xref: /openbmc/linux/net/packet/af_packet.c (revision 089a49b6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		PACKET - implements raw packet sockets.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *
12  * Fixes:
13  *		Alan Cox	:	verify_area() now used correctly
14  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
15  *		Alan Cox	:	tidied skbuff lists.
16  *		Alan Cox	:	Now uses generic datagram routines I
17  *					added. Also fixed the peek/read crash
18  *					from all old Linux datagram code.
19  *		Alan Cox	:	Uses the improved datagram code.
20  *		Alan Cox	:	Added NULL's for socket options.
21  *		Alan Cox	:	Re-commented the code.
22  *		Alan Cox	:	Use new kernel side addressing
23  *		Rob Janssen	:	Correct MTU usage.
24  *		Dave Platt	:	Counter leaks caused by incorrect
25  *					interrupt locking and some slightly
26  *					dubious gcc output. Can you read
27  *					compiler: it said _VOLATILE_
28  *	Richard Kooijman	:	Timestamp fixes.
29  *		Alan Cox	:	New buffers. Use sk->mac.raw.
30  *		Alan Cox	:	sendmsg/recvmsg support.
31  *		Alan Cox	:	Protocol setting support
32  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
33  *	Cyrus Durgin		:	Fixed kerneld for kmod.
34  *	Michal Ostrowski        :       Module initialization cleanup.
35  *         Ulises Alonso        :       Frame number limit removal and
36  *                                      packet_set_ring memory leak.
37  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
38  *					The convention is that longer addresses
39  *					will simply extend the hardware address
40  *					byte arrays at the end of sockaddr_ll
41  *					and packet_mreq.
42  *		Johann Baudy	:	Added TX RING.
43  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
44  *					layer.
45  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
46  *
47  *
48  *		This program is free software; you can redistribute it and/or
49  *		modify it under the terms of the GNU General Public License
50  *		as published by the Free Software Foundation; either version
51  *		2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/reciprocal_div.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99    Assumptions:
100    - if device has no dev->hard_header routine, it adds and removes ll header
101      inside itself. In this case ll header is invisible outside of device,
102      but higher levels still should reserve dev->hard_header_len.
103      Some devices are enough clever to reallocate skb, when header
104      will not fit to reserved space (tunnel), another ones are silly
105      (PPP).
106    - packet socket receives packets with pulled ll header,
107      so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113    mac_header -> ll header
114    data       -> data
115 
116 Outgoing, dev->hard_header!=NULL
117    mac_header -> ll header
118    data       -> ll header
119 
120 Incoming, dev->hard_header==NULL
121    mac_header -> UNKNOWN position. It is very likely, that it points to ll
122 		 header.  PPP makes it, that is wrong, because introduce
123 		 assymetry between rx and tx paths.
124    data       -> data
125 
126 Outgoing, dev->hard_header==NULL
127    mac_header -> data. ll header is still not built!
128    data       -> data
129 
130 Resume
131   If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142    mac_header -> data
143    data       -> data
144 
145    We should set nh.raw on output to correct posistion,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define PGV_FROM_VMALLOC 1
179 
180 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
186 #define BLOCK_PRIV(x)		((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187 
188 struct packet_sock;
189 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
190 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
191 		       struct packet_type *pt, struct net_device *orig_dev);
192 
193 static void *packet_previous_frame(struct packet_sock *po,
194 		struct packet_ring_buffer *rb,
195 		int status);
196 static void packet_increment_head(struct packet_ring_buffer *buff);
197 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
198 			struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 			struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 		struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 		struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 		struct tpacket_kbdq_core *,
210 		void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 		struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 		struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 
218 struct packet_skb_cb {
219 	unsigned int origlen;
220 	union {
221 		struct sockaddr_pkt pkt;
222 		struct sockaddr_ll ll;
223 	} sa;
224 };
225 
226 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
227 
228 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
229 #define GET_PBLOCK_DESC(x, bid)	\
230 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
231 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
232 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
233 #define GET_NEXT_PRB_BLK_NUM(x) \
234 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
235 	((x)->kactive_blk_num+1) : 0)
236 
237 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
238 static void __fanout_link(struct sock *sk, struct packet_sock *po);
239 
240 /* register_prot_hook must be invoked with the po->bind_lock held,
241  * or from a context in which asynchronous accesses to the packet
242  * socket is not possible (packet_create()).
243  */
244 static void register_prot_hook(struct sock *sk)
245 {
246 	struct packet_sock *po = pkt_sk(sk);
247 	if (!po->running) {
248 		if (po->fanout)
249 			__fanout_link(sk, po);
250 		else
251 			dev_add_pack(&po->prot_hook);
252 		sock_hold(sk);
253 		po->running = 1;
254 	}
255 }
256 
257 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
258  * held.   If the sync parameter is true, we will temporarily drop
259  * the po->bind_lock and do a synchronize_net to make sure no
260  * asynchronous packet processing paths still refer to the elements
261  * of po->prot_hook.  If the sync parameter is false, it is the
262  * callers responsibility to take care of this.
263  */
264 static void __unregister_prot_hook(struct sock *sk, bool sync)
265 {
266 	struct packet_sock *po = pkt_sk(sk);
267 
268 	po->running = 0;
269 	if (po->fanout)
270 		__fanout_unlink(sk, po);
271 	else
272 		__dev_remove_pack(&po->prot_hook);
273 	__sock_put(sk);
274 
275 	if (sync) {
276 		spin_unlock(&po->bind_lock);
277 		synchronize_net();
278 		spin_lock(&po->bind_lock);
279 	}
280 }
281 
282 static void unregister_prot_hook(struct sock *sk, bool sync)
283 {
284 	struct packet_sock *po = pkt_sk(sk);
285 
286 	if (po->running)
287 		__unregister_prot_hook(sk, sync);
288 }
289 
290 static inline __pure struct page *pgv_to_page(void *addr)
291 {
292 	if (is_vmalloc_addr(addr))
293 		return vmalloc_to_page(addr);
294 	return virt_to_page(addr);
295 }
296 
297 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
298 {
299 	union tpacket_uhdr h;
300 
301 	h.raw = frame;
302 	switch (po->tp_version) {
303 	case TPACKET_V1:
304 		h.h1->tp_status = status;
305 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
306 		break;
307 	case TPACKET_V2:
308 		h.h2->tp_status = status;
309 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
310 		break;
311 	case TPACKET_V3:
312 	default:
313 		WARN(1, "TPACKET version not supported.\n");
314 		BUG();
315 	}
316 
317 	smp_wmb();
318 }
319 
320 static int __packet_get_status(struct packet_sock *po, void *frame)
321 {
322 	union tpacket_uhdr h;
323 
324 	smp_rmb();
325 
326 	h.raw = frame;
327 	switch (po->tp_version) {
328 	case TPACKET_V1:
329 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
330 		return h.h1->tp_status;
331 	case TPACKET_V2:
332 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
333 		return h.h2->tp_status;
334 	case TPACKET_V3:
335 	default:
336 		WARN(1, "TPACKET version not supported.\n");
337 		BUG();
338 		return 0;
339 	}
340 }
341 
342 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
343 				   unsigned int flags)
344 {
345 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
346 
347 	if (shhwtstamps) {
348 		if ((flags & SOF_TIMESTAMPING_SYS_HARDWARE) &&
349 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts))
350 			return TP_STATUS_TS_SYS_HARDWARE;
351 		if ((flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
352 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
353 			return TP_STATUS_TS_RAW_HARDWARE;
354 	}
355 
356 	if (ktime_to_timespec_cond(skb->tstamp, ts))
357 		return TP_STATUS_TS_SOFTWARE;
358 
359 	return 0;
360 }
361 
362 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
363 				    struct sk_buff *skb)
364 {
365 	union tpacket_uhdr h;
366 	struct timespec ts;
367 	__u32 ts_status;
368 
369 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
370 		return 0;
371 
372 	h.raw = frame;
373 	switch (po->tp_version) {
374 	case TPACKET_V1:
375 		h.h1->tp_sec = ts.tv_sec;
376 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
377 		break;
378 	case TPACKET_V2:
379 		h.h2->tp_sec = ts.tv_sec;
380 		h.h2->tp_nsec = ts.tv_nsec;
381 		break;
382 	case TPACKET_V3:
383 	default:
384 		WARN(1, "TPACKET version not supported.\n");
385 		BUG();
386 	}
387 
388 	/* one flush is safe, as both fields always lie on the same cacheline */
389 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
390 	smp_wmb();
391 
392 	return ts_status;
393 }
394 
395 static void *packet_lookup_frame(struct packet_sock *po,
396 		struct packet_ring_buffer *rb,
397 		unsigned int position,
398 		int status)
399 {
400 	unsigned int pg_vec_pos, frame_offset;
401 	union tpacket_uhdr h;
402 
403 	pg_vec_pos = position / rb->frames_per_block;
404 	frame_offset = position % rb->frames_per_block;
405 
406 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
407 		(frame_offset * rb->frame_size);
408 
409 	if (status != __packet_get_status(po, h.raw))
410 		return NULL;
411 
412 	return h.raw;
413 }
414 
415 static void *packet_current_frame(struct packet_sock *po,
416 		struct packet_ring_buffer *rb,
417 		int status)
418 {
419 	return packet_lookup_frame(po, rb, rb->head, status);
420 }
421 
422 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
423 {
424 	del_timer_sync(&pkc->retire_blk_timer);
425 }
426 
427 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
428 		int tx_ring,
429 		struct sk_buff_head *rb_queue)
430 {
431 	struct tpacket_kbdq_core *pkc;
432 
433 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
434 
435 	spin_lock(&rb_queue->lock);
436 	pkc->delete_blk_timer = 1;
437 	spin_unlock(&rb_queue->lock);
438 
439 	prb_del_retire_blk_timer(pkc);
440 }
441 
442 static void prb_init_blk_timer(struct packet_sock *po,
443 		struct tpacket_kbdq_core *pkc,
444 		void (*func) (unsigned long))
445 {
446 	init_timer(&pkc->retire_blk_timer);
447 	pkc->retire_blk_timer.data = (long)po;
448 	pkc->retire_blk_timer.function = func;
449 	pkc->retire_blk_timer.expires = jiffies;
450 }
451 
452 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
453 {
454 	struct tpacket_kbdq_core *pkc;
455 
456 	if (tx_ring)
457 		BUG();
458 
459 	pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
460 	prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
461 }
462 
463 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
464 				int blk_size_in_bytes)
465 {
466 	struct net_device *dev;
467 	unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
468 	struct ethtool_cmd ecmd;
469 	int err;
470 	u32 speed;
471 
472 	rtnl_lock();
473 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
474 	if (unlikely(!dev)) {
475 		rtnl_unlock();
476 		return DEFAULT_PRB_RETIRE_TOV;
477 	}
478 	err = __ethtool_get_settings(dev, &ecmd);
479 	speed = ethtool_cmd_speed(&ecmd);
480 	rtnl_unlock();
481 	if (!err) {
482 		/*
483 		 * If the link speed is so slow you don't really
484 		 * need to worry about perf anyways
485 		 */
486 		if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
487 			return DEFAULT_PRB_RETIRE_TOV;
488 		} else {
489 			msec = 1;
490 			div = speed / 1000;
491 		}
492 	}
493 
494 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
495 
496 	if (div)
497 		mbits /= div;
498 
499 	tmo = mbits * msec;
500 
501 	if (div)
502 		return tmo+1;
503 	return tmo;
504 }
505 
506 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
507 			union tpacket_req_u *req_u)
508 {
509 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
510 }
511 
512 static void init_prb_bdqc(struct packet_sock *po,
513 			struct packet_ring_buffer *rb,
514 			struct pgv *pg_vec,
515 			union tpacket_req_u *req_u, int tx_ring)
516 {
517 	struct tpacket_kbdq_core *p1 = &rb->prb_bdqc;
518 	struct tpacket_block_desc *pbd;
519 
520 	memset(p1, 0x0, sizeof(*p1));
521 
522 	p1->knxt_seq_num = 1;
523 	p1->pkbdq = pg_vec;
524 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
525 	p1->pkblk_start	= pg_vec[0].buffer;
526 	p1->kblk_size = req_u->req3.tp_block_size;
527 	p1->knum_blocks	= req_u->req3.tp_block_nr;
528 	p1->hdrlen = po->tp_hdrlen;
529 	p1->version = po->tp_version;
530 	p1->last_kactive_blk_num = 0;
531 	po->stats.stats3.tp_freeze_q_cnt = 0;
532 	if (req_u->req3.tp_retire_blk_tov)
533 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
534 	else
535 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
536 						req_u->req3.tp_block_size);
537 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
538 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
539 
540 	prb_init_ft_ops(p1, req_u);
541 	prb_setup_retire_blk_timer(po, tx_ring);
542 	prb_open_block(p1, pbd);
543 }
544 
545 /*  Do NOT update the last_blk_num first.
546  *  Assumes sk_buff_head lock is held.
547  */
548 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
549 {
550 	mod_timer(&pkc->retire_blk_timer,
551 			jiffies + pkc->tov_in_jiffies);
552 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
553 }
554 
555 /*
556  * Timer logic:
557  * 1) We refresh the timer only when we open a block.
558  *    By doing this we don't waste cycles refreshing the timer
559  *	  on packet-by-packet basis.
560  *
561  * With a 1MB block-size, on a 1Gbps line, it will take
562  * i) ~8 ms to fill a block + ii) memcpy etc.
563  * In this cut we are not accounting for the memcpy time.
564  *
565  * So, if the user sets the 'tmo' to 10ms then the timer
566  * will never fire while the block is still getting filled
567  * (which is what we want). However, the user could choose
568  * to close a block early and that's fine.
569  *
570  * But when the timer does fire, we check whether or not to refresh it.
571  * Since the tmo granularity is in msecs, it is not too expensive
572  * to refresh the timer, lets say every '8' msecs.
573  * Either the user can set the 'tmo' or we can derive it based on
574  * a) line-speed and b) block-size.
575  * prb_calc_retire_blk_tmo() calculates the tmo.
576  *
577  */
578 static void prb_retire_rx_blk_timer_expired(unsigned long data)
579 {
580 	struct packet_sock *po = (struct packet_sock *)data;
581 	struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc;
582 	unsigned int frozen;
583 	struct tpacket_block_desc *pbd;
584 
585 	spin_lock(&po->sk.sk_receive_queue.lock);
586 
587 	frozen = prb_queue_frozen(pkc);
588 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
589 
590 	if (unlikely(pkc->delete_blk_timer))
591 		goto out;
592 
593 	/* We only need to plug the race when the block is partially filled.
594 	 * tpacket_rcv:
595 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
596 	 *		copy_bits() is in progress ...
597 	 *		timer fires on other cpu:
598 	 *		we can't retire the current block because copy_bits
599 	 *		is in progress.
