1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PACKET - implements raw packet sockets. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox, <gw4pts@gw4pts.ampr.org> 12 * 13 * Fixes: 14 * Alan Cox : verify_area() now used correctly 15 * Alan Cox : new skbuff lists, look ma no backlogs! 16 * Alan Cox : tidied skbuff lists. 17 * Alan Cox : Now uses generic datagram routines I 18 * added. Also fixed the peek/read crash 19 * from all old Linux datagram code. 20 * Alan Cox : Uses the improved datagram code. 21 * Alan Cox : Added NULL's for socket options. 22 * Alan Cox : Re-commented the code. 23 * Alan Cox : Use new kernel side addressing 24 * Rob Janssen : Correct MTU usage. 25 * Dave Platt : Counter leaks caused by incorrect 26 * interrupt locking and some slightly 27 * dubious gcc output. Can you read 28 * compiler: it said _VOLATILE_ 29 * Richard Kooijman : Timestamp fixes. 30 * Alan Cox : New buffers. Use sk->mac.raw. 31 * Alan Cox : sendmsg/recvmsg support. 32 * Alan Cox : Protocol setting support 33 * Alexey Kuznetsov : Untied from IPv4 stack. 34 * Cyrus Durgin : Fixed kerneld for kmod. 35 * Michal Ostrowski : Module initialization cleanup. 36 * Ulises Alonso : Frame number limit removal and 37 * packet_set_ring memory leak. 38 * Eric Biederman : Allow for > 8 byte hardware addresses. 39 * The convention is that longer addresses 40 * will simply extend the hardware address 41 * byte arrays at the end of sockaddr_ll 42 * and packet_mreq. 43 * Johann Baudy : Added TX RING. 44 * Chetan Loke : Implemented TPACKET_V3 block abstraction 45 * layer. 46 * Copyright (C) 2011, <lokec@ccs.neu.edu> 47 */ 48 49 #include <linux/types.h> 50 #include <linux/mm.h> 51 #include <linux/capability.h> 52 #include <linux/fcntl.h> 53 #include <linux/socket.h> 54 #include <linux/in.h> 55 #include <linux/inet.h> 56 #include <linux/netdevice.h> 57 #include <linux/if_packet.h> 58 #include <linux/wireless.h> 59 #include <linux/kernel.h> 60 #include <linux/kmod.h> 61 #include <linux/slab.h> 62 #include <linux/vmalloc.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <linux/skbuff.h> 67 #include <net/sock.h> 68 #include <linux/errno.h> 69 #include <linux/timer.h> 70 #include <linux/uaccess.h> 71 #include <asm/ioctls.h> 72 #include <asm/page.h> 73 #include <asm/cacheflush.h> 74 #include <asm/io.h> 75 #include <linux/proc_fs.h> 76 #include <linux/seq_file.h> 77 #include <linux/poll.h> 78 #include <linux/module.h> 79 #include <linux/init.h> 80 #include <linux/mutex.h> 81 #include <linux/if_vlan.h> 82 #include <linux/virtio_net.h> 83 #include <linux/errqueue.h> 84 #include <linux/net_tstamp.h> 85 #include <linux/percpu.h> 86 #ifdef CONFIG_INET 87 #include <net/inet_common.h> 88 #endif 89 #include <linux/bpf.h> 90 #include <net/compat.h> 91 92 #include "internal.h" 93 94 /* 95 Assumptions: 96 - if device has no dev->hard_header routine, it adds and removes ll header 97 inside itself. In this case ll header is invisible outside of device, 98 but higher levels still should reserve dev->hard_header_len. 99 Some devices are enough clever to reallocate skb, when header 100 will not fit to reserved space (tunnel), another ones are silly 101 (PPP). 102 - packet socket receives packets with pulled ll header, 103 so that SOCK_RAW should push it back. 104 105 On receive: 106 ----------- 107 108 Incoming, dev->hard_header!=NULL 109 mac_header -> ll header 110 data -> data 111 112 Outgoing, dev->hard_header!=NULL 113 mac_header -> ll header 114 data -> ll header 115 116 Incoming, dev->hard_header==NULL 117 mac_header -> UNKNOWN position. It is very likely, that it points to ll 118 header. PPP makes it, that is wrong, because introduce 119 assymetry between rx and tx paths. 120 data -> data 121 122 Outgoing, dev->hard_header==NULL 123 mac_header -> data. ll header is still not built! 124 data -> data 125 126 Resume 127 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 128 129 130 On transmit: 131 ------------ 132 133 dev->hard_header != NULL 134 mac_header -> ll header 135 data -> ll header 136 137 dev->hard_header == NULL (ll header is added by device, we cannot control it) 138 mac_header -> data 139 data -> data 140 141 We should set nh.raw on output to correct posistion, 142 packet classifier depends on it. 143 */ 144 145 /* Private packet socket structures. */ 146 147 /* identical to struct packet_mreq except it has 148 * a longer address field. 149 */ 150 struct packet_mreq_max { 151 int mr_ifindex; 152 unsigned short mr_type; 153 unsigned short mr_alen; 154 unsigned char mr_address[MAX_ADDR_LEN]; 155 }; 156 157 union tpacket_uhdr { 158 struct tpacket_hdr *h1; 159 struct tpacket2_hdr *h2; 160 struct tpacket3_hdr *h3; 161 void *raw; 162 }; 163 164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 165 int closing, int tx_ring); 166 167 #define V3_ALIGNMENT (8) 168 169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 170 171 #define BLK_PLUS_PRIV(sz_of_priv) \ 172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 173 174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 181 182 struct packet_sock; 183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 184 struct packet_type *pt, struct net_device *orig_dev); 185 186 static void *packet_previous_frame(struct packet_sock *po, 187 struct packet_ring_buffer *rb, 188 int status); 189 static void packet_increment_head(struct packet_ring_buffer *buff); 190 static int prb_curr_blk_in_use(struct tpacket_block_desc *); 191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 192 struct packet_sock *); 193 static void prb_retire_current_block(struct tpacket_kbdq_core *, 194 struct packet_sock *, unsigned int status); 195 static int prb_queue_frozen(struct tpacket_kbdq_core *); 196 static void prb_open_block(struct tpacket_kbdq_core *, 197 struct tpacket_block_desc *); 198 static void prb_retire_rx_blk_timer_expired(struct timer_list *); 199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 201 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 202 struct tpacket3_hdr *); 203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 204 struct tpacket3_hdr *); 205 static void packet_flush_mclist(struct sock *sk); 206 static u16 packet_pick_tx_queue(struct sk_buff *skb); 207 208 struct packet_skb_cb { 209 union { 210 struct sockaddr_pkt pkt; 211 union { 212 /* Trick: alias skb original length with 213 * ll.sll_family and ll.protocol in order 214 * to save room. 215 */ 216 unsigned int origlen; 217 struct sockaddr_ll ll; 218 }; 219 } sa; 220 }; 221 222 #define vio_le() virtio_legacy_is_little_endian() 223 224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 225 226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 227 #define GET_PBLOCK_DESC(x, bid) \ 228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 231 #define GET_NEXT_PRB_BLK_NUM(x) \ 232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 233 ((x)->kactive_blk_num+1) : 0) 234 235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 236 static void __fanout_link(struct sock *sk, struct packet_sock *po); 237 238 static int packet_direct_xmit(struct sk_buff *skb) 239 { 240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb)); 241 } 242 243 static struct net_device *packet_cached_dev_get(struct packet_sock *po) 244 { 245 struct net_device *dev; 246 247 rcu_read_lock(); 248 dev = rcu_dereference(po->cached_dev); 249 if (likely(dev)) 250 dev_hold(dev); 251 rcu_read_unlock(); 252 253 return dev; 254 } 255 256 static void packet_cached_dev_assign(struct packet_sock *po, 257 struct net_device *dev) 258 { 259 rcu_assign_pointer(po->cached_dev, dev); 260 } 261 262 static void packet_cached_dev_reset(struct packet_sock *po) 263 { 264 RCU_INIT_POINTER(po->cached_dev, NULL); 265 } 266 267 static bool packet_use_direct_xmit(const struct packet_sock *po) 268 { 269 return po->xmit == packet_direct_xmit; 270 } 271 272 static u16 packet_pick_tx_queue(struct sk_buff *skb) 273 { 274 struct net_device *dev = skb->dev; 275 const struct net_device_ops *ops = dev->netdev_ops; 276 int cpu = raw_smp_processor_id(); 277 u16 queue_index; 278 279 #ifdef CONFIG_XPS 280 skb->sender_cpu = cpu + 1; 281 #endif 282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues); 283 if (ops->ndo_select_queue) { 284 queue_index = ops->ndo_select_queue(dev, skb, NULL); 285 queue_index = netdev_cap_txqueue(dev, queue_index); 286 } else { 287 queue_index = netdev_pick_tx(dev, skb, NULL); 288 } 289 290 return queue_index; 291 } 292 293 /* __register_prot_hook must be invoked through register_prot_hook 294 * or from a context in which asynchronous accesses to the packet 295 * socket is not possible (packet_create()). 296 */ 297 static void __register_prot_hook(struct sock *sk) 298 { 299 struct packet_sock *po = pkt_sk(sk); 300 301 if (!po->running) { 302 if (po->fanout) 303 __fanout_link(sk, po); 304 else 305 dev_add_pack(&po->prot_hook); 306 307 sock_hold(sk); 308 po->running = 1; 309 } 310 } 311 312 static void register_prot_hook(struct sock *sk) 313 { 314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock); 315 __register_prot_hook(sk); 316 } 317 318 /* If the sync parameter is true, we will temporarily drop 319 * the po->bind_lock and do a synchronize_net to make sure no 320 * asynchronous packet processing paths still refer to the elements 321 * of po->prot_hook. If the sync parameter is false, it is the 322 * callers responsibility to take care of this. 323 */ 324 static void __unregister_prot_hook(struct sock *sk, bool sync) 325 { 326 struct packet_sock *po = pkt_sk(sk); 327 328 lockdep_assert_held_once(&po->bind_lock); 329 330 po->running = 0; 331 332 if (po->fanout) 333 __fanout_unlink(sk, po); 334 else 335 __dev_remove_pack(&po->prot_hook); 336 337 __sock_put(sk); 338 339 if (sync) { 340 spin_unlock(&po->bind_lock); 341 synchronize_net(); 342 spin_lock(&po->bind_lock); 343 } 344 } 345 346 static void unregister_prot_hook(struct sock *sk, bool sync) 347 { 348 struct packet_sock *po = pkt_sk(sk); 349 350 if (po->running) 351 __unregister_prot_hook(sk, sync); 352 } 353 354 static inline struct page * __pure pgv_to_page(void *addr) 355 { 356 if (is_vmalloc_addr(addr)) 357 return vmalloc_to_page(addr); 358 return virt_to_page(addr); 359 } 360 361 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 362 { 363 union tpacket_uhdr h; 364 365 h.raw = frame; 366 switch (po->tp_version) { 367 case TPACKET_V1: 368 h.h1->tp_status = status; 369 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 370 break; 371 case TPACKET_V2: 372 h.h2->tp_status = status; 373 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 374 break; 375 case TPACKET_V3: 376 h.h3->tp_status = status; 377 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 378 break; 379 default: 380 WARN(1, "TPACKET version not supported.\n"); 381 BUG(); 382 } 383 384 smp_wmb(); 385 } 386 387 static int __packet_get_status(const struct packet_sock *po, void *frame) 388 { 389 union tpacket_uhdr h; 390 391 smp_rmb(); 392 393 h.raw = frame; 394 switch (po->tp_version) { 395 case TPACKET_V1: 396 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 397 return h.h1->tp_status; 398 case TPACKET_V2: 399 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 400 return h.h2->tp_status; 401 case TPACKET_V3: 402 flush_dcache_page(pgv_to_page(&h.h3->tp_status)); 403 return h.h3->tp_status; 404 default: 405 WARN(1, "TPACKET version not supported.\n"); 406 BUG(); 407 return 0; 408 } 409 } 410 411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts, 412 unsigned int flags) 413 { 414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 415 416 if (shhwtstamps && 417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) && 418 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts)) 419 return TP_STATUS_TS_RAW_HARDWARE; 420 421 if (ktime_to_timespec64_cond(skb->tstamp, ts)) 422 return TP_STATUS_TS_SOFTWARE; 423 424 return 0; 425 } 426 427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame, 428 struct sk_buff *skb) 429 { 430 union tpacket_uhdr h; 431 struct timespec64 ts; 432 __u32 ts_status; 433 434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 435 return 0; 436 437 h.raw = frame; 438 /* 439 * versions 1 through 3 overflow the timestamps in y2106, since they 440 * all store the seconds in a 32-bit unsigned integer. 441 * If we create a version 4, that should have a 64-bit timestamp, 442 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit 443 * nanoseconds. 444 */ 445 switch (po->tp_version) { 446 case TPACKET_V1: 447 h.h1->tp_sec = ts.tv_sec; 448 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 449 break; 450 case TPACKET_V2: 451 h.h2->tp_sec = ts.tv_sec; 452 h.h2->tp_nsec = ts.tv_nsec; 453 break; 454 case TPACKET_V3: 455 h.h3->tp_sec = ts.tv_sec; 456 h.h3->tp_nsec = ts.tv_nsec; 457 break; 458 default: 459 WARN(1, "TPACKET version not supported.\n"); 460 BUG(); 461 } 462 463 /* one flush is safe, as both fields always lie on the same cacheline */ 464 flush_dcache_page(pgv_to_page(&h.h1->tp_sec)); 465 smp_wmb(); 466 467 return ts_status; 468 } 469 470 static void *packet_lookup_frame(const struct packet_sock *po, 471 const struct packet_ring_buffer *rb, 472 unsigned int position, 473 int status) 474 { 475 unsigned int pg_vec_pos, frame_offset; 476 union tpacket_uhdr h; 477 478 pg_vec_pos = position / rb->frames_per_block; 479 frame_offset = position % rb->frames_per_block; 480 481 h.raw = rb->pg_vec[pg_vec_pos].buffer + 482 (frame_offset * rb->frame_size); 483 484 if (status != __packet_get_status(po, h.raw)) 485 return NULL; 486 487 return h.raw; 488 } 489 490 static void *packet_current_frame(struct packet_sock *po, 491 struct packet_ring_buffer *rb, 492 int status) 493 { 494 return packet_lookup_frame(po, rb, rb->head, status); 495 } 496 497 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 498 { 499 del_timer_sync(&pkc->retire_blk_timer); 500 } 501 502 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 503 struct sk_buff_head *rb_queue) 504 { 505 struct tpacket_kbdq_core *pkc; 506 507 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 508 509 spin_lock_bh(&rb_queue->lock); 510 pkc->delete_blk_timer = 1; 511 spin_unlock_bh(&rb_queue->lock); 512 513 prb_del_retire_blk_timer(pkc); 514 } 515 516 static void prb_setup_retire_blk_timer(struct packet_sock *po) 517 { 518 struct tpacket_kbdq_core *pkc; 519 520 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 521 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired, 522 0); 523 pkc->retire_blk_timer.expires = jiffies; 524 } 525 526 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 527 int blk_size_in_bytes) 528 { 529 struct net_device *dev; 530 unsigned int mbits, div; 531 struct ethtool_link_ksettings ecmd; 532 int err; 533 534 rtnl_lock(); 535 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 536 if (unlikely(!dev)) { 537 rtnl_unlock(); 538 return DEFAULT_PRB_RETIRE_TOV; 539 } 540 err = __ethtool_get_link_ksettings(dev, &ecmd); 541 rtnl_unlock(); 542 if (err) 543 return DEFAULT_PRB_RETIRE_TOV; 544 545 /* If the link speed is so slow you don't really 546 * need to worry about perf anyways 547 */ 548 if (ecmd.base.speed < SPEED_1000 || 549 ecmd.base.speed == SPEED_UNKNOWN) 550 return DEFAULT_PRB_RETIRE_TOV; 551 552 div = ecmd.base.speed / 1000; 553 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 554 555 if (div) 556 mbits /= div; 557 558 if (div) 559 return mbits + 1; 560 return mbits; 561 } 562 563 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 564 union tpacket_req_u *req_u) 565 { 566 p1->feature_req_word = req_u->req3.tp_feature_req_word; 567 } 568 569 static void init_prb_bdqc(struct packet_sock *po, 570 struct packet_ring_buffer *rb, 571 struct pgv *pg_vec, 572 union tpacket_req_u *req_u) 573 { 574 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb); 575 struct tpacket_block_desc *pbd; 576 577 memset(p1, 0x0, sizeof(*p1)); 578 579 p1->knxt_seq_num = 1; 580 p1->pkbdq = pg_vec; 581 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 582 p1->pkblk_start = pg_vec[0].buffer; 583 p1->kblk_size = req_u->req3.tp_block_size; 584 p1->knum_blocks = req_u->req3.tp_block_nr; 585 p1->hdrlen = po->tp_hdrlen; 586 p1->version = po->tp_version; 587 p1->last_kactive_blk_num = 0; 588 po->stats.stats3.tp_freeze_q_cnt = 0; 589 if (req_u->req3.tp_retire_blk_tov) 590 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 591 else 592 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 593 req_u->req3.tp_block_size); 594 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 595 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 596 597 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv); 598 prb_init_ft_ops(p1, req_u); 599 prb_setup_retire_blk_timer(po); 600 prb_open_block(p1, pbd); 601 } 602 603 /* Do NOT update the last_blk_num first. 