xref: /openbmc/linux/net/openvswitch/flow_table.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2014 Nicira, Inc.
4  */
5 
6 #include "flow.h"
7 #include "datapath.h"
8 #include "flow_netlink.h"
9 #include <linux/uaccess.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/if_ether.h>
13 #include <linux/if_vlan.h>
14 #include <net/llc_pdu.h>
15 #include <linux/kernel.h>
16 #include <linux/jhash.h>
17 #include <linux/jiffies.h>
18 #include <linux/llc.h>
19 #include <linux/module.h>
20 #include <linux/in.h>
21 #include <linux/rcupdate.h>
22 #include <linux/cpumask.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <linux/sort.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 
37 #define TBL_MIN_BUCKETS		1024
38 #define MASK_ARRAY_SIZE_MIN	16
39 #define REHASH_INTERVAL		(10 * 60 * HZ)
40 
41 #define MC_DEFAULT_HASH_ENTRIES	256
42 #define MC_HASH_SHIFT		8
43 #define MC_HASH_SEGS		((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
44 
45 static struct kmem_cache *flow_cache;
46 struct kmem_cache *flow_stats_cache __read_mostly;
47 
48 static u16 range_n_bytes(const struct sw_flow_key_range *range)
49 {
50 	return range->end - range->start;
51 }
52 
53 void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
54 		       bool full, const struct sw_flow_mask *mask)
55 {
56 	int start = full ? 0 : mask->range.start;
57 	int len = full ? sizeof *dst : range_n_bytes(&mask->range);
58 	const long *m = (const long *)((const u8 *)&mask->key + start);
59 	const long *s = (const long *)((const u8 *)src + start);
60 	long *d = (long *)((u8 *)dst + start);
61 	int i;
62 
63 	/* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
64 	 * if 'full' is false the memory outside of the 'mask->range' is left
65 	 * uninitialized. This can be used as an optimization when further
66 	 * operations on 'dst' only use contents within 'mask->range'.
67 	 */
68 	for (i = 0; i < len; i += sizeof(long))
69 		*d++ = *s++ & *m++;
70 }
71 
72 struct sw_flow *ovs_flow_alloc(void)
73 {
74 	struct sw_flow *flow;
75 	struct sw_flow_stats *stats;
76 
77 	flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
78 	if (!flow)
79 		return ERR_PTR(-ENOMEM);
80 
81 	flow->stats_last_writer = -1;
82 
83 	/* Initialize the default stat node. */
84 	stats = kmem_cache_alloc_node(flow_stats_cache,
85 				      GFP_KERNEL | __GFP_ZERO,
86 				      node_online(0) ? 0 : NUMA_NO_NODE);
87 	if (!stats)
88 		goto err;
89 
90 	spin_lock_init(&stats->lock);
91 
92 	RCU_INIT_POINTER(flow->stats[0], stats);
93 
94 	cpumask_set_cpu(0, &flow->cpu_used_mask);
95 
96 	return flow;
97 err:
98 	kmem_cache_free(flow_cache, flow);
99 	return ERR_PTR(-ENOMEM);
100 }
101 
102 int ovs_flow_tbl_count(const struct flow_table *table)
103 {
104 	return table->count;
105 }
106 
107 static void flow_free(struct sw_flow *flow)
108 {
109 	int cpu;
110 
111 	if (ovs_identifier_is_key(&flow->id))
112 		kfree(flow->id.unmasked_key);
113 	if (flow->sf_acts)
114 		ovs_nla_free_flow_actions((struct sw_flow_actions __force *)flow->sf_acts);
115 	/* We open code this to make sure cpu 0 is always considered */
116 	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask))
117 		if (flow->stats[cpu])
118 			kmem_cache_free(flow_stats_cache,
119 					(struct sw_flow_stats __force *)flow->stats[cpu]);
120 	kmem_cache_free(flow_cache, flow);
121 }
122 
123 static void rcu_free_flow_callback(struct rcu_head *rcu)
124 {
125 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
126 
127 	flow_free(flow);
128 }
129 
130 void ovs_flow_free(struct sw_flow *flow, bool deferred)
131 {
132 	if (!flow)
133 		return;
134 
135 	if (deferred)
136 		call_rcu(&flow->rcu, rcu_free_flow_callback);
137 	else
138 		flow_free(flow);
139 }
140 
141 static void __table_instance_destroy(struct table_instance *ti)
142 {
143 	kvfree(ti->buckets);
144 	kfree(ti);
145 }
146 
147 static struct table_instance *table_instance_alloc(int new_size)
148 {
149 	struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
150 	int i;
151 
152 	if (!ti)
153 		return NULL;
154 
155 	ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
156 				     GFP_KERNEL);
157 	if (!ti->buckets) {
158 		kfree(ti);
159 		return NULL;
160 	}
161 
162 	for (i = 0; i < new_size; i++)
163 		INIT_HLIST_HEAD(&ti->buckets[i]);
164 
165 	ti->n_buckets = new_size;
166 	ti->node_ver = 0;
167 	ti->keep_flows = false;
168 	get_random_bytes(&ti->hash_seed, sizeof(u32));
169 
170 	return ti;
171 }
172 
173 static void __mask_array_destroy(struct mask_array *ma)
174 {
175 	free_percpu(ma->masks_usage_cntr);
176 	kfree(ma);
177 }
178 
179 static void mask_array_rcu_cb(struct rcu_head *rcu)
180 {
181 	struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
182 
183 	__mask_array_destroy(ma);
184 }
185 
186 static void tbl_mask_array_reset_counters(struct mask_array *ma)
187 {
188 	int i, cpu;
189 
190 	/* As the per CPU counters are not atomic we can not go ahead and
191 	 * reset them from another CPU. To be able to still have an approximate
192 	 * zero based counter we store the value at reset, and subtract it
193 	 * later when processing.