600 	 *
601 	 */
602 	if (BLOCK_NUM_PKTS(pbd)) {
603 		while (atomic_read(&pkc->blk_fill_in_prog)) {
604 			/* Waiting for skb_copy_bits to finish... */
605 			cpu_relax();
606 		}
607 	}
608 
609 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
610 		if (!frozen) {
611 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
612 			if (!prb_dispatch_next_block(pkc, po))
613 				goto refresh_timer;
614 			else
615 				goto out;
616 		} else {
617 			/* Case 1. Queue was frozen because user-space was
618 			 *	   lagging behind.
619 			 */
620 			if (prb_curr_blk_in_use(pkc, pbd)) {
621 				/*
622 				 * Ok, user-space is still behind.
623 				 * So just refresh the timer.
624 				 */
625 				goto refresh_timer;
626 			} else {
627 			       /* Case 2. queue was frozen,user-space caught up,
628 				* now the link went idle && the timer fired.
629 				* We don't have a block to close.So we open this
630 				* block and restart the timer.
631 				* opening a block thaws the queue,restarts timer
632 				* Thawing/timer-refresh is a side effect.
633 				*/
634 				prb_open_block(pkc, pbd);
635 				goto out;
636 			}
637 		}
638 	}
639 
640 refresh_timer:
641 	_prb_refresh_rx_retire_blk_timer(pkc);
642 
643 out:
644 	spin_unlock(&po->sk.sk_receive_queue.lock);
645 }
646 
647 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
648 		struct tpacket_block_desc *pbd1, __u32 status)
649 {
650 	/* Flush everything minus the block header */
651 
652 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
653 	u8 *start, *end;
654 
655 	start = (u8 *)pbd1;
656 
657 	/* Skip the block header(we know header WILL fit in 4K) */
658 	start += PAGE_SIZE;
659 
660 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
661 	for (; start < end; start += PAGE_SIZE)
662 		flush_dcache_page(pgv_to_page(start));
663 
664 	smp_wmb();
665 #endif
666 
667 	/* Now update the block status. */
668 
669 	BLOCK_STATUS(pbd1) = status;
670 
671 	/* Flush the block header */
672 
673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
674 	start = (u8 *)pbd1;
675 	flush_dcache_page(pgv_to_page(start));
676 
677 	smp_wmb();
678 #endif
679 }
680 
681 /*
682  * Side effect:
683  *
684  * 1) flush the block
685  * 2) Increment active_blk_num
686  *
687  * Note:We DONT refresh the timer on purpose.
688  *	Because almost always the next block will be opened.
689  */
690 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
691 		struct tpacket_block_desc *pbd1,
692 		struct packet_sock *po, unsigned int stat)
693 {
694 	__u32 status = TP_STATUS_USER | stat;
695 
696 	struct tpacket3_hdr *last_pkt;
697 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
698 
699 	if (po->stats.stats3.tp_drops)
700 		status |= TP_STATUS_LOSING;
701 
702 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
703 	last_pkt->tp_next_offset = 0;
704 
705 	/* Get the ts of the last pkt */
706 	if (BLOCK_NUM_PKTS(pbd1)) {
707 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
708 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
709 	} else {
710 		/* Ok, we tmo'd - so get the current time */
711 		struct timespec ts;
712 		getnstimeofday(&ts);
713 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
714 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
715 	}
716 
717 	smp_wmb();
718 
719 	/* Flush the block */
720 	prb_flush_block(pkc1, pbd1, status);
721 
722 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
723 }
724 
725 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
726 {
727 	pkc->reset_pending_on_curr_blk = 0;
728 }
729 
730 /*
731  * Side effect of opening a block:
732  *
733  * 1) prb_queue is thawed.
734  * 2) retire_blk_timer is refreshed.
735  *
736  */
737 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
738 	struct tpacket_block_desc *pbd1)
739 {
740 	struct timespec ts;
741 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
742 
743 	smp_rmb();
744 
745 	/* We could have just memset this but we will lose the
746 	 * flexibility of making the priv area sticky
747 	 */
748 
749 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
750 	BLOCK_NUM_PKTS(pbd1) = 0;
751 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
752 
753 	getnstimeofday(&ts);
754 
755 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
756 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
757 
758 	pkc1->pkblk_start = (char *)pbd1;
759 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
760 
761 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
762 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
763 
764 	pbd1->version = pkc1->version;
765 	pkc1->prev = pkc1->nxt_offset;
766 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
767 
768 	prb_thaw_queue(pkc1);
769 	_prb_refresh_rx_retire_blk_timer(pkc1);
770 
771 	smp_wmb();
772 }
773 
774 /*
775  * Queue freeze logic:
776  * 1) Assume tp_block_nr = 8 blocks.
777  * 2) At time 't0', user opens Rx ring.
778  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
779  * 4) user-space is either sleeping or processing block '0'.
780  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
781  *    it will close block-7,loop around and try to fill block '0'.
782  *    call-flow:
783  *    __packet_lookup_frame_in_block
784  *      prb_retire_current_block()
785  *      prb_dispatch_next_block()
786  *        |->(BLOCK_STATUS == USER) evaluates to true
787  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
788  * 6) Now there are two cases:
789  *    6.1) Link goes idle right after the queue is frozen.
790  *         But remember, the last open_block() refreshed the timer.
791  *         When this timer expires,it will refresh itself so that we can
792  *         re-open block-0 in near future.
793  *    6.2) Link is busy and keeps on receiving packets. This is a simple
794  *         case and __packet_lookup_frame_in_block will check if block-0
795  *         is free and can now be re-used.
796  */
797 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
798 				  struct packet_sock *po)
799 {
800 	pkc->reset_pending_on_curr_blk = 1;
801 	po->stats.stats3.tp_freeze_q_cnt++;
802 }
803 
804 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
805 
806 /*
807  * If the next block is free then we will dispatch it
808  * and return a good offset.
809  * Else, we will freeze the queue.
810  * So, caller must check the return value.
811  */
812 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
813 		struct packet_sock *po)
814 {
815 	struct tpacket_block_desc *pbd;
816 
817 	smp_rmb();
818 
819 	/* 1. Get current block num */
820 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
821 
822 	/* 2. If this block is currently in_use then freeze the queue */
823 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
824 		prb_freeze_queue(pkc, po);
825 		return NULL;
826 	}
827 
828 	/*
829 	 * 3.
830 	 * open this block and return the offset where the first packet
831 	 * needs to get stored.
832 	 */
833 	prb_open_block(pkc, pbd);
834 	return (void *)pkc->nxt_offset;
835 }
836 
837 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
838 		struct packet_sock *po, unsigned int status)
839 {
840 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
841 
842 	/* retire/close the current block */
843 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
844 		/*
845 		 * Plug the case where copy_bits() is in progress on
846 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
847 		 * have space to copy the pkt in the current block and
848 		 * called prb_retire_current_block()
849 		 *
850 		 * We don't need to worry about the TMO case because
851 		 * the timer-handler already handled this case.
852 		 */
853 		if (!(status & TP_STATUS_BLK_TMO)) {
854 			while (atomic_read(&pkc->blk_fill_in_prog)) {
855 				/* Waiting for skb_copy_bits to finish... */
856 				cpu_relax();
857 			}
858 		}
859 		prb_close_block(pkc, pbd, po, status);
860 		return;
861 	}
862 }
863 
864 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
865 				      struct tpacket_block_desc *pbd)
866 {
867 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
868 }
869 
870 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
871 {
872 	return pkc->reset_pending_on_curr_blk;
873 }
874 
875 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
876 {
877 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
878 	atomic_dec(&pkc->blk_fill_in_prog);
879 }
880 
881 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
882 			struct tpacket3_hdr *ppd)
883 {
884 	ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb);
885 }
886 
887 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
888 			struct tpacket3_hdr *ppd)
889 {
890 	ppd->hv1.tp_rxhash = 0;
891 }
892 
893 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
894 			struct tpacket3_hdr *ppd)
895 {
896 	if (vlan_tx_tag_present(pkc->skb)) {
897 		ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
898 		ppd->tp_status = TP_STATUS_VLAN_VALID;
899 	} else {
900 		ppd->hv1.tp_vlan_tci = 0;
901 		ppd->tp_status = TP_STATUS_AVAILABLE;
902 	}
903 }
904 
905 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
906 			struct tpacket3_hdr *ppd)
907 {
908 	prb_fill_vlan_info(pkc, ppd);
909 
910 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
911 		prb_fill_rxhash(pkc, ppd);
912 	else
913 		prb_clear_rxhash(pkc, ppd);
914 }
915 
916 static void prb_fill_curr_block(char *curr,
917 				struct tpacket_kbdq_core *pkc,
918 				struct tpacket_block_desc *pbd,
919 				unsigned int len)
920 {
921 	struct tpacket3_hdr *ppd;
922 
923 	ppd  = (struct tpacket3_hdr *)curr;
924 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
925 	pkc->prev = curr;
926 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
927 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
928 	BLOCK_NUM_PKTS(pbd) += 1;
929 	atomic_inc(&pkc->blk_fill_in_prog);
930 	prb_run_all_ft_ops(pkc, ppd);
931 }
932 
933 /* Assumes caller has the sk->rx_queue.lock */
934 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
935 					    struct sk_buff *skb,
936 						int status,
937 					    unsigned int len
938 					    )
939 {
940 	struct tpacket_kbdq_core *pkc;
941 	struct tpacket_block_desc *pbd;
942 	char *curr, *end;
943 
944 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
945 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
946 
947 	/* Queue is frozen when user space is lagging behind */
948 	if (prb_queue_frozen(pkc)) {
949 		/*
950 		 * Check if that last block which caused the queue to freeze,
951 		 * is still in_use by user-space.
952 		 */
953 		if (prb_curr_blk_in_use(pkc, pbd)) {
954 			/* Can't record this packet */
955 			return NULL;
956 		} else {
957 			/*
958 			 * Ok, the block was released by user-space.
959 			 * Now let's open that block.
960 			 * opening a block also thaws the queue.
961 			 * Thawing is a side effect.
962 			 */
963 			prb_open_block(pkc, pbd);
964 		}
965 	}
966 
967 	smp_mb();
968 	curr = pkc->nxt_offset;
969 	pkc->skb = skb;
970 	end = (char *)pbd + pkc->kblk_size;
971 
972 	/* first try the current block */
973 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
974 		prb_fill_curr_block(curr, pkc, pbd, len);
975 		return (void *)curr;
976 	}
977 
978 	/* Ok, close the current block */
979 	prb_retire_current_block(pkc, po, 0);
980 
981 	/* Now, try to dispatch the next block */
982 	curr = (char *)prb_dispatch_next_block(pkc, po);
983 	if (curr) {
984 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
985 		prb_fill_curr_block(curr, pkc, pbd, len);
986 		return (void *)curr;
987 	}
988 
989 	/*
990 	 * No free blocks are available.user_space hasn't caught up yet.
991 	 * Queue was just frozen and now this packet will get dropped.