604 * Assumes sk_buff_head lock is held. 605 */ 606 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 607 { 608 mod_timer(&pkc->retire_blk_timer, 609 jiffies + pkc->tov_in_jiffies); 610 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 611 } 612 613 /* 614 * Timer logic: 615 * 1) We refresh the timer only when we open a block. 616 * By doing this we don't waste cycles refreshing the timer 617 * on packet-by-packet basis. 618 * 619 * With a 1MB block-size, on a 1Gbps line, it will take 620 * i) ~8 ms to fill a block + ii) memcpy etc. 621 * In this cut we are not accounting for the memcpy time. 622 * 623 * So, if the user sets the 'tmo' to 10ms then the timer 624 * will never fire while the block is still getting filled 625 * (which is what we want). However, the user could choose 626 * to close a block early and that's fine. 627 * 628 * But when the timer does fire, we check whether or not to refresh it. 629 * Since the tmo granularity is in msecs, it is not too expensive 630 * to refresh the timer, lets say every '8' msecs. 631 * Either the user can set the 'tmo' or we can derive it based on 632 * a) line-speed and b) block-size. 633 * prb_calc_retire_blk_tmo() calculates the tmo. 634 * 635 */ 636 static void prb_retire_rx_blk_timer_expired(struct timer_list *t) 637 { 638 struct packet_sock *po = 639 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer); 640 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 641 unsigned int frozen; 642 struct tpacket_block_desc *pbd; 643 644 spin_lock(&po->sk.sk_receive_queue.lock); 645 646 frozen = prb_queue_frozen(pkc); 647 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 648 649 if (unlikely(pkc->delete_blk_timer)) 650 goto out; 651 652 /* We only need to plug the race when the block is partially filled. 653 * tpacket_rcv: 654 * lock(); increment BLOCK_NUM_PKTS; unlock() 655 * copy_bits() is in progress ... 656 * timer fires on other cpu: 657 * we can't retire the current block because copy_bits 658 * is in progress. 659 * 660 */ 661 if (BLOCK_NUM_PKTS(pbd)) { 662 while (atomic_read(&pkc->blk_fill_in_prog)) { 663 /* Waiting for skb_copy_bits to finish... */ 664 cpu_relax(); 665 } 666 } 667 668 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 669 if (!frozen) { 670 if (!BLOCK_NUM_PKTS(pbd)) { 671 /* An empty block. Just refresh the timer. */ 672 goto refresh_timer; 673 } 674 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 675 if (!prb_dispatch_next_block(pkc, po)) 676 goto refresh_timer; 677 else 678 goto out; 679 } else { 680 /* Case 1. Queue was frozen because user-space was 681 * lagging behind. 682 */ 683 if (prb_curr_blk_in_use(pbd)) { 684 /* 685 * Ok, user-space is still behind. 686 * So just refresh the timer. 687 */ 688 goto refresh_timer; 689 } else { 690 /* Case 2. queue was frozen,user-space caught up, 691 * now the link went idle && the timer fired. 692 * We don't have a block to close.So we open this 693 * block and restart the timer. 694 * opening a block thaws the queue,restarts timer 695 * Thawing/timer-refresh is a side effect. 696 */ 697 prb_open_block(pkc, pbd); 698 goto out; 699 } 700 } 701 } 702 703 refresh_timer: 704 _prb_refresh_rx_retire_blk_timer(pkc); 705 706 out: 707 spin_unlock(&po->sk.sk_receive_queue.lock); 708 } 709 710 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 711 struct tpacket_block_desc *pbd1, __u32 status) 712 { 713 /* Flush everything minus the block header */ 714 715 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 716 u8 *start, *end; 717 718 start = (u8 *)pbd1; 719 720 /* Skip the block header(we know header WILL fit in 4K) */ 721 start += PAGE_SIZE; 722 723 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 724 for (; start < end; start += PAGE_SIZE) 725 flush_dcache_page(pgv_to_page(start)); 726 727 smp_wmb(); 728 #endif 729 730 /* Now update the block status. */ 731 732 BLOCK_STATUS(pbd1) = status; 733 734 /* Flush the block header */ 735 736 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 737 start = (u8 *)pbd1; 738 flush_dcache_page(pgv_to_page(start)); 739 740 smp_wmb(); 741 #endif 742 } 743 744 /* 745 * Side effect: 746 * 747 * 1) flush the block 748 * 2) Increment active_blk_num 749 * 750 * Note:We DONT refresh the timer on purpose. 751 * Because almost always the next block will be opened. 752 */ 753 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 754 struct tpacket_block_desc *pbd1, 755 struct packet_sock *po, unsigned int stat) 756 { 757 __u32 status = TP_STATUS_USER | stat; 758 759 struct tpacket3_hdr *last_pkt; 760 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 761 struct sock *sk = &po->sk; 762 763 if (atomic_read(&po->tp_drops)) 764 status |= TP_STATUS_LOSING; 765 766 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 767 last_pkt->tp_next_offset = 0; 768 769 /* Get the ts of the last pkt */ 770 if (BLOCK_NUM_PKTS(pbd1)) { 771 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 772 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 773 } else { 774 /* Ok, we tmo'd - so get the current time. 775 * 776 * It shouldn't really happen as we don't close empty 777 * blocks. See prb_retire_rx_blk_timer_expired(). 778 */ 779 struct timespec64 ts; 780 ktime_get_real_ts64(&ts); 781 h1->ts_last_pkt.ts_sec = ts.tv_sec; 782 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 783 } 784 785 smp_wmb(); 786 787 /* Flush the block */ 788 prb_flush_block(pkc1, pbd1, status); 789 790 sk->sk_data_ready(sk); 791 792 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 793 } 794 795 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 796 { 797 pkc->reset_pending_on_curr_blk = 0; 798 } 799 800 /* 801 * Side effect of opening a block: 802 * 803 * 1) prb_queue is thawed. 804 * 2) retire_blk_timer is refreshed. 805 * 806 */ 807 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 808 struct tpacket_block_desc *pbd1) 809 { 810 struct timespec64 ts; 811 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 812 813 smp_rmb(); 814 815 /* We could have just memset this but we will lose the 816 * flexibility of making the priv area sticky 817 */ 818 819 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 820 BLOCK_NUM_PKTS(pbd1) = 0; 821 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 822 823 ktime_get_real_ts64(&ts); 824 825 h1->ts_first_pkt.ts_sec = ts.tv_sec; 826 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 827 828 pkc1->pkblk_start = (char *)pbd1; 829 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 830 831 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 832 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 833 834 pbd1->version = pkc1->version; 835 pkc1->prev = pkc1->nxt_offset; 836 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 837 838 prb_thaw_queue(pkc1); 839 _prb_refresh_rx_retire_blk_timer(pkc1); 840 841 smp_wmb(); 842 } 843 844 /* 845 * Queue freeze logic: 846 * 1) Assume tp_block_nr = 8 blocks. 847 * 2) At time 't0', user opens Rx ring. 848 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 849 * 4) user-space is either sleeping or processing block '0'. 850 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 851 * it will close block-7,loop around and try to fill block '0'. 852 * call-flow: 853 * __packet_lookup_frame_in_block 854 * prb_retire_current_block() 855 * prb_dispatch_next_block() 856 * |->(BLOCK_STATUS == USER) evaluates to true 857 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 858 * 6) Now there are two cases: 859 * 6.1) Link goes idle right after the queue is frozen. 860 * But remember, the last open_block() refreshed the timer. 861 * When this timer expires,it will refresh itself so that we can 862 * re-open block-0 in near future. 863 * 6.2) Link is busy and keeps on receiving packets. This is a simple 864 * case and __packet_lookup_frame_in_block will check if block-0 865 * is free and can now be re-used. 866 */ 867 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 868 struct packet_sock *po) 869 { 870 pkc->reset_pending_on_curr_blk = 1; 871 po->stats.stats3.tp_freeze_q_cnt++; 872 } 873 874 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 875 876 /* 877 * If the next block is free then we will dispatch it 878 * and return a good offset. 879 * Else, we will freeze the queue. 880 * So, caller must check the return value. 881 */ 882 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 883 struct packet_sock *po) 884 { 885 struct tpacket_block_desc *pbd; 886 887 smp_rmb(); 888 889 /* 1. Get current block num */ 890 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 891 892 /* 2. If this block is currently in_use then freeze the queue */ 893 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 894 prb_freeze_queue(pkc, po); 895 return NULL; 896 } 897 898 /* 899 * 3. 900 * open this block and return the offset where the first packet 901 * needs to get stored. 902 */ 903 prb_open_block(pkc, pbd); 904 return (void *)pkc->nxt_offset; 905 } 906 907 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 908 struct packet_sock *po, unsigned int status) 909 { 910 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 911 912 /* retire/close the current block */ 913 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 914 /* 915 * Plug the case where copy_bits() is in progress on 916 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 917 * have space to copy the pkt in the current block and 918 * called prb_retire_current_block() 919 * 920 * We don't need to worry about the TMO case because 921 * the timer-handler already handled this case. 922 */ 923 if (!(status & TP_STATUS_BLK_TMO)) { 924 while (atomic_read(&pkc->blk_fill_in_prog)) { 925 /* Waiting for skb_copy_bits to finish... */ 926 cpu_relax(); 927 } 928 } 929 prb_close_block(pkc, pbd, po, status); 930 return; 931 } 932 } 933 934 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd) 935 { 936 return TP_STATUS_USER & BLOCK_STATUS(pbd); 937 } 938 939 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 940 { 941 return pkc->reset_pending_on_curr_blk; 942 } 943 944 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 945 { 946 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 947 atomic_dec(&pkc->blk_fill_in_prog); 948 } 949 950 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 951 struct tpacket3_hdr *ppd) 952 { 953 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb); 954 } 955 956 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 957 struct tpacket3_hdr *ppd) 958 { 959 ppd->hv1.tp_rxhash = 0; 960 } 961 962 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 963 struct tpacket3_hdr *ppd) 964 { 965 if (skb_vlan_tag_present(pkc->skb)) { 966 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb); 967 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto); 968 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 969 } else { 970 ppd->hv1.tp_vlan_tci = 0; 971 ppd->hv1.tp_vlan_tpid = 0; 972 ppd->tp_status = TP_STATUS_AVAILABLE; 973 } 974 } 975 976 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 977 struct tpacket3_hdr *ppd) 978 { 979 ppd->hv1.tp_padding = 0; 980 prb_fill_vlan_info(pkc, ppd); 981 982 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 983 prb_fill_rxhash(pkc, ppd); 984 else 985 prb_clear_rxhash(pkc, ppd); 986 } 987 988 static void prb_fill_curr_block(char *curr, 989 struct tpacket_kbdq_core *pkc, 990 struct tpacket_block_desc *pbd, 991 unsigned int len) 992 { 993 struct tpacket3_hdr *ppd; 994 995 ppd = (struct tpacket3_hdr *)curr; 996 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 997 pkc->prev = curr; 998 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 999 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1000 BLOCK_NUM_PKTS(pbd) += 1; 1001 atomic_inc(&pkc->blk_fill_in_prog); 1002 prb_run_all_ft_ops(pkc, ppd); 1003 } 1004 1005 /* Assumes caller has the sk->rx_queue.lock */ 1006 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1007 struct sk_buff *skb, 1008 unsigned int len 1009 ) 1010 { 1011 struct tpacket_kbdq_core *pkc; 1012 struct tpacket_block_desc *pbd; 1013 char *curr, *end; 1014 1015 pkc = GET_PBDQC_FROM_RB(&po->rx_ring); 1016 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1017 1018 /* Queue is frozen when user space is lagging behind */ 1019 if (prb_queue_frozen(pkc)) { 1020 /* 1021 * Check if that last block which caused the queue to freeze, 1022 * is still in_use by user-space. 1023 */ 1024 if (prb_curr_blk_in_use(pbd)) { 1025 /* Can't record this packet */ 1026 return NULL; 1027 } else { 1028 /* 1029 * Ok, the block was released by user-space. 1030 * Now let's open that block. 1031 * opening a block also thaws the queue. 1032 * Thawing is a side effect. 1033 */ 1034 prb_open_block(pkc, pbd); 1035 } 1036 } 1037 1038 smp_mb(); 1039 curr = pkc->nxt_offset; 1040 pkc->skb = skb; 1041 end = (char *)pbd + pkc->kblk_size; 1042 1043 /* first try the current block */ 1044 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1045 prb_fill_curr_block(curr, pkc, pbd, len); 1046 return (void *)curr; 1047 } 1048 1049 /* Ok, close the current block */ 1050 prb_retire_current_block(pkc, po, 0); 1051 1052 /* Now, try to dispatch the next block */ 1053 curr = (char *)prb_dispatch_next_block(pkc, po); 1054 if (curr) { 1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1056 prb_fill_curr_block(curr, pkc, pbd, len); 1057 return (void *)curr; 1058 } 1059 1060 /* 1061 * No free blocks are available.user_space hasn't caught up yet. 1062 * Queue was just frozen and now this packet will get dropped. 