xref: /openbmc/linux/net/openvswitch/flow_table.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2014 Nicira, Inc.
4  */
5 
6 #include "flow.h"
7 #include "datapath.h"
8 #include "flow_netlink.h"
9 #include <linux/uaccess.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/if_ether.h>
13 #include <linux/if_vlan.h>
14 #include <net/llc_pdu.h>
15 #include <linux/kernel.h>
16 #include <linux/jhash.h>
17 #include <linux/jiffies.h>
18 #include <linux/llc.h>
19 #include <linux/module.h>
20 #include <linux/in.h>
21 #include <linux/rcupdate.h>
22 #include <linux/cpumask.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <linux/sort.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 
37 #define TBL_MIN_BUCKETS		1024
38 #define MASK_ARRAY_SIZE_MIN	16
39 #define REHASH_INTERVAL		(10 * 60 * HZ)
40 
41 #define MC_DEFAULT_HASH_ENTRIES	256
42 #define MC_HASH_SHIFT		8
43 #define MC_HASH_SEGS		((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
44 
45 static struct kmem_cache *flow_cache;
46 struct kmem_cache *flow_stats_cache __read_mostly;
47 
48 static u16 range_n_bytes(const struct sw_flow_key_range *range)
49 {
50 	return range->end - range->start;
51 }
52 
53 void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
54 		       bool full, const struct sw_flow_mask *mask)
55 {
56 	int start = full ? 0 : mask->range.start;
57 	int len = full ? sizeof *dst : range_n_bytes(&mask->range);
58 	const long *m = (const long *)((const u8 *)&mask->key + start);
59 	const long *s = (const long *)((const u8 *)src + start);
60 	long *d = (long *)((u8 *)dst + start);
61 	int i;
62 
63 	/* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
64 	 * if 'full' is false the memory outside of the 'mask->range' is left
65 	 * uninitialized. This can be used as an optimization when further
66 	 * operations on 'dst' only use contents within 'mask->range'.
67 	 */
68 	for (i = 0; i < len; i += sizeof(long))
69 		*d++ = *s++ & *m++;
70 }
71 
72 struct sw_flow *ovs_flow_alloc(void)
73 {
74 	struct sw_flow *flow;
75 	struct sw_flow_stats *stats;
76 
77 	flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
78 	if (!flow)
79 		return ERR_PTR(-ENOMEM);
80 
81 	flow->stats_last_writer = -1;
82 
83 	/* Initialize the default stat node. */
84 	stats = kmem_cache_alloc_node(flow_stats_cache,
85 				      GFP_KERNEL | __GFP_ZERO,
86 				      node_online(0) ? 0 : NUMA_NO_NODE);
87 	if (!stats)
88 		goto err;
89 
90 	spin_lock_init(&stats->lock);
91 
92 	RCU_INIT_POINTER(flow->stats[0], stats);
93 
94 	cpumask_set_cpu(0, &flow->cpu_used_mask);
95 
96 	return flow;
97 err:
98 	kmem_cache_free(flow_cache, flow);
99 	return ERR_PTR(-ENOMEM);
100 }
101 
102 int ovs_flow_tbl_count(const struct flow_table *table)
103 {
104 	return table->count;
105 }
106 
107 static void flow_free(struct sw_flow *flow)
108 {
109 	int cpu;
110 
111 	if (ovs_identifier_is_key(&flow->id))
112 		kfree(flow->id.unmasked_key);
113 	if (flow->sf_acts)
114 		ovs_nla_free_flow_actions((struct sw_flow_actions __force *)flow->sf_acts);
115 	/* We open code this to make sure cpu 0 is always considered */
116 	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask))
117 		if (flow->stats[cpu])
118 			kmem_cache_free(flow_stats_cache,
119 					(struct sw_flow_stats __force *)flow->stats[cpu]);
120 	kmem_cache_free(flow_cache, flow);
121 }
122 
123 static void rcu_free_flow_callback(struct rcu_head *rcu)
124 {
125 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
126 
127 	flow_free(flow);
128 }
129 
130 void ovs_flow_free(struct sw_flow *flow, bool deferred)
131 {
132 	if (!flow)
133 		return;
134 
135 	if (deferred)
136 		call_rcu(&flow->rcu, rcu_free_flow_callback);
137 	else
138 		flow_free(flow);
139 }
140 
141 static void __table_instance_destroy(struct table_instance *ti)
142 {
143 	kvfree(ti->buckets);
144 	kfree(ti);
145 }
146 
147 static struct table_instance *table_instance_alloc(int new_size)
148 {
149 	struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
150 	int i;
151 
152 	if (!ti)
153 		return NULL;
154 
155 	ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
156 				     GFP_KERNEL);
157 	if (!ti->buckets) {
158 		kfree(ti);
159 		return NULL;
160 	}
161 
162 	for (i = 0; i < new_size; i++)
163 		INIT_HLIST_HEAD(&ti->buckets[i]);
164 
165 	ti->n_buckets = new_size;
166 	ti->node_ver = 0;
167 	ti->keep_flows = false;
168 	get_random_bytes(&ti->hash_seed, sizeof(u32));
169 
170 	return ti;
171 }
172 
173 static void __mask_array_destroy(struct mask_array *ma)
174 {
175 	free_percpu(ma->masks_usage_cntr);
176 	kfree(ma);
177 }
178 
179 static void mask_array_rcu_cb(struct rcu_head *rcu)
180 {
181 	struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
182 
183 	__mask_array_destroy(ma);
184 }
185 
186 static void tbl_mask_array_reset_counters(struct mask_array *ma)
187 {
188 	int i, cpu;
189 
190 	/* As the per CPU counters are not atomic we can not go ahead and
191 	 * reset them from another CPU. To be able to still have an approximate
192 	 * zero based counter we store the value at reset, and subtract it
193 	 * later when processing.
