xref: /openbmc/linux/net/packet/af_packet.c (revision 04295878beac396dae47ba93141cae0d9386e7ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		PACKET - implements raw packet sockets.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	verify_area() now used correctly
15  *		Alan Cox	:	new skbuff lists, look ma no backlogs!
16  *		Alan Cox	:	tidied skbuff lists.
17  *		Alan Cox	:	Now uses generic datagram routines I
18  *					added. Also fixed the peek/read crash
19  *					from all old Linux datagram code.
20  *		Alan Cox	:	Uses the improved datagram code.
21  *		Alan Cox	:	Added NULL's for socket options.
22  *		Alan Cox	:	Re-commented the code.
23  *		Alan Cox	:	Use new kernel side addressing
24  *		Rob Janssen	:	Correct MTU usage.
25  *		Dave Platt	:	Counter leaks caused by incorrect
26  *					interrupt locking and some slightly
27  *					dubious gcc output. Can you read
28  *					compiler: it said _VOLATILE_
29  *	Richard Kooijman	:	Timestamp fixes.
30  *		Alan Cox	:	New buffers. Use sk->mac.raw.
31  *		Alan Cox	:	sendmsg/recvmsg support.
32  *		Alan Cox	:	Protocol setting support
33  *	Alexey Kuznetsov	:	Untied from IPv4 stack.
34  *	Cyrus Durgin		:	Fixed kerneld for kmod.
35  *	Michal Ostrowski        :       Module initialization cleanup.
36  *         Ulises Alonso        :       Frame number limit removal and
37  *                                      packet_set_ring memory leak.
38  *		Eric Biederman	:	Allow for > 8 byte hardware addresses.
39  *					The convention is that longer addresses
40  *					will simply extend the hardware address
41  *					byte arrays at the end of sockaddr_ll
42  *					and packet_mreq.
43  *		Johann Baudy	:	Added TX RING.
44  *		Chetan Loke	:	Implemented TPACKET_V3 block abstraction
45  *					layer.
46  *					Copyright (C) 2011, <lokec@ccs.neu.edu>
47  */
48 
49 #include <linux/types.h>
50 #include <linux/mm.h>
51 #include <linux/capability.h>
52 #include <linux/fcntl.h>
53 #include <linux/socket.h>
54 #include <linux/in.h>
55 #include <linux/inet.h>
56 #include <linux/netdevice.h>
57 #include <linux/if_packet.h>
58 #include <linux/wireless.h>
59 #include <linux/kernel.h>
60 #include <linux/kmod.h>
61 #include <linux/slab.h>
62 #include <linux/vmalloc.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/errno.h>
69 #include <linux/timer.h>
70 #include <linux/uaccess.h>
71 #include <asm/ioctls.h>
72 #include <asm/page.h>
73 #include <asm/cacheflush.h>
74 #include <asm/io.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/poll.h>
78 #include <linux/module.h>
79 #include <linux/init.h>
80 #include <linux/mutex.h>
81 #include <linux/if_vlan.h>
82 #include <linux/virtio_net.h>
83 #include <linux/errqueue.h>
84 #include <linux/net_tstamp.h>
85 #include <linux/percpu.h>
86 #ifdef CONFIG_INET
87 #include <net/inet_common.h>
88 #endif
89 #include <linux/bpf.h>
90 #include <net/compat.h>
91 
92 #include "internal.h"
93 
94 /*
95    Assumptions:
96    - If the device has no dev->header_ops, there is no LL header visible
97      above the device. In this case, its hard_header_len should be 0.
98      The device may prepend its own header internally. In this case, its
99      needed_headroom should be set to the space needed for it to add its
100      internal header.
101      For example, a WiFi driver pretending to be an Ethernet driver should
102      set its hard_header_len to be the Ethernet header length, and set its
103      needed_headroom to be (the real WiFi header length - the fake Ethernet
104      header length).
105    - packet socket receives packets with pulled ll header,
106      so that SOCK_RAW should push it back.
107 
108 On receive:
109 -----------
110 
111 Incoming, dev->header_ops != NULL
112    mac_header -> ll header
113    data       -> data
114 
115 Outgoing, dev->header_ops != NULL
116    mac_header -> ll header
117    data       -> ll header
118 
119 Incoming, dev->header_ops == NULL
120    mac_header -> data
121      However drivers often make it point to the ll header.
122      This is incorrect because the ll header should be invisible to us.
123    data       -> data
124 
125 Outgoing, dev->header_ops == NULL
126    mac_header -> data. ll header is invisible to us.
127    data       -> data
128 
129 Resume
130   If dev->header_ops == NULL we are unable to restore the ll header,
131     because it is invisible to us.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->header_ops != NULL
138    mac_header -> ll header
139    data       -> ll header
140 
141 dev->header_ops == NULL (ll header is invisible to us)
142    mac_header -> data
143    data       -> data
144 
145    We should set network_header on output to the correct position,
146    packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
154 struct packet_mreq_max {
155 	int		mr_ifindex;
156 	unsigned short	mr_type;
157 	unsigned short	mr_alen;
158 	unsigned char	mr_address[MAX_ADDR_LEN];
159 };
160 
161 union tpacket_uhdr {
162 	struct tpacket_hdr  *h1;
163 	struct tpacket2_hdr *h2;
164 	struct tpacket3_hdr *h3;
165 	void *raw;
166 };
167 
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 		int closing, int tx_ring);
170 
171 #define V3_ALIGNMENT	(8)
172 
173 #define BLK_HDR_LEN	(ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174 
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 	(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177 
178 #define BLOCK_STATUS(x)	((x)->hdr.bh1.block_status)
179 #define BLOCK_NUM_PKTS(x)	((x)->hdr.bh1.num_pkts)
180 #define BLOCK_O2FP(x)		((x)->hdr.bh1.offset_to_first_pkt)
181 #define BLOCK_LEN(x)		((x)->hdr.bh1.blk_len)
182 #define BLOCK_SNUM(x)		((x)->hdr.bh1.seq_num)
183 #define BLOCK_O2PRIV(x)	((x)->offset_to_priv)
184 
185 struct packet_sock;
186 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
187 		       struct packet_type *pt, struct net_device *orig_dev);
188 
189 static void *packet_previous_frame(struct packet_sock *po,
190 		struct packet_ring_buffer *rb,
191 		int status);
192 static void packet_increment_head(struct packet_ring_buffer *buff);
193 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
194 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
195 			struct packet_sock *);
196 static void prb_retire_current_block(struct tpacket_kbdq_core *,
197 		struct packet_sock *, unsigned int status);
198 static int prb_queue_frozen(struct tpacket_kbdq_core *);
199 static void prb_open_block(struct tpacket_kbdq_core *,
200 		struct tpacket_block_desc *);
201 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
202 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
203 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
204 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
205 		struct tpacket3_hdr *);
206 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
207 		struct tpacket3_hdr *);
208 static void packet_flush_mclist(struct sock *sk);
209 static u16 packet_pick_tx_queue(struct sk_buff *skb);
210 
211 struct packet_skb_cb {
212 	union {
213 		struct sockaddr_pkt pkt;
214 		union {
215 			/* Trick: alias skb original length with
216 			 * ll.sll_family and ll.protocol in order
217 			 * to save room.
218 			 */
219 			unsigned int origlen;
220 			struct sockaddr_ll ll;
221 		};
222 	} sa;
223 };
224 
225 #define vio_le() virtio_legacy_is_little_endian()
226 
227 #define PACKET_SKB_CB(__skb)	((struct packet_skb_cb *)((__skb)->cb))
228 
229 #define GET_PBDQC_FROM_RB(x)	((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
230 #define GET_PBLOCK_DESC(x, bid)	\
231 	((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
232 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x)	\
233 	((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
234 #define GET_NEXT_PRB_BLK_NUM(x) \
235 	(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
236 	((x)->kactive_blk_num+1) : 0)
237 
238 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
239 static void __fanout_link(struct sock *sk, struct packet_sock *po);
240 
241 static int packet_direct_xmit(struct sk_buff *skb)
242 {
243 	return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
244 }
245 
246 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
247 {
248 	struct net_device *dev;
249 
250 	rcu_read_lock();
251 	dev = rcu_dereference(po->cached_dev);
252 	if (likely(dev))
253 		dev_hold(dev);
254 	rcu_read_unlock();
255 
256 	return dev;
257 }
258 
259 static void packet_cached_dev_assign(struct packet_sock *po,
260 				     struct net_device *dev)
261 {
262 	rcu_assign_pointer(po->cached_dev, dev);
263 }
264 
265 static void packet_cached_dev_reset(struct packet_sock *po)
266 {
267 	RCU_INIT_POINTER(po->cached_dev, NULL);
268 }
269 
270 static bool packet_use_direct_xmit(const struct packet_sock *po)
271 {
272 	return po->xmit == packet_direct_xmit;
273 }
274 
275 static u16 packet_pick_tx_queue(struct sk_buff *skb)
276 {
277 	struct net_device *dev = skb->dev;
278 	const struct net_device_ops *ops = dev->netdev_ops;
279 	int cpu = raw_smp_processor_id();
280 	u16 queue_index;
281 
282 #ifdef CONFIG_XPS
283 	skb->sender_cpu = cpu + 1;
284 #endif
285 	skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
286 	if (ops->ndo_select_queue) {
287 		queue_index = ops->ndo_select_queue(dev, skb, NULL);
288 		queue_index = netdev_cap_txqueue(dev, queue_index);
289 	} else {
290 		queue_index = netdev_pick_tx(dev, skb, NULL);
291 	}
292 
293 	return queue_index;
294 }
295 
296 /* __register_prot_hook must be invoked through register_prot_hook
297  * or from a context in which asynchronous accesses to the packet
298  * socket is not possible (packet_create()).
299  */
300 static void __register_prot_hook(struct sock *sk)
301 {
302 	struct packet_sock *po = pkt_sk(sk);
303 
304 	if (!po->running) {
305 		if (po->fanout)
306 			__fanout_link(sk, po);
307 		else
308 			dev_add_pack(&po->prot_hook);
309 
310 		sock_hold(sk);
311 		po->running = 1;
312 	}
313 }
314 
315 static void register_prot_hook(struct sock *sk)
316 {
317 	lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
318 	__register_prot_hook(sk);
319 }
320 
321 /* If the sync parameter is true, we will temporarily drop
322  * the po->bind_lock and do a synchronize_net to make sure no
323  * asynchronous packet processing paths still refer to the elements
324  * of po->prot_hook.  If the sync parameter is false, it is the
325  * callers responsibility to take care of this.
326  */
327 static void __unregister_prot_hook(struct sock *sk, bool sync)
328 {
329 	struct packet_sock *po = pkt_sk(sk);
330 
331 	lockdep_assert_held_once(&po->bind_lock);
332 
333 	po->running = 0;
334 
335 	if (po->fanout)
336 		__fanout_unlink(sk, po);
337 	else
338 		__dev_remove_pack(&po->prot_hook);
339 
340 	__sock_put(sk);
341 
342 	if (sync) {
343 		spin_unlock(&po->bind_lock);
344 		synchronize_net();
345 		spin_lock(&po->bind_lock);
346 	}
347 }
348 
349 static void unregister_prot_hook(struct sock *sk, bool sync)
350 {
351 	struct packet_sock *po = pkt_sk(sk);
352 
353 	if (po->running)
354 		__unregister_prot_hook(sk, sync);
355 }
356 
357 static inline struct page * __pure pgv_to_page(void *addr)
358 {
359 	if (is_vmalloc_addr(addr))
360 		return vmalloc_to_page(addr);
361 	return virt_to_page(addr);
362 }
363 
364 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
365 {
366 	union tpacket_uhdr h;
367 
368 	h.raw = frame;
369 	switch (po->tp_version) {
370 	case TPACKET_V1:
371 		h.h1->tp_status = status;
372 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
373 		break;
374 	case TPACKET_V2:
375 		h.h2->tp_status = status;
376 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
377 		break;
378 	case TPACKET_V3:
379 		h.h3->tp_status = status;
380 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
381 		break;
382 	default:
383 		WARN(1, "TPACKET version not supported.\n");
384 		BUG();
385 	}
386 
387 	smp_wmb();
388 }
389 
390 static int __packet_get_status(const struct packet_sock *po, void *frame)
391 {
392 	union tpacket_uhdr h;
393 
394 	smp_rmb();
395 
396 	h.raw = frame;
397 	switch (po->tp_version) {
398 	case TPACKET_V1:
399 		flush_dcache_page(pgv_to_page(&h.h1->tp_status));
400 		return h.h1->tp_status;
401 	case TPACKET_V2:
402 		flush_dcache_page(pgv_to_page(&h.h2->tp_status));
403 		return h.h2->tp_status;
404 	case TPACKET_V3:
405 		flush_dcache_page(pgv_to_page(&h.h3->tp_status));
406 		return h.h3->tp_status;
407 	default:
408 		WARN(1, "TPACKET version not supported.\n");
409 		BUG();
410 		return 0;
411 	}
412 }
413 
414 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
415 				   unsigned int flags)
416 {
417 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
418 
419 	if (shhwtstamps &&
420 	    (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
421 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
422 		return TP_STATUS_TS_RAW_HARDWARE;
423 
424 	if (ktime_to_timespec64_cond(skb->tstamp, ts))
425 		return TP_STATUS_TS_SOFTWARE;
426 
427 	return 0;
428 }
429 
430 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
431 				    struct sk_buff *skb)
432 {
433 	union tpacket_uhdr h;
434 	struct timespec64 ts;
435 	__u32 ts_status;
436 
437 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
438 		return 0;
439 
440 	h.raw = frame;
441 	/*
442 	 * versions 1 through 3 overflow the timestamps in y2106, since they
443 	 * all store the seconds in a 32-bit unsigned integer.
444 	 * If we create a version 4, that should have a 64-bit timestamp,
445 	 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
446 	 * nanoseconds.
447 	 */
448 	switch (po->tp_version) {
449 	case TPACKET_V1:
450 		h.h1->tp_sec = ts.tv_sec;
451 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
452 		break;
453 	case TPACKET_V2:
454 		h.h2->tp_sec = ts.tv_sec;
455 		h.h2->tp_nsec = ts.tv_nsec;
456 		break;
457 	case TPACKET_V3:
458 		h.h3->tp_sec = ts.tv_sec;
459 		h.h3->tp_nsec = ts.tv_nsec;
460 		break;
461 	default:
462 		WARN(1, "TPACKET version not supported.\n");
463 		BUG();
464 	}
465 
466 	/* one flush is safe, as both fields always lie on the same cacheline */
467 	flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
468 	smp_wmb();
469 
470 	return ts_status;
471 }
472 
473 static void *packet_lookup_frame(const struct packet_sock *po,
474 				 const struct packet_ring_buffer *rb,
475 				 unsigned int position,
476 				 int status)
477 {
478 	unsigned int pg_vec_pos, frame_offset;
479 	union tpacket_uhdr h;
480 
481 	pg_vec_pos = position / rb->frames_per_block;
482 	frame_offset = position % rb->frames_per_block;
483 
484 	h.raw = rb->pg_vec[pg_vec_pos].buffer +
485 		(frame_offset * rb->frame_size);
486 
487 	if (status != __packet_get_status(po, h.raw))
488 		return NULL;
489 
490 	return h.raw;
491 }
492 
493 static void *packet_current_frame(struct packet_sock *po,
494 		struct packet_ring_buffer *rb,
495 		int status)
496 {
497 	return packet_lookup_frame(po, rb, rb->head, status);
498 }
499 
500 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
501 {
502 	del_timer_sync(&pkc->retire_blk_timer);
503 }
504 
505 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
506 		struct sk_buff_head *rb_queue)
507 {
508 	struct tpacket_kbdq_core *pkc;
509 
510 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
511 
512 	spin_lock_bh(&rb_queue->lock);
513 	pkc->delete_blk_timer = 1;
514 	spin_unlock_bh(&rb_queue->lock);
515 
516 	prb_del_retire_blk_timer(pkc);
517 }
518 
519 static void prb_setup_retire_blk_timer(struct packet_sock *po)
520 {
521 	struct tpacket_kbdq_core *pkc;
522 
523 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
524 	timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
525 		    0);
526 	pkc->retire_blk_timer.expires = jiffies;
527 }
528 
529 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
530 				int blk_size_in_bytes)
531 {
532 	struct net_device *dev;
533 	unsigned int mbits, div;
534 	struct ethtool_link_ksettings ecmd;
535 	int err;
536 
537 	rtnl_lock();
538 	dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
539 	if (unlikely(!dev)) {
540 		rtnl_unlock();
541 		return DEFAULT_PRB_RETIRE_TOV;
542 	}
543 	err = __ethtool_get_link_ksettings(dev, &ecmd);
544 	rtnl_unlock();
545 	if (err)
546 		return DEFAULT_PRB_RETIRE_TOV;
547 
548 	/* If the link speed is so slow you don't really
549 	 * need to worry about perf anyways
550 	 */
551 	if (ecmd.base.speed < SPEED_1000 ||
552 	    ecmd.base.speed == SPEED_UNKNOWN)
553 		return DEFAULT_PRB_RETIRE_TOV;
554 
555 	div = ecmd.base.speed / 1000;
556 	mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
557 
558 	if (div)
559 		mbits /= div;
560 
561 	if (div)
562 		return mbits + 1;
563 	return mbits;
564 }
565 
566 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
567 			union tpacket_req_u *req_u)
568 {
569 	p1->feature_req_word = req_u->req3.tp_feature_req_word;
570 }
571 
572 static void init_prb_bdqc(struct packet_sock *po,
573 			struct packet_ring_buffer *rb,
574 			struct pgv *pg_vec,
575 			union tpacket_req_u *req_u)
576 {
577 	struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
578 	struct tpacket_block_desc *pbd;
579 
580 	memset(p1, 0x0, sizeof(*p1));
581 
582 	p1->knxt_seq_num = 1;
583 	p1->pkbdq = pg_vec;
584 	pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
585 	p1->pkblk_start	= pg_vec[0].buffer;
586 	p1->kblk_size = req_u->req3.tp_block_size;
587 	p1->knum_blocks	= req_u->req3.tp_block_nr;
588 	p1->hdrlen = po->tp_hdrlen;
589 	p1->version = po->tp_version;
590 	p1->last_kactive_blk_num = 0;
591 	po->stats.stats3.tp_freeze_q_cnt = 0;
592 	if (req_u->req3.tp_retire_blk_tov)
593 		p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
594 	else
595 		p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
596 						req_u->req3.tp_block_size);
597 	p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
598 	p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
599 	rwlock_init(&p1->blk_fill_in_prog_lock);
600 
601 	p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
602 	prb_init_ft_ops(p1, req_u);
603 	prb_setup_retire_blk_timer(po);
604 	prb_open_block(p1, pbd);
605 }
606 
607 /*  Do NOT update the last_blk_num first.
608  *  Assumes sk_buff_head lock is held.