992 	 */
993 	return NULL;
994 }
995 
996 static void *packet_current_rx_frame(struct packet_sock *po,
997 					    struct sk_buff *skb,
998 					    int status, unsigned int len)
999 {
1000 	char *curr = NULL;
1001 	switch (po->tp_version) {
1002 	case TPACKET_V1:
1003 	case TPACKET_V2:
1004 		curr = packet_lookup_frame(po, &po->rx_ring,
1005 					po->rx_ring.head, status);
1006 		return curr;
1007 	case TPACKET_V3:
1008 		return __packet_lookup_frame_in_block(po, skb, status, len);
1009 	default:
1010 		WARN(1, "TPACKET version not supported\n");
1011 		BUG();
1012 		return NULL;
1013 	}
1014 }
1015 
1016 static void *prb_lookup_block(struct packet_sock *po,
1017 				     struct packet_ring_buffer *rb,
1018 				     unsigned int idx,
1019 				     int status)
1020 {
1021 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1022 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1023 
1024 	if (status != BLOCK_STATUS(pbd))
1025 		return NULL;
1026 	return pbd;
1027 }
1028 
1029 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1030 {
1031 	unsigned int prev;
1032 	if (rb->prb_bdqc.kactive_blk_num)
1033 		prev = rb->prb_bdqc.kactive_blk_num-1;
1034 	else
1035 		prev = rb->prb_bdqc.knum_blocks-1;
1036 	return prev;
1037 }
1038 
1039 /* Assumes caller has held the rx_queue.lock */
1040 static void *__prb_previous_block(struct packet_sock *po,
1041 					 struct packet_ring_buffer *rb,
1042 					 int status)
1043 {
1044 	unsigned int previous = prb_previous_blk_num(rb);
1045 	return prb_lookup_block(po, rb, previous, status);
1046 }
1047 
1048 static void *packet_previous_rx_frame(struct packet_sock *po,
1049 					     struct packet_ring_buffer *rb,
1050 					     int status)
1051 {
1052 	if (po->tp_version <= TPACKET_V2)
1053 		return packet_previous_frame(po, rb, status);
1054 
1055 	return __prb_previous_block(po, rb, status);
1056 }
1057 
1058 static void packet_increment_rx_head(struct packet_sock *po,
1059 					    struct packet_ring_buffer *rb)
1060 {
1061 	switch (po->tp_version) {
1062 	case TPACKET_V1:
1063 	case TPACKET_V2:
1064 		return packet_increment_head(rb);
1065 	case TPACKET_V3:
1066 	default:
1067 		WARN(1, "TPACKET version not supported.\n");
1068 		BUG();
1069 		return;
1070 	}
1071 }
1072 
1073 static void *packet_previous_frame(struct packet_sock *po,
1074 		struct packet_ring_buffer *rb,
1075 		int status)
1076 {
1077 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1078 	return packet_lookup_frame(po, rb, previous, status);
1079 }
1080 
1081 static void packet_increment_head(struct packet_ring_buffer *buff)
1082 {
1083 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1084 }
1085 
1086 static bool packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1087 {
1088 	struct sock *sk = &po->sk;
1089 	bool has_room;
1090 
1091 	if (po->prot_hook.func != tpacket_rcv)
1092 		return (atomic_read(&sk->sk_rmem_alloc) + skb->truesize)
1093 			<= sk->sk_rcvbuf;
1094 
1095 	spin_lock(&sk->sk_receive_queue.lock);
1096 	if (po->tp_version == TPACKET_V3)
1097 		has_room = prb_lookup_block(po, &po->rx_ring,
1098 					    po->rx_ring.prb_bdqc.kactive_blk_num,
1099 					    TP_STATUS_KERNEL);
1100 	else
1101 		has_room = packet_lookup_frame(po, &po->rx_ring,
1102 					       po->rx_ring.head,
1103 					       TP_STATUS_KERNEL);
1104 	spin_unlock(&sk->sk_receive_queue.lock);
1105 
1106 	return has_room;
1107 }
1108 
1109 static void packet_sock_destruct(struct sock *sk)
1110 {
1111 	skb_queue_purge(&sk->sk_error_queue);
1112 
1113 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1114 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1115 
1116 	if (!sock_flag(sk, SOCK_DEAD)) {
1117 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1118 		return;
1119 	}
1120 
1121 	sk_refcnt_debug_dec(sk);
1122 }
1123 
1124 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1125 {
1126 	int x = atomic_read(&f->rr_cur) + 1;
1127 
1128 	if (x >= num)
1129 		x = 0;
1130 
1131 	return x;
1132 }
1133 
1134 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1135 				      struct sk_buff *skb,
1136 				      unsigned int num)
1137 {
1138 	return reciprocal_divide(skb->rxhash, num);
1139 }
1140 
1141 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1142 				    struct sk_buff *skb,
1143 				    unsigned int num)
1144 {
1145 	int cur, old;
1146 
1147 	cur = atomic_read(&f->rr_cur);
1148 	while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1149 				     fanout_rr_next(f, num))) != cur)
1150 		cur = old;
1151 	return cur;
1152 }
1153 
1154 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1155 				     struct sk_buff *skb,
1156 				     unsigned int num)
1157 {
1158 	return smp_processor_id() % num;
1159 }
1160 
1161 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1162 				     struct sk_buff *skb,
1163 				     unsigned int num)
1164 {
1165 	return reciprocal_divide(prandom_u32(), num);
1166 }
1167 
1168 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1169 					  struct sk_buff *skb,
1170 					  unsigned int idx, unsigned int skip,
1171 					  unsigned int num)
1172 {
1173 	unsigned int i, j;
1174 
1175 	i = j = min_t(int, f->next[idx], num - 1);
1176 	do {
1177 		if (i != skip && packet_rcv_has_room(pkt_sk(f->arr[i]), skb)) {
1178 			if (i != j)
1179 				f->next[idx] = i;
1180 			return i;
1181 		}
1182 		if (++i == num)
1183 			i = 0;
1184 	} while (i != j);
1185 
1186 	return idx;
1187 }
1188 
1189 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1190 {
1191 	return f->flags & (flag >> 8);
1192 }
1193 
1194 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1195 			     struct packet_type *pt, struct net_device *orig_dev)
1196 {
1197 	struct packet_fanout *f = pt->af_packet_priv;
1198 	unsigned int num = f->num_members;
1199 	struct packet_sock *po;
1200 	unsigned int idx;
1201 
1202 	if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1203 	    !num) {
1204 		kfree_skb(skb);
1205 		return 0;
1206 	}
1207 
1208 	switch (f->type) {
1209 	case PACKET_FANOUT_HASH:
1210 	default:
1211 		if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1212 			skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1213 			if (!skb)
1214 				return 0;
1215 		}
1216 		skb_get_rxhash(skb);
1217 		idx = fanout_demux_hash(f, skb, num);
1218 		break;
1219 	case PACKET_FANOUT_LB:
1220 		idx = fanout_demux_lb(f, skb, num);
1221 		break;
1222 	case PACKET_FANOUT_CPU:
1223 		idx = fanout_demux_cpu(f, skb, num);
1224 		break;
1225 	case PACKET_FANOUT_RND:
1226 		idx = fanout_demux_rnd(f, skb, num);
1227 		break;
1228 	case PACKET_FANOUT_ROLLOVER:
1229 		idx = fanout_demux_rollover(f, skb, 0, (unsigned int) -1, num);
1230 		break;
1231 	}
1232 
1233 	po = pkt_sk(f->arr[idx]);
1234 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER) &&
1235 	    unlikely(!packet_rcv_has_room(po, skb))) {
1236 		idx = fanout_demux_rollover(f, skb, idx, idx, num);
1237 		po = pkt_sk(f->arr[idx]);
1238 	}
1239 
1240 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1241 }
1242 
1243 DEFINE_MUTEX(fanout_mutex);
1244 EXPORT_SYMBOL_GPL(fanout_mutex);
1245 static LIST_HEAD(fanout_list);
1246 
1247 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1248 {
1249 	struct packet_fanout *f = po->fanout;
1250 
1251 	spin_lock(&f->lock);
1252 	f->arr[f->num_members] = sk;
1253 	smp_wmb();
1254 	f->num_members++;
1255 	spin_unlock(&f->lock);
1256 }
1257 
1258 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1259 {
1260 	struct packet_fanout *f = po->fanout;
1261 	int i;
1262 
1263 	spin_lock(&f->lock);
1264 	for (i = 0; i < f->num_members; i++) {
1265 		if (f->arr[i] == sk)
1266 			break;
1267 	}
1268 	BUG_ON(i >= f->num_members);
1269 	f->arr[i] = f->arr[f->num_members - 1];
1270 	f->num_members--;
1271 	spin_unlock(&f->lock);
1272 }
1273 
1274 static bool match_fanout_group(struct packet_type *ptype, struct sock * sk)
1275 {
1276 	if (ptype->af_packet_priv == (void*)((struct packet_sock *)sk)->fanout)
1277 		return true;
1278 
1279 	return false;
1280 }
1281 
1282 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1283 {
1284 	struct packet_sock *po = pkt_sk(sk);
1285 	struct packet_fanout *f, *match;
1286 	u8 type = type_flags & 0xff;
1287 	u8 flags = type_flags >> 8;
1288 	int err;
1289 
1290 	switch (type) {
1291 	case PACKET_FANOUT_ROLLOVER:
1292 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1293 			return -EINVAL;
1294 	case PACKET_FANOUT_HASH:
1295 	case PACKET_FANOUT_LB:
1296 	case PACKET_FANOUT_CPU:
1297 	case PACKET_FANOUT_RND:
1298 		break;
1299 	default:
1300 		return -EINVAL;
1301 	}
1302 
1303 	if (!po->running)
1304 		return -EINVAL;
1305 
1306 	if (po->fanout)
1307 		return -EALREADY;
1308 
1309 	mutex_lock(&fanout_mutex);
1310 	match = NULL;
1311 	list_for_each_entry(f, &fanout_list, list) {
1312 		if (f->id == id &&
1313 		    read_pnet(&f->net) == sock_net(sk)) {
1314 			match = f;
1315 			break;
1316 		}
1317 	}
1318 	err = -EINVAL;
1319 	if (match && match->flags != flags)
1320 		goto out;
1321 	if (!match) {
1322 		err = -ENOMEM;
1323 		match = kzalloc(sizeof(*match), GFP_KERNEL);
1324 		if (!match)
1325 			goto out;
1326 		write_pnet(&match->net, sock_net(sk));
1327 		match->id = id;
1328 		match->type = type;
1329 		match->flags = flags;
1330 		atomic_set(&match->rr_cur, 0);
1331 		INIT_LIST_HEAD(&match->list);
1332 		spin_lock_init(&match->lock);
1333 		atomic_set(&match->sk_ref, 0);
1334 		match->prot_hook.type = po->prot_hook.type;
1335 		match->prot_hook.dev = po->prot_hook.dev;
1336 		match->prot_hook.func = packet_rcv_fanout;
1337 		match->prot_hook.af_packet_priv = match;
1338 		match->prot_hook.id_match = match_fanout_group;
1339 		dev_add_pack(&match->prot_hook);
1340 		list_add(&match->list, &fanout_list);
1341 	}
1342 	err = -EINVAL;
1343 	if (match->type == type &&
1344 	    match->prot_hook.type == po->prot_hook.type &&
1345 	    match->prot_hook.dev == po->prot_hook.dev) {
1346 		err = -ENOSPC;
1347 		if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1348 			__dev_remove_pack(&po->prot_hook);
1349 			po->fanout = match;
1350 			atomic_inc(&match->sk_ref);
1351 			__fanout_link(sk, po);
1352 			err = 0;
1353 		}
1354 	}
1355 out:
1356 	mutex_unlock(&fanout_mutex);
1357 	return err;
1358 }
1359 
1360 static void fanout_release(struct sock *sk)
1361 {
1362 	struct packet_sock *po = pkt_sk(sk);
1363 	struct packet_fanout *f;
1364 
1365 	f = po->fanout;
1366 	if (!f)
1367 		return;
1368 
1369 	mutex_lock(&fanout_mutex);
1370 	po->fanout = NULL;
1371 
1372 	if (atomic_dec_and_test(&f->sk_ref)) {
1373 		list_del(&f->list);
1374 		dev_remove_pack(&f->prot_hook);
1375 		kfree(f);
1376 	}
1377 	mutex_unlock(&fanout_mutex);
1378 }
1379 
1380 static const struct proto_ops packet_ops;
1381 
1382 static const struct proto_ops packet_ops_spkt;
1383 
1384 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1385 			   struct packet_type *pt, struct net_device *orig_dev)
1386 {
1387 	struct sock *sk;
1388 	struct sockaddr_pkt *spkt;
1389 
1390 	/*
1391 	 *	When we registered the protocol we saved the socket in the data
1392 	 *	field for just this event.
1393 	 */
1394 
1395 	sk = pt->af_packet_priv;
1396 
1397 	/*
1398 	 *	Yank back the headers [hope the device set this
1399 	 *	right or kerboom...]
1400 	 *
1401 	 *	Incoming packets have ll header pulled,
1402 	 *	push it back.
1403 	 *
1404 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1405 	 *	so that this procedure is noop.
1406 	 */
1407 
1408 	if (skb->pkt_type == PACKET_LOOPBACK)
1409 		goto out;
1410 
1411 	if (!net_eq(dev_net(dev), sock_net(sk)))
1412 		goto out;
1413 
1414 	skb = skb_share_check(skb, GFP_ATOMIC);
1415 	if (skb == NULL)
1416 		goto oom;
1417 
1418 	/* drop any routing info */
1419 	skb_dst_drop(skb);
1420 
1421 	/* drop conntrack reference */
1422 	nf_reset(skb);
1423 
1424 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1425 
1426 	skb_push(skb, skb->data - skb_mac_header(skb));
1427 
1428 	/*
1429 	 *	The SOCK_PACKET socket receives _all_ frames.
1430 	 */
1431 
1432 	spkt->spkt_family = dev->type;
1433 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1434 	spkt->spkt_protocol = skb->protocol;
1435 
1436 	/*
1437 	 *	Charge the memory to the socket. This is done specifically
1438 	 *	to prevent sockets using all the memory up.
1439 	 */
1440 
1441 	if (sock_queue_rcv_skb(sk, skb) == 0)
1442 		return 0;
1443 
1444 out:
1445 	kfree_skb(skb);
1446 oom:
1447 	return 0;
1448 }
1449 
1450 
1451 /*
1452  *	Output a raw packet to a device layer. This bypasses all the other
1453  *	protocol layers and you must therefore supply it with a complete frame
1454  */
1455 
1456 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1457 			       struct msghdr *msg, size_t len)
1458 {
1459 	struct sock *sk = sock->sk;
1460 	struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name;
1461 	struct sk_buff *skb = NULL;
1462 	struct net_device *dev;
1463 	__be16 proto = 0;
1464 	int err;
1465 	int extra_len = 0;
1466 
1467 	/*
1468 	 *	Get and verify the address.
1469 	 */
1470 
1471 	if (saddr) {
1472 		if (msg->msg_namelen < sizeof(struct sockaddr))
1473 			return -EINVAL;
1474 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1475 			proto = saddr->spkt_protocol;
1476 	} else
1477 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1478 
1479 	/*
1480 	 *	Find the device first to size check it
1481 	 */
1482 
1483 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1484 retry:
1485 	rcu_read_lock();
1486 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1487 	err = -ENODEV;
1488 	if (dev == NULL)
1489 		goto out_unlock;
1490 
1491 	err = -ENETDOWN;
1492 	if (!(dev->flags & IFF_UP))
1493 		goto out_unlock;
1494 
1495 	/*
1496 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1497 	 * raw protocol and you must do your own fragmentation at this level.
1498 	 */
1499 
1500 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1501 		if (!netif_supports_nofcs(dev)) {
1502 			err = -EPROTONOSUPPORT;
1503 			goto out_unlock;
1504 		}
1505 		extra_len = 4; /* We're doing our own CRC */
1506 	}
1507 
1508 	err = -EMSGSIZE;
1509 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1510 		goto out_unlock;
1511 
1512 	if (!skb) {
1513 		size_t reserved = LL_RESERVED_SPACE(dev);
1514 		int tlen = dev->needed_tailroom;
1515 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1516 
1517 		rcu_read_unlock();
1518 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1519 		if (skb == NULL)
1520 			return -ENOBUFS;
1521 		/* FIXME: Save some space for broken drivers that write a hard
1522 		 * header at transmission time by themselves. PPP is the notable
1523 		 * one here. This should really be fixed at the driver level.
1524 		 */
1525 		skb_reserve(skb, reserved);
1526 		skb_reset_network_header(skb);
1527 
1528 		/* Try to align data part correctly */
1529 		if (hhlen) {
1530 			skb->data -= hhlen;
1531 			skb->tail -= hhlen;
1532 			if (len < hhlen)
1533 				skb_reset_network_header(skb);
1534 		}
1535 		err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1536 		if (err)
1537 			goto out_free;
1538 		goto retry;
1539 	}
1540 
1541 	if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1542 		/* Earlier code assumed this would be a VLAN pkt,
1543 		 * double-check this now that we have the actual
1544 		 * packet in hand.
1545 		 */
1546 		struct ethhdr *ehdr;
1547 		skb_reset_mac_header(skb);
1548 		ehdr = eth_hdr(skb);
1549 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1550 			err = -EMSGSIZE;
1551 			goto out_unlock;
1552 		}
1553 	}
1554 
1555 	skb->protocol = proto;
1556 	skb->dev = dev;
1557 	skb->priority = sk->sk_priority;
1558 	skb->mark = sk->sk_mark;
1559 
1560 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1561 
1562 	if (unlikely(extra_len == 4))
1563 		skb->no_fcs = 1;
1564 
1565 	skb_probe_transport_header(skb, 0);
1566 
1567 	dev_queue_xmit(skb);
1568 	rcu_read_unlock();
1569 	return len;
1570 
1571 out_unlock:
1572 	rcu_read_unlock();
1573 out_free:
1574 	kfree_skb(skb);
1575 	return err;
1576 }
1577 
1578 static unsigned int run_filter(const struct sk_buff *skb,
1579 				      const struct sock *sk,
1580 				      unsigned int res)
1581 {
1582 	struct sk_filter *filter;
1583 
1584 	rcu_read_lock();
1585 	filter = rcu_dereference(sk->sk_filter);
1586 	if (filter != NULL)
1587 		res = SK_RUN_FILTER(filter, skb);
1588 	rcu_read_unlock();
1589 
1590 	return res;
1591 }
1592 
1593 /*
1594  * This function makes lazy skb cloning in hope that most of packets
1595  * are discarded by BPF.
1596  *
1597  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1598  * and skb->cb are mangled. It works because (and until) packets
1599  * falling here are owned by current CPU. Output packets are cloned
1600  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1601  * sequencially, so that if we return skb to original state on exit,
1602  * we will not harm anyone.