194 	 */
195 	for (i = 0; i < ma->max; i++)  {
196 		ma->masks_usage_zero_cntr[i] = 0;
197 
198 		for_each_possible_cpu(cpu) {
199 			u64 *usage_counters = per_cpu_ptr(ma->masks_usage_cntr,
200 							  cpu);
201 			unsigned int start;
202 			u64 counter;
203 
204 			do {
205 				start = u64_stats_fetch_begin_irq(&ma->syncp);
206 				counter = usage_counters[i];
207 			} while (u64_stats_fetch_retry_irq(&ma->syncp, start));
208 
209 			ma->masks_usage_zero_cntr[i] += counter;
210 		}
211 	}
212 }
213 
214 static struct mask_array *tbl_mask_array_alloc(int size)
215 {
216 	struct mask_array *new;
217 
218 	size = max(MASK_ARRAY_SIZE_MIN, size);
219 	new = kzalloc(sizeof(struct mask_array) +
220 		      sizeof(struct sw_flow_mask *) * size +
221 		      sizeof(u64) * size, GFP_KERNEL);
222 	if (!new)
223 		return NULL;
224 
225 	new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
226 					     sizeof(struct mask_array) +
227 					     sizeof(struct sw_flow_mask *) *
228 					     size);
229 
230 	new->masks_usage_cntr = __alloc_percpu(sizeof(u64) * size,
231 					       __alignof__(u64));
232 	if (!new->masks_usage_cntr) {
233 		kfree(new);
234 		return NULL;
235 	}
236 
237 	new->count = 0;
238 	new->max = size;
239 
240 	return new;
241 }
242 
243 static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
244 {
245 	struct mask_array *old;
246 	struct mask_array *new;
247 
248 	new = tbl_mask_array_alloc(size);
249 	if (!new)
250 		return -ENOMEM;
251 
252 	old = ovsl_dereference(tbl->mask_array);
253 	if (old) {
254 		int i;
255 
256 		for (i = 0; i < old->max; i++) {
257 			if (ovsl_dereference(old->masks[i]))
258 				new->masks[new->count++] = old->masks[i];
259 		}
260 		call_rcu(&old->rcu, mask_array_rcu_cb);
261 	}
262 
263 	rcu_assign_pointer(tbl->mask_array, new);
264 
265 	return 0;
266 }
267 
268 static int tbl_mask_array_add_mask(struct flow_table *tbl,
269 				   struct sw_flow_mask *new)
270 {
271 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
272 	int err, ma_count = READ_ONCE(ma->count);
273 
274 	if (ma_count >= ma->max) {
275 		err = tbl_mask_array_realloc(tbl, ma->max +
276 					      MASK_ARRAY_SIZE_MIN);
277 		if (err)
278 			return err;
279 
280 		ma = ovsl_dereference(tbl->mask_array);
281 	} else {
282 		/* On every add or delete we need to reset the counters so
283 		 * every new mask gets a fair chance of being prioritized.