609  */
610 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
611 {
612 	mod_timer(&pkc->retire_blk_timer,
613 			jiffies + pkc->tov_in_jiffies);
614 	pkc->last_kactive_blk_num = pkc->kactive_blk_num;
615 }
616 
617 /*
618  * Timer logic:
619  * 1) We refresh the timer only when we open a block.
620  *    By doing this we don't waste cycles refreshing the timer
621  *	  on packet-by-packet basis.
622  *
623  * With a 1MB block-size, on a 1Gbps line, it will take
624  * i) ~8 ms to fill a block + ii) memcpy etc.
625  * In this cut we are not accounting for the memcpy time.
626  *
627  * So, if the user sets the 'tmo' to 10ms then the timer
628  * will never fire while the block is still getting filled
629  * (which is what we want). However, the user could choose
630  * to close a block early and that's fine.
631  *
632  * But when the timer does fire, we check whether or not to refresh it.
633  * Since the tmo granularity is in msecs, it is not too expensive
634  * to refresh the timer, lets say every '8' msecs.
635  * Either the user can set the 'tmo' or we can derive it based on
636  * a) line-speed and b) block-size.
637  * prb_calc_retire_blk_tmo() calculates the tmo.
638  *
639  */
640 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
641 {
642 	struct packet_sock *po =
643 		from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
644 	struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
645 	unsigned int frozen;
646 	struct tpacket_block_desc *pbd;
647 
648 	spin_lock(&po->sk.sk_receive_queue.lock);
649 
650 	frozen = prb_queue_frozen(pkc);
651 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
652 
653 	if (unlikely(pkc->delete_blk_timer))
654 		goto out;
655 
656 	/* We only need to plug the race when the block is partially filled.
657 	 * tpacket_rcv:
658 	 *		lock(); increment BLOCK_NUM_PKTS; unlock()
659 	 *		copy_bits() is in progress ...
660 	 *		timer fires on other cpu:
661 	 *		we can't retire the current block because copy_bits
662 	 *		is in progress.
663 	 *
664 	 */
665 	if (BLOCK_NUM_PKTS(pbd)) {
666 		/* Waiting for skb_copy_bits to finish... */
667 		write_lock(&pkc->blk_fill_in_prog_lock);
668 		write_unlock(&pkc->blk_fill_in_prog_lock);
669 	}
670 
671 	if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
672 		if (!frozen) {
673 			if (!BLOCK_NUM_PKTS(pbd)) {
674 				/* An empty block. Just refresh the timer. */
675 				goto refresh_timer;
676 			}
677 			prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
678 			if (!prb_dispatch_next_block(pkc, po))
679 				goto refresh_timer;
680 			else
681 				goto out;
682 		} else {
683 			/* Case 1. Queue was frozen because user-space was
684 			 *	   lagging behind.
685 			 */
686 			if (prb_curr_blk_in_use(pbd)) {
687 				/*
688 				 * Ok, user-space is still behind.
689 				 * So just refresh the timer.
690 				 */
691 				goto refresh_timer;
692 			} else {
693 			       /* Case 2. queue was frozen,user-space caught up,
694 				* now the link went idle && the timer fired.
695 				* We don't have a block to close.So we open this
696 				* block and restart the timer.
697 				* opening a block thaws the queue,restarts timer
698 				* Thawing/timer-refresh is a side effect.
699 				*/
700 				prb_open_block(pkc, pbd);
701 				goto out;
702 			}
703 		}
704 	}
705 
706 refresh_timer:
707 	_prb_refresh_rx_retire_blk_timer(pkc);
708 
709 out:
710 	spin_unlock(&po->sk.sk_receive_queue.lock);
711 }
712 
713 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
714 		struct tpacket_block_desc *pbd1, __u32 status)
715 {
716 	/* Flush everything minus the block header */
717 
718 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
719 	u8 *start, *end;
720 
721 	start = (u8 *)pbd1;
722 
723 	/* Skip the block header(we know header WILL fit in 4K) */
724 	start += PAGE_SIZE;
725 
726 	end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
727 	for (; start < end; start += PAGE_SIZE)
728 		flush_dcache_page(pgv_to_page(start));
729 
730 	smp_wmb();
731 #endif
732 
733 	/* Now update the block status. */
734 
735 	BLOCK_STATUS(pbd1) = status;
736 
737 	/* Flush the block header */
738 
739 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
740 	start = (u8 *)pbd1;
741 	flush_dcache_page(pgv_to_page(start));
742 
743 	smp_wmb();
744 #endif
745 }
746 
747 /*
748  * Side effect:
749  *
750  * 1) flush the block
751  * 2) Increment active_blk_num
752  *
753  * Note:We DONT refresh the timer on purpose.
754  *	Because almost always the next block will be opened.
755  */
756 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
757 		struct tpacket_block_desc *pbd1,
758 		struct packet_sock *po, unsigned int stat)
759 {
760 	__u32 status = TP_STATUS_USER | stat;
761 
762 	struct tpacket3_hdr *last_pkt;
763 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
764 	struct sock *sk = &po->sk;
765 
766 	if (atomic_read(&po->tp_drops))
767 		status |= TP_STATUS_LOSING;
768 
769 	last_pkt = (struct tpacket3_hdr *)pkc1->prev;
770 	last_pkt->tp_next_offset = 0;
771 
772 	/* Get the ts of the last pkt */
773 	if (BLOCK_NUM_PKTS(pbd1)) {
774 		h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
775 		h1->ts_last_pkt.ts_nsec	= last_pkt->tp_nsec;
776 	} else {
777 		/* Ok, we tmo'd - so get the current time.
778 		 *
779 		 * It shouldn't really happen as we don't close empty
780 		 * blocks. See prb_retire_rx_blk_timer_expired().
781 		 */
782 		struct timespec64 ts;
783 		ktime_get_real_ts64(&ts);
784 		h1->ts_last_pkt.ts_sec = ts.tv_sec;
785 		h1->ts_last_pkt.ts_nsec	= ts.tv_nsec;
786 	}
787 
788 	smp_wmb();
789 
790 	/* Flush the block */
791 	prb_flush_block(pkc1, pbd1, status);
792 
793 	sk->sk_data_ready(sk);
794 
795 	pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
796 }
797 
798 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
799 {
800 	pkc->reset_pending_on_curr_blk = 0;
801 }
802 
803 /*
804  * Side effect of opening a block:
805  *
806  * 1) prb_queue is thawed.
807  * 2) retire_blk_timer is refreshed.
808  *
809  */
810 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
811 	struct tpacket_block_desc *pbd1)
812 {
813 	struct timespec64 ts;
814 	struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
815 
816 	smp_rmb();
817 
818 	/* We could have just memset this but we will lose the
819 	 * flexibility of making the priv area sticky
820 	 */
821 
822 	BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
823 	BLOCK_NUM_PKTS(pbd1) = 0;
824 	BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
825 
826 	ktime_get_real_ts64(&ts);
827 
828 	h1->ts_first_pkt.ts_sec = ts.tv_sec;
829 	h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
830 
831 	pkc1->pkblk_start = (char *)pbd1;
832 	pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
833 
834 	BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
835 	BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
836 
837 	pbd1->version = pkc1->version;
838 	pkc1->prev = pkc1->nxt_offset;
839 	pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
840 
841 	prb_thaw_queue(pkc1);
842 	_prb_refresh_rx_retire_blk_timer(pkc1);
843 
844 	smp_wmb();
845 }
846 
847 /*
848  * Queue freeze logic:
849  * 1) Assume tp_block_nr = 8 blocks.
850  * 2) At time 't0', user opens Rx ring.
851  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
852  * 4) user-space is either sleeping or processing block '0'.
853  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
854  *    it will close block-7,loop around and try to fill block '0'.
855  *    call-flow:
856  *    __packet_lookup_frame_in_block
857  *      prb_retire_current_block()
858  *      prb_dispatch_next_block()
859  *        |->(BLOCK_STATUS == USER) evaluates to true
860  *    5.1) Since block-0 is currently in-use, we just freeze the queue.
861  * 6) Now there are two cases:
862  *    6.1) Link goes idle right after the queue is frozen.
863  *         But remember, the last open_block() refreshed the timer.
864  *         When this timer expires,it will refresh itself so that we can
865  *         re-open block-0 in near future.
866  *    6.2) Link is busy and keeps on receiving packets. This is a simple
867  *         case and __packet_lookup_frame_in_block will check if block-0
868  *         is free and can now be re-used.
869  */
870 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
871 				  struct packet_sock *po)
872 {
873 	pkc->reset_pending_on_curr_blk = 1;
874 	po->stats.stats3.tp_freeze_q_cnt++;
875 }
876 
877 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
878 
879 /*
880  * If the next block is free then we will dispatch it
881  * and return a good offset.
882  * Else, we will freeze the queue.
883  * So, caller must check the return value.
884  */
885 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
886 		struct packet_sock *po)
887 {
888 	struct tpacket_block_desc *pbd;
889 
890 	smp_rmb();
891 
892 	/* 1. Get current block num */
893 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
894 
895 	/* 2. If this block is currently in_use then freeze the queue */
896 	if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
897 		prb_freeze_queue(pkc, po);
898 		return NULL;
899 	}
900 
901 	/*
902 	 * 3.
903 	 * open this block and return the offset where the first packet
904 	 * needs to get stored.
905 	 */
906 	prb_open_block(pkc, pbd);
907 	return (void *)pkc->nxt_offset;
908 }
909 
910 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
911 		struct packet_sock *po, unsigned int status)
912 {
913 	struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
914 
915 	/* retire/close the current block */
916 	if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
917 		/*
918 		 * Plug the case where copy_bits() is in progress on
919 		 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
920 		 * have space to copy the pkt in the current block and
921 		 * called prb_retire_current_block()
922 		 *
923 		 * We don't need to worry about the TMO case because
924 		 * the timer-handler already handled this case.
925 		 */
926 		if (!(status & TP_STATUS_BLK_TMO)) {
927 			/* Waiting for skb_copy_bits to finish... */
928 			write_lock(&pkc->blk_fill_in_prog_lock);
929 			write_unlock(&pkc->blk_fill_in_prog_lock);
930 		}
931 		prb_close_block(pkc, pbd, po, status);
932 		return;
933 	}
934 }
935 
936 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
937 {
938 	return TP_STATUS_USER & BLOCK_STATUS(pbd);
939 }
940 
941 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
942 {
943 	return pkc->reset_pending_on_curr_blk;
944 }
945 
946 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
947 	__releases(&pkc->blk_fill_in_prog_lock)
948 {
949 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
950 
951 	read_unlock(&pkc->blk_fill_in_prog_lock);
952 }
953 
954 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
955 			struct tpacket3_hdr *ppd)
956 {
957 	ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
958 }
959 
960 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
961 			struct tpacket3_hdr *ppd)
962 {
963 	ppd->hv1.tp_rxhash = 0;
964 }
965 
966 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
967 			struct tpacket3_hdr *ppd)
968 {
969 	if (skb_vlan_tag_present(pkc->skb)) {
970 		ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
971 		ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
972 		ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
973 	} else {
974 		ppd->hv1.tp_vlan_tci = 0;
975 		ppd->hv1.tp_vlan_tpid = 0;
976 		ppd->tp_status = TP_STATUS_AVAILABLE;
977 	}
978 }
979 
980 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
981 			struct tpacket3_hdr *ppd)
982 {
983 	ppd->hv1.tp_padding = 0;
984 	prb_fill_vlan_info(pkc, ppd);
985 
986 	if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
987 		prb_fill_rxhash(pkc, ppd);
988 	else
989 		prb_clear_rxhash(pkc, ppd);
990 }
991 
992 static void prb_fill_curr_block(char *curr,
993 				struct tpacket_kbdq_core *pkc,
994 				struct tpacket_block_desc *pbd,
995 				unsigned int len)
996 	__acquires(&pkc->blk_fill_in_prog_lock)
997 {
998 	struct tpacket3_hdr *ppd;
999 
1000 	ppd  = (struct tpacket3_hdr *)curr;
1001 	ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1002 	pkc->prev = curr;
1003 	pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1004 	BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 	BLOCK_NUM_PKTS(pbd) += 1;
1006 	read_lock(&pkc->blk_fill_in_prog_lock);
1007 	prb_run_all_ft_ops(pkc, ppd);
1008 }
1009 
1010 /* Assumes caller has the sk->rx_queue.lock */
1011 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1012 					    struct sk_buff *skb,
1013 					    unsigned int len
1014 					    )
1015 {
1016 	struct tpacket_kbdq_core *pkc;
1017 	struct tpacket_block_desc *pbd;
1018 	char *curr, *end;
1019 
1020 	pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1021 	pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1022 
1023 	/* Queue is frozen when user space is lagging behind */
1024 	if (prb_queue_frozen(pkc)) {
1025 		/*
1026 		 * Check if that last block which caused the queue to freeze,
1027 		 * is still in_use by user-space.
1028 		 */
1029 		if (prb_curr_blk_in_use(pbd)) {
1030 			/* Can't record this packet */
1031 			return NULL;
1032 		} else {
1033 			/*
1034 			 * Ok, the block was released by user-space.
1035 			 * Now let's open that block.
1036 			 * opening a block also thaws the queue.
1037 			 * Thawing is a side effect.
1038 			 */
1039 			prb_open_block(pkc, pbd);
1040 		}
1041 	}
1042 
1043 	smp_mb();
1044 	curr = pkc->nxt_offset;
1045 	pkc->skb = skb;
1046 	end = (char *)pbd + pkc->kblk_size;
1047 
1048 	/* first try the current block */
1049 	if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1050 		prb_fill_curr_block(curr, pkc, pbd, len);
1051 		return (void *)curr;
1052 	}
1053 
1054 	/* Ok, close the current block */
1055 	prb_retire_current_block(pkc, po, 0);
1056 
1057 	/* Now, try to dispatch the next block */
1058 	curr = (char *)prb_dispatch_next_block(pkc, po);
1059 	if (curr) {
1060 		pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1061 		prb_fill_curr_block(curr, pkc, pbd, len);
1062 		return (void *)curr;
1063 	}
1064 
1065 	/*
1066 	 * No free blocks are available.user_space hasn't caught up yet.
1067 	 * Queue was just frozen and now this packet will get dropped.
