);
1389 		if (room == ROOM_NORMAL ||
1390 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1391 			return idx;
1392 		po_skip = po;
1393 	}
1394 
1395 	i = j = min_t(int, po->rollover->sock, num - 1);
1396 	do {
1397 		po_next = pkt_sk(f->arr[i]);
1398 		if (po_next != po_skip && !po_next->pressure &&
1399 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1400 			if (i != j)
1401 				po->rollover->sock = i;
1402 			atomic_long_inc(&po->rollover->num);
1403 			if (room == ROOM_LOW)
1404 				atomic_long_inc(&po->rollover->num_huge);
1405 			return i;
1406 		}
1407 
1408 		if (++i == num)
1409 			i = 0;
1410 	} while (i != j);
1411 
1412 	atomic_long_inc(&po->rollover->num_failed);
1413 	return idx;
1414 }
1415 
1416 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1417 				    struct sk_buff *skb,
1418 				    unsigned int num)
1419 {
1420 	return skb_get_queue_mapping(skb) % num;
1421 }
1422 
1423 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1424 				     struct sk_buff *skb,
1425 				     unsigned int num)
1426 {
1427 	struct bpf_prog *prog;
1428 	unsigned int ret = 0;
1429 
1430 	rcu_read_lock();
1431 	prog = rcu_dereference(f->bpf_prog);
1432 	if (prog)
1433 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1434 	rcu_read_unlock();
1435 
1436 	return ret;
1437 }
1438 
1439 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1440 {
1441 	return f->flags & (flag >> 8);
1442 }
1443 
1444 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1445 			     struct packet_type *pt, struct net_device *orig_dev)
1446 {
1447 	struct packet_fanout *f = pt->af_packet_priv;
1448 	unsigned int num = READ_ONCE(f->num_members);
1449 	struct net *net = read_pnet(&f->net);
1450 	struct packet_sock *po;
1451 	unsigned int idx;
1452 
1453 	if (!net_eq(dev_net(dev), net) || !num) {
1454 		kfree_skb(skb);
1455 		return 0;
1456 	}
1457 
1458 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1459 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1460 		if (!skb)
1461 			return 0;
1462 	}
1463 	switch (f->type) {
1464 	case PACKET_FANOUT_HASH:
1465 	default:
1466 		idx = fanout_demux_hash(f, skb, num);
1467 		break;
1468 	case PACKET_FANOUT_LB:
1469 		idx = fanout_demux_lb(f, skb, num);
1470 		break;
1471 	case PACKET_FANOUT_CPU:
1472 		idx = fanout_demux_cpu(f, skb, num);
1473 		break;
1474 	case PACKET_FANOUT_RND:
1475 		idx = fanout_demux_rnd(f, skb, num);
1476 		break;
1477 	case PACKET_FANOUT_QM:
1478 		idx = fanout_demux_qm(f, skb, num);
1479 		break;
1480 	case PACKET_FANOUT_ROLLOVER:
1481 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1482 		break;
1483 	case PACKET_FANOUT_CBPF:
1484 	case PACKET_FANOUT_EBPF:
1485 		idx = fanout_demux_bpf(f, skb, num);
1486 		break;
1487 	}
1488 
1489 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1490 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1491 
1492 	po = pkt_sk(f->arr[idx]);
1493 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1494 }
1495 
1496 DEFINE_MUTEX(fanout_mutex);
1497 EXPORT_SYMBOL_GPL(fanout_mutex);
1498 static LIST_HEAD(fanout_list);
1499 static u16 fanout_next_id;
1500 
1501 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1502 {
1503 	struct packet_fanout *f = po->fanout;
1504 
1505 	spin_lock(&f->lock);
1506 	f->arr[f->num_members] = sk;
1507 	smp_wmb();
1508 	f->num_members++;
1509 	if (f->num_members == 1)
1510 		dev_add_pack(&f->prot_hook);
1511 	spin_unlock(&f->lock);
1512 }
1513 
1514 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1515 {
1516 	struct packet_fanout *f = po->fanout;
1517 	int i;
1518 
1519 	spin_lock(&f->lock);
1520 	for (i = 0; i < f->num_members; i++) {
1521 		if (f->arr[i] == sk)
1522 			break;
1523 	}
1524 	BUG_ON(i >= f->num_members);
1525 	f->arr[i] = f->arr[f->num_members - 1];
1526 	f->num_members--;
1527 	if (f->num_members == 0)
1528 		__dev_remove_pack(&f->prot_hook);
1529 	spin_unlock(&f->lock);
1530 }
1531 
1532 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1533 {
1534 	if (sk->sk_family != PF_PACKET)
1535 		return false;
1536 
1537 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1538 }
1539 
1540 static void fanout_init_data(struct packet_fanout *f)
1541 {
1542 	switch (f->type) {
1543 	case PACKET_FANOUT_LB:
1544 		atomic_set(&f->rr_cur, 0);
1545 		break;
1546 	case PACKET_FANOUT_CBPF:
1547 	case PACKET_FANOUT_EBPF:
1548 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1549 		break;
1550 	}
1551 }
1552 
1553 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1554 {
1555 	struct bpf_prog *old;
1556 
1557 	spin_lock(&f->lock);
1558 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1559 	rcu_assign_pointer(f->bpf_prog, new);
1560 	spin_unlock(&f->lock);
1561 
1562 	if (old) {
1563 		synchronize_net();
1564 		bpf_prog_destroy(old);
1565 	}
1566 }
1567 
1568 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1569 				unsigned int len)
1570 {
1571 	struct bpf_prog *new;
1572 	struct sock_fprog fprog;
1573 	int ret;
1574 
1575 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1576 		return -EPERM;
1577 	if (len != sizeof(fprog))
1578 		return -EINVAL;
1579 	if (copy_from_user(&fprog, data, len))
1580 		return -EFAULT;
1581 
1582 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1583 	if (ret)
1584 		return ret;
1585 
1586 	__fanout_set_data_bpf(po->fanout, new);
1587 	return 0;
1588 }
1589 
1590 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1591 				unsigned int len)
1592 {
1593 	struct bpf_prog *new;
1594 	u32 fd;
1595 
1596 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1597 		return -EPERM;
1598 	if (len != sizeof(fd))
1599 		return -EINVAL;
1600 	if (copy_from_user(&fd, data, len))
1601 		return -EFAULT;
1602 
1603 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1604 	if (IS_ERR(new))
1605 		return PTR_ERR(new);
1606 
1607 	__fanout_set_data_bpf(po->fanout, new);
1608 	return 0;
1609 }
1610 
1611 static int fanout_set_data(struct packet_sock *po, char __user *data,
1612 			   unsigned int len)
1613 {
1614 	switch (po->fanout->type) {
1615 	case PACKET_FANOUT_CBPF:
1616 		return fanout_set_data_cbpf(po, data, len);
1617 	case PACKET_FANOUT_EBPF:
1618 		return fanout_set_data_ebpf(po, data, len);
1619 	default:
1620 		return -EINVAL;
1621 	};
1622 }
1623 
1624 static void fanout_release_data(struct packet_fanout *f)
1625 {
1626 	switch (f->type) {
1627 	case PACKET_FANOUT_CBPF:
1628 	case PACKET_FANOUT_EBPF:
1629 		__fanout_set_data_bpf(f, NULL);
1630 	};
1631 }
1632 
1633 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1634 {
1635 	struct packet_fanout *f;
1636 
1637 	list_for_each_entry(f, &fanout_list, list) {
1638 		if (f->id == candidate_id &&
1639 		    read_pnet(&f->net) == sock_net(sk)) {
1640 			return false;
1641 		}
1642 	}
1643 	return true;
1644 }
1645 
1646 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1647 {
1648 	u16 id = fanout_next_id;
1649 
1650 	do {
1651 		if (__fanout_id_is_free(sk, id)) {
1652 			*new_id = id;
1653 			fanout_next_id = id + 1;
1654 			return true;
1655 		}
1656 
1657 		id++;
1658 	} while (id != fanout_next_id);
1659 
1660 	return false;
1661 }
1662 
1663 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1664 {
1665 	struct packet_rollover *rollover = NULL;
1666 	struct packet_sock *po = pkt_sk(sk);
1667 	struct packet_fanout *f, *match;
1668 	u8 type = type_flags & 0xff;
1669 	u8 flags = type_flags >> 8;
1670 	int err;
1671 
1672 	switch (type) {
1673 	case PACKET_FANOUT_ROLLOVER:
1674 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1675 			return -EINVAL;
1676 	case PACKET_FANOUT_HASH:
1677 	case PACKET_FANOUT_LB:
1678 	case PACKET_FANOUT_CPU:
1679 	case PACKET_FANOUT_RND:
1680 	case PACKET_FANOUT_QM:
1681 	case PACKET_FANOUT_CBPF:
1682 	case PACKET_FANOUT_EBPF:
1683 		break;
1684 	default:
1685 		return -EINVAL;
1686 	}
1687 
1688 	mutex_lock(&fanout_mutex);
1689 
1690 	err = -EINVAL;
1691 	if (!po->running)
1692 		goto out;
1693 
1694 	err = -EALREADY;
1695 	if (po->fanout)
1696 		goto out;
1697 
1698 	if (type == PACKET_FANOUT_ROLLOVER ||
1699 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1700 		err = -ENOMEM;
1701 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1702 		if (!rollover)
1703 			goto out;
1704 		atomic_long_set(&rollover->num, 0);
1705 		atomic_long_set(&rollover->num_huge, 0);
1706 		atomic_long_set(&rollover->num_failed, 0);
1707 		po->rollover = rollover;
1708 	}
1709 
1710 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1711 		if (id != 0) {
1712 			err = -EINVAL;
1713 			goto out;
1714 		}
1715 		if (!fanout_find_new_id(sk, &id)) {
1716 			err = -ENOMEM;
1717 			goto out;
1718 		}
1719 		/* ephemeral flag for the first socket in the group: drop it */
1720 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1721 	}
1722 
1723 	match = NULL;
1724 	list_for_each_entry(f, &fanout_list, list) {
1725 		if (f->id == id &&
1726 		    read_pnet(&f->net) == sock_net(sk)) {
1727 			match = f;
1728 			break;
1729 		}
1730 	}
1731 	err = -EINVAL;
1732 	if (match && match->flags != flags)
1733 		goto out;
1734 	if (!match) {
1735 		err = -ENOMEM;
1736 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1737 		if (!match)
1738 			goto out;
1739 		write_pnet(&match->net, sock_net(sk));
1740 		match->id = id;
1741 		match->type = type;
1742 		match->flags = flags;
1743 		INIT_LIST_HEAD(&match->list);
1744 		spin_lock_init(&match->lock);
1745 		atomic_set(&match->sk_ref, 0);
1746 		fanout_init_data(match);
1747 		match->prot_hook.type = po->prot_hook.type;
1748 		match->prot_hook.dev = po->prot_hook.dev;
1749 		match->prot_hook.func = packet_rcv_fanout;
1750 		match->prot_hook.af_packet_priv = match;
1751 		match->prot_hook.id_match = match_fanout_group;
1752 		list_add(&match->list, &fanout_list);
1753 	}
1754 	err = -EINVAL;
1755 	if (match->type == type &&
1756 	    match->prot_hook.type == po->prot_hook.type &&
1757 	    match->prot_hook.dev == po->prot_hook.dev) {
1758 		err = -ENOSPC;
1759 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1760 			__dev_remove_pack(&po->prot_hook);
1761 			po->fanout = match;
1762 			atomic_inc(&match->sk_ref);
1763 			__fanout_link(sk, po);
1764 			err = 0;
1765 		}
1766 	}
1767 out:
1768 	if (err && rollover) {
1769 		kfree(rollover);
1770 		po->rollover = NULL;
1771 	}
1772 	mutex_unlock(&fanout_mutex);
1773 	return err;
1774 }
1775 
1776 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1777  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1778  * It is the responsibility of the caller to call fanout_release_data() and
1779  * free the returned packet_fanout (after synchronize_net())
1780  */
1781 static struct packet_fanout *fanout_release(struct sock *sk)
1782 {
1783 	struct packet_sock *po = pkt_sk(sk);
1784 	struct packet_fanout *f;
1785 
1786 	mutex_lock(&fanout_mutex);
1787 	f = po->fanout;
1788 	if (f) {
1789 		po->fanout = NULL;
1790 
1791 		if (atomic_dec_and_test(&f->sk_ref))
1792 			list_del(&f->list);
1793 		else
1794 			f = NULL;
1795 
1796 		if (po->rollover)
1797 			kfree_rcu(po->rollover, rcu);
1798 	}
1799 	mutex_unlock(&fanout_mutex);
1800 
1801 	return f;
1802 }
1803 
1804 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1805 					  struct sk_buff *skb)
1806 {
1807 	/* Earlier code assumed this would be a VLAN pkt, double-check
1808 	 * this now that we have the actual packet in hand. We can only
1809 	 * do this check on Ethernet devices.