1063 */ 1064 return NULL; 1065 } 1066 1067 static void *packet_current_rx_frame(struct packet_sock *po, 1068 struct sk_buff *skb, 1069 int status, unsigned int len) 1070 { 1071 char *curr = NULL; 1072 switch (po->tp_version) { 1073 case TPACKET_V1: 1074 case TPACKET_V2: 1075 curr = packet_lookup_frame(po, &po->rx_ring, 1076 po->rx_ring.head, status); 1077 return curr; 1078 case TPACKET_V3: 1079 return __packet_lookup_frame_in_block(po, skb, len); 1080 default: 1081 WARN(1, "TPACKET version not supported\n"); 1082 BUG(); 1083 return NULL; 1084 } 1085 } 1086 1087 static void *prb_lookup_block(const struct packet_sock *po, 1088 const struct packet_ring_buffer *rb, 1089 unsigned int idx, 1090 int status) 1091 { 1092 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1093 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx); 1094 1095 if (status != BLOCK_STATUS(pbd)) 1096 return NULL; 1097 return pbd; 1098 } 1099 1100 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1101 { 1102 unsigned int prev; 1103 if (rb->prb_bdqc.kactive_blk_num) 1104 prev = rb->prb_bdqc.kactive_blk_num-1; 1105 else 1106 prev = rb->prb_bdqc.knum_blocks-1; 1107 return prev; 1108 } 1109 1110 /* Assumes caller has held the rx_queue.lock */ 1111 static void *__prb_previous_block(struct packet_sock *po, 1112 struct packet_ring_buffer *rb, 1113 int status) 1114 { 1115 unsigned int previous = prb_previous_blk_num(rb); 1116 return prb_lookup_block(po, rb, previous, status); 1117 } 1118 1119 static void *packet_previous_rx_frame(struct packet_sock *po, 1120 struct packet_ring_buffer *rb, 1121 int status) 1122 { 1123 if (po->tp_version <= TPACKET_V2) 1124 return packet_previous_frame(po, rb, status); 1125 1126 return __prb_previous_block(po, rb, status); 1127 } 1128 1129 static void packet_increment_rx_head(struct packet_sock *po, 1130 struct packet_ring_buffer *rb) 1131 { 1132 switch (po->tp_version) { 1133 case TPACKET_V1: 1134 case TPACKET_V2: 1135 return packet_increment_head(rb); 1136 case TPACKET_V3: 1137 default: 1138 WARN(1, "TPACKET version not supported.\n"); 1139 BUG(); 1140 return; 1141 } 1142 } 1143 1144 static void *packet_previous_frame(struct packet_sock *po, 1145 struct packet_ring_buffer *rb, 1146 int status) 1147 { 1148 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1149 return packet_lookup_frame(po, rb, previous, status); 1150 } 1151 1152 static void packet_increment_head(struct packet_ring_buffer *buff) 1153 { 1154 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1155 } 1156 1157 static void packet_inc_pending(struct packet_ring_buffer *rb) 1158 { 1159 this_cpu_inc(*rb->pending_refcnt); 1160 } 1161 1162 static void packet_dec_pending(struct packet_ring_buffer *rb) 1163 { 1164 this_cpu_dec(*rb->pending_refcnt); 1165 } 1166 1167 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb) 1168 { 1169 unsigned int refcnt = 0; 1170 int cpu; 1171 1172 /* We don't use pending refcount in rx_ring. */ 1173 if (rb->pending_refcnt == NULL) 1174 return 0; 1175 1176 for_each_possible_cpu(cpu) 1177 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu); 1178 1179 return refcnt; 1180 } 1181 1182 static int packet_alloc_pending(struct packet_sock *po) 1183 { 1184 po->rx_ring.pending_refcnt = NULL; 1185 1186 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int); 1187 if (unlikely(po->tx_ring.pending_refcnt == NULL)) 1188 return -ENOBUFS; 1189 1190 return 0; 1191 } 1192 1193 static void packet_free_pending(struct packet_sock *po) 1194 { 1195 free_percpu(po->tx_ring.pending_refcnt); 1196 } 1197 1198 #define ROOM_POW_OFF 2 1199 #define ROOM_NONE 0x0 1200 #define ROOM_LOW 0x1 1201 #define ROOM_NORMAL 0x2 1202 1203 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off) 1204 { 1205 int idx, len; 1206 1207 len = READ_ONCE(po->rx_ring.frame_max) + 1; 1208 idx = READ_ONCE(po->rx_ring.head); 1209 if (pow_off) 1210 idx += len >> pow_off; 1211 if (idx >= len) 1212 idx -= len; 1213 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1214 } 1215 1216 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off) 1217 { 1218 int idx, len; 1219 1220 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks); 1221 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num); 1222 if (pow_off) 1223 idx += len >> pow_off; 1224 if (idx >= len) 1225 idx -= len; 1226 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL); 1227 } 1228 1229 static int __packet_rcv_has_room(const struct packet_sock *po, 1230 const struct sk_buff *skb) 1231 { 1232 const struct sock *sk = &po->sk; 1233 int ret = ROOM_NONE; 1234 1235 if (po->prot_hook.func != tpacket_rcv) { 1236 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1237 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc) 1238 - (skb ? skb->truesize : 0); 1239 1240 if (avail > (rcvbuf >> ROOM_POW_OFF)) 1241 return ROOM_NORMAL; 1242 else if (avail > 0) 1243 return ROOM_LOW; 1244 else 1245 return ROOM_NONE; 1246 } 1247 1248 if (po->tp_version == TPACKET_V3) { 1249 if (__tpacket_v3_has_room(po, ROOM_POW_OFF)) 1250 ret = ROOM_NORMAL; 1251 else if (__tpacket_v3_has_room(po, 0)) 1252 ret = ROOM_LOW; 1253 } else { 1254 if (__tpacket_has_room(po, ROOM_POW_OFF)) 1255 ret = ROOM_NORMAL; 1256 else if (__tpacket_has_room(po, 0)) 1257 ret = ROOM_LOW; 1258 } 1259 1260 return ret; 1261 } 1262 1263 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb) 1264 { 1265 int pressure, ret; 1266 1267 ret = __packet_rcv_has_room(po, skb); 1268 pressure = ret != ROOM_NORMAL; 1269 1270 if (READ_ONCE(po->pressure) != pressure) 1271 WRITE_ONCE(po->pressure, pressure); 1272 1273 return ret; 1274 } 1275 1276 static void packet_rcv_try_clear_pressure(struct packet_sock *po) 1277 { 1278 if (READ_ONCE(po->pressure) && 1279 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL) 1280 WRITE_ONCE(po->pressure, 0); 1281 } 1282 1283 static void packet_sock_destruct(struct sock *sk) 1284 { 1285 skb_queue_purge(&sk->sk_error_queue); 1286 1287 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1288 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 1289 1290 if (!sock_flag(sk, SOCK_DEAD)) { 1291 pr_err("Attempt to release alive packet socket: %p\n", sk); 1292 return; 1293 } 1294 1295 sk_refcnt_debug_dec(sk); 1296 } 1297 1298 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb) 1299 { 1300 u32 *history = po->rollover->history; 1301 u32 victim, rxhash; 1302 int i, count = 0; 1303 1304 rxhash = skb_get_hash(skb); 1305 for (i = 0; i < ROLLOVER_HLEN; i++) 1306 if (READ_ONCE(history[i]) == rxhash) 1307 count++; 1308 1309 victim = prandom_u32() % ROLLOVER_HLEN; 1310 1311 /* Avoid dirtying the cache line if possible */ 1312 if (READ_ONCE(history[victim]) != rxhash) 1313 WRITE_ONCE(history[victim], rxhash); 1314 1315 return count > (ROLLOVER_HLEN >> 1); 1316 } 1317 1318 static unsigned int fanout_demux_hash(struct packet_fanout *f, 1319 struct sk_buff *skb, 1320 unsigned int num) 1321 { 1322 return reciprocal_scale(__skb_get_hash_symmetric(skb), num); 1323 } 1324 1325 static unsigned int fanout_demux_lb(struct packet_fanout *f, 1326 struct sk_buff *skb, 1327 unsigned int num) 1328 { 1329 unsigned int val = atomic_inc_return(&f->rr_cur); 1330 1331 return val % num; 1332 } 1333 1334 static unsigned int fanout_demux_cpu(struct packet_fanout *f, 1335 struct sk_buff *skb, 1336 unsigned int num) 1337 { 1338 return smp_processor_id() % num; 1339 } 1340 1341 static unsigned int fanout_demux_rnd(struct packet_fanout *f, 1342 struct sk_buff *skb, 1343 unsigned int num) 1344 { 1345 return prandom_u32_max(num); 1346 } 1347 1348 static unsigned int fanout_demux_rollover(struct packet_fanout *f, 1349 struct sk_buff *skb, 1350 unsigned int idx, bool try_self, 1351 unsigned int num) 1352 { 1353 struct packet_sock *po, *po_next, *po_skip = NULL; 1354 unsigned int i, j, room = ROOM_NONE; 1355 1356 po = pkt_sk(f->arr[idx]); 1357 1358 if (try_self) { 1359 room = packet_rcv_has_room(po, skb); 1360 if (room == ROOM_NORMAL || 1361 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb))) 1362 return idx; 1363 po_skip = po; 1364 } 1365 1366 i = j = min_t(int, po->rollover->sock, num - 1); 1367 do { 1368 po_next = pkt_sk(f->arr[i]); 1369 if (po_next != po_skip && !READ_ONCE(po_next->pressure) && 1370 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) { 1371 if (i != j) 1372 po->rollover->sock = i; 1373 atomic_long_inc(&po->rollover->num); 1374 if (room == ROOM_LOW) 1375 atomic_long_inc(&po->rollover->num_huge); 1376 return i; 1377 } 1378 1379 if (++i == num) 1380 i = 0; 1381 } while (i != j); 1382 1383 atomic_long_inc(&po->rollover->num_failed); 1384 return idx; 1385 } 1386 1387 static unsigned int fanout_demux_qm(struct packet_fanout *f, 1388 struct sk_buff *skb, 1389 unsigned int num) 1390 { 1391 return skb_get_queue_mapping(skb) % num; 1392 } 1393 1394 static unsigned int fanout_demux_bpf(struct packet_fanout *f, 1395 struct sk_buff *skb, 1396 unsigned int num) 1397 { 1398 struct bpf_prog *prog; 1399 unsigned int ret = 0; 1400 1401 rcu_read_lock(); 1402 prog = rcu_dereference(f->bpf_prog); 1403 if (prog) 1404 ret = bpf_prog_run_clear_cb(prog, skb) % num; 1405 rcu_read_unlock(); 1406 1407 return ret; 1408 } 1409 1410 static bool fanout_has_flag(struct packet_fanout *f, u16 flag) 1411 { 1412 return f->flags & (flag >> 8); 1413 } 1414 1415 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1416 struct packet_type *pt, struct net_device *orig_dev) 1417 { 1418 struct packet_fanout *f = pt->af_packet_priv; 1419 unsigned int num = READ_ONCE(f->num_members); 1420 struct net *net = read_pnet(&f->net); 1421 struct packet_sock *po; 1422 unsigned int idx; 1423 1424 if (!net_eq(dev_net(dev), net) || !num) { 1425 kfree_skb(skb); 1426 return 0; 1427 } 1428 1429 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) { 1430 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET); 1431 if (!skb) 1432 return 0; 1433 } 1434 switch (f->type) { 1435 case PACKET_FANOUT_HASH: 1436 default: 1437 idx = fanout_demux_hash(f, skb, num); 1438 break; 1439 case PACKET_FANOUT_LB: 1440 idx = fanout_demux_lb(f, skb, num); 1441 break; 1442 case PACKET_FANOUT_CPU: 1443 idx = fanout_demux_cpu(f, skb, num); 1444 break; 1445 case PACKET_FANOUT_RND: 1446 idx = fanout_demux_rnd(f, skb, num); 1447 break; 1448 case PACKET_FANOUT_QM: 1449 idx = fanout_demux_qm(f, skb, num); 1450 break; 1451 case PACKET_FANOUT_ROLLOVER: 1452 idx = fanout_demux_rollover(f, skb, 0, false, num); 1453 break; 1454 case PACKET_FANOUT_CBPF: 1455 case PACKET_FANOUT_EBPF: 1456 idx = fanout_demux_bpf(f, skb, num); 1457 break; 1458 } 1459 1460 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER)) 1461 idx = fanout_demux_rollover(f, skb, idx, true, num); 1462 1463 po = pkt_sk(f->arr[idx]); 1464 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1465 } 1466 1467 DEFINE_MUTEX(fanout_mutex); 1468 EXPORT_SYMBOL_GPL(fanout_mutex); 1469 static LIST_HEAD(fanout_list); 1470 static u16 fanout_next_id; 1471 1472 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1473 { 1474 struct packet_fanout *f = po->fanout; 1475 1476 spin_lock(&f->lock); 1477 f->arr[f->num_members] = sk; 1478 smp_wmb(); 1479 f->num_members++; 1480 if (f->num_members == 1) 1481 dev_add_pack(&f->prot_hook); 1482 spin_unlock(&f->lock); 1483 } 1484 1485 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1486 { 1487 struct packet_fanout *f = po->fanout; 1488 int i; 1489 1490 spin_lock(&f->lock); 1491 for (i = 0; i < f->num_members; i++) { 1492 if (f->arr[i] == sk) 1493 break; 1494 } 1495 BUG_ON(i >= f->num_members); 1496 f->arr[i] = f->arr[f->num_members - 1]; 1497 f->num_members--; 1498 if (f->num_members == 0) 1499 __dev_remove_pack(&f->prot_hook); 1500 spin_unlock(&f->lock); 1501 } 1502 1503 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk) 1504 { 1505 if (sk->sk_family != PF_PACKET) 1506 return false; 1507 1508 return ptype->af_packet_priv == pkt_sk(sk)->fanout; 1509 } 1510 1511 static void fanout_init_data(struct packet_fanout *f) 1512 { 1513 switch (f->type) { 1514 case PACKET_FANOUT_LB: 1515 atomic_set(&f->rr_cur, 0); 1516 break; 1517 case PACKET_FANOUT_CBPF: 1518 case PACKET_FANOUT_EBPF: 1519 RCU_INIT_POINTER(f->bpf_prog, NULL); 1520 break; 1521 } 1522 } 1523 1524 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new) 1525 { 1526 struct bpf_prog *old; 1527 1528 spin_lock(&f->lock); 1529 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock)); 1530 rcu_assign_pointer(f->bpf_prog, new); 1531 spin_unlock(&f->lock); 1532 1533 if (old) { 1534 synchronize_net(); 1535 bpf_prog_destroy(old); 1536 } 1537 } 1538 1539 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data, 1540 unsigned int len) 1541 { 1542 struct bpf_prog *new; 1543 struct sock_fprog fprog; 1544 int ret; 1545 1546 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1547 return -EPERM; 1548 if (len != sizeof(fprog)) 1549 return -EINVAL; 1550 if (copy_from_user(&fprog, data, len)) 1551 return -EFAULT; 1552 1553 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false); 1554 if (ret) 1555 return ret; 1556 1557 __fanout_set_data_bpf(po->fanout, new); 1558 return 0; 1559 } 1560 1561 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data, 1562 unsigned int len) 1563 { 1564 struct bpf_prog *new; 1565 u32 fd; 1566 1567 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED)) 1568 return -EPERM; 1569 if (len != sizeof(fd)) 1570 return -EINVAL; 1571 if (copy_from_user(&fd, data, len)) 1572 return -EFAULT; 1573 1574 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER); 1575 if (IS_ERR(new)) 1576 return PTR_ERR(new); 1577 1578 __fanout_set_data_bpf(po->fanout, new); 1579 return 0; 1580 } 1581 1582 static int fanout_set_data(struct packet_sock *po, char __user *data, 1583 unsigned int len) 1584 { 1585 switch (po->fanout->type) { 1586 case PACKET_FANOUT_CBPF: 1587 return fanout_set_data_cbpf(po, data, len); 1588 case PACKET_FANOUT_EBPF: 1589 return fanout_set_data_ebpf(po, data, len); 1590 default: 1591 return -EINVAL; 1592 } 1593 } 1594 1595 static void fanout_release_data(struct packet_fanout *f) 1596 { 1597 switch (f->type) { 1598 case PACKET_FANOUT_CBPF: 1599 case PACKET_FANOUT_EBPF: 1600 __fanout_set_data_bpf(f, NULL); 1601 } 1602 } 1603 1604 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id) 1605 { 1606 struct packet_fanout *f; 1607 1608 list_for_each_entry(f, &fanout_list, list) { 1609 if (f->id == candidate_id && 1610 read_pnet(&f->net) == sock_net(sk)) { 1611 return false; 1612 } 1613 } 1614 return true; 1615 } 1616 1617 static bool fanout_find_new_id(struct sock *sk, u16 *new_id) 1618 { 1619 u16 id = fanout_next_id; 1620 1621 do { 1622 if (__fanout_id_is_free(sk, id)) { 1623 *new_id = id; 1624 fanout_next_id = id + 1; 1625 return true; 1626 } 1627 1628 id++; 1629 } while (id != fanout_next_id); 1630 1631 return false; 1632 } 1633 1634 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1635 { 1636 struct packet_rollover *rollover = NULL; 1637 struct packet_sock *po = pkt_sk(sk); 1638 struct packet_fanout *f, *match; 1639 u8 type = type_flags & 0xff; 1640 u8 flags = type_flags >> 8; 1641 int err; 1642 1643 switch (type) { 1644 case PACKET_FANOUT_ROLLOVER: 1645 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER) 1646 return -EINVAL; 1647 case PACKET_FANOUT_HASH: 1648 case PACKET_FANOUT_LB: 1649 case PACKET_FANOUT_CPU: 1650 case PACKET_FANOUT_RND: 1651 case PACKET_FANOUT_QM: 1652 case PACKET_FANOUT_CBPF: 1653 case PACKET_FANOUT_EBPF: 1654 break; 1655 default: 1656 return -EINVAL; 1657 } 1658 1659 mutex_lock(&fanout_mutex); 1660 1661 err = -EALREADY; 1662 if (po->fanout) 1663 goto out; 1664 1665 if (type == PACKET_FANOUT_ROLLOVER || 1666 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) { 1667 err = -ENOMEM; 1668 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL); 1669 if (!rollover) 1670 goto out; 1671 atomic_long_set(&rollover->num, 0); 1672 atomic_long_set(&rollover->num_huge, 0); 1673 atomic_long_set(&rollover->num_failed, 0); 1674 } 1675 1676 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) { 1677 if (id != 0) { 1678 err = -EINVAL; 1679 goto out; 1680 } 1681 if (!fanout_find_new_id(sk, &id)) { 1682 err = -ENOMEM; 1683 goto out; 1684 } 1685 /* ephemeral flag for the first socket in the group: drop it */ 1686 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8); 1687 } 1688 1689 match = NULL; 1690 list_for_each_entry(f, &fanout_list, list) { 1691 if (f->id == id && 1692 read_pnet(&f->net) == sock_net(sk)) { 1693 match = f; 