1068 	 */
1069 	return NULL;
1070 }
1071 
1072 static void *packet_current_rx_frame(struct packet_sock *po,
1073 					    struct sk_buff *skb,
1074 					    int status, unsigned int len)
1075 {
1076 	char *curr = NULL;
1077 	switch (po->tp_version) {
1078 	case TPACKET_V1:
1079 	case TPACKET_V2:
1080 		curr = packet_lookup_frame(po, &po->rx_ring,
1081 					po->rx_ring.head, status);
1082 		return curr;
1083 	case TPACKET_V3:
1084 		return __packet_lookup_frame_in_block(po, skb, len);
1085 	default:
1086 		WARN(1, "TPACKET version not supported\n");
1087 		BUG();
1088 		return NULL;
1089 	}
1090 }
1091 
1092 static void *prb_lookup_block(const struct packet_sock *po,
1093 			      const struct packet_ring_buffer *rb,
1094 			      unsigned int idx,
1095 			      int status)
1096 {
1097 	struct tpacket_kbdq_core *pkc  = GET_PBDQC_FROM_RB(rb);
1098 	struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1099 
1100 	if (status != BLOCK_STATUS(pbd))
1101 		return NULL;
1102 	return pbd;
1103 }
1104 
1105 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1106 {
1107 	unsigned int prev;
1108 	if (rb->prb_bdqc.kactive_blk_num)
1109 		prev = rb->prb_bdqc.kactive_blk_num-1;
1110 	else
1111 		prev = rb->prb_bdqc.knum_blocks-1;
1112 	return prev;
1113 }
1114 
1115 /* Assumes caller has held the rx_queue.lock */
1116 static void *__prb_previous_block(struct packet_sock *po,
1117 					 struct packet_ring_buffer *rb,
1118 					 int status)
1119 {
1120 	unsigned int previous = prb_previous_blk_num(rb);
1121 	return prb_lookup_block(po, rb, previous, status);
1122 }
1123 
1124 static void *packet_previous_rx_frame(struct packet_sock *po,
1125 					     struct packet_ring_buffer *rb,
1126 					     int status)
1127 {
1128 	if (po->tp_version <= TPACKET_V2)
1129 		return packet_previous_frame(po, rb, status);
1130 
1131 	return __prb_previous_block(po, rb, status);
1132 }
1133 
1134 static void packet_increment_rx_head(struct packet_sock *po,
1135 					    struct packet_ring_buffer *rb)
1136 {
1137 	switch (po->tp_version) {
1138 	case TPACKET_V1:
1139 	case TPACKET_V2:
1140 		return packet_increment_head(rb);
1141 	case TPACKET_V3:
1142 	default:
1143 		WARN(1, "TPACKET version not supported.\n");
1144 		BUG();
1145 		return;
1146 	}
1147 }
1148 
1149 static void *packet_previous_frame(struct packet_sock *po,
1150 		struct packet_ring_buffer *rb,
1151 		int status)
1152 {
1153 	unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1154 	return packet_lookup_frame(po, rb, previous, status);
1155 }
1156 
1157 static void packet_increment_head(struct packet_ring_buffer *buff)
1158 {
1159 	buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1160 }
1161 
1162 static void packet_inc_pending(struct packet_ring_buffer *rb)
1163 {
1164 	this_cpu_inc(*rb->pending_refcnt);
1165 }
1166 
1167 static void packet_dec_pending(struct packet_ring_buffer *rb)
1168 {
1169 	this_cpu_dec(*rb->pending_refcnt);
1170 }
1171 
1172 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1173 {
1174 	unsigned int refcnt = 0;
1175 	int cpu;
1176 
1177 	/* We don't use pending refcount in rx_ring. */
1178 	if (rb->pending_refcnt == NULL)
1179 		return 0;
1180 
1181 	for_each_possible_cpu(cpu)
1182 		refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1183 
1184 	return refcnt;
1185 }
1186 
1187 static int packet_alloc_pending(struct packet_sock *po)
1188 {
1189 	po->rx_ring.pending_refcnt = NULL;
1190 
1191 	po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1192 	if (unlikely(po->tx_ring.pending_refcnt == NULL))
1193 		return -ENOBUFS;
1194 
1195 	return 0;
1196 }
1197 
1198 static void packet_free_pending(struct packet_sock *po)
1199 {
1200 	free_percpu(po->tx_ring.pending_refcnt);
1201 }
1202 
1203 #define ROOM_POW_OFF	2
1204 #define ROOM_NONE	0x0
1205 #define ROOM_LOW	0x1
1206 #define ROOM_NORMAL	0x2
1207 
1208 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1209 {
1210 	int idx, len;
1211 
1212 	len = READ_ONCE(po->rx_ring.frame_max) + 1;
1213 	idx = READ_ONCE(po->rx_ring.head);
1214 	if (pow_off)
1215 		idx += len >> pow_off;
1216 	if (idx >= len)
1217 		idx -= len;
1218 	return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1219 }
1220 
1221 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1222 {
1223 	int idx, len;
1224 
1225 	len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1226 	idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1227 	if (pow_off)
1228 		idx += len >> pow_off;
1229 	if (idx >= len)
1230 		idx -= len;
1231 	return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1232 }
1233 
1234 static int __packet_rcv_has_room(const struct packet_sock *po,
1235 				 const struct sk_buff *skb)
1236 {
1237 	const struct sock *sk = &po->sk;
1238 	int ret = ROOM_NONE;
1239 
1240 	if (po->prot_hook.func != tpacket_rcv) {
1241 		int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1242 		int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1243 				   - (skb ? skb->truesize : 0);
1244 
1245 		if (avail > (rcvbuf >> ROOM_POW_OFF))
1246 			return ROOM_NORMAL;
1247 		else if (avail > 0)
1248 			return ROOM_LOW;
1249 		else
1250 			return ROOM_NONE;
1251 	}
1252 
1253 	if (po->tp_version == TPACKET_V3) {
1254 		if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1255 			ret = ROOM_NORMAL;
1256 		else if (__tpacket_v3_has_room(po, 0))
1257 			ret = ROOM_LOW;
1258 	} else {
1259 		if (__tpacket_has_room(po, ROOM_POW_OFF))
1260 			ret = ROOM_NORMAL;
1261 		else if (__tpacket_has_room(po, 0))
1262 			ret = ROOM_LOW;
1263 	}
1264 
1265 	return ret;
1266 }
1267 
1268 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1269 {
1270 	int pressure, ret;
1271 
1272 	ret = __packet_rcv_has_room(po, skb);
1273 	pressure = ret != ROOM_NORMAL;
1274 
1275 	if (READ_ONCE(po->pressure) != pressure)
1276 		WRITE_ONCE(po->pressure, pressure);
1277 
1278 	return ret;
1279 }
1280 
1281 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1282 {
1283 	if (READ_ONCE(po->pressure) &&
1284 	    __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1285 		WRITE_ONCE(po->pressure,  0);
1286 }
1287 
1288 static void packet_sock_destruct(struct sock *sk)
1289 {
1290 	skb_queue_purge(&sk->sk_error_queue);
1291 
1292 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1293 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1294 
1295 	if (!sock_flag(sk, SOCK_DEAD)) {
1296 		pr_err("Attempt to release alive packet socket: %p\n", sk);
1297 		return;
1298 	}
1299 
1300 	sk_refcnt_debug_dec(sk);
1301 }
1302 
1303 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1304 {
1305 	u32 *history = po->rollover->history;
1306 	u32 victim, rxhash;
1307 	int i, count = 0;
1308 
1309 	rxhash = skb_get_hash(skb);
1310 	for (i = 0; i < ROLLOVER_HLEN; i++)
1311 		if (READ_ONCE(history[i]) == rxhash)
1312 			count++;
1313 
1314 	victim = prandom_u32() % ROLLOVER_HLEN;
1315 
1316 	/* Avoid dirtying the cache line if possible */
1317 	if (READ_ONCE(history[victim]) != rxhash)
1318 		WRITE_ONCE(history[victim], rxhash);
1319 
1320 	return count > (ROLLOVER_HLEN >> 1);
1321 }
1322 
1323 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1324 				      struct sk_buff *skb,
1325 				      unsigned int num)
1326 {
1327 	return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1328 }
1329 
1330 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1331 				    struct sk_buff *skb,
1332 				    unsigned int num)
1333 {
1334 	unsigned int val = atomic_inc_return(&f->rr_cur);
1335 
1336 	return val % num;
1337 }
1338 
1339 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1340 				     struct sk_buff *skb,
1341 				     unsigned int num)
1342 {
1343 	return smp_processor_id() % num;
1344 }
1345 
1346 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1347 				     struct sk_buff *skb,
1348 				     unsigned int num)
1349 {
1350 	return prandom_u32_max(num);
1351 }
1352 
1353 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1354 					  struct sk_buff *skb,
1355 					  unsigned int idx, bool try_self,
1356 					  unsigned int num)
1357 {
1358 	struct packet_sock *po, *po_next, *po_skip = NULL;
1359 	unsigned int i, j, room = ROOM_NONE;
1360 
1361 	po = pkt_sk(f->arr[idx]);
1362 
1363 	if (try_self) {
1364 		room = packet_rcv_has_room(po, skb);
1365 		if (room == ROOM_NORMAL ||
1366 		    (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1367 			return idx;
1368 		po_skip = po;
1369 	}
1370 
1371 	i = j = min_t(int, po->rollover->sock, num - 1);
1372 	do {
1373 		po_next = pkt_sk(f->arr[i]);
1374 		if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1375 		    packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1376 			if (i != j)
1377 				po->rollover->sock = i;
1378 			atomic_long_inc(&po->rollover->num);
1379 			if (room == ROOM_LOW)
1380 				atomic_long_inc(&po->rollover->num_huge);
1381 			return i;
1382 		}
1383 
1384 		if (++i == num)
1385 			i = 0;
1386 	} while (i != j);
1387 
1388 	atomic_long_inc(&po->rollover->num_failed);
1389 	return idx;
1390 }
1391 
1392 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1393 				    struct sk_buff *skb,
1394 				    unsigned int num)
1395 {
1396 	return skb_get_queue_mapping(skb) % num;
1397 }
1398 
1399 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1400 				     struct sk_buff *skb,
1401 				     unsigned int num)
1402 {
1403 	struct bpf_prog *prog;
1404 	unsigned int ret = 0;
1405 
1406 	rcu_read_lock();
1407 	prog = rcu_dereference(f->bpf_prog);
1408 	if (prog)
1409 		ret = bpf_prog_run_clear_cb(prog, skb) % num;
1410 	rcu_read_unlock();
1411 
1412 	return ret;
1413 }
1414 
1415 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1416 {
1417 	return f->flags & (flag >> 8);
1418 }
1419 
1420 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1421 			     struct packet_type *pt, struct net_device *orig_dev)
1422 {
1423 	struct packet_fanout *f = pt->af_packet_priv;
1424 	unsigned int num = READ_ONCE(f->num_members);
1425 	struct net *net = read_pnet(&f->net);
1426 	struct packet_sock *po;
1427 	unsigned int idx;
1428 
1429 	if (!net_eq(dev_net(dev), net) || !num) {
1430 		kfree_skb(skb);
1431 		return 0;
1432 	}
1433 
1434 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1435 		skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1436 		if (!skb)
1437 			return 0;
1438 	}
1439 	switch (f->type) {
1440 	case PACKET_FANOUT_HASH:
1441 	default:
1442 		idx = fanout_demux_hash(f, skb, num);
1443 		break;
1444 	case PACKET_FANOUT_LB:
1445 		idx = fanout_demux_lb(f, skb, num);
1446 		break;
1447 	case PACKET_FANOUT_CPU:
1448 		idx = fanout_demux_cpu(f, skb, num);
1449 		break;
1450 	case PACKET_FANOUT_RND:
1451 		idx = fanout_demux_rnd(f, skb, num);
1452 		break;
1453 	case PACKET_FANOUT_QM:
1454 		idx = fanout_demux_qm(f, skb, num);
1455 		break;
1456 	case PACKET_FANOUT_ROLLOVER:
1457 		idx = fanout_demux_rollover(f, skb, 0, false, num);
1458 		break;
1459 	case PACKET_FANOUT_CBPF:
1460 	case PACKET_FANOUT_EBPF:
1461 		idx = fanout_demux_bpf(f, skb, num);
1462 		break;
1463 	}
1464 
1465 	if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1466 		idx = fanout_demux_rollover(f, skb, idx, true, num);
1467 
1468 	po = pkt_sk(f->arr[idx]);
1469 	return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1470 }
1471 
1472 DEFINE_MUTEX(fanout_mutex);
1473 EXPORT_SYMBOL_GPL(fanout_mutex);
1474 static LIST_HEAD(fanout_list);
1475 static u16 fanout_next_id;
1476 
1477 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1478 {
1479 	struct packet_fanout *f = po->fanout;
1480 
1481 	spin_lock(&f->lock);
1482 	f->arr[f->num_members] = sk;
1483 	smp_wmb();
1484 	f->num_members++;
1485 	if (f->num_members == 1)
1486 		dev_add_pack(&f->prot_hook);
1487 	spin_unlock(&f->lock);
1488 }
1489 
1490 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1491 {
1492 	struct packet_fanout *f = po->fanout;
1493 	int i;
1494 
1495 	spin_lock(&f->lock);
1496 	for (i = 0; i < f->num_members; i++) {
1497 		if (f->arr[i] == sk)
1498 			break;
1499 	}
1500 	BUG_ON(i >= f->num_members);
1501 	f->arr[i] = f->arr[f->num_members - 1];
1502 	f->num_members--;
1503 	if (f->num_members == 0)
1504 		__dev_remove_pack(&f->prot_hook);
1505 	spin_unlock(&f->lock);
1506 }
1507 
1508 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1509 {
1510 	if (sk->sk_family != PF_PACKET)
1511 		return false;
1512 
1513 	return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1514 }
1515 
1516 static void fanout_init_data(struct packet_fanout *f)
1517 {
1518 	switch (f->type) {
1519 	case PACKET_FANOUT_LB:
1520 		atomic_set(&f->rr_cur, 0);
1521 		break;
1522 	case PACKET_FANOUT_CBPF:
1523 	case PACKET_FANOUT_EBPF:
1524 		RCU_INIT_POINTER(f->bpf_prog, NULL);
1525 		break;
1526 	}
1527 }
1528 
1529 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1530 {
1531 	struct bpf_prog *old;
1532 
1533 	spin_lock(&f->lock);
1534 	old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1535 	rcu_assign_pointer(f->bpf_prog, new);
1536 	spin_unlock(&f->lock);
1537 
1538 	if (old) {
1539 		synchronize_net();
1540 		bpf_prog_destroy(old);
1541 	}
1542 }
1543 
1544 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1545 				unsigned int len)
1546 {
1547 	struct bpf_prog *new;
1548 	struct sock_fprog fprog;
1549 	int ret;
1550 
1551 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1552 		return -EPERM;
1553 
1554 	ret = copy_bpf_fprog_from_user(&fprog, data, len);
1555 	if (ret)
1556 		return ret;
1557 
1558 	ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1559 	if (ret)
1560 		return ret;
1561 
1562 	__fanout_set_data_bpf(po->fanout, new);
1563 	return 0;
1564 }
1565 
1566 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1567 				unsigned int len)
1568 {
1569 	struct bpf_prog *new;
1570 	u32 fd;
1571 
1572 	if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1573 		return -EPERM;
1574 	if (len != sizeof(fd))
1575 		return -EINVAL;
1576 	if (copy_from_sockptr(&fd, data, len))
1577 		return -EFAULT;
1578 
1579 	new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1580 	if (IS_ERR(new))
1581 		return PTR_ERR(new);
1582 
1583 	__fanout_set_data_bpf(po->fanout, new);
1584 	return 0;
1585 }
1586 
1587 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1588 			   unsigned int len)
1589 {
1590 	switch (po->fanout->type) {
1591 	case PACKET_FANOUT_CBPF:
1592 		return fanout_set_data_cbpf(po, data, len);
1593 	case PACKET_FANOUT_EBPF:
1594 		return fanout_set_data_ebpf(po, data, len);
1595 	default:
1596 		return -EINVAL;
1597 	}
1598 }
1599 
1600 static void fanout_release_data(struct packet_fanout *f)
1601 {
1602 	switch (f->type) {
1603 	case PACKET_FANOUT_CBPF:
1604 	case PACKET_FANOUT_EBPF:
1605 		__fanout_set_data_bpf(f, NULL);
1606 	}
1607 }
1608 
1609 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1610 {
1611 	struct packet_fanout *f;
1612 
1613 	list_for_each_entry(f, &fanout_list, list) {
1614 		if (f->id == candidate_id &&
1615 		    read_pnet(&f->net) == sock_net(sk)) {
1616 			return false;
1617 		}
1618 	}
1619 	return true;
1620 }
1621 
1622 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1623 {
1624 	u16 id = fanout_next_id;
1625 
1626 	do {
1627 		if (__fanout_id_is_free(sk, id)) {
1628 			*new_id = id;
1629 			fanout_next_id = id + 1;
1630 			return true;
1631 		}
1632 
1633 		id++;
1634 	} while (id != fanout_next_id);
1635 
1636 	return false;
1637 }
1638 
1639 static int fanout_add(struct sock *sk, struct fanout_args *args)
1640 {
1641 	struct packet_rollover *rollover = NULL;
1642 	struct packet_sock *po = pkt_sk(sk);
1643 	u16 type_flags = args->type_flags;
1644 	struct packet_fanout *f, *match;
1645 	u8 type = type_flags & 0xff;
1646 	u8 flags = type_flags >> 8;
1647 	u16 id = args->id;
1648 	int err;
1649 
1650 	switch (type) {
1651 	case PACKET_FANOUT_ROLLOVER:
1652 		if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1653 			return -EINVAL;
1654 	case PACKET_FANOUT_HASH:
1655 	case PACKET_FANOUT_LB:
1656 	case PACKET_FANOUT_CPU:
1657 	case PACKET_FANOUT_RND:
1658 	case PACKET_FANOUT_QM:
1659 	case PACKET_FANOUT_CBPF:
1660 	case PACKET_FANOUT_EBPF:
1661 		break;
1662 	default:
1663 		return -EINVAL;
1664 	}
1665 
1666 	mutex_lock(&fanout_mutex);
1667 
1668 	err = -EALREADY;
1669 	if (po->fanout)
1670 		goto out;
1671 
1672 	if (type == PACKET_FANOUT_ROLLOVER ||
1673 	    (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1674 		err = -ENOMEM;
1675 		rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1676 		if (!rollover)
1677 			goto out;
1678 		atomic_long_set(&rollover->num, 0);
1679 		atomic_long_set(&rollover->num_huge, 0);
1680 		atomic_long_set(&rollover->num_failed, 0);
1681 	}
1682 
1683 	if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1684 		if (id != 0) {
1685 			err = -EINVAL;
1686 			goto out;
1687 		}
1688 		if (!fanout_find_new_id(sk, &id)) {
1689 			err = -ENOMEM;
1690 			goto out;
1691 		}
1692 		/* ephemeral flag for the first socket in the group: drop it */
1693 		flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1694 	}
1695 
1696 	match = NULL;
1697 	list_for_each_entry(f, &fanout_list, list) {
1698 		if (f->id == id &&
1699 		    read_pnet(&f->net) == sock_net(sk)) {
1700 			match = f;
1701 			break;
1702 		}
1703 	}
1704 	err = -EINVAL;
1705 	if (match) {
1706 		if (match->flags != flags)
1707 			goto out;
1708 		if (args->max_num_members &&
1709 		    args->max_num_members != match->max_num_members)
1710 			goto out;
1711 	} else {
1712 		if (args->max_num_members > PACKET_FANOUT_MAX)
1713 			goto out;
1714 		if (!args->max_num_members)
1715 			/* legacy PACKET_FANOUT_MAX */
1716 			args->max_num_members = 256;
1717 		err = -ENOMEM;
1718 		match = kvzalloc(struct_size(match, arr, args->max_num_members),
1719 				 GFP_KERNEL);
1720 		if (!match)
1721 			goto out;
1722 		write_pnet(&match->net, sock_net(sk));
1723 		match->id = id;
1724 		match->type = type;
1725 		match->flags = flags;
1726 		INIT_LIST_HEAD(&match->list);
1727 		spin_lock_init(&match->lock);
1728 		refcount_set(&match->sk_ref, 0);
1729 		fanout_init_data(match);
1730 		match->prot_hook.type = po->prot_hook.type;
1731 		match->prot_hook.dev = po->prot_hook.dev;
1732 		match->prot_hook.func = packet_rcv_fanout;
1733 		match->prot_hook.af_packet_priv = match;
1734 		match->prot_hook.id_match = match_fanout_group;
1735 		match->max_num_members = args->max_num_members;
1736 		list_add(&match->list, &fanout_list);
1737 	}
1738 	err = -EINVAL;
1739 
1740 	spin_lock(&po->bind_lock);
1741 	if (po->running &&
1742 	    match->type == type &&
1743 	    match->prot_hook.type == po->prot_hook.type &&
1744 	    match->prot_hook.dev == po->prot_hook.dev) {
1745 		err = -ENOSPC;
1746 		if (refcount_read(&match->sk_ref) < match->max_num_members) {
1747 			__dev_remove_pack(&po->prot_hook);
1748 			po->fanout = match;
1749 			po->rollover = rollover;
1750 			rollover = NULL;
1751 			refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1752 			__fanout_link(sk, po);
1753 			err = 0;
1754 		}
1755 	}
1756 	spin_unlock(&po->bind_lock);
1757 
1758 	if (err && !refcount_read(&match->sk_ref)) {
1759 		list_del(&match->list);
1760 		kvfree(match);
1761 	}
1762 
1763 out:
1764 	kfree(rollover);
1765 	mutex_unlock(&fanout_mutex);
1766 	return err;
1767 }
1768 
1769 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1770  * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1771  * It is the responsibility of the caller to call fanout_release_data() and
1772  * free the returned packet_fanout (after synchronize_net())
1773  */
1774 static struct packet_fanout *fanout_release(struct sock *sk)
1775 {
1776 	struct packet_sock *po = pkt_sk(sk);
1777 	struct packet_fanout *f;
1778 
1779 	mutex_lock(&fanout_mutex);
1780 	f = po->fanout;
1781 	if (f) {
1782 		po->fanout = NULL;
1783 
1784 		if (refcount_dec_and_test(&f->sk_ref))
1785 			list_del(&f->list);
1786 		else
1787 			f = NULL;
1788 	}
1789 	mutex_unlock(&fanout_mutex);
1790 
1791 	return f;
1792 }
1793 
1794 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1795 					  struct sk_buff *skb)
1796 {
1797 	/* Earlier code assumed this would be a VLAN pkt, double-check
1798 	 * this now that we have the actual packet in hand. We can only
1799 	 * do this check on Ethernet devices.
1800 	 */
1801 	if (unlikely(dev->type != ARPHRD_ETHER))
1802 		return false;
1803 
1804 	skb_reset_mac_header(skb);
1805 	return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1806 }
1807 
1808 static const struct proto_ops packet_ops;
1809 
1810 static const struct proto_ops packet_ops_spkt;
1811 
1812 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1813 			   struct packet_type *pt, struct net_device *orig_dev)
1814 {
1815 	struct sock *sk;
1816 	struct sockaddr_pkt *spkt;
1817 
1818 	/*
1819 	 *	When we registered the protocol we saved the socket in the data
1820 	 *	field for just this event.