1603  */
1604 
1605 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1606 		      struct packet_type *pt, struct net_device *orig_dev)
1607 {
1608 	struct sock *sk;
1609 	struct sockaddr_ll *sll;
1610 	struct packet_sock *po;
1611 	u8 *skb_head = skb->data;
1612 	int skb_len = skb->len;
1613 	unsigned int snaplen, res;
1614 
1615 	if (skb->pkt_type == PACKET_LOOPBACK)
1616 		goto drop;
1617 
1618 	sk = pt->af_packet_priv;
1619 	po = pkt_sk(sk);
1620 
1621 	if (!net_eq(dev_net(dev), sock_net(sk)))
1622 		goto drop;
1623 
1624 	skb->dev = dev;
1625 
1626 	if (dev->header_ops) {
1627 		/* The device has an explicit notion of ll header,
1628 		 * exported to higher levels.
1629 		 *
1630 		 * Otherwise, the device hides details of its frame
1631 		 * structure, so that corresponding packet head is
1632 		 * never delivered to user.
1633 		 */
1634 		if (sk->sk_type != SOCK_DGRAM)
1635 			skb_push(skb, skb->data - skb_mac_header(skb));
1636 		else if (skb->pkt_type == PACKET_OUTGOING) {
1637 			/* Special case: outgoing packets have ll header at head */
1638 			skb_pull(skb, skb_network_offset(skb));
1639 		}
1640 	}
1641 
1642 	snaplen = skb->len;
1643 
1644 	res = run_filter(skb, sk, snaplen);
1645 	if (!res)
1646 		goto drop_n_restore;
1647 	if (snaplen > res)
1648 		snaplen = res;
1649 
1650 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1651 		goto drop_n_acct;
1652 
1653 	if (skb_shared(skb)) {
1654 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1655 		if (nskb == NULL)
1656 			goto drop_n_acct;
1657 
1658 		if (skb_head != skb->data) {
1659 			skb->data = skb_head;
1660 			skb->len = skb_len;
1661 		}
1662 		consume_skb(skb);
1663 		skb = nskb;
1664 	}
1665 
1666 	BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1667 		     sizeof(skb->cb));
1668 
1669 	sll = &PACKET_SKB_CB(skb)->sa.ll;
1670 	sll->sll_family = AF_PACKET;
1671 	sll->sll_hatype = dev->type;
1672 	sll->sll_protocol = skb->protocol;
1673 	sll->sll_pkttype = skb->pkt_type;
1674 	if (unlikely(po->origdev))
1675 		sll->sll_ifindex = orig_dev->ifindex;
1676 	else
1677 		sll->sll_ifindex = dev->ifindex;
1678 
1679 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1680 
1681 	PACKET_SKB_CB(skb)->origlen = skb->len;
1682 
1683 	if (pskb_trim(skb, snaplen))
1684 		goto drop_n_acct;
1685 
1686 	skb_set_owner_r(skb, sk);
1687 	skb->dev = NULL;
1688 	skb_dst_drop(skb);
1689 
1690 	/* drop conntrack reference */
1691 	nf_reset(skb);
1692 
1693 	spin_lock(&sk->sk_receive_queue.lock);
1694 	po->stats.stats1.tp_packets++;
1695 	skb->dropcount = atomic_read(&sk->sk_drops);
1696 	__skb_queue_tail(&sk->sk_receive_queue, skb);
1697 	spin_unlock(&sk->sk_receive_queue.lock);
1698 	sk->sk_data_ready(sk, skb->len);
1699 	return 0;
1700 
1701 drop_n_acct:
1702 	spin_lock(&sk->sk_receive_queue.lock);
1703 	po->stats.stats1.tp_drops++;
1704 	atomic_inc(&sk->sk_drops);
1705 	spin_unlock(&sk->sk_receive_queue.lock);
1706 
1707 drop_n_restore:
1708 	if (skb_head != skb->data && skb_shared(skb)) {
1709 		skb->data = skb_head;
1710 		skb->len = skb_len;
1711 	}
1712 drop:
1713 	consume_skb(skb);
1714 	return 0;
1715 }
1716 
1717 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1718 		       struct packet_type *pt, struct net_device *orig_dev)
1719 {
1720 	struct sock *sk;
1721 	struct packet_sock *po;
1722 	struct sockaddr_ll *sll;
1723 	union tpacket_uhdr h;
1724 	u8 *skb_head = skb->data;
1725 	int skb_len = skb->len;
1726 	unsigned int snaplen, res;
1727 	unsigned long status = TP_STATUS_USER;
1728 	unsigned short macoff, netoff, hdrlen;
1729 	struct sk_buff *copy_skb = NULL;
1730 	struct timespec ts;
1731 	__u32 ts_status;
1732 
1733 	if (skb->pkt_type == PACKET_LOOPBACK)
1734 		goto drop;
1735 
1736 	sk = pt->af_packet_priv;
1737 	po = pkt_sk(sk);
1738 
1739 	if (!net_eq(dev_net(dev), sock_net(sk)))
1740 		goto drop;
1741 
1742 	if (dev->header_ops) {
1743 		if (sk->sk_type != SOCK_DGRAM)
1744 			skb_push(skb, skb->data - skb_mac_header(skb));
1745 		else if (skb->pkt_type == PACKET_OUTGOING) {
1746 			/* Special case: outgoing packets have ll header at head */
1747 			skb_pull(skb, skb_network_offset(skb));
1748 		}
1749 	}
1750 
1751 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1752 		status |= TP_STATUS_CSUMNOTREADY;
1753 
1754 	snaplen = skb->len;
1755 
1756 	res = run_filter(skb, sk, snaplen);
1757 	if (!res)
1758 		goto drop_n_restore;
1759 	if (snaplen > res)
1760 		snaplen = res;
1761 
1762 	if (sk->sk_type == SOCK_DGRAM) {
1763 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1764 				  po->tp_reserve;
1765 	} else {
1766 		unsigned int maclen = skb_network_offset(skb);
1767 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
1768 				       (maclen < 16 ? 16 : maclen)) +
1769 			po->tp_reserve;
1770 		macoff = netoff - maclen;
1771 	}
1772 	if (po->tp_version <= TPACKET_V2) {
1773 		if (macoff + snaplen > po->rx_ring.frame_size) {
1774 			if (po->copy_thresh &&
1775 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1776 				if (skb_shared(skb)) {
1777 					copy_skb = skb_clone(skb, GFP_ATOMIC);
1778 				} else {
1779 					copy_skb = skb_get(skb);
1780 					skb_head = skb->data;
1781 				}
1782 				if (copy_skb)
1783 					skb_set_owner_r(copy_skb, sk);
1784 			}
1785 			snaplen = po->rx_ring.frame_size - macoff;
1786 			if ((int)snaplen < 0)
1787 				snaplen = 0;
1788 		}
1789 	}
1790 	spin_lock(&sk->sk_receive_queue.lock);
1791 	h.raw = packet_current_rx_frame(po, skb,
1792 					TP_STATUS_KERNEL, (macoff+snaplen));
1793 	if (!h.raw)
1794 		goto ring_is_full;
1795 	if (po->tp_version <= TPACKET_V2) {
1796 		packet_increment_rx_head(po, &po->rx_ring);
1797 	/*
1798 	 * LOSING will be reported till you read the stats,
1799 	 * because it's COR - Clear On Read.
1800 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
1801 	 * at packet level.
1802 	 */
1803 		if (po->stats.stats1.tp_drops)
1804 			status |= TP_STATUS_LOSING;
1805 	}
1806 	po->stats.stats1.tp_packets++;
1807 	if (copy_skb) {
1808 		status |= TP_STATUS_COPY;
1809 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1810 	}
1811 	spin_unlock(&sk->sk_receive_queue.lock);
1812 
1813 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1814 
1815 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
1816 		getnstimeofday(&ts);
1817 
1818 	status |= ts_status;
1819 
1820 	switch (po->tp_version) {
1821 	case TPACKET_V1:
1822 		h.h1->tp_len = skb->len;
1823 		h.h1->tp_snaplen = snaplen;
1824 		h.h1->tp_mac = macoff;
1825 		h.h1->tp_net = netoff;
1826 		h.h1->tp_sec = ts.tv_sec;
1827 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
1828 		hdrlen = sizeof(*h.h1);
1829 		break;
1830 	case TPACKET_V2:
1831 		h.h2->tp_len = skb->len;
1832 		h.h2->tp_snaplen = snaplen;
1833 		h.h2->tp_mac = macoff;
1834 		h.h2->tp_net = netoff;
1835 		h.h2->tp_sec = ts.tv_sec;
1836 		h.h2->tp_nsec = ts.tv_nsec;
1837 		if (vlan_tx_tag_present(skb)) {
1838 			h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1839 			status |= TP_STATUS_VLAN_VALID;
1840 		} else {
1841 			h.h2->tp_vlan_tci = 0;
1842 		}
1843 		h.h2->tp_padding = 0;
1844 		hdrlen = sizeof(*h.h2);
1845 		break;
1846 	case TPACKET_V3:
1847 		/* tp_nxt_offset,vlan are already populated above.
1848 		 * So DONT clear those fields here
1849 		 */
1850 		h.h3->tp_status |= status;
1851 		h.h3->tp_len = skb->len;
1852 		h.h3->tp_snaplen = snaplen;
1853 		h.h3->tp_mac = macoff;
1854 		h.h3->tp_net = netoff;
1855 		h.h3->tp_sec  = ts.tv_sec;
1856 		h.h3->tp_nsec = ts.tv_nsec;
1857 		hdrlen = sizeof(*h.h3);
1858 		break;
1859 	default:
1860 		BUG();
1861 	}
1862 
1863 	sll = h.raw + TPACKET_ALIGN(hdrlen);
1864 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1865 	sll->sll_family = AF_PACKET;
1866 	sll->sll_hatype = dev->type;
1867 	sll->sll_protocol = skb->protocol;
1868 	sll->sll_pkttype = skb->pkt_type;
1869 	if (unlikely(po->origdev))
1870 		sll->sll_ifindex = orig_dev->ifindex;
1871 	else
1872 		sll->sll_ifindex = dev->ifindex;
1873 
1874 	smp_mb();
1875 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
1876 	{
1877 		u8 *start, *end;
1878 
1879 		if (po->tp_version <= TPACKET_V2) {
1880 			end = (u8 *)PAGE_ALIGN((unsigned long)h.raw
1881 				+ macoff + snaplen);
1882 			for (start = h.raw; start < end; start += PAGE_SIZE)
1883 				flush_dcache_page(pgv_to_page(start));
1884 		}
1885 		smp_wmb();
1886 	}
1887 #endif
1888 	if (po->tp_version <= TPACKET_V2)
1889 		__packet_set_status(po, h.raw, status);
1890 	else
1891 		prb_clear_blk_fill_status(&po->rx_ring);
1892 
1893 	sk->sk_data_ready(sk, 0);
1894 
1895 drop_n_restore:
1896 	if (skb_head != skb->data && skb_shared(skb)) {
1897 		skb->data = skb_head;
1898 		skb->len = skb_len;
1899 	}
1900 drop:
1901 	kfree_skb(skb);
1902 	return 0;
1903 
1904 ring_is_full:
1905 	po->stats.stats1.tp_drops++;
1906 	spin_unlock(&sk->sk_receive_queue.lock);
1907 
1908 	sk->sk_data_ready(sk, 0);
1909 	kfree_skb(copy_skb);
1910 	goto drop_n_restore;
1911 }
1912 
1913 static void tpacket_destruct_skb(struct sk_buff *skb)
1914 {
1915 	struct packet_sock *po = pkt_sk(skb->sk);
1916 	void *ph;
1917 
1918 	if (likely(po->tx_ring.pg_vec)) {
1919 		__u32 ts;
1920 
1921 		ph = skb_shinfo(skb)->destructor_arg;
1922 		BUG_ON(atomic_read(&po->tx_ring.pending) == 0);
1923 		atomic_dec(&po->tx_ring.pending);
1924 
1925 		ts = __packet_set_timestamp(po, ph, skb);
1926 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
1927 	}
1928 
1929 	sock_wfree(skb);
1930 }
1931 
1932 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
1933 		void *frame, struct net_device *dev, int size_max,
1934 		__be16 proto, unsigned char *addr, int hlen)
1935 {
1936 	union tpacket_uhdr ph;
1937 	int to_write, offset, len, tp_len, nr_frags, len_max;
1938 	struct socket *sock = po->sk.sk_socket;
1939 	struct page *page;
1940 	void *data;
1941 	int err;
1942 
1943 	ph.raw = frame;
1944 
1945 	skb->protocol = proto;
1946 	skb->dev = dev;
1947 	skb->priority = po->sk.sk_priority;
1948 	skb->mark = po->sk.sk_mark;
1949 	sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
1950 	skb_shinfo(skb)->destructor_arg = ph.raw;
1951 
1952 	switch (po->tp_version) {
1953 	case TPACKET_V2:
1954 		tp_len = ph.h2->tp_len;
1955 		break;
1956 	default:
1957 		tp_len = ph.h1->tp_len;
1958 		break;
1959 	}
1960 	if (unlikely(tp_len > size_max)) {
1961 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
1962 		return -EMSGSIZE;
1963 	}
1964 
1965 	skb_reserve(skb, hlen);
1966 	skb_reset_network_header(skb);
1967 	skb_probe_transport_header(skb, 0);
1968 
1969 	if (po->tp_tx_has_off) {
1970 		int off_min, off_max, off;
1971 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
1972 		off_max = po->tx_ring.frame_size - tp_len;
1973 		if (sock->type == SOCK_DGRAM) {
1974 			switch (po->tp_version) {
1975 			case TPACKET_V2:
1976 				off = ph.h2->tp_net;
1977 				break;
1978 			default:
1979 				off = ph.h1->tp_net;
1980 				break;
1981 			}
1982 		} else {
1983 			switch (po->tp_version) {
1984 			case TPACKET_V2:
1985 				off = ph.h2->tp_mac;
1986 				break;
1987 			default:
1988 				off = ph.h1->tp_mac;
1989 				break;
1990 			}
1991 		}
1992 		if (unlikely((off < off_min) || (off_max < off)))
1993 			return -EINVAL;
1994 		data = ph.raw + off;
1995 	} else {
1996 		data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
1997 	}
1998 	to_write = tp_len;
1999 
2000 	if (sock->type == SOCK_DGRAM) {
2001 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2002 				NULL, tp_len);
2003 		if (unlikely(err < 0))
2004 			return -EINVAL;
2005 	} else if (dev->hard_header_len) {
2006 		/* net device doesn't like empty head */
2007 		if (unlikely(tp_len <= dev->hard_header_len)) {
2008 			pr_err("packet size is too short (%d < %d)\n",
2009 			       tp_len, dev->hard_header_len);
2010 			return -EINVAL;
2011 		}
2012 
2013 		skb_push(skb, dev->hard_header_len);
2014 		err = skb_store_bits(skb, 0, data,
2015 				dev->hard_header_len);
2016 		if (unlikely(err))
2017 			return err;
2018 
2019 		data += dev->hard_header_len;
2020 		to_write -= dev->hard_header_len;
2021 	}
2022 
2023 	offset = offset_in_page(data);