1810 	 */
1811 	if (unlikely(dev->type != ARPHRD_ETHER))
1812 		return false;
1813 
1814 	skb_reset_mac_header(skb);
1815 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1816 }
1817 
1818 static const struct proto_ops packet_ops;
1819 
1820 static const struct proto_ops packet_ops_spkt;
1821 
1822 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1823 			   struct packet_type *pt, struct net_device *orig_dev)
1824 {
1825 	struct sock *sk;
1826 	struct sockaddr_pkt *spkt;
1827 
1828 	/*
1829 	 *	When we registered the protocol we saved the socket in the data
1830 	 *	field for just this event.
1831 	 */
1832 
1833 	sk = pt->af_packet_priv;
1834 
1835 	/*
1836 	 *	Yank back the headers [hope the device set this
1837 	 *	right or kerboom...]
1838 	 *
1839 	 *	Incoming packets have ll header pulled,
1840 	 *	push it back.
1841 	 *
1842 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1843 	 *	so that this procedure is noop.
1844 	 */
1845 
1846 	if (skb->pkt_type == PACKET_LOOPBACK)
1847 		goto out;
1848 
1849 	if (!net_eq(dev_net(dev), sock_net(sk)))
1850 		goto out;
1851 
1852 	skb = skb_share_check(skb, GFP_ATOMIC);
1853 	if (skb == NULL)
1854 		goto oom;
1855 
1856 	/* drop any routing info */
1857 	skb_dst_drop(skb);
1858 
1859 	/* drop conntrack reference */
1860 	nf_reset(skb);
1861 
1862 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1863 
1864 	skb_push(skb, skb->data - skb_mac_header(skb));
1865 
1866 	/*
1867 	 *	The SOCK_PACKET socket receives _all_ frames.
1868 	 */
1869 
1870 	spkt->spkt_family = dev->type;
1871 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1872 	spkt->spkt_protocol = skb->protocol;
1873 
1874 	/*
1875 	 *	Charge the memory to the socket. This is done specifically
1876 	 *	to prevent sockets using all the memory up.
1877 	 */
1878 
1879 	if (sock_queue_rcv_skb(sk, skb) == 0)
1880 		return 0;
1881 
1882 out:
1883 	kfree_skb(skb);
1884 oom:
1885 	return 0;
1886 }
1887 
1888 
1889 /*
1890  *	Output a raw packet to a device layer. This bypasses all the other
1891  *	protocol layers and you must therefore supply it with a complete frame
1892  */
1893 
1894 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1895 			       size_t len)
1896 {
1897 	struct sock *sk = sock->sk;
1898 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1899 	struct sk_buff *skb = NULL;
1900 	struct net_device *dev;
1901 	struct sockcm_cookie sockc;
1902 	__be16 proto = 0;
1903 	int err;
1904 	int extra_len = 0;
1905 
1906 	/*
1907 	 *	Get and verify the address.
1908 	 */
1909 
1910 	if (saddr) {
1911 		if (msg->msg_namelen < sizeof(struct sockaddr))
1912 			return -EINVAL;
1913 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1914 			proto = saddr->spkt_protocol;
1915 	} else
1916 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1917 
1918 	/*
1919 	 *	Find the device first to size check it
1920 	 */
1921 
1922 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1923 retry:
1924 	rcu_read_lock();
1925 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1926 	err = -ENODEV;
1927 	if (dev == NULL)
1928 		goto out_unlock;
1929 
1930 	err = -ENETDOWN;
1931 	if (!(dev->flags & IFF_UP))
1932 		goto out_unlock;
1933 
1934 	/*
1935 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1936 	 * raw protocol and you must do your own fragmentation at this level.
1937 	 */
1938 
1939 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1940 		if (!netif_supports_nofcs(dev)) {
1941 			err = -EPROTONOSUPPORT;
1942 			goto out_unlock;
1943 		}
1944 		extra_len = 4; /* We're doing our own CRC */
1945 	}
1946 
1947 	err = -EMSGSIZE;
1948 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1949 		goto out_unlock;
1950 
1951 	if (!skb) {
1952 		size_t reserved = LL_RESERVED_SPACE(dev);
1953 		int tlen = dev->needed_tailroom;
1954 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1955 
1956 		rcu_read_unlock();
1957 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1958 		if (skb == NULL)
1959 			return -ENOBUFS;
1960 		/* FIXME: Save some space for broken drivers that write a hard
1961 		 * header at transmission time by themselves. PPP is the notable
1962 		 * one here. This should really be fixed at the driver level.
1963 		 */
1964 		skb_reserve(skb, reserved);
1965 		skb_reset_network_header(skb);
1966 
1967 		/* Try to align data part correctly */
1968 		if (hhlen) {
1969 			skb->data -= hhlen;
1970 			skb->tail -= hhlen;
1971 			if (len < hhlen)
1972 				skb_reset_network_header(skb);
1973 		}
1974 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1975 		if (err)
1976 			goto out_free;
1977 		goto retry;
1978 	}
1979 
1980 	if (!dev_validate_header(dev, skb->data, len)) {
1981 		err = -EINVAL;
1982 		goto out_unlock;
1983 	}
1984 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1985 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1986 		err = -EMSGSIZE;
1987 		goto out_unlock;
1988 	}
1989 
1990 	sockc.tsflags = sk->sk_tsflags;
1991 	if (msg->msg_controllen) {
1992 		err = sock_cmsg_send(sk, msg, &sockc);
1993 		if (unlikely(err))
1994 			goto out_unlock;
1995 	}
1996 
1997 	skb->protocol = proto;
1998 	skb->dev = dev;
1999 	skb->priority = sk->sk_priority;
2000 	skb->mark = sk->sk_mark;
2001 
2002 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2003 
2004 	if (unlikely(extra_len == 4))
2005 		skb->no_fcs = 1;
2006 
2007 	skb_probe_transport_header(skb, 0);
2008 
2009 	dev_queue_xmit(skb);
2010 	rcu_read_unlock();
2011 	return len;
2012 
2013 out_unlock:
2014 	rcu_read_unlock();
2015 out_free:
2016 	kfree_skb(skb);
2017 	return err;
2018 }
2019 
2020 static unsigned int run_filter(struct sk_buff *skb,
2021 			       const struct sock *sk,
2022 			       unsigned int res)
2023 {
2024 	struct sk_filter *filter;
2025 
2026 	rcu_read_lock();
2027 	filter = rcu_dereference(sk->sk_filter);
2028 	if (filter != NULL)
2029 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2030 	rcu_read_unlock();
2031 
2032 	return res;
2033 }
2034 
2035 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2036 			   size_t *len)
2037 {
2038 	struct virtio_net_hdr vnet_hdr;
2039 
2040 	if (*len < sizeof(vnet_hdr))
2041 		return -EINVAL;
2042 	*len -= sizeof(vnet_hdr);
2043 
2044 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
2045 		return -EINVAL;
2046 
2047 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2048 }
2049 
2050 /*
2051  * This function makes lazy skb cloning in hope that most of packets
2052  * are discarded by BPF.
2053  *
2054  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2055  * and skb->cb are mangled. It works because (and until) packets
2056  * falling here are owned by current CPU. Output packets are cloned
2057  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2058  * sequencially, so that if we return skb to original state on exit,
2059  * we will not harm anyone.
2060  */
2061 
2062 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2063 		      struct packet_type *pt, struct net_device *orig_dev)
2064 {
2065 	struct sock *sk;
2066 	struct sockaddr_ll *sll;
2067 	struct packet_sock *po;
2068 	u8 *skb_head = skb->data;
2069 	int skb_len = skb->len;
2070 	unsigned int snaplen, res;
2071 	bool is_drop_n_account = false;
2072 
2073 	if (skb->pkt_type == PACKET_LOOPBACK)
2074 		goto drop;
2075 
2076 	sk = pt->af_packet_priv;
2077 	po = pkt_sk(sk);
2078 
2079 	if (!net_eq(dev_net(dev), sock_net(sk)))
2080 		goto drop;
2081 
2082 	skb->dev = dev;
2083 
2084 	if (dev->header_ops) {
2085 		/* The device has an explicit notion of ll header,
2086 		 * exported to higher levels.
2087 		 *
2088 		 * Otherwise, the device hides details of its frame
2089 		 * structure, so that corresponding packet head is
2090 		 * never delivered to user.
2091 		 */
2092 		if (sk->sk_type != SOCK_DGRAM)
2093 			skb_push(skb, skb->data - skb_mac_header(skb));
2094 		else if (skb->pkt_type == PACKET_OUTGOING) {
2095 			/* Special case: outgoing packets have ll header at head */
2096 			skb_pull(skb, skb_network_offset(skb));
2097 		}
2098 	}
2099 
2100 	snaplen = skb->len;
2101 
2102 	res = run_filter(skb, sk, snaplen);
2103 	if (!res)
2104 		goto drop_n_restore;
2105 	if (snaplen > res)
2106 		snaplen = res;
2107 
2108 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2109 		goto drop_n_acct;
2110 
2111 	if (skb_shared(skb)) {
2112 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2113 		if (nskb == NULL)
2114 			goto drop_n_acct;
2115 
2116 		if (skb_head != skb->data) {
2117 			skb->data = skb_head;
2118 			skb->len = skb_len;
2119 		}
2120 		consume_skb(skb);
2121 		skb = nskb;
2122 	}
2123 
2124 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2125 
2126 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2127 	sll->sll_hatype = dev->type;
2128 	sll->sll_pkttype = skb->pkt_type;
2129 	if (unlikely(po->origdev))
2130 		sll->sll_ifindex = orig_dev->ifindex;
2131 	else
2132 		sll->sll_ifindex = dev->ifindex;
2133 
2134 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2135 
2136 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2137 	 * Use their space for storing the original skb length.