1821 	 */
1822 
1823 	sk = pt->af_packet_priv;
1824 
1825 	/*
1826 	 *	Yank back the headers [hope the device set this
1827 	 *	right or kerboom...]
1828 	 *
1829 	 *	Incoming packets have ll header pulled,
1830 	 *	push it back.
1831 	 *
1832 	 *	For outgoing ones skb->data == skb_mac_header(skb)
1833 	 *	so that this procedure is noop.
1834 	 */
1835 
1836 	if (skb->pkt_type == PACKET_LOOPBACK)
1837 		goto out;
1838 
1839 	if (!net_eq(dev_net(dev), sock_net(sk)))
1840 		goto out;
1841 
1842 	skb = skb_share_check(skb, GFP_ATOMIC);
1843 	if (skb == NULL)
1844 		goto oom;
1845 
1846 	/* drop any routing info */
1847 	skb_dst_drop(skb);
1848 
1849 	/* drop conntrack reference */
1850 	nf_reset_ct(skb);
1851 
1852 	spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1853 
1854 	skb_push(skb, skb->data - skb_mac_header(skb));
1855 
1856 	/*
1857 	 *	The SOCK_PACKET socket receives _all_ frames.
1858 	 */
1859 
1860 	spkt->spkt_family = dev->type;
1861 	strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1862 	spkt->spkt_protocol = skb->protocol;
1863 
1864 	/*
1865 	 *	Charge the memory to the socket. This is done specifically
1866 	 *	to prevent sockets using all the memory up.
1867 	 */
1868 
1869 	if (sock_queue_rcv_skb(sk, skb) == 0)
1870 		return 0;
1871 
1872 out:
1873 	kfree_skb(skb);
1874 oom:
1875 	return 0;
1876 }
1877 
1878 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1879 {
1880 	if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1881 	    sock->type == SOCK_RAW) {
1882 		skb_reset_mac_header(skb);
1883 		skb->protocol = dev_parse_header_protocol(skb);
1884 	}
1885 
1886 	skb_probe_transport_header(skb);
1887 }
1888 
1889 /*
1890  *	Output a raw packet to a device layer. This bypasses all the other
1891  *	protocol layers and you must therefore supply it with a complete frame
1892  */
1893 
1894 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1895 			       size_t len)
1896 {
1897 	struct sock *sk = sock->sk;
1898 	DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1899 	struct sk_buff *skb = NULL;
1900 	struct net_device *dev;
1901 	struct sockcm_cookie sockc;
1902 	__be16 proto = 0;
1903 	int err;
1904 	int extra_len = 0;
1905 
1906 	/*
1907 	 *	Get and verify the address.
1908 	 */
1909 
1910 	if (saddr) {
1911 		if (msg->msg_namelen < sizeof(struct sockaddr))
1912 			return -EINVAL;
1913 		if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1914 			proto = saddr->spkt_protocol;
1915 	} else
1916 		return -ENOTCONN;	/* SOCK_PACKET must be sent giving an address */
1917 
1918 	/*
1919 	 *	Find the device first to size check it
1920 	 */
1921 
1922 	saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1923 retry:
1924 	rcu_read_lock();
1925 	dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1926 	err = -ENODEV;
1927 	if (dev == NULL)
1928 		goto out_unlock;
1929 
1930 	err = -ENETDOWN;
1931 	if (!(dev->flags & IFF_UP))
1932 		goto out_unlock;
1933 
1934 	/*
1935 	 * You may not queue a frame bigger than the mtu. This is the lowest level
1936 	 * raw protocol and you must do your own fragmentation at this level.
1937 	 */
1938 
1939 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1940 		if (!netif_supports_nofcs(dev)) {
1941 			err = -EPROTONOSUPPORT;
1942 			goto out_unlock;
1943 		}
1944 		extra_len = 4; /* We're doing our own CRC */
1945 	}
1946 
1947 	err = -EMSGSIZE;
1948 	if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1949 		goto out_unlock;
1950 
1951 	if (!skb) {
1952 		size_t reserved = LL_RESERVED_SPACE(dev);
1953 		int tlen = dev->needed_tailroom;
1954 		unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1955 
1956 		rcu_read_unlock();
1957 		skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1958 		if (skb == NULL)
1959 			return -ENOBUFS;
1960 		/* FIXME: Save some space for broken drivers that write a hard
1961 		 * header at transmission time by themselves. PPP is the notable
1962 		 * one here. This should really be fixed at the driver level.
1963 		 */
1964 		skb_reserve(skb, reserved);
1965 		skb_reset_network_header(skb);
1966 
1967 		/* Try to align data part correctly */
1968 		if (hhlen) {
1969 			skb->data -= hhlen;
1970 			skb->tail -= hhlen;
1971 			if (len < hhlen)
1972 				skb_reset_network_header(skb);
1973 		}
1974 		err = memcpy_from_msg(skb_put(skb, len), msg, len);
1975 		if (err)
1976 			goto out_free;
1977 		goto retry;
1978 	}
1979 
1980 	if (!dev_validate_header(dev, skb->data, len)) {
1981 		err = -EINVAL;
1982 		goto out_unlock;
1983 	}
1984 	if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1985 	    !packet_extra_vlan_len_allowed(dev, skb)) {
1986 		err = -EMSGSIZE;
1987 		goto out_unlock;
1988 	}
1989 
1990 	sockcm_init(&sockc, sk);
1991 	if (msg->msg_controllen) {
1992 		err = sock_cmsg_send(sk, msg, &sockc);
1993 		if (unlikely(err))
1994 			goto out_unlock;
1995 	}
1996 
1997 	skb->protocol = proto;
1998 	skb->dev = dev;
1999 	skb->priority = sk->sk_priority;
2000 	skb->mark = sk->sk_mark;
2001 	skb->tstamp = sockc.transmit_time;
2002 
2003 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2004 
2005 	if (unlikely(extra_len == 4))
2006 		skb->no_fcs = 1;
2007 
2008 	packet_parse_headers(skb, sock);
2009 
2010 	dev_queue_xmit(skb);
2011 	rcu_read_unlock();
2012 	return len;
2013 
2014 out_unlock:
2015 	rcu_read_unlock();
2016 out_free:
2017 	kfree_skb(skb);
2018 	return err;
2019 }
2020 
2021 static unsigned int run_filter(struct sk_buff *skb,
2022 			       const struct sock *sk,
2023 			       unsigned int res)
2024 {
2025 	struct sk_filter *filter;
2026 
2027 	rcu_read_lock();
2028 	filter = rcu_dereference(sk->sk_filter);
2029 	if (filter != NULL)
2030 		res = bpf_prog_run_clear_cb(filter->prog, skb);
2031 	rcu_read_unlock();
2032 
2033 	return res;
2034 }
2035 
2036 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2037 			   size_t *len)
2038 {
2039 	struct virtio_net_hdr vnet_hdr;
2040 
2041 	if (*len < sizeof(vnet_hdr))
2042 		return -EINVAL;
2043 	*len -= sizeof(vnet_hdr);
2044 
2045 	if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2046 		return -EINVAL;
2047 
2048 	return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2049 }
2050 
2051 /*
2052  * This function makes lazy skb cloning in hope that most of packets
2053  * are discarded by BPF.
2054  *
2055  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2056  * and skb->cb are mangled. It works because (and until) packets
2057  * falling here are owned by current CPU. Output packets are cloned
2058  * by dev_queue_xmit_nit(), input packets are processed by net_bh
2059  * sequencially, so that if we return skb to original state on exit,
2060  * we will not harm anyone.
2061  */
2062 
2063 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2064 		      struct packet_type *pt, struct net_device *orig_dev)
2065 {
2066 	struct sock *sk;
2067 	struct sockaddr_ll *sll;
2068 	struct packet_sock *po;
2069 	u8 *skb_head = skb->data;
2070 	int skb_len = skb->len;
2071 	unsigned int snaplen, res;
2072 	bool is_drop_n_account = false;
2073 
2074 	if (skb->pkt_type == PACKET_LOOPBACK)
2075 		goto drop;
2076 
2077 	sk = pt->af_packet_priv;
2078 	po = pkt_sk(sk);
2079 
2080 	if (!net_eq(dev_net(dev), sock_net(sk)))
2081 		goto drop;
2082 
2083 	skb->dev = dev;
2084 
2085 	if (dev->header_ops) {
2086 		/* The device has an explicit notion of ll header,
2087 		 * exported to higher levels.
2088 		 *
2089 		 * Otherwise, the device hides details of its frame
2090 		 * structure, so that corresponding packet head is
2091 		 * never delivered to user.
2092 		 */
2093 		if (sk->sk_type != SOCK_DGRAM)
2094 			skb_push(skb, skb->data - skb_mac_header(skb));
2095 		else if (skb->pkt_type == PACKET_OUTGOING) {
2096 			/* Special case: outgoing packets have ll header at head */
2097 			skb_pull(skb, skb_network_offset(skb));
2098 		}
2099 	}
2100 
2101 	snaplen = skb->len;
2102 
2103 	res = run_filter(skb, sk, snaplen);
2104 	if (!res)
2105 		goto drop_n_restore;
2106 	if (snaplen > res)
2107 		snaplen = res;
2108 
2109 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2110 		goto drop_n_acct;
2111 
2112 	if (skb_shared(skb)) {
2113 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2114 		if (nskb == NULL)
2115 			goto drop_n_acct;
2116 
2117 		if (skb_head != skb->data) {
2118 			skb->data = skb_head;
2119 			skb->len = skb_len;
2120 		}
2121 		consume_skb(skb);
2122 		skb = nskb;
2123 	}
2124 
2125 	sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2126 
2127 	sll = &PACKET_SKB_CB(skb)->sa.ll;
2128 	sll->sll_hatype = dev->type;
2129 	sll->sll_pkttype = skb->pkt_type;
2130 	if (unlikely(po->origdev))
2131 		sll->sll_ifindex = orig_dev->ifindex;
2132 	else
2133 		sll->sll_ifindex = dev->ifindex;
2134 
2135 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2136 
2137 	/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2138 	 * Use their space for storing the original skb length.
2139 	 */
2140 	PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2141 
2142 	if (pskb_trim(skb, snaplen))
2143 		goto drop_n_acct;
2144 
2145 	skb_set_owner_r(skb, sk);
2146 	skb->dev = NULL;
2147 	skb_dst_drop(skb);
2148 
2149 	/* drop conntrack reference */
2150 	nf_reset_ct(skb);
2151 
2152 	spin_lock(&sk->sk_receive_queue.lock);
2153 	po->stats.stats1.tp_packets++;
2154 	sock_skb_set_dropcount(sk, skb);
2155 	__skb_queue_tail(&sk->sk_receive_queue, skb);
2156 	spin_unlock(&sk->sk_receive_queue.lock);
2157 	sk->sk_data_ready(sk);
2158 	return 0;
2159 
2160 drop_n_acct:
2161 	is_drop_n_account = true;
2162 	atomic_inc(&po->tp_drops);
2163 	atomic_inc(&sk->sk_drops);
2164 
2165 drop_n_restore:
2166 	if (skb_head != skb->data && skb_shared(skb)) {
2167 		skb->data = skb_head;
2168 		skb->len = skb_len;
2169 	}
2170 drop:
2171 	if (!is_drop_n_account)
2172 		consume_skb(skb);
2173 	else
2174 		kfree_skb(skb);
2175 	return 0;
2176 }
2177 
2178 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2179 		       struct packet_type *pt, struct net_device *orig_dev)
2180 {
2181 	struct sock *sk;
2182 	struct packet_sock *po;
2183 	struct sockaddr_ll *sll;
2184 	union tpacket_uhdr h;
2185 	u8 *skb_head = skb->data;
2186 	int skb_len = skb->len;
2187 	unsigned int snaplen, res;
2188 	unsigned long status = TP_STATUS_USER;
2189 	unsigned short macoff, hdrlen;
2190 	unsigned int netoff;
2191 	struct sk_buff *copy_skb = NULL;
2192 	struct timespec64 ts;
2193 	__u32 ts_status;
2194 	bool is_drop_n_account = false;
2195 	unsigned int slot_id = 0;
2196 	bool do_vnet = false;
2197 
2198 	/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2199 	 * We may add members to them until current aligned size without forcing
2200 	 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2201 	 */
2202 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2203 	BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2204 
2205 	if (skb->pkt_type == PACKET_LOOPBACK)
2206 		goto drop;
2207 
2208 	sk = pt->af_packet_priv;
2209 	po = pkt_sk(sk);
2210 
2211 	if (!net_eq(dev_net(dev), sock_net(sk)))
2212 		goto drop;
2213 
2214 	if (dev->header_ops) {
2215 		if (sk->sk_type != SOCK_DGRAM)
2216 			skb_push(skb, skb->data - skb_mac_header(skb));
2217 		else if (skb->pkt_type == PACKET_OUTGOING) {
2218 			/* Special case: outgoing packets have ll header at head */
2219 			skb_pull(skb, skb_network_offset(skb));
2220 		}
2221 	}
2222 
2223 	snaplen = skb->len;
2224 
2225 	res = run_filter(skb, sk, snaplen);
2226 	if (!res)
2227 		goto drop_n_restore;
2228 
2229 	/* If we are flooded, just give up */
2230 	if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2231 		atomic_inc(&po->tp_drops);
2232 		goto drop_n_restore;
2233 	}
2234 
2235 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2236 		status |= TP_STATUS_CSUMNOTREADY;
2237 	else if (skb->pkt_type != PACKET_OUTGOING &&
2238 		 (skb->ip_summed == CHECKSUM_COMPLETE ||
2239 		  skb_csum_unnecessary(skb)))
2240 		status |= TP_STATUS_CSUM_VALID;
2241 
2242 	if (snaplen > res)
2243 		snaplen = res;
2244 
2245 	if (sk->sk_type == SOCK_DGRAM) {
2246 		macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2247 				  po->tp_reserve;
2248 	} else {
2249 		unsigned int maclen = skb_network_offset(skb);
2250 		netoff = TPACKET_ALIGN(po->tp_hdrlen +
2251 				       (maclen < 16 ? 16 : maclen)) +
2252 				       po->tp_reserve;
2253 		if (po->has_vnet_hdr) {
2254 			netoff += sizeof(struct virtio_net_hdr);
2255 			do_vnet = true;
2256 		}
2257 		macoff = netoff - maclen;
2258 	}
2259 	if (netoff > USHRT_MAX) {
2260 		atomic_inc(&po->tp_drops);
2261 		goto drop_n_restore;
2262 	}
2263 	if (po->tp_version <= TPACKET_V2) {
2264 		if (macoff + snaplen > po->rx_ring.frame_size) {
2265 			if (po->copy_thresh &&
2266 			    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2267 				if (skb_shared(skb)) {
2268 					copy_skb = skb_clone(skb, GFP_ATOMIC);
2269 				} else {
2270 					copy_skb = skb_get(skb);
2271 					skb_head = skb->data;
2272 				}
2273 				if (copy_skb)
2274 					skb_set_owner_r(copy_skb, sk);
2275 			}
2276 			snaplen = po->rx_ring.frame_size - macoff;
2277 			if ((int)snaplen < 0) {
2278 				snaplen = 0;
2279 				do_vnet = false;
2280 			}
2281 		}
2282 	} else if (unlikely(macoff + snaplen >
2283 			    GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2284 		u32 nval;
2285 
2286 		nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2287 		pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2288 			    snaplen, nval, macoff);
2289 		snaplen = nval;
2290 		if (unlikely((int)snaplen < 0)) {
2291 			snaplen = 0;
2292 			macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2293 			do_vnet = false;
2294 		}
2295 	}
2296 	spin_lock(&sk->sk_receive_queue.lock);
2297 	h.raw = packet_current_rx_frame(po, skb,
2298 					TP_STATUS_KERNEL, (macoff+snaplen));
2299 	if (!h.raw)
2300 		goto drop_n_account;
2301 
2302 	if (po->tp_version <= TPACKET_V2) {
2303 		slot_id = po->rx_ring.head;
2304 		if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2305 			goto drop_n_account;
2306 		__set_bit(slot_id, po->rx_ring.rx_owner_map);
2307 	}
2308 
2309 	if (do_vnet &&
2310 	    virtio_net_hdr_from_skb(skb, h.raw + macoff -
2311 				    sizeof(struct virtio_net_hdr),
2312 				    vio_le(), true, 0)) {
2313 		if (po->tp_version == TPACKET_V3)
2314 			prb_clear_blk_fill_status(&po->rx_ring);
2315 		goto drop_n_account;
2316 	}
2317 
2318 	if (po->tp_version <= TPACKET_V2) {
2319 		packet_increment_rx_head(po, &po->rx_ring);
2320 	/*
2321 	 * LOSING will be reported till you read the stats,
2322 	 * because it's COR - Clear On Read.
2323 	 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2324 	 * at packet level.
2325 	 */
2326 		if (atomic_read(&po->tp_drops))
2327 			status |= TP_STATUS_LOSING;
2328 	}
2329 
2330 	po->stats.stats1.tp_packets++;
2331 	if (copy_skb) {
2332 		status |= TP_STATUS_COPY;
2333 		__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2334 	}
2335 	spin_unlock(&sk->sk_receive_queue.lock);
2336 
2337 	skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2338 
2339 	if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2340 		ktime_get_real_ts64(&ts);
2341 
2342 	status |= ts_status;
2343 
2344 	switch (po->tp_version) {
2345 	case TPACKET_V1:
2346 		h.h1->tp_len = skb->len;
2347 		h.h1->tp_snaplen = snaplen;
2348 		h.h1->tp_mac = macoff;
2349 		h.h1->tp_net = netoff;
2350 		h.h1->tp_sec = ts.tv_sec;
2351 		h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2352 		hdrlen = sizeof(*h.h1);
2353 		break;
2354 	case TPACKET_V2:
2355 		h.h2->tp_len = skb->len;
2356 		h.h2->tp_snaplen = snaplen;
2357 		h.h2->tp_mac = macoff;
2358 		h.h2->tp_net = netoff;
2359 		h.h2->tp_sec = ts.tv_sec;
2360 		h.h2->tp_nsec = ts.tv_nsec;
2361 		if (skb_vlan_tag_present(skb)) {
2362 			h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2363 			h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2364 			status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2365 		} else {
2366 			h.h2->tp_vlan_tci = 0;
2367 			h.h2->tp_vlan_tpid = 0;
2368 		}
2369 		memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2370 		hdrlen = sizeof(*h.h2);
2371 		break;
2372 	case TPACKET_V3:
2373 		/* tp_nxt_offset,vlan are already populated above.
