xref: /openbmc/linux/net/openvswitch/flow_netlink.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40 
41 #include "drop.h"
42 #include "flow_netlink.h"
43 
44 struct ovs_len_tbl {
45 	int len;
46 	const struct ovs_len_tbl *next;
47 };
48 
49 #define OVS_ATTR_NESTED -1
50 #define OVS_ATTR_VARIABLE -2
51 
52 static bool actions_may_change_flow(const struct nlattr *actions)
53 {
54 	struct nlattr *nla;
55 	int rem;
56 
57 	nla_for_each_nested(nla, actions, rem) {
58 		u16 action = nla_type(nla);
59 
60 		switch (action) {
61 		case OVS_ACTION_ATTR_OUTPUT:
62 		case OVS_ACTION_ATTR_RECIRC:
63 		case OVS_ACTION_ATTR_TRUNC:
64 		case OVS_ACTION_ATTR_USERSPACE:
65 		case OVS_ACTION_ATTR_DROP:
66 			break;
67 
68 		case OVS_ACTION_ATTR_CT:
69 		case OVS_ACTION_ATTR_CT_CLEAR:
70 		case OVS_ACTION_ATTR_HASH:
71 		case OVS_ACTION_ATTR_POP_ETH:
72 		case OVS_ACTION_ATTR_POP_MPLS:
73 		case OVS_ACTION_ATTR_POP_NSH:
74 		case OVS_ACTION_ATTR_POP_VLAN:
75 		case OVS_ACTION_ATTR_PUSH_ETH:
76 		case OVS_ACTION_ATTR_PUSH_MPLS:
77 		case OVS_ACTION_ATTR_PUSH_NSH:
78 		case OVS_ACTION_ATTR_PUSH_VLAN:
79 		case OVS_ACTION_ATTR_SAMPLE:
80 		case OVS_ACTION_ATTR_SET:
81 		case OVS_ACTION_ATTR_SET_MASKED:
82 		case OVS_ACTION_ATTR_METER:
83 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
84 		case OVS_ACTION_ATTR_ADD_MPLS:
85 		case OVS_ACTION_ATTR_DEC_TTL:
86 		default:
87 			return true;
88 		}
89 	}
90 	return false;
91 }
92 
93 static void update_range(struct sw_flow_match *match,
94 			 size_t offset, size_t size, bool is_mask)
95 {
96 	struct sw_flow_key_range *range;
97 	size_t start = rounddown(offset, sizeof(long));
98 	size_t end = roundup(offset + size, sizeof(long));
99 
100 	if (!is_mask)
101 		range = &match->range;
102 	else
103 		range = &match->mask->range;
104 
105 	if (range->start == range->end) {
106 		range->start = start;
107 		range->end = end;
108 		return;
109 	}
110 
111 	if (range->start > start)
112 		range->start = start;
113 
114 	if (range->end < end)
115 		range->end = end;
116 }
117 
118 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
119 	do { \
120 		update_range(match, offsetof(struct sw_flow_key, field),    \
121 			     sizeof((match)->key->field), is_mask);	    \
122 		if (is_mask)						    \
123 			(match)->mask->key.field = value;		    \
124 		else							    \
125 			(match)->key->field = value;		            \
126 	} while (0)
127 
128 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
129 	do {								    \
130 		update_range(match, offset, len, is_mask);		    \
131 		if (is_mask)						    \
132 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
133 			       len);					   \
134 		else							    \
135 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
136 	} while (0)
137 
138 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
139 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
140 				  value_p, len, is_mask)
141 
142 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
143 	do {								    \
144 		update_range(match, offsetof(struct sw_flow_key, field),    \
145 			     sizeof((match)->key->field), is_mask);	    \
146 		if (is_mask)						    \
147 			memset((u8 *)&(match)->mask->key.field, value,      \
148 			       sizeof((match)->mask->key.field));	    \
149 		else							    \
150 			memset((u8 *)&(match)->key->field, value,           \
151 			       sizeof((match)->key->field));                \
152 	} while (0)
153 
154 static bool match_validate(const struct sw_flow_match *match,
155 			   u64 key_attrs, u64 mask_attrs, bool log)
156 {
157 	u64 key_expected = 0;
158 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
159 
160 	/* The following mask attributes allowed only if they
161 	 * pass the validation tests. */
162 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
163 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
164 			| (1 << OVS_KEY_ATTR_IPV6)
165 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
166 			| (1 << OVS_KEY_ATTR_TCP)
167 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
168 			| (1 << OVS_KEY_ATTR_UDP)
169 			| (1 << OVS_KEY_ATTR_SCTP)
170 			| (1 << OVS_KEY_ATTR_ICMP)
171 			| (1 << OVS_KEY_ATTR_ICMPV6)
172 			| (1 << OVS_KEY_ATTR_ARP)
173 			| (1 << OVS_KEY_ATTR_ND)
174 			| (1 << OVS_KEY_ATTR_MPLS)
175 			| (1 << OVS_KEY_ATTR_NSH));
176 
177 	/* Always allowed mask fields. */
178 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
179 		       | (1 << OVS_KEY_ATTR_IN_PORT)
180 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
181 
182 	/* Check key attributes. */
183 	if (match->key->eth.type == htons(ETH_P_ARP)
184 			|| match->key->eth.type == htons(ETH_P_RARP)) {
185 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
186 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
187 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
188 	}
189 
190 	if (eth_p_mpls(match->key->eth.type)) {
191 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
192 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
193 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
194 	}
195 
196 	if (match->key->eth.type == htons(ETH_P_IP)) {
197 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
198 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
199 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
200 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
201 		}
202 
203 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
204 			if (match->key->ip.proto == IPPROTO_UDP) {
205 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
206 				if (match->mask && (match->mask->key.ip.proto == 0xff))
207 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
208 			}
209 
210 			if (match->key->ip.proto == IPPROTO_SCTP) {
211 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
212 				if (match->mask && (match->mask->key.ip.proto == 0xff))
213 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
214 			}
215 
216 			if (match->key->ip.proto == IPPROTO_TCP) {
217 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
218 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
219 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
220 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
221 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
222 				}
223 			}
224 
225 			if (match->key->ip.proto == IPPROTO_ICMP) {
226 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
227 				if (match->mask && (match->mask->key.ip.proto == 0xff))
228 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
229 			}
230 		}
231 	}
232 
233 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
234 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
235 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
236 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
237 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
238 		}
239 
240 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
241 			if (match->key->ip.proto == IPPROTO_UDP) {
242 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
243 				if (match->mask && (match->mask->key.ip.proto == 0xff))
244 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
245 			}
246 
247 			if (match->key->ip.proto == IPPROTO_SCTP) {
248 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
249 				if (match->mask && (match->mask->key.ip.proto == 0xff))
250 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
251 			}
252 
253 			if (match->key->ip.proto == IPPROTO_TCP) {
254 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
255 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
256 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
257 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
258 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
259 				}
260 			}
261 
262 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
263 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
264 				if (match->mask && (match->mask->key.ip.proto == 0xff))
265 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
266 
267 				if (match->key->tp.src ==
268 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
269 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
270 					key_expected |= 1 << OVS_KEY_ATTR_ND;
271 					/* Original direction conntrack tuple
272 					 * uses the same space as the ND fields
273 					 * in the key, so both are not allowed
274 					 * at the same time.