284 		 */
285 		tbl_mask_array_reset_counters(ma);
286 	}
287 
288 	BUG_ON(ovsl_dereference(ma->masks[ma_count]));
289 
290 	rcu_assign_pointer(ma->masks[ma_count], new);
291 	WRITE_ONCE(ma->count, ma_count +1);
292 
293 	return 0;
294 }
295 
296 static void tbl_mask_array_del_mask(struct flow_table *tbl,
297 				    struct sw_flow_mask *mask)
298 {
299 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
300 	int i, ma_count = READ_ONCE(ma->count);
301 
302 	/* Remove the deleted mask pointers from the array */
303 	for (i = 0; i < ma_count; i++) {
304 		if (mask == ovsl_dereference(ma->masks[i]))
305 			goto found;
306 	}
307 
308 	BUG();
309 	return;
310 
311 found:
312 	WRITE_ONCE(ma->count, ma_count -1);
313 
314 	rcu_assign_pointer(ma->masks[i], ma->masks[ma_count -1]);
315 	RCU_INIT_POINTER(ma->masks[ma_count -1], NULL);
316 
317 	kfree_rcu(mask, rcu);
318 
319 	/* Shrink the mask array if necessary. */
320 	if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
321 	    ma_count <= (ma->max / 3))
322 		tbl_mask_array_realloc(tbl, ma->max / 2);
323 	else
324 		tbl_mask_array_reset_counters(ma);
325 
326 }
327 
328 /* Remove 'mask' from the mask list, if it is not needed any more. */
329 static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
330 {
331 	if (mask) {
332 		/* ovs-lock is required to protect mask-refcount and
333 		 * mask list.
334 		 */
335 		ASSERT_OVSL();
336 		BUG_ON(!mask->ref_count);
337 		mask->ref_count--;
338 
339 		if (!mask->ref_count)
340 			tbl_mask_array_del_mask(tbl, mask);
341 	}
342 }
343 
344 static void __mask_cache_destroy(struct mask_cache *mc)
345 {
346 	free_percpu(mc->mask_cache);
347 	kfree(mc);
348 }
349 
350 static void mask_cache_rcu_cb(struct rcu_head *rcu)
351 {
352 	struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
353 
354 	__mask_cache_destroy(mc);
355 }
356 
357 static struct mask_cache *tbl_mask_cache_alloc(u32 size)
358 {
359 	struct mask_cache_entry __percpu *cache = NULL;
360 	struct mask_cache *new;
361 
362 	/* Only allow size to be 0, or a power of 2, and does not exceed
363 	 * percpu allocation size.
364 	 */
365 	if ((!is_power_of_2(size) && size != 0) ||
366 	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
367 		return NULL;
368 
369 	new = kzalloc(sizeof(*new), GFP_KERNEL);
370 	if (!new)
371 		return NULL;
372 
373 	new->cache_size = size;
374 	if (new->cache_size > 0) {
375 		cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
376 						  new->cache_size),
377 				       __alignof__(struct mask_cache_entry));
378 		if (!cache) {
379 			kfree(new);
380 			return NULL;
381 		}
382 	}
383 
384 	new->mask_cache = cache;
385 	return new;
386 }
387 int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
388 {
389 	struct mask_cache *mc = rcu_dereference(table->mask_cache);
390 	struct mask_cache *new;
391 
392 	if (size == mc->cache_size)
393 		return 0;
394 
395 	if ((!is_power_of_2(size) && size != 0) ||
396 	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
397 		return -EINVAL;
398 
399 	new = tbl_mask_cache_alloc(size);
400 	if (!new)
401 		return -ENOMEM;
402 
403 	rcu_assign_pointer(table->mask_cache, new);
404 	call_rcu(&mc->rcu, mask_cache_rcu_cb);
405 
406 	return 0;
407 }
408 
409 int ovs_flow_tbl_init(struct flow_table *table)
410 {
411 	struct table_instance *ti, *ufid_ti;
412 	struct mask_cache *mc;
413 	struct mask_array *ma;
414 
415 	mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
416 	if (!mc)
417 		return -ENOMEM;
418 
419 	ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
420 	if (!ma)
421 		goto free_mask_cache;
422 
423 	ti = table_instance_alloc(TBL_MIN_BUCKETS);
424 	if (!ti)
425 		goto free_mask_array;
426 
427 	ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
428 	if (!ufid_ti)
429 		goto free_ti;
430 
431 	rcu_assign_pointer(table->ti, ti);
432 	rcu_assign_pointer(table->ufid_ti, ufid_ti);
433 	rcu_assign_pointer(table->mask_array, ma);
434 	rcu_assign_pointer(table->mask_cache, mc);
435 	table->last_rehash = jiffies;
436 	table->count = 0;
437 	table->ufid_count = 0;
438 	return 0;
439 
440 free_ti:
441 	__table_instance_destroy(ti);
442 free_mask_array:
443 	__mask_array_destroy(ma);
444 free_mask_cache:
445 	__mask_cache_destroy(mc);
446 	return -ENOMEM;
447 }
448 
449 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
450 {
451 	struct table_instance *ti = container_of(rcu, struct table_instance, rcu);
452 
453 	__table_instance_destroy(ti);
454 }
455 
456 static void table_instance_flow_free(struct flow_table *table,
457 				  struct table_instance *ti,
458 				  struct table_instance *ufid_ti,
459 				  struct sw_flow *flow,
460 				  bool count)
461 {
462 	hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
463 	if (count)
464 		table->count--;
465 
466 	if (ovs_identifier_is_ufid(&flow->id)) {
467 		hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
468 
469 		if (count)
470 			table->ufid_count--;
471 	}
472 
473 	flow_mask_remove(table, flow->mask);
474 }
475 
476 /* Must be called with OVS mutex held. */
477 void table_instance_flow_flush(struct flow_table *table,
478 			       struct table_instance *ti,
479 			       struct table_instance *ufid_ti)
480 {
481 	int i;
482 
483 	if (ti->keep_flows)
484 		return;
485 
486 	for (i = 0; i < ti->n_buckets; i++) {
487 		struct sw_flow *flow;
488 		struct hlist_head *head = &ti->buckets[i];
489 		struct hlist_node *n;
490 
491 		hlist_for_each_entry_safe(flow, n, head,
492 					  flow_table.node[ti->node_ver]) {
493 
494 			table_instance_flow_free(table, ti, ufid_ti,
495 						 flow, false);
496 			ovs_flow_free(flow, true);
497 		}
498 	}
499 }
500 
501 static void table_instance_destroy(struct table_instance *ti,
502 				   struct table_instance *ufid_ti)
503 {
504 	call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
505 	call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
506 }
507 
508 /* No need for locking this function is called from RCU callback or
509  * error path.