2374 		 * So DONT clear those fields here
2375 		 */
2376 		h.h3->tp_status |= status;
2377 		h.h3->tp_len = skb->len;
2378 		h.h3->tp_snaplen = snaplen;
2379 		h.h3->tp_mac = macoff;
2380 		h.h3->tp_net = netoff;
2381 		h.h3->tp_sec  = ts.tv_sec;
2382 		h.h3->tp_nsec = ts.tv_nsec;
2383 		memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2384 		hdrlen = sizeof(*h.h3);
2385 		break;
2386 	default:
2387 		BUG();
2388 	}
2389 
2390 	sll = h.raw + TPACKET_ALIGN(hdrlen);
2391 	sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2392 	sll->sll_family = AF_PACKET;
2393 	sll->sll_hatype = dev->type;
2394 	sll->sll_protocol = skb->protocol;
2395 	sll->sll_pkttype = skb->pkt_type;
2396 	if (unlikely(po->origdev))
2397 		sll->sll_ifindex = orig_dev->ifindex;
2398 	else
2399 		sll->sll_ifindex = dev->ifindex;
2400 
2401 	smp_mb();
2402 
2403 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2404 	if (po->tp_version <= TPACKET_V2) {
2405 		u8 *start, *end;
2406 
2407 		end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2408 					macoff + snaplen);
2409 
2410 		for (start = h.raw; start < end; start += PAGE_SIZE)
2411 			flush_dcache_page(pgv_to_page(start));
2412 	}
2413 	smp_wmb();
2414 #endif
2415 
2416 	if (po->tp_version <= TPACKET_V2) {
2417 		spin_lock(&sk->sk_receive_queue.lock);
2418 		__packet_set_status(po, h.raw, status);
2419 		__clear_bit(slot_id, po->rx_ring.rx_owner_map);
2420 		spin_unlock(&sk->sk_receive_queue.lock);
2421 		sk->sk_data_ready(sk);
2422 	} else if (po->tp_version == TPACKET_V3) {
2423 		prb_clear_blk_fill_status(&po->rx_ring);
2424 	}
2425 
2426 drop_n_restore:
2427 	if (skb_head != skb->data && skb_shared(skb)) {
2428 		skb->data = skb_head;
2429 		skb->len = skb_len;
2430 	}
2431 drop:
2432 	if (!is_drop_n_account)
2433 		consume_skb(skb);
2434 	else
2435 		kfree_skb(skb);
2436 	return 0;
2437 
2438 drop_n_account:
2439 	spin_unlock(&sk->sk_receive_queue.lock);
2440 	atomic_inc(&po->tp_drops);
2441 	is_drop_n_account = true;
2442 
2443 	sk->sk_data_ready(sk);
2444 	kfree_skb(copy_skb);
2445 	goto drop_n_restore;
2446 }
2447 
2448 static void tpacket_destruct_skb(struct sk_buff *skb)
2449 {
2450 	struct packet_sock *po = pkt_sk(skb->sk);
2451 
2452 	if (likely(po->tx_ring.pg_vec)) {
2453 		void *ph;
2454 		__u32 ts;
2455 
2456 		ph = skb_zcopy_get_nouarg(skb);
2457 		packet_dec_pending(&po->tx_ring);
2458 
2459 		ts = __packet_set_timestamp(po, ph, skb);
2460 		__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2461 
2462 		if (!packet_read_pending(&po->tx_ring))
2463 			complete(&po->skb_completion);
2464 	}
2465 
2466 	sock_wfree(skb);
2467 }
2468 
2469 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2470 {
2471 	if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2472 	    (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2473 	     __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2474 	      __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2475 		vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2476 			 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2477 			__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2478 
2479 	if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2480 		return -EINVAL;
2481 
2482 	return 0;
2483 }
2484 
2485 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2486 				 struct virtio_net_hdr *vnet_hdr)
2487 {
2488 	if (*len < sizeof(*vnet_hdr))
2489 		return -EINVAL;
2490 	*len -= sizeof(*vnet_hdr);
2491 
2492 	if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2493 		return -EFAULT;
2494 
2495 	return __packet_snd_vnet_parse(vnet_hdr, *len);
2496 }
2497 
2498 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2499 		void *frame, struct net_device *dev, void *data, int tp_len,
2500 		__be16 proto, unsigned char *addr, int hlen, int copylen,
2501 		const struct sockcm_cookie *sockc)
2502 {
2503 	union tpacket_uhdr ph;
2504 	int to_write, offset, len, nr_frags, len_max;
2505 	struct socket *sock = po->sk.sk_socket;
2506 	struct page *page;
2507 	int err;
2508 
2509 	ph.raw = frame;
2510 
2511 	skb->protocol = proto;
2512 	skb->dev = dev;
2513 	skb->priority = po->sk.sk_priority;
2514 	skb->mark = po->sk.sk_mark;
2515 	skb->tstamp = sockc->transmit_time;
2516 	skb_setup_tx_timestamp(skb, sockc->tsflags);
2517 	skb_zcopy_set_nouarg(skb, ph.raw);
2518 
2519 	skb_reserve(skb, hlen);
2520 	skb_reset_network_header(skb);
2521 
2522 	to_write = tp_len;
2523 
2524 	if (sock->type == SOCK_DGRAM) {
2525 		err = dev_hard_header(skb, dev, ntohs(proto), addr,
2526 				NULL, tp_len);
2527 		if (unlikely(err < 0))
2528 			return -EINVAL;
2529 	} else if (copylen) {
2530 		int hdrlen = min_t(int, copylen, tp_len);
2531 
2532 		skb_push(skb, dev->hard_header_len);
2533 		skb_put(skb, copylen - dev->hard_header_len);
2534 		err = skb_store_bits(skb, 0, data, hdrlen);
2535 		if (unlikely(err))
2536 			return err;
2537 		if (!dev_validate_header(dev, skb->data, hdrlen))
2538 			return -EINVAL;
2539 
2540 		data += hdrlen;
2541 		to_write -= hdrlen;
2542 	}
2543 
2544 	offset = offset_in_page(data);
2545 	len_max = PAGE_SIZE - offset;
2546 	len = ((to_write > len_max) ? len_max : to_write);
2547 
2548 	skb->data_len = to_write;
2549 	skb->len += to_write;
2550 	skb->truesize += to_write;
2551 	refcount_add(to_write, &po->sk.sk_wmem_alloc);
2552 
2553 	while (likely(to_write)) {
2554 		nr_frags = skb_shinfo(skb)->nr_frags;
2555 
2556 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2557 			pr_err("Packet exceed the number of skb frags(%lu)\n",
2558 			       MAX_SKB_FRAGS);
2559 			return -EFAULT;
2560 		}
2561 
2562 		page = pgv_to_page(data);
2563 		data += len;
2564 		flush_dcache_page(page);
2565 		get_page(page);
2566 		skb_fill_page_desc(skb, nr_frags, page, offset, len);
2567 		to_write -= len;
2568 		offset = 0;
2569 		len_max = PAGE_SIZE;
2570 		len = ((to_write > len_max) ? len_max : to_write);
2571 	}
2572 
2573 	packet_parse_headers(skb, sock);
2574 
2575 	return tp_len;
2576 }
2577 
2578 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2579 				int size_max, void **data)
2580 {
2581 	union tpacket_uhdr ph;
2582 	int tp_len, off;
2583 
2584 	ph.raw = frame;
2585 
2586 	switch (po->tp_version) {
2587 	case TPACKET_V3:
2588 		if (ph.h3->tp_next_offset != 0) {
2589 			pr_warn_once("variable sized slot not supported");
2590 			return -EINVAL;
2591 		}
2592 		tp_len = ph.h3->tp_len;
2593 		break;
2594 	case TPACKET_V2:
2595 		tp_len = ph.h2->tp_len;
2596 		break;
2597 	default:
2598 		tp_len = ph.h1->tp_len;
2599 		break;
2600 	}
2601 	if (unlikely(tp_len > size_max)) {
2602 		pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2603 		return -EMSGSIZE;
2604 	}
2605 
2606 	if (unlikely(po->tp_tx_has_off)) {
2607 		int off_min, off_max;
2608 
2609 		off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2610 		off_max = po->tx_ring.frame_size - tp_len;
2611 		if (po->sk.sk_type == SOCK_DGRAM) {
2612 			switch (po->tp_version) {
2613 			case TPACKET_V3:
2614 				off = ph.h3->tp_net;
2615 				break;
2616 			case TPACKET_V2:
2617 				off = ph.h2->tp_net;
2618 				break;
2619 			default:
2620 				off = ph.h1->tp_net;
2621 				break;
2622 			}
2623 		} else {
2624 			switch (po->tp_version) {
2625 			case TPACKET_V3:
2626 				off = ph.h3->tp_mac;
2627 				break;
2628 			case TPACKET_V2:
2629 				off = ph.h2->tp_mac;
2630 				break;
2631 			default:
2632 				off = ph.h1->tp_mac;
2633 				break;
2634 			}
2635 		}
2636 		if (unlikely((off < off_min) || (off_max < off)))
2637 			return -EINVAL;
2638 	} else {
2639 		off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2640 	}
2641 
2642 	*data = frame + off;
2643 	return tp_len;
2644 }
2645 
2646 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2647 {
2648 	struct sk_buff *skb = NULL;
2649 	struct net_device *dev;
2650 	struct virtio_net_hdr *vnet_hdr = NULL;
2651 	struct sockcm_cookie sockc;
2652 	__be16 proto;
2653 	int err, reserve = 0;
2654 	void *ph;
2655 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2656 	bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2657 	unsigned char *addr = NULL;
2658 	int tp_len, size_max;
2659 	void *data;
2660 	int len_sum = 0;
2661 	int status = TP_STATUS_AVAILABLE;
2662 	int hlen, tlen, copylen = 0;
2663 	long timeo = 0;
2664 
2665 	mutex_lock(&po->pg_vec_lock);
2666 
2667 	/* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2668 	 * we need to confirm it under protection of pg_vec_lock.
2669 	 */
2670 	if (unlikely(!po->tx_ring.pg_vec)) {
2671 		err = -EBUSY;
2672 		goto out;
2673 	}
2674 	if (likely(saddr == NULL)) {
2675 		dev	= packet_cached_dev_get(po);
2676 		proto	= po->num;
2677 	} else {
2678 		err = -EINVAL;
2679 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2680 			goto out;
2681 		if (msg->msg_namelen < (saddr->sll_halen
2682 					+ offsetof(struct sockaddr_ll,
2683 						sll_addr)))
2684 			goto out;
2685 		proto	= saddr->sll_protocol;
2686 		dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2687 		if (po->sk.sk_socket->type == SOCK_DGRAM) {
2688 			if (dev && msg->msg_namelen < dev->addr_len +
2689 				   offsetof(struct sockaddr_ll, sll_addr))
2690 				goto out_put;
2691 			addr = saddr->sll_addr;
2692 		}
2693 	}
2694 
2695 	err = -ENXIO;
2696 	if (unlikely(dev == NULL))
2697 		goto out;
2698 	err = -ENETDOWN;
2699 	if (unlikely(!(dev->flags & IFF_UP)))
2700 		goto out_put;
2701 
2702 	sockcm_init(&sockc, &po->sk);
2703 	if (msg->msg_controllen) {
2704 		err = sock_cmsg_send(&po->sk, msg, &sockc);
2705 		if (unlikely(err))
2706 			goto out_put;
2707 	}
2708 
2709 	if (po->sk.sk_socket->type == SOCK_RAW)
2710 		reserve = dev->hard_header_len;
2711 	size_max = po->tx_ring.frame_size
2712 		- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2713 
2714 	if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2715 		size_max = dev->mtu + reserve + VLAN_HLEN;
2716 
2717 	reinit_completion(&po->skb_completion);
2718 
2719 	do {
2720 		ph = packet_current_frame(po, &po->tx_ring,
2721 					  TP_STATUS_SEND_REQUEST);
2722 		if (unlikely(ph == NULL)) {
2723 			if (need_wait && skb) {
2724 				timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2725 				timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2726 				if (timeo <= 0) {
2727 					err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2728 					goto out_put;
2729 				}
2730 			}
2731 			/* check for additional frames */
2732 			continue;
2733 		}
2734 
2735 		skb = NULL;
2736 		tp_len = tpacket_parse_header(po, ph, size_max, &data);
2737 		if (tp_len < 0)
2738 			goto tpacket_error;
2739 
2740 		status = TP_STATUS_SEND_REQUEST;
2741 		hlen = LL_RESERVED_SPACE(dev);
2742 		tlen = dev->needed_tailroom;
2743 		if (po->has_vnet_hdr) {
2744 			vnet_hdr = data;
2745 			data += sizeof(*vnet_hdr);
2746 			tp_len -= sizeof(*vnet_hdr);
2747 			if (tp_len < 0 ||
2748 			    __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2749 				tp_len = -EINVAL;
2750 				goto tpacket_error;
2751 			}
2752 			copylen = __virtio16_to_cpu(vio_le(),
2753 						    vnet_hdr->hdr_len);
2754 		}
2755 		copylen = max_t(int, copylen, dev->hard_header_len);
2756 		skb = sock_alloc_send_skb(&po->sk,
2757 				hlen + tlen + sizeof(struct sockaddr_ll) +
2758 				(copylen - dev->hard_header_len),
2759 				!need_wait, &err);
2760 
2761 		if (unlikely(skb == NULL)) {
2762 			/* we assume the socket was initially writeable ... */
2763 			if (likely(len_sum > 0))
2764 				err = len_sum;
2765 			goto out_status;
2766 		}
2767 		tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2768 					  addr, hlen, copylen, &sockc);
2769 		if (likely(tp_len >= 0) &&
2770 		    tp_len > dev->mtu + reserve &&
2771 		    !po->has_vnet_hdr &&
2772 		    !packet_extra_vlan_len_allowed(dev, skb))
2773 			tp_len = -EMSGSIZE;
2774 
2775 		if (unlikely(tp_len < 0)) {
2776 tpacket_error:
2777 			if (po->tp_loss) {
2778 				__packet_set_status(po, ph,
2779 						TP_STATUS_AVAILABLE);
2780 				packet_increment_head(&po->tx_ring);
2781 				kfree_skb(skb);
2782 				continue;
2783 			} else {
2784 				status = TP_STATUS_WRONG_FORMAT;
2785 				err = tp_len;
2786 				goto out_status;
2787 			}
2788 		}
2789 
2790 		if (po->has_vnet_hdr) {
2791 			if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2792 				tp_len = -EINVAL;
2793 				goto tpacket_error;
2794 			}
2795 			virtio_net_hdr_set_proto(skb, vnet_hdr);
2796 		}
2797 
2798 		skb->destructor = tpacket_destruct_skb;
2799 		__packet_set_status(po, ph, TP_STATUS_SENDING);
2800 		packet_inc_pending(&po->tx_ring);
2801 
2802 		status = TP_STATUS_SEND_REQUEST;
2803 		err = po->xmit(skb);
2804 		if (unlikely(err > 0)) {
2805 			err = net_xmit_errno(err);
2806 			if (err && __packet_get_status(po, ph) ==
2807 				   TP_STATUS_AVAILABLE) {
2808 				/* skb was destructed already */
2809 				skb = NULL;
2810 				goto out_status;
2811 			}
2812 			/*
2813 			 * skb was dropped but not destructed yet;
2814 			 * let's treat it like congestion or err < 0
2815 			 */
2816 			err = 0;
2817 		}
2818 		packet_increment_head(&po->tx_ring);
2819 		len_sum += tp_len;
2820 	} while (likely((ph != NULL) ||
2821 		/* Note: packet_read_pending() might be slow if we have
2822 		 * to call it as it's per_cpu variable, but in fast-path
2823 		 * we already short-circuit the loop with the first
2824 		 * condition, and luckily don't have to go that path
2825 		 * anyway.
2826 		 */
2827 		 (need_wait && packet_read_pending(&po->tx_ring))));
2828 
2829 	err = len_sum;
2830 	goto out_put;
2831 
2832 out_status:
2833 	__packet_set_status(po, ph, status);
2834 	kfree_skb(skb);
2835 out_put:
2836 	dev_put(dev);
2837 out:
2838 	mutex_unlock(&po->pg_vec_lock);
2839 	return err;
2840 }
2841 
2842 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2843 				        size_t reserve, size_t len,
2844 				        size_t linear, int noblock,
2845 				        int *err)
2846 {
2847 	struct sk_buff *skb;
2848 
2849 	/* Under a page?  Don't bother with paged skb. */
2850 	if (prepad + len < PAGE_SIZE || !linear)
2851 		linear = len;
2852 
2853 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2854 				   err, 0);
2855 	if (!skb)
2856 		return NULL;
2857 
2858 	skb_reserve(skb, reserve);
2859 	skb_put(skb, linear);
2860 	skb->data_len = len - linear;
2861 	skb->len += len - linear;
2862 
2863 	return skb;
2864 }
2865 
2866 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2867 {
2868 	struct sock *sk = sock->sk;
2869 	DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2870 	struct sk_buff *skb;
2871 	struct net_device *dev;
2872 	__be16 proto;
2873 	unsigned char *addr = NULL;
2874 	int err, reserve = 0;
2875 	struct sockcm_cookie sockc;
2876 	struct virtio_net_hdr vnet_hdr = { 0 };
2877 	int offset = 0;
2878 	struct packet_sock *po = pkt_sk(sk);
2879 	bool has_vnet_hdr = false;
2880 	int hlen, tlen, linear;
2881 	int extra_len = 0;
2882 
2883 	/*
2884 	 *	Get and verify the address.