1694 break; 1695 } 1696 } 1697 err = -EINVAL; 1698 if (match && match->flags != flags) 1699 goto out; 1700 if (!match) { 1701 err = -ENOMEM; 1702 match = kzalloc(sizeof(*match), GFP_KERNEL); 1703 if (!match) 1704 goto out; 1705 write_pnet(&match->net, sock_net(sk)); 1706 match->id = id; 1707 match->type = type; 1708 match->flags = flags; 1709 INIT_LIST_HEAD(&match->list); 1710 spin_lock_init(&match->lock); 1711 refcount_set(&match->sk_ref, 0); 1712 fanout_init_data(match); 1713 match->prot_hook.type = po->prot_hook.type; 1714 match->prot_hook.dev = po->prot_hook.dev; 1715 match->prot_hook.func = packet_rcv_fanout; 1716 match->prot_hook.af_packet_priv = match; 1717 match->prot_hook.id_match = match_fanout_group; 1718 list_add(&match->list, &fanout_list); 1719 } 1720 err = -EINVAL; 1721 1722 spin_lock(&po->bind_lock); 1723 if (po->running && 1724 match->type == type && 1725 match->prot_hook.type == po->prot_hook.type && 1726 match->prot_hook.dev == po->prot_hook.dev) { 1727 err = -ENOSPC; 1728 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1729 __dev_remove_pack(&po->prot_hook); 1730 po->fanout = match; 1731 po->rollover = rollover; 1732 rollover = NULL; 1733 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1); 1734 __fanout_link(sk, po); 1735 err = 0; 1736 } 1737 } 1738 spin_unlock(&po->bind_lock); 1739 1740 if (err && !refcount_read(&match->sk_ref)) { 1741 list_del(&match->list); 1742 kfree(match); 1743 } 1744 1745 out: 1746 kfree(rollover); 1747 mutex_unlock(&fanout_mutex); 1748 return err; 1749 } 1750 1751 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes 1752 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout. 1753 * It is the responsibility of the caller to call fanout_release_data() and 1754 * free the returned packet_fanout (after synchronize_net()) 1755 */ 1756 static struct packet_fanout *fanout_release(struct sock *sk) 1757 { 1758 struct packet_sock *po = pkt_sk(sk); 1759 struct packet_fanout *f; 1760 1761 mutex_lock(&fanout_mutex); 1762 f = po->fanout; 1763 if (f) { 1764 po->fanout = NULL; 1765 1766 if (refcount_dec_and_test(&f->sk_ref)) 1767 list_del(&f->list); 1768 else 1769 f = NULL; 1770 } 1771 mutex_unlock(&fanout_mutex); 1772 1773 return f; 1774 } 1775 1776 static bool packet_extra_vlan_len_allowed(const struct net_device *dev, 1777 struct sk_buff *skb) 1778 { 1779 /* Earlier code assumed this would be a VLAN pkt, double-check 1780 * this now that we have the actual packet in hand. We can only 1781 * do this check on Ethernet devices. 1782 */ 1783 if (unlikely(dev->type != ARPHRD_ETHER)) 1784 return false; 1785 1786 skb_reset_mac_header(skb); 1787 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q)); 1788 } 1789 1790 static const struct proto_ops packet_ops; 1791 1792 static const struct proto_ops packet_ops_spkt; 1793 1794 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1795 struct packet_type *pt, struct net_device *orig_dev) 1796 { 1797 struct sock *sk; 1798 struct sockaddr_pkt *spkt; 1799 1800 /* 1801 * When we registered the protocol we saved the socket in the data 1802 * field for just this event. 1803 */ 1804 1805 sk = pt->af_packet_priv; 1806 1807 /* 1808 * Yank back the headers [hope the device set this 1809 * right or kerboom...] 1810 * 1811 * Incoming packets have ll header pulled, 1812 * push it back. 1813 * 1814 * For outgoing ones skb->data == skb_mac_header(skb) 1815 * so that this procedure is noop. 1816 */ 1817 1818 if (skb->pkt_type == PACKET_LOOPBACK) 1819 goto out; 1820 1821 if (!net_eq(dev_net(dev), sock_net(sk))) 1822 goto out; 1823 1824 skb = skb_share_check(skb, GFP_ATOMIC); 1825 if (skb == NULL) 1826 goto oom; 1827 1828 /* drop any routing info */ 1829 skb_dst_drop(skb); 1830 1831 /* drop conntrack reference */ 1832 nf_reset_ct(skb); 1833 1834 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1835 1836 skb_push(skb, skb->data - skb_mac_header(skb)); 1837 1838 /* 1839 * The SOCK_PACKET socket receives _all_ frames. 1840 */ 1841 1842 spkt->spkt_family = dev->type; 1843 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1844 spkt->spkt_protocol = skb->protocol; 1845 1846 /* 1847 * Charge the memory to the socket. This is done specifically 1848 * to prevent sockets using all the memory up. 1849 */ 1850 1851 if (sock_queue_rcv_skb(sk, skb) == 0) 1852 return 0; 1853 1854 out: 1855 kfree_skb(skb); 1856 oom: 1857 return 0; 1858 } 1859 1860 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock) 1861 { 1862 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) && 1863 sock->type == SOCK_RAW) { 1864 skb_reset_mac_header(skb); 1865 skb->protocol = dev_parse_header_protocol(skb); 1866 } 1867 1868 skb_probe_transport_header(skb); 1869 } 1870 1871 /* 1872 * Output a raw packet to a device layer. This bypasses all the other 1873 * protocol layers and you must therefore supply it with a complete frame 1874 */ 1875 1876 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg, 1877 size_t len) 1878 { 1879 struct sock *sk = sock->sk; 1880 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name); 1881 struct sk_buff *skb = NULL; 1882 struct net_device *dev; 1883 struct sockcm_cookie sockc; 1884 __be16 proto = 0; 1885 int err; 1886 int extra_len = 0; 1887 1888 /* 1889 * Get and verify the address. 1890 */ 1891 1892 if (saddr) { 1893 if (msg->msg_namelen < sizeof(struct sockaddr)) 1894 return -EINVAL; 1895 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1896 proto = saddr->spkt_protocol; 1897 } else 1898 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1899 1900 /* 1901 * Find the device first to size check it 1902 */ 1903 1904 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0; 1905 retry: 1906 rcu_read_lock(); 1907 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1908 err = -ENODEV; 1909 if (dev == NULL) 1910 goto out_unlock; 1911 1912 err = -ENETDOWN; 1913 if (!(dev->flags & IFF_UP)) 1914 goto out_unlock; 1915 1916 /* 1917 * You may not queue a frame bigger than the mtu. This is the lowest level 1918 * raw protocol and you must do your own fragmentation at this level. 1919 */ 1920 1921 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 1922 if (!netif_supports_nofcs(dev)) { 1923 err = -EPROTONOSUPPORT; 1924 goto out_unlock; 1925 } 1926 extra_len = 4; /* We're doing our own CRC */ 1927 } 1928 1929 err = -EMSGSIZE; 1930 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len) 1931 goto out_unlock; 1932 1933 if (!skb) { 1934 size_t reserved = LL_RESERVED_SPACE(dev); 1935 int tlen = dev->needed_tailroom; 1936 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1937 1938 rcu_read_unlock(); 1939 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1940 if (skb == NULL) 1941 return -ENOBUFS; 1942 /* FIXME: Save some space for broken drivers that write a hard 1943 * header at transmission time by themselves. PPP is the notable 1944 * one here. This should really be fixed at the driver level. 1945 */ 1946 skb_reserve(skb, reserved); 1947 skb_reset_network_header(skb); 1948 1949 /* Try to align data part correctly */ 1950 if (hhlen) { 1951 skb->data -= hhlen; 1952 skb->tail -= hhlen; 1953 if (len < hhlen) 1954 skb_reset_network_header(skb); 1955 } 1956 err = memcpy_from_msg(skb_put(skb, len), msg, len); 1957 if (err) 1958 goto out_free; 1959 goto retry; 1960 } 1961 1962 if (!dev_validate_header(dev, skb->data, len)) { 1963 err = -EINVAL; 1964 goto out_unlock; 1965 } 1966 if (len > (dev->mtu + dev->hard_header_len + extra_len) && 1967 !packet_extra_vlan_len_allowed(dev, skb)) { 1968 err = -EMSGSIZE; 1969 goto out_unlock; 1970 } 1971 1972 sockcm_init(&sockc, sk); 1973 if (msg->msg_controllen) { 1974 err = sock_cmsg_send(sk, msg, &sockc); 1975 if (unlikely(err)) 1976 goto out_unlock; 1977 } 1978 1979 skb->protocol = proto; 1980 skb->dev = dev; 1981 skb->priority = sk->sk_priority; 1982 skb->mark = sk->sk_mark; 1983 skb->tstamp = sockc.transmit_time; 1984 1985 skb_setup_tx_timestamp(skb, sockc.tsflags); 1986 1987 if (unlikely(extra_len == 4)) 1988 skb->no_fcs = 1; 1989 1990 packet_parse_headers(skb, sock); 1991 1992 dev_queue_xmit(skb); 1993 rcu_read_unlock(); 1994 return len; 1995 1996 out_unlock: 1997 rcu_read_unlock(); 1998 out_free: 1999 kfree_skb(skb); 2000 return err; 2001 } 2002 2003 static unsigned int run_filter(struct sk_buff *skb, 2004 const struct sock *sk, 2005 unsigned int res) 2006 { 2007 struct sk_filter *filter; 2008 2009 rcu_read_lock(); 2010 filter = rcu_dereference(sk->sk_filter); 2011 if (filter != NULL) 2012 res = bpf_prog_run_clear_cb(filter->prog, skb); 2013 rcu_read_unlock(); 2014 2015 return res; 2016 } 2017 2018 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb, 2019 size_t *len) 2020 { 2021 struct virtio_net_hdr vnet_hdr; 2022 2023 if (*len < sizeof(vnet_hdr)) 2024 return -EINVAL; 2025 *len -= sizeof(vnet_hdr); 2026 2027 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0)) 2028 return -EINVAL; 2029 2030 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr)); 2031 } 2032 2033 /* 2034 * This function makes lazy skb cloning in hope that most of packets 2035 * are discarded by BPF. 2036 * 2037 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 2038 * and skb->cb are mangled. It works because (and until) packets 2039 * falling here are owned by current CPU. Output packets are cloned 2040 * by dev_queue_xmit_nit(), input packets are processed by net_bh 2041 * sequencially, so that if we return skb to original state on exit, 2042 * we will not harm anyone. 2043 */ 2044 2045 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 2046 struct packet_type *pt, struct net_device *orig_dev) 2047 { 2048 struct sock *sk; 2049 struct sockaddr_ll *sll; 2050 struct packet_sock *po; 2051 u8 *skb_head = skb->data; 2052 int skb_len = skb->len; 2053 unsigned int snaplen, res; 2054 bool is_drop_n_account = false; 2055 2056 if (skb->pkt_type == PACKET_LOOPBACK) 2057 goto drop; 2058 2059 sk = pt->af_packet_priv; 2060 po = pkt_sk(sk); 2061 2062 if (!net_eq(dev_net(dev), sock_net(sk))) 2063 goto drop; 2064 2065 skb->dev = dev; 2066 2067 if (dev->header_ops) { 2068 /* The device has an explicit notion of ll header, 2069 * exported to higher levels. 2070 * 2071 * Otherwise, the device hides details of its frame 2072 * structure, so that corresponding packet head is 2073 * never delivered to user. 2074 */ 2075 if (sk->sk_type != SOCK_DGRAM) 2076 skb_push(skb, skb->data - skb_mac_header(skb)); 2077 else if (skb->pkt_type == PACKET_OUTGOING) { 2078 /* Special case: outgoing packets have ll header at head */ 2079 skb_pull(skb, skb_network_offset(skb)); 2080 } 2081 } 2082 2083 snaplen = skb->len; 2084 2085 res = run_filter(skb, sk, snaplen); 2086 if (!res) 2087 goto drop_n_restore; 2088 if (snaplen > res) 2089 snaplen = res; 2090 2091 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2092 goto drop_n_acct; 2093 2094 if (skb_shared(skb)) { 2095 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2096 if (nskb == NULL) 2097 goto drop_n_acct; 2098 2099 if (skb_head != skb->data) { 2100 skb->data = skb_head; 2101 skb->len = skb_len; 2102 } 2103 consume_skb(skb); 2104 skb = nskb; 2105 } 2106 2107 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8); 2108 2109 sll = &PACKET_SKB_CB(skb)->sa.ll; 2110 sll->sll_hatype = dev->type; 2111 sll->sll_pkttype = skb->pkt_type; 2112 if (unlikely(po->origdev)) 2113 sll->sll_ifindex = orig_dev->ifindex; 2114 else 2115 sll->sll_ifindex = dev->ifindex; 2116 2117 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2118 2119 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg(). 2120 * Use their space for storing the original skb length. 2121 */ 2122 PACKET_SKB_CB(skb)->sa.origlen = skb->len; 2123 2124 if (pskb_trim(skb, snaplen)) 2125 goto drop_n_acct; 2126 2127 skb_set_owner_r(skb, sk); 2128 skb->dev = NULL; 2129 skb_dst_drop(skb); 2130 2131 /* drop conntrack reference */ 2132 nf_reset_ct(skb); 2133 2134 spin_lock(&sk->sk_receive_queue.lock); 2135 po->stats.stats1.tp_packets++; 2136 sock_skb_set_dropcount(sk, skb); 2137 __skb_queue_tail(&sk->sk_receive_queue, skb); 2138 spin_unlock(&sk->sk_receive_queue.lock); 2139 sk->sk_data_ready(sk); 2140 return 0; 2141 2142 drop_n_acct: 2143 is_drop_n_account = true; 2144 atomic_inc(&po->tp_drops); 2145 atomic_inc(&sk->sk_drops); 2146 2147 drop_n_restore: 2148 if (skb_head != skb->data && skb_shared(skb)) { 2149 skb->data = skb_head; 2150 skb->len = skb_len; 2151 } 2152 drop: 2153 if (!is_drop_n_account) 2154 consume_skb(skb); 2155 else 2156 kfree_skb(skb); 2157 return 0; 2158 } 2159 2160 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 2161 struct packet_type *pt, struct net_device *orig_dev) 2162 { 2163 struct sock *sk; 2164 struct packet_sock *po; 2165 struct sockaddr_ll *sll; 2166 union tpacket_uhdr h; 2167 u8 *skb_head = skb->data; 2168 int skb_len = skb->len; 2169 unsigned int snaplen, res; 2170 unsigned long status = TP_STATUS_USER; 2171 unsigned short macoff, netoff, hdrlen; 2172 struct sk_buff *copy_skb = NULL; 2173 struct timespec64 ts; 2174 __u32 ts_status; 2175 bool is_drop_n_account = false; 2176 unsigned int slot_id = 0; 2177 bool do_vnet = false; 2178 2179 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. 2180 * We may add members to them until current aligned size without forcing 2181 * userspace to call getsockopt(..., PACKET_HDRLEN, ...). 2182 */ 2183 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); 2184 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); 2185 2186 if (skb->pkt_type == PACKET_LOOPBACK) 2187 goto drop; 2188 2189 sk = pt->af_packet_priv; 2190 po = pkt_sk(sk); 2191 2192 if (!net_eq(dev_net(dev), sock_net(sk))) 2193 goto drop; 2194 2195 if (dev->header_ops) { 2196 if (sk->sk_type != SOCK_DGRAM) 2197 skb_push(skb, skb->data - skb_mac_header(skb)); 2198 else if (skb->pkt_type == PACKET_OUTGOING) { 2199 /* Special case: outgoing packets have ll header at head */ 2200 skb_pull(skb, skb_network_offset(skb)); 2201 } 2202 } 2203 2204 snaplen = skb->len; 2205 2206 res = run_filter(skb, sk, snaplen); 2207 if (!res) 2208 goto drop_n_restore; 2209 2210 /* If we are flooded, just give up */ 2211 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) { 2212 atomic_inc(&po->tp_drops); 2213 goto drop_n_restore; 2214 } 2215 2216 if (skb->ip_summed == CHECKSUM_PARTIAL) 2217 status |= TP_STATUS_CSUMNOTREADY; 2218 else if (skb->pkt_type != PACKET_OUTGOING && 2219 (skb->ip_summed == CHECKSUM_COMPLETE || 2220 skb_csum_unnecessary(skb))) 2221 status |= TP_STATUS_CSUM_VALID; 2222 2223 if (snaplen > res) 2224 snaplen = res; 2225 2226 if (sk->sk_type == SOCK_DGRAM) { 2227 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 2228 po->tp_reserve; 2229 } else { 2230 unsigned int maclen = skb_network_offset(skb); 2231 netoff = TPACKET_ALIGN(po->tp_hdrlen + 2232 (maclen < 16 ? 