510  */
511 void ovs_flow_tbl_destroy(struct flow_table *table)
512 {
513 	struct table_instance *ti = rcu_dereference_raw(table->ti);
514 	struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
515 	struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
516 	struct mask_array *ma = rcu_dereference_raw(table->mask_array);
517 
518 	call_rcu(&mc->rcu, mask_cache_rcu_cb);
519 	call_rcu(&ma->rcu, mask_array_rcu_cb);
520 	table_instance_destroy(ti, ufid_ti);
521 }
522 
523 struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
524 				       u32 *bucket, u32 *last)
525 {
526 	struct sw_flow *flow;
527 	struct hlist_head *head;
528 	int ver;
529 	int i;
530 
531 	ver = ti->node_ver;
532 	while (*bucket < ti->n_buckets) {
533 		i = 0;
534 		head = &ti->buckets[*bucket];
535 		hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
536 			if (i < *last) {
537 				i++;
538 				continue;
539 			}
540 			*last = i + 1;
541 			return flow;
542 		}
543 		(*bucket)++;
544 		*last = 0;
545 	}
546 
547 	return NULL;
548 }
549 
550 static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
551 {
552 	hash = jhash_1word(hash, ti->hash_seed);
553 	return &ti->buckets[hash & (ti->n_buckets - 1)];
554 }
555 
556 static void table_instance_insert(struct table_instance *ti,
557 				  struct sw_flow *flow)
558 {
559 	struct hlist_head *head;
560 
561 	head = find_bucket(ti, flow->flow_table.hash);
562 	hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
563 }
564 
565 static void ufid_table_instance_insert(struct table_instance *ti,
566 				       struct sw_flow *flow)
567 {
568 	struct hlist_head *head;
569 
570 	head = find_bucket(ti, flow->ufid_table.hash);
571 	hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
572 }
573 
574 static void flow_table_copy_flows(struct table_instance *old,
575 				  struct table_instance *new, bool ufid)
576 {
577 	int old_ver;
578 	int i;
579 
580 	old_ver = old->node_ver;
581 	new->node_ver = !old_ver;
582 
583 	/* Insert in new table. */
584 	for (i = 0; i < old->n_buckets; i++) {
585 		struct sw_flow *flow;
586 		struct hlist_head *head = &old->buckets[i];
587 
588 		if (ufid)
589 			hlist_for_each_entry_rcu(flow, head,
590 						 ufid_table.node[old_ver],
591 						 lockdep_ovsl_is_held())
592 				ufid_table_instance_insert(new, flow);
593 		else
594 			hlist_for_each_entry_rcu(flow, head,
595 						 flow_table.node[old_ver],
596 						 lockdep_ovsl_is_held())
597 				table_instance_insert(new, flow);
598 	}
599 
600 	old->keep_flows = true;
601 }
602 
603 static struct table_instance *table_instance_rehash(struct table_instance *ti,
604 						    int n_buckets, bool ufid)
605 {
606 	struct table_instance *new_ti;
607 
608 	new_ti = table_instance_alloc(n_buckets);
609 	if (!new_ti)
610 		return NULL;
611 
612 	flow_table_copy_flows(ti, new_ti, ufid);
613 
614 	return new_ti;
615 }
616 
617 int ovs_flow_tbl_flush(struct flow_table *flow_table)
618 {
619 	struct table_instance *old_ti, *new_ti;
620 	struct table_instance *old_ufid_ti, *new_ufid_ti;
621 
622 	new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
623 	if (!new_ti)
624 		return -ENOMEM;
625 	new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
626 	if (!new_ufid_ti)
627 		goto err_free_ti;
628 
629 	old_ti = ovsl_dereference(flow_table->ti);
630 	old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
631 
632 	rcu_assign_pointer(flow_table->ti, new_ti);
633 	rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
634 	flow_table->last_rehash = jiffies;
635 	flow_table->count = 0;
636 	flow_table->ufid_count = 0;
637 
638 	table_instance_flow_flush(flow_table, old_ti, old_ufid_ti);
639 	table_instance_destroy(old_ti, old_ufid_ti);
640 	return 0;
641 
642 err_free_ti:
643 	__table_instance_destroy(new_ti);
644 	return -ENOMEM;
645 }
646 
647 static u32 flow_hash(const struct sw_flow_key *key,