2885 	 */
2886 
2887 	if (likely(saddr == NULL)) {
2888 		dev	= packet_cached_dev_get(po);
2889 		proto	= po->num;
2890 	} else {
2891 		err = -EINVAL;
2892 		if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2893 			goto out;
2894 		if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2895 			goto out;
2896 		proto	= saddr->sll_protocol;
2897 		dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2898 		if (sock->type == SOCK_DGRAM) {
2899 			if (dev && msg->msg_namelen < dev->addr_len +
2900 				   offsetof(struct sockaddr_ll, sll_addr))
2901 				goto out_unlock;
2902 			addr = saddr->sll_addr;
2903 		}
2904 	}
2905 
2906 	err = -ENXIO;
2907 	if (unlikely(dev == NULL))
2908 		goto out_unlock;
2909 	err = -ENETDOWN;
2910 	if (unlikely(!(dev->flags & IFF_UP)))
2911 		goto out_unlock;
2912 
2913 	sockcm_init(&sockc, sk);
2914 	sockc.mark = sk->sk_mark;
2915 	if (msg->msg_controllen) {
2916 		err = sock_cmsg_send(sk, msg, &sockc);
2917 		if (unlikely(err))
2918 			goto out_unlock;
2919 	}
2920 
2921 	if (sock->type == SOCK_RAW)
2922 		reserve = dev->hard_header_len;
2923 	if (po->has_vnet_hdr) {
2924 		err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2925 		if (err)
2926 			goto out_unlock;
2927 		has_vnet_hdr = true;
2928 	}
2929 
2930 	if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2931 		if (!netif_supports_nofcs(dev)) {
2932 			err = -EPROTONOSUPPORT;
2933 			goto out_unlock;
2934 		}
2935 		extra_len = 4; /* We're doing our own CRC */
2936 	}
2937 
2938 	err = -EMSGSIZE;
2939 	if (!vnet_hdr.gso_type &&
2940 	    (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2941 		goto out_unlock;
2942 
2943 	err = -ENOBUFS;
2944 	hlen = LL_RESERVED_SPACE(dev);
2945 	tlen = dev->needed_tailroom;
2946 	linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2947 	linear = max(linear, min_t(int, len, dev->hard_header_len));
2948 	skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2949 			       msg->msg_flags & MSG_DONTWAIT, &err);
2950 	if (skb == NULL)
2951 		goto out_unlock;
2952 
2953 	skb_reset_network_header(skb);
2954 
2955 	err = -EINVAL;
2956 	if (sock->type == SOCK_DGRAM) {
2957 		offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2958 		if (unlikely(offset < 0))
2959 			goto out_free;
2960 	} else if (reserve) {
2961 		skb_reserve(skb, -reserve);
2962 		if (len < reserve + sizeof(struct ipv6hdr) &&
2963 		    dev->min_header_len != dev->hard_header_len)
2964 			skb_reset_network_header(skb);
2965 	}
2966 
2967 	/* Returns -EFAULT on error */
2968 	err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2969 	if (err)
2970 		goto out_free;
2971 
2972 	if (sock->type == SOCK_RAW &&
2973 	    !dev_validate_header(dev, skb->data, len)) {
2974 		err = -EINVAL;
2975 		goto out_free;
2976 	}
2977 
2978 	skb_setup_tx_timestamp(skb, sockc.tsflags);
2979 
2980 	if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2981 	    !packet_extra_vlan_len_allowed(dev, skb)) {
2982 		err = -EMSGSIZE;
2983 		goto out_free;
2984 	}
2985 
2986 	skb->protocol = proto;
2987 	skb->dev = dev;
2988 	skb->priority = sk->sk_priority;
2989 	skb->mark = sockc.mark;
2990 	skb->tstamp = sockc.transmit_time;
2991 
2992 	if (has_vnet_hdr) {
2993 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2994 		if (err)
2995 			goto out_free;
2996 		len += sizeof(vnet_hdr);
2997 		virtio_net_hdr_set_proto(skb, &vnet_hdr);
2998 	}
2999 
3000 	packet_parse_headers(skb, sock);
3001 
3002 	if (unlikely(extra_len == 4))
3003 		skb->no_fcs = 1;
3004 
3005 	err = po->xmit(skb);
3006 	if (err > 0 && (err = net_xmit_errno(err)) != 0)
3007 		goto out_unlock;
3008 
3009 	dev_put(dev);
3010 
3011 	return len;
3012 
3013 out_free:
3014 	kfree_skb(skb);
3015 out_unlock:
3016 	if (dev)
3017 		dev_put(dev);
3018 out:
3019 	return err;
3020 }
3021 
3022 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3023 {
3024 	struct sock *sk = sock->sk;
3025 	struct packet_sock *po = pkt_sk(sk);
3026 
3027 	if (po->tx_ring.pg_vec)
3028 		return tpacket_snd(po, msg);
3029 	else
3030 		return packet_snd(sock, msg, len);
3031 }
3032 
3033 /*
3034  *	Close a PACKET socket. This is fairly simple. We immediately go
3035  *	to 'closed' state and remove our protocol entry in the device list.
3036  */
3037 
3038 static int packet_release(struct socket *sock)
3039 {
3040 	struct sock *sk = sock->sk;
3041 	struct packet_sock *po;
3042 	struct packet_fanout *f;
3043 	struct net *net;
3044 	union tpacket_req_u req_u;
3045 
3046 	if (!sk)
3047 		return 0;
3048 
3049 	net = sock_net(sk);
3050 	po = pkt_sk(sk);
3051 
3052 	mutex_lock(&net->packet.sklist_lock);
3053 	sk_del_node_init_rcu(sk);
3054 	mutex_unlock(&net->packet.sklist_lock);
3055 
3056 	preempt_disable();
3057 	sock_prot_inuse_add(net, sk->sk_prot, -1);
3058 	preempt_enable();
3059 
3060 	spin_lock(&po->bind_lock);
3061 	unregister_prot_hook(sk, false);
3062 	packet_cached_dev_reset(po);
3063 
3064 	if (po->prot_hook.dev) {
3065 		dev_put(po->prot_hook.dev);
3066 		po->prot_hook.dev = NULL;
3067 	}
3068 	spin_unlock(&po->bind_lock);
3069 
3070 	packet_flush_mclist(sk);
3071 
3072 	lock_sock(sk);
3073 	if (po->rx_ring.pg_vec) {
3074 		memset(&req_u, 0, sizeof(req_u));
3075 		packet_set_ring(sk, &req_u, 1, 0);
3076 	}
3077 
3078 	if (po->tx_ring.pg_vec) {
3079 		memset(&req_u, 0, sizeof(req_u));
3080 		packet_set_ring(sk, &req_u, 1, 1);
3081 	}
3082 	release_sock(sk);
3083 
3084 	f = fanout_release(sk);
3085 
3086 	synchronize_net();
3087 
3088 	kfree(po->rollover);
3089 	if (f) {
3090 		fanout_release_data(f);
3091 		kvfree(f);
3092 	}
3093 	/*
3094 	 *	Now the socket is dead. No more input will appear.
3095 	 */
3096 	sock_orphan(sk);
3097 	sock->sk = NULL;
3098 
3099 	/* Purge queues */
3100 
3101 	skb_queue_purge(&sk->sk_receive_queue);
3102 	packet_free_pending(po);
3103 	sk_refcnt_debug_release(sk);
3104 
3105 	sock_put(sk);
3106 	return 0;
3107 }
3108 
3109 /*
3110  *	Attach a packet hook.
3111  */
3112 
3113 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3114 			  __be16 proto)
3115 {
3116 	struct packet_sock *po = pkt_sk(sk);
3117 	struct net_device *dev_curr;
3118 	__be16 proto_curr;
3119 	bool need_rehook;
3120 	struct net_device *dev = NULL;
3121 	int ret = 0;
3122 	bool unlisted = false;
3123 
3124 	lock_sock(sk);
3125 	spin_lock(&po->bind_lock);
3126 	rcu_read_lock();
3127 
3128 	if (po->fanout) {
3129 		ret = -EINVAL;
3130 		goto out_unlock;
3131 	}
3132 
3133 	if (name) {
3134 		dev = dev_get_by_name_rcu(sock_net(sk), name);
3135 		if (!dev) {
3136 			ret = -ENODEV;
3137 			goto out_unlock;
3138 		}
3139 	} else if (ifindex) {
3140 		dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3141 		if (!dev) {
3142 			ret = -ENODEV;
3143 			goto out_unlock;
3144 		}
3145 	}
3146 
3147 	if (dev)
3148 		dev_hold(dev);
3149 
3150 	proto_curr = po->prot_hook.type;
3151 	dev_curr = po->prot_hook.dev;
3152 
3153 	need_rehook = proto_curr != proto || dev_curr != dev;
3154 
3155 	if (need_rehook) {
3156 		if (po->running) {
3157 			rcu_read_unlock();
3158 			/* prevents packet_notifier() from calling
3159 			 * register_prot_hook()
3160 			 */
3161 			po->num = 0;
3162 			__unregister_prot_hook(sk, true);
3163 			rcu_read_lock();
3164 			dev_curr = po->prot_hook.dev;
3165 			if (dev)
3166 				unlisted = !dev_get_by_index_rcu(sock_net(sk),
3167 								 dev->ifindex);
3168 		}
3169 
3170 		BUG_ON(po->running);
3171 		po->num = proto;
3172 		po->prot_hook.type = proto;
3173 
3174 		if (unlikely(unlisted)) {
3175 			dev_put(dev);
3176 			po->prot_hook.dev = NULL;
3177 			po->ifindex = -1;
3178 			packet_cached_dev_reset(po);
3179 		} else {
3180 			po->prot_hook.dev = dev;
3181 			po->ifindex = dev ? dev->ifindex : 0;
3182 			packet_cached_dev_assign(po, dev);
3183 		}
3184 	}
3185 	if (dev_curr)
3186 		dev_put(dev_curr);
3187 
3188 	if (proto == 0 || !need_rehook)
3189 		goto out_unlock;
3190 
3191 	if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3192 		register_prot_hook(sk);
3193 	} else {
3194 		sk->sk_err = ENETDOWN;
3195 		if (!sock_flag(sk, SOCK_DEAD))
3196 			sk->sk_error_report(sk);
3197 	}
3198 
3199 out_unlock:
3200 	rcu_read_unlock();
3201 	spin_unlock(&po->bind_lock);
3202 	release_sock(sk);
3203 	return ret;
3204 }
3205 
3206 /*
3207  *	Bind a packet socket to a device
3208  */
3209 
3210 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3211 			    int addr_len)
3212 {
3213 	struct sock *sk = sock->sk;
3214 	char name[sizeof(uaddr->sa_data) + 1];
3215 
3216 	/*
3217 	 *	Check legality
3218 	 */
3219 
3220 	if (addr_len != sizeof(struct sockaddr))
3221 		return -EINVAL;
3222 	/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3223 	 * zero-terminated.
3224 	 */
3225 	memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3226 	name[sizeof(uaddr->sa_data)] = 0;
3227 
3228 	return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3229 }
3230 
3231 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3232 {
3233 	struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3234 	struct sock *sk = sock->sk;
3235 
3236 	/*
3237 	 *	Check legality
3238 	 */
3239 
3240 	if (addr_len < sizeof(struct sockaddr_ll))
3241 		return -EINVAL;
3242 	if (sll->sll_family != AF_PACKET)
3243 		return -EINVAL;
3244 
3245 	return packet_do_bind(sk, NULL, sll->sll_ifindex,
3246 			      sll->sll_protocol ? : pkt_sk(sk)->num);
3247 }
3248 
3249 static struct proto packet_proto = {
3250 	.name	  = "PACKET",
3251 	.owner	  = THIS_MODULE,
3252 	.obj_size = sizeof(struct packet_sock),
3253 };
3254 
3255 /*
3256  *	Create a packet of type SOCK_PACKET.
3257  */
3258 
3259 static int packet_create(struct net *net, struct socket *sock, int protocol,
3260 			 int kern)
3261 {
3262 	struct sock *sk;
3263 	struct packet_sock *po;
3264 	__be16 proto = (__force __be16)protocol; /* weird, but documented */
3265 	int err;
3266 
3267 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
3268 		return -EPERM;
3269 	if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3270 	    sock->type != SOCK_PACKET)
3271 		return -ESOCKTNOSUPPORT;
3272 
3273 	sock->state = SS_UNCONNECTED;
3274 
3275 	err = -ENOBUFS;
3276 	sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3277 	if (sk == NULL)
3278 		goto out;
3279 
3280 	sock->ops = &packet_ops;
3281 	if (sock->type == SOCK_PACKET)
3282 		sock->ops = &packet_ops_spkt;
3283 
3284 	sock_init_data(sock, sk);
3285 
3286 	po = pkt_sk(sk);
3287 	init_completion(&po->skb_completion);
3288 	sk->sk_family = PF_PACKET;
3289 	po->num = proto;
3290 	po->xmit = dev_queue_xmit;
3291 
3292 	err = packet_alloc_pending(po);
3293 	if (err)
3294 		goto out2;
3295 
3296 	packet_cached_dev_reset(po);
3297 
3298 	sk->sk_destruct = packet_sock_destruct;
3299 	sk_refcnt_debug_inc(sk);
3300 
3301 	/*
3302 	 *	Attach a protocol block
3303 	 */
3304 
3305 	spin_lock_init(&po->bind_lock);
3306 	mutex_init(&po->pg_vec_lock);
3307 	po->rollover = NULL;
3308 	po->prot_hook.func = packet_rcv;
3309 
3310 	if (sock->type == SOCK_PACKET)
3311 		po->prot_hook.func = packet_rcv_spkt;
3312 
3313 	po->prot_hook.af_packet_priv = sk;
3314 
3315 	if (proto) {
3316 		po->prot_hook.type = proto;
3317 		__register_prot_hook(sk);
3318 	}
3319 
3320 	mutex_lock(&net->packet.sklist_lock);
3321 	sk_add_node_tail_rcu(sk, &net->packet.sklist);
3322 	mutex_unlock(&net->packet.sklist_lock);
3323 
3324 	preempt_disable();
3325 	sock_prot_inuse_add(net, &packet_proto, 1);
3326 	preempt_enable();
3327 
3328 	return 0;
3329 out2:
3330 	sk_free(sk);
3331 out:
3332 	return err;
3333 }
3334 
3335 /*
3336  *	Pull a packet from our receive queue and hand it to the user.
3337  *	If necessary we block.
3338  */
3339 
3340 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3341 			  int flags)
3342 {
3343 	struct sock *sk = sock->sk;
3344 	struct sk_buff *skb;
3345 	int copied, err;
3346 	int vnet_hdr_len = 0;
3347 	unsigned int origlen = 0;
3348 
3349 	err = -EINVAL;
3350 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3351 		goto out;
3352 
3353 #if 0
3354 	/* What error should we return now? EUNATTACH? */
3355 	if (pkt_sk(sk)->ifindex < 0)
3356 		return -ENODEV;
3357 #endif
3358 
3359 	if (flags & MSG_ERRQUEUE) {
3360 		err = sock_recv_errqueue(sk, msg, len,
3361 					 SOL_PACKET, PACKET_TX_TIMESTAMP);
3362 		goto out;
3363 	}
3364 
3365 	/*
3366 	 *	Call the generic datagram receiver. This handles all sorts
3367 	 *	of horrible races and re-entrancy so we can forget about it
3368 	 *	in the protocol layers.
3369 	 *
3370 	 *	Now it will return ENETDOWN, if device have just gone down,
3371 	 *	but then it will block.
3372 	 */
3373 
3374 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3375 
3376 	/*
3377 	 *	An error occurred so return it. Because skb_recv_datagram()
3378 	 *	handles the blocking we don't see and worry about blocking
3379 	 *	retries.
3380 	 */
3381 
3382 	if (skb == NULL)
3383 		goto out;
3384 
3385 	packet_rcv_try_clear_pressure(pkt_sk(sk));
3386 
3387 	if (pkt_sk(sk)->has_vnet_hdr) {
3388 		err = packet_rcv_vnet(msg, skb, &len);
3389 		if (err)
3390 			goto out_free;
3391 		vnet_hdr_len = sizeof(struct virtio_net_hdr);
3392 	}
3393 
3394 	/* You lose any data beyond the buffer you gave. If it worries
3395 	 * a user program they can ask the device for its MTU
3396 	 * anyway.
3397 	 */
3398 	copied = skb->len;
3399 	if (copied > len) {
3400 		copied = len;
3401 		msg->msg_flags |= MSG_TRUNC;
3402 	}
3403 
3404 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3405 	if (err)
3406 		goto out_free;
3407 
3408 	if (sock->type != SOCK_PACKET) {
3409 		struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3410 
3411 		/* Original length was stored in sockaddr_ll fields */
3412 		origlen = PACKET_SKB_CB(skb)->sa.origlen;
3413 		sll->sll_family = AF_PACKET;
3414 		sll->sll_protocol = skb->protocol;
3415 	}
3416 
3417 	sock_recv_ts_and_drops(msg, sk, skb);
3418 
3419 	if (msg->msg_name) {
3420 		int copy_len;
3421 
3422 		/* If the address length field is there to be filled
3423 		 * in, we fill it in now.
3424 		 */
3425 		if (sock->type == SOCK_PACKET) {
3426 			__sockaddr_check_size(sizeof(struct sockaddr_pkt));
3427 			msg->msg_namelen = sizeof(struct sockaddr_pkt);
3428 			copy_len = msg->msg_namelen;
3429 		} else {
3430 			struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3431 
3432 			msg->msg_namelen = sll->sll_halen +
3433 				offsetof(struct sockaddr_ll, sll_addr);
3434 			copy_len = msg->msg_namelen;
3435 			if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3436 				memset(msg->msg_name +
3437 				       offsetof(struct sockaddr_ll, sll_addr),
3438 				       0, sizeof(sll->sll_addr));
3439 				msg->msg_namelen = sizeof(struct sockaddr_ll);
3440 			}
3441 		}
3442 		memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3443 	}
3444 
3445 	if (pkt_sk(sk)->auxdata) {
3446 		struct tpacket_auxdata aux;
3447 
3448 		aux.tp_status = TP_STATUS_USER;
3449 		if (skb->ip_summed == CHECKSUM_PARTIAL)
3450 			aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3451 		else if (skb->pkt_type != PACKET_OUTGOING &&
3452 			 (skb->ip_summed == CHECKSUM_COMPLETE ||
3453 			  skb_csum_unnecessary(skb)))
3454 			aux.tp_status |= TP_STATUS_CSUM_VALID;
3455 
3456 		aux.tp_len = origlen;
3457 		aux.tp_snaplen = skb->len;
3458 		aux.tp_mac = 0;
3459 		aux.tp_net = skb_network_offset(skb);
3460 		if (skb_vlan_tag_present(skb)) {
3461 			aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3462 			aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3463 			aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3464 		} else {
3465 			aux.tp_vlan_tci = 0;
3466 			aux.tp_vlan_tpid = 0;
3467 		}
3468 		put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3469 	}
3470 
3471 	/*
3472 	 *	Free or return the buffer as appropriate. Again this
3473 	 *	hides all the races and re-entrancy issues from us.