2024 	len_max = PAGE_SIZE - offset;
2025 	len = ((to_write > len_max) ? len_max : to_write);
2026 
2027 	skb->data_len = to_write;
2028 	skb->len += to_write;
2029 	skb->truesize += to_write;
2030 	atomic_add(to_write, &po->sk.sk_wmem_alloc);
2031 
2032 	while (likely(to_write)) {
2033 		nr_frags = skb_shinfo(skb)->nr_frags;
2034 
2035 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2036 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2037 			       MAX_SKB_FRAGS);
2038 			return -EFAULT;
2039 		}
2040 
2041 		page = pgv_to_page(data);
2042 		data += len;
2043 		flush_dcache_page(page);
2044 		get_page(page);
2045 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2046 		to_write -= len;
2047 		offset = 0;
2048 		len_max = PAGE_SIZE;
2049 		len = ((to_write > len_max) ? len_max : to_write);
2050 	}
2051 
2052 	return tp_len;
2053 }
2054 
2055 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2056 {
2057 	struct sk_buff *skb;
2058 	struct net_device *dev;
2059 	__be16 proto;
2060 	bool need_rls_dev = false;
2061 	int err, reserve = 0;
2062 	void *ph;
2063 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2064 	int tp_len, size_max;
2065 	unsigned char *addr;
2066 	int len_sum = 0;
2067 	int status = TP_STATUS_AVAILABLE;
2068 	int hlen, tlen;
2069 
2070 	mutex_lock(&po->pg_vec_lock);
2071 
2072 	if (saddr == NULL) {
2073 		dev = po->prot_hook.dev;
2074 		proto	= po->num;
2075 		addr	= NULL;
2076 	} else {
2077 		err = -EINVAL;
2078 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2079 			goto out;
2080 		if (msg->msg_namelen < (saddr->sll_halen
2081 					+ offsetof(struct sockaddr_ll,
2082 						sll_addr)))
2083 			goto out;
2084 		proto	= saddr->sll_protocol;
2085 		addr	= saddr->sll_addr;
2086 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2087 		need_rls_dev = true;
2088 	}
2089 
2090 	err = -ENXIO;
2091 	if (unlikely(dev == NULL))
2092 		goto out;
2093 
2094 	reserve = dev->hard_header_len;
2095 
2096 	err = -ENETDOWN;
2097 	if (unlikely(!(dev->flags & IFF_UP)))
2098 		goto out_put;
2099 
2100 	size_max = po->tx_ring.frame_size
2101 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2102 
2103 	if (size_max > dev->mtu + reserve)
2104 		size_max = dev->mtu + reserve;
2105 
2106 	do {
2107 		ph = packet_current_frame(po, &po->tx_ring,
2108 				TP_STATUS_SEND_REQUEST);
2109 
2110 		if (unlikely(ph == NULL)) {
2111 			schedule();
2112 			continue;
2113 		}
2114 
2115 		status = TP_STATUS_SEND_REQUEST;
2116 		hlen = LL_RESERVED_SPACE(dev);
2117 		tlen = dev->needed_tailroom;
2118 		skb = sock_alloc_send_skb(&po->sk,
2119 				hlen + tlen + sizeof(struct sockaddr_ll),
2120 				0, &err);
2121 
2122 		if (unlikely(skb == NULL))
2123 			goto out_status;
2124 
2125 		tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2126 				addr, hlen);
2127 
2128 		if (unlikely(tp_len < 0)) {
2129 			if (po->tp_loss) {
2130 				__packet_set_status(po, ph,
2131 						TP_STATUS_AVAILABLE);
2132 				packet_increment_head(&po->tx_ring);
2133 				kfree_skb(skb);
2134 				continue;
2135 			} else {
2136 				status = TP_STATUS_WRONG_FORMAT;
2137 				err = tp_len;
2138 				goto out_status;
2139 			}
2140 		}
2141 
2142 		skb->destructor = tpacket_destruct_skb;
2143 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2144 		atomic_inc(&po->tx_ring.pending);
2145 
2146 		status = TP_STATUS_SEND_REQUEST;
2147 		err = dev_queue_xmit(skb);
2148 		if (unlikely(err > 0)) {
2149 			err = net_xmit_errno(err);
2150 			if (err && __packet_get_status(po, ph) ==
2151 				   TP_STATUS_AVAILABLE) {
2152 				/* skb was destructed already */
2153 				skb = NULL;
2154 				goto out_status;
2155 			}
2156 			/*
2157 			 * skb was dropped but not destructed yet;
2158 			 * let's treat it like congestion or err < 0
2159 			 */
2160 			err = 0;
2161 		}
2162 		packet_increment_head(&po->tx_ring);
2163 		len_sum += tp_len;
2164 	} while (likely((ph != NULL) ||
2165 			((!(msg->msg_flags & MSG_DONTWAIT)) &&
2166 			 (atomic_read(&po->tx_ring.pending))))
2167 		);
2168 
2169 	err = len_sum;
2170 	goto out_put;
2171 
2172 out_status:
2173 	__packet_set_status(po, ph, status);
2174 	kfree_skb(skb);
2175 out_put:
2176 	if (need_rls_dev)
2177 		dev_put(dev);
2178 out:
2179 	mutex_unlock(&po->pg_vec_lock);
2180 	return err;
2181 }
2182 
2183 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2184 				        size_t reserve, size_t len,
2185 				        size_t linear, int noblock,
2186 				        int *err)
2187 {
2188 	struct sk_buff *skb;
2189 
2190 	/* Under a page?  Don't bother with paged skb. */
2191 	if (prepad + len < PAGE_SIZE || !linear)
2192 		linear = len;
2193 
2194 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2195 				   err, 0);
2196 	if (!skb)
2197 		return NULL;
2198 
2199 	skb_reserve(skb, reserve);
2200 	skb_put(skb, linear);
2201 	skb->data_len = len - linear;
2202 	skb->len += len - linear;
2203 
2204 	return skb;
2205 }
2206 
2207 static int packet_snd(struct socket *sock,
2208 			  struct msghdr *msg, size_t len)
2209 {
2210 	struct sock *sk = sock->sk;
2211 	struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2212 	struct sk_buff *skb;
2213 	struct net_device *dev;
2214 	__be16 proto;
2215 	bool need_rls_dev = false;
2216 	unsigned char *addr;
2217 	int err, reserve = 0;
2218 	struct virtio_net_hdr vnet_hdr = { 0 };
2219 	int offset = 0;
2220 	int vnet_hdr_len;
2221 	struct packet_sock *po = pkt_sk(sk);
2222 	unsigned short gso_type = 0;
2223 	int hlen, tlen;
2224 	int extra_len = 0;
2225 
2226 	/*
2227 	 *	Get and verify the address.
2228 	 */
2229 
2230 	if (saddr == NULL) {
2231 		dev = po->prot_hook.dev;
2232 		proto	= po->num;
2233 		addr	= NULL;
2234 	} else {
2235 		err = -EINVAL;
2236 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2237 			goto out;
2238 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2239 			goto out;
2240 		proto	= saddr->sll_protocol;
2241 		addr	= saddr->sll_addr;
2242 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2243 		need_rls_dev = true;
2244 	}
2245 
2246 	err = -ENXIO;
2247 	if (dev == NULL)
2248 		goto out_unlock;
2249 	if (sock->type == SOCK_RAW)
2250 		reserve = dev->hard_header_len;
2251 
2252 	err = -ENETDOWN;
2253 	if (!(dev->flags & IFF_UP))
2254 		goto out_unlock;
2255 
2256 	if (po->has_vnet_hdr) {
2257 		vnet_hdr_len = sizeof(vnet_hdr);
2258 
2259 		err = -EINVAL;
2260 		if (len < vnet_hdr_len)
2261 			goto out_unlock;
2262 
2263 		len -= vnet_hdr_len;
2264 
2265 		err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2266 				       vnet_hdr_len);
2267 		if (err < 0)
2268 			goto out_unlock;
2269 
2270 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2271 		    (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2272 		      vnet_hdr.hdr_len))
2273 			vnet_hdr.hdr_len = vnet_hdr.csum_start +
2274 						 vnet_hdr.csum_offset + 2;
2275 
2276 		err = -EINVAL;
2277 		if (vnet_hdr.hdr_len > len)
2278 			goto out_unlock;
2279 
2280 		if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2281 			switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2282 			case VIRTIO_NET_HDR_GSO_TCPV4:
2283 				gso_type = SKB_GSO_TCPV4;
2284 				break;
2285 			case VIRTIO_NET_HDR_GSO_TCPV6:
2286 				gso_type = SKB_GSO_TCPV6;
2287 				break;
2288 			case VIRTIO_NET_HDR_GSO_UDP:
2289 				gso_type = SKB_GSO_UDP;
2290 				break;
2291 			default:
2292 				goto out_unlock;
2293 			}
2294 
2295 			if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2296 				gso_type |= SKB_GSO_TCP_ECN;
2297 
2298 			if (vnet_hdr.gso_size == 0)
2299 				goto out_unlock;
2300 
2301 		}
2302 	}
2303 
2304 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2305 		if (!netif_supports_nofcs(dev)) {
2306 			err = -EPROTONOSUPPORT;
2307 			goto out_unlock;
2308 		}
2309 		extra_len = 4; /* We're doing our own CRC */
2310 	}
2311 
2312 	err = -EMSGSIZE;
2313 	if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2314 		goto out_unlock;
2315 
2316 	err = -ENOBUFS;
2317 	hlen = LL_RESERVED_SPACE(dev);
2318 	tlen = dev->needed_tailroom;
2319 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2320 			       msg->msg_flags & MSG_DONTWAIT, &err);
2321 	if (skb == NULL)
2322 		goto out_unlock;
2323 
2324 	skb_set_network_header(skb, reserve);
2325 
2326 	err = -EINVAL;
2327 	if (sock->type == SOCK_DGRAM &&
2328 	    (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2329 		goto out_free;
2330 
2331 	/* Returns -EFAULT on error */
2332 	err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2333 	if (err)
2334 		goto out_free;
2335 
2336 	sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2337 
2338 	if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2339 		/* Earlier code assumed this would be a VLAN pkt,
2340 		 * double-check this now that we have the actual
2341 		 * packet in hand.
2342 		 */
2343 		struct ethhdr *ehdr;
2344 		skb_reset_mac_header(skb);
2345 		ehdr = eth_hdr(skb);
2346 		if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2347 			err = -EMSGSIZE;
2348 			goto out_free;
2349 		}
2350 	}
2351 
2352 	skb->protocol = proto;
2353 	skb->dev = dev;
2354 	skb->priority = sk->sk_priority;
2355 	skb->mark = sk->sk_mark;
2356 
2357 	if (po->has_vnet_hdr) {
2358 		if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2359 			if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2360 						  vnet_hdr.csum_offset)) {
2361 				err = -EINVAL;
2362 				goto out_free;
2363 			}
2364 		}
2365 
2366 		skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2367 		skb_shinfo(skb)->gso_type = gso_type;
2368 
2369 		/* Header must be checked, and gso_segs computed. */
2370 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2371 		skb_shinfo(skb)->gso_segs = 0;
2372 
2373 		len += vnet_hdr_len;
2374 	}
2375 
2376 	skb_probe_transport_header(skb, reserve);
2377 
2378 	if (unlikely(extra_len == 4))
2379 		skb->no_fcs = 1;
2380 
2381 	/*
2382 	 *	Now send it
2383 	 */
2384 
2385 	err = dev_queue_xmit(skb);
2386 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
2387 		goto out_unlock;
2388 
2389 	if (need_rls_dev)
2390 		dev_put(dev);
2391 
2392 	return len;
2393 
2394 out_free:
2395 	kfree_skb(skb);
2396 out_unlock:
2397 	if (dev && need_rls_dev)
2398 		dev_put(dev);
2399 out:
2400 	return err;
2401 }
2402 
2403 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2404 		struct msghdr *msg, size_t len)
2405 {
2406 	struct sock *sk = sock->sk;
2407 	struct packet_sock *po = pkt_sk(sk);
2408 	if (po->tx_ring.pg_vec)
2409 		return tpacket_snd(po, msg);
2410 	else
2411 		return packet_snd(sock, msg, len);
2412 }
2413 
2414 /*
2415  *	Close a PACKET socket. This is fairly simple. We immediately go
2416  *	to 'closed' state and remove our protocol entry in the device list.
2417  */
2418 
2419 static int packet_release(struct socket *sock)
2420 {
2421 	struct sock *sk = sock->sk;
2422 	struct packet_sock *po;
2423 	struct net *net;
2424 	union tpacket_req_u req_u;
2425 
2426 	if (!sk)
2427 		return 0;
2428 
2429 	net = sock_net(sk);
2430 	po = pkt_sk(sk);
2431 
2432 	mutex_lock(&net->packet.sklist_lock);
2433 	sk_del_node_init_rcu(sk);
2434 	mutex_unlock(&net->packet.sklist_lock);
2435 
2436 	preempt_disable();
2437 	sock_prot_inuse_add(net, sk->sk_prot, -1);
2438 	preempt_enable();
2439 
2440 	spin_lock(&po->bind_lock);
2441 	unregister_prot_hook(sk, false);
2442 	if (po->prot_hook.dev) {
2443 		dev_put(po->prot_hook.dev);
2444 		po->prot_hook.dev = NULL;
2445 	}
2446 	spin_unlock(&po->bind_lock);
2447 
2448 	packet_flush_mclist(sk);
2449 
2450 	if (po->rx_ring.pg_vec) {
2451 		memset(&req_u, 0, sizeof(req_u));
2452 		packet_set_ring(sk, &req_u, 1, 0);
2453 	}
2454 
2455 	if (po->tx_ring.pg_vec) {
2456 		memset(&req_u, 0, sizeof(req_u));
2457 		packet_set_ring(sk, &req_u, 1, 1);
2458 	}
2459 
2460 	fanout_release(sk);
2461 
2462 	synchronize_net();
2463 	/*
2464 	 *	Now the socket is dead. No more input will appear.
2465 	 */
2466 	sock_orphan(sk);
2467 	sock->sk = NULL;
2468 
2469 	/* Purge queues */
2470 
2471 	skb_queue_purge(&sk->sk_receive_queue);
2472 	sk_refcnt_debug_release(sk);
2473 
2474 	sock_put(sk);
2475 	return 0;
2476 }
2477 
2478 /*
2479  *	Attach a packet hook.