648 		     const struct sw_flow_key_range *range)
649 {
650 	const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
651 
652 	/* Make sure number of hash bytes are multiple of u32. */
653 	int hash_u32s = range_n_bytes(range) >> 2;
654 
655 	return jhash2(hash_key, hash_u32s, 0);
656 }
657 
658 static int flow_key_start(const struct sw_flow_key *key)
659 {
660 	if (key->tun_proto)
661 		return 0;
662 	else
663 		return rounddown(offsetof(struct sw_flow_key, phy),
664 					  sizeof(long));
665 }
666 
667 static bool cmp_key(const struct sw_flow_key *key1,
668 		    const struct sw_flow_key *key2,
669 		    int key_start, int key_end)
670 {
671 	const long *cp1 = (const long *)((const u8 *)key1 + key_start);
672 	const long *cp2 = (const long *)((const u8 *)key2 + key_start);
673 	long diffs = 0;
674 	int i;
675 
676 	for (i = key_start; i < key_end;  i += sizeof(long))
677 		diffs |= *cp1++ ^ *cp2++;
678 
679 	return diffs == 0;
680 }
681 
682 static bool flow_cmp_masked_key(const struct sw_flow *flow,
683 				const struct sw_flow_key *key,
684 				const struct sw_flow_key_range *range)
685 {
686 	return cmp_key(&flow->key, key, range->start, range->end);
687 }
688 
689 static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
690 				      const struct sw_flow_match *match)
691 {
692 	struct sw_flow_key *key = match->key;
693 	int key_start = flow_key_start(key);
694 	int key_end = match->range.end;
695 
696 	BUG_ON(ovs_identifier_is_ufid(&flow->id));
697 	return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
698 }
699 
700 static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
701 					  const struct sw_flow_key *unmasked,
702 					  const struct sw_flow_mask *mask,
703 					  u32 *n_mask_hit)
704 {
705 	struct sw_flow *flow;
706 	struct hlist_head *head;
707 	u32 hash;
708 	struct sw_flow_key masked_key;
709 
710 	ovs_flow_mask_key(&masked_key, unmasked, false, mask);
711 	hash = flow_hash(&masked_key, &mask->range);
712 	head = find_bucket(ti, hash);
713 	(*n_mask_hit)++;
714 
715 	hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
716 				lockdep_ovsl_is_held()) {
717 		if (flow->mask == mask && flow->flow_table.hash == hash &&
718 		    flow_cmp_masked_key(flow, &masked_key, &mask->range))
719 			return flow;
720 	}
721 	return NULL;
722 }
723 
724 /* Flow lookup does full lookup on flow table. It starts with
725  * mask from index passed in *index.
726  */
727 static struct sw_flow *flow_lookup(struct flow_table *tbl,
728 				   struct table_instance *ti,
729 				   struct mask_array *ma,
730 				   const struct sw_flow_key *key,
731 				   u32 *n_mask_hit,
732 				   u32 *n_cache_hit,
733 				   u32 *index)
734 {
735 	u64 *usage_counters = this_cpu_ptr(ma->masks_usage_cntr);
736 	struct sw_flow *flow;
737 	struct sw_flow_mask *mask;
738 	int i;
739 
740 	if (likely(*index < ma->max)) {
741 		mask = rcu_dereference_ovsl(ma->masks[*index]);
742 		if (mask) {
743 			flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
744 			if (flow) {
745 				u64_stats_update_begin(&ma->syncp);
746 				usage_counters[*index]++;
747 				u64_stats_update_end(&ma->syncp);
748 				(*n_cache_hit)++;
749 				return flow;
750 			}
751 		}
752 	}
753 
754 	for (i = 0; i < ma->max; i++)  {
755 
756 		if (i == *index)
757 			continue;
758 
759 		mask = rcu_dereference_ovsl(ma->masks[i]);
760 		if (unlikely(!mask))
761 			break;
762 
763 		flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
764 		if (flow) { /* Found */
765 			*index = i;
766 			u64_stats_update_begin(&ma->syncp);
767 			usage_counters[*index]++;
768 			u64_stats_update_end(&ma->syncp);
769 			return flow;
770 		}
771 	}
772 
773 	return NULL;
774 }
775 
776 /*
777  * mask_cache maps flow to probable mask. This cache is not tightly
778  * coupled cache, It means updates to  mask list can result in inconsistent
779  * cache entry in mask cache.