2138 	 */
2139 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2140 
2141 	if (pskb_trim(skb, snaplen))
2142 		goto drop_n_acct;
2143 
2144 	skb_set_owner_r(skb, sk);
2145 	skb->dev = NULL;
2146 	skb_dst_drop(skb);
2147 
2148 	/* drop conntrack reference */
2149 	nf_reset(skb);
2150 
2151 	spin_lock(&sk->sk_receive_queue.lock);
2152 	po->stats.stats1.tp_packets++;
2153 	sock_skb_set_dropcount(sk, skb);
2154 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2155 	spin_unlock(&sk->sk_receive_queue.lock);
2156 	sk->sk_data_ready(sk);
2157 	return 0;
2158 
2159 drop_n_acct:
2160 	is_drop_n_account = true;
2161 	spin_lock(&sk->sk_receive_queue.lock);
2162 	po->stats.stats1.tp_drops++;
2163 	atomic_inc(&sk->sk_drops);
2164 	spin_unlock(&sk->sk_receive_queue.lock);
2165 
2166 drop_n_restore:
2167 	if (skb_head != skb->data && skb_shared(skb)) {
2168 		skb->data = skb_head;
2169 		skb->len = skb_len;
2170 	}
2171 drop:
2172 	if (!is_drop_n_account)
2173 		consume_skb(skb);
2174 	else
2175 		kfree_skb(skb);
2176 	return 0;
2177 }
2178 
2179 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2180 		       struct packet_type *pt, struct net_device *orig_dev)
2181 {
2182 	struct sock *sk;
2183 	struct packet_sock *po;
2184 	struct sockaddr_ll *sll;
2185 	union tpacket_uhdr h;
2186 	u8 *skb_head = skb->data;
2187 	int skb_len = skb->len;
2188 	unsigned int snaplen, res;
2189 	unsigned long status = TP_STATUS_USER;
2190 	unsigned short macoff, netoff, hdrlen;
2191 	struct sk_buff *copy_skb = NULL;
2192 	struct timespec ts;
2193 	__u32 ts_status;
2194 	bool is_drop_n_account = false;
2195 
2196 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2197 	 * We may add members to them until current aligned size without forcing
2198 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2199 	 */
2200 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2201 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2202 
2203 	if (skb->pkt_type == PACKET_LOOPBACK)
2204 		goto drop;
2205 
2206 	sk = pt->af_packet_priv;
2207 	po = pkt_sk(sk);
2208 
2209 	if (!net_eq(dev_net(dev), sock_net(sk)))
2210 		goto drop;
2211 
2212 	if (dev->header_ops) {
2213 		if (sk->sk_type != SOCK_DGRAM)
2214 			skb_push(skb, skb->data - skb_mac_header(skb));
2215 		else if (skb->pkt_type == PACKET_OUTGOING) {
2216 			/* Special case: outgoing packets have ll header at head */
2217 			skb_pull(skb, skb_network_offset(skb));
2218 		}
2219 	}
2220 
2221 	snaplen = skb->len;
2222 
2223 	res = run_filter(skb, sk, snaplen);
2224 	if (!res)
2225 		goto drop_n_restore;
2226 
2227 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2228 		status |= TP_STATUS_CSUMNOTREADY;
2229 	else if (skb->pkt_type != PACKET_OUTGOING &&
2230 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2231 		  skb_csum_unnecessary(skb)))
2232 		status |= TP_STATUS_CSUM_VALID;
2233 
2234 	if (snaplen > res)
2235 		snaplen = res;
2236 
2237 	if (sk->sk_type == SOCK_DGRAM) {
2238 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2239 				  po->tp_reserve;
2240 	} else {
2241 		unsigned int maclen = skb_network_offset(skb);
2242 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2243 				       (maclen < 16 ? 16 : maclen)) +
2244 				       po->tp_reserve;
2245 		if (po->has_vnet_hdr)
2246 			netoff += sizeof(struct virtio_net_hdr);
2247 		macoff = netoff - maclen;
2248 	}
2249 	if (po->tp_version <= TPACKET_V2) {
2250 		if (macoff + snaplen > po->rx_ring.frame_size) {
2251 			if (po->copy_thresh &&
2252 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2253 				if (skb_shared(skb)) {
2254 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2255 				} else {
2256 					copy_skb = skb_get(skb);
2257 					skb_head = skb->data;
2258 				}
2259 				if (copy_skb)
2260 					skb_set_owner_r(copy_skb, sk);
2261 			}
2262 			snaplen = po->rx_ring.frame_size - macoff;
2263 			if ((int)snaplen < 0)
2264 				snaplen = 0;
2265 		}
2266 	} else if (unlikely(macoff + snaplen >
2267 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2268 		u32 nval;
2269 
2270 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2271 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2272 			    snaplen, nval, macoff);
2273 		snaplen = nval;
2274 		if (unlikely((int)snaplen < 0)) {
2275 			snaplen = 0;
2276 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2277 		}
2278 	}
2279 	spin_lock(&sk->sk_receive_queue.lock);
2280 	h.raw = packet_current_rx_frame(po, skb,
2281 					TP_STATUS_KERNEL, (macoff+snaplen));
2282 	if (!h.raw)
2283 		goto drop_n_account;
2284 	if (po->tp_version <= TPACKET_V2) {
2285 		packet_increment_rx_head(po, &po->rx_ring);
2286 	/*
2287 	 * LOSING will be reported till you read the stats,
2288 	 * because it's COR - Clear On Read.
2289 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2290 	 * at packet level.
2291 	 */
2292 		if (po->stats.stats1.tp_drops)
2293 			status |= TP_STATUS_LOSING;
2294 	}
2295 	po->stats.stats1.tp_packets++;
2296 	if (copy_skb) {
2297 		status |= TP_STATUS_COPY;
2298 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2299 	}
2300 	spin_unlock(&sk->sk_receive_queue.lock);
2301 
2302 	if (po->has_vnet_hdr) {
2303 		if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2304 					    sizeof(struct virtio_net_hdr),
2305 					    vio_le(), true)) {
2306 			spin_lock(&sk->sk_receive_queue.lock);
2307 			goto drop_n_account;
2308 		}
2309 	}
2310 
2311 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2312 
2313 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2314 		getnstimeofday(&ts);
2315 
2316 	status |= ts_status;
2317 
2318 	switch (po->tp_version) {
2319 	case TPACKET_V1:
2320 		h.h1->tp_len = skb->len;
2321 		h.h1->tp_snaplen = snaplen;
2322 		h.h1->tp_mac = macoff;
2323 		h.h1->tp_net = netoff;
2324 		h.h1->tp_sec = ts.tv_sec;
2325 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2326 		hdrlen = sizeof(*h.h1);
2327 		break;
2328 	case TPACKET_V2:
2329 		h.h2->tp_len = skb->len;
2330 		h.h2->tp_snaplen = snaplen;
2331 		h.h2->tp_mac = macoff;
2332 		h.h2->tp_net = netoff;
2333 		h.h2->tp_sec = ts.tv_sec;
2334 		h.h2->tp_nsec = ts.tv_nsec;
2335 		if (skb_vlan_tag_present(skb)) {
2336 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2337 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2338 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2339 		} else {
2340 			h.h2->tp_vlan_tci = 0;
2341 			h.h2->tp_vlan_tpid = 0;
2342 		}
2343 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2344 		hdrlen = sizeof(*h.h2);
2345 		break;
2346 	case TPACKET_V3:
2347 		/* tp_nxt_offset,vlan are already populated above.
2348 		 * So DONT clear those fields here
2349 		 */
2350 		h.h3->tp_status |= status;
2351 		h.h3->tp_len = skb->len;
2352 		h.h3->tp_snaplen = snaplen;
2353 		h.h3->tp_mac = macoff;
2354 		h.h3->tp_net = netoff;
2355 		h.h3->tp_sec  = ts.tv_sec;
2356 		h.h3->tp_nsec = ts.tv_nsec;
2357 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2358 		hdrlen = sizeof(*h.h3);
2359 		break;
2360 	default:
2361 		BUG();
2362 	}
2363 
2364 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2365 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2366 	sll->sll_family = AF_PACKET;
2367 	sll->sll_hatype = dev->type;
2368 	sll->sll_protocol = skb->protocol;
2369 	sll->sll_pkttype = skb->pkt_type;
2370 	if (unlikely(po->origdev))
2371 		sll->sll_ifindex = orig_dev->ifindex;
2372 	else
2373 		sll->sll_ifindex = dev->ifindex;
2374 
2375 	smp_mb();
2376 
2377 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2378 	if (po->tp_version <= TPACKET_V2) {
2379 		u8 *start, *end;
2380 
2381 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2382 					macoff + snaplen);
2383 
2384 		for (start = h.raw; start < end; start += PAGE_SIZE)
2385 			flush_dcache_page(pgv_to_page(start));
2386 	}
2387 	smp_wmb();
2388 #endif
2389 
2390 	if (po->tp_version <= TPACKET_V2) {
2391 		__packet_set_status(po, h.raw, status);
2392 		sk->sk_data_ready(sk);
2393 	} else {
2394 		prb_clear_blk_fill_status(&po->rx_ring);
2395 	}
2396 
2397 drop_n_restore:
2398 	if (skb_head != skb->data && skb_shared(skb)) {
2399 		skb->data = skb_head;
2400 		skb->len = skb_len;
2401 	}
2402 drop:
2403 	if (!is_drop_n_account)
2404 		consume_skb(skb);
2405 	else
2406 		kfree_skb(skb);
2407 	return 0;
2408 
2409 drop_n_account:
2410 	is_drop_n_account = true;
2411 	po->stats.stats1.tp_drops++;
2412 	spin_unlock(&sk->sk_receive_queue.lock);
2413 
2414 	sk->sk_data_ready(sk);
2415 	kfree_skb(copy_skb);
2416 	goto drop_n_restore;
2417 }
2418 
2419 static void tpacket_destruct_skb(struct sk_buff *skb)
2420 {
2421 	struct packet_sock *po = pkt_sk(skb->sk);
2422 
2423 	if (likely(po->tx_ring.pg_vec)) {
2424 		void *ph;
2425 		__u32 ts;
2426 
2427 		ph = skb_shinfo(skb)->destructor_arg;
2428 		packet_dec_pending(&po->tx_ring);
2429 
2430 		ts = __packet_set_timestamp(po, ph, skb);
2431 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2432 	}
2433 
2434 	sock_wfree(skb);
2435 }
2436 
2437 static void tpacket_set_protocol(const struct net_device *dev,
2438 				 struct sk_buff *skb)
2439 {
2440 	if (dev->type == ARPHRD_ETHER) {
2441 		skb_reset_mac_header(skb);
2442 		skb->protocol = eth_hdr(skb)->h_proto;
2443 	}
2444 }
2445 
2446 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2447 {
2448 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2449 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2450 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2451 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2452 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2453 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2454 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2455 
2456 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2457 		return -EINVAL;
2458 
2459 	return 0;
2460 }
2461 
2462 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2463 				 struct virtio_net_hdr *vnet_hdr)
2464 {
2465 	if (*len < sizeof(*vnet_hdr))
2466 		return -EINVAL;
2467 	*len -= sizeof(*vnet_hdr);
2468 
2469 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2470 		return -EFAULT;
2471 
2472 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2473 }
2474 
2475 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2476 		void *frame, struct net_device *dev, void *data, int tp_len,
2477 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2478 		const struct sockcm_cookie *sockc)
2479 {
2480 	union tpacket_uhdr ph;
2481 	int to_write, offset, len, nr_frags, len_max;
2482 	struct socket *sock = po->sk.sk_socket;
2483 	struct page *page;
2484 	int err;
2485 
2486 	ph.raw = frame;
2487 
2488 	skb->protocol = proto;
2489 	skb->dev = dev;
2490 	skb->priority = po->sk.sk_priority;
2491 	skb->mark = po->sk.sk_mark;
2492 	sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2493 	skb_shinfo(skb)->destructor_arg = ph.raw;
2494 
2495 	skb_reserve(skb, hlen);
2496 	skb_reset_network_header(skb);
2497 
2498 	to_write = tp_len;
2499 
2500 	if (sock->type == SOCK_DGRAM) {
2501 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2502 				NULL, tp_len);
2503 		if (unlikely(err < 0))
2504 			return -EINVAL;
2505 	} else if (copylen) {
2506 		int hdrlen = min_t(int, copylen, tp_len);
2507 
2508 		skb_push(skb, dev->hard_header_len);
2509 		skb_put(skb, copylen - dev->hard_header_len);
2510 		err = skb_store_bits(skb, 0, data, hdrlen);
2511 		if (unlikely(err))
2512 			return err;
2513 		if (!dev_validate_header(dev, skb->data, hdrlen))
2514 			return -EINVAL;
2515 		if (!skb->protocol)
2516 			tpacket_set_protocol(dev, skb);
2517 
2518 		data += hdrlen;
2519 		to_write -= hdrlen;
2520 	}
2521 
2522 	offset = offset_in_page(data);
2523 	len_max = PAGE_SIZE - offset;
2524 	len = ((to_write > len_max) ? len_max : to_write);
2525 
2526 	skb->data_len = to_write;
2527 	skb->len += to_write;
2528 	skb->truesize += to_write;
2529 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2530 
2531 	while (likely(to_write)) {
2532 		nr_frags = skb_shinfo(skb)->nr_frags;
2533 
2534 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2535 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2536 			       MAX_SKB_FRAGS);
2537 			return -EFAULT;
2538 		}
2539 