16 : maclen)) + 2233 po->tp_reserve; 2234 if (po->has_vnet_hdr) { 2235 netoff += sizeof(struct virtio_net_hdr); 2236 do_vnet = true; 2237 } 2238 macoff = netoff - maclen; 2239 } 2240 if (po->tp_version <= TPACKET_V2) { 2241 if (macoff + snaplen > po->rx_ring.frame_size) { 2242 if (po->copy_thresh && 2243 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 2244 if (skb_shared(skb)) { 2245 copy_skb = skb_clone(skb, GFP_ATOMIC); 2246 } else { 2247 copy_skb = skb_get(skb); 2248 skb_head = skb->data; 2249 } 2250 if (copy_skb) 2251 skb_set_owner_r(copy_skb, sk); 2252 } 2253 snaplen = po->rx_ring.frame_size - macoff; 2254 if ((int)snaplen < 0) { 2255 snaplen = 0; 2256 do_vnet = false; 2257 } 2258 } 2259 } else if (unlikely(macoff + snaplen > 2260 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { 2261 u32 nval; 2262 2263 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; 2264 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", 2265 snaplen, nval, macoff); 2266 snaplen = nval; 2267 if (unlikely((int)snaplen < 0)) { 2268 snaplen = 0; 2269 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; 2270 do_vnet = false; 2271 } 2272 } 2273 spin_lock(&sk->sk_receive_queue.lock); 2274 h.raw = packet_current_rx_frame(po, skb, 2275 TP_STATUS_KERNEL, (macoff+snaplen)); 2276 if (!h.raw) 2277 goto drop_n_account; 2278 2279 if (po->tp_version <= TPACKET_V2) { 2280 slot_id = po->rx_ring.head; 2281 if (test_bit(slot_id, po->rx_ring.rx_owner_map)) 2282 goto drop_n_account; 2283 __set_bit(slot_id, po->rx_ring.rx_owner_map); 2284 } 2285 2286 if (do_vnet && 2287 virtio_net_hdr_from_skb(skb, h.raw + macoff - 2288 sizeof(struct virtio_net_hdr), 2289 vio_le(), true, 0)) 2290 goto drop_n_account; 2291 2292 if (po->tp_version <= TPACKET_V2) { 2293 packet_increment_rx_head(po, &po->rx_ring); 2294 /* 2295 * LOSING will be reported till you read the stats, 2296 * because it's COR - Clear On Read. 2297 * Anyways, moving it for V1/V2 only as V3 doesn't need this 2298 * at packet level. 2299 */ 2300 if (atomic_read(&po->tp_drops)) 2301 status |= TP_STATUS_LOSING; 2302 } 2303 2304 po->stats.stats1.tp_packets++; 2305 if (copy_skb) { 2306 status |= TP_STATUS_COPY; 2307 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 2308 } 2309 spin_unlock(&sk->sk_receive_queue.lock); 2310 2311 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 2312 2313 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) 2314 ktime_get_real_ts64(&ts); 2315 2316 status |= ts_status; 2317 2318 switch (po->tp_version) { 2319 case TPACKET_V1: 2320 h.h1->tp_len = skb->len; 2321 h.h1->tp_snaplen = snaplen; 2322 h.h1->tp_mac = macoff; 2323 h.h1->tp_net = netoff; 2324 h.h1->tp_sec = ts.tv_sec; 2325 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; 2326 hdrlen = sizeof(*h.h1); 2327 break; 2328 case TPACKET_V2: 2329 h.h2->tp_len = skb->len; 2330 h.h2->tp_snaplen = snaplen; 2331 h.h2->tp_mac = macoff; 2332 h.h2->tp_net = netoff; 2333 h.h2->tp_sec = ts.tv_sec; 2334 h.h2->tp_nsec = ts.tv_nsec; 2335 if (skb_vlan_tag_present(skb)) { 2336 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); 2337 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); 2338 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 2339 } else { 2340 h.h2->tp_vlan_tci = 0; 2341 h.h2->tp_vlan_tpid = 0; 2342 } 2343 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); 2344 hdrlen = sizeof(*h.h2); 2345 break; 2346 case TPACKET_V3: 2347 /* tp_nxt_offset,vlan are already populated above. 2348 * So DONT clear those fields here 2349 */ 2350 h.h3->tp_status |= status; 2351 h.h3->tp_len = skb->len; 2352 h.h3->tp_snaplen = snaplen; 2353 h.h3->tp_mac = macoff; 2354 h.h3->tp_net = netoff; 2355 h.h3->tp_sec = ts.tv_sec; 2356 h.h3->tp_nsec = ts.tv_nsec; 2357 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); 2358 hdrlen = sizeof(*h.h3); 2359 break; 2360 default: 2361 BUG(); 2362 } 2363 2364 sll = h.raw + TPACKET_ALIGN(hdrlen); 2365 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 2366 sll->sll_family = AF_PACKET; 2367 sll->sll_hatype = dev->type; 2368 sll->sll_protocol = skb->protocol; 2369 sll->sll_pkttype = skb->pkt_type; 2370 if (unlikely(po->origdev)) 2371 sll->sll_ifindex = orig_dev->ifindex; 2372 else 2373 sll->sll_ifindex = dev->ifindex; 2374 2375 smp_mb(); 2376 2377 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 2378 if (po->tp_version <= TPACKET_V2) { 2379 u8 *start, *end; 2380 2381 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + 2382 macoff + snaplen); 2383 2384 for (start = h.raw; start < end; start += PAGE_SIZE) 2385 flush_dcache_page(pgv_to_page(start)); 2386 } 2387 smp_wmb(); 2388 #endif 2389 2390 if (po->tp_version <= TPACKET_V2) { 2391 spin_lock(&sk->sk_receive_queue.lock); 2392 __packet_set_status(po, h.raw, status); 2393 __clear_bit(slot_id, po->rx_ring.rx_owner_map); 2394 spin_unlock(&sk->sk_receive_queue.lock); 2395 sk->sk_data_ready(sk); 2396 } else { 2397 prb_clear_blk_fill_status(&po->rx_ring); 2398 } 2399 2400 drop_n_restore: 2401 if (skb_head != skb->data && skb_shared(skb)) { 2402 skb->data = skb_head; 2403 skb->len = skb_len; 2404 } 2405 drop: 2406 if (!is_drop_n_account) 2407 consume_skb(skb); 2408 else 2409 kfree_skb(skb); 2410 return 0; 2411 2412 drop_n_account: 2413 spin_unlock(&sk->sk_receive_queue.lock); 2414 atomic_inc(&po->tp_drops); 2415 is_drop_n_account = true; 2416 2417 sk->sk_data_ready(sk); 2418 kfree_skb(copy_skb); 2419 goto drop_n_restore; 2420 } 2421 2422 static void tpacket_destruct_skb(struct sk_buff *skb) 2423 { 2424 struct packet_sock *po = pkt_sk(skb->sk); 2425 2426 if (likely(po->tx_ring.pg_vec)) { 2427 void *ph; 2428 __u32 ts; 2429 2430 ph = skb_zcopy_get_nouarg(skb); 2431 packet_dec_pending(&po->tx_ring); 2432 2433 ts = __packet_set_timestamp(po, ph, skb); 2434 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts); 2435 2436 if (!packet_read_pending(&po->tx_ring)) 2437 complete(&po->skb_completion); 2438 } 2439 2440 sock_wfree(skb); 2441 } 2442 2443 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len) 2444 { 2445 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2446 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2447 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 > 2448 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len))) 2449 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(), 2450 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) + 2451 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2); 2452 2453 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len) 2454 return -EINVAL; 2455 2456 return 0; 2457 } 2458 2459 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len, 2460 struct virtio_net_hdr *vnet_hdr) 2461 { 2462 if (*len < sizeof(*vnet_hdr)) 2463 return -EINVAL; 2464 *len -= sizeof(*vnet_hdr); 2465 2466 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter)) 2467 return -EFAULT; 2468 2469 return __packet_snd_vnet_parse(vnet_hdr, *len); 2470 } 2471 2472 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 2473 void *frame, struct net_device *dev, void *data, int tp_len, 2474 __be16 proto, unsigned char *addr, int hlen, int copylen, 2475 const struct sockcm_cookie *sockc) 2476 { 2477 union tpacket_uhdr ph; 2478 int to_write, offset, len, nr_frags, len_max; 2479 struct socket *sock = po->sk.sk_socket; 2480 struct page *page; 2481 int err; 2482 2483 ph.raw = frame; 2484 2485 skb->protocol = proto; 2486 skb->dev = dev; 2487 skb->priority = po->sk.sk_priority; 2488 skb->mark = po->sk.sk_mark; 2489 skb->tstamp = sockc->transmit_time; 2490 skb_setup_tx_timestamp(skb, sockc->tsflags); 2491 skb_zcopy_set_nouarg(skb, ph.raw); 2492 2493 skb_reserve(skb, hlen); 2494 skb_reset_network_header(skb); 2495 2496 to_write = tp_len; 2497 2498 if (sock->type == SOCK_DGRAM) { 2499 err = dev_hard_header(skb, dev, ntohs(proto), addr, 2500 NULL, tp_len); 2501 if (unlikely(err < 0)) 2502 return -EINVAL; 2503 } else if (copylen) { 2504 int hdrlen = min_t(int, copylen, tp_len); 2505 2506 skb_push(skb, dev->hard_header_len); 2507 skb_put(skb, copylen - dev->hard_header_len); 2508 err = skb_store_bits(skb, 0, data, hdrlen); 2509 if (unlikely(err)) 2510 return err; 2511 if (!dev_validate_header(dev, skb->data, hdrlen)) 2512 return -EINVAL; 2513 2514 data += hdrlen; 2515 to_write -= hdrlen; 2516 } 2517 2518 offset = offset_in_page(data); 2519 len_max = PAGE_SIZE - offset; 2520 len = ((to_write > len_max) ? len_max : to_write); 2521 2522 skb->data_len = to_write; 2523 skb->len += to_write; 2524 skb->truesize += to_write; 2525 refcount_add(to_write, &po->sk.sk_wmem_alloc); 2526 2527 while (likely(to_write)) { 2528 nr_frags = skb_shinfo(skb)->nr_frags; 2529 2530 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2531 pr_err("Packet exceed the number of skb frags(%lu)\n", 2532 MAX_SKB_FRAGS); 2533 return -EFAULT; 2534 } 2535 2536 page = pgv_to_page(data); 2537 data += len; 2538 flush_dcache_page(page); 2539 get_page(page); 2540 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2541 to_write -= len; 2542 offset = 0; 2543 len_max = PAGE_SIZE; 2544 len = ((to_write > len_max) ? len_max : to_write); 2545 } 2546 2547 packet_parse_headers(skb, sock); 2548 2549 return tp_len; 2550 } 2551 2552 static int tpacket_parse_header(struct packet_sock *po, void *frame, 2553 int size_max, void **data) 2554 { 2555 union tpacket_uhdr ph; 2556 int tp_len, off; 2557 2558 ph.raw = frame; 2559 2560 switch (po->tp_version) { 2561 case TPACKET_V3: 2562 if (ph.h3->tp_next_offset != 0) { 2563 pr_warn_once("variable sized slot not supported"); 2564 return -EINVAL; 2565 } 2566 tp_len = ph.h3->tp_len; 2567 break; 2568 case TPACKET_V2: 2569 tp_len = ph.h2->tp_len; 2570 break; 2571 default: 2572 tp_len = ph.h1->tp_len; 2573 break; 2574 } 2575 if (unlikely(tp_len > size_max)) { 2576 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 2577 return -EMSGSIZE; 2578 } 2579 2580 if (unlikely(po->tp_tx_has_off)) { 2581 int off_min, off_max; 2582 2583 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2584 off_max = po->tx_ring.frame_size - tp_len; 2585 if (po->sk.sk_type == SOCK_DGRAM) { 2586 switch (po->tp_version) { 2587 case TPACKET_V3: 2588 off = ph.h3->tp_net; 2589 break; 2590 case TPACKET_V2: 2591 off = ph.h2->tp_net; 2592 break; 2593 default: 2594 off = ph.h1->tp_net; 2595 break; 2596 } 2597 } else { 2598 switch (po->tp_version) { 2599 case TPACKET_V3: 2600 off = ph.h3->tp_mac; 2601 break; 2602 case TPACKET_V2: 2603 off = ph.h2->tp_mac; 2604 break; 2605 default: 2606 off = ph.h1->tp_mac; 2607 break; 2608 } 2609 } 2610 if (unlikely((off < off_min) || (off_max < off))) 2611 return -EINVAL; 2612 } else { 2613 off = po->tp_hdrlen - sizeof(struct sockaddr_ll); 2614 } 2615 2616 *data = frame + off; 2617 return tp_len; 2618 } 2619 2620 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2621 { 2622 struct sk_buff *skb = NULL; 2623 struct net_device *dev; 2624 struct virtio_net_hdr *vnet_hdr = NULL; 2625 struct sockcm_cookie sockc; 2626 __be16 proto; 2627 int err, reserve = 0; 2628 void *ph; 2629 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2630 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT); 2631 unsigned char *addr = NULL; 2632 int tp_len, size_max; 2633 void *data; 2634 int len_sum = 0; 2635 int status = TP_STATUS_AVAILABLE; 2636 int hlen, tlen, copylen = 0; 2637 long timeo = 0; 2638 2639 mutex_lock(&po->pg_vec_lock); 2640 2641 /* packet_sendmsg() check on tx_ring.pg_vec was lockless, 2642 * we need to confirm it under protection of pg_vec_lock. 2643 */ 2644 if (unlikely(!po->tx_ring.pg_vec)) { 2645 err = -EBUSY; 2646 goto out; 2647 } 2648 if (likely(saddr == NULL)) { 2649 dev = packet_cached_dev_get(po); 2650 proto = po->num; 2651 } else { 2652 err = -EINVAL; 2653 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2654 goto out; 2655 if (msg->msg_namelen < (saddr->sll_halen 2656 + offsetof(struct sockaddr_ll, 2657 sll_addr))) 2658 goto out; 2659 proto = saddr->sll_protocol; 2660 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2661 if (po->sk.sk_socket->type == SOCK_DGRAM) { 2662 if (dev && msg->msg_namelen < dev->addr_len + 2663 offsetof(struct sockaddr_ll, sll_addr)) 2664 goto out_put; 2665 addr = saddr->sll_addr; 2666 } 2667 } 2668 2669 err = -ENXIO; 2670 if (unlikely(dev == NULL)) 2671 goto out; 2672 err = -ENETDOWN; 2673 if (unlikely(!(dev->flags & IFF_UP))) 2674 goto out_put; 2675 2676 sockcm_init(&sockc, &po->sk); 2677 if (msg->msg_controllen) { 2678 err = sock_cmsg_send(&po->sk, msg, &sockc); 2679 if (unlikely(err)) 2680 goto out_put; 2681 } 2682 2683 if (po->sk.sk_socket->type == SOCK_RAW) 2684 reserve = dev->hard_header_len; 2685 size_max = po->tx_ring.frame_size 2686 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2687 2688 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr) 2689 size_max = dev->mtu + reserve + VLAN_HLEN; 2690 2691 reinit_completion(&po->skb_completion); 2692 2693 do { 2694 ph = packet_current_frame(po, &po->tx_ring, 2695 TP_STATUS_SEND_REQUEST); 2696 if (unlikely(ph == NULL)) { 2697 if (need_wait && skb) { 2698 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT); 2699 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo); 2700 if (timeo <= 0) { 2701 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS; 2702 goto out_put; 2703 } 2704 } 2705 /* check for additional frames */ 2706 continue; 2707 } 2708 2709 skb = NULL; 2710 tp_len = tpacket_parse_header(po, ph, size_max, &data); 2711 if (tp_len < 0) 2712 goto tpacket_error; 2713 2714 status = TP_STATUS_SEND_REQUEST; 2715 hlen = LL_RESERVED_SPACE(dev); 2716 tlen = dev->needed_tailroom; 2717 if (po->has_vnet_hdr) { 2718 vnet_hdr = data; 2719 data += sizeof(*vnet_hdr); 2720 tp_len -= sizeof(*vnet_hdr); 2721 if (tp_len < 0 || 2722 __packet_snd_vnet_parse(vnet_hdr, tp_len)) { 2723 tp_len = -EINVAL; 2724 goto tpacket_error; 2725 } 2726 copylen = __virtio16_to_cpu(vio_le(), 2727 vnet_hdr->hdr_len); 2728 } 2729 copylen = max_t(int, copylen, dev->hard_header_len); 2730 skb = sock_alloc_send_skb(&po->sk, 2731 hlen + tlen + sizeof(struct sockaddr_ll) + 2732 (copylen - dev->hard_header_len), 2733 !need_wait, &err); 2734 2735 if (unlikely(skb == NULL)) { 2736 /* we assume the socket was initially writeable ... */ 2737 if (likely(len_sum > 0)) 2738 err = len_sum; 2739 goto out_status; 2740 } 2741 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto, 2742 addr, hlen, copylen, &sockc); 2743 if (likely(tp_len >= 0) && 2744 tp_len > dev->mtu + reserve && 2745 !po->has_vnet_hdr && 2746 !packet_extra_vlan_len_allowed(dev, skb)) 2747 tp_len = -EMSGSIZE; 2748 2749 if (unlikely(tp_len < 0)) { 2750 tpacket_error: 2751 if (po->tp_loss) { 2752 __packet_set_status(po, ph, 2753 TP_STATUS_AVAILABLE); 2754 packet_increment_head(&po->tx_ring); 2755 kfree_skb(skb); 2756 continue; 2757 } else { 2758 status = TP_STATUS_WRONG_FORMAT; 2759 err = tp_len; 2760 goto out_status; 2761 } 2762 } 2763 2764 if (po->has_vnet_hdr) { 2765 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) { 2766 tp_len = -EINVAL; 2767 goto tpacket_error; 2768 } 2769 virtio_net_hdr_set_proto(skb, vnet_hdr); 2770 } 2771 2772 skb->destructor = tpacket_destruct_skb; 2773 __packet_set_status(po, ph, TP_STATUS_SENDING); 2774 packet_inc_pending(&po->tx_ring); 2775 2776 status = TP_STATUS_SEND_REQUEST; 2777 err = po->xmit(skb); 2778 if (unlikely(err > 0)) { 2779 err = net_xmit_errno(err); 2780 if (err && __packet_get_status(po, ph) == 2781 TP_STATUS_AVAILABLE) { 2782 /* skb was destructed already */ 2783 skb = NULL; 2784 goto out_status; 2785 } 2786 /* 2787 * skb was dropped but not destructed yet; 2788 * let's treat it like congestion or err < 0 2789 */ 2790 err = 0; 2791 } 2792 packet_increment_head(&po->tx_ring); 2793 len_sum += tp_len; 2794 } while (likely((ph != NULL) || 2795 /* Note: packet_read_pending() might be slow if we have 2796 * to call it as it's per_cpu variable, but in fast-path 2797 * we already short-circuit the loop with the first 2798 * condition, and luckily don't have to go that path 2799 * anyway. 