275 					 */
276 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
277 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
278 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
279 				}
280 			}
281 		}
282 	}
283 
284 	if (match->key->eth.type == htons(ETH_P_NSH)) {
285 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
286 		if (match->mask &&
287 		    match->mask->key.eth.type == htons(0xffff)) {
288 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
289 		}
290 	}
291 
292 	if ((key_attrs & key_expected) != key_expected) {
293 		/* Key attributes check failed. */
294 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
295 			  (unsigned long long)key_attrs,
296 			  (unsigned long long)key_expected);
297 		return false;
298 	}
299 
300 	if ((mask_attrs & mask_allowed) != mask_attrs) {
301 		/* Mask attributes check failed. */
302 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
303 			  (unsigned long long)mask_attrs,
304 			  (unsigned long long)mask_allowed);
305 		return false;
306 	}
307 
308 	return true;
309 }
310 
311 size_t ovs_tun_key_attr_size(void)
312 {
313 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
314 	 * updating this function.
315 	 */
316 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
317 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
318 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
319 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
320 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
321 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
322 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
323 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
324 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
325 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
326 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
327 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
328 		 */
329 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
330 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
331 }
332 
333 static size_t ovs_nsh_key_attr_size(void)
334 {
335 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
336 	 * updating this function.
337 	 */
338 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
339 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
340 		 * mutually exclusive, so the bigger one can cover
341 		 * the small one.
342 		 */
343 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
344 }
345 
346 size_t ovs_key_attr_size(void)
347 {
348 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
349 	 * updating this function.
350 	 */
351 	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
352 
353 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
354 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
355 		  + ovs_tun_key_attr_size()
356 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
357 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
358 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
359 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
360 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
361 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
362 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
363 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
364 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
365 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
366 		  + ovs_nsh_key_attr_size()
367 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
368 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
369 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
370 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
371 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
372 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
373 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
374 		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
375 		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
376 }
377 
378 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
379 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
380 };
381 
382 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
383 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
384 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
385 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
386 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
387 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
388 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
389 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
390 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
391 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
392 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
393 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
394 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
395 						.next = ovs_vxlan_ext_key_lens },
396 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
397 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
398 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
399 	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
400 };
401 
402 static const struct ovs_len_tbl
403 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
404 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
405 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
406 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
407 };
408 
409 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
410 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
411 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
412 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
413 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
414 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
415 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
416 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
417 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
418 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
419 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
420 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
421 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
422 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
423 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
424 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
425 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
426 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
427 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
428 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
429 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
430 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
431 				     .next = ovs_tunnel_key_lens, },
432 	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
433 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
434 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
435 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
436 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
437 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
438 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
439 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
440 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
441 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
442 				     .next = ovs_nsh_key_attr_lens, },
443 	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
444 		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
445 };
446 
447 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
448 {
449 	return expected_len == attr_len ||
450 	       expected_len == OVS_ATTR_NESTED ||
451 	       expected_len == OVS_ATTR_VARIABLE;
452 }
453 
454 static bool is_all_zero(const u8 *fp, size_t size)
455 {
456 	int i;
457 
458 	if (!fp)
459 		return false;
460 
461 	for (i = 0; i < size; i++)
462 		if (fp[i])
463 			return false;
464 
465 	return true;
466 }
467 
468 static int __parse_flow_nlattrs(const struct nlattr *attr,
469 				const struct nlattr *a[],
470 				u64 *attrsp, bool log, bool nz)
471 {
472 	const struct nlattr *nla;
473 	u64 attrs;
474 	int rem;
475 
476 	attrs = *attrsp;
477 	nla_for_each_nested(nla, attr, rem) {
478 		u16 type = nla_type(nla);
479 		int expected_len;
480 
481 		if (type > OVS_KEY_ATTR_MAX) {
482 			OVS_NLERR(log, "Key type %d is out of range max %d",
483 				  type, OVS_KEY_ATTR_MAX);
484 			return -EINVAL;
485 		}
486 
487 		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
488 		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
489 		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
490 			OVS_NLERR(log, "Key type %d is not supported", type);
491 			return -EINVAL;
492 		}
493 
494 		if (attrs & (1ULL << type)) {
495 			OVS_NLERR(log, "Duplicate key (type %d).", type);
496 			return -EINVAL;
497 		}
498 
499 		expected_len = ovs_key_lens[type].len;
500 		if (!check_attr_len(nla_len(nla), expected_len)) {
501 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
502 				  type, nla_len(nla), expected_len);
503 			return -EINVAL;
504 		}
505 
506 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
507 			attrs |= 1ULL << type;
508 			a[type] = nla;
509 		}
510 	}
511 	if (rem) {
512 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
513 		return -EINVAL;
514 	}
515 
516 	*attrsp = attrs;
517 	return 0;
518 }
519 
520 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
521 				   const struct nlattr *a[], u64 *attrsp,
522 				   bool log)
523 {
524 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
525 }
526 
527 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
528 		       u64 *attrsp, bool log)
529 {
530 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
531 }
532 
533 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
534 				     struct sw_flow_match *match, bool is_mask,
535 				     bool log)
536 {
537 	unsigned long opt_key_offset;
538 
539 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
540 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
541 			  nla_len(a), sizeof(match->key->tun_opts));
542 		return -EINVAL;
543 	}
544 
545 	if (nla_len(a) % 4 != 0) {
546 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
547 			  nla_len(a));
548 		return -EINVAL;
549 	}
550 
551 	/* We need to record the length of the options passed
552 	 * down, otherwise packets with the same format but
553 	 * additional options will be silently matched.
554 	 */
555 	if (!is_mask) {
556 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
557 				false);
558 	} else {
559 		/* This is somewhat unusual because it looks at
560 		 * both the key and mask while parsing the
561 		 * attributes (and by extension assumes the key
562 		 * is parsed first). Normally, we would verify
563 		 * that each is the correct length and that the
564 		 * attributes line up in the validate function.
565 		 * However, that is difficult because this is
566 		 * variable length and we won't have the
567 		 * information later.