2540 		page = pgv_to_page(data);
2541 		data += len;
2542 		flush_dcache_page(page);
2543 		get_page(page);
2544 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2545 		to_write -= len;
2546 		offset = 0;
2547 		len_max = PAGE_SIZE;
2548 		len = ((to_write > len_max) ? len_max : to_write);
2549 	}
2550 
2551 	skb_probe_transport_header(skb, 0);
2552 
2553 	return tp_len;
2554 }
2555 
2556 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2557 				int size_max, void **data)
2558 {
2559 	union tpacket_uhdr ph;
2560 	int tp_len, off;
2561 
2562 	ph.raw = frame;
2563 
2564 	switch (po->tp_version) {
2565 	case TPACKET_V3:
2566 		if (ph.h3->tp_next_offset != 0) {
2567 			pr_warn_once("variable sized slot not supported");
2568 			return -EINVAL;
2569 		}
2570 		tp_len = ph.h3->tp_len;
2571 		break;
2572 	case TPACKET_V2:
2573 		tp_len = ph.h2->tp_len;
2574 		break;
2575 	default:
2576 		tp_len = ph.h1->tp_len;
2577 		break;
2578 	}
2579 	if (unlikely(tp_len > size_max)) {
2580 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2581 		return -EMSGSIZE;
2582 	}
2583 
2584 	if (unlikely(po->tp_tx_has_off)) {
2585 		int off_min, off_max;
2586 
2587 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2588 		off_max = po->tx_ring.frame_size - tp_len;
2589 		if (po->sk.sk_type == SOCK_DGRAM) {
2590 			switch (po->tp_version) {
2591 			case TPACKET_V3:
2592 				off = ph.h3->tp_net;
2593 				break;
2594 			case TPACKET_V2:
2595 				off = ph.h2->tp_net;
2596 				break;
2597 			default:
2598 				off = ph.h1->tp_net;
2599 				break;
2600 			}
2601 		} else {
2602 			switch (po->tp_version) {
2603 			case TPACKET_V3:
2604 				off = ph.h3->tp_mac;
2605 				break;
2606 			case TPACKET_V2:
2607 				off = ph.h2->tp_mac;
2608 				break;
2609 			default:
2610 				off = ph.h1->tp_mac;
2611 				break;
2612 			}
2613 		}
2614 		if (unlikely((off < off_min) || (off_max < off)))
2615 			return -EINVAL;
2616 	} else {
2617 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2618 	}
2619 
2620 	*data = frame + off;
2621 	return tp_len;
2622 }
2623 
2624 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2625 {
2626 	struct sk_buff *skb;
2627 	struct net_device *dev;
2628 	struct virtio_net_hdr *vnet_hdr = NULL;
2629 	struct sockcm_cookie sockc;
2630 	__be16 proto;
2631 	int err, reserve = 0;
2632 	void *ph;
2633 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2634 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2635 	int tp_len, size_max;
2636 	unsigned char *addr;
2637 	void *data;
2638 	int len_sum = 0;
2639 	int status = TP_STATUS_AVAILABLE;
2640 	int hlen, tlen, copylen = 0;
2641 
2642 	mutex_lock(&po->pg_vec_lock);
2643 
2644 	if (likely(saddr == NULL)) {
2645 		dev	= packet_cached_dev_get(po);
2646 		proto	= po->num;
2647 		addr	= NULL;
2648 	} else {
2649 		err = -EINVAL;
2650 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2651 			goto out;
2652 		if (msg->msg_namelen < (saddr->sll_halen
2653 					+ offsetof(struct sockaddr_ll,
2654 						sll_addr)))
2655 			goto out;
2656 		proto	= saddr->sll_protocol;
2657 		addr	= saddr->sll_addr;
2658 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2659 	}
2660 
2661 	sockc.tsflags = po->sk.sk_tsflags;
2662 	if (msg->msg_controllen) {
2663 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2664 		if (unlikely(err))
2665 			goto out;
2666 	}
2667 
2668 	err = -ENXIO;
2669 	if (unlikely(dev == NULL))
2670 		goto out;
2671 	err = -ENETDOWN;
2672 	if (unlikely(!(dev->flags & IFF_UP)))
2673 		goto out_put;
2674 
2675 	if (po->sk.sk_socket->type == SOCK_RAW)
2676 		reserve = dev->hard_header_len;
2677 	size_max = po->tx_ring.frame_size
2678 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2679 
2680 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2681 		size_max = dev->mtu + reserve + VLAN_HLEN;
2682 
2683 	do {
2684 		ph = packet_current_frame(po, &po->tx_ring,
2685 					  TP_STATUS_SEND_REQUEST);
2686 		if (unlikely(ph == NULL)) {
2687 			if (need_wait && need_resched())
2688 				schedule();
2689 			continue;
2690 		}
2691 
2692 		skb = NULL;
2693 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2694 		if (tp_len < 0)
2695 			goto tpacket_error;
2696 
2697 		status = TP_STATUS_SEND_REQUEST;
2698 		hlen = LL_RESERVED_SPACE(dev);
2699 		tlen = dev->needed_tailroom;
2700 		if (po->has_vnet_hdr) {
2701 			vnet_hdr = data;
2702 			data += sizeof(*vnet_hdr);
2703 			tp_len -= sizeof(*vnet_hdr);
2704 			if (tp_len < 0 ||
2705 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2706 				tp_len = -EINVAL;
2707 				goto tpacket_error;
2708 			}
2709 			copylen = __virtio16_to_cpu(vio_le(),
2710 						    vnet_hdr->hdr_len);
2711 		}
2712 		copylen = max_t(int, copylen, dev->hard_header_len);
2713 		skb = sock_alloc_send_skb(&po->sk,
2714 				hlen + tlen + sizeof(struct sockaddr_ll) +
2715 				(copylen - dev->hard_header_len),
2716 				!need_wait, &err);
2717 
2718 		if (unlikely(skb == NULL)) {
2719 			/* we assume the socket was initially writeable ... */
2720 			if (likely(len_sum > 0))
2721 				err = len_sum;
2722 			goto out_status;
2723 		}
2724 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2725 					  addr, hlen, copylen, &sockc);
2726 		if (likely(tp_len >= 0) &&
2727 		    tp_len > dev->mtu + reserve &&
2728 		    !po->has_vnet_hdr &&
2729 		    !packet_extra_vlan_len_allowed(dev, skb))
2730 			tp_len = -EMSGSIZE;
2731 
2732 		if (unlikely(tp_len < 0)) {
2733 tpacket_error:
2734 			if (po->tp_loss) {
2735 				__packet_set_status(po, ph,
2736 						TP_STATUS_AVAILABLE);
2737 				packet_increment_head(&po->tx_ring);
2738 				kfree_skb(skb);
2739 				continue;
2740 			} else {
2741 				status = TP_STATUS_WRONG_FORMAT;
2742 				err = tp_len;
2743 				goto out_status;
2744 			}
2745 		}
2746 
2747 		if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2748 							      vio_le())) {
2749 			tp_len = -EINVAL;
2750 			goto tpacket_error;
2751 		}
2752 
2753 		packet_pick_tx_queue(dev, skb);
2754 
2755 		skb->destructor = tpacket_destruct_skb;
2756 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2757 		packet_inc_pending(&po->tx_ring);
2758 
2759 		status = TP_STATUS_SEND_REQUEST;
2760 		err = po->xmit(skb);
2761 		if (unlikely(err > 0)) {
2762 			err = net_xmit_errno(err);
2763 			if (err && __packet_get_status(po, ph) ==
2764 				   TP_STATUS_AVAILABLE) {
2765 				/* skb was destructed already */
2766 				skb = NULL;
2767 				goto out_status;
2768 			}
2769 			/*
2770 			 * skb was dropped but not destructed yet;
2771 			 * let's treat it like congestion or err < 0
2772 			 */
2773 			err = 0;
2774 		}
2775 		packet_increment_head(&po->tx_ring);
2776 		len_sum += tp_len;
2777 	} while (likely((ph != NULL) ||
2778 		/* Note: packet_read_pending() might be slow if we have
2779 		 * to call it as it's per_cpu variable, but in fast-path
2780 		 * we already short-circuit the loop with the first
2781 		 * condition, and luckily don't have to go that path
2782 		 * anyway.
2783 		 */
2784 		 (need_wait && packet_read_pending(&po->tx_ring))));
2785 
2786 	err = len_sum;
2787 	goto out_put;
2788 
2789 out_status:
2790 	__packet_set_status(po, ph, status);
2791 	kfree_skb(skb);
2792 out_put:
2793 	dev_put(dev);
2794 out:
2795 	mutex_unlock(&po->pg_vec_lock);
2796 	return err;
2797 }
2798 
2799 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2800 				        size_t reserve, size_t len,
2801 				        size_t linear, int noblock,
2802 				        int *err)
2803 {
2804 	struct sk_buff *skb;
2805 
2806 	/* Under a page?  Don't bother with paged skb. */
2807 	if (prepad + len < PAGE_SIZE || !linear)
2808 		linear = len;
2809 
2810 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2811 				   err, 0);
2812 	if (!skb)
2813 		return NULL;
2814 
2815 	skb_reserve(skb, reserve);
2816 	skb_put(skb, linear);
2817 	skb->data_len = len - linear;
2818 	skb->len += len - linear;
2819 
2820 	return skb;
2821 }
2822 
2823 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2824 {
2825 	struct sock *sk = sock->sk;
2826 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2827 	struct sk_buff *skb;
2828 	struct net_device *dev;
2829 	__be16 proto;
2830 	unsigned char *addr;
2831 	int err, reserve = 0;
2832 	struct sockcm_cookie sockc;
2833 	struct virtio_net_hdr vnet_hdr = { 0 };
2834 	int offset = 0;
2835 	struct packet_sock *po = pkt_sk(sk);
2836 	int hlen, tlen, linear;
2837 	int extra_len = 0;
2838 
2839 	/*
2840 	 *	Get and verify the address.
2841 	 */
2842 
2843 	if (likely(saddr == NULL)) {
2844 		dev	= packet_cached_dev_get(po);
2845 		proto	= po->num;
2846 		addr	= NULL;
2847 	} else {
2848 		err = -EINVAL;
2849 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2850 			goto out;
2851 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2852 			goto out;
2853 		proto	= saddr->sll_protocol;
2854 		addr	= saddr->sll_addr;
2855 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2856 	}
2857 
2858 	err = -ENXIO;
2859 	if (unlikely(dev == NULL))
2860 		goto out_unlock;
2861 	err = -ENETDOWN;
2862 	if (unlikely(!(dev->flags & IFF_UP)))
2863 		goto out_unlock;
2864 
2865 	sockc.tsflags = sk->sk_tsflags;
2866 	sockc.mark = sk->sk_mark;
2867 	if (msg->msg_controllen) {
2868 		err = sock_cmsg_send(sk, msg, &sockc);
2869 		if (unlikely(err))
2870 			goto out_unlock;
2871 	}
2872 
2873 	if (sock->type == SOCK_RAW)
2874 		reserve = dev->hard_header_len;
2875 	if (po->has_vnet_hdr) {
2876 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2877 		if (err)
2878 			goto out_unlock;
2879 	}
2880 
2881 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2882 		if (!netif_supports_nofcs(dev)) {
2883 			err = -EPROTONOSUPPORT;
2884 			goto out_unlock;
2885 		}
2886 		extra_len = 4; /* We're doing our own CRC */
2887 	}
2888 
2889 	err = -EMSGSIZE;
2890 	if (!vnet_hdr.gso_type &&
2891 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2892 		goto out_unlock;
2893 
2894 	err = -ENOBUFS;
2895 	hlen = LL_RESERVED_SPACE(dev);
2896 	tlen = dev->needed_tailroom;
2897 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2898 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2899 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2900 			       msg->msg_flags & MSG_DONTWAIT, &err);
2901 	if (skb == NULL)
2902 		goto out_unlock;
2903 
2904 	skb_set_network_header(skb, reserve);
2905 
2906 	err = -EINVAL;
2907 	if (sock->type == SOCK_DGRAM) {
2908 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2909 		if (unlikely(offset < 0))
2910 			goto out_free;
2911 	}
2912 
2913 	/* Returns -EFAULT on error */
2914 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2915 	if (err)
2916 		goto out_free;
2917 
2918 	if (sock->type == SOCK_RAW &&
2919 	    !dev_validate_header(dev, skb->data, len)) {
2920 		err = -EINVAL;
2921 		goto out_free;
2922 	}
2923 
2924 	sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2925 
2926 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2927 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2928 		err = -EMSGSIZE;
2929 		goto out_free;
2930 	}
2931 
2932 	skb->protocol = proto;
2933 	skb->dev = dev;
2934 	skb->priority = sk->sk_priority;
2935 	skb->mark = sockc.mark;
2936 
2937 	packet_pick_tx_queue(dev, skb);
2938 
2939 	if (po->has_vnet_hdr) {
2940 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2941 		if (err)
2942 			goto out_free;
2943 		len += sizeof(vnet_hdr);
2944 	}
2945 
2946 	skb_probe_transport_header(skb, reserve);
2947 
2948 	if (unlikely(extra_len == 4))
2949 		skb->no_fcs = 1;
2950 
2951 	err = po->xmit(skb);
2952 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2953 		goto out_unlock;
2954 
2955 	dev_put(dev);
2956 
2957 	return len;
2958 
2959 out_free:
2960 	kfree_skb(skb);
2961 out_unlock:
2962 	if (dev)
2963 		dev_put(dev);
2964 out:
2965 	return err;
2966 }
2967 
2968 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2969 {
2970 	struct sock *sk = sock->sk;
2971 	struct packet_sock *po = pkt_sk(sk);
2972 
2973 	if (po->tx_ring.pg_vec)
2974 		return tpacket_snd(po, msg);
2975 	else
2976 		return packet_snd(sock, msg, len);
2977 }
2978 
2979 /*
2980  *	Close a PACKET socket. This is fairly simple. We immediately go
2981  *	to 'closed' state and remove our protocol entry in the device list.