194 	 */
195 	for (i = 0; i < ma->max; i++)  {
196 		ma->masks_usage_zero_cntr[i] = 0;
197 
198 		for_each_possible_cpu(cpu) {
199 			u64 *usage_counters = per_cpu_ptr(ma->masks_usage_cntr,
200 							  cpu);
201 			unsigned int start;
202 			u64 counter;
203 
204 			do {
205 				start = u64_stats_fetch_begin_irq(&ma->syncp);
206 				counter = usage_counters[i];
207 			} while (u64_stats_fetch_retry_irq(&ma->syncp, start));
208 
209 			ma->masks_usage_zero_cntr[i] += counter;
210 		}
211 	}
212 }
213 
214 static struct mask_array *tbl_mask_array_alloc(int size)
215 {
216 	struct mask_array *new;
217 
218 	size = max(MASK_ARRAY_SIZE_MIN, size);
219 	new = kzalloc(sizeof(struct mask_array) +
220 		      sizeof(struct sw_flow_mask *) * size +
221 		      sizeof(u64) * size, GFP_KERNEL);
222 	if (!new)
223 		return NULL;
224 
225 	new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
226 					     sizeof(struct mask_array) +
227 					     sizeof(struct sw_flow_mask *) *
228 					     size);
229 
230 	new->masks_usage_cntr = __alloc_percpu(sizeof(u64) * size,
231 					       __alignof__(u64));
232 	if (!new->masks_usage_cntr) {
233 		kfree(new);
234 		return NULL;
235 	}
236 
237 	new->count = 0;
238 	new->max = size;
239 
240 	return new;
241 }
242 
243 static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
244 {
245 	struct mask_array *old;
246 	struct mask_array *new;
247 
248 	new = tbl_mask_array_alloc(size);
249 	if (!new)
250 		return -ENOMEM;
251 
252 	old = ovsl_dereference(tbl->mask_array);
253 	if (old) {
254 		int i;
255 
256 		for (i = 0; i < old->max; i++) {
257 			if (ovsl_dereference(old->masks[i]))
258 				new->masks[new->count++] = old->masks[i];
259 		}
260 		call_rcu(&old->rcu, mask_array_rcu_cb);
261 	}
262 
263 	rcu_assign_pointer(tbl->mask_array, new);
264 
265 	return 0;
266 }
267 
268 static int tbl_mask_array_add_mask(struct flow_table *tbl,
269 				   struct sw_flow_mask *new)
270 {
271 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
272 	int err, ma_count = READ_ONCE(ma->count);
273 
274 	if (ma_count >= ma->max) {
275 		err = tbl_mask_array_realloc(tbl, ma->max +
276 					      MASK_ARRAY_SIZE_MIN);
277 		if (err)
278 			return err;
279 
280 		ma = ovsl_dereference(tbl->mask_array);
281 	} else {
282 		/* On every add or delete we need to reset the counters so
283 		 * every new mask gets a fair chance of being prioritized.