2480  */
2481 
2482 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol)
2483 {
2484 	struct packet_sock *po = pkt_sk(sk);
2485 
2486 	if (po->fanout) {
2487 		if (dev)
2488 			dev_put(dev);
2489 
2490 		return -EINVAL;
2491 	}
2492 
2493 	lock_sock(sk);
2494 
2495 	spin_lock(&po->bind_lock);
2496 	unregister_prot_hook(sk, true);
2497 	po->num = protocol;
2498 	po->prot_hook.type = protocol;
2499 	if (po->prot_hook.dev)
2500 		dev_put(po->prot_hook.dev);
2501 	po->prot_hook.dev = dev;
2502 
2503 	po->ifindex = dev ? dev->ifindex : 0;
2504 
2505 	if (protocol == 0)
2506 		goto out_unlock;
2507 
2508 	if (!dev || (dev->flags & IFF_UP)) {
2509 		register_prot_hook(sk);
2510 	} else {
2511 		sk->sk_err = ENETDOWN;
2512 		if (!sock_flag(sk, SOCK_DEAD))
2513 			sk->sk_error_report(sk);
2514 	}
2515 
2516 out_unlock:
2517 	spin_unlock(&po->bind_lock);
2518 	release_sock(sk);
2519 	return 0;
2520 }
2521 
2522 /*
2523  *	Bind a packet socket to a device
2524  */
2525 
2526 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2527 			    int addr_len)
2528 {
2529 	struct sock *sk = sock->sk;
2530 	char name[15];
2531 	struct net_device *dev;
2532 	int err = -ENODEV;
2533 
2534 	/*
2535 	 *	Check legality
2536 	 */
2537 
2538 	if (addr_len != sizeof(struct sockaddr))
2539 		return -EINVAL;
2540 	strlcpy(name, uaddr->sa_data, sizeof(name));
2541 
2542 	dev = dev_get_by_name(sock_net(sk), name);
2543 	if (dev)
2544 		err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2545 	return err;
2546 }
2547 
2548 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2549 {
2550 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2551 	struct sock *sk = sock->sk;
2552 	struct net_device *dev = NULL;
2553 	int err;
2554 
2555 
2556 	/*
2557 	 *	Check legality
2558 	 */
2559 
2560 	if (addr_len < sizeof(struct sockaddr_ll))
2561 		return -EINVAL;
2562 	if (sll->sll_family != AF_PACKET)
2563 		return -EINVAL;
2564 
2565 	if (sll->sll_ifindex) {
2566 		err = -ENODEV;
2567 		dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2568 		if (dev == NULL)
2569 			goto out;
2570 	}
2571 	err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2572 
2573 out:
2574 	return err;
2575 }
2576 
2577 static struct proto packet_proto = {
2578 	.name	  = "PACKET",
2579 	.owner	  = THIS_MODULE,
2580 	.obj_size = sizeof(struct packet_sock),
2581 };
2582 
2583 /*
2584  *	Create a packet of type SOCK_PACKET.
2585  */
2586 
2587 static int packet_create(struct net *net, struct socket *sock, int protocol,
2588 			 int kern)
2589 {
2590 	struct sock *sk;
2591 	struct packet_sock *po;
2592 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
2593 	int err;
2594 
2595 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
2596 		return -EPERM;
2597 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2598 	    sock->type != SOCK_PACKET)
2599 		return -ESOCKTNOSUPPORT;
2600 
2601 	sock->state = SS_UNCONNECTED;
2602 
2603 	err = -ENOBUFS;
2604 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2605 	if (sk == NULL)
2606 		goto out;
2607 
2608 	sock->ops = &packet_ops;
2609 	if (sock->type == SOCK_PACKET)
2610 		sock->ops = &packet_ops_spkt;
2611 
2612 	sock_init_data(sock, sk);
2613 
2614 	po = pkt_sk(sk);
2615 	sk->sk_family = PF_PACKET;
2616 	po->num = proto;
2617 
2618 	sk->sk_destruct = packet_sock_destruct;
2619 	sk_refcnt_debug_inc(sk);
2620 
2621 	/*
2622 	 *	Attach a protocol block
2623 	 */
2624 
2625 	spin_lock_init(&po->bind_lock);
2626 	mutex_init(&po->pg_vec_lock);
2627 	po->prot_hook.func = packet_rcv;
2628 
2629 	if (sock->type == SOCK_PACKET)
2630 		po->prot_hook.func = packet_rcv_spkt;
2631 
2632 	po->prot_hook.af_packet_priv = sk;
2633 
2634 	if (proto) {
2635 		po->prot_hook.type = proto;
2636 		register_prot_hook(sk);
2637 	}
2638 
2639 	mutex_lock(&net->packet.sklist_lock);
2640 	sk_add_node_rcu(sk, &net->packet.sklist);
2641 	mutex_unlock(&net->packet.sklist_lock);
2642 
2643 	preempt_disable();
2644 	sock_prot_inuse_add(net, &packet_proto, 1);
2645 	preempt_enable();
2646 
2647 	return 0;
2648 out:
2649 	return err;
2650 }
2651 
2652 /*
2653  *	Pull a packet from our receive queue and hand it to the user.
2654  *	If necessary we block.
2655  */
2656 
2657 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2658 			  struct msghdr *msg, size_t len, int flags)
2659 {
2660 	struct sock *sk = sock->sk;
2661 	struct sk_buff *skb;
2662 	int copied, err;
2663 	struct sockaddr_ll *sll;
2664 	int vnet_hdr_len = 0;
2665 
2666 	err = -EINVAL;
2667 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
2668 		goto out;
2669 
2670 #if 0
2671 	/* What error should we return now? EUNATTACH? */
2672 	if (pkt_sk(sk)->ifindex < 0)
2673 		return -ENODEV;
2674 #endif
2675 
2676 	if (flags & MSG_ERRQUEUE) {
2677 		err = sock_recv_errqueue(sk, msg, len,
2678 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
2679 		goto out;
2680 	}
2681 
2682 	/*
2683 	 *	Call the generic datagram receiver. This handles all sorts
2684 	 *	of horrible races and re-entrancy so we can forget about it
2685 	 *	in the protocol layers.
2686 	 *
2687 	 *	Now it will return ENETDOWN, if device have just gone down,
2688 	 *	but then it will block.
2689 	 */
2690 
2691 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2692 
2693 	/*
2694 	 *	An error occurred so return it. Because skb_recv_datagram()
2695 	 *	handles the blocking we don't see and worry about blocking
2696 	 *	retries.
2697 	 */
2698 
2699 	if (skb == NULL)
2700 		goto out;
2701 
2702 	if (pkt_sk(sk)->has_vnet_hdr) {
2703 		struct virtio_net_hdr vnet_hdr = { 0 };
2704 
2705 		err = -EINVAL;
2706 		vnet_hdr_len = sizeof(vnet_hdr);
2707 		if (len < vnet_hdr_len)
2708 			goto out_free;
2709 
2710 		len -= vnet_hdr_len;
2711 
2712 		if (skb_is_gso(skb)) {
2713 			struct skb_shared_info *sinfo = skb_shinfo(skb);
2714 
2715 			/* This is a hint as to how much should be linear. */
2716 			vnet_hdr.hdr_len = skb_headlen(skb);
2717 			vnet_hdr.gso_size = sinfo->gso_size;
2718 			if (sinfo->gso_type & SKB_GSO_TCPV4)
2719 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
2720 			else if (sinfo->gso_type & SKB_GSO_TCPV6)
2721 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
2722 			else if (sinfo->gso_type & SKB_GSO_UDP)
2723 				vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2724 			else if (sinfo->gso_type & SKB_GSO_FCOE)
2725 				goto out_free;
2726 			else
2727 				BUG();
2728 			if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2729 				vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2730 		} else
2731 			vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2732 
2733 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2734 			vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
2735 			vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2736 			vnet_hdr.csum_offset = skb->csum_offset;
2737 		} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2738 			vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
2739 		} /* else everything is zero */
2740 
2741 		err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2742 				     vnet_hdr_len);
2743 		if (err < 0)
2744 			goto out_free;
2745 	}
2746 
2747 	/*
2748 	 *	If the address length field is there to be filled in, we fill
2749 	 *	it in now.
2750 	 */
2751 
2752 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2753 	if (sock->type == SOCK_PACKET)
2754 		msg->msg_namelen = sizeof(struct sockaddr_pkt);
2755 	else
2756 		msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr);
2757 
2758 	/*
2759 	 *	You lose any data beyond the buffer you gave. If it worries a
2760 	 *	user program they can ask the device for its MTU anyway.
2761 	 */
2762 
2763 	copied = skb->len;
2764 	if (copied > len) {
2765 		copied = len;
2766 		msg->msg_flags |= MSG_TRUNC;
2767 	}
2768 
2769 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2770 	if (err)
2771 		goto out_free;
2772 
2773 	sock_recv_ts_and_drops(msg, sk, skb);
2774 
2775 	if (msg->msg_name)
2776 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2777 		       msg->msg_namelen);
2778 
2779 	if (pkt_sk(sk)->auxdata) {
2780 		struct tpacket_auxdata aux;
2781 
2782 		aux.tp_status = TP_STATUS_USER;
2783 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2784 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2785 		aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2786 		aux.tp_snaplen = skb->len;
2787 		aux.tp_mac = 0;
2788 		aux.tp_net = skb_network_offset(skb);
2789 		if (vlan_tx_tag_present(skb)) {
2790 			aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2791 			aux.tp_status |= TP_STATUS_VLAN_VALID;
2792 		} else {
2793 			aux.tp_vlan_tci = 0;
2794 		}
2795 		aux.tp_padding = 0;
2796 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2797 	}
2798 
2799 	/*
2800 	 *	Free or return the buffer as appropriate. Again this
2801 	 *	hides all the races and re-entrancy issues from us.
2802 	 */
2803 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2804 
2805 out_free:
2806 	skb_free_datagram(sk, skb);
2807 out:
2808 	return err;
2809 }
2810 
2811 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2812 			       int *uaddr_len, int peer)
2813 {
2814 	struct net_device *dev;
2815 	struct sock *sk	= sock->sk;
2816 
2817 	if (peer)
2818 		return -EOPNOTSUPP;
2819 
2820 	uaddr->sa_family = AF_PACKET;
2821 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
2822 	rcu_read_lock();
2823 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
2824 	if (dev)
2825 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
2826 	rcu_read_unlock();
2827 	*uaddr_len = sizeof(*uaddr);
2828 
2829 	return 0;
2830 }
2831 
2832 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
2833 			  int *uaddr_len, int peer)
2834 {
2835 	struct net_device *dev;
2836 	struct sock *sk = sock->sk;
2837 	struct packet_sock *po = pkt_sk(sk);
2838 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
2839 
2840 	if (peer)
2841 		return -EOPNOTSUPP;
2842 
2843 	sll->sll_family = AF_PACKET;
2844 	sll->sll_ifindex = po->ifindex;
2845 	sll->sll_protocol = po->num;
2846 	sll->sll_pkttype = 0;
2847 	rcu_read_lock();
2848 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
2849 	if (dev) {
2850 		sll->sll_hatype = dev->type;
2851 		sll->sll_halen = dev->addr_len;
2852 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
2853 	} else {
2854 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
2855 		sll->sll_halen = 0;
2856 	}
2857 	rcu_read_unlock();
2858 	*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
2859 
2860 	return 0;
2861 }
2862 
2863 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
2864 			 int what)
2865 {
2866 	switch (i->type) {
2867 	case PACKET_MR_MULTICAST:
2868 		if (i->alen != dev->addr_len)
2869 			return -EINVAL;
2870 		if (what > 0)
2871 			return dev_mc_add(dev, i->addr);
2872 		else
2873 			return dev_mc_del(dev, i->addr);
2874 		break;
2875 	case PACKET_MR_PROMISC:
2876 		return dev_set_promiscuity(dev, what);
2877 		break;
2878 	case PACKET_MR_ALLMULTI:
2879 		return dev_set_allmulti(dev, what);
2880 		break;
2881 	case PACKET_MR_UNICAST:
2882 		if (i->alen != dev->addr_len)
2883 			return -EINVAL;
2884 		if (what > 0)
2885 			return dev_uc_add(dev, i->addr);
2886 		else
2887 			return dev_uc_del(dev, i->addr);
2888 		break;
2889 	default:
2890 		break;
2891 	}
2892 	return 0;
2893 }
2894 
2895 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
2896 {
2897 	for ( ; i; i = i->next) {
2898 		if (i->ifindex == dev->ifindex)
2899 			packet_dev_mc(dev, i, what);
2900 	}
2901 }
2902 
2903 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
2904 {
2905 	struct packet_sock *po = pkt_sk(sk);
2906 	struct packet_mclist *ml, *i;
2907 	struct net_device *dev;
2908 	int err;
2909 
2910 	rtnl_lock();
2911 
2912 	err = -ENODEV;
2913 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
2914 	if (!dev)
2915 		goto done;
2916 
2917 	err = -EINVAL;
2918 	if (mreq->mr_alen > dev->addr_len)
2919 		goto done;
2920 
2921 	err = -ENOBUFS;
2922 	i = kmalloc(sizeof(*i), GFP_KERNEL);
2923 	if (i == NULL)
2924 		goto done;
2925 
2926 	err = 0;
2927 	for (ml = po->mclist; ml; ml = ml->next) {
2928 		if (ml->ifindex == mreq->mr_ifindex &&
2929 		    ml->type == mreq->mr_type &&
2930 		    ml->alen == mreq->mr_alen &&
2931 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2932 			ml->count++;
2933 			/* Free the new element ... */
2934 			kfree(i);
2935 			goto done;
2936 		}
2937 	}
2938 
2939 	i->type = mreq->mr_type;