2982  */
2983 
2984 static int packet_release(struct socket *sock)
2985 {
2986 	struct sock *sk = sock->sk;
2987 	struct packet_sock *po;
2988 	struct packet_fanout *f;
2989 	struct net *net;
2990 	union tpacket_req_u req_u;
2991 
2992 	if (!sk)
2993 		return 0;
2994 
2995 	net = sock_net(sk);
2996 	po = pkt_sk(sk);
2997 
2998 	mutex_lock(&net->packet.sklist_lock);
2999 	sk_del_node_init_rcu(sk);
3000 	mutex_unlock(&net->packet.sklist_lock);
3001 
3002 	preempt_disable();
3003 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3004 	preempt_enable();
3005 
3006 	spin_lock(&po->bind_lock);
3007 	unregister_prot_hook(sk, false);
3008 	packet_cached_dev_reset(po);
3009 
3010 	if (po->prot_hook.dev) {
3011 		dev_put(po->prot_hook.dev);
3012 		po->prot_hook.dev = NULL;
3013 	}
3014 	spin_unlock(&po->bind_lock);
3015 
3016 	packet_flush_mclist(sk);
3017 
3018 	if (po->rx_ring.pg_vec) {
3019 		memset(&req_u, 0, sizeof(req_u));
3020 		packet_set_ring(sk, &req_u, 1, 0);
3021 	}
3022 
3023 	if (po->tx_ring.pg_vec) {
3024 		memset(&req_u, 0, sizeof(req_u));
3025 		packet_set_ring(sk, &req_u, 1, 1);
3026 	}
3027 
3028 	f = fanout_release(sk);
3029 
3030 	synchronize_net();
3031 
3032 	if (f) {
3033 		fanout_release_data(f);
3034 		kfree(f);
3035 	}
3036 	/*
3037 	 *	Now the socket is dead. No more input will appear.
3038 	 */
3039 	sock_orphan(sk);
3040 	sock->sk = NULL;
3041 
3042 	/* Purge queues */
3043 
3044 	skb_queue_purge(&sk->sk_receive_queue);
3045 	packet_free_pending(po);
3046 	sk_refcnt_debug_release(sk);
3047 
3048 	sock_put(sk);
3049 	return 0;
3050 }
3051 
3052 /*
3053  *	Attach a packet hook.
3054  */
3055 
3056 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3057 			  __be16 proto)
3058 {
3059 	struct packet_sock *po = pkt_sk(sk);
3060 	struct net_device *dev_curr;
3061 	__be16 proto_curr;
3062 	bool need_rehook;
3063 	struct net_device *dev = NULL;
3064 	int ret = 0;
3065 	bool unlisted = false;
3066 
3067 	if (po->fanout)
3068 		return -EINVAL;
3069 
3070 	lock_sock(sk);
3071 	spin_lock(&po->bind_lock);
3072 	rcu_read_lock();
3073 
3074 	if (name) {
3075 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3076 		if (!dev) {
3077 			ret = -ENODEV;
3078 			goto out_unlock;
3079 		}
3080 	} else if (ifindex) {
3081 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3082 		if (!dev) {
3083 			ret = -ENODEV;
3084 			goto out_unlock;
3085 		}
3086 	}
3087 
3088 	if (dev)
3089 		dev_hold(dev);
3090 
3091 	proto_curr = po->prot_hook.type;
3092 	dev_curr = po->prot_hook.dev;
3093 
3094 	need_rehook = proto_curr != proto || dev_curr != dev;
3095 
3096 	if (need_rehook) {
3097 		if (po->running) {
3098 			rcu_read_unlock();
3099 			__unregister_prot_hook(sk, true);
3100 			rcu_read_lock();
3101 			dev_curr = po->prot_hook.dev;
3102 			if (dev)
3103 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3104 								 dev->ifindex);
3105 		}
3106 
3107 		po->num = proto;
3108 		po->prot_hook.type = proto;
3109 
3110 		if (unlikely(unlisted)) {
3111 			dev_put(dev);
3112 			po->prot_hook.dev = NULL;
3113 			po->ifindex = -1;
3114 			packet_cached_dev_reset(po);
3115 		} else {
3116 			po->prot_hook.dev = dev;
3117 			po->ifindex = dev ? dev->ifindex : 0;
3118 			packet_cached_dev_assign(po, dev);
3119 		}
3120 	}
3121 	if (dev_curr)
3122 		dev_put(dev_curr);
3123 
3124 	if (proto == 0 || !need_rehook)
3125 		goto out_unlock;
3126 
3127 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3128 		register_prot_hook(sk);
3129 	} else {
3130 		sk->sk_err = ENETDOWN;
3131 		if (!sock_flag(sk, SOCK_DEAD))
3132 			sk->sk_error_report(sk);
3133 	}
3134 
3135 out_unlock:
3136 	rcu_read_unlock();
3137 	spin_unlock(&po->bind_lock);
3138 	release_sock(sk);
3139 	return ret;
3140 }
3141 
3142 /*
3143  *	Bind a packet socket to a device
3144  */
3145 
3146 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3147 			    int addr_len)
3148 {
3149 	struct sock *sk = sock->sk;
3150 	char name[sizeof(uaddr->sa_data) + 1];
3151 
3152 	/*
3153 	 *	Check legality
3154 	 */
3155 
3156 	if (addr_len != sizeof(struct sockaddr))
3157 		return -EINVAL;
3158 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3159 	 * zero-terminated.
3160 	 */
3161 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3162 	name[sizeof(uaddr->sa_data)] = 0;
3163 
3164 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3165 }
3166 
3167 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3168 {
3169 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3170 	struct sock *sk = sock->sk;
3171 
3172 	/*
3173 	 *	Check legality
3174 	 */
3175 
3176 	if (addr_len < sizeof(struct sockaddr_ll))
3177 		return -EINVAL;
3178 	if (sll->sll_family != AF_PACKET)
3179 		return -EINVAL;
3180 
3181 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3182 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3183 }
3184 
3185 static struct proto packet_proto = {
3186 	.name	  = "PACKET",
3187 	.owner	  = THIS_MODULE,
3188 	.obj_size = sizeof(struct packet_sock),
3189 };
3190 
3191 /*
3192  *	Create a packet of type SOCK_PACKET.
3193  */
3194 
3195 static int packet_create(struct net *net, struct socket *sock, int protocol,
3196 			 int kern)
3197 {
3198 	struct sock *sk;
3199 	struct packet_sock *po;
3200 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3201 	int err;
3202 
3203 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3204 		return -EPERM;
3205 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3206 	    sock->type != SOCK_PACKET)
3207 		return -ESOCKTNOSUPPORT;
3208 
3209 	sock->state = SS_UNCONNECTED;
3210 
3211 	err = -ENOBUFS;
3212 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3213 	if (sk == NULL)
3214 		goto out;
3215 
3216 	sock->ops = &packet_ops;
3217 	if (sock->type == SOCK_PACKET)
3218 		sock->ops = &packet_ops_spkt;
3219 
3220 	sock_init_data(sock, sk);
3221 
3222 	po = pkt_sk(sk);
3223 	sk->sk_family = PF_PACKET;
3224 	po->num = proto;
3225 	po->xmit = dev_queue_xmit;
3226 
3227 	err = packet_alloc_pending(po);
3228 	if (err)
3229 		goto out2;
3230 
3231 	packet_cached_dev_reset(po);
3232 
3233 	sk->sk_destruct = packet_sock_destruct;
3234 	sk_refcnt_debug_inc(sk);
3235 
3236 	/*
3237 	 *	Attach a protocol block
3238 	 */
3239 
3240 	spin_lock_init(&po->bind_lock);
3241 	mutex_init(&po->pg_vec_lock);
3242 	po->rollover = NULL;
3243 	po->prot_hook.func = packet_rcv;
3244 
3245 	if (sock->type == SOCK_PACKET)
3246 		po->prot_hook.func = packet_rcv_spkt;
3247 
3248 	po->prot_hook.af_packet_priv = sk;
3249 
3250 	if (proto) {
3251 		po->prot_hook.type = proto;
3252 		register_prot_hook(sk);
3253 	}
3254 
3255 	mutex_lock(&net->packet.sklist_lock);
3256 	sk_add_node_rcu(sk, &net->packet.sklist);
3257 	mutex_unlock(&net->packet.sklist_lock);
3258 
3259 	preempt_disable();
3260 	sock_prot_inuse_add(net, &packet_proto, 1);
3261 	preempt_enable();
3262 
3263 	return 0;
3264 out2:
3265 	sk_free(sk);
3266 out:
3267 	return err;
3268 }
3269 
3270 /*
3271  *	Pull a packet from our receive queue and hand it to the user.
3272  *	If necessary we block.
3273  */
3274 
3275 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3276 			  int flags)
3277 {
3278 	struct sock *sk = sock->sk;
3279 	struct sk_buff *skb;
3280 	int copied, err;
3281 	int vnet_hdr_len = 0;
3282 	unsigned int origlen = 0;
3283 
3284 	err = -EINVAL;
3285 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3286 		goto out;
3287 
3288 #if 0
3289 	/* What error should we return now? EUNATTACH? */
3290 	if (pkt_sk(sk)->ifindex < 0)
3291 		return -ENODEV;
3292 #endif
3293 
3294 	if (flags & MSG_ERRQUEUE) {
3295 		err = sock_recv_errqueue(sk, msg, len,
3296 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3297 		goto out;
3298 	}
3299 
3300 	/*
3301 	 *	Call the generic datagram receiver. This handles all sorts
3302 	 *	of horrible races and re-entrancy so we can forget about it
3303 	 *	in the protocol layers.
3304 	 *
3305 	 *	Now it will return ENETDOWN, if device have just gone down,
3306 	 *	but then it will block.
3307 	 */
3308 
3309 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3310 
3311 	/*
3312 	 *	An error occurred so return it. Because skb_recv_datagram()
3313 	 *	handles the blocking we don't see and worry about blocking
3314 	 *	retries.
3315 	 */
3316 
3317 	if (skb == NULL)
3318 		goto out;
3319 
3320 	if (pkt_sk(sk)->pressure)
3321 		packet_rcv_has_room(pkt_sk(sk), NULL);
3322 
3323 	if (pkt_sk(sk)->has_vnet_hdr) {
3324 		err = packet_rcv_vnet(msg, skb, &len);
3325 		if (err)
3326 			goto out_free;
3327 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3328 	}
3329 
3330 	/* You lose any data beyond the buffer you gave. If it worries
3331 	 * a user program they can ask the device for its MTU
3332 	 * anyway.
3333 	 */
3334 	copied = skb->len;
3335 	if (copied > len) {
3336 		copied = len;
3337 		msg->msg_flags |= MSG_TRUNC;
3338 	}
3339 
3340 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3341 	if (err)
3342 		goto out_free;
3343 
3344 	if (sock->type != SOCK_PACKET) {
3345 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3346 
3347 		/* Original length was stored in sockaddr_ll fields */
3348 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3349 		sll->sll_family = AF_PACKET;
3350 		sll->sll_protocol = skb->protocol;
3351 	}
3352 
3353 	sock_recv_ts_and_drops(msg, sk, skb);
3354 
3355 	if (msg->msg_name) {
3356 		/* If the address length field is there to be filled
3357 		 * in, we fill it in now.
3358 		 */
3359 		if (sock->type == SOCK_PACKET) {
3360 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3361 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3362 		} else {
3363 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3364 
3365 			msg->msg_namelen = sll->sll_halen +
3366 				offsetof(struct sockaddr_ll, sll_addr);
3367 		}
3368 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3369 		       msg->msg_namelen);
3370 	}
3371 
3372 	if (pkt_sk(sk)->auxdata) {
3373 		struct tpacket_auxdata aux;
3374 
3375 		aux.tp_status = TP_STATUS_USER;
3376 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3377 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3378 		else if (skb->pkt_type != PACKET_OUTGOING &&
3379 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3380 			  skb_csum_unnecessary(skb)))
3381 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3382 
3383 		aux.tp_len = origlen;
3384 		aux.tp_snaplen = skb->len;
3385 		aux.tp_mac = 0;
3386 		aux.tp_net = skb_network_offset(skb);
3387 		if (skb_vlan_tag_present(skb)) {
3388 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3389 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3390 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3391 		} else {
3392 			aux.tp_vlan_tci = 0;
3393 			aux.tp_vlan_tpid = 0;
3394 		}
3395 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3396 	}
3397 
3398 	/*
3399 	 *	Free or return the buffer as appropriate. Again this
3400 	 *	hides all the races and re-entrancy issues from us.