780  * This is per cpu cache and is divided in MC_HASH_SEGS segments.
781  * In case of a hash collision the entry is hashed in next segment.
782  * */
783 struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
784 					  const struct sw_flow_key *key,
785 					  u32 skb_hash,
786 					  u32 *n_mask_hit,
787 					  u32 *n_cache_hit)
788 {
789 	struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
790 	struct mask_array *ma = rcu_dereference(tbl->mask_array);
791 	struct table_instance *ti = rcu_dereference(tbl->ti);
792 	struct mask_cache_entry *entries, *ce;
793 	struct sw_flow *flow;
794 	u32 hash;
795 	int seg;
796 
797 	*n_mask_hit = 0;
798 	*n_cache_hit = 0;
799 	if (unlikely(!skb_hash || mc->cache_size == 0)) {
800 		u32 mask_index = 0;
801 		u32 cache = 0;
802 
803 		return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
804 				   &mask_index);
805 	}
806 
807 	/* Pre and post recirulation flows usually have the same skb_hash
808 	 * value. To avoid hash collisions, rehash the 'skb_hash' with
809 	 * 'recirc_id'.  */
810 	if (key->recirc_id)
811 		skb_hash = jhash_1word(skb_hash, key->recirc_id);
812 
813 	ce = NULL;
814 	hash = skb_hash;
815 	entries = this_cpu_ptr(mc->mask_cache);
816 
817 	/* Find the cache entry 'ce' to operate on. */
818 	for (seg = 0; seg < MC_HASH_SEGS; seg++) {
819 		int index = hash & (mc->cache_size - 1);
820 		struct mask_cache_entry *e;
821 
822 		e = &entries[index];
823 		if (e->skb_hash == skb_hash) {
824 			flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
825 					   n_cache_hit, &e->mask_index);
826 			if (!flow)
827 				e->skb_hash = 0;
828 			return flow;
829 		}
830 
831 		if (!ce || e->skb_hash < ce->skb_hash)
832 			ce = e;  /* A better replacement cache candidate. */
833 
834 		hash >>= MC_HASH_SHIFT;
835 	}
836 
837 	/* Cache miss, do full lookup. */
838 	flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
839 			   &ce->mask_index);
840 	if (flow)
841 		ce->skb_hash = skb_hash;
842 
843 	*n_cache_hit = 0;
844 	return flow;
845 }
846 
847 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
848 				    const struct sw_flow_key *key)
849 {
850 	struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
851 	struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
852 	u32 __always_unused n_mask_hit;
853 	u32 __always_unused n_cache_hit;
854 	u32 index = 0;
855 
856 	return flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
857 }
858 
859 struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
860 					  const struct sw_flow_match *match)
861 {
862 	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
863 	int i;
864 
865 	/* Always called under ovs-mutex. */
866 	for (i = 0; i < ma->max; i++) {
867 		struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
868 		u32 __always_unused n_mask_hit;
869 		struct sw_flow_mask *mask;
870 		struct sw_flow *flow;
871 
872 		mask = ovsl_dereference(ma->masks[i]);
873 		if (!mask)
874 			continue;
875 
876 		flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
877 		if (flow && ovs_identifier_is_key(&flow->id) &&
878 		    ovs_flow_cmp_unmasked_key(flow, match)) {
879 			return flow;
880 		}
881 	}
882 
883 	return NULL;
884 }
885 
886 static u32 ufid_hash(const struct sw_flow_id *sfid)
887 {
888 	return jhash(sfid->ufid, sfid->ufid_len, 0);
889 }
890 
891 static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
892 			      const struct sw_flow_id *sfid)
893 {
894 	if (flow->id.ufid_len != sfid->ufid_len)
895 		return false;
896 
897 	return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
898 }
899 
900 bool ovs_flow_cmp(const struct sw_flow *flow, const struct sw_flow_match *match)
901 {
902 	if (ovs_identifier_is_ufid(&flow->id))
903 		return flow_cmp_masked_key(flow, match->key, &match->range);
904 
905 	return ovs_flow_cmp_unmasked_key(flow, match);
906 }
907 
908 struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
909 					 const struct sw_flow_id *ufid)
910 {
911 	struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
912 	struct sw_flow *flow;
913 	struct hlist_head *head;
914 	u32 hash;
915 
916 	hash = ufid_hash(ufid);
917 	head = find_bucket(ti, hash);
918 	hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