3474 	 */
3475 	err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3476 
3477 out_free:
3478 	skb_free_datagram(sk, skb);
3479 out:
3480 	return err;
3481 }
3482 
3483 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3484 			       int peer)
3485 {
3486 	struct net_device *dev;
3487 	struct sock *sk	= sock->sk;
3488 
3489 	if (peer)
3490 		return -EOPNOTSUPP;
3491 
3492 	uaddr->sa_family = AF_PACKET;
3493 	memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3494 	rcu_read_lock();
3495 	dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3496 	if (dev)
3497 		strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3498 	rcu_read_unlock();
3499 
3500 	return sizeof(*uaddr);
3501 }
3502 
3503 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3504 			  int peer)
3505 {
3506 	struct net_device *dev;
3507 	struct sock *sk = sock->sk;
3508 	struct packet_sock *po = pkt_sk(sk);
3509 	DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3510 
3511 	if (peer)
3512 		return -EOPNOTSUPP;
3513 
3514 	sll->sll_family = AF_PACKET;
3515 	sll->sll_ifindex = po->ifindex;
3516 	sll->sll_protocol = po->num;
3517 	sll->sll_pkttype = 0;
3518 	rcu_read_lock();
3519 	dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3520 	if (dev) {
3521 		sll->sll_hatype = dev->type;
3522 		sll->sll_halen = dev->addr_len;
3523 		memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3524 	} else {
3525 		sll->sll_hatype = 0;	/* Bad: we have no ARPHRD_UNSPEC */
3526 		sll->sll_halen = 0;
3527 	}
3528 	rcu_read_unlock();
3529 
3530 	return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3531 }
3532 
3533 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3534 			 int what)
3535 {
3536 	switch (i->type) {
3537 	case PACKET_MR_MULTICAST:
3538 		if (i->alen != dev->addr_len)
3539 			return -EINVAL;
3540 		if (what > 0)
3541 			return dev_mc_add(dev, i->addr);
3542 		else
3543 			return dev_mc_del(dev, i->addr);
3544 		break;
3545 	case PACKET_MR_PROMISC:
3546 		return dev_set_promiscuity(dev, what);
3547 	case PACKET_MR_ALLMULTI:
3548 		return dev_set_allmulti(dev, what);
3549 	case PACKET_MR_UNICAST:
3550 		if (i->alen != dev->addr_len)
3551 			return -EINVAL;
3552 		if (what > 0)
3553 			return dev_uc_add(dev, i->addr);
3554 		else
3555 			return dev_uc_del(dev, i->addr);
3556 		break;
3557 	default:
3558 		break;
3559 	}
3560 	return 0;
3561 }
3562 
3563 static void packet_dev_mclist_delete(struct net_device *dev,
3564 				     struct packet_mclist **mlp)
3565 {
3566 	struct packet_mclist *ml;
3567 
3568 	while ((ml = *mlp) != NULL) {
3569 		if (ml->ifindex == dev->ifindex) {
3570 			packet_dev_mc(dev, ml, -1);
3571 			*mlp = ml->next;
3572 			kfree(ml);
3573 		} else
3574 			mlp = &ml->next;
3575 	}
3576 }
3577 
3578 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3579 {
3580 	struct packet_sock *po = pkt_sk(sk);
3581 	struct packet_mclist *ml, *i;
3582 	struct net_device *dev;
3583 	int err;
3584 
3585 	rtnl_lock();
3586 
3587 	err = -ENODEV;
3588 	dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3589 	if (!dev)
3590 		goto done;
3591 
3592 	err = -EINVAL;
3593 	if (mreq->mr_alen > dev->addr_len)
3594 		goto done;
3595 
3596 	err = -ENOBUFS;
3597 	i = kmalloc(sizeof(*i), GFP_KERNEL);
3598 	if (i == NULL)
3599 		goto done;
3600 
3601 	err = 0;
3602 	for (ml = po->mclist; ml; ml = ml->next) {
3603 		if (ml->ifindex == mreq->mr_ifindex &&
3604 		    ml->type == mreq->mr_type &&
3605 		    ml->alen == mreq->mr_alen &&
3606 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3607 			ml->count++;
3608 			/* Free the new element ... */
3609 			kfree(i);
3610 			goto done;
3611 		}
3612 	}
3613 
3614 	i->type = mreq->mr_type;
3615 	i->ifindex = mreq->mr_ifindex;
3616 	i->alen = mreq->mr_alen;
3617 	memcpy(i->addr, mreq->mr_address, i->alen);
3618 	memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3619 	i->count = 1;
3620 	i->next = po->mclist;
3621 	po->mclist = i;
3622 	err = packet_dev_mc(dev, i, 1);
3623 	if (err) {
3624 		po->mclist = i->next;
3625 		kfree(i);
3626 	}
3627 
3628 done:
3629 	rtnl_unlock();
3630 	return err;
3631 }
3632 
3633 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3634 {
3635 	struct packet_mclist *ml, **mlp;
3636 
3637 	rtnl_lock();
3638 
3639 	for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3640 		if (ml->ifindex == mreq->mr_ifindex &&
3641 		    ml->type == mreq->mr_type &&
3642 		    ml->alen == mreq->mr_alen &&
3643 		    memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3644 			if (--ml->count == 0) {
3645 				struct net_device *dev;
3646 				*mlp = ml->next;
3647 				dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3648 				if (dev)
3649 					packet_dev_mc(dev, ml, -1);
3650 				kfree(ml);
3651 			}
3652 			break;
3653 		}
3654 	}
3655 	rtnl_unlock();
3656 	return 0;
3657 }
3658 
3659 static void packet_flush_mclist(struct sock *sk)
3660 {
3661 	struct packet_sock *po = pkt_sk(sk);
3662 	struct packet_mclist *ml;
3663 
3664 	if (!po->mclist)
3665 		return;
3666 
3667 	rtnl_lock();
3668 	while ((ml = po->mclist) != NULL) {
3669 		struct net_device *dev;
3670 
3671 		po->mclist = ml->next;
3672 		dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3673 		if (dev != NULL)
3674 			packet_dev_mc(dev, ml, -1);
3675 		kfree(ml);
3676 	}
3677 	rtnl_unlock();
3678 }
3679 
3680 static int
3681 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3682 		  unsigned int optlen)
3683 {
3684 	struct sock *sk = sock->sk;
3685 	struct packet_sock *po = pkt_sk(sk);
3686 	int ret;
3687 
3688 	if (level != SOL_PACKET)
3689 		return -ENOPROTOOPT;
3690 
3691 	switch (optname) {
3692 	case PACKET_ADD_MEMBERSHIP:
3693 	case PACKET_DROP_MEMBERSHIP:
3694 	{
3695 		struct packet_mreq_max mreq;
3696 		int len = optlen;
3697 		memset(&mreq, 0, sizeof(mreq));
3698 		if (len < sizeof(struct packet_mreq))
3699 			return -EINVAL;
3700 		if (len > sizeof(mreq))
3701 			len = sizeof(mreq);
3702 		if (copy_from_sockptr(&mreq, optval, len))
3703 			return -EFAULT;
3704 		if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3705 			return -EINVAL;
3706 		if (optname == PACKET_ADD_MEMBERSHIP)
3707 			ret = packet_mc_add(sk, &mreq);
3708 		else
3709 			ret = packet_mc_drop(sk, &mreq);
3710 		return ret;
3711 	}
3712 
3713 	case PACKET_RX_RING:
3714 	case PACKET_TX_RING:
3715 	{
3716 		union tpacket_req_u req_u;
3717 		int len;
3718 
3719 		lock_sock(sk);
3720 		switch (po->tp_version) {
3721 		case TPACKET_V1:
3722 		case TPACKET_V2:
3723 			len = sizeof(req_u.req);
3724 			break;
3725 		case TPACKET_V3:
3726 		default:
3727 			len = sizeof(req_u.req3);
3728 			break;
3729 		}
3730 		if (optlen < len) {
3731 			ret = -EINVAL;
3732 		} else {
3733 			if (copy_from_sockptr(&req_u.req, optval, len))
3734 				ret = -EFAULT;
3735 			else
3736 				ret = packet_set_ring(sk, &req_u, 0,
3737 						    optname == PACKET_TX_RING);
3738 		}
3739 		release_sock(sk);
3740 		return ret;
3741 	}
3742 	case PACKET_COPY_THRESH:
3743 	{
3744 		int val;
3745 
3746 		if (optlen != sizeof(val))
3747 			return -EINVAL;
3748 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3749 			return -EFAULT;
3750 
3751 		pkt_sk(sk)->copy_thresh = val;
3752 		return 0;
3753 	}
3754 	case PACKET_VERSION:
3755 	{
3756 		int val;
3757 
3758 		if (optlen != sizeof(val))
3759 			return -EINVAL;
3760 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3761 			return -EFAULT;
3762 		switch (val) {
3763 		case TPACKET_V1:
3764 		case TPACKET_V2:
3765 		case TPACKET_V3:
3766 			break;
3767 		default:
3768 			return -EINVAL;
3769 		}
3770 		lock_sock(sk);
3771 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3772 			ret = -EBUSY;
3773 		} else {
3774 			po->tp_version = val;
3775 			ret = 0;
3776 		}
3777 		release_sock(sk);
3778 		return ret;
3779 	}
3780 	case PACKET_RESERVE:
3781 	{
3782 		unsigned int val;
3783 
3784 		if (optlen != sizeof(val))
3785 			return -EINVAL;
3786 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3787 			return -EFAULT;
3788 		if (val > INT_MAX)
3789 			return -EINVAL;
3790 		lock_sock(sk);
3791 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3792 			ret = -EBUSY;
3793 		} else {
3794 			po->tp_reserve = val;
3795 			ret = 0;
3796 		}
3797 		release_sock(sk);
3798 		return ret;
3799 	}
3800 	case PACKET_LOSS:
3801 	{
3802 		unsigned int val;
3803 
3804 		if (optlen != sizeof(val))
3805 			return -EINVAL;
3806 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3807 			return -EFAULT;
3808 
3809 		lock_sock(sk);
3810 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3811 			ret = -EBUSY;
3812 		} else {
3813 			po->tp_loss = !!val;
3814 			ret = 0;
3815 		}
3816 		release_sock(sk);
3817 		return ret;
3818 	}
3819 	case PACKET_AUXDATA:
3820 	{
3821 		int val;
3822 
3823 		if (optlen < sizeof(val))
3824 			return -EINVAL;
3825 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3826 			return -EFAULT;
3827 
3828 		lock_sock(sk);
3829 		po->auxdata = !!val;
3830 		release_sock(sk);
3831 		return 0;
3832 	}
3833 	case PACKET_ORIGDEV:
3834 	{
3835 		int val;
3836 
3837 		if (optlen < sizeof(val))
3838 			return -EINVAL;
3839 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3840 			return -EFAULT;
3841 
3842 		lock_sock(sk);
3843 		po->origdev = !!val;
3844 		release_sock(sk);
3845 		return 0;
3846 	}
3847 	case PACKET_VNET_HDR:
3848 	{
3849 		int val;
3850 
3851 		if (sock->type != SOCK_RAW)
3852 			return -EINVAL;
3853 		if (optlen < sizeof(val))
3854 			return -EINVAL;
3855 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3856 			return -EFAULT;
3857 
3858 		lock_sock(sk);
3859 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3860 			ret = -EBUSY;
3861 		} else {
3862 			po->has_vnet_hdr = !!val;
3863 			ret = 0;
3864 		}
3865 		release_sock(sk);
3866 		return ret;
3867 	}
3868 	case PACKET_TIMESTAMP:
3869 	{
3870 		int val;
3871 
3872 		if (optlen != sizeof(val))
3873 			return -EINVAL;
3874 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3875 			return -EFAULT;
3876 
3877 		po->tp_tstamp = val;
3878 		return 0;
3879 	}
3880 	case PACKET_FANOUT:
3881 	{
3882 		struct fanout_args args = { 0 };
3883 
3884 		if (optlen != sizeof(int) && optlen != sizeof(args))
3885 			return -EINVAL;
3886 		if (copy_from_sockptr(&args, optval, optlen))
3887 			return -EFAULT;
3888 
3889 		return fanout_add(sk, &args);
3890 	}
3891 	case PACKET_FANOUT_DATA:
3892 	{
3893 		if (!po->fanout)
3894 			return -EINVAL;
3895 
3896 		return fanout_set_data(po, optval, optlen);
3897 	}
3898 	case PACKET_IGNORE_OUTGOING:
3899 	{
3900 		int val;
3901 
3902 		if (optlen != sizeof(val))
3903 			return -EINVAL;
3904 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3905 			return -EFAULT;
3906 		if (val < 0 || val > 1)
3907 			return -EINVAL;
3908 
3909 		po->prot_hook.ignore_outgoing = !!val;
3910 		return 0;
3911 	}
3912 	case PACKET_TX_HAS_OFF:
3913 	{
3914 		unsigned int val;
3915 
3916 		if (optlen != sizeof(val))
3917 			return -EINVAL;
3918 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3919 			return -EFAULT;
3920 
3921 		lock_sock(sk);
3922 		if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3923 			ret = -EBUSY;
3924 		} else {
3925 			po->tp_tx_has_off = !!val;
3926 			ret = 0;
3927 		}
3928 		release_sock(sk);
3929 		return 0;
3930 	}
3931 	case PACKET_QDISC_BYPASS:
3932 	{
3933 		int val;
3934 
3935 		if (optlen != sizeof(val))
3936 			return -EINVAL;
3937 		if (copy_from_sockptr(&val, optval, sizeof(val)))
3938 			return -EFAULT;
3939 
3940 		po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3941 		return 0;
3942 	}
3943 	default:
3944 		return -ENOPROTOOPT;
3945 	}
3946 }
3947 
3948 static int packet_getsockopt(struct socket *sock, int level, int optname,
3949 			     char __user *optval, int __user *optlen)
3950 {
3951 	int len;
3952 	int val, lv = sizeof(val);
3953 	struct sock *sk = sock->sk;
3954 	struct packet_sock *po = pkt_sk(sk);
3955 	void *data = &val;
3956 	union tpacket_stats_u st;
3957 	struct tpacket_rollover_stats rstats;
3958 	int drops;
3959 
3960 	if (level != SOL_PACKET)
3961 		return -ENOPROTOOPT;
3962 
3963 	if (get_user(len, optlen))
3964 		return -EFAULT;
3965 
3966 	if (len < 0)
3967 		return -EINVAL;
3968 
3969 	switch (optname) {
3970 	case PACKET_STATISTICS:
3971 		spin_lock_bh(&sk->sk_receive_queue.lock);
3972 		memcpy(&st, &po->stats, sizeof(st));
3973 		memset(&po->stats, 0, sizeof(po->stats));
3974 		spin_unlock_bh(&sk->sk_receive_queue.lock);
3975 		drops = atomic_xchg(&po->tp_drops, 0);
3976 
3977 		if (po->tp_version == TPACKET_V3) {
3978 			lv = sizeof(struct tpacket_stats_v3);
3979 			st.stats3.tp_drops = drops;
3980 			st.stats3.tp_packets += drops;
3981 			data = &st.stats3;
3982 		} else {
3983 			lv = sizeof(struct tpacket_stats);
3984 			st.stats1.tp_drops = drops;
3985 			st.stats1.tp_packets += drops;
3986 			data = &st.stats1;
3987 		}
3988 
3989 		break;
3990 	case PACKET_AUXDATA:
3991 		val = po->auxdata;
3992 		break;
3993 	case PACKET_ORIGDEV:
3994 		val = po->origdev;
3995 		break;
3996 	case PACKET_VNET_HDR:
3997 		val = po->has_vnet_hdr;
3998 		break;
3999 	case PACKET_VERSION:
4000 		val = po->tp_version;
4001 		break;
4002 	case PACKET_HDRLEN:
4003 		if (len > sizeof(int))
4004 			len = sizeof(int);
4005 		if (len < sizeof(int))
4006 			return -EINVAL;
4007 		if (copy_from_user(&val, optval, len))
4008 			return -EFAULT;
4009 		switch (val) {
4010 		case TPACKET_V1:
4011 			val = sizeof(struct tpacket_hdr);
4012 			break;
4013 		case TPACKET_V2:
4014 			val = sizeof(struct tpacket2_hdr);
4015 			break;
4016 		case TPACKET_V3:
4017 			val = sizeof(struct tpacket3_hdr);
4018 			break;
4019 		default:
4020 			return -EINVAL;
4021 		}
4022 		break;
4023 	case PACKET_RESERVE:
4024 		val = po->tp_reserve;
4025 		break;
4026 	case PACKET_LOSS:
4027 		val = po->tp_loss;
4028 		break;
4029 	case PACKET_TIMESTAMP:
4030 		val = po->tp_tstamp;
4031 		break;
4032 	case PACKET_FANOUT:
4033 		val = (po->fanout ?
4034 		       ((u32)po->fanout->id |
4035 			((u32)po->fanout->type << 16) |
4036 			((u32)po->fanout->flags << 24)) :
4037 		       0);
4038 		break;
4039 	case PACKET_IGNORE_OUTGOING:
4040 		val = po->prot_hook.ignore_outgoing;
4041 		break;
4042 	case PACKET_ROLLOVER_STATS:
4043 		if (!po->rollover)
4044 			return -EINVAL;
4045 		rstats.tp_all = atomic_long_read(&po->rollover->num);
4046 		rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4047 		rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4048 		data = &rstats;
4049 		lv = sizeof(rstats);
4050 		break;
4051 	case PACKET_TX_HAS_OFF:
4052 		val = po->tp_tx_has_off;
4053 		break;
4054 	case PACKET_QDISC_BYPASS:
4055 		val = packet_use_direct_xmit(po);
4056 		break;
4057 	default:
4058 		return -ENOPROTOOPT;
4059 	}
4060 
4061 	if (len > lv)
4062 		len = lv;
4063 	if (put_user(len, optlen))
4064 		return -EFAULT;
4065 	if (copy_to_user(optval, data, len))
4066 		return -EFAULT;
4067 	return 0;
4068 }
4069 
4070 static int packet_notifier(struct notifier_block *this,
4071 			   unsigned long msg, void *ptr)
4072 {
4073 	struct sock *sk;
4074 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4075 	struct net *net = dev_net(dev);
4076 
4077 	rcu_read_lock();
4078 	sk_for_each_rcu(sk, &net->packet.sklist) {
4079 		struct packet_sock *po = pkt_sk(sk);
4080 
4081 		switch (msg) {
4082 		case NETDEV_UNREGISTER:
4083 			if (po->mclist)
4084 				packet_dev_mclist_delete(dev, &po->mclist);
4085 			fallthrough;
4086 
4087 		case NETDEV_DOWN:
4088 			if (dev->ifindex == po->ifindex) {
4089 				spin_lock(&po->bind_lock);
4090 				if (po->running) {
4091 					__unregister_prot_hook(sk, false);
4092 					sk->sk_err = ENETDOWN;
4093 					if (!sock_flag(sk, SOCK_DEAD))
4094 						sk->sk_error_report(sk);
4095 				}
4096 				if (msg == NETDEV_UNREGISTER) {
4097 					packet_cached_dev_reset(po);
4098 					po->ifindex = -1;
4099 					if (po->prot_hook.dev)
4100 						dev_put(po->prot_hook.dev);
4101 					po->prot_hook.dev = NULL;
4102 				}
4103 				spin_unlock(&po->bind_lock);
4104 			}
4105 			break;
4106 		case NETDEV_UP:
4107 			if (dev->ifindex == po->ifindex) {
4108 				spin_lock(&po->bind_lock);
4109 				if (po->num)
4110 					register_prot_hook(sk);
4111 				spin_unlock(&po->bind_lock);
4112 			}
4113 			break;
4114 		}
4115 	}
4116 	rcu_read_unlock();
4117 	return NOTIFY_DONE;
4118 }
4119 
4120 
4121 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4122 			unsigned long arg)
4123 {
4124 	struct sock *sk = sock->sk;
4125 
4126 	switch (cmd) {
4127 	case SIOCOUTQ:
4128 	{
4129 		int amount = sk_wmem_alloc_get(sk);
4130 
4131 		return put_user(amount, (int __user *)arg);
4132 	}
4133 	case SIOCINQ:
4134 	{
4135 		struct sk_buff *skb;
4136 		int amount = 0;
4137 
4138 		spin_lock_bh(&sk->sk_receive_queue.lock);
4139 		skb = skb_peek(&sk->sk_receive_queue);
4140 		if (skb)
4141 			amount = skb->len;
4142 		spin_unlock_bh(&sk->sk_receive_queue.lock);
4143 		return put_user(amount, (int __user *)arg);
4144 	}
4145 #ifdef CONFIG_INET
4146 	case SIOCADDRT:
4147 	case SIOCDELRT:
4148 	case SIOCDARP:
4149 	case SIOCGARP:
4150 	case SIOCSARP:
4151 	case SIOCGIFADDR:
4152 	case SIOCSIFADDR:
4153 	case SIOCGIFBRDADDR:
4154 	case SIOCSIFBRDADDR:
4155 	case SIOCGIFNETMASK:
4156 	case SIOCSIFNETMASK:
4157 	case SIOCGIFDSTADDR:
4158 	case SIOCSIFDSTADDR:
4159 	case SIOCSIFFLAGS:
4160 		return inet_dgram_ops.ioctl(sock, cmd, arg);
4161 #endif
4162 
4163 	default:
4164 		return -ENOIOCTLCMD;
4165 	}
4166 	return 0;
4167 }
4168 
4169 static __poll_t packet_poll(struct file *file, struct socket *sock,
4170 				poll_table *wait)
4171 {
4172 	struct sock *sk = sock->sk;
4173 	struct packet_sock *po = pkt_sk(sk);
4174 	__poll_t mask = datagram_poll(file, sock, wait);
4175 
4176 	spin_lock_bh(&sk->sk_receive_queue.lock);
4177 	if (po->rx_ring.pg_vec) {
4178 		if (!packet_previous_rx_frame(po, &po->rx_ring,
4179 			TP_STATUS_KERNEL))
4180 			mask |= EPOLLIN | EPOLLRDNORM;
4181 	}
4182 	packet_rcv_try_clear_pressure(po);
4183 	spin_unlock_bh(&sk->sk_receive_queue.lock);
4184 	spin_lock_bh(&sk->sk_write_queue.lock);
4185 	if (po->tx_ring.pg_vec) {
4186 		if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4187 			mask |= EPOLLOUT | EPOLLWRNORM;
4188 	}
4189 	spin_unlock_bh(&sk->sk_write_queue.lock);
4190 	return mask;
4191 }
4192 
4193 
4194 /* Dirty? Well, I still did not learn better way to account
4195  * for user mmaps.