568 		 */
569 		if (match->key->tun_opts_len != nla_len(a)) {
570 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
571 				  match->key->tun_opts_len, nla_len(a));
572 			return -EINVAL;
573 		}
574 
575 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
576 	}
577 
578 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
579 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
580 				  nla_len(a), is_mask);
581 	return 0;
582 }
583 
584 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
585 				     struct sw_flow_match *match, bool is_mask,
586 				     bool log)
587 {
588 	struct nlattr *a;
589 	int rem;
590 	unsigned long opt_key_offset;
591 	struct vxlan_metadata opts;
592 
593 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
594 
595 	memset(&opts, 0, sizeof(opts));
596 	nla_for_each_nested(a, attr, rem) {
597 		int type = nla_type(a);
598 
599 		if (type > OVS_VXLAN_EXT_MAX) {
600 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
601 				  type, OVS_VXLAN_EXT_MAX);
602 			return -EINVAL;
603 		}
604 
605 		if (!check_attr_len(nla_len(a),
606 				    ovs_vxlan_ext_key_lens[type].len)) {
607 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
608 				  type, nla_len(a),
609 				  ovs_vxlan_ext_key_lens[type].len);
610 			return -EINVAL;
611 		}
612 
613 		switch (type) {
614 		case OVS_VXLAN_EXT_GBP:
615 			opts.gbp = nla_get_u32(a);
616 			break;
617 		default:
618 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
619 				  type);
620 			return -EINVAL;
621 		}
622 	}
623 	if (rem) {
624 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
625 			  rem);
626 		return -EINVAL;
627 	}
628 
629 	if (!is_mask)
630 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
631 	else
632 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
633 
634 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
635 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
636 				  is_mask);
637 	return 0;
638 }
639 
640 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
641 				      struct sw_flow_match *match, bool is_mask,
642 				      bool log)
643 {
644 	unsigned long opt_key_offset;
645 
646 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
647 		     sizeof(match->key->tun_opts));
648 
649 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
650 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
651 			  nla_len(a), sizeof(match->key->tun_opts));
652 		return -EINVAL;
653 	}
654 
655 	if (!is_mask)
656 		SW_FLOW_KEY_PUT(match, tun_opts_len,
657 				sizeof(struct erspan_metadata), false);
658 	else
659 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
660 
661 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
662 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
663 				  nla_len(a), is_mask);
664 	return 0;
665 }
666 
667 static int ip_tun_from_nlattr(const struct nlattr *attr,
668 			      struct sw_flow_match *match, bool is_mask,
669 			      bool log)
670 {
671 	bool ttl = false, ipv4 = false, ipv6 = false;
672 	bool info_bridge_mode = false;
673 	__be16 tun_flags = 0;
674 	int opts_type = 0;
675 	struct nlattr *a;
676 	int rem;
677 
678 	nla_for_each_nested(a, attr, rem) {
679 		int type = nla_type(a);
680 		int err;
681 
682 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
683 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
684 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
685 			return -EINVAL;
686 		}
687 
688 		if (!check_attr_len(nla_len(a),
689 				    ovs_tunnel_key_lens[type].len)) {
690 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
691 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
692 			return -EINVAL;
693 		}
694 
695 		switch (type) {
696 		case OVS_TUNNEL_KEY_ATTR_ID:
697 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
698 					nla_get_be64(a), is_mask);
699 			tun_flags |= TUNNEL_KEY;
700 			break;
701 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
702 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
703 					nla_get_in_addr(a), is_mask);
704 			ipv4 = true;
705 			break;
706 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
707 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
708 					nla_get_in_addr(a), is_mask);
709 			ipv4 = true;
710 			break;
711 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
712 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
713 					nla_get_in6_addr(a), is_mask);
714 			ipv6 = true;
715 			break;
716 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
717 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
718 					nla_get_in6_addr(a), is_mask);
719 			ipv6 = true;
720 			break;
721 		case OVS_TUNNEL_KEY_ATTR_TOS:
722 			SW_FLOW_KEY_PUT(match, tun_key.tos,
723 					nla_get_u8(a), is_mask);
724 			break;
725 		case OVS_TUNNEL_KEY_ATTR_TTL:
726 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
727 					nla_get_u8(a), is_mask);
728 			ttl = true;
729 			break;
730 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
731 			tun_flags |= TUNNEL_DONT_FRAGMENT;
732 			break;
733 		case OVS_TUNNEL_KEY_ATTR_CSUM:
734 			tun_flags |= TUNNEL_CSUM;
735 			break;
736 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
737 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
738 					nla_get_be16(a), is_mask);
739 			break;
740 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
741 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
742 					nla_get_be16(a), is_mask);
743 			break;
744 		case OVS_TUNNEL_KEY_ATTR_OAM:
745 			tun_flags |= TUNNEL_OAM;
746 			break;
747 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
748 			if (opts_type) {
749 				OVS_NLERR(log, "Multiple metadata blocks provided");
750 				return -EINVAL;
751 			}
752 
753 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
754 			if (err)
755 				return err;
756 
757 			tun_flags |= TUNNEL_GENEVE_OPT;
758 			opts_type = type;
759 			break;
760 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
761 			if (opts_type) {
762 				OVS_NLERR(log, "Multiple metadata blocks provided");
763 				return -EINVAL;
764 			}
765 
766 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
767 			if (err)
768 				return err;
769 
770 			tun_flags |= TUNNEL_VXLAN_OPT;
771 			opts_type = type;
772 			break;
773 		case OVS_TUNNEL_KEY_ATTR_PAD:
774 			break;
775 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
776 			if (opts_type) {
777 				OVS_NLERR(log, "Multiple metadata blocks provided");
778 				return -EINVAL;
779 			}
780 
781 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
782 							 log);
783 			if (err)
784 				return err;
785 
786 			tun_flags |= TUNNEL_ERSPAN_OPT;
787 			opts_type = type;
788 			break;
789 		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
790 			info_bridge_mode = true;
791 			ipv4 = true;
792 			break;
793 		default:
794 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
795 				  type);
796 			return -EINVAL;
797 		}
798 	}
799 
800 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
801 	if (is_mask)
802 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
803 	else
804 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
805 				false);
806 
807 	if (rem > 0) {
808 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
809 			  rem);
810 		return -EINVAL;
811 	}
812 
813 	if (ipv4 && ipv6) {
814 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
815 		return -EINVAL;
816 	}
817 