919 				lockdep_ovsl_is_held()) {
920 		if (flow->ufid_table.hash == hash &&
921 		    ovs_flow_cmp_ufid(flow, ufid))
922 			return flow;
923 	}
924 	return NULL;
925 }
926 
927 int ovs_flow_tbl_num_masks(const struct flow_table *table)
928 {
929 	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
930 	return READ_ONCE(ma->count);
931 }
932 
933 u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
934 {
935 	struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
936 
937 	return READ_ONCE(mc->cache_size);
938 }
939 
940 static struct table_instance *table_instance_expand(struct table_instance *ti,
941 						    bool ufid)
942 {
943 	return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
944 }
945 
946 /* Must be called with OVS mutex held. */
947 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
948 {
949 	struct table_instance *ti = ovsl_dereference(table->ti);
950 	struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
951 
952 	BUG_ON(table->count == 0);
953 	table_instance_flow_free(table, ti, ufid_ti, flow, true);
954 }
955 
956 static struct sw_flow_mask *mask_alloc(void)
957 {
958 	struct sw_flow_mask *mask;
959 
960 	mask = kmalloc(sizeof(*mask), GFP_KERNEL);
961 	if (mask)
962 		mask->ref_count = 1;
963 
964 	return mask;
965 }
966 
967 static bool mask_equal(const struct sw_flow_mask *a,
968 		       const struct sw_flow_mask *b)
969 {
970 	const u8 *a_ = (const u8 *)&a->key + a->range.start;
971 	const u8 *b_ = (const u8 *)&b->key + b->range.start;
972 
973 	return  (a->range.end == b->range.end)
974 		&& (a->range.start == b->range.start)
975 		&& (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
976 }
977 
978 static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
979 					   const struct sw_flow_mask *mask)
980 {
981 	struct mask_array *ma;
982 	int i;
983 
984 	ma = ovsl_dereference(tbl->mask_array);
985 	for (i = 0; i < ma->max; i++) {
986 		struct sw_flow_mask *t;
987 		t = ovsl_dereference(ma->masks[i]);
988 
989 		if (t && mask_equal(mask, t))
990 			return t;
991 	}
992 
993 	return NULL;
994 }
995 
996 /* Add 'mask' into the mask list, if it is not already there. */
997 static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
998 			    const struct sw_flow_mask *new)
999 {
1000 	struct sw_flow_mask *mask;
1001 
1002 	mask = flow_mask_find(tbl, new);
1003 	if (!mask) {
1004 		/* Allocate a new mask if none exsits. */
1005 		mask = mask_alloc();
1006 		if (!mask)
1007 			return -ENOMEM;
1008 		mask->key = new->key;
1009 		mask->range = new->range;
1010 
1011 		/* Add mask to mask-list. */
1012 		if (tbl_mask_array_add_mask(tbl, mask)) {
1013 			kfree(mask);
1014 			return -ENOMEM;
1015 		}
1016 	} else {
1017 		BUG_ON(!mask->ref_count);
1018 		mask->ref_count++;
1019 	}
1020 
1021 	flow->mask = mask;
1022 	return 0;
1023 }
1024 
1025 /* Must be called with OVS mutex held. */
1026 static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1027 {
1028 	struct table_instance *new_ti = NULL;
1029 	struct table_instance *ti;
1030 
1031 	flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1032 	ti = ovsl_dereference(table->ti);
1033 	table_instance_insert(ti, flow);
1034 	table->count++;
1035 
1036 	/* Expand table, if necessary, to make room. */
1037 	if (table->count > ti->n_buckets)
1038 		new_ti = table_instance_expand(ti, false);
1039 	else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1040 		new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1041 
1042 	if (new_ti) {
1043 		rcu_assign_pointer(table->ti, new_ti);
1044 		call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1045 		table->last_rehash = jiffies;
1046 	}
1047 }
1048 
1049 /* Must be called with OVS mutex held. */
1050 static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1051 {
1052 	struct table_instance *ti;
1053 
1054 	flow->ufid_table.hash = ufid_hash(&flow->id);
1055 	ti = ovsl_dereference(table->ufid_ti);
1056 	ufid_table_instance_insert(ti, flow);
1057 	table->ufid_count++;
1058 
1059 	/* Expand table, if necessary, to make room. */
1060 	if (table->ufid_count > ti->n_buckets) {
1061 		struct table_instance *new_ti;
1062 
1063 		new_ti = table_instance_expand(ti, true);
1064 		if (new_ti) {