2940 	i->ifindex = mreq->mr_ifindex;
2941 	i->alen = mreq->mr_alen;
2942 	memcpy(i->addr, mreq->mr_address, i->alen);
2943 	i->count = 1;
2944 	i->next = po->mclist;
2945 	po->mclist = i;
2946 	err = packet_dev_mc(dev, i, 1);
2947 	if (err) {
2948 		po->mclist = i->next;
2949 		kfree(i);
2950 	}
2951 
2952 done:
2953 	rtnl_unlock();
2954 	return err;
2955 }
2956 
2957 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
2958 {
2959 	struct packet_mclist *ml, **mlp;
2960 
2961 	rtnl_lock();
2962 
2963 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
2964 		if (ml->ifindex == mreq->mr_ifindex &&
2965 		    ml->type == mreq->mr_type &&
2966 		    ml->alen == mreq->mr_alen &&
2967 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2968 			if (--ml->count == 0) {
2969 				struct net_device *dev;
2970 				*mlp = ml->next;
2971 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
2972 				if (dev)
2973 					packet_dev_mc(dev, ml, -1);
2974 				kfree(ml);
2975 			}
2976 			rtnl_unlock();
2977 			return 0;
2978 		}
2979 	}
2980 	rtnl_unlock();
2981 	return -EADDRNOTAVAIL;
2982 }
2983 
2984 static void packet_flush_mclist(struct sock *sk)
2985 {
2986 	struct packet_sock *po = pkt_sk(sk);
2987 	struct packet_mclist *ml;
2988 
2989 	if (!po->mclist)
2990 		return;
2991 
2992 	rtnl_lock();
2993 	while ((ml = po->mclist) != NULL) {
2994 		struct net_device *dev;
2995 
2996 		po->mclist = ml->next;
2997 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
2998 		if (dev != NULL)
2999 			packet_dev_mc(dev, ml, -1);
3000 		kfree(ml);
3001 	}
3002 	rtnl_unlock();
3003 }
3004 
3005 static int
3006 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3007 {
3008 	struct sock *sk = sock->sk;
3009 	struct packet_sock *po = pkt_sk(sk);
3010 	int ret;
3011 
3012 	if (level != SOL_PACKET)
3013 		return -ENOPROTOOPT;
3014 
3015 	switch (optname) {
3016 	case PACKET_ADD_MEMBERSHIP:
3017 	case PACKET_DROP_MEMBERSHIP:
3018 	{
3019 		struct packet_mreq_max mreq;
3020 		int len = optlen;
3021 		memset(&mreq, 0, sizeof(mreq));
3022 		if (len < sizeof(struct packet_mreq))
3023 			return -EINVAL;
3024 		if (len > sizeof(mreq))
3025 			len = sizeof(mreq);
3026 		if (copy_from_user(&mreq, optval, len))
3027 			return -EFAULT;
3028 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3029 			return -EINVAL;
3030 		if (optname == PACKET_ADD_MEMBERSHIP)
3031 			ret = packet_mc_add(sk, &mreq);
3032 		else
3033 			ret = packet_mc_drop(sk, &mreq);
3034 		return ret;
3035 	}
3036 
3037 	case PACKET_RX_RING:
3038 	case PACKET_TX_RING:
3039 	{
3040 		union tpacket_req_u req_u;
3041 		int len;
3042 
3043 		switch (po->tp_version) {
3044 		case TPACKET_V1:
3045 		case TPACKET_V2:
3046 			len = sizeof(req_u.req);
3047 			break;
3048 		case TPACKET_V3:
3049 		default:
3050 			len = sizeof(req_u.req3);
3051 			break;
3052 		}
3053 		if (optlen < len)
3054 			return -EINVAL;
3055 		if (pkt_sk(sk)->has_vnet_hdr)
3056 			return -EINVAL;
3057 		if (copy_from_user(&req_u.req, optval, len))
3058 			return -EFAULT;
3059 		return packet_set_ring(sk, &req_u, 0,
3060 			optname == PACKET_TX_RING);
3061 	}
3062 	case PACKET_COPY_THRESH:
3063 	{
3064 		int val;
3065 
3066 		if (optlen != sizeof(val))
3067 			return -EINVAL;
3068 		if (copy_from_user(&val, optval, sizeof(val)))
3069 			return -EFAULT;
3070 
3071 		pkt_sk(sk)->copy_thresh = val;
3072 		return 0;
3073 	}
3074 	case PACKET_VERSION:
3075 	{
3076 		int val;
3077 
3078 		if (optlen != sizeof(val))
3079 			return -EINVAL;
3080 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3081 			return -EBUSY;
3082 		if (copy_from_user(&val, optval, sizeof(val)))
3083 			return -EFAULT;
3084 		switch (val) {
3085 		case TPACKET_V1:
3086 		case TPACKET_V2:
3087 		case TPACKET_V3:
3088 			po->tp_version = val;
3089 			return 0;
3090 		default:
3091 			return -EINVAL;
3092 		}
3093 	}
3094 	case PACKET_RESERVE:
3095 	{
3096 		unsigned int val;
3097 
3098 		if (optlen != sizeof(val))
3099 			return -EINVAL;
3100 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3101 			return -EBUSY;
3102 		if (copy_from_user(&val, optval, sizeof(val)))
3103 			return -EFAULT;
3104 		po->tp_reserve = val;
3105 		return 0;
3106 	}
3107 	case PACKET_LOSS:
3108 	{
3109 		unsigned int val;
3110 
3111 		if (optlen != sizeof(val))
3112 			return -EINVAL;
3113 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3114 			return -EBUSY;
3115 		if (copy_from_user(&val, optval, sizeof(val)))
3116 			return -EFAULT;
3117 		po->tp_loss = !!val;
3118 		return 0;
3119 	}
3120 	case PACKET_AUXDATA:
3121 	{
3122 		int val;
3123 
3124 		if (optlen < sizeof(val))
3125 			return -EINVAL;
3126 		if (copy_from_user(&val, optval, sizeof(val)))
3127 			return -EFAULT;
3128 
3129 		po->auxdata = !!val;
3130 		return 0;
3131 	}
3132 	case PACKET_ORIGDEV:
3133 	{
3134 		int val;
3135 
3136 		if (optlen < sizeof(val))
3137 			return -EINVAL;
3138 		if (copy_from_user(&val, optval, sizeof(val)))
3139 			return -EFAULT;
3140 
3141 		po->origdev = !!val;
3142 		return 0;
3143 	}
3144 	case PACKET_VNET_HDR:
3145 	{
3146 		int val;
3147 
3148 		if (sock->type != SOCK_RAW)
3149 			return -EINVAL;
3150 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3151 			return -EBUSY;
3152 		if (optlen < sizeof(val))
3153 			return -EINVAL;
3154 		if (copy_from_user(&val, optval, sizeof(val)))
3155 			return -EFAULT;
3156 
3157 		po->has_vnet_hdr = !!val;
3158 		return 0;
3159 	}
3160 	case PACKET_TIMESTAMP:
3161 	{
3162 		int val;
3163 
3164 		if (optlen != sizeof(val))
3165 			return -EINVAL;
3166 		if (copy_from_user(&val, optval, sizeof(val)))
3167 			return -EFAULT;
3168 
3169 		po->tp_tstamp = val;
3170 		return 0;
3171 	}
3172 	case PACKET_FANOUT:
3173 	{
3174 		int val;
3175 
3176 		if (optlen != sizeof(val))
3177 			return -EINVAL;
3178 		if (copy_from_user(&val, optval, sizeof(val)))
3179 			return -EFAULT;
3180 
3181 		return fanout_add(sk, val & 0xffff, val >> 16);
3182 	}
3183 	case PACKET_TX_HAS_OFF:
3184 	{
3185 		unsigned int val;
3186 
3187 		if (optlen != sizeof(val))
3188 			return -EINVAL;
3189 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3190 			return -EBUSY;
3191 		if (copy_from_user(&val, optval, sizeof(val)))
3192 			return -EFAULT;
3193 		po->tp_tx_has_off = !!val;
3194 		return 0;
3195 	}
3196 	default:
3197 		return -ENOPROTOOPT;
3198 	}
3199 }
3200 
3201 static int packet_getsockopt(struct socket *sock, int level, int optname,
3202 			     char __user *optval, int __user *optlen)
3203 {
3204 	int len;
3205 	int val, lv = sizeof(val);
3206 	struct sock *sk = sock->sk;
3207 	struct packet_sock *po = pkt_sk(sk);
3208 	void *data = &val;
3209 	union tpacket_stats_u st;
3210 
3211 	if (level != SOL_PACKET)
3212 		return -ENOPROTOOPT;
3213 
3214 	if (get_user(len, optlen))
3215 		return -EFAULT;
3216 
3217 	if (len < 0)
3218 		return -EINVAL;
3219 
3220 	switch (optname) {
3221 	case PACKET_STATISTICS:
3222 		spin_lock_bh(&sk->sk_receive_queue.lock);
3223 		memcpy(&st, &po->stats, sizeof(st));
3224 		memset(&po->stats, 0, sizeof(po->stats));
3225 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3226 
3227 		if (po->tp_version == TPACKET_V3) {
3228 			lv = sizeof(struct tpacket_stats_v3);
3229 			st.stats3.tp_packets += st.stats3.tp_drops;
3230 			data = &st.stats3;
3231 		} else {
3232 			lv = sizeof(struct tpacket_stats);
3233 			st.stats1.tp_packets += st.stats1.tp_drops;
3234 			data = &st.stats1;
3235 		}
3236 
3237 		break;
3238 	case PACKET_AUXDATA:
3239 		val = po->auxdata;
3240 		break;
3241 	case PACKET_ORIGDEV:
3242 		val = po->origdev;
3243 		break;
3244 	case PACKET_VNET_HDR:
3245 		val = po->has_vnet_hdr;
3246 		break;
3247 	case PACKET_VERSION:
3248 		val = po->tp_version;
3249 		break;
3250 	case PACKET_HDRLEN:
3251 		if (len > sizeof(int))
3252 			len = sizeof(int);
3253 		if (copy_from_user(&val, optval, len))
3254 			return -EFAULT;
3255 		switch (val) {
3256 		case TPACKET_V1:
3257 			val = sizeof(struct tpacket_hdr);
3258 			break;
3259 		case TPACKET_V2:
3260 			val = sizeof(struct tpacket2_hdr);
3261 			break;
3262 		case TPACKET_V3:
3263 			val = sizeof(struct tpacket3_hdr);
3264 			break;
3265 		default:
3266 			return -EINVAL;
3267 		}
3268 		break;
3269 	case PACKET_RESERVE:
3270 		val = po->tp_reserve;
3271 		break;
3272 	case PACKET_LOSS:
3273 		val = po->tp_loss;
3274 		break;
3275 	case PACKET_TIMESTAMP:
3276 		val = po->tp_tstamp;
3277 		break;
3278 	case PACKET_FANOUT:
3279 		val = (po->fanout ?
3280 		       ((u32)po->fanout->id |
3281 			((u32)po->fanout->type << 16) |
3282 			((u32)po->fanout->flags << 24)) :
3283 		       0);
3284 		break;
3285 	case PACKET_TX_HAS_OFF:
3286 		val = po->tp_tx_has_off;
3287 		break;
3288 	default:
3289 		return -ENOPROTOOPT;
3290 	}
3291 
3292 	if (len > lv)
3293 		len = lv;
3294 	if (put_user(len, optlen))
3295 		return -EFAULT;
3296 	if (copy_to_user(optval, data, len))
3297 		return -EFAULT;
3298 	return 0;
3299 }
3300 
3301 
3302 static int packet_notifier(struct notifier_block *this,
3303 			   unsigned long msg, void *ptr)
3304 {
3305 	struct sock *sk;
3306 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3307 	struct net *net = dev_net(dev);
3308 
3309 	rcu_read_lock();
3310 	sk_for_each_rcu(sk, &net->packet.sklist) {
3311 		struct packet_sock *po = pkt_sk(sk);
3312 
3313 		switch (msg) {
3314 		case NETDEV_UNREGISTER:
3315 			if (po->mclist)
3316 				packet_dev_mclist(dev, po->mclist, -1);
3317 			/* fallthrough */
3318 
3319 		case NETDEV_DOWN:
3320 			if (dev->ifindex == po->ifindex) {
3321 				spin_lock(&po->bind_lock);
3322 				if (po->running) {
3323 					__unregister_prot_hook(sk, false);
3324 					sk->sk_err = ENETDOWN;
3325 					if (!sock_flag(sk, SOCK_DEAD))
3326 						sk->sk_error_report(sk);
3327 				}
3328 				if (msg == NETDEV_UNREGISTER) {
3329 					po->ifindex = -1;
3330 					if (po->prot_hook.dev)
3331 						dev_put(po->prot_hook.dev);
3332 					po->prot_hook.dev = NULL;
3333 				}
3334 				spin_unlock(&po->bind_lock);
3335 			}
3336 			break;
3337 		case NETDEV_UP:
3338 			if (dev->ifindex == po->ifindex) {
3339 				spin_lock(&po->bind_lock);
3340 				if (po->num)
3341 					register_prot_hook(sk);
3342 				spin_unlock(&po->bind_lock);
3343 			}
3344 			break;
3345 		}
3346 	}
3347 	rcu_read_unlock();
3348 	return NOTIFY_DONE;
3349 }
3350 
3351 
3352 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3353 			unsigned long arg)
3354 {
3355 	struct sock *sk = sock->sk;
3356 
3357 	switch (cmd) {
3358 	case SIOCOUTQ:
3359 	{
3360 		int amount = sk_wmem_alloc_get(sk);
3361 
3362 		return put_user(amount, (int __user *)arg);
3363 	}
3364 	case SIOCINQ:
3365 	{
3366 		struct sk_buff *skb;
3367 		int amount = 0;
3368 
3369 		spin_lock_bh(&sk->sk_receive_queue.lock);
3370 		skb = skb_peek(&sk->sk_receive_queue);
3371 		if (skb)
3372 			amount = skb->len;
3373 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3374 		return put_user(amount, (int __user *)arg);
3375 	}
3376 	case SIOCGSTAMP:
3377 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
3378 	case SIOCGSTAMPNS:
3379 		return sock_get_timestampns(sk, (struct timespec __user *)arg);
3380 
3381 #ifdef CONFIG_INET
3382 	case SIOCADDRT:
3383 	case SIOCDELRT:
3384 	case SIOCDARP:
3385 	case SIOCGARP:
3386 	case SIOCSARP:
3387 	case SIOCGIFADDR:
3388 	case SIOCSIFADDR:
3389 	case SIOCGIFBRDADDR:
3390 	case SIOCSIFBRDADDR:
3391 	case SIOCGIFNETMASK:
3392 	case SIOCSIFNETMASK:
3393 	case SIOCGIFDSTADDR:
3394 	case SIOCSIFDSTADDR:
3395 	case SIOCSIFFLAGS:
3396 		return inet_dgram_ops.ioctl(sock, cmd, arg);
3397 #endif
3398 
3399 	default:
3400 		return -ENOIOCTLCMD;
3401 	}
3402 	return 0;
3403 }
3404 
3405 static unsigned int packet_poll(struct file *file, struct socket *sock,
3406 				poll_table *wait)
3407 {
3408 	struct sock *sk = sock->sk;
3409 	struct packet_sock *po = pkt_sk(sk);
3410 	unsigned int mask = datagram_poll(file, sock, wait);
3411 
3412 	spin_lock_bh(&sk->sk_receive_queue.lock);
3413 	if (po->rx_ring.pg_vec) {
3414 		if (!packet_previous_rx_frame(po, &po->rx_ring,
3415 			TP_STATUS_KERNEL))
3416 			mask |= POLLIN | POLLRDNORM;
3417 	}
3418 	spin_unlock_bh(&sk->sk_receive_queue.lock);
3419 	spin_lock_bh(&sk->sk_write_queue.lock);
3420 	if (po->tx_ring.pg_vec) {
3421 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3422 			mask |= POLLOUT | POLLWRNORM;
3423 	}
3424 	spin_unlock_bh(&sk->sk_write_queue.lock);
3425 	return mask;
3426 }
3427 
3428 
3429 /* Dirty? Well, I still did not learn better way to account
3430  * for user mmaps.