3401 	 */
3402 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3403 
3404 out_free:
3405 	skb_free_datagram(sk, skb);
3406 out:
3407 	return err;
3408 }
3409 
3410 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3411 			       int *uaddr_len, int peer)
3412 {
3413 	struct net_device *dev;
3414 	struct sock *sk	= sock->sk;
3415 
3416 	if (peer)
3417 		return -EOPNOTSUPP;
3418 
3419 	uaddr->sa_family = AF_PACKET;
3420 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3421 	rcu_read_lock();
3422 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3423 	if (dev)
3424 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3425 	rcu_read_unlock();
3426 	*uaddr_len = sizeof(*uaddr);
3427 
3428 	return 0;
3429 }
3430 
3431 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3432 			  int *uaddr_len, int peer)
3433 {
3434 	struct net_device *dev;
3435 	struct sock *sk = sock->sk;
3436 	struct packet_sock *po = pkt_sk(sk);
3437 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3438 
3439 	if (peer)
3440 		return -EOPNOTSUPP;
3441 
3442 	sll->sll_family = AF_PACKET;
3443 	sll->sll_ifindex = po->ifindex;
3444 	sll->sll_protocol = po->num;
3445 	sll->sll_pkttype = 0;
3446 	rcu_read_lock();
3447 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3448 	if (dev) {
3449 		sll->sll_hatype = dev->type;
3450 		sll->sll_halen = dev->addr_len;
3451 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3452 	} else {
3453 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3454 		sll->sll_halen = 0;
3455 	}
3456 	rcu_read_unlock();
3457 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3458 
3459 	return 0;
3460 }
3461 
3462 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3463 			 int what)
3464 {
3465 	switch (i->type) {
3466 	case PACKET_MR_MULTICAST:
3467 		if (i->alen != dev->addr_len)
3468 			return -EINVAL;
3469 		if (what > 0)
3470 			return dev_mc_add(dev, i->addr);
3471 		else
3472 			return dev_mc_del(dev, i->addr);
3473 		break;
3474 	case PACKET_MR_PROMISC:
3475 		return dev_set_promiscuity(dev, what);
3476 	case PACKET_MR_ALLMULTI:
3477 		return dev_set_allmulti(dev, what);
3478 	case PACKET_MR_UNICAST:
3479 		if (i->alen != dev->addr_len)
3480 			return -EINVAL;
3481 		if (what > 0)
3482 			return dev_uc_add(dev, i->addr);
3483 		else
3484 			return dev_uc_del(dev, i->addr);
3485 		break;
3486 	default:
3487 		break;
3488 	}
3489 	return 0;
3490 }
3491 
3492 static void packet_dev_mclist_delete(struct net_device *dev,
3493 				     struct packet_mclist **mlp)
3494 {
3495 	struct packet_mclist *ml;
3496 
3497 	while ((ml = *mlp) != NULL) {
3498 		if (ml->ifindex == dev->ifindex) {
3499 			packet_dev_mc(dev, ml, -1);
3500 			*mlp = ml->next;
3501 			kfree(ml);
3502 		} else
3503 			mlp = &ml->next;
3504 	}
3505 }
3506 
3507 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3508 {
3509 	struct packet_sock *po = pkt_sk(sk);
3510 	struct packet_mclist *ml, *i;
3511 	struct net_device *dev;
3512 	int err;
3513 
3514 	rtnl_lock();
3515 
3516 	err = -ENODEV;
3517 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3518 	if (!dev)
3519 		goto done;
3520 
3521 	err = -EINVAL;
3522 	if (mreq->mr_alen > dev->addr_len)
3523 		goto done;
3524 
3525 	err = -ENOBUFS;
3526 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3527 	if (i == NULL)
3528 		goto done;
3529 
3530 	err = 0;
3531 	for (ml = po->mclist; ml; ml = ml->next) {
3532 		if (ml->ifindex == mreq->mr_ifindex &&
3533 		    ml->type == mreq->mr_type &&
3534 		    ml->alen == mreq->mr_alen &&
3535 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3536 			ml->count++;
3537 			/* Free the new element ... */
3538 			kfree(i);
3539 			goto done;
3540 		}
3541 	}
3542 
3543 	i->type = mreq->mr_type;
3544 	i->ifindex = mreq->mr_ifindex;
3545 	i->alen = mreq->mr_alen;
3546 	memcpy(i->addr, mreq->mr_address, i->alen);
3547 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3548 	i->count = 1;
3549 	i->next = po->mclist;
3550 	po->mclist = i;
3551 	err = packet_dev_mc(dev, i, 1);
3552 	if (err) {
3553 		po->mclist = i->next;
3554 		kfree(i);
3555 	}
3556 
3557 done:
3558 	rtnl_unlock();
3559 	return err;
3560 }
3561 
3562 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3563 {
3564 	struct packet_mclist *ml, **mlp;
3565 
3566 	rtnl_lock();
3567 
3568 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3569 		if (ml->ifindex == mreq->mr_ifindex &&
3570 		    ml->type == mreq->mr_type &&
3571 		    ml->alen == mreq->mr_alen &&
3572 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3573 			if (--ml->count == 0) {
3574 				struct net_device *dev;
3575 				*mlp = ml->next;
3576 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3577 				if (dev)
3578 					packet_dev_mc(dev, ml, -1);
3579 				kfree(ml);
3580 			}
3581 			break;
3582 		}
3583 	}
3584 	rtnl_unlock();
3585 	return 0;
3586 }
3587 
3588 static void packet_flush_mclist(struct sock *sk)
3589 {
3590 	struct packet_sock *po = pkt_sk(sk);
3591 	struct packet_mclist *ml;
3592 
3593 	if (!po->mclist)
3594 		return;
3595 
3596 	rtnl_lock();
3597 	while ((ml = po->mclist) != NULL) {
3598 		struct net_device *dev;
3599 
3600 		po->mclist = ml->next;
3601 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3602 		if (dev != NULL)
3603 			packet_dev_mc(dev, ml, -1);
3604 		kfree(ml);
3605 	}
3606 	rtnl_unlock();
3607 }
3608 
3609 static int
3610 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3611 {
3612 	struct sock *sk = sock->sk;
3613 	struct packet_sock *po = pkt_sk(sk);
3614 	int ret;
3615 
3616 	if (level != SOL_PACKET)
3617 		return -ENOPROTOOPT;
3618 
3619 	switch (optname) {
3620 	case PACKET_ADD_MEMBERSHIP:
3621 	case PACKET_DROP_MEMBERSHIP:
3622 	{
3623 		struct packet_mreq_max mreq;
3624 		int len = optlen;
3625 		memset(&mreq, 0, sizeof(mreq));
3626 		if (len < sizeof(struct packet_mreq))
3627 			return -EINVAL;
3628 		if (len > sizeof(mreq))
3629 			len = sizeof(mreq);
3630 		if (copy_from_user(&mreq, optval, len))
3631 			return -EFAULT;
3632 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3633 			return -EINVAL;
3634 		if (optname == PACKET_ADD_MEMBERSHIP)
3635 			ret = packet_mc_add(sk, &mreq);
3636 		else
3637 			ret = packet_mc_drop(sk, &mreq);
3638 		return ret;
3639 	}
3640 
3641 	case PACKET_RX_RING:
3642 	case PACKET_TX_RING:
3643 	{
3644 		union tpacket_req_u req_u;
3645 		int len;
3646 
3647 		switch (po->tp_version) {
3648 		case TPACKET_V1:
3649 		case TPACKET_V2:
3650 			len = sizeof(req_u.req);
3651 			break;
3652 		case TPACKET_V3:
3653 		default:
3654 			len = sizeof(req_u.req3);
3655 			break;
3656 		}
3657 		if (optlen < len)
3658 			return -EINVAL;
3659 		if (copy_from_user(&req_u.req, optval, len))
3660 			return -EFAULT;
3661 		return packet_set_ring(sk, &req_u, 0,
3662 			optname == PACKET_TX_RING);
3663 	}
3664 	case PACKET_COPY_THRESH:
3665 	{
3666 		int val;
3667 
3668 		if (optlen != sizeof(val))
3669 			return -EINVAL;
3670 		if (copy_from_user(&val, optval, sizeof(val)))
3671 			return -EFAULT;
3672 
3673 		pkt_sk(sk)->copy_thresh = val;
3674 		return 0;
3675 	}
3676 	case PACKET_VERSION:
3677 	{
3678 		int val;
3679 
3680 		if (optlen != sizeof(val))
3681 			return -EINVAL;
3682 		if (copy_from_user(&val, optval, sizeof(val)))
3683 			return -EFAULT;
3684 		switch (val) {
3685 		case TPACKET_V1:
3686 		case TPACKET_V2:
3687 		case TPACKET_V3:
3688 			break;
3689 		default:
3690 			return -EINVAL;
3691 		}
3692 		lock_sock(sk);
3693 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3694 			ret = -EBUSY;
3695 		} else {
3696 			po->tp_version = val;
3697 			ret = 0;
3698 		}
3699 		release_sock(sk);
3700 		return ret;
3701 	}
3702 	case PACKET_RESERVE:
3703 	{
3704 		unsigned int val;
3705 
3706 		if (optlen != sizeof(val))
3707 			return -EINVAL;
3708 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3709 			return -EBUSY;
3710 		if (copy_from_user(&val, optval, sizeof(val)))
3711 			return -EFAULT;
3712 		if (val > INT_MAX)
3713 			return -EINVAL;
3714 		po->tp_reserve = val;
3715 		return 0;
3716 	}
3717 	case PACKET_LOSS:
3718 	{
3719 		unsigned int val;
3720 
3721 		if (optlen != sizeof(val))
3722 			return -EINVAL;
3723 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3724 			return -EBUSY;
3725 		if (copy_from_user(&val, optval, sizeof(val)))
3726 			return -EFAULT;
3727 		po->tp_loss = !!val;
3728 		return 0;
3729 	}
3730 	case PACKET_AUXDATA:
3731 	{
3732 		int val;
3733 
3734 		if (optlen < sizeof(val))
3735 			return -EINVAL;
3736 		if (copy_from_user(&val, optval, sizeof(val)))
3737 			return -EFAULT;
3738 
3739 		po->auxdata = !!val;
3740 		return 0;
3741 	}
3742 	case PACKET_ORIGDEV:
3743 	{
3744 		int val;
3745 
3746 		if (optlen < sizeof(val))
3747 			return -EINVAL;
3748 		if (copy_from_user(&val, optval, sizeof(val)))
3749 			return -EFAULT;
3750 
3751 		po->origdev = !!val;
3752 		return 0;
3753 	}
3754 	case PACKET_VNET_HDR:
3755 	{
3756 		int val;
3757 
3758 		if (sock->type != SOCK_RAW)
3759 			return -EINVAL;
3760 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3761 			return -EBUSY;
3762 		if (optlen < sizeof(val))
3763 			return -EINVAL;
3764 		if (copy_from_user(&val, optval, sizeof(val)))
3765 			return -EFAULT;
3766 
3767 		po->has_vnet_hdr = !!val;
3768 		return 0;
3769 	}
3770 	case PACKET_TIMESTAMP:
3771 	{
3772 		int val;
3773 
3774 		if (optlen != sizeof(val))
3775 			return -EINVAL;
3776 		if (copy_from_user(&val, optval, sizeof(val)))
3777 			return -EFAULT;
3778 
3779 		po->tp_tstamp = val;
3780 		return 0;
3781 	}
3782 	case PACKET_FANOUT:
3783 	{
3784 		int val;
3785 
3786 		if (optlen != sizeof(val))
3787 			return -EINVAL;
3788 		if (copy_from_user(&val, optval, sizeof(val)))
3789 			return -EFAULT;
3790 
3791 		return fanout_add(sk, val & 0xffff, val >> 16);
3792 	}
3793 	case PACKET_FANOUT_DATA:
3794 	{
3795 		if (!po->fanout)
3796 			return -EINVAL;
3797 
3798 		return fanout_set_data(po, optval, optlen);
3799 	}
3800 	case PACKET_TX_HAS_OFF:
3801 	{
3802 		unsigned int val;
3803 
3804 		if (optlen != sizeof(val))
3805 			return -EINVAL;
3806 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3807 			return -EBUSY;
3808 		if (copy_from_user(&val, optval, sizeof(val)))
3809 			return -EFAULT;
3810 		po->tp_tx_has_off = !!val;
3811 		return 0;
3812 	}
3813 	case PACKET_QDISC_BYPASS:
3814 	{
3815 		int val;
3816 
3817 		if (optlen != sizeof(val))
3818 			return -EINVAL;
3819 		if (copy_from_user(&val, optval, sizeof(val)))
3820 			return -EFAULT;
3821 
3822 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3823 		return 0;
3824 	}
3825 	default:
3826 		return -ENOPROTOOPT;
3827 	}
3828 }
3829 
3830 static int packet_getsockopt(struct socket *sock, int level, int optname,
3831 			     char __user *optval, int __user *optlen)
3832 {
3833 	int len;
3834 	int val, lv = sizeof(val);
3835 	struct sock *sk = sock->sk;
3836 	struct packet_sock *po = pkt_sk(sk);
3837 	void *data = &val;
3838 	union tpacket_stats_u st;
3839 	struct tpacket_rollover_stats rstats;
3840 
3841 	if (level != SOL_PACKET)
3842 		return -ENOPROTOOPT;
3843 
3844 	if (get_user(len, optlen))
3845 		return -EFAULT;
3846 
3847 	if (len < 0)
3848 		return -EINVAL;
3849 
3850 	switch (optname) {
3851 	case PACKET_STATISTICS:
3852 		spin_lock_bh(&sk->sk_receive_queue.lock);
3853 		memcpy(&st, &po->stats, sizeof(st));
3854 		memset(&po->stats, 0, sizeof(po->stats));
3855 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3856 
3857 		if (po->tp_version == TPACKET_V3) {
3858 			lv = sizeof(struct tpacket_stats_v3);
3859 			st.stats3.tp_packets += st.stats3.tp_drops;
3860 			data = &st.stats3;
3861 		} else {
3862 			lv = sizeof(struct tpacket_stats);
3863 			st.stats1.tp_packets += st.stats1.tp_drops;
3864 			data = &st.stats1;
3865 		}
3866 
3867 		break;
3868 	case PACKET_AUXDATA:
3869 		val = po->auxdata;
3870 		break;
3871 	case PACKET_ORIGDEV:
3872 		val = po->origdev;
3873 		break;
3874 	case PACKET_VNET_HDR:
3875 		val = po->has_vnet_hdr;
3876 		break;
3877 	case PACKET_VERSION:
3878 		val = po->tp_version;
3879 		break;
3880 	case PACKET_HDRLEN:
3881 		if (len > sizeof(int))
3882 			len = sizeof(int);
3883 		if (len < sizeof(int))
3884 			return -EINVAL;
3885 		if (copy_from_user(&val, optval, len))
3886 			return -EFAULT;
3887 		switch (val) {
3888 		case TPACKET_V1:
3889 			val = sizeof(struct tpacket_hdr);
3890 			break;
3891 		case TPACKET_V2:
3892 			val = sizeof(struct tpacket2_hdr);
3893 			break;
3894 		case TPACKET_V3:
3895 			val = sizeof(struct tpacket3_hdr);
3896 			break;
3897 		default:
3898 			return -EINVAL;
3899 		}
3900 		break;
3901 	case PACKET_RESERVE:
3902 		val = po->tp_reserve;
3903 		break;
3904 	case PACKET_LOSS:
3905 		val = po->tp_loss;
3906 		break;
3907 	case PACKET_TIMESTAMP:
3908 		val = po->tp_tstamp;
3909 		break;
3910 	case PACKET_FANOUT:
3911 		val = (po->fanout ?