4196  */
4197 
4198 static void packet_mm_open(struct vm_area_struct *vma)
4199 {
4200 	struct file *file = vma->vm_file;
4201 	struct socket *sock = file->private_data;
4202 	struct sock *sk = sock->sk;
4203 
4204 	if (sk)
4205 		atomic_inc(&pkt_sk(sk)->mapped);
4206 }
4207 
4208 static void packet_mm_close(struct vm_area_struct *vma)
4209 {
4210 	struct file *file = vma->vm_file;
4211 	struct socket *sock = file->private_data;
4212 	struct sock *sk = sock->sk;
4213 
4214 	if (sk)
4215 		atomic_dec(&pkt_sk(sk)->mapped);
4216 }
4217 
4218 static const struct vm_operations_struct packet_mmap_ops = {
4219 	.open	=	packet_mm_open,
4220 	.close	=	packet_mm_close,
4221 };
4222 
4223 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4224 			unsigned int len)
4225 {
4226 	int i;
4227 
4228 	for (i = 0; i < len; i++) {
4229 		if (likely(pg_vec[i].buffer)) {
4230 			if (is_vmalloc_addr(pg_vec[i].buffer))
4231 				vfree(pg_vec[i].buffer);
4232 			else
4233 				free_pages((unsigned long)pg_vec[i].buffer,
4234 					   order);
4235 			pg_vec[i].buffer = NULL;
4236 		}
4237 	}
4238 	kfree(pg_vec);
4239 }
4240 
4241 static char *alloc_one_pg_vec_page(unsigned long order)
4242 {
4243 	char *buffer;
4244 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4245 			  __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4246 
4247 	buffer = (char *) __get_free_pages(gfp_flags, order);
4248 	if (buffer)
4249 		return buffer;
4250 
4251 	/* __get_free_pages failed, fall back to vmalloc */
4252 	buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4253 	if (buffer)
4254 		return buffer;
4255 
4256 	/* vmalloc failed, lets dig into swap here */
4257 	gfp_flags &= ~__GFP_NORETRY;
4258 	buffer = (char *) __get_free_pages(gfp_flags, order);
4259 	if (buffer)
4260 		return buffer;
4261 
4262 	/* complete and utter failure */
4263 	return NULL;
4264 }
4265 
4266 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4267 {
4268 	unsigned int block_nr = req->tp_block_nr;
4269 	struct pgv *pg_vec;
4270 	int i;
4271 
4272 	pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4273 	if (unlikely(!pg_vec))
4274 		goto out;
4275 
4276 	for (i = 0; i < block_nr; i++) {
4277 		pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4278 		if (unlikely(!pg_vec[i].buffer))
4279 			goto out_free_pgvec;
4280 	}
4281 
4282 out:
4283 	return pg_vec;
4284 
4285 out_free_pgvec:
4286 	free_pg_vec(pg_vec, order, block_nr);
4287 	pg_vec = NULL;
4288 	goto out;
4289 }
4290 
4291 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4292 		int closing, int tx_ring)
4293 {
4294 	struct pgv *pg_vec = NULL;
4295 	struct packet_sock *po = pkt_sk(sk);
4296 	unsigned long *rx_owner_map = NULL;
4297 	int was_running, order = 0;
4298 	struct packet_ring_buffer *rb;
4299 	struct sk_buff_head *rb_queue;
4300 	__be16 num;
4301 	int err;
4302 	/* Added to avoid minimal code churn */
4303 	struct tpacket_req *req = &req_u->req;
4304 
4305 	rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4306 	rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4307 
4308 	err = -EBUSY;
4309 	if (!closing) {
4310 		if (atomic_read(&po->mapped))
4311 			goto out;
4312 		if (packet_read_pending(rb))
4313 			goto out;
4314 	}
4315 
4316 	if (req->tp_block_nr) {
4317 		unsigned int min_frame_size;
4318 
4319 		/* Sanity tests and some calculations */
4320 		err = -EBUSY;
4321 		if (unlikely(rb->pg_vec))
4322 			goto out;
4323 
4324 		switch (po->tp_version) {
4325 		case TPACKET_V1:
4326 			po->tp_hdrlen = TPACKET_HDRLEN;
4327 			break;
4328 		case TPACKET_V2:
4329 			po->tp_hdrlen = TPACKET2_HDRLEN;
4330 			break;
4331 		case TPACKET_V3:
4332 			po->tp_hdrlen = TPACKET3_HDRLEN;
4333 			break;
4334 		}
4335 
4336 		err = -EINVAL;
4337 		if (unlikely((int)req->tp_block_size <= 0))
4338 			goto out;
4339 		if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4340 			goto out;
4341 		min_frame_size = po->tp_hdrlen + po->tp_reserve;
4342 		if (po->tp_version >= TPACKET_V3 &&
4343 		    req->tp_block_size <
4344 		    BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4345 			goto out;
4346 		if (unlikely(req->tp_frame_size < min_frame_size))
4347 			goto out;
4348 		if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4349 			goto out;
4350 
4351 		rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4352 		if (unlikely(rb->frames_per_block == 0))
4353 			goto out;
4354 		if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4355 			goto out;
4356 		if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4357 					req->tp_frame_nr))
4358 			goto out;
4359 
4360 		err = -ENOMEM;
4361 		order = get_order(req->tp_block_size);
4362 		pg_vec = alloc_pg_vec(req, order);
4363 		if (unlikely(!pg_vec))
4364 			goto out;
4365 		switch (po->tp_version) {
4366 		case TPACKET_V3:
4367 			/* Block transmit is not supported yet */
4368 			if (!tx_ring) {
4369 				init_prb_bdqc(po, rb, pg_vec, req_u);
4370 			} else {
4371 				struct tpacket_req3 *req3 = &req_u->req3;
4372 
4373 				if (req3->tp_retire_blk_tov ||
4374 				    req3->tp_sizeof_priv ||
4375 				    req3->tp_feature_req_word) {
4376 					err = -EINVAL;
4377 					goto out_free_pg_vec;
4378 				}
4379 			}
4380 			break;
4381 		default:
4382 			if (!tx_ring) {
4383 				rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4384 					GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4385 				if (!rx_owner_map)
4386 					goto out_free_pg_vec;
4387 			}
4388 			break;
4389 		}
4390 	}
4391 	/* Done */
4392 	else {
4393 		err = -EINVAL;
4394 		if (unlikely(req->tp_frame_nr))
4395 			goto out;
4396 	}
4397 
4398 
4399 	/* Detach socket from network */
4400 	spin_lock(&po->bind_lock);
4401 	was_running = po->running;
4402 	num = po->num;
4403 	if (was_running) {
4404 		po->num = 0;
4405 		__unregister_prot_hook(sk, false);
4406 	}
4407 	spin_unlock(&po->bind_lock);
4408 
4409 	synchronize_net();
4410 
4411 	err = -EBUSY;
4412 	mutex_lock(&po->pg_vec_lock);
4413 	if (closing || atomic_read(&po->mapped) == 0) {
4414 		err = 0;
4415 		spin_lock_bh(&rb_queue->lock);
4416 		swap(rb->pg_vec, pg_vec);
4417 		if (po->tp_version <= TPACKET_V2)
4418 			swap(rb->rx_owner_map, rx_owner_map);
4419 		rb->frame_max = (req->tp_frame_nr - 1);
4420 		rb->head = 0;
4421 		rb->frame_size = req->tp_frame_size;
4422 		spin_unlock_bh(&rb_queue->lock);
4423 
4424 		swap(rb->pg_vec_order, order);
4425 		swap(rb->pg_vec_len, req->tp_block_nr);
4426 
4427 		rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4428 		po->prot_hook.func = (po->rx_ring.pg_vec) ?
4429 						tpacket_rcv : packet_rcv;
4430 		skb_queue_purge(rb_queue);
4431 		if (atomic_read(&po->mapped))
4432 			pr_err("packet_mmap: vma is busy: %d\n",
4433 			       atomic_read(&po->mapped));
4434 	}
4435 	mutex_unlock(&po->pg_vec_lock);
4436 
4437 	spin_lock(&po->bind_lock);
4438 	if (was_running) {
4439 		po->num = num;
4440 		register_prot_hook(sk);
4441 	}
4442 	spin_unlock(&po->bind_lock);
4443 	if (pg_vec && (po->tp_version > TPACKET_V2)) {
4444 		/* Because we don't support block-based V3 on tx-ring */
4445 		if (!tx_ring)
4446 			prb_shutdown_retire_blk_timer(po, rb_queue);
4447 	}
4448 
4449 out_free_pg_vec:
4450 	bitmap_free(rx_owner_map);
4451 	if (pg_vec)
4452 		free_pg_vec(pg_vec, order, req->tp_block_nr);
4453 out:
4454 	return err;
4455 }
4456 
4457 static int packet_mmap(struct file *file, struct socket *sock,
4458 		struct vm_area_struct *vma)
4459 {
4460 	struct sock *sk = sock->sk;
4461 	struct packet_sock *po = pkt_sk(sk);
4462 	unsigned long size, expected_size;
4463 	struct packet_ring_buffer *rb;
4464 	unsigned long start;
4465 	int err = -EINVAL;
4466 	int i;
4467 
4468 	if (vma->vm_pgoff)
4469 		return -EINVAL;
4470 
4471 	mutex_lock(&po->pg_vec_lock);
4472 
4473 	expected_size = 0;
4474 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4475 		if (rb->pg_vec) {
4476 			expected_size += rb->pg_vec_len
4477 						* rb->pg_vec_pages
4478 						* PAGE_SIZE;
4479 		}
4480 	}
4481 
4482 	if (expected_size == 0)
4483 		goto out;
4484 
4485 	size = vma->vm_end - vma->vm_start;
4486 	if (size != expected_size)
4487 		goto out;
4488 
4489 	start = vma->vm_start;
4490 	for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4491 		if (rb->pg_vec == NULL)
4492 			continue;
4493 
4494 		for (i = 0; i < rb->pg_vec_len; i++) {
4495 			struct page *page;
4496 			void *kaddr = rb->pg_vec[i].buffer;
4497 			int pg_num;
4498 
4499 			for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4500 				page = pgv_to_page(kaddr);
4501 				err = vm_insert_page(vma, start, page);
4502 				if (unlikely(err))
4503 					goto out;
4504 				start += PAGE_SIZE;
4505 				kaddr += PAGE_SIZE;
4506 			}
4507 		}
4508 	}
4509 
4510 	atomic_inc(&po->mapped);
4511 	vma->vm_ops = &packet_mmap_ops;
4512 	err = 0;
4513 
4514 out:
4515 	mutex_unlock(&po->pg_vec_lock);
4516 	return err;
4517 }
4518 
4519 static const struct proto_ops packet_ops_spkt = {
4520 	.family =	PF_PACKET,
4521 	.owner =	THIS_MODULE,
4522 	.release =	packet_release,
4523 	.bind =		packet_bind_spkt,
4524 	.connect =	sock_no_connect,
4525 	.socketpair =	sock_no_socketpair,
4526 	.accept =	sock_no_accept,
4527 	.getname =	packet_getname_spkt,
4528 	.poll =		datagram_poll,
4529 	.ioctl =	packet_ioctl,
4530 	.gettstamp =	sock_gettstamp,
4531 	.listen =	sock_no_listen,
4532 	.shutdown =	sock_no_shutdown,
4533 	.sendmsg =	packet_sendmsg_spkt,
4534 	.recvmsg =	packet_recvmsg,
4535 	.mmap =		sock_no_mmap,
4536 	.sendpage =	sock_no_sendpage,
4537 };
4538 
4539 static const struct proto_ops packet_ops = {
4540 	.family =	PF_PACKET,
4541 	.owner =	THIS_MODULE,
4542 	.release =	packet_release,
4543 	.bind =		packet_bind,
4544 	.connect =	sock_no_connect,
4545 	.socketpair =	sock_no_socketpair,
4546 	.accept =	sock_no_accept,
4547 	.getname =	packet_getname,
4548 	.poll =		packet_poll,
4549 	.ioctl =	packet_ioctl,
4550 	.gettstamp =	sock_gettstamp,
4551 	.listen =	sock_no_listen,
4552 	.shutdown =	sock_no_shutdown,
4553 	.setsockopt =	packet_setsockopt,
4554 	.getsockopt =	packet_getsockopt,
4555 	.sendmsg =	packet_sendmsg,
4556 	.recvmsg =	packet_recvmsg,
4557 	.mmap =		packet_mmap,
4558 	.sendpage =	sock_no_sendpage,
4559 };
4560 
4561 static const struct net_proto_family packet_family_ops = {
4562 	.family =	PF_PACKET,
4563 	.create =	packet_create,
4564 	.owner	=	THIS_MODULE,
4565 };
4566 
4567 static struct notifier_block packet_netdev_notifier = {
4568 	.notifier_call =	packet_notifier,
4569 };
4570 
4571 #ifdef CONFIG_PROC_FS
4572 
4573 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4574 	__acquires(RCU)
4575 {
4576 	struct net *net = seq_file_net(seq);
4577 
4578 	rcu_read_lock();
4579 	return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4580 }
4581 
4582 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4583 {
4584 	struct net *net = seq_file_net(seq);
4585 	return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4586 }
4587 
4588 static void packet_seq_stop(struct seq_file *seq, void *v)
4589 	__releases(RCU)
4590 {
4591 	rcu_read_unlock();
4592 }
4593 
4594 static int packet_seq_show(struct seq_file *seq, void *v)
4595 {
4596 	if (v == SEQ_START_TOKEN)
4597 		seq_puts(seq, "sk       RefCnt Type Proto  Iface R Rmem   User   Inode\n");
4598 	else {
4599 		struct sock *s = sk_entry(v);
4600 		const struct packet_sock *po = pkt_sk(s);
4601 
4602 		seq_printf(seq,
4603 			   "%pK %-6d %-4d %04x   %-5d %1d %-6u %-6u %-6lu\n",
4604 			   s,
4605 			   refcount_read(&s->sk_refcnt),
4606 			   s->sk_type,
4607 			   ntohs(po->num),
4608 			   po->ifindex,
4609 			   po->running,
4610 			   atomic_read(&s->sk_rmem_alloc),
4611 			   from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4612 			   sock_i_ino(s));
4613 	}
4614 
4615 	return 0;
4616 }
4617 
4618 static const struct seq_operations packet_seq_ops = {
4619 	.start	= packet_seq_start,
4620 	.next	= packet_seq_next,
4621 	.stop	= packet_seq_stop,
4622 	.show	= packet_seq_show,
4623 };
4624 #endif
4625 
4626 static int __net_init packet_net_init(struct net *net)
4627 {
4628 	mutex_init(&net->packet.sklist_lock);
4629 	INIT_HLIST_HEAD(&net->packet.sklist);
4630 
4631 	if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4632 			sizeof(struct seq_net_private)))
4633 		return -ENOMEM;
4634 
4635 	return 0;
4636 }
4637 
4638 static void __net_exit packet_net_exit(struct net *net)
4639 {
4640 	remove_proc_entry("packet", net->proc_net);
4641 	WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4642 }
4643 
4644 static struct pernet_operations packet_net_ops = {
4645 	.init = packet_net_init,
4646 	.exit = packet_net_exit,
4647 };
4648 
4649 
4650 static void __exit packet_exit(void)
4651 {
4652 	unregister_netdevice_notifier(&packet_netdev_notifier);
4653 	unregister_pernet_subsys(&packet_net_ops);
4654 	sock_unregister(PF_PACKET);
4655 	proto_unregister(&packet_proto);
4656 }
4657 
4658 static int __init packet_init(void)
4659 {
4660 	int rc;
4661 
4662 	rc = proto_register(&packet_proto, 0);
4663 	if (rc)
4664 		goto out;
4665 	rc = sock_register(&packet_family_ops);
4666 	if (rc)
4667 		goto out_proto;
4668 	rc = register_pernet_subsys(&packet_net_ops);
4669 	if (rc)
4670 		goto out_sock;
4671 	rc = register_netdevice_notifier(&packet_netdev_notifier);
4672 	if (rc)
4673 		goto out_pernet;
4674 
4675 	return 0;
4676 
4677 out_pernet:
4678 	unregister_pernet_subsys(&packet_net_ops);
4679 out_sock:
4680 	sock_unregister(PF_PACKET);
4681 out_proto:
4682 	proto_unregister(&packet_proto);
4683 out:
4684 	return rc;
4685 }
4686 
4687 module_init(packet_init);
4688 module_exit(packet_exit);
4689 MODULE_LICENSE("GPL");
4690 MODULE_ALIAS_NETPROTO(PF_PACKET);
4691