818 	if (!is_mask) {
819 		if (!ipv4 && !ipv6) {
820 			OVS_NLERR(log, "IP tunnel dst address not specified");
821 			return -EINVAL;
822 		}
823 		if (ipv4) {
824 			if (info_bridge_mode) {
825 				if (match->key->tun_key.u.ipv4.src ||
826 				    match->key->tun_key.u.ipv4.dst ||
827 				    match->key->tun_key.tp_src ||
828 				    match->key->tun_key.tp_dst ||
829 				    match->key->tun_key.ttl ||
830 				    match->key->tun_key.tos ||
831 				    tun_flags & ~TUNNEL_KEY) {
832 					OVS_NLERR(log, "IPv4 tun info is not correct");
833 					return -EINVAL;
834 				}
835 			} else if (!match->key->tun_key.u.ipv4.dst) {
836 				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
837 				return -EINVAL;
838 			}
839 		}
840 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
841 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
842 			return -EINVAL;
843 		}
844 
845 		if (!ttl && !info_bridge_mode) {
846 			OVS_NLERR(log, "IP tunnel TTL not specified.");
847 			return -EINVAL;
848 		}
849 	}
850 
851 	return opts_type;
852 }
853 
854 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
855 			       const void *tun_opts, int swkey_tun_opts_len)
856 {
857 	const struct vxlan_metadata *opts = tun_opts;
858 	struct nlattr *nla;
859 
860 	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
861 	if (!nla)
862 		return -EMSGSIZE;
863 
864 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
865 		return -EMSGSIZE;
866 
867 	nla_nest_end(skb, nla);
868 	return 0;
869 }
870 
871 static int __ip_tun_to_nlattr(struct sk_buff *skb,
872 			      const struct ip_tunnel_key *output,
873 			      const void *tun_opts, int swkey_tun_opts_len,
874 			      unsigned short tun_proto, u8 mode)
875 {
876 	if (output->tun_flags & TUNNEL_KEY &&
877 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
878 			 OVS_TUNNEL_KEY_ATTR_PAD))
879 		return -EMSGSIZE;
880 
881 	if (mode & IP_TUNNEL_INFO_BRIDGE)
882 		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
883 		       ? -EMSGSIZE : 0;
884 
885 	switch (tun_proto) {
886 	case AF_INET:
887 		if (output->u.ipv4.src &&
888 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
889 				    output->u.ipv4.src))
890 			return -EMSGSIZE;
891 		if (output->u.ipv4.dst &&
892 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
893 				    output->u.ipv4.dst))
894 			return -EMSGSIZE;
895 		break;
896 	case AF_INET6:
897 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
898 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
899 				     &output->u.ipv6.src))
900 			return -EMSGSIZE;
901 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
902 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
903 				     &output->u.ipv6.dst))
904 			return -EMSGSIZE;
905 		break;
906 	}
907 	if (output->tos &&
908 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
909 		return -EMSGSIZE;
910 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
911 		return -EMSGSIZE;
912 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
913 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
914 		return -EMSGSIZE;
915 	if ((output->tun_flags & TUNNEL_CSUM) &&
916 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
917 		return -EMSGSIZE;
918 	if (output->tp_src &&
919 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
920 		return -EMSGSIZE;
921 	if (output->tp_dst &&
922 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
923 		return -EMSGSIZE;
924 	if ((output->tun_flags & TUNNEL_OAM) &&
925 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
926 		return -EMSGSIZE;
927 	if (swkey_tun_opts_len) {
928 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
929 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
930 			    swkey_tun_opts_len, tun_opts))
931 			return -EMSGSIZE;
932 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
933 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
934 			return -EMSGSIZE;
935 		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
936 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
937 				 swkey_tun_opts_len, tun_opts))
938 			return -EMSGSIZE;
939 	}
940 
941 	return 0;
942 }
943 
944 static int ip_tun_to_nlattr(struct sk_buff *skb,
945 			    const struct ip_tunnel_key *output,
946 			    const void *tun_opts, int swkey_tun_opts_len,
947 			    unsigned short tun_proto, u8 mode)
948 {
949 	struct nlattr *nla;
950 	int err;
951 
952 	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
953 	if (!nla)
954 		return -EMSGSIZE;
955 
956 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
957 				 tun_proto, mode);
958 	if (err)
959 		return err;
960 
961 	nla_nest_end(skb, nla);
962 	return 0;
963 }
964 
965 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
966 			    struct ip_tunnel_info *tun_info)
967 {
968 	return __ip_tun_to_nlattr(skb, &tun_info->key,
969 				  ip_tunnel_info_opts(tun_info),
970 				  tun_info->options_len,
971 				  ip_tunnel_info_af(tun_info), tun_info->mode);
972 }
973 
974 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
975 				    const struct nlattr *a[],
976 				    bool is_mask, bool inner)
977 {
978 	__be16 tci = 0;
979 	__be16 tpid = 0;
980 
981 	if (a[OVS_KEY_ATTR_VLAN])
982 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
983 
984 	if (a[OVS_KEY_ATTR_ETHERTYPE])
985 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
986 
987 	if (likely(!inner)) {
988 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
989 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
990 	} else {
991 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
992 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
993 	}
994 	return 0;
995 }
996 
997 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
998 				      u64 key_attrs, bool inner,
999 				      const struct nlattr **a, bool log)
1000 {
1001 	__be16 tci = 0;
1002 
1003 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1004 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1005 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1006 		/* Not a VLAN. */
1007 		return 0;
1008 	}
1009 
1010 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1011 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1012 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1013 		return -EINVAL;
1014 	}
1015 
1016 	if (a[OVS_KEY_ATTR_VLAN])
1017 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1018 
1019 	if (!(tci & htons(VLAN_CFI_MASK))) {
1020 		if (tci) {
1021 			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1022 				  (inner) ? "C-VLAN" : "VLAN");
1023 			return -EINVAL;
1024 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1025 			/* Corner case for truncated VLAN header. */
1026 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1027 				  (inner) ? "C-VLAN" : "VLAN");
1028 			return -EINVAL;
1029 		}
1030 	}
1031 
1032 	return 1;
1033 }
1034 
1035 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1036 					   u64 key_attrs, bool inner,
1037 					   const struct nlattr **a, bool log)
1038 {
1039 	__be16 tci = 0;
1040 	__be16 tpid = 0;
1041 	bool encap_valid = !!(match->key->eth.vlan.tci &
1042 			      htons(VLAN_CFI_MASK));
1043 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1044 				htons(VLAN_CFI_MASK));
1045 
1046 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1047 		/* Not a VLAN. */
1048 		return 0;
1049 	}
1050 