2800 */ 2801 (need_wait && packet_read_pending(&po->tx_ring)))); 2802 2803 err = len_sum; 2804 goto out_put; 2805 2806 out_status: 2807 __packet_set_status(po, ph, status); 2808 kfree_skb(skb); 2809 out_put: 2810 dev_put(dev); 2811 out: 2812 mutex_unlock(&po->pg_vec_lock); 2813 return err; 2814 } 2815 2816 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2817 size_t reserve, size_t len, 2818 size_t linear, int noblock, 2819 int *err) 2820 { 2821 struct sk_buff *skb; 2822 2823 /* Under a page? Don't bother with paged skb. */ 2824 if (prepad + len < PAGE_SIZE || !linear) 2825 linear = len; 2826 2827 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2828 err, 0); 2829 if (!skb) 2830 return NULL; 2831 2832 skb_reserve(skb, reserve); 2833 skb_put(skb, linear); 2834 skb->data_len = len - linear; 2835 skb->len += len - linear; 2836 2837 return skb; 2838 } 2839 2840 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len) 2841 { 2842 struct sock *sk = sock->sk; 2843 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name); 2844 struct sk_buff *skb; 2845 struct net_device *dev; 2846 __be16 proto; 2847 unsigned char *addr = NULL; 2848 int err, reserve = 0; 2849 struct sockcm_cookie sockc; 2850 struct virtio_net_hdr vnet_hdr = { 0 }; 2851 int offset = 0; 2852 struct packet_sock *po = pkt_sk(sk); 2853 bool has_vnet_hdr = false; 2854 int hlen, tlen, linear; 2855 int extra_len = 0; 2856 2857 /* 2858 * Get and verify the address. 2859 */ 2860 2861 if (likely(saddr == NULL)) { 2862 dev = packet_cached_dev_get(po); 2863 proto = po->num; 2864 } else { 2865 err = -EINVAL; 2866 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2867 goto out; 2868 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2869 goto out; 2870 proto = saddr->sll_protocol; 2871 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2872 if (sock->type == SOCK_DGRAM) { 2873 if (dev && msg->msg_namelen < dev->addr_len + 2874 offsetof(struct sockaddr_ll, sll_addr)) 2875 goto out_unlock; 2876 addr = saddr->sll_addr; 2877 } 2878 } 2879 2880 err = -ENXIO; 2881 if (unlikely(dev == NULL)) 2882 goto out_unlock; 2883 err = -ENETDOWN; 2884 if (unlikely(!(dev->flags & IFF_UP))) 2885 goto out_unlock; 2886 2887 sockcm_init(&sockc, sk); 2888 sockc.mark = sk->sk_mark; 2889 if (msg->msg_controllen) { 2890 err = sock_cmsg_send(sk, msg, &sockc); 2891 if (unlikely(err)) 2892 goto out_unlock; 2893 } 2894 2895 if (sock->type == SOCK_RAW) 2896 reserve = dev->hard_header_len; 2897 if (po->has_vnet_hdr) { 2898 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr); 2899 if (err) 2900 goto out_unlock; 2901 has_vnet_hdr = true; 2902 } 2903 2904 if (unlikely(sock_flag(sk, SOCK_NOFCS))) { 2905 if (!netif_supports_nofcs(dev)) { 2906 err = -EPROTONOSUPPORT; 2907 goto out_unlock; 2908 } 2909 extra_len = 4; /* We're doing our own CRC */ 2910 } 2911 2912 err = -EMSGSIZE; 2913 if (!vnet_hdr.gso_type && 2914 (len > dev->mtu + reserve + VLAN_HLEN + extra_len)) 2915 goto out_unlock; 2916 2917 err = -ENOBUFS; 2918 hlen = LL_RESERVED_SPACE(dev); 2919 tlen = dev->needed_tailroom; 2920 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len); 2921 linear = max(linear, min_t(int, len, dev->hard_header_len)); 2922 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear, 2923 msg->msg_flags & MSG_DONTWAIT, &err); 2924 if (skb == NULL) 2925 goto out_unlock; 2926 2927 skb_reset_network_header(skb); 2928 2929 err = -EINVAL; 2930 if (sock->type == SOCK_DGRAM) { 2931 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len); 2932 if (unlikely(offset < 0)) 2933 goto out_free; 2934 } else if (reserve) { 2935 skb_reserve(skb, -reserve); 2936 if (len < reserve + sizeof(struct ipv6hdr) && 2937 dev->min_header_len != dev->hard_header_len) 2938 skb_reset_network_header(skb); 2939 } 2940 2941 /* Returns -EFAULT on error */ 2942 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len); 2943 if (err) 2944 goto out_free; 2945 2946 if (sock->type == SOCK_RAW && 2947 !dev_validate_header(dev, skb->data, len)) { 2948 err = -EINVAL; 2949 goto out_free; 2950 } 2951 2952 skb_setup_tx_timestamp(skb, sockc.tsflags); 2953 2954 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) && 2955 !packet_extra_vlan_len_allowed(dev, skb)) { 2956 err = -EMSGSIZE; 2957 goto out_free; 2958 } 2959 2960 skb->protocol = proto; 2961 skb->dev = dev; 2962 skb->priority = sk->sk_priority; 2963 skb->mark = sockc.mark; 2964 skb->tstamp = sockc.transmit_time; 2965 2966 if (has_vnet_hdr) { 2967 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le()); 2968 if (err) 2969 goto out_free; 2970 len += sizeof(vnet_hdr); 2971 virtio_net_hdr_set_proto(skb, &vnet_hdr); 2972 } 2973 2974 packet_parse_headers(skb, sock); 2975 2976 if (unlikely(extra_len == 4)) 2977 skb->no_fcs = 1; 2978 2979 err = po->xmit(skb); 2980 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2981 goto out_unlock; 2982 2983 dev_put(dev); 2984 2985 return len; 2986 2987 out_free: 2988 kfree_skb(skb); 2989 out_unlock: 2990 if (dev) 2991 dev_put(dev); 2992 out: 2993 return err; 2994 } 2995 2996 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2997 { 2998 struct sock *sk = sock->sk; 2999 struct packet_sock *po = pkt_sk(sk); 3000 3001 if (po->tx_ring.pg_vec) 3002 return tpacket_snd(po, msg); 3003 else 3004 return packet_snd(sock, msg, len); 3005 } 3006 3007 /* 3008 * Close a PACKET socket. This is fairly simple. We immediately go 3009 * to 'closed' state and remove our protocol entry in the device list. 3010 */ 3011 3012 static int packet_release(struct socket *sock) 3013 { 3014 struct sock *sk = sock->sk; 3015 struct packet_sock *po; 3016 struct packet_fanout *f; 3017 struct net *net; 3018 union tpacket_req_u req_u; 3019 3020 if (!sk) 3021 return 0; 3022 3023 net = sock_net(sk); 3024 po = pkt_sk(sk); 3025 3026 mutex_lock(&net->packet.sklist_lock); 3027 sk_del_node_init_rcu(sk); 3028 mutex_unlock(&net->packet.sklist_lock); 3029 3030 preempt_disable(); 3031 sock_prot_inuse_add(net, sk->sk_prot, -1); 3032 preempt_enable(); 3033 3034 spin_lock(&po->bind_lock); 3035 unregister_prot_hook(sk, false); 3036 packet_cached_dev_reset(po); 3037 3038 if (po->prot_hook.dev) { 3039 dev_put(po->prot_hook.dev); 3040 po->prot_hook.dev = NULL; 3041 } 3042 spin_unlock(&po->bind_lock); 3043 3044 packet_flush_mclist(sk); 3045 3046 lock_sock(sk); 3047 if (po->rx_ring.pg_vec) { 3048 memset(&req_u, 0, sizeof(req_u)); 3049 packet_set_ring(sk, &req_u, 1, 0); 3050 } 3051 3052 if (po->tx_ring.pg_vec) { 3053 memset(&req_u, 0, sizeof(req_u)); 3054 packet_set_ring(sk, &req_u, 1, 1); 3055 } 3056 release_sock(sk); 3057 3058 f = fanout_release(sk); 3059 3060 synchronize_net(); 3061 3062 kfree(po->rollover); 3063 if (f) { 3064 fanout_release_data(f); 3065 kfree(f); 3066 } 3067 /* 3068 * Now the socket is dead. No more input will appear. 3069 */ 3070 sock_orphan(sk); 3071 sock->sk = NULL; 3072 3073 /* Purge queues */ 3074 3075 skb_queue_purge(&sk->sk_receive_queue); 3076 packet_free_pending(po); 3077 sk_refcnt_debug_release(sk); 3078 3079 sock_put(sk); 3080 return 0; 3081 } 3082 3083 /* 3084 * Attach a packet hook. 3085 */ 3086 3087 static int packet_do_bind(struct sock *sk, const char *name, int ifindex, 3088 __be16 proto) 3089 { 3090 struct packet_sock *po = pkt_sk(sk); 3091 struct net_device *dev_curr; 3092 __be16 proto_curr; 3093 bool need_rehook; 3094 struct net_device *dev = NULL; 3095 int ret = 0; 3096 bool unlisted = false; 3097 3098 lock_sock(sk); 3099 spin_lock(&po->bind_lock); 3100 rcu_read_lock(); 3101 3102 if (po->fanout) { 3103 ret = -EINVAL; 3104 goto out_unlock; 3105 } 3106 3107 if (name) { 3108 dev = dev_get_by_name_rcu(sock_net(sk), name); 3109 if (!dev) { 3110 ret = -ENODEV; 3111 goto out_unlock; 3112 } 3113 } else if (ifindex) { 3114 dev = dev_get_by_index_rcu(sock_net(sk), ifindex); 3115 if (!dev) { 3116 ret = -ENODEV; 3117 goto out_unlock; 3118 } 3119 } 3120 3121 if (dev) 3122 dev_hold(dev); 3123 3124 proto_curr = po->prot_hook.type; 3125 dev_curr = po->prot_hook.dev; 3126 3127 need_rehook = proto_curr != proto || dev_curr != dev; 3128 3129 if (need_rehook) { 3130 if (po->running) { 3131 rcu_read_unlock(); 3132 /* prevents packet_notifier() from calling 3133 * register_prot_hook() 3134 */ 3135 po->num = 0; 3136 __unregister_prot_hook(sk, true); 3137 rcu_read_lock(); 3138 dev_curr = po->prot_hook.dev; 3139 if (dev) 3140 unlisted = !dev_get_by_index_rcu(sock_net(sk), 3141 dev->ifindex); 3142 } 3143 3144 BUG_ON(po->running); 3145 po->num = proto; 3146 po->prot_hook.type = proto; 3147 3148 if (unlikely(unlisted)) { 3149 dev_put(dev); 3150 po->prot_hook.dev = NULL; 3151 po->ifindex = -1; 3152 packet_cached_dev_reset(po); 3153 } else { 3154 po->prot_hook.dev = dev; 3155 po->ifindex = dev ? dev->ifindex : 0; 3156 packet_cached_dev_assign(po, dev); 3157 } 3158 } 3159 if (dev_curr) 3160 dev_put(dev_curr); 3161 3162 if (proto == 0 || !need_rehook) 3163 goto out_unlock; 3164 3165 if (!unlisted && (!dev || (dev->flags & IFF_UP))) { 3166 register_prot_hook(sk); 3167 } else { 3168 sk->sk_err = ENETDOWN; 3169 if (!sock_flag(sk, SOCK_DEAD)) 3170 sk->sk_error_report(sk); 3171 } 3172 3173 out_unlock: 3174 rcu_read_unlock(); 3175 spin_unlock(&po->bind_lock); 3176 release_sock(sk); 3177 return ret; 3178 } 3179 3180 /* 3181 * Bind a packet socket to a device 3182 */ 3183 3184 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 3185 int addr_len) 3186 { 3187 struct sock *sk = sock->sk; 3188 char name[sizeof(uaddr->sa_data) + 1]; 3189 3190 /* 3191 * Check legality 3192 */ 3193 3194 if (addr_len != sizeof(struct sockaddr)) 3195 return -EINVAL; 3196 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be 3197 * zero-terminated. 3198 */ 3199 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data)); 3200 name[sizeof(uaddr->sa_data)] = 0; 3201 3202 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num); 3203 } 3204 3205 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3206 { 3207 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 3208 struct sock *sk = sock->sk; 3209 3210 /* 3211 * Check legality 3212 */ 3213 3214 if (addr_len < sizeof(struct sockaddr_ll)) 3215 return -EINVAL; 3216 if (sll->sll_family != AF_PACKET) 3217 return -EINVAL; 3218 3219 return packet_do_bind(sk, NULL, sll->sll_ifindex, 3220 sll->sll_protocol ? : pkt_sk(sk)->num); 3221 } 3222 3223 static struct proto packet_proto = { 3224 .name = "PACKET", 3225 .owner = THIS_MODULE, 3226 .obj_size = sizeof(struct packet_sock), 3227 }; 3228 3229 /* 3230 * Create a packet of type SOCK_PACKET. 3231 */ 3232 3233 static int packet_create(struct net *net, struct socket *sock, int protocol, 3234 int kern) 3235 { 3236 struct sock *sk; 3237 struct packet_sock *po; 3238 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 3239 int err; 3240 3241 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 3242 return -EPERM; 3243 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 3244 sock->type != SOCK_PACKET) 3245 return -ESOCKTNOSUPPORT; 3246 3247 sock->state = SS_UNCONNECTED; 3248 3249 err = -ENOBUFS; 3250 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern); 3251 if (sk == NULL) 3252 goto out; 3253 3254 sock->ops = &packet_ops; 3255 if (sock->type == SOCK_PACKET) 3256 sock->ops = &packet_ops_spkt; 3257 3258 sock_init_data(sock, sk); 3259 3260 po = pkt_sk(sk); 3261 init_completion(&po->skb_completion); 3262 sk->sk_family = PF_PACKET; 3263 po->num = proto; 3264 po->xmit = dev_queue_xmit; 3265 3266 err = packet_alloc_pending(po); 3267 if (err) 3268 goto out2; 3269 3270 packet_cached_dev_reset(po); 3271 3272 sk->sk_destruct = packet_sock_destruct; 3273 sk_refcnt_debug_inc(sk); 3274 3275 /* 3276 * Attach a protocol block 3277 */ 3278 3279 spin_lock_init(&po->bind_lock); 3280 mutex_init(&po->pg_vec_lock); 3281 po->rollover = NULL; 3282 po->prot_hook.func = packet_rcv; 3283 3284 if (sock->type == SOCK_PACKET) 3285 po->prot_hook.func = packet_rcv_spkt; 3286 3287 po->prot_hook.af_packet_priv = sk; 3288 3289 if (proto) { 3290 po->prot_hook.type = proto; 3291 __register_prot_hook(sk); 3292 } 3293 3294 mutex_lock(&net->packet.sklist_lock); 3295 sk_add_node_tail_rcu(sk, &net->packet.sklist); 3296 mutex_unlock(&net->packet.sklist_lock); 3297 3298 preempt_disable(); 3299 sock_prot_inuse_add(net, &packet_proto, 1); 3300 preempt_enable(); 3301 3302 return 0; 3303 out2: 3304 sk_free(sk); 3305 out: 3306 return err; 3307 } 3308 3309 /* 3310 * Pull a packet from our receive queue and hand it to the user. 3311 * If necessary we block. 3312 */ 3313 3314 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 3315 int flags) 3316 { 3317 struct sock *sk = sock->sk; 3318 struct sk_buff *skb; 3319 int copied, err; 3320 int vnet_hdr_len = 0; 3321 unsigned int origlen = 0; 3322 3323 err = -EINVAL; 3324 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 3325 goto out; 3326 3327 #if 0 3328 /* What error should we return now? EUNATTACH? */ 3329 if (pkt_sk(sk)->ifindex < 0) 3330 return -ENODEV; 3331 #endif 3332 3333 if (flags & MSG_ERRQUEUE) { 3334 err = sock_recv_errqueue(sk, msg, len, 3335 SOL_PACKET, PACKET_TX_TIMESTAMP); 3336 goto out; 3337 } 3338 3339 /* 3340 * Call the generic datagram receiver. This handles all sorts 3341 * of horrible races and re-entrancy so we can forget about it 3342 * in the protocol layers. 3343 * 3344 * Now it will return ENETDOWN, if device have just gone down, 3345 * but then it will block. 3346 */ 3347 3348 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3349 3350 /* 3351 * An error occurred so return it. Because skb_recv_datagram() 3352 * handles the blocking we don't see and worry about blocking 3353 * retries. 3354 */ 3355 3356 if (skb == NULL) 3357 goto out; 3358 3359 packet_rcv_try_clear_pressure(pkt_sk(sk)); 3360 3361 if (pkt_sk(sk)->has_vnet_hdr) { 3362 err = packet_rcv_vnet(msg, skb, &len); 3363 if (err) 3364 goto out_free; 3365 vnet_hdr_len = sizeof(struct virtio_net_hdr); 3366 } 3367 3368 /* You lose any data beyond the buffer you gave. If it worries 3369 * a user program they can ask the device for its MTU 3370 * anyway. 