1065 			rcu_assign_pointer(table->ufid_ti, new_ti);
1066 			call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1067 		}
1068 	}
1069 }
1070 
1071 /* Must be called with OVS mutex held. */
1072 int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1073 			const struct sw_flow_mask *mask)
1074 {
1075 	int err;
1076 
1077 	err = flow_mask_insert(table, flow, mask);
1078 	if (err)
1079 		return err;
1080 	flow_key_insert(table, flow);
1081 	if (ovs_identifier_is_ufid(&flow->id))
1082 		flow_ufid_insert(table, flow);
1083 
1084 	return 0;
1085 }
1086 
1087 static int compare_mask_and_count(const void *a, const void *b)
1088 {
1089 	const struct mask_count *mc_a = a;
1090 	const struct mask_count *mc_b = b;
1091 
1092 	return (s64)mc_b->counter - (s64)mc_a->counter;
1093 }
1094 
1095 /* Must be called with OVS mutex held. */
1096 void ovs_flow_masks_rebalance(struct flow_table *table)
1097 {
1098 	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1099 	struct mask_count *masks_and_count;
1100 	struct mask_array *new;
1101 	int masks_entries = 0;
1102 	int i;
1103 
1104 	/* Build array of all current entries with use counters. */
1105 	masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1106 					GFP_KERNEL);
1107 	if (!masks_and_count)
1108 		return;
1109 
1110 	for (i = 0; i < ma->max; i++)  {
1111 		struct sw_flow_mask *mask;
1112 		unsigned int start;
1113 		int cpu;
1114 
1115 		mask = rcu_dereference_ovsl(ma->masks[i]);
1116 		if (unlikely(!mask))
1117 			break;
1118 
1119 		masks_and_count[i].index = i;
1120 		masks_and_count[i].counter = 0;
1121 
1122 		for_each_possible_cpu(cpu) {
1123 			u64 *usage_counters = per_cpu_ptr(ma->masks_usage_cntr,
1124 							  cpu);
1125 			u64 counter;
1126 
1127 			do {
1128 				start = u64_stats_fetch_begin_irq(&ma->syncp);
1129 				counter = usage_counters[i];
1130 			} while (u64_stats_fetch_retry_irq(&ma->syncp, start));
1131 
1132 			masks_and_count[i].counter += counter;
1133 		}
1134 
1135 		/* Subtract the zero count value. */
1136 		masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1137 
1138 		/* Rather than calling tbl_mask_array_reset_counters()
1139 		 * below when no change is needed, do it inline here.
1140 		 */
1141 		ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1142 	}
1143 
1144 	if (i == 0)
1145 		goto free_mask_entries;
1146 
1147 	/* Sort the entries */
1148 	masks_entries = i;
1149 	sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1150 	     compare_mask_and_count, NULL);
1151 
1152 	/* If the order is the same, nothing to do... */
1153 	for (i = 0; i < masks_entries; i++) {
1154 		if (i != masks_and_count[i].index)
1155 			break;
1156 	}
1157 	if (i == masks_entries)
1158 		goto free_mask_entries;
1159 
1160 	/* Rebuilt the new list in order of usage. */
1161 	new = tbl_mask_array_alloc(ma->max);
1162 	if (!new)
1163 		goto free_mask_entries;
1164 
1165 	for (i = 0; i < masks_entries; i++) {
1166 		int index = masks_and_count[i].index;
1167 
1168 		if (ovsl_dereference(ma->masks[index]))
1169 			new->masks[new->count++] = ma->masks[index];
1170 	}
1171 
1172 	rcu_assign_pointer(table->mask_array, new);
1173 	call_rcu(&ma->rcu, mask_array_rcu_cb);
1174 
1175 free_mask_entries:
1176 	kfree(masks_and_count);
1177 }
1178 
1179 /* Initializes the flow module.
1180  * Returns zero if successful or a negative error code. */
1181 int ovs_flow_init(void)
1182 {
1183 	BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1184 	BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1185 
1186 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1187 				       + (nr_cpu_ids
1188 					  * sizeof(struct sw_flow_stats *)),
1189 				       0, 0, NULL);
1190 	if (flow_cache == NULL)
1191 		return -ENOMEM;
1192 
1193 	flow_stats_cache
1194 		= kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1195 				    0, SLAB_HWCACHE_ALIGN, NULL);
1196 	if (flow_stats_cache == NULL) {
1197 		kmem_cache_destroy(flow_cache);
1198 		flow_cache = NULL;
1199 		return -ENOMEM;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /* Uninitializes the flow module. */
1206 void ovs_flow_exit(void)
1207 {
1208 	kmem_cache_destroy(flow_stats_cache);
1209 	kmem_cache_destroy(flow_cache);
1210 }
1211