1051 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1052 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1053 			  (inner) ? "C-VLAN" : "VLAN");
1054 		return -EINVAL;
1055 	}
1056 
1057 	if (a[OVS_KEY_ATTR_VLAN])
1058 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1059 
1060 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1061 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1062 
1063 	if (tpid != htons(0xffff)) {
1064 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1065 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1066 		return -EINVAL;
1067 	}
1068 	if (!(tci & htons(VLAN_CFI_MASK))) {
1069 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1070 			  (inner) ? "C-VLAN" : "VLAN");
1071 		return -EINVAL;
1072 	}
1073 
1074 	return 1;
1075 }
1076 
1077 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1078 				     u64 *key_attrs, bool inner,
1079 				     const struct nlattr **a, bool is_mask,
1080 				     bool log)
1081 {
1082 	int err;
1083 	const struct nlattr *encap;
1084 
1085 	if (!is_mask)
1086 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1087 						 a, log);
1088 	else
1089 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1090 						      a, log);
1091 	if (err <= 0)
1092 		return err;
1093 
1094 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1095 	if (err)
1096 		return err;
1097 
1098 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1099 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1100 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1101 
1102 	encap = a[OVS_KEY_ATTR_ENCAP];
1103 
1104 	if (!is_mask)
1105 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1106 	else
1107 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1108 
1109 	return err;
1110 }
1111 
1112 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1113 				   u64 *key_attrs, const struct nlattr **a,
1114 				   bool is_mask, bool log)
1115 {
1116 	int err;
1117 	bool encap_valid = false;
1118 
1119 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1120 					is_mask, log);
1121 	if (err)
1122 		return err;
1123 
1124 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1125 	if (encap_valid) {
1126 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1127 						is_mask, log);
1128 		if (err)
1129 			return err;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1136 				       u64 *attrs, const struct nlattr **a,
1137 				       bool is_mask, bool log)
1138 {
1139 	__be16 eth_type;
1140 
1141 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1142 	if (is_mask) {
1143 		/* Always exact match EtherType. */
1144 		eth_type = htons(0xffff);
1145 	} else if (!eth_proto_is_802_3(eth_type)) {
1146 		OVS_NLERR(log, "EtherType %x is less than min %x",
1147 				ntohs(eth_type), ETH_P_802_3_MIN);
1148 		return -EINVAL;
1149 	}
1150 
1151 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1152 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1153 	return 0;
1154 }
1155 
1156 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1157 				 u64 *attrs, const struct nlattr **a,
1158 				 bool is_mask, bool log)
1159 {
1160 	u8 mac_proto = MAC_PROTO_ETHERNET;
1161 
1162 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1163 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1164 
1165 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1166 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1167 	}
1168 
1169 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1170 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1171 
1172 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1173 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1174 	}
1175 
1176 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1177 		SW_FLOW_KEY_PUT(match, phy.priority,
1178 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1179 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1180 	}
1181 
1182 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1183 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1184 
1185 		if (is_mask) {
1186 			in_port = 0xffffffff; /* Always exact match in_port. */
1187 		} else if (in_port >= DP_MAX_PORTS) {
1188 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1189 				  in_port, DP_MAX_PORTS);
1190 			return -EINVAL;
1191 		}
1192 
1193 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1194 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1195 	} else if (!is_mask) {
1196 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1197 	}
1198 
1199 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1200 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1201 
1202 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1203 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1204 	}
1205 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1206 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1207 				       is_mask, log) < 0)
1208 			return -EINVAL;
1209 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1210 	}
1211 
1212 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1213 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1214 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1215 
1216 		if (ct_state & ~CT_SUPPORTED_MASK) {
1217 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1218 				  ct_state);
1219 			return -EINVAL;
1220 		}
1221 
1222 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1223 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1224 	}
1225 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1226 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1227 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1228 
1229 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1230 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1231 	}
1232 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1233 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1234 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1235 
1236 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1237 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1238 	}
1239 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1240 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1241 		const struct ovs_key_ct_labels *cl;
1242 
1243 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1244 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1245 				   sizeof(*cl), is_mask);
1246 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1247 	}
1248 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1249 		const struct ovs_key_ct_tuple_ipv4 *ct;
1250 
1251 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1252 
1253 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1254 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1255 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1256 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1257 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1258 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1259 	}
1260 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1261 		const struct ovs_key_ct_tuple_ipv6 *ct;
1262 
1263 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1264 
1265 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1266 				   sizeof(match->key->ipv6.ct_orig.src),
1267 				   is_mask);
1268 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1269 				   sizeof(match->key->ipv6.ct_orig.dst),
1270 				   is_mask);
1271 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1272 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1273 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1274 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1275 	}
1276 
1277 	/* For layer 3 packets the Ethernet type is provided
1278 	 * and treated as metadata but no MAC addresses are provided.
1279 	 */
1280 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1281 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1282 		mac_proto = MAC_PROTO_NONE;
1283 
1284 	/* Always exact match mac_proto */
1285 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1286 
1287 	if (mac_proto == MAC_PROTO_NONE)
1288 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1289 						   log);
1290 
1291 	return 0;
1292 }
1293 
1294 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1295 			struct nshhdr *nh, size_t size)
1296 {
1297 	struct nlattr *a;
1298 	int rem;
1299 	u8 flags = 0;
1300 	u8 ttl = 0;
1301 	int mdlen = 0;
1302 
1303 	/* validate_nsh has check this, so we needn't do duplicate check here
1304 	 */
1305 	if (size < NSH_BASE_HDR_LEN)
1306 		return -ENOBUFS;
1307 
1308 	nla_for_each_nested(a, attr, rem) {
1309 		int type = nla_type(a);
1310 
1311 		switch (type) {
1312 		case OVS_NSH_KEY_ATTR_BASE: {
1313 			const struct ovs_nsh_key_base *base = nla_data(a);
1314 
1315 			flags = base->flags;
1316 			ttl = base->ttl;
1317 			nh->np = base->np;
1318 			nh->mdtype = base->mdtype;
1319 			nh->path_hdr = base->path_hdr;
1320 			break;
1321 		}
1322 		case OVS_NSH_KEY_ATTR_MD1:
1323 			mdlen = nla_len(a);
1324 			if (mdlen > size - NSH_BASE_HDR_LEN)
1325 				return -ENOBUFS;
1326 			memcpy(&nh->md1, nla_data(a), mdlen);
1327 			break;
1328 
1329 		case OVS_NSH_KEY_ATTR_MD2:
1330 			mdlen = nla_len(a);
1331 			if (mdlen > size - NSH_BASE_HDR_LEN)
1332 				return -ENOBUFS;
1333 			memcpy(&nh->md2, nla_data(a), mdlen);
1334 			break;
1335 
1336 		default:
1337 			return -EINVAL;
1338 		}
1339 	}
1340 
1341 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1342 	nh->ver_flags_ttl_len = 0;
1343 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1344 
1345 	return 0;
1346 }
1347 
1348 int nsh_key_from_nlattr(const struct nlattr *attr,
1349 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1350 {
1351 	struct nlattr *a;
1352 	int rem;
1353 
1354 	/* validate_nsh has check this, so we needn't do duplicate check here
1355 	 */
1356 	nla_for_each_nested(a, attr, rem) {
1357 		int type = nla_type(a);
1358 
1359 		switch (type) {
1360 		case OVS_NSH_KEY_ATTR_BASE: {
1361 			const struct ovs_nsh_key_base *base = nla_data(a);
1362 			const struct ovs_nsh_key_base *base_mask = base + 1;
1363 
1364 			nsh->base = *base;
1365 			nsh_mask->base = *base_mask;
1366 			break;
1367 		}
1368 		case OVS_NSH_KEY_ATTR_MD1: {
1369 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1370 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1371 
1372 			memcpy(nsh->context, md1->context, sizeof(*md1));
1373 			memcpy(nsh_mask->context, md1_mask->context,
1374 			       sizeof(*md1_mask));
1375 			break;
1376 		}
1377 		case OVS_NSH_KEY_ATTR_MD2:
1378 			/* Not supported yet */
1379 			return -ENOTSUPP;
1380 		default:
1381 			return -EINVAL;
1382 		}
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1389 				   struct sw_flow_match *match, bool is_mask,
1390 				   bool is_push_nsh, bool log)
1391 {
1392 	struct nlattr *a;
1393 	int rem;
1394 	bool has_base = false;
1395 	bool has_md1 = false;
1396 	bool has_md2 = false;
1397 	u8 mdtype = 0;
1398 	int mdlen = 0;
1399 
1400 	if (WARN_ON(is_push_nsh && is_mask))
1401 		return -EINVAL;
1402 
1403 	nla_for_each_nested(a, attr, rem) {
1404 		int type = nla_type(a);
1405 		int i;
1406 
1407 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1408 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1409 				  type, OVS_NSH_KEY_ATTR_MAX);
1410 			return -EINVAL;
1411 		}
1412 
1413 		if (!check_attr_len(nla_len(a),
1414 				    ovs_nsh_key_attr_lens[type].len)) {
1415 			OVS_NLERR(
1416 			    log,
1417 			    "nsh attr %d has unexpected len %d expected %d",
1418 			    type,
1419 			    nla_len(a),
1420 			    ovs_nsh_key_attr_lens[type].len
1421 			);
1422 			return -EINVAL;
1423 		}
1424 
1425 		switch (type) {
1426 		case OVS_NSH_KEY_ATTR_BASE: {
1427 			const struct ovs_nsh_key_base *base = nla_data(a);
1428 
1429 			has_base = true;
1430 			mdtype = base->mdtype;
1431 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1432 					base->flags, is_mask);
1433 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1434 					base->ttl, is_mask);
1435 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1436 					base->mdtype, is_mask);
1437 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1438 					base->np, is_mask);
1439 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1440 					base->path_hdr, is_mask);
1441 			break;
1442 		}
1443 		case OVS_NSH_KEY_ATTR_MD1: {
1444 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1445 
1446 			has_md1 = true;
1447 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1448 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1449 						md1->context[i], is_mask);
1450 			break;
1451 		}
1452 		case OVS_NSH_KEY_ATTR_MD2:
1453 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1454 				return -ENOTSUPP;
1455 
1456 			has_md2 = true;
1457 			mdlen = nla_len(a);
1458 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1459 				OVS_NLERR(
1460 				    log,
1461 				    "Invalid MD length %d for MD type %d",
1462 				    mdlen,
1463 				    mdtype
1464 				);
1465 				return -EINVAL;
1466 			}
1467 			break;
1468 		default:
1469 			OVS_NLERR(log, "Unknown nsh attribute %d",
1470 				  type);
1471 			return -EINVAL;
1472 		}
1473 	}
1474 
1475 	if (rem > 0) {
1476 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1477 		return -EINVAL;
1478 	}
1479 
1480 	if (has_md1 && has_md2) {
1481 		OVS_NLERR(
1482 		    1,
1483 		    "invalid nsh attribute: md1 and md2 are exclusive."
1484 		);
1485 		return -EINVAL;
1486 	}
1487 
1488 	if (!is_mask) {
1489 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1490 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1491 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1492 				  mdtype);
1493 			return -EINVAL;
1494 		}
1495 
1496 		if (is_push_nsh &&
1497 		    (!has_base || (!has_md1 && !has_md2))) {
1498 			OVS_NLERR(
1499 			    1,
1500 			    "push_nsh: missing base or metadata attributes"
1501 			);
1502 			return -EINVAL;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1510 				u64 attrs, const struct nlattr **a,
1511 				bool is_mask, bool log)
1512 {
1513 	int err;
1514 
1515 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1516 	if (err)
1517 		return err;
1518 
1519 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1520 		const struct ovs_key_ethernet *eth_key;
1521 
1522 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1523 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1524 				eth_key->eth_src, ETH_ALEN, is_mask);
1525 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1526 				eth_key->eth_dst, ETH_ALEN, is_mask);
1527 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1528 
1529 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1530 			/* VLAN attribute is always parsed before getting here since it
1531 			 * may occur multiple times.
1532 			 */
1533 			OVS_NLERR(log, "VLAN attribute unexpected.");
1534 			return -EINVAL;
1535 		}
1536 
1537 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1538 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1539 							  log);
1540 			if (err)
1541 				return err;
1542 		} else if (!is_mask) {
1543 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1544 		}
1545 	} else if (!match->key->eth.type) {
1546 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1551 		const struct ovs_key_ipv4 *ipv4_key;
1552 
1553 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1554 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1555 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1556 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1557 			return -EINVAL;
1558 		}
1559 		SW_FLOW_KEY_PUT(match, ip.proto,
1560 				ipv4_key->ipv4_proto, is_mask);
1561 		SW_FLOW_KEY_PUT(match, ip.tos,
1562 				ipv4_key->ipv4_tos, is_mask);
1563 		SW_FLOW_KEY_PUT(match, ip.ttl,
1564 				ipv4_key->ipv4_ttl, is_mask);
1565 		SW_FLOW_KEY_PUT(match, ip.frag,
1566 				ipv4_key->ipv4_frag, is_mask);
1567 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1568 				ipv4_key->ipv4_src, is_mask);
1569 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1570 				ipv4_key->ipv4_dst, is_mask);
1571 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1572 	}
1573 
1574 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1575 		const struct ovs_key_ipv6 *ipv6_key;
1576 
1577 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1578 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1579 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1580 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1581 			return -EINVAL;
1582 		}
1583 
1584 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1585 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1586 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1587 			return -EINVAL;
1588 		}
1589 
1590 		SW_FLOW_KEY_PUT(match, ipv6.label,
1591 				ipv6_key->ipv6_label, is_mask);
1592 		SW_FLOW_KEY_PUT(match, ip.proto,
1593 				ipv6_key->ipv6_proto, is_mask);
1594 		SW_FLOW_KEY_PUT(match, ip.tos,
1595 				ipv6_key->ipv6_tclass, is_mask);
1596 		SW_FLOW_KEY_PUT(match, ip.ttl,
1597 				ipv6_key->ipv6_hlimit, is_mask);
1598 		SW_FLOW_KEY_PUT(match, ip.frag,
1599 				ipv6_key->ipv6_frag, is_mask);
1600 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1601 				ipv6_key->ipv6_src,
1602 				sizeof(match->key->ipv6.addr.src),
1603 				is_mask);
1604 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1605 				ipv6_key->ipv6_dst,
1606 				sizeof(match->key->ipv6.addr.dst),
1607 				is_mask);
1608 
1609 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1610 	}
1611 
1612 	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1613 		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1614 
1615 		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1616 
1617 		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1618 				ipv6_exthdrs_key->hdrs, is_mask);
1619 
1620 		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1621 	}
1622 
1623 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1624 		const struct ovs_key_arp *arp_key;
1625 
1626 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1627 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1628 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1629 				  arp_key->arp_op);
1630 			return -EINVAL;
1631 		}
1632 
1633 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1634 				arp_key->arp_sip, is_mask);
1635 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1636 			arp_key->arp_tip, is_mask);
1637 		SW_FLOW_KEY_PUT(match, ip.proto,
1638 				ntohs(arp_key->arp_op), is_mask);
1639 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1640 				arp_key->arp_sha, ETH_ALEN, is_mask);
1641 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1642 				arp_key->arp_tha, ETH_ALEN, is_mask);
1643 
1644 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1645 	}
1646 
1647 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1648 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1649 					    is_mask, false, log) < 0)
1650 			return -EINVAL;
1651 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1652 	}
1653 
1654 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1655 		const struct ovs_key_mpls *mpls_key;
1656 		u32 hdr_len;
1657 		u32 label_count, label_count_mask, i;
1658 
1659 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1660 		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1661 		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1662 
1663 		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1664 		    hdr_len % sizeof(struct ovs_key_mpls))
1665 			return -EINVAL;
1666 
1667 		label_count_mask =  GENMASK(label_count - 1, 0);
1668 
1669 		for (i = 0 ; i < label_count; i++)
1670 			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1671 					mpls_key[i].mpls_lse, is_mask);
1672 
1673 		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1674 				label_count_mask, is_mask);
1675 
1676 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1677 	 }
1678 
1679 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1680 		const struct ovs_key_tcp *tcp_key;
1681 
1682 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1683 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1684 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1685 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1686 	}
1687 
1688 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1689 		SW_FLOW_KEY_PUT(match, tp.flags,
1690 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1691 				is_mask);
1692 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1693 	}
1694 
1695 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1696 		const struct ovs_key_udp *udp_key;
1697 
1698 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1699 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1700 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1701 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1702 	}
1703 
1704 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1705 		const struct ovs_key_sctp *sctp_key;
1706 
1707 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1708 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1709 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1710 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1711 	}
1712 
1713 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1714 		const struct ovs_key_icmp *icmp_key;
1715 
1716 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1717 		SW_FLOW_KEY_PUT(match, tp.src,
1718 				htons(icmp_key->icmp_type), is_mask);
1719 		SW_FLOW_KEY_PUT(match, tp.dst,
1720 				htons(icmp_key->icmp_code), is_mask);
1721 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1722 	}
1723 
1724 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1725 		const struct ovs_key_icmpv6 *icmpv6_key;
1726 
1727 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1728 		SW_FLOW_KEY_PUT(match, tp.src,
1729 				htons(icmpv6_key->icmpv6_type), is_mask);
1730 		SW_FLOW_KEY_PUT(match, tp.dst,
1731 				htons(icmpv6_key->icmpv6_code), is_mask);
1732 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1733 	}
1734 
1735 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1736 		const struct ovs_key_nd *nd_key;
1737 
1738 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1739 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1740 			nd_key->nd_target,
1741 			sizeof(match->key->ipv6.nd.target),
1742 			is_mask);
1743 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1744 			nd_key->nd_sll, ETH_ALEN, is_mask);
1745 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1746 				nd_key->nd_tll, ETH_ALEN, is_mask);
1747 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1748 	}
1749 
1750 	if (attrs != 0) {
1751 		OVS_NLERR(log, "Unknown key attributes %llx",
1752 			  (unsigned long long)attrs);
1753 		return -EINVAL;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static void nlattr_set(struct nlattr *attr, u8 val,
1760 		       const struct ovs_len_tbl *tbl)
1761 {
1762 	struct nlattr *nla;
1763 	int rem;
1764 
1765 	/* The nlattr stream should already have been validated */
1766 	nla_for_each_nested(nla, attr, rem) {
1767 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1768 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1769 		else
1770 			memset(nla_data(nla), val, nla_len(nla));
1771 
1772 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1773 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1774 	}
1775 }
1776 
1777 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1778 {
1779 	nlattr_set(attr, val, ovs_key_lens);
1780 }
1781 
1782 /**
1783  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1784  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1785  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1786  * does not include any don't care bit.
1787  * @net: Used to determine per-namespace field support.
1788  * @match: receives the extracted flow match information.
1789  * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1790  * sequence. The fields should of the packet that triggered the creation
1791  * of this flow.
1792  * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1793  * Netlink attribute specifies the mask field of the wildcarded flow.
1794  * @log: Boolean to allow kernel error logging.  Normally true, but when
1795  * probing for feature compatibility this should be passed in as false to
1796  * suppress unnecessary error logging.
1797  */
1798 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1799 		      const struct nlattr *nla_key,
1800 		      const struct nlattr *nla_mask,
1801 		      bool log)
1802 {
1803 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1804 	struct nlattr *newmask = NULL;
1805 	u64 key_attrs = 0;
1806 	u64 mask_attrs = 0;
1807 	int err;
1808 
1809 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1810 	if (err)
1811 		return err;
1812 
1813 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1814 	if (err)
1815 		return err;
1816 
1817 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1818 	if (err)
1819 		return err;
1820 
1821 	if (match->mask) {
1822 		if (!nla_mask) {
1823 			/* Create an exact match mask. We need to set to 0xff
1824 			 * all the 'match->mask' fields that have been touched
1825 			 * in 'match->key'. We cannot simply memset
1826 			 * 'match->mask', because padding bytes and fields not
1827 			 * specified in 'match->key' should be left to 0.
1828 			 * Instead, we use a stream of netlink attributes,
1829 			 * copied from 'key' and set to 0xff.
1830 			 * ovs_key_from_nlattrs() will take care of filling
1831 			 * 'match->mask' appropriately.
1832 			 */
1833 			newmask = kmemdup(nla_key,
1834 					  nla_total_size(nla_len(nla_key)),
1835 					  GFP_KERNEL);
1836 			if (!newmask)
1837 				return -ENOMEM;
1838 
1839 			mask_set_nlattr(newmask, 0xff);
1840 
1841 			/* The userspace does not send tunnel attributes that
1842 			 * are 0, but we should not wildcard them nonetheless.
1843 			 */
1844 			if (match->key->tun_proto)
1845 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1846 							 0xff, true);
1847 
1848 			nla_mask = newmask;
1849 		}
1850 
1851 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1852 		if (err)
1853 			goto free_newmask;
1854 
1855 		/* Always match on tci. */
1856 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1857 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1858 
1859 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1860 		if (err)
1861 			goto free_newmask;
1862 
1863 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1864 					   log);
1865 		if (err)
1866 			goto free_newmask;
1867 	}
1868 
1869 	if (!match_validate(match, key_attrs, mask_attrs, log))
1870 		err = -EINVAL;
1871 
1872 free_newmask:
1873 	kfree(newmask);
1874 	return err;
1875 }
1876 
1877 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1878 {
1879 	size_t len;
1880 
1881 	if (!attr)
1882 		return 0;
1883 
1884 	len = nla_len(attr);
1885 	if (len < 1 || len > MAX_UFID_LENGTH) {
1886 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1887 			  nla_len(attr), MAX_UFID_LENGTH);
1888 		return 0;
1889 	}
1890 
1891 	return len;
1892 }
1893 
1894 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1895  * or false otherwise.
1896  */
1897 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1898 		      bool log)
1899 {
1900 	sfid->ufid_len = get_ufid_len(attr, log);
1901 	if (sfid->ufid_len)
1902 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1903 
1904 	return sfid->ufid_len;
1905 }
1906 
1907 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1908 			   const struct sw_flow_key *key, bool log)
1909 {
1910 	struct sw_flow_key *new_key;
1911 
1912 	if (ovs_nla_get_ufid(sfid, ufid, log))
1913 		return 0;
1914 
1915 	/* If UFID was not provided, use unmasked key. */
1916 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1917 	if (!new_key)
1918 		return -ENOMEM;
1919 	memcpy(new_key, key, sizeof(*key));
1920 	sfid->unmasked_key = new_key;
1921 
1922 	return 0;
1923 }
1924 
1925 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1926 {
1927 	return attr ? nla_get_u32(attr) : 0;
1928 }
1929 
1930 /**
1931  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1932  * @net: Network namespace.
1933  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1934  * metadata.
1935  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1936  * attributes.
1937  * @attrs: Bit mask for the netlink attributes included in @a.
1938  * @log: Boolean to allow kernel error logging.  Normally true, but when
1939  * probing for feature compatibility this should be passed in as false to
1940  * suppress unnecessary error logging.
1941  *
1942  * This parses a series of Netlink attributes that form a flow key, which must
1943  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1944  * get the metadata, that is, the parts of the flow key that cannot be
1945  * extracted from the packet itself.
1946  *
1947  * This must be called before the packet key fields are filled in 'key'.
1948  */
1949 
1950 int ovs_nla_get_flow_metadata(struct net *net,
1951 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1952 			      u64 attrs, struct sw_flow_key *key, bool log)
1953 {
1954 	struct sw_flow_match match;
1955 
1956 	memset(&match, 0, sizeof(match));
1957 	match.key = key;
1958 
1959 	key->ct_state = 0;
1960 	key->ct_zone = 0;
1961 	key->ct_orig_proto = 0;
1962 	memset(&key->ct, 0, sizeof(key->ct));
1963 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1964 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1965 
1966 	key->phy.in_port = DP_MAX_PORTS;
1967 
1968 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1969 }
1970 
1971 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1972 			    bool is_mask)
1973 {
1974 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1975 
1976 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1977 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1978 		return -EMSGSIZE;
1979 	return 0;
1980 }
1981 
1982 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1983 			     struct sk_buff *skb)
1984 {
1985 	struct nlattr *start;
1986 
1987 	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1988 	if (!start)
1989 		return -EMSGSIZE;
1990 
1991 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1992 		goto nla_put_failure;
1993 
1994 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1995 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1996 			    sizeof(nsh->context), nsh->context))
1997 			goto nla_put_failure;
1998 	}
1999 
2000 	/* Don't support MD type 2 yet */
2001 
2002 	nla_nest_end(skb, start);
2003 
2004 	return 0;
2005 
2006 nla_put_failure:
2007 	return -EMSGSIZE;
2008 }
2009 
2010 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2011 			     const struct sw_flow_key *output, bool is_mask,
2012 			     struct sk_buff *skb)
2013 {
2014 	struct ovs_key_ethernet *eth_key;
2015 	struct nlattr *nla;
2016 	struct nlattr *encap = NULL;
2017 	struct nlattr *in_encap = NULL;
2018 
2019 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2020 		goto nla_put_failure;
2021 
2022 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2023 		goto nla_put_failure;
2024 
2025 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2026 		goto nla_put_failure;
2027 
2028 	if ((swkey->tun_proto || is_mask)) {
2029 		const void *opts = NULL;
2030 
2031 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2032 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2033 
2034 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2035 				     swkey->tun_opts_len, swkey->tun_proto, 0))
2036 			goto nla_put_failure;
2037 	}
2038 
2039 	if (swkey->phy.in_port == DP_MAX_PORTS) {
2040 		if (is_mask && (output->phy.in_port == 0xffff))
2041 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2042 				goto nla_put_failure;
2043 	} else {
2044 		u16 upper_u16;
2045 		upper_u16 = !is_mask ? 0 : 0xffff;
2046 
2047 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2048 				(upper_u16 << 16) | output->phy.in_port))
2049 			goto nla_put_failure;
2050 	}
2051 
2052 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2053 		goto nla_put_failure;
2054 
2055 	if (ovs_ct_put_key(swkey, output, skb))
2056 		goto nla_put_failure;
2057 
2058 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2059 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2060 		if (!nla)
2061 			goto nla_put_failure;
2062 
2063 		eth_key = nla_data(nla);
2064 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2065 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2066 
2067 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2068 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2069 				goto nla_put_failure;
2070 			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2071 			if (!swkey->eth.vlan.tci)
2072 				goto unencap;
2073 
2074 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2075 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2076 					goto nla_put_failure;
2077 				in_encap = nla_nest_start_noflag(skb,
2078 								 OVS_KEY_ATTR_ENCAP);
2079 				if (!swkey->eth.cvlan.tci)
2080 					goto unencap;
2081 			}
2082 		}
2083 
2084 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2085 			/*
2086 			* Ethertype 802.2 is represented in the netlink with omitted
2087 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2088 			* 0xffff in the mask attribute.  Ethertype can also
2089 			* be wildcarded.
2090 			*/
2091 			if (is_mask && output->eth.type)
2092 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2093 							output->eth.type))
2094 					goto nla_put_failure;
2095 			goto unencap;
2096 		}
2097 