3371 */ 3372 copied = skb->len; 3373 if (copied > len) { 3374 copied = len; 3375 msg->msg_flags |= MSG_TRUNC; 3376 } 3377 3378 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3379 if (err) 3380 goto out_free; 3381 3382 if (sock->type != SOCK_PACKET) { 3383 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3384 3385 /* Original length was stored in sockaddr_ll fields */ 3386 origlen = PACKET_SKB_CB(skb)->sa.origlen; 3387 sll->sll_family = AF_PACKET; 3388 sll->sll_protocol = skb->protocol; 3389 } 3390 3391 sock_recv_ts_and_drops(msg, sk, skb); 3392 3393 if (msg->msg_name) { 3394 int copy_len; 3395 3396 /* If the address length field is there to be filled 3397 * in, we fill it in now. 3398 */ 3399 if (sock->type == SOCK_PACKET) { 3400 __sockaddr_check_size(sizeof(struct sockaddr_pkt)); 3401 msg->msg_namelen = sizeof(struct sockaddr_pkt); 3402 copy_len = msg->msg_namelen; 3403 } else { 3404 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll; 3405 3406 msg->msg_namelen = sll->sll_halen + 3407 offsetof(struct sockaddr_ll, sll_addr); 3408 copy_len = msg->msg_namelen; 3409 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) { 3410 memset(msg->msg_name + 3411 offsetof(struct sockaddr_ll, sll_addr), 3412 0, sizeof(sll->sll_addr)); 3413 msg->msg_namelen = sizeof(struct sockaddr_ll); 3414 } 3415 } 3416 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len); 3417 } 3418 3419 if (pkt_sk(sk)->auxdata) { 3420 struct tpacket_auxdata aux; 3421 3422 aux.tp_status = TP_STATUS_USER; 3423 if (skb->ip_summed == CHECKSUM_PARTIAL) 3424 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 3425 else if (skb->pkt_type != PACKET_OUTGOING && 3426 (skb->ip_summed == CHECKSUM_COMPLETE || 3427 skb_csum_unnecessary(skb))) 3428 aux.tp_status |= TP_STATUS_CSUM_VALID; 3429 3430 aux.tp_len = origlen; 3431 aux.tp_snaplen = skb->len; 3432 aux.tp_mac = 0; 3433 aux.tp_net = skb_network_offset(skb); 3434 if (skb_vlan_tag_present(skb)) { 3435 aux.tp_vlan_tci = skb_vlan_tag_get(skb); 3436 aux.tp_vlan_tpid = ntohs(skb->vlan_proto); 3437 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; 3438 } else { 3439 aux.tp_vlan_tci = 0; 3440 aux.tp_vlan_tpid = 0; 3441 } 3442 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 3443 } 3444 3445 /* 3446 * Free or return the buffer as appropriate. Again this 3447 * hides all the races and re-entrancy issues from us. 3448 */ 3449 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 3450 3451 out_free: 3452 skb_free_datagram(sk, skb); 3453 out: 3454 return err; 3455 } 3456 3457 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 3458 int peer) 3459 { 3460 struct net_device *dev; 3461 struct sock *sk = sock->sk; 3462 3463 if (peer) 3464 return -EOPNOTSUPP; 3465 3466 uaddr->sa_family = AF_PACKET; 3467 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data)); 3468 rcu_read_lock(); 3469 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 3470 if (dev) 3471 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data)); 3472 rcu_read_unlock(); 3473 3474 return sizeof(*uaddr); 3475 } 3476 3477 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 3478 int peer) 3479 { 3480 struct net_device *dev; 3481 struct sock *sk = sock->sk; 3482 struct packet_sock *po = pkt_sk(sk); 3483 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 3484 3485 if (peer) 3486 return -EOPNOTSUPP; 3487 3488 sll->sll_family = AF_PACKET; 3489 sll->sll_ifindex = po->ifindex; 3490 sll->sll_protocol = po->num; 3491 sll->sll_pkttype = 0; 3492 rcu_read_lock(); 3493 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 3494 if (dev) { 3495 sll->sll_hatype = dev->type; 3496 sll->sll_halen = dev->addr_len; 3497 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 3498 } else { 3499 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 3500 sll->sll_halen = 0; 3501 } 3502 rcu_read_unlock(); 3503 3504 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 3505 } 3506 3507 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 3508 int what) 3509 { 3510 switch (i->type) { 3511 case PACKET_MR_MULTICAST: 3512 if (i->alen != dev->addr_len) 3513 return -EINVAL; 3514 if (what > 0) 3515 return dev_mc_add(dev, i->addr); 3516 else 3517 return dev_mc_del(dev, i->addr); 3518 break; 3519 case PACKET_MR_PROMISC: 3520 return dev_set_promiscuity(dev, what); 3521 case PACKET_MR_ALLMULTI: 3522 return dev_set_allmulti(dev, what); 3523 case PACKET_MR_UNICAST: 3524 if (i->alen != dev->addr_len) 3525 return -EINVAL; 3526 if (what > 0) 3527 return dev_uc_add(dev, i->addr); 3528 else 3529 return dev_uc_del(dev, i->addr); 3530 break; 3531 default: 3532 break; 3533 } 3534 return 0; 3535 } 3536 3537 static void packet_dev_mclist_delete(struct net_device *dev, 3538 struct packet_mclist **mlp) 3539 { 3540 struct packet_mclist *ml; 3541 3542 while ((ml = *mlp) != NULL) { 3543 if (ml->ifindex == dev->ifindex) { 3544 packet_dev_mc(dev, ml, -1); 3545 *mlp = ml->next; 3546 kfree(ml); 3547 } else 3548 mlp = &ml->next; 3549 } 3550 } 3551 3552 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 3553 { 3554 struct packet_sock *po = pkt_sk(sk); 3555 struct packet_mclist *ml, *i; 3556 struct net_device *dev; 3557 int err; 3558 3559 rtnl_lock(); 3560 3561 err = -ENODEV; 3562 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 3563 if (!dev) 3564 goto done; 3565 3566 err = -EINVAL; 3567 if (mreq->mr_alen > dev->addr_len) 3568 goto done; 3569 3570 err = -ENOBUFS; 3571 i = kmalloc(sizeof(*i), GFP_KERNEL); 3572 if (i == NULL) 3573 goto done; 3574 3575 err = 0; 3576 for (ml = po->mclist; ml; ml = ml->next) { 3577 if (ml->ifindex == mreq->mr_ifindex && 3578 ml->type == mreq->mr_type && 3579 ml->alen == mreq->mr_alen && 3580 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3581 ml->count++; 3582 /* Free the new element ... */ 3583 kfree(i); 3584 goto done; 3585 } 3586 } 3587 3588 i->type = mreq->mr_type; 3589 i->ifindex = mreq->mr_ifindex; 3590 i->alen = mreq->mr_alen; 3591 memcpy(i->addr, mreq->mr_address, i->alen); 3592 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen); 3593 i->count = 1; 3594 i->next = po->mclist; 3595 po->mclist = i; 3596 err = packet_dev_mc(dev, i, 1); 3597 if (err) { 3598 po->mclist = i->next; 3599 kfree(i); 3600 } 3601 3602 done: 3603 rtnl_unlock(); 3604 return err; 3605 } 3606 3607 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 3608 { 3609 struct packet_mclist *ml, **mlp; 3610 3611 rtnl_lock(); 3612 3613 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 3614 if (ml->ifindex == mreq->mr_ifindex && 3615 ml->type == mreq->mr_type && 3616 ml->alen == mreq->mr_alen && 3617 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 3618 if (--ml->count == 0) { 3619 struct net_device *dev; 3620 *mlp = ml->next; 3621 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3622 if (dev) 3623 packet_dev_mc(dev, ml, -1); 3624 kfree(ml); 3625 } 3626 break; 3627 } 3628 } 3629 rtnl_unlock(); 3630 return 0; 3631 } 3632 3633 static void packet_flush_mclist(struct sock *sk) 3634 { 3635 struct packet_sock *po = pkt_sk(sk); 3636 struct packet_mclist *ml; 3637 3638 if (!po->mclist) 3639 return; 3640 3641 rtnl_lock(); 3642 while ((ml = po->mclist) != NULL) { 3643 struct net_device *dev; 3644 3645 po->mclist = ml->next; 3646 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3647 if (dev != NULL) 3648 packet_dev_mc(dev, ml, -1); 3649 kfree(ml); 3650 } 3651 rtnl_unlock(); 3652 } 3653 3654 static int 3655 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3656 { 3657 struct sock *sk = sock->sk; 3658 struct packet_sock *po = pkt_sk(sk); 3659 int ret; 3660 3661 if (level != SOL_PACKET) 3662 return -ENOPROTOOPT; 3663 3664 switch (optname) { 3665 case PACKET_ADD_MEMBERSHIP: 3666 case PACKET_DROP_MEMBERSHIP: 3667 { 3668 struct packet_mreq_max mreq; 3669 int len = optlen; 3670 memset(&mreq, 0, sizeof(mreq)); 3671 if (len < sizeof(struct packet_mreq)) 3672 return -EINVAL; 3673 if (len > sizeof(mreq)) 3674 len = sizeof(mreq); 3675 if (copy_from_user(&mreq, optval, len)) 3676 return -EFAULT; 3677 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3678 return -EINVAL; 3679 if (optname == PACKET_ADD_MEMBERSHIP) 3680 ret = packet_mc_add(sk, &mreq); 3681 else 3682 ret = packet_mc_drop(sk, &mreq); 3683 return ret; 3684 } 3685 3686 case PACKET_RX_RING: 3687 case PACKET_TX_RING: 3688 { 3689 union tpacket_req_u req_u; 3690 int len; 3691 3692 lock_sock(sk); 3693 switch (po->tp_version) { 3694 case TPACKET_V1: 3695 case TPACKET_V2: 3696 len = sizeof(req_u.req); 3697 break; 3698 case TPACKET_V3: 3699 default: 3700 len = sizeof(req_u.req3); 3701 break; 3702 } 3703 if (optlen < len) { 3704 ret = -EINVAL; 3705 } else { 3706 if (copy_from_user(&req_u.req, optval, len)) 3707 ret = -EFAULT; 3708 else 3709 ret = packet_set_ring(sk, &req_u, 0, 3710 optname == PACKET_TX_RING); 3711 } 3712 release_sock(sk); 3713 return ret; 3714 } 3715 case PACKET_COPY_THRESH: 3716 { 3717 int val; 3718 3719 if (optlen != sizeof(val)) 3720 return -EINVAL; 3721 if (copy_from_user(&val, optval, sizeof(val))) 3722 return -EFAULT; 3723 3724 pkt_sk(sk)->copy_thresh = val; 3725 return 0; 3726 } 3727 case PACKET_VERSION: 3728 { 3729 int val; 3730 3731 if (optlen != sizeof(val)) 3732 return -EINVAL; 3733 if (copy_from_user(&val, optval, sizeof(val))) 3734 return -EFAULT; 3735 switch (val) { 3736 case TPACKET_V1: 3737 case TPACKET_V2: 3738 case TPACKET_V3: 3739 break; 3740 default: 3741 return -EINVAL; 3742 } 3743 lock_sock(sk); 3744 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3745 ret = -EBUSY; 3746 } else { 3747 po->tp_version = val; 3748 ret = 0; 3749 } 3750 release_sock(sk); 3751 return ret; 3752 } 3753 case PACKET_RESERVE: 3754 { 3755 unsigned int val; 3756 3757 if (optlen != sizeof(val)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, sizeof(val))) 3760 return -EFAULT; 3761 if (val > INT_MAX) 3762 return -EINVAL; 3763 lock_sock(sk); 3764 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3765 ret = -EBUSY; 3766 } else { 3767 po->tp_reserve = val; 3768 ret = 0; 3769 } 3770 release_sock(sk); 3771 return ret; 3772 } 3773 case PACKET_LOSS: 3774 { 3775 unsigned int val; 3776 3777 if (optlen != sizeof(val)) 3778 return -EINVAL; 3779 if (copy_from_user(&val, optval, sizeof(val))) 3780 return -EFAULT; 3781 3782 lock_sock(sk); 3783 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3784 ret = -EBUSY; 3785 } else { 3786 po->tp_loss = !!val; 3787 ret = 0; 3788 } 3789 release_sock(sk); 3790 return ret; 3791 } 3792 case PACKET_AUXDATA: 3793 { 3794 int val; 3795 3796 if (optlen < sizeof(val)) 3797 return -EINVAL; 3798 if (copy_from_user(&val, optval, sizeof(val))) 3799 return -EFAULT; 3800 3801 lock_sock(sk); 3802 po->auxdata = !!val; 3803 release_sock(sk); 3804 return 0; 3805 } 3806 case PACKET_ORIGDEV: 3807 { 3808 int val; 3809 3810 if (optlen < sizeof(val)) 3811 return -EINVAL; 3812 if (copy_from_user(&val, optval, sizeof(val))) 3813 return -EFAULT; 3814 3815 lock_sock(sk); 3816 po->origdev = !!val; 3817 release_sock(sk); 3818 return 0; 3819 } 3820 case PACKET_VNET_HDR: 3821 { 3822 int val; 3823 3824 if (sock->type != SOCK_RAW) 3825 return -EINVAL; 3826 if (optlen < sizeof(val)) 3827 return -EINVAL; 3828 if (copy_from_user(&val, optval, sizeof(val))) 3829 return -EFAULT; 3830 3831 lock_sock(sk); 3832 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3833 ret = -EBUSY; 3834 } else { 3835 po->has_vnet_hdr = !!val; 3836 ret = 0; 3837 } 3838 release_sock(sk); 3839 return ret; 3840 } 3841 case PACKET_TIMESTAMP: 3842 { 3843 int val; 3844 3845 if (optlen != sizeof(val)) 3846 return -EINVAL; 3847 if (copy_from_user(&val, optval, sizeof(val))) 3848 return -EFAULT; 3849 3850 po->tp_tstamp = val; 3851 return 0; 3852 } 3853 case PACKET_FANOUT: 3854 { 3855 int val; 3856 3857 if (optlen != sizeof(val)) 3858 return -EINVAL; 3859 if (copy_from_user(&val, optval, sizeof(val))) 3860 return -EFAULT; 3861 3862 return fanout_add(sk, val & 0xffff, val >> 16); 3863 } 3864 case PACKET_FANOUT_DATA: 3865 { 3866 if (!po->fanout) 3867 return -EINVAL; 3868 3869 return fanout_set_data(po, optval, optlen); 3870 } 3871 case PACKET_IGNORE_OUTGOING: 3872 { 3873 int val; 3874 3875 if (optlen != sizeof(val)) 3876 return -EINVAL; 3877 if (copy_from_user(&val, optval, sizeof(val))) 3878 return -EFAULT; 3879 if (val < 0 || val > 1) 3880 return -EINVAL; 3881 3882 po->prot_hook.ignore_outgoing = !!val; 3883 return 0; 3884 } 3885 case PACKET_TX_HAS_OFF: 3886 { 3887 unsigned int val; 3888 3889 if (optlen != sizeof(val)) 3890 return -EINVAL; 3891 if (copy_from_user(&val, optval, sizeof(val))) 3892 return -EFAULT; 3893 3894 lock_sock(sk); 3895 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) { 3896 ret = -EBUSY; 3897 } else { 3898 po->tp_tx_has_off = !!val; 3899 ret = 0; 3900 } 3901 release_sock(sk); 3902 return 0; 3903 } 3904 case PACKET_QDISC_BYPASS: 3905 { 3906 int val; 3907 3908 if (optlen != sizeof(val)) 3909 return -EINVAL; 3910 if (copy_from_user(&val, optval, sizeof(val))) 3911 return -EFAULT; 3912 3913 po->xmit = val ? packet_direct_xmit : dev_queue_xmit; 3914 return 0; 3915 } 3916 default: 3917 return -ENOPROTOOPT; 3918 } 3919 } 3920 3921 static int packet_getsockopt(struct socket *sock, int level, int optname, 3922 char __user *optval, int __user *optlen) 3923 { 3924 int len; 3925 int val, lv = sizeof(val); 3926 struct sock *sk = sock->sk; 3927 struct packet_sock *po = pkt_sk(sk); 3928 void *data = &val; 3929 union tpacket_stats_u st; 3930 struct tpacket_rollover_stats rstats; 3931 int drops; 3932 3933 if (level != SOL_PACKET) 3934 return -ENOPROTOOPT; 3935 3936 if (get_user(len, optlen)) 3937 return -EFAULT; 3938 3939 if (len < 0) 3940 return -EINVAL; 3941 3942 switch (optname) { 3943 case PACKET_STATISTICS: 3944 spin_lock_bh(&sk->sk_receive_queue.lock); 3945 memcpy(&st, &po->stats, sizeof(st)); 3946 memset(&po->stats, 0, sizeof(po->stats)); 3947 spin_unlock_bh(&sk->sk_receive_queue.lock); 3948 drops = atomic_xchg(&po->tp_drops, 0); 3949 3950 if (po->tp_version == TPACKET_V3) { 3951 lv = sizeof(struct tpacket_stats_v3); 3952 st.stats3.tp_drops = drops; 3953 st.stats3.tp_packets += drops; 3954 data = &st.stats3; 3955 } else { 3956 lv = sizeof(struct tpacket_stats); 3957 st.stats1.tp_drops = drops; 3958 st.stats1.tp_packets += drops; 3959 data = &st.stats1; 3960 } 3961 3962 break; 3963 case PACKET_AUXDATA: 3964 val = po->auxdata; 3965 break; 3966 case PACKET_ORIGDEV: 3967 val = po->origdev; 3968 break; 3969 case PACKET_VNET_HDR: 3970 val = po->has_vnet_hdr; 3971 break; 3972 case PACKET_VERSION: 3973 val = po->tp_version; 3974 break; 3975 case PACKET_HDRLEN: 3976 if (len > sizeof(int)) 3977 len = sizeof(int); 3978 if (len < sizeof(int)) 3979 return -EINVAL; 3980 if (copy_from_user(&val, optval, len)) 3981 return -EFAULT; 3982 switch (val) { 3983 case TPACKET_V1: 3984 val = sizeof(struct tpacket_hdr); 3985 break; 3986 case TPACKET_V2: 3987 val = sizeof(struct tpacket2_hdr); 3988 break; 3989 case TPACKET_V3: 3990 val = sizeof(struct tpacket3_hdr); 3991 break; 3992 default: 3993 return -EINVAL; 3994 } 3995 break; 3996 case PACKET_RESERVE: 3997 val = po->tp_reserve; 3998 break; 3999 case PACKET_LOSS: 4000 val = po->tp_loss; 4001 break; 4002 case PACKET_TIMESTAMP: 4003 val = po->tp_tstamp; 4004 break; 4005 case PACKET_FANOUT: 4006 val = (po->fanout ? 