3431  */
3432 
3433 static void packet_mm_open(struct vm_area_struct *vma)
3434 {
3435 	struct file *file = vma->vm_file;
3436 	struct socket *sock = file->private_data;
3437 	struct sock *sk = sock->sk;
3438 
3439 	if (sk)
3440 		atomic_inc(&pkt_sk(sk)->mapped);
3441 }
3442 
3443 static void packet_mm_close(struct vm_area_struct *vma)
3444 {
3445 	struct file *file = vma->vm_file;
3446 	struct socket *sock = file->private_data;
3447 	struct sock *sk = sock->sk;
3448 
3449 	if (sk)
3450 		atomic_dec(&pkt_sk(sk)->mapped);
3451 }
3452 
3453 static const struct vm_operations_struct packet_mmap_ops = {
3454 	.open	=	packet_mm_open,
3455 	.close	=	packet_mm_close,
3456 };
3457 
3458 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3459 			unsigned int len)
3460 {
3461 	int i;
3462 
3463 	for (i = 0; i < len; i++) {
3464 		if (likely(pg_vec[i].buffer)) {
3465 			if (is_vmalloc_addr(pg_vec[i].buffer))
3466 				vfree(pg_vec[i].buffer);
3467 			else
3468 				free_pages((unsigned long)pg_vec[i].buffer,
3469 					   order);
3470 			pg_vec[i].buffer = NULL;
3471 		}
3472 	}
3473 	kfree(pg_vec);
3474 }
3475 
3476 static char *alloc_one_pg_vec_page(unsigned long order)
3477 {
3478 	char *buffer = NULL;
3479 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3480 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3481 
3482 	buffer = (char *) __get_free_pages(gfp_flags, order);
3483 
3484 	if (buffer)
3485 		return buffer;
3486 
3487 	/*
3488 	 * __get_free_pages failed, fall back to vmalloc
3489 	 */
3490 	buffer = vzalloc((1 << order) * PAGE_SIZE);
3491 
3492 	if (buffer)
3493 		return buffer;
3494 
3495 	/*
3496 	 * vmalloc failed, lets dig into swap here
3497 	 */
3498 	gfp_flags &= ~__GFP_NORETRY;
3499 	buffer = (char *)__get_free_pages(gfp_flags, order);
3500 	if (buffer)
3501 		return buffer;
3502 
3503 	/*
3504 	 * complete and utter failure
3505 	 */
3506 	return NULL;
3507 }
3508 
3509 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3510 {
3511 	unsigned int block_nr = req->tp_block_nr;
3512 	struct pgv *pg_vec;
3513 	int i;
3514 
3515 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3516 	if (unlikely(!pg_vec))
3517 		goto out;
3518 
3519 	for (i = 0; i < block_nr; i++) {
3520 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3521 		if (unlikely(!pg_vec[i].buffer))
3522 			goto out_free_pgvec;
3523 	}
3524 
3525 out:
3526 	return pg_vec;
3527 
3528 out_free_pgvec:
3529 	free_pg_vec(pg_vec, order, block_nr);
3530 	pg_vec = NULL;
3531 	goto out;
3532 }
3533 
3534 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3535 		int closing, int tx_ring)
3536 {
3537 	struct pgv *pg_vec = NULL;
3538 	struct packet_sock *po = pkt_sk(sk);
3539 	int was_running, order = 0;
3540 	struct packet_ring_buffer *rb;
3541 	struct sk_buff_head *rb_queue;
3542 	__be16 num;
3543 	int err = -EINVAL;
3544 	/* Added to avoid minimal code churn */
3545 	struct tpacket_req *req = &req_u->req;
3546 
3547 	/* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3548 	if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3549 		WARN(1, "Tx-ring is not supported.\n");
3550 		goto out;
3551 	}
3552 
3553 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3554 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3555 
3556 	err = -EBUSY;
3557 	if (!closing) {
3558 		if (atomic_read(&po->mapped))
3559 			goto out;
3560 		if (atomic_read(&rb->pending))
3561 			goto out;
3562 	}
3563 
3564 	if (req->tp_block_nr) {
3565 		/* Sanity tests and some calculations */
3566 		err = -EBUSY;
3567 		if (unlikely(rb->pg_vec))
3568 			goto out;
3569 
3570 		switch (po->tp_version) {
3571 		case TPACKET_V1:
3572 			po->tp_hdrlen = TPACKET_HDRLEN;
3573 			break;
3574 		case TPACKET_V2:
3575 			po->tp_hdrlen = TPACKET2_HDRLEN;
3576 			break;
3577 		case TPACKET_V3:
3578 			po->tp_hdrlen = TPACKET3_HDRLEN;
3579 			break;
3580 		}
3581 
3582 		err = -EINVAL;
3583 		if (unlikely((int)req->tp_block_size <= 0))
3584 			goto out;
3585 		if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3586 			goto out;
3587 		if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3588 					po->tp_reserve))
3589 			goto out;
3590 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3591 			goto out;
3592 
3593 		rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
3594 		if (unlikely(rb->frames_per_block <= 0))
3595 			goto out;
3596 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3597 					req->tp_frame_nr))
3598 			goto out;
3599 
3600 		err = -ENOMEM;
3601 		order = get_order(req->tp_block_size);
3602 		pg_vec = alloc_pg_vec(req, order);
3603 		if (unlikely(!pg_vec))
3604 			goto out;
3605 		switch (po->tp_version) {
3606 		case TPACKET_V3:
3607 		/* Transmit path is not supported. We checked
3608 		 * it above but just being paranoid
3609 		 */
3610 			if (!tx_ring)
3611 				init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3612 				break;
3613 		default:
3614 			break;
3615 		}
3616 	}
3617 	/* Done */
3618 	else {
3619 		err = -EINVAL;
3620 		if (unlikely(req->tp_frame_nr))
3621 			goto out;
3622 	}
3623 
3624 	lock_sock(sk);
3625 
3626 	/* Detach socket from network */
3627 	spin_lock(&po->bind_lock);
3628 	was_running = po->running;
3629 	num = po->num;
3630 	if (was_running) {
3631 		po->num = 0;
3632 		__unregister_prot_hook(sk, false);
3633 	}
3634 	spin_unlock(&po->bind_lock);
3635 
3636 	synchronize_net();
3637 
3638 	err = -EBUSY;
3639 	mutex_lock(&po->pg_vec_lock);
3640 	if (closing || atomic_read(&po->mapped) == 0) {
3641 		err = 0;
3642 		spin_lock_bh(&rb_queue->lock);
3643 		swap(rb->pg_vec, pg_vec);
3644 		rb->frame_max = (req->tp_frame_nr - 1);
3645 		rb->head = 0;
3646 		rb->frame_size = req->tp_frame_size;
3647 		spin_unlock_bh(&rb_queue->lock);
3648 
3649 		swap(rb->pg_vec_order, order);
3650 		swap(rb->pg_vec_len, req->tp_block_nr);
3651 
3652 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
3653 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
3654 						tpacket_rcv : packet_rcv;
3655 		skb_queue_purge(rb_queue);
3656 		if (atomic_read(&po->mapped))
3657 			pr_err("packet_mmap: vma is busy: %d\n",
3658 			       atomic_read(&po->mapped));
3659 	}
3660 	mutex_unlock(&po->pg_vec_lock);
3661 
3662 	spin_lock(&po->bind_lock);
3663 	if (was_running) {
3664 		po->num = num;
3665 		register_prot_hook(sk);
3666 	}
3667 	spin_unlock(&po->bind_lock);
3668 	if (closing && (po->tp_version > TPACKET_V2)) {
3669 		/* Because we don't support block-based V3 on tx-ring */
3670 		if (!tx_ring)
3671 			prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3672 	}
3673 	release_sock(sk);
3674 
3675 	if (pg_vec)
3676 		free_pg_vec(pg_vec, order, req->tp_block_nr);
3677 out:
3678 	return err;
3679 }
3680 
3681 static int packet_mmap(struct file *file, struct socket *sock,
3682 		struct vm_area_struct *vma)
3683 {
3684 	struct sock *sk = sock->sk;
3685 	struct packet_sock *po = pkt_sk(sk);
3686 	unsigned long size, expected_size;
3687 	struct packet_ring_buffer *rb;
3688 	unsigned long start;
3689 	int err = -EINVAL;
3690 	int i;
3691 
3692 	if (vma->vm_pgoff)
3693 		return -EINVAL;
3694 
3695 	mutex_lock(&po->pg_vec_lock);
3696 
3697 	expected_size = 0;
3698 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3699 		if (rb->pg_vec) {
3700 			expected_size += rb->pg_vec_len
3701 						* rb->pg_vec_pages
3702 						* PAGE_SIZE;
3703 		}
3704 	}
3705 
3706 	if (expected_size == 0)
3707 		goto out;
3708 
3709 	size = vma->vm_end - vma->vm_start;
3710 	if (size != expected_size)
3711 		goto out;
3712 
3713 	start = vma->vm_start;
3714 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3715 		if (rb->pg_vec == NULL)
3716 			continue;
3717 
3718 		for (i = 0; i < rb->pg_vec_len; i++) {
3719 			struct page *page;
3720 			void *kaddr = rb->pg_vec[i].buffer;
3721 			int pg_num;
3722 
3723 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3724 				page = pgv_to_page(kaddr);
3725 				err = vm_insert_page(vma, start, page);
3726 				if (unlikely(err))
3727 					goto out;
3728 				start += PAGE_SIZE;
3729 				kaddr += PAGE_SIZE;
3730 			}
3731 		}
3732 	}
3733 
3734 	atomic_inc(&po->mapped);
3735 	vma->vm_ops = &packet_mmap_ops;
3736 	err = 0;
3737 
3738 out:
3739 	mutex_unlock(&po->pg_vec_lock);
3740 	return err;
3741 }
3742 
3743 static const struct proto_ops packet_ops_spkt = {
3744 	.family =	PF_PACKET,
3745 	.owner =	THIS_MODULE,
3746 	.release =	packet_release,
3747 	.bind =		packet_bind_spkt,
3748 	.connect =	sock_no_connect,
3749 	.socketpair =	sock_no_socketpair,
3750 	.accept =	sock_no_accept,
3751 	.getname =	packet_getname_spkt,
3752 	.poll =		datagram_poll,
3753 	.ioctl =	packet_ioctl,
3754 	.listen =	sock_no_listen,
3755 	.shutdown =	sock_no_shutdown,
3756 	.setsockopt =	sock_no_setsockopt,
3757 	.getsockopt =	sock_no_getsockopt,
3758 	.sendmsg =	packet_sendmsg_spkt,
3759 	.recvmsg =	packet_recvmsg,
3760 	.mmap =		sock_no_mmap,
3761 	.sendpage =	sock_no_sendpage,
3762 };
3763 
3764 static const struct proto_ops packet_ops = {
3765 	.family =	PF_PACKET,
3766 	.owner =	THIS_MODULE,
3767 	.release =	packet_release,
3768 	.bind =		packet_bind,
3769 	.connect =	sock_no_connect,
3770 	.socketpair =	sock_no_socketpair,
3771 	.accept =	sock_no_accept,
3772 	.getname =	packet_getname,
3773 	.poll =		packet_poll,
3774 	.ioctl =	packet_ioctl,
3775 	.listen =	sock_no_listen,
3776 	.shutdown =	sock_no_shutdown,
3777 	.setsockopt =	packet_setsockopt,
3778 	.getsockopt =	packet_getsockopt,
3779 	.sendmsg =	packet_sendmsg,
3780 	.recvmsg =	packet_recvmsg,
3781 	.mmap =		packet_mmap,
3782 	.sendpage =	sock_no_sendpage,
3783 };
3784 
3785 static const struct net_proto_family packet_family_ops = {
3786 	.family =	PF_PACKET,
3787 	.create =	packet_create,
3788 	.owner	=	THIS_MODULE,
3789 };
3790 
3791 static struct notifier_block packet_netdev_notifier = {
3792 	.notifier_call =	packet_notifier,
3793 };
3794 
3795 #ifdef CONFIG_PROC_FS
3796 
3797 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3798 	__acquires(RCU)
3799 {
3800 	struct net *net = seq_file_net(seq);
3801 
3802 	rcu_read_lock();
3803 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3804 }
3805 
3806 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3807 {
3808 	struct net *net = seq_file_net(seq);
3809 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
3810 }
3811 
3812 static void packet_seq_stop(struct seq_file *seq, void *v)
3813 	__releases(RCU)
3814 {
3815 	rcu_read_unlock();
3816 }
3817 
3818 static int packet_seq_show(struct seq_file *seq, void *v)
3819 {
3820 	if (v == SEQ_START_TOKEN)
3821 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
3822 	else {
3823 		struct sock *s = sk_entry(v);
3824 		const struct packet_sock *po = pkt_sk(s);
3825 
3826 		seq_printf(seq,
3827 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
3828 			   s,
3829 			   atomic_read(&s->sk_refcnt),
3830 			   s->sk_type,
3831 			   ntohs(po->num),
3832 			   po->ifindex,
3833 			   po->running,
3834 			   atomic_read(&s->sk_rmem_alloc),
3835 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
3836 			   sock_i_ino(s));
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 static const struct seq_operations packet_seq_ops = {
3843 	.start	= packet_seq_start,
3844 	.next	= packet_seq_next,
3845 	.stop	= packet_seq_stop,
3846 	.show	= packet_seq_show,
3847 };
3848 
3849 static int packet_seq_open(struct inode *inode, struct file *file)
3850 {
3851 	return seq_open_net(inode, file, &packet_seq_ops,
3852 			    sizeof(struct seq_net_private));
3853 }
3854 
3855 static const struct file_operations packet_seq_fops = {
3856 	.owner		= THIS_MODULE,
3857 	.open		= packet_seq_open,
3858 	.read		= seq_read,
3859 	.llseek		= seq_lseek,
3860 	.release	= seq_release_net,
3861 };
3862 
3863 #endif
3864 
3865 static int __net_init packet_net_init(struct net *net)
3866 {
3867 	mutex_init(&net->packet.sklist_lock);
3868 	INIT_HLIST_HEAD(&net->packet.sklist);
3869 
3870 	if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
3871 		return -ENOMEM;
3872 
3873 	return 0;
3874 }
3875 
3876 static void __net_exit packet_net_exit(struct net *net)
3877 {
3878 	remove_proc_entry("packet", net->proc_net);
3879 }
3880 
3881 static struct pernet_operations packet_net_ops = {
3882 	.init = packet_net_init,
3883 	.exit = packet_net_exit,
3884 };
3885 
3886 
3887 static void __exit packet_exit(void)
3888 {
3889 	unregister_netdevice_notifier(&packet_netdev_notifier);
3890 	unregister_pernet_subsys(&packet_net_ops);
3891 	sock_unregister(PF_PACKET);
3892 	proto_unregister(&packet_proto);
3893 }
3894 
3895 static int __init packet_init(void)
3896 {
3897 	int rc = proto_register(&packet_proto, 0);
3898 
3899 	if (rc != 0)
3900 		goto out;
3901 
3902 	sock_register(&packet_family_ops);
3903 	register_pernet_subsys(&packet_net_ops);
3904 	register_netdevice_notifier(&packet_netdev_notifier);
3905 out:
3906 	return rc;
3907 }
3908 
3909 module_init(packet_init);
3910 module_exit(packet_exit);
3911 MODULE_LICENSE("GPL");
3912 MODULE_ALIAS_NETPROTO(PF_PACKET);
3913