284 		 */
285 		tbl_mask_array_reset_counters(ma);
286 	}
287 
288 	BUG_ON(ovsl_dereference(ma->masks[ma_count]));
289 
290 	rcu_assign_pointer(ma->masks[ma_count], new);
291 	WRITE_ONCE(ma->count, ma_count +1);
292 
293 	return 0;
294 }
295 
296 static void tbl_mask_array_del_mask(struct flow_table *tbl,
297 				    struct sw_flow_mask *mask)
298 {
299 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
300 	int i, ma_count = READ_ONCE(ma->count);
301 
302 	/* Remove the deleted mask pointers from the array */
303 	for (i = 0; i < ma_count; i++) {
304 		if (mask == ovsl_dereference(ma->masks[i]))
305 			goto found;
306 	}
307 
308 	BUG();
309 	return;
310 
311 found:
312 	WRITE_ONCE(ma->count, ma_count -1);
313 
314 	rcu_assign_pointer(ma->masks[i], ma->masks[ma_count -1]);
315 	RCU_INIT_POINTER(ma->masks[ma_count -1], NULL);
316 
317 	kfree_rcu(mask, rcu);
318 
319 	/* Shrink the mask array if necessary. */
320 	if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
321 	    ma_count <= (ma->max / 3))
322 		tbl_mask_array_realloc(tbl, ma->max / 2);
323 	else
324 		tbl_mask_array_reset_counters(ma);
325 
326 }
327 
328 /* Remove 'mask' from the mask list, if it is not needed any more. */
329 static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
330 {
331 	if (mask) {
332 		/* ovs-lock is required to protect mask-refcount and
333 		 * mask list.
334 		 */
335 		ASSERT_OVSL();
336 		BUG_ON(!mask->ref_count);
337 		mask->ref_count--;
338 
339 		if (!mask->ref_count)
340 			tbl_mask_array_del_mask(tbl, mask);
341 	}
342 }
343 
344 static void __mask_cache_destroy(struct mask_cache *mc)
345 {
346 	free_percpu(mc->mask_cache);
347 	kfree(mc);
348 }
349 
350 static void mask_cache_rcu_cb(struct rcu_head *rcu)
351 {
352 	struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
353 
354 	__mask_cache_destroy(mc);
355 }
356 
357 static struct mask_cache *tbl_mask_cache_alloc(u32 size)
358 {
359 	struct mask_cache_entry __percpu *cache = NULL;
360 	struct mask_cache *new;
361 
362 	/* Only allow size to be 0, or a power of 2, and does not exceed
363 	 * percpu allocation size.
364 	 */
365 	if ((!is_power_of_2(size) && size != 0) ||
366 	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
367 		return NULL;
368 
369 	new = kzalloc(sizeof(*new), GFP_KERNEL);
370 	if (!new)
371 		return NULL;
372 
373 	new->cache_size = size;
374 	if (new->cache_size > 0) {
375 		cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
376 						  new->cache_size),
377 				       __alignof__(struct mask_cache_entry));
378 		if (!cache) {
379 			kfree(new);
380 			return NULL;
381 		}
382 	}
383 
384 	new->mask_cache = cache;
385 	return new;
386 }
387 int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
388 {
389 	struct mask_cache *mc = rcu_dereference(table->mask_cache);
390 	struct mask_cache *new;
391 
392 	if (size == mc->cache_size)
393 		return 0;
394 
395 	if ((!is_power_of_2(size) && size != 0) ||
396 	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
397 		return -EINVAL;
398 
399 	new = tbl_mask_cache_alloc(size);
400 	if (!new)
401 		return -ENOMEM;
402 
403 	rcu_assign_pointer(table->mask_cache, new);
404 	call_rcu(&mc->rcu, mask_cache_rcu_cb);
405 
406 	return 0;
407 }
408 
409 int ovs_flow_tbl_init(struct flow_table *table)
410 {
411 	struct table_instance *ti, *ufid_ti;
412 	struct mask_cache *mc;
413 	struct mask_array *ma;
414 
415 	mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
416 	if (!mc)
417 		return -ENOMEM;
418 
419 	ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
420 	if (!ma)
421 		goto free_mask_cache;
422 
423 	ti = table_instance_alloc(TBL_MIN_BUCKETS);
424 	if (!ti)
425 		goto free_mask_array;
426 
427 	ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
428 	if (!ufid_ti)
429 		goto free_ti;
430 
431 	rcu_assign_pointer(table->ti, ti);
432 	rcu_assign_pointer(table->ufid_ti, ufid_ti);
433 	rcu_assign_pointer(table->mask_array, ma);
434 	rcu_assign_pointer(table->mask_cache, mc);
435 	table->last_rehash = jiffies;
436 	table->count = 0;
437 	table->ufid_count = 0;
438 	return 0;
439 
440 free_ti:
441 	__table_instance_destroy(ti);
442 free_mask_array:
443 	__mask_array_destroy(ma);
444 free_mask_cache:
445 	__mask_cache_destroy(mc);
446 	return -ENOMEM;
447 }
448 
449 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
450 {
451 	struct table_instance *ti = container_of(rcu, struct table_instance, rcu);
452 
453 	__table_instance_destroy(ti);
454 }
455 
456 static void table_instance_flow_free(struct flow_table *table,
457 				  struct table_instance *ti,