3912 		       ((u32)po->fanout->id |
3913 			((u32)po->fanout->type << 16) |
3914 			((u32)po->fanout->flags << 24)) :
3915 		       0);
3916 		break;
3917 	case PACKET_ROLLOVER_STATS:
3918 		if (!po->rollover)
3919 			return -EINVAL;
3920 		rstats.tp_all = atomic_long_read(&po->rollover->num);
3921 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3922 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3923 		data = &rstats;
3924 		lv = sizeof(rstats);
3925 		break;
3926 	case PACKET_TX_HAS_OFF:
3927 		val = po->tp_tx_has_off;
3928 		break;
3929 	case PACKET_QDISC_BYPASS:
3930 		val = packet_use_direct_xmit(po);
3931 		break;
3932 	default:
3933 		return -ENOPROTOOPT;
3934 	}
3935 
3936 	if (len > lv)
3937 		len = lv;
3938 	if (put_user(len, optlen))
3939 		return -EFAULT;
3940 	if (copy_to_user(optval, data, len))
3941 		return -EFAULT;
3942 	return 0;
3943 }
3944 
3945 
3946 #ifdef CONFIG_COMPAT
3947 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3948 				    char __user *optval, unsigned int optlen)
3949 {
3950 	struct packet_sock *po = pkt_sk(sock->sk);
3951 
3952 	if (level != SOL_PACKET)
3953 		return -ENOPROTOOPT;
3954 
3955 	if (optname == PACKET_FANOUT_DATA &&
3956 	    po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3957 		optval = (char __user *)get_compat_bpf_fprog(optval);
3958 		if (!optval)
3959 			return -EFAULT;
3960 		optlen = sizeof(struct sock_fprog);
3961 	}
3962 
3963 	return packet_setsockopt(sock, level, optname, optval, optlen);
3964 }
3965 #endif
3966 
3967 static int packet_notifier(struct notifier_block *this,
3968 			   unsigned long msg, void *ptr)
3969 {
3970 	struct sock *sk;
3971 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3972 	struct net *net = dev_net(dev);
3973 
3974 	rcu_read_lock();
3975 	sk_for_each_rcu(sk, &net->packet.sklist) {
3976 		struct packet_sock *po = pkt_sk(sk);
3977 
3978 		switch (msg) {
3979 		case NETDEV_UNREGISTER:
3980 			if (po->mclist)
3981 				packet_dev_mclist_delete(dev, &po->mclist);
3982 			/* fallthrough */
3983 
3984 		case NETDEV_DOWN:
3985 			if (dev->ifindex == po->ifindex) {
3986 				spin_lock(&po->bind_lock);
3987 				if (po->running) {
3988 					__unregister_prot_hook(sk, false);
3989 					sk->sk_err = ENETDOWN;
3990 					if (!sock_flag(sk, SOCK_DEAD))
3991 						sk->sk_error_report(sk);
3992 				}
3993 				if (msg == NETDEV_UNREGISTER) {
3994 					packet_cached_dev_reset(po);
3995 					po->ifindex = -1;
3996 					if (po->prot_hook.dev)
3997 						dev_put(po->prot_hook.dev);
3998 					po->prot_hook.dev = NULL;
3999 				}
4000 				spin_unlock(&po->bind_lock);
4001 			}
4002 			break;
4003 		case NETDEV_UP:
4004 			if (dev->ifindex == po->ifindex) {
4005 				spin_lock(&po->bind_lock);
4006 				if (po->num)
4007 					register_prot_hook(sk);
4008 				spin_unlock(&po->bind_lock);
4009 			}
4010 			break;
4011 		}
4012 	}
4013 	rcu_read_unlock();
4014 	return NOTIFY_DONE;
4015 }
4016 
4017 
4018 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4019 			unsigned long arg)
4020 {
4021 	struct sock *sk = sock->sk;
4022 
4023 	switch (cmd) {
4024 	case SIOCOUTQ:
4025 	{
4026 		int amount = sk_wmem_alloc_get(sk);
4027 
4028 		return put_user(amount, (int __user *)arg);
4029 	}
4030 	case SIOCINQ:
4031 	{
4032 		struct sk_buff *skb;
4033 		int amount = 0;
4034 
4035 		spin_lock_bh(&sk->sk_receive_queue.lock);
4036 		skb = skb_peek(&sk->sk_receive_queue);
4037 		if (skb)
4038 			amount = skb->len;
4039 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4040 		return put_user(amount, (int __user *)arg);
4041 	}
4042 	case SIOCGSTAMP:
4043 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
4044 	case SIOCGSTAMPNS:
4045 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
4046 
4047 #ifdef CONFIG_INET
4048 	case SIOCADDRT:
4049 	case SIOCDELRT:
4050 	case SIOCDARP:
4051 	case SIOCGARP:
4052 	case SIOCSARP:
4053 	case SIOCGIFADDR:
4054 	case SIOCSIFADDR:
4055 	case SIOCGIFBRDADDR:
4056 	case SIOCSIFBRDADDR:
4057 	case SIOCGIFNETMASK:
4058 	case SIOCSIFNETMASK:
4059 	case SIOCGIFDSTADDR:
4060 	case SIOCSIFDSTADDR:
4061 	case SIOCSIFFLAGS:
4062 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4063 #endif
4064 
4065 	default:
4066 		return -ENOIOCTLCMD;
4067 	}
4068 	return 0;
4069 }
4070 
4071 static unsigned int packet_poll(struct file *file, struct socket *sock,
4072 				poll_table *wait)
4073 {
4074 	struct sock *sk = sock->sk;
4075 	struct packet_sock *po = pkt_sk(sk);
4076 	unsigned int mask = datagram_poll(file, sock, wait);
4077 
4078 	spin_lock_bh(&sk->sk_receive_queue.lock);
4079 	if (po->rx_ring.pg_vec) {
4080 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4081 			TP_STATUS_KERNEL))
4082 			mask |= POLLIN | POLLRDNORM;
4083 	}
4084 	if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4085 		po->pressure = 0;
4086 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4087 	spin_lock_bh(&sk->sk_write_queue.lock);
4088 	if (po->tx_ring.pg_vec) {
4089 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4090 			mask |= POLLOUT | POLLWRNORM;
4091 	}
4092 	spin_unlock_bh(&sk->sk_write_queue.lock);
4093 	return mask;
4094 }
4095 
4096 
4097 /* Dirty? Well, I still did not learn better way to account
4098  * for user mmaps.