4007 ((u32)po->fanout->id | 4008 ((u32)po->fanout->type << 16) | 4009 ((u32)po->fanout->flags << 24)) : 4010 0); 4011 break; 4012 case PACKET_IGNORE_OUTGOING: 4013 val = po->prot_hook.ignore_outgoing; 4014 break; 4015 case PACKET_ROLLOVER_STATS: 4016 if (!po->rollover) 4017 return -EINVAL; 4018 rstats.tp_all = atomic_long_read(&po->rollover->num); 4019 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge); 4020 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed); 4021 data = &rstats; 4022 lv = sizeof(rstats); 4023 break; 4024 case PACKET_TX_HAS_OFF: 4025 val = po->tp_tx_has_off; 4026 break; 4027 case PACKET_QDISC_BYPASS: 4028 val = packet_use_direct_xmit(po); 4029 break; 4030 default: 4031 return -ENOPROTOOPT; 4032 } 4033 4034 if (len > lv) 4035 len = lv; 4036 if (put_user(len, optlen)) 4037 return -EFAULT; 4038 if (copy_to_user(optval, data, len)) 4039 return -EFAULT; 4040 return 0; 4041 } 4042 4043 4044 #ifdef CONFIG_COMPAT 4045 static int compat_packet_setsockopt(struct socket *sock, int level, int optname, 4046 char __user *optval, unsigned int optlen) 4047 { 4048 struct packet_sock *po = pkt_sk(sock->sk); 4049 4050 if (level != SOL_PACKET) 4051 return -ENOPROTOOPT; 4052 4053 if (optname == PACKET_FANOUT_DATA && 4054 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) { 4055 optval = (char __user *)get_compat_bpf_fprog(optval); 4056 if (!optval) 4057 return -EFAULT; 4058 optlen = sizeof(struct sock_fprog); 4059 } 4060 4061 return packet_setsockopt(sock, level, optname, optval, optlen); 4062 } 4063 #endif 4064 4065 static int packet_notifier(struct notifier_block *this, 4066 unsigned long msg, void *ptr) 4067 { 4068 struct sock *sk; 4069 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4070 struct net *net = dev_net(dev); 4071 4072 rcu_read_lock(); 4073 sk_for_each_rcu(sk, &net->packet.sklist) { 4074 struct packet_sock *po = pkt_sk(sk); 4075 4076 switch (msg) { 4077 case NETDEV_UNREGISTER: 4078 if (po->mclist) 4079 packet_dev_mclist_delete(dev, &po->mclist); 4080 /* fallthrough */ 4081 4082 case NETDEV_DOWN: 4083 if (dev->ifindex == po->ifindex) { 4084 spin_lock(&po->bind_lock); 4085 if (po->running) { 4086 __unregister_prot_hook(sk, false); 4087 sk->sk_err = ENETDOWN; 4088 if (!sock_flag(sk, SOCK_DEAD)) 4089 sk->sk_error_report(sk); 4090 } 4091 if (msg == NETDEV_UNREGISTER) { 4092 packet_cached_dev_reset(po); 4093 po->ifindex = -1; 4094 if (po->prot_hook.dev) 4095 dev_put(po->prot_hook.dev); 4096 po->prot_hook.dev = NULL; 4097 } 4098 spin_unlock(&po->bind_lock); 4099 } 4100 break; 4101 case NETDEV_UP: 4102 if (dev->ifindex == po->ifindex) { 4103 spin_lock(&po->bind_lock); 4104 if (po->num) 4105 register_prot_hook(sk); 4106 spin_unlock(&po->bind_lock); 4107 } 4108 break; 4109 } 4110 } 4111 rcu_read_unlock(); 4112 return NOTIFY_DONE; 4113 } 4114 4115 4116 static int packet_ioctl(struct socket *sock, unsigned int cmd, 4117 unsigned long arg) 4118 { 4119 struct sock *sk = sock->sk; 4120 4121 switch (cmd) { 4122 case SIOCOUTQ: 4123 { 4124 int amount = sk_wmem_alloc_get(sk); 4125 4126 return put_user(amount, (int __user *)arg); 4127 } 4128 case SIOCINQ: 4129 { 4130 struct sk_buff *skb; 4131 int amount = 0; 4132 4133 spin_lock_bh(&sk->sk_receive_queue.lock); 4134 skb = skb_peek(&sk->sk_receive_queue); 4135 if (skb) 4136 amount = skb->len; 4137 spin_unlock_bh(&sk->sk_receive_queue.lock); 4138 return put_user(amount, (int __user *)arg); 4139 } 4140 #ifdef CONFIG_INET 4141 case SIOCADDRT: 4142 case SIOCDELRT: 4143 case SIOCDARP: 4144 case SIOCGARP: 4145 case SIOCSARP: 4146 case SIOCGIFADDR: 4147 case SIOCSIFADDR: 4148 case SIOCGIFBRDADDR: 4149 case SIOCSIFBRDADDR: 4150 case SIOCGIFNETMASK: 4151 case SIOCSIFNETMASK: 4152 case SIOCGIFDSTADDR: 4153 case SIOCSIFDSTADDR: 4154 case SIOCSIFFLAGS: 4155 return inet_dgram_ops.ioctl(sock, cmd, arg); 4156 #endif 4157 4158 default: 4159 return -ENOIOCTLCMD; 4160 } 4161 return 0; 4162 } 4163 4164 static __poll_t packet_poll(struct file *file, struct socket *sock, 4165 poll_table *wait) 4166 { 4167 struct sock *sk = sock->sk; 4168 struct packet_sock *po = pkt_sk(sk); 4169 __poll_t mask = datagram_poll(file, sock, wait); 4170 4171 spin_lock_bh(&sk->sk_receive_queue.lock); 4172 if (po->rx_ring.pg_vec) { 4173 if (!packet_previous_rx_frame(po, &po->rx_ring, 4174 TP_STATUS_KERNEL)) 4175 mask |= EPOLLIN | EPOLLRDNORM; 4176 } 4177 packet_rcv_try_clear_pressure(po); 4178 spin_unlock_bh(&sk->sk_receive_queue.lock); 4179 spin_lock_bh(&sk->sk_write_queue.lock); 4180 if (po->tx_ring.pg_vec) { 4181 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 4182 mask |= EPOLLOUT | EPOLLWRNORM; 4183 } 4184 spin_unlock_bh(&sk->sk_write_queue.lock); 4185 return mask; 4186 } 4187 4188 4189 /* Dirty? Well, I still did not learn better way to account 4190 * for user mmaps. 4191 */ 4192 4193 static void packet_mm_open(struct vm_area_struct *vma) 4194 { 4195 struct file *file = vma->vm_file; 4196 struct socket *sock = file->private_data; 4197 struct sock *sk = sock->sk; 4198 4199 if (sk) 4200 atomic_inc(&pkt_sk(sk)->mapped); 4201 } 4202 4203 static void packet_mm_close(struct vm_area_struct *vma) 4204 { 4205 struct file *file = vma->vm_file; 4206 struct socket *sock = file->private_data; 4207 struct sock *sk = sock->sk; 4208 4209 if (sk) 4210 atomic_dec(&pkt_sk(sk)->mapped); 4211 } 4212 4213 static const struct vm_operations_struct packet_mmap_ops = { 4214 .open = packet_mm_open, 4215 .close = packet_mm_close, 4216 }; 4217 4218 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 4219 unsigned int len) 4220 { 4221 int i; 4222 4223 for (i = 0; i < len; i++) { 4224 if (likely(pg_vec[i].buffer)) { 4225 if (is_vmalloc_addr(pg_vec[i].buffer)) 4226 vfree(pg_vec[i].buffer); 4227 else 4228 free_pages((unsigned long)pg_vec[i].buffer, 4229 order); 4230 pg_vec[i].buffer = NULL; 4231 } 4232 } 4233 kfree(pg_vec); 4234 } 4235 4236 static char *alloc_one_pg_vec_page(unsigned long order) 4237 { 4238 char *buffer; 4239 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 4240 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 4241 4242 buffer = (char *) __get_free_pages(gfp_flags, order); 4243 if (buffer) 4244 return buffer; 4245 4246 /* __get_free_pages failed, fall back to vmalloc */ 4247 buffer = vzalloc(array_size((1 << order), PAGE_SIZE)); 4248 if (buffer) 4249 return buffer; 4250 4251 /* vmalloc failed, lets dig into swap here */ 4252 gfp_flags &= ~__GFP_NORETRY; 4253 buffer = (char *) __get_free_pages(gfp_flags, order); 4254 if (buffer) 4255 return buffer; 4256 4257 /* complete and utter failure */ 4258 return NULL; 4259 } 4260 4261 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 4262 { 4263 unsigned int block_nr = req->tp_block_nr; 4264 struct pgv *pg_vec; 4265 int i; 4266 4267 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN); 4268 if (unlikely(!pg_vec)) 4269 goto out; 4270 4271 for (i = 0; i < block_nr; i++) { 4272 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 4273 if (unlikely(!pg_vec[i].buffer)) 4274 goto out_free_pgvec; 4275 } 4276 4277 out: 4278 return pg_vec; 4279 4280 out_free_pgvec: 4281 free_pg_vec(pg_vec, order, block_nr); 4282 pg_vec = NULL; 4283 goto out; 4284 } 4285 4286 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 4287 int closing, int tx_ring) 4288 { 4289 struct pgv *pg_vec = NULL; 4290 struct packet_sock *po = pkt_sk(sk); 4291 unsigned long *rx_owner_map = NULL; 4292 int was_running, order = 0; 4293 struct packet_ring_buffer *rb; 4294 struct sk_buff_head *rb_queue; 4295 __be16 num; 4296 int err = -EINVAL; 4297 /* Added to avoid minimal code churn */ 4298 struct tpacket_req *req = &req_u->req; 4299 4300 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 4301 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 4302 4303 err = -EBUSY; 4304 if (!closing) { 4305 if (atomic_read(&po->mapped)) 4306 goto out; 4307 if (packet_read_pending(rb)) 4308 goto out; 4309 } 4310 4311 if (req->tp_block_nr) { 4312 unsigned int min_frame_size; 4313 4314 /* Sanity tests and some calculations */ 4315 err = -EBUSY; 4316 if (unlikely(rb->pg_vec)) 4317 goto out; 4318 4319 switch (po->tp_version) { 4320 case TPACKET_V1: 4321 po->tp_hdrlen = TPACKET_HDRLEN; 4322 break; 4323 case TPACKET_V2: 4324 po->tp_hdrlen = TPACKET2_HDRLEN; 4325 break; 4326 case TPACKET_V3: 4327 po->tp_hdrlen = TPACKET3_HDRLEN; 4328 break; 4329 } 4330 4331 err = -EINVAL; 4332 if (unlikely((int)req->tp_block_size <= 0)) 4333 goto out; 4334 if (unlikely(!PAGE_ALIGNED(req->tp_block_size))) 4335 goto out; 4336 min_frame_size = po->tp_hdrlen + po->tp_reserve; 4337 if (po->tp_version >= TPACKET_V3 && 4338 req->tp_block_size < 4339 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size) 4340 goto out; 4341 if (unlikely(req->tp_frame_size < min_frame_size)) 4342 goto out; 4343 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 4344 goto out; 4345 4346 rb->frames_per_block = req->tp_block_size / req->tp_frame_size; 4347 if (unlikely(rb->frames_per_block == 0)) 4348 goto out; 4349 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr)) 4350 goto out; 4351 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 4352 req->tp_frame_nr)) 4353 goto out; 4354 4355 err = -ENOMEM; 4356 order = get_order(req->tp_block_size); 4357 pg_vec = alloc_pg_vec(req, order); 4358 if (unlikely(!pg_vec)) 4359 goto out; 4360 switch (po->tp_version) { 4361 case TPACKET_V3: 4362 /* Block transmit is not supported yet */ 4363 if (!tx_ring) { 4364 init_prb_bdqc(po, rb, pg_vec, req_u); 4365 } else { 4366 struct tpacket_req3 *req3 = &req_u->req3; 4367 4368 if (req3->tp_retire_blk_tov || 4369 req3->tp_sizeof_priv || 4370 req3->tp_feature_req_word) { 4371 err = -EINVAL; 4372 goto out_free_pg_vec; 4373 } 4374 } 4375 break; 4376 default: 4377 if (!tx_ring) { 4378 rx_owner_map = bitmap_alloc(req->tp_frame_nr, 4379 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO); 4380 if (!rx_owner_map) 4381 goto out_free_pg_vec; 4382 } 4383 break; 4384 } 4385 } 4386 /* Done */ 4387 else { 4388 err = -EINVAL; 4389 if (unlikely(req->tp_frame_nr)) 4390 goto out; 4391 } 4392 4393 4394 /* Detach socket from network */ 4395 spin_lock(&po->bind_lock); 4396 was_running = po->running; 4397 num = po->num; 4398 if (was_running) { 4399 po->num = 0; 4400 __unregister_prot_hook(sk, false); 4401 } 4402 spin_unlock(&po->bind_lock); 4403 4404 synchronize_net(); 4405 4406 err = -EBUSY; 4407 mutex_lock(&po->pg_vec_lock); 4408 if (closing || atomic_read(&po->mapped) == 0) { 4409 err = 0; 4410 spin_lock_bh(&rb_queue->lock); 4411 swap(rb->pg_vec, pg_vec); 4412 if (po->tp_version <= TPACKET_V2) 4413 swap(rb->rx_owner_map, rx_owner_map); 4414 rb->frame_max = (req->tp_frame_nr - 1); 4415 rb->head = 0; 4416 rb->frame_size = req->tp_frame_size; 4417 spin_unlock_bh(&rb_queue->lock); 4418 4419 swap(rb->pg_vec_order, order); 4420 swap(rb->pg_vec_len, req->tp_block_nr); 4421 4422 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 4423 po->prot_hook.func = (po->rx_ring.pg_vec) ? 4424 tpacket_rcv : packet_rcv; 4425 skb_queue_purge(rb_queue); 4426 if (atomic_read(&po->mapped)) 4427 pr_err("packet_mmap: vma is busy: %d\n", 4428 atomic_read(&po->mapped)); 4429 } 4430 mutex_unlock(&po->pg_vec_lock); 4431 4432 spin_lock(&po->bind_lock); 4433 if (was_running) { 4434 po->num = num; 4435 register_prot_hook(sk); 4436 } 4437 spin_unlock(&po->bind_lock); 4438 if (pg_vec && (po->tp_version > TPACKET_V2)) { 4439 /* Because we don't support block-based V3 on tx-ring */ 4440 if (!tx_ring) 4441 prb_shutdown_retire_blk_timer(po, rb_queue); 4442 } 4443 4444 out_free_pg_vec: 4445 bitmap_free(rx_owner_map); 4446 if (pg_vec) 4447 free_pg_vec(pg_vec, order, req->tp_block_nr); 4448 out: 4449 return err; 4450 } 4451 4452 static int packet_mmap(struct file *file, struct socket *sock, 4453 struct vm_area_struct *vma) 4454 { 4455 struct sock *sk = sock->sk; 4456 struct packet_sock *po = pkt_sk(sk); 4457 unsigned long size, expected_size; 4458 struct packet_ring_buffer *rb; 4459 unsigned long start; 4460 int err = -EINVAL; 4461 int i; 4462 4463 if (vma->vm_pgoff) 4464 return -EINVAL; 4465 4466 mutex_lock(&po->pg_vec_lock); 4467 4468 expected_size = 0; 4469 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4470 if (rb->pg_vec) { 4471 expected_size += rb->pg_vec_len 4472 * rb->pg_vec_pages 4473 * PAGE_SIZE; 4474 } 4475 } 4476 4477 if (expected_size == 0) 4478 goto out; 4479 4480 size = vma->vm_end - vma->vm_start; 4481 if (size != expected_size) 4482 goto out; 4483 4484 start = vma->vm_start; 4485 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 4486 if (rb->pg_vec == NULL) 4487 continue; 4488 4489 for (i = 0; i < rb->pg_vec_len; i++) { 4490 struct page *page; 4491 void *kaddr = rb->pg_vec[i].buffer; 4492 int pg_num; 4493 4494 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 4495 page = pgv_to_page(kaddr); 4496 err = vm_insert_page(vma, start, page); 4497 if (unlikely(err)) 4498 goto out; 4499 start += PAGE_SIZE; 4500 kaddr += PAGE_SIZE; 4501 } 4502 } 4503 } 4504 4505 atomic_inc(&po->mapped); 4506 vma->vm_ops = &packet_mmap_ops; 4507 err = 0; 4508 4509 out: 4510 mutex_unlock(&po->pg_vec_lock); 4511 return err; 4512 } 4513 4514 static const struct proto_ops packet_ops_spkt = { 4515 .family = PF_PACKET, 4516 .owner = THIS_MODULE, 4517 .release = packet_release, 4518 .bind = packet_bind_spkt, 4519 .connect = sock_no_connect, 4520 .socketpair = sock_no_socketpair, 4521 .accept = sock_no_accept, 4522 .getname = packet_getname_spkt, 4523 .poll = datagram_poll, 4524 .ioctl = packet_ioctl, 4525 .gettstamp = sock_gettstamp, 4526 .listen = sock_no_listen, 4527 .shutdown = sock_no_shutdown, 4528 .setsockopt = sock_no_setsockopt, 4529 .getsockopt = sock_no_getsockopt, 4530 .sendmsg = packet_sendmsg_spkt, 4531 .recvmsg = packet_recvmsg, 4532 .mmap = sock_no_mmap, 4533 .sendpage = sock_no_sendpage, 4534 }; 4535 4536 static const struct proto_ops packet_ops = { 4537 .family = PF_PACKET, 4538 .owner = THIS_MODULE, 4539 .release = packet_release, 4540 .bind = packet_bind, 4541 .connect = sock_no_connect, 4542 .socketpair = sock_no_socketpair, 4543 .accept = sock_no_accept, 4544 .getname = packet_getname, 4545 .poll = packet_poll, 4546 .ioctl = packet_ioctl, 4547 .gettstamp = sock_gettstamp, 4548 .listen = sock_no_listen, 4549 .shutdown = sock_no_shutdown, 4550 .setsockopt = packet_setsockopt, 4551 .getsockopt = packet_getsockopt, 4552 #ifdef CONFIG_COMPAT 4553 .compat_setsockopt = compat_packet_setsockopt, 4554 #endif 4555 .sendmsg = packet_sendmsg, 4556 .recvmsg = packet_recvmsg, 4557 .mmap = packet_mmap, 4558 .sendpage = sock_no_sendpage, 4559 }; 4560 4561 static const struct net_proto_family packet_family_ops = { 4562 .family = PF_PACKET, 4563 .create = packet_create, 4564 .owner = THIS_MODULE, 4565 }; 4566 4567 static struct notifier_block packet_netdev_notifier = { 4568 .notifier_call = packet_notifier, 4569 }; 4570 4571 #ifdef CONFIG_PROC_FS 4572 4573 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 4574 __acquires(RCU) 4575 { 4576 struct net *net = seq_file_net(seq); 4577 4578 rcu_read_lock(); 4579 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 4580 } 4581 4582 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4583 { 4584 struct net *net = seq_file_net(seq); 4585 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 4586 } 4587 4588 static void packet_seq_stop(struct seq_file *seq, void *v) 4589 __releases(RCU) 4590 { 4591 rcu_read_unlock(); 4592 } 4593 4594 static int packet_seq_show(struct seq_file *seq, void *v) 4595 { 4596 if (v == SEQ_START_TOKEN) 4597 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 4598 else { 4599 struct sock *s = sk_entry(v); 4600 const struct packet_sock *po = pkt_sk(s); 4601 4602 seq_printf(seq, 4603 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 4604 s, 4605 refcount_read(&s->sk_refcnt), 4606 s->sk_type, 4607 ntohs(po->num), 4608 po->ifindex, 4609 po->running, 4610 atomic_read(&s->sk_rmem_alloc), 4611 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)), 4612 sock_i_ino(s)); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static const struct seq_operations packet_seq_ops = { 4619 .start = packet_seq_start, 4620 .next = packet_seq_next, 4621 .stop = packet_seq_stop, 4622 .show = packet_seq_show, 4623 }; 4624 #endif 4625 4626 static int __net_init packet_net_init(struct net *net) 4627 { 4628 mutex_init(&net->packet.sklist_lock); 4629 INIT_HLIST_HEAD(&net->packet.sklist); 4630 4631 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops, 4632 sizeof(struct seq_net_private))) 4633 return -ENOMEM; 4634 4635 return 0; 4636 } 4637 4638 static void __net_exit packet_net_exit(struct net *net) 4639 { 4640 remove_proc_entry("packet", net->proc_net); 4641 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist)); 4642 } 4643 4644 static struct pernet_operations packet_net_ops = { 4645 .init = packet_net_init, 4646 .exit = packet_net_exit, 4647 }; 4648 4649 4650 static void __exit packet_exit(void) 4651 { 4652 unregister_netdevice_notifier(&packet_netdev_notifier); 4653 unregister_pernet_subsys(&packet_net_ops); 4654 sock_unregister(PF_PACKET); 4655 proto_unregister(&packet_proto); 4656 } 4657 4658 static int __init packet_init(void) 4659 { 4660 int rc; 4661 4662 rc = proto_register(&packet_proto, 0); 4663 if (rc) 4664 goto out; 4665 rc = sock_register(&packet_family_ops); 4666 if (rc) 4667 goto out_proto; 4668 rc = register_pernet_subsys(&packet_net_ops); 4669 if (rc) 4670 goto out_sock; 4671 rc = register_netdevice_notifier(&packet_netdev_notifier); 4672 if (rc) 4673 goto out_pernet; 4674 4675 return 0; 4676 4677 out_pernet: 4678 unregister_pernet_subsys(&packet_net_ops); 4679 out_sock: 4680 sock_unregister(PF_PACKET); 4681 out_proto: 4682 proto_unregister(&packet_proto); 4683 out: 4684 return rc; 4685 } 4686 4687 module_init(packet_init); 4688 module_exit(packet_exit); 4689 MODULE_LICENSE("GPL"); 4690 MODULE_ALIAS_NETPROTO(PF_PACKET); 4691