458 				  struct table_instance *ufid_ti,
459 				  struct sw_flow *flow,
460 				  bool count)
461 {
462 	hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
463 	if (count)
464 		table->count--;
465 
466 	if (ovs_identifier_is_ufid(&flow->id)) {
467 		hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
468 
469 		if (count)
470 			table->ufid_count--;
471 	}
472 
473 	flow_mask_remove(table, flow->mask);
474 }
475 
476 static void table_instance_destroy(struct flow_table *table,
477 				   struct table_instance *ti,
478 				   struct table_instance *ufid_ti,
479 				   bool deferred)
480 {
481 	int i;
482 
483 	if (!ti)
484 		return;
485 
486 	BUG_ON(!ufid_ti);
487 	if (ti->keep_flows)
488 		goto skip_flows;
489 
490 	for (i = 0; i < ti->n_buckets; i++) {
491 		struct sw_flow *flow;
492 		struct hlist_head *head = &ti->buckets[i];
493 		struct hlist_node *n;
494 
495 		hlist_for_each_entry_safe(flow, n, head,
496 					  flow_table.node[ti->node_ver]) {
497 
498 			table_instance_flow_free(table, ti, ufid_ti,
499 						 flow, false);
500 			ovs_flow_free(flow, deferred);
501 		}
502 	}
503 
504 skip_flows:
505 	if (deferred) {
506 		call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
507 		call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
508 	} else {
509 		__table_instance_destroy(ti);
510 		__table_instance_destroy(ufid_ti);
511 	}
512 }
513 
514 /* No need for locking this function is called from RCU callback or
515  * error path.
516  */
517 void ovs_flow_tbl_destroy(struct flow_table *table)
518 {
519 	struct table_instance *ti = rcu_dereference_raw(table->ti);
520 	struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
521 	struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
522 	struct mask_array *ma = rcu_dereference_raw(table->mask_array);
523 
524 	call_rcu(&mc->rcu, mask_cache_rcu_cb);
525 	call_rcu(&ma->rcu, mask_array_rcu_cb);
526 	table_instance_destroy(table, ti, ufid_ti, false);
527 }
528 
529 struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
530 				       u32 *bucket, u32 *last)
531 {
532 	struct sw_flow *flow;
533 	struct hlist_head *head;
534 	int ver;
535 	int i;
536 
537 	ver = ti->node_ver;
538 	while (*bucket < ti->n_buckets) {
539 		i = 0;
540 		head = &ti->buckets[*bucket];
541 		hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
542 			if (i < *last) {
543 				i++;
544 				continue;
545 			}
546 			*last = i + 1;
547 			return flow;
548 		}
549 		(*bucket)++;
550 		*last = 0;
551 	}
552 
553 	return NULL;
554 }
555 
556 static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
557 {
558 	hash = jhash_1word(hash, ti->hash_seed);
559 	return &ti->buckets[hash & (ti->n_buckets - 1)];
560 }
561 
562 static void table_instance_insert(struct table_instance *ti,
563 				  struct sw_flow *flow)
564 {
565 	struct hlist_head *head;
566 
567 	head = find_bucket(ti, flow->flow_table.hash);
568 	hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
569 }
570 
571 static void ufid_table_instance_insert(struct table_instance *ti,
572 				       struct sw_flow *flow)
573 {
574 	struct hlist_head *head;
575 
576 	head = find_bucket(ti, flow->ufid_table.hash);
577 	hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
578 }
579 
580 static void flow_table_copy_flows(struct table_instance *old,
581 				  struct table_instance *new, bool ufid)
582 {
583 	int old_ver;
584 	int i;
585 
586 	old_ver = old->node_ver;
587 	new->node_ver = !old_ver;
588 
589 	/* Insert in new table. */
590 	for (i = 0; i < old->n_buckets; i++) {
591 		struct sw_flow *flow;
592 		struct hlist_head *head = &old->buckets[i];
593 
594 		if (ufid)
595 			hlist_for_each_entry_rcu(flow, head,
596 						 ufid_table.node[old_ver],
597 						 lockdep_ovsl_is_held())
598 				ufid_table_instance_insert(new, flow);
599 		else
600 			hlist_for_each_entry_rcu(flow, head,
601 						 flow_table.node[old_ver],
602 						 lockdep_ovsl_is_held())
603 				table_instance_insert(new, flow);
604 	}
605 
606 	old->keep_flows = true;
607 }
608 
609 static struct table_instance *table_instance_rehash(struct table_instance *ti,
610 						    int n_buckets, bool ufid)
611 {
612 	struct table_instance *new_ti;
613 
614 	new_ti = table_instance_alloc(n_buckets);
615 	if (!new_ti)
616 		return NULL;
617 
618 	flow_table_copy_flows(ti, new_ti, ufid);
619 
620 	return new_ti;
621 }
622 
623 int ovs_flow_tbl_flush(struct flow_table *flow_table)
624 {
625 	struct table_instance *old_ti, *new_ti;
626 	struct table_instance *old_ufid_ti, *new_ufid_ti;
627 
628 	new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
629 	if (!new_ti)