4099  */
4100 
4101 static void packet_mm_open(struct vm_area_struct *vma)
4102 {
4103 	struct file *file = vma->vm_file;
4104 	struct socket *sock = file->private_data;
4105 	struct sock *sk = sock->sk;
4106 
4107 	if (sk)
4108 		atomic_inc(&pkt_sk(sk)->mapped);
4109 }
4110 
4111 static void packet_mm_close(struct vm_area_struct *vma)
4112 {
4113 	struct file *file = vma->vm_file;
4114 	struct socket *sock = file->private_data;
4115 	struct sock *sk = sock->sk;
4116 
4117 	if (sk)
4118 		atomic_dec(&pkt_sk(sk)->mapped);
4119 }
4120 
4121 static const struct vm_operations_struct packet_mmap_ops = {
4122 	.open	=	packet_mm_open,
4123 	.close	=	packet_mm_close,
4124 };
4125 
4126 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4127 			unsigned int len)
4128 {
4129 	int i;
4130 
4131 	for (i = 0; i < len; i++) {
4132 		if (likely(pg_vec[i].buffer)) {
4133 			if (is_vmalloc_addr(pg_vec[i].buffer))
4134 				vfree(pg_vec[i].buffer);
4135 			else
4136 				free_pages((unsigned long)pg_vec[i].buffer,
4137 					   order);
4138 			pg_vec[i].buffer = NULL;
4139 		}
4140 	}
4141 	kfree(pg_vec);
4142 }
4143 
4144 static char *alloc_one_pg_vec_page(unsigned long order)
4145 {
4146 	char *buffer;
4147 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4148 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4149 
4150 	buffer = (char *) __get_free_pages(gfp_flags, order);
4151 	if (buffer)
4152 		return buffer;
4153 
4154 	/* __get_free_pages failed, fall back to vmalloc */
4155 	buffer = vzalloc((1 << order) * PAGE_SIZE);
4156 	if (buffer)
4157 		return buffer;
4158 
4159 	/* vmalloc failed, lets dig into swap here */
4160 	gfp_flags &= ~__GFP_NORETRY;
4161 	buffer = (char *) __get_free_pages(gfp_flags, order);
4162 	if (buffer)
4163 		return buffer;
4164 
4165 	/* complete and utter failure */
4166 	return NULL;
4167 }
4168 
4169 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4170 {
4171 	unsigned int block_nr = req->tp_block_nr;
4172 	struct pgv *pg_vec;
4173 	int i;
4174 
4175 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4176 	if (unlikely(!pg_vec))
4177 		goto out;
4178 
4179 	for (i = 0; i < block_nr; i++) {
4180 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4181 		if (unlikely(!pg_vec[i].buffer))
4182 			goto out_free_pgvec;
4183 	}
4184 
4185 out:
4186 	return pg_vec;
4187 
4188 out_free_pgvec:
4189 	free_pg_vec(pg_vec, order, block_nr);
4190 	pg_vec = NULL;
4191 	goto out;
4192 }
4193 
4194 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4195 		int closing, int tx_ring)
4196 {
4197 	struct pgv *pg_vec = NULL;
4198 	struct packet_sock *po = pkt_sk(sk);
4199 	int was_running, order = 0;
4200 	struct packet_ring_buffer *rb;
4201 	struct sk_buff_head *rb_queue;
4202 	__be16 num;
4203 	int err = -EINVAL;
4204 	/* Added to avoid minimal code churn */
4205 	struct tpacket_req *req = &req_u->req;
4206 
4207 	lock_sock(sk);
4208 
4209 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4210 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4211 
4212 	err = -EBUSY;
4213 	if (!closing) {
4214 		if (atomic_read(&po->mapped))
4215 			goto out;
4216 		if (packet_read_pending(rb))
4217 			goto out;
4218 	}
4219 
4220 	if (req->tp_block_nr) {
4221 		/* Sanity tests and some calculations */
4222 		err = -EBUSY;
4223 		if (unlikely(rb->pg_vec))
4224 			goto out;
4225 
4226 		switch (po->tp_version) {
4227 		case TPACKET_V1:
4228 			po->tp_hdrlen = TPACKET_HDRLEN;
4229 			break;
4230 		case TPACKET_V2:
4231 			po->tp_hdrlen = TPACKET2_HDRLEN;
4232 			break;
4233 		case TPACKET_V3:
4234 			po->tp_hdrlen = TPACKET3_HDRLEN;
4235 			break;
4236 		}
4237 
4238 		err = -EINVAL;
4239 		if (unlikely((int)req->tp_block_size <= 0))
4240 			goto out;
4241 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4242 			goto out;
4243 		if (po->tp_version >= TPACKET_V3 &&
4244 		    req->tp_block_size <=
4245 			  BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
4246 			goto out;
4247 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4248 					po->tp_reserve))
4249 			goto out;
4250 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4251 			goto out;
4252 
4253 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4254 		if (unlikely(rb->frames_per_block == 0))
4255 			goto out;
4256 		if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4257 			goto out;
4258 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4259 					req->tp_frame_nr))
4260 			goto out;
4261 
4262 		err = -ENOMEM;
4263 		order = get_order(req->tp_block_size);
4264 		pg_vec = alloc_pg_vec(req, order);
4265 		if (unlikely(!pg_vec))
4266 			goto out;
4267 		switch (po->tp_version) {
4268 		case TPACKET_V3:
4269 			/* Block transmit is not supported yet */
4270 			if (!tx_ring) {
4271 				init_prb_bdqc(po, rb, pg_vec, req_u);
4272 			} else {
4273 				struct tpacket_req3 *req3 = &req_u->req3;
4274 
4275 				if (req3->tp_retire_blk_tov ||
4276 				    req3->tp_sizeof_priv ||
4277 				    req3->tp_feature_req_word) {
4278 					err = -EINVAL;
4279 					goto out;
4280 				}
4281 			}
4282 			break;
4283 		default:
4284 			break;
4285 		}
4286 	}
4287 	/* Done */
4288 	else {
4289 		err = -EINVAL;
4290 		if (unlikely(req->tp_frame_nr))
4291 			goto out;
4292 	}
4293 
4294 
4295 	/* Detach socket from network */
4296 	spin_lock(&po->bind_lock);
4297 	was_running = po->running;
4298 	num = po->num;
4299 	if (was_running) {
4300 		po->num = 0;
4301 		__unregister_prot_hook(sk, false);
4302 	}
4303 	spin_unlock(&po->bind_lock);
4304 
4305 	synchronize_net();
4306 
4307 	err = -EBUSY;
4308 	mutex_lock(&po->pg_vec_lock);
4309 	if (closing || atomic_read(&po->mapped) == 0) {
4310 		err = 0;
4311 		spin_lock_bh(&rb_queue->lock);
4312 		swap(rb->pg_vec, pg_vec);
4313 		rb->frame_max = (req->tp_frame_nr - 1);
4314 		rb->head = 0;
4315 		rb->frame_size = req->tp_frame_size;
4316 		spin_unlock_bh(&rb_queue->lock);
4317 
4318 		swap(rb->pg_vec_order, order);
4319 		swap(rb->pg_vec_len, req->tp_block_nr);
4320 
4321 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4322 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4323 						tpacket_rcv : packet_rcv;
4324 		skb_queue_purge(rb_queue);
4325 		if (atomic_read(&po->mapped))
4326 			pr_err("packet_mmap: vma is busy: %d\n",
4327 			       atomic_read(&po->mapped));
4328 	}
4329 	mutex_unlock(&po->pg_vec_lock);
4330 
4331 	spin_lock(&po->bind_lock);
4332 	if (was_running) {
4333 		po->num = num;
4334 		register_prot_hook(sk);
4335 	}
4336 	spin_unlock(&po->bind_lock);
4337 	if (closing && (po->tp_version > TPACKET_V2)) {
4338 		/* Because we don't support block-based V3 on tx-ring */
4339 		if (!tx_ring)
4340 			prb_shutdown_retire_blk_timer(po, rb_queue);
4341 	}
4342 
4343 	if (pg_vec)
4344 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4345 out:
4346 	release_sock(sk);
4347 	return err;
4348 }
4349 
4350 static int packet_mmap(struct file *file, struct socket *sock,
4351 		struct vm_area_struct *vma)
4352 {
4353 	struct sock *sk = sock->sk;
4354 	struct packet_sock *po = pkt_sk(sk);
4355 	unsigned long size, expected_size;
4356 	struct packet_ring_buffer *rb;
4357 	unsigned long start;
4358 	int err = -EINVAL;
4359 	int i;
4360 
4361 	if (vma->vm_pgoff)
4362 		return -EINVAL;
4363 
4364 	mutex_lock(&po->pg_vec_lock);
4365 
4366 	expected_size = 0;
4367 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4368 		if (rb->pg_vec) {
4369 			expected_size += rb->pg_vec_len
4370 						* rb->pg_vec_pages
4371 						* PAGE_SIZE;
4372 		}
4373 	}
4374 
4375 	if (expected_size == 0)
4376 		goto out;
4377 
4378 	size = vma->vm_end - vma->vm_start;
4379 	if (size != expected_size)
4380 		goto out;
4381 
4382 	start = vma->vm_start;
4383 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4384 		if (rb->pg_vec == NULL)
4385 			continue;
4386 
4387 		for (i = 0; i < rb->pg_vec_len; i++) {
4388 			struct page *page;
4389 			void *kaddr = rb->pg_vec[i].buffer;
4390 			int pg_num;
4391 
4392 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4393 				page = pgv_to_page(kaddr);
4394 				err = vm_insert_page(vma, start, page);
4395 				if (unlikely(err))
4396 					goto out;
4397 				start += PAGE_SIZE;
4398 				kaddr += PAGE_SIZE;
4399 			}
4400 		}
4401 	}
4402 
4403 	atomic_inc(&po->mapped);
4404 	vma->vm_ops = &packet_mmap_ops;
4405 	err = 0;
4406 
4407 out:
4408 	mutex_unlock(&po->pg_vec_lock);
4409 	return err;
4410 }
4411 
4412 static const struct proto_ops packet_ops_spkt = {
4413 	.family =	PF_PACKET,
4414 	.owner =	THIS_MODULE,
4415 	.release =	packet_release,
4416 	.bind =		packet_bind_spkt,
4417 	.connect =	sock_no_connect,
4418 	.socketpair =	sock_no_socketpair,
4419 	.accept =	sock_no_accept,
4420 	.getname =	packet_getname_spkt,
4421 	.poll =		datagram_poll,
4422 	.ioctl =	packet_ioctl,
4423 	.listen =	sock_no_listen,
4424 	.shutdown =	sock_no_shutdown,
4425 	.setsockopt =	sock_no_setsockopt,
4426 	.getsockopt =	sock_no_getsockopt,
4427 	.sendmsg =	packet_sendmsg_spkt,
4428 	.recvmsg =	packet_recvmsg,
4429 	.mmap =		sock_no_mmap,
4430 	.sendpage =	sock_no_sendpage,
4431 };
4432 
4433 static const struct proto_ops packet_ops = {
4434 	.family =	PF_PACKET,
4435 	.owner =	THIS_MODULE,
4436 	.release =	packet_release,
4437 	.bind =		packet_bind,
4438 	.connect =	sock_no_connect,
4439 	.socketpair =	sock_no_socketpair,
4440 	.accept =	sock_no_accept,
4441 	.getname =	packet_getname,
4442 	.poll =		packet_poll,
4443 	.ioctl =	packet_ioctl,
4444 	.listen =	sock_no_listen,
4445 	.shutdown =	sock_no_shutdown,
4446 	.setsockopt =	packet_setsockopt,
4447 	.getsockopt =	packet_getsockopt,
4448 #ifdef CONFIG_COMPAT
4449 	.compat_setsockopt = compat_packet_setsockopt,
4450 #endif
4451 	.sendmsg =	packet_sendmsg,
4452 	.recvmsg =	packet_recvmsg,
4453 	.mmap =		packet_mmap,
4454 	.sendpage =	sock_no_sendpage,
4455 };
4456 
4457 static const struct net_proto_family packet_family_ops = {
4458 	.family =	PF_PACKET,
4459 	.create =	packet_create,
4460 	.owner	=	THIS_MODULE,
4461 };
4462 
4463 static struct notifier_block packet_netdev_notifier = {
4464 	.notifier_call =	packet_notifier,
4465 };
4466 
4467 #ifdef CONFIG_PROC_FS
4468 
4469 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4470 	__acquires(RCU)
4471 {
4472 	struct net *net = seq_file_net(seq);
4473 
4474 	rcu_read_lock();
4475 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4476 }
4477 
4478 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4479 {
4480 	struct net *net = seq_file_net(seq);
4481 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4482 }
4483 
4484 static void packet_seq_stop(struct seq_file *seq, void *v)
4485 	__releases(RCU)
4486 {
4487 	rcu_read_unlock();
4488 }
4489 
4490 static int packet_seq_show(struct seq_file *seq, void *v)
4491 {
4492 	if (v == SEQ_START_TOKEN)
4493 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4494 	else {
4495 		struct sock *s = sk_entry(v);
4496 		const struct packet_sock *po = pkt_sk(s);
4497 
4498 		seq_printf(seq,
4499 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4500 			   s,
4501 			   atomic_read(&s->sk_refcnt),
4502 			   s->sk_type,
4503 			   ntohs(po->num),
4504 			   po->ifindex,
4505 			   po->running,
4506 			   atomic_read(&s->sk_rmem_alloc),
4507 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4508 			   sock_i_ino(s));
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 static const struct seq_operations packet_seq_ops = {
4515 	.start	= packet_seq_start,
4516 	.next	= packet_seq_next,
4517 	.stop	= packet_seq_stop,
4518 	.show	= packet_seq_show,
4519 };
4520 
4521 static int packet_seq_open(struct inode *inode, struct file *file)
4522 {
4523 	return seq_open_net(inode, file, &packet_seq_ops,
4524 			    sizeof(struct seq_net_private));
4525 }
4526 
4527 static const struct file_operations packet_seq_fops = {
4528 	.owner		= THIS_MODULE,
4529 	.open		= packet_seq_open,
4530 	.read		= seq_read,
4531 	.llseek		= seq_lseek,
4532 	.release	= seq_release_net,
4533 };
4534 
4535 #endif
4536 
4537 static int __net_init packet_net_init(struct net *net)
4538 {
4539 	mutex_init(&net->packet.sklist_lock);
4540 	INIT_HLIST_HEAD(&net->packet.sklist);
4541 
4542 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4543 		return -ENOMEM;
4544 
4545 	return 0;
4546 }
4547 
4548 static void __net_exit packet_net_exit(struct net *net)
4549 {
4550 	remove_proc_entry("packet", net->proc_net);
4551 }
4552 
4553 static struct pernet_operations packet_net_ops = {
4554 	.init = packet_net_init,
4555 	.exit = packet_net_exit,
4556 };
4557 
4558 
4559 static void __exit packet_exit(void)
4560 {
4561 	unregister_netdevice_notifier(&packet_netdev_notifier);
4562 	unregister_pernet_subsys(&packet_net_ops);
4563 	sock_unregister(PF_PACKET);
4564 	proto_unregister(&packet_proto);
4565 }
4566 
4567 static int __init packet_init(void)
4568 {
4569 	int rc = proto_register(&packet_proto, 0);
4570 
4571 	if (rc != 0)
4572 		goto out;
4573 
4574 	sock_register(&packet_family_ops);
4575 	register_pernet_subsys(&packet_net_ops);
4576 	register_netdevice_notifier(&packet_netdev_notifier);
4577 out:
4578 	return rc;
4579 }
4580 
4581 module_init(packet_init);
4582 module_exit(packet_exit);
4583 MODULE_LICENSE("GPL");
4584 MODULE_ALIAS_NETPROTO(PF_PACKET);
4585