630 		return -ENOMEM;
631 	new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
632 	if (!new_ufid_ti)
633 		goto err_free_ti;
634 
635 	old_ti = ovsl_dereference(flow_table->ti);
636 	old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
637 
638 	rcu_assign_pointer(flow_table->ti, new_ti);
639 	rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
640 	flow_table->last_rehash = jiffies;
641 	flow_table->count = 0;
642 	flow_table->ufid_count = 0;
643 
644 	table_instance_destroy(flow_table, old_ti, old_ufid_ti, true);
645 	return 0;
646 
647 err_free_ti:
648 	__table_instance_destroy(new_ti);
649 	return -ENOMEM;
650 }
651 
652 static u32 flow_hash(const struct sw_flow_key *key,
653 		     const struct sw_flow_key_range *range)
654 {
655 	const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
656 
657 	/* Make sure number of hash bytes are multiple of u32. */
658 	int hash_u32s = range_n_bytes(range) >> 2;
659 
660 	return jhash2(hash_key, hash_u32s, 0);
661 }
662 
663 static int flow_key_start(const struct sw_flow_key *key)
664 {
665 	if (key->tun_proto)
666 		return 0;
667 	else
668 		return rounddown(offsetof(struct sw_flow_key, phy),
669 					  sizeof(long));
670 }
671 
672 static bool cmp_key(const struct sw_flow_key *key1,
673 		    const struct sw_flow_key *key2,
674 		    int key_start, int key_end)
675 {
676 	const long *cp1 = (const long *)((const u8 *)key1 + key_start);
677 	const long *cp2 = (const long *)((const u8 *)key2 + key_start);
678 	long diffs = 0;
679 	int i;
680 
681 	for (i = key_start; i < key_end;  i += sizeof(long))
682 		diffs |= *cp1++ ^ *cp2++;
683 
684 	return diffs == 0;
685 }
686 
687 static bool flow_cmp_masked_key(const struct sw_flow *flow,
688 				const struct sw_flow_key *key,
689 				const struct sw_flow_key_range *range)
690 {
691 	return cmp_key(&flow->key, key, range->start, range->end);
692 }
693 
694 static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
695 				      const struct sw_flow_match *match)
696 {
697 	struct sw_flow_key *key = match->key;
698 	int key_start = flow_key_start(key);
699 	int key_end = match->range.end;
700 
701 	BUG_ON(ovs_identifier_is_ufid(&flow->id));
702 	return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
703 }
704 
705 static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
706 					  const struct sw_flow_key *unmasked,
707 					  const struct sw_flow_mask *mask,
708 					  u32 *n_mask_hit)
709 {
710 	struct sw_flow *flow;
711 	struct hlist_head *head;
712 	u32 hash;
713 	struct sw_flow_key masked_key;
714 
715 	ovs_flow_mask_key(&masked_key, unmasked, false, mask);
716 	hash = flow_hash(&masked_key, &mask->range);
717 	head = find_bucket(ti, hash);
718 	(*n_mask_hit)++;
719 
720 	hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
721 				lockdep_ovsl_is_held()) {
722 		if (flow->mask == mask && flow->flow_table.hash == hash &&
723 		    flow_cmp_masked_key(flow, &masked_key, &mask->range))
724 			return flow;
725 	}
726 	return NULL;
727 }
728 
729 /* Flow lookup does full lookup on flow table. It starts with
730  * mask from index passed in *index.
731  */
732 static struct sw_flow *flow_lookup(struct flow_table *tbl,
733 				   struct table_instance *ti,
734 				   struct mask_array *ma,
735 				   const struct sw_flow_key *key,
736 				   u32 *n_mask_hit,
737 				   u32 *n_cache_hit,
738 				   u32 *index)
739 {
740 	u64 *usage_counters = this_cpu_ptr(ma->masks_usage_cntr);
741 	struct sw_flow *flow;
742 	struct sw_flow_mask *mask;
743 	int i;
744 
745 	if (likely(*index < ma->max)) {
746 		mask = rcu_dereference_ovsl(ma->masks[*index]);
747 		if (mask) {
748 			flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
749 			if (flow) {
750 				u64_stats_update_begin(&ma->syncp);
751 				usage_counters[*index]++;
752 				u64_stats_update_end(&ma->syncp);
753 				(*n_cache_hit)++;
754 				return flow;
755 			}
756 		}
757 	}
758 
759 	for (i = 0; i < ma->max; i++)  {
760 
761 		if (i == *index)
762 			continue;
763 
764 		mask = rcu_dereference_ovsl(ma->masks[i]);
765 		if (unlikely(!mask))
766 			break;
767 
768 		flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
769 		if (flow) { /* Found */
770 			*index = i;
771 			u64_stats_update_begin(&ma->syncp);
772 			usage_counters[*index]++;
773 			u64_stats_update_end(&ma->syncp);
774 			return flow;
775 		}
776 	}
777 
778 	return NULL;
779 }
780 
781 /*
782  * mask_cache maps flow to probable mask. This cache is not tightly
783  * coupled cache, It means updates to  mask list can result in inconsistent
784  * cache entry in mask cache.
785  * This is per cpu cache and is divided in MC_HASH_SEGS segments.
786  * In case of a hash collision the entry is hashed in next segment.
787  * */
788 struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
789 					  const struct sw_flow_key *key,
790 					  u32 skb_hash,
791 					  u32 *n_mask_hit,
792 					  u32 *n_cache_hit)
793 {
794 	struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
795 	struct mask_array *ma = rcu_dereference(tbl->mask_array);
796 	struct table_instance *ti = rcu_dereference(tbl->ti);
797 	struct mask_cache_entry *entries, *ce;
798 	struct sw_flow *flow;
799 	u32 hash;
800 	int seg;
801 
802 	*n_mask_hit = 0;
803 	*n_cache_hit = 0;
804 	if (unlikely(!skb_hash || mc->cache_size == 0)) {
805 		u32 mask_index = 0;
806 		u32 cache = 0;
807 
808 		return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
809 				   &mask_index);
810 	}
811 
812 	/* Pre and post recirulation flows usually have the same skb_hash
813 	 * value. To avoid hash collisions, rehash the 'skb_hash' with
814 	 * 'recirc_id'.  */
815 	if (key->recirc_id)
816 		skb_hash = jhash_1word(skb_hash, key->recirc_id);
817 
818 	ce = NULL;
819 	hash = skb_hash;
820 	entries = this_cpu_ptr(mc->mask_cache);
821 
822 	/* Find the cache entry 'ce' to operate on. */
823 	for (seg = 0; seg < MC_HASH_SEGS; seg++) {
824 		int index = hash & (mc->cache_size - 1);
825 		struct mask_cache_entry *e;
826 
827 		e = &entries[index];
828 		if (e->skb_hash == skb_hash) {
829 			flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
830 					   n_cache_hit, &e->mask_index);
831 			if (!flow)
832 				e->skb_hash = 0;
833 			return flow;
834 		}
835 
836 		if (!ce || e->skb_hash < ce->skb_hash)
837 			ce = e;  /* A better replacement cache candidate. */
838 
839 		hash >>= MC_HASH_SHIFT;
840 	}
841 
842 	/* Cache miss, do full lookup. */
843 	flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
844 			   &ce->mask_index);
845 	if (flow)
846 		ce->skb_hash = skb_hash;
847 
848 	*n_cache_hit = 0;
849 	return flow;
850 }
851 
852 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
853 				    const struct sw_flow_key *key)
854 {
855 	struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
856 	struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
857 	u32 __always_unused n_mask_hit;
858 	u32 __always_unused n_cache_hit;
859 	u32 index = 0;
860 
861 	return flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
862 }
863 
864 struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
865 					  const struct sw_flow_match *match)
866 {
867 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
868 	int i;
869 
870 	/* Always called under ovs-mutex. */
871 	for (i = 0; i < ma->max; i++) {
872 		struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
873 		u32 __always_unused n_mask_hit;
874 		struct sw_flow_mask *mask;
875 		struct sw_flow *flow;
876 
877 		mask = ovsl_dereference(ma->masks[i]);
878 		if (!mask)
879 			continue;
880 
881 		flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
882 		if (flow && ovs_identifier_is_key(&flow->id) &&
883 		    ovs_flow_cmp_unmasked_key(flow, match)) {
884 			return flow;
885 		}
886 	}
887 
888 	return NULL;
889 }
890 
891 static u32 ufid_hash(const struct sw_flow_id *sfid)
892 {
893 	return jhash(sfid->ufid, sfid->ufid_len, 0);
894 }
895 
896 static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
897 			      const struct sw_flow_id *sfid)
898 {
899 	if (flow->id.ufid_len != sfid->ufid_len)
900 		return false;
901 
902 	return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
903 }
904 
905 bool ovs_flow_cmp(const struct sw_flow *flow, const struct sw_flow_match *match)
906 {
907 	if (ovs_identifier_is_ufid(&flow->id))
908 		return flow_cmp_masked_key(flow, match->key, &match->range);
909 
910 	return ovs_flow_cmp_unmasked_key(flow, match);
911 }
912 
913 struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
914 					 const struct sw_flow_id *ufid)
915 {
916 	struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
917 	struct sw_flow *flow;
918 	struct hlist_head *head;
919 	u32 hash;
920 
921 	hash = ufid_hash(ufid);
922 	head = find_bucket(ti, hash);
923 	hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
924 				lockdep_ovsl_is_held()) {
925 		if (flow->ufid_table.hash == hash &&
926 		    ovs_flow_cmp_ufid(flow, ufid))
927 			return flow;
928 	}
929 	return NULL;
930 }
931 
932 int ovs_flow_tbl_num_masks(const struct flow_table *table)
933 {
934 	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
935 	return READ_ONCE(ma->count);
936 }
937 
938 u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
939 {
940 	struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
941 
942 	return READ_ONCE(mc->cache_size);
943 }
944 
945 static struct table_instance *table_instance_expand(struct table_instance *ti,
946 						    bool ufid)
947 {
948 	return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
949 }
950 
951 /* Must be called with OVS mutex held. */
952 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
953 {
954 	struct table_instance *ti = ovsl_dereference(table->ti);
955 	struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
956 
957 	BUG_ON(table->count == 0);
958 	table_instance_flow_free(table, ti, ufid_ti, flow, true);
959 }
960 
961 static struct sw_flow_mask *mask_alloc(void)
962 {
963 	struct sw_flow_mask *mask;
964 
965 	mask = kmalloc(sizeof(*mask), GFP_KERNEL);
966 	if (mask)
967 		mask->ref_count = 1;
968 
969 	return mask;
970 }
971 
972 static bool mask_equal(const struct sw_flow_mask *a,
973 		       const struct sw_flow_mask *b)
974 {
975 	const u8 *a_ = (const u8 *)&a->key + a->range.start;
976 	const u8 *b_ = (const u8 *)&b->key + b->range.start;
977 
978 	return  (a->range.end == b->range.end)
979 		&& (a->range.start == b->range.start)
980 		&& (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
981 }
982 
983 static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
984 					   const struct sw_flow_mask *mask)
985 {
986 	struct mask_array *ma;
987 	int i;
988 
989 	ma = ovsl_dereference(tbl->mask_array);
990 	for (i = 0; i < ma->max; i++) {
991 		struct sw_flow_mask *t;
992 		t = ovsl_dereference(ma->masks[i]);
993 
994 		if (t && mask_equal(mask, t))
995 			return t;
996 	}
997 
998 	return NULL;
999 }
1000 
1001 /* Add 'mask' into the mask list, if it is not already there. */
1002 static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
1003 			    const struct sw_flow_mask *new)
1004 {
1005 	struct sw_flow_mask *mask;
1006 
1007 	mask = flow_mask_find(tbl, new);
1008 	if (!mask) {
1009 		/* Allocate a new mask if none exsits. */
1010 		mask = mask_alloc();
1011 		if (!mask)
1012 			return -ENOMEM;
1013 		mask->key = new->key;
1014 		mask->range = new->range;
1015 
1016 		/* Add mask to mask-list. */
1017 		if (tbl_mask_array_add_mask(tbl, mask)) {
1018 			kfree(mask);
1019 			return -ENOMEM;
1020 		}
1021 	} else {
1022 		BUG_ON(!mask->ref_count);
1023 		mask->ref_count++;
1024 	}
1025 
1026 	flow->mask = mask;
1027 	return 0;
1028 }
1029 
1030 /* Must be called with OVS mutex held. */
1031 static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1032 {
1033 	struct table_instance *new_ti = NULL;
1034 	struct table_instance *ti;
1035 
1036 	flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1037 	ti = ovsl_dereference(table->ti);
1038 	table_instance_insert(ti, flow);
1039 	table->count++;
1040 
1041 	/* Expand table, if necessary, to make room. */
1042 	if (table->count > ti->n_buckets)
1043 		new_ti = table_instance_expand(ti, false);
1044 	else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1045 		new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1046 
1047 	if (new_ti) {
1048 		rcu_assign_pointer(table->ti, new_ti);
1049 		call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1050 		table->last_rehash = jiffies;
1051 	}
1052 }
1053 
1054 /* Must be called with OVS mutex held. */
1055 static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1056 {
1057 	struct table_instance *ti;
1058 
1059 	flow->ufid_table.hash = ufid_hash(&flow->id);
1060 	ti = ovsl_dereference(table->ufid_ti);
1061 	ufid_table_instance_insert(ti, flow);
1062 	table->ufid_count++;
1063 
1064 	/* Expand table, if necessary, to make room. */
1065 	if (table->ufid_count > ti->n_buckets) {
1066 		struct table_instance *new_ti;
1067 
1068 		new_ti = table_instance_expand(ti, true);
1069 		if (new_ti) {
1070 			rcu_assign_pointer(table->ufid_ti, new_ti);
1071 			call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1072 		}
1073 	}
1074 }
1075 
1076 /* Must be called with OVS mutex held. */
1077 int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1078 			const struct sw_flow_mask *mask)
1079 {
1080 	int err;
1081 
1082 	err = flow_mask_insert(table, flow, mask);
1083 	if (err)
1084 		return err;
1085 	flow_key_insert(table, flow);
1086 	if (ovs_identifier_is_ufid(&flow->id))
1087 		flow_ufid_insert(table, flow);
1088 
1089 	return 0;
1090 }
1091 
1092 static int compare_mask_and_count(const void *a, const void *b)
1093 {
1094 	const struct mask_count *mc_a = a;
1095 	const struct mask_count *mc_b = b;
1096 
1097 	return (s64)mc_b->counter - (s64)mc_a->counter;
1098 }
1099 
1100 /* Must be called with OVS mutex held. */
1101 void ovs_flow_masks_rebalance(struct flow_table *table)
1102 {
1103 	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1104 	struct mask_count *masks_and_count;
1105 	struct mask_array *new;
1106 	int masks_entries = 0;
1107 	int i;
1108 
1109 	/* Build array of all current entries with use counters. */
1110 	masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1111 					GFP_KERNEL);
1112 	if (!masks_and_count)
1113 		return;
1114 
1115 	for (i = 0; i < ma->max; i++)  {
1116 		struct sw_flow_mask *mask;
1117 		unsigned int start;
1118 		int cpu;
1119 
1120 		mask = rcu_dereference_ovsl(ma->masks[i]);
1121 		if (unlikely(!mask))
1122 			break;
1123 
1124 		masks_and_count[i].index = i;
1125 		masks_and_count[i].counter = 0;
1126 
1127 		for_each_possible_cpu(cpu) {
1128 			u64 *usage_counters = per_cpu_ptr(ma->masks_usage_cntr,
1129 							  cpu);
1130 			u64 counter;
1131 
1132 			do {
1133 				start = u64_stats_fetch_begin_irq(&ma->syncp);
1134 				counter = usage_counters[i];
1135 			} while (u64_stats_fetch_retry_irq(&ma->syncp, start));
1136 
1137 			masks_and_count[i].counter += counter;
1138 		}
1139 
1140 		/* Subtract the zero count value. */
1141 		masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1142 
1143 		/* Rather than calling tbl_mask_array_reset_counters()
1144 		 * below when no change is needed, do it inline here.
1145 		 */
1146 		ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1147 	}
1148 
1149 	if (i == 0)
1150 		goto free_mask_entries;
1151 
1152 	/* Sort the entries */
1153 	masks_entries = i;
1154 	sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1155 	     compare_mask_and_count, NULL);
1156 
1157 	/* If the order is the same, nothing to do... */
1158 	for (i = 0; i < masks_entries; i++) {
1159 		if (i != masks_and_count[i].index)
1160 			break;
1161 	}
1162 	if (i == masks_entries)
1163 		goto free_mask_entries;
1164 
1165 	/* Rebuilt the new list in order of usage. */
1166 	new = tbl_mask_array_alloc(ma->max);
1167 	if (!new)
1168 		goto free_mask_entries;
1169 
1170 	for (i = 0; i < masks_entries; i++) {
1171 		int index = masks_and_count[i].index;
1172 
1173 		if (ovsl_dereference(ma->masks[index]))
1174 			new->masks[new->count++] = ma->masks[index];
1175 	}
1176 
1177 	rcu_assign_pointer(table->mask_array, new);
1178 	call_rcu(&ma->rcu, mask_array_rcu_cb);
1179 
1180 free_mask_entries:
1181 	kfree(masks_and_count);
1182 }
1183 
1184 /* Initializes the flow module.
1185  * Returns zero if successful or a negative error code. */
1186 int ovs_flow_init(void)
1187 {
1188 	BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1189 	BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1190 
1191 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1192 				       + (nr_cpu_ids
1193 					  * sizeof(struct sw_flow_stats *)),
1194 				       0, 0, NULL);
1195 	if (flow_cache == NULL)
1196 		return -ENOMEM;
1197 
1198 	flow_stats_cache
1199 		= kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1200 				    0, SLAB_HWCACHE_ALIGN, NULL);
1201 	if (flow_stats_cache == NULL) {
1202 		kmem_cache_destroy(flow_cache);
1203 		flow_cache = NULL;
1204 		return -ENOMEM;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 /* Uninitializes the flow module. */
1211 void ovs_flow_exit(void)
1212 {
1213 	kmem_cache_destroy(flow_stats_cache);
1214 	kmem_cache_destroy(flow_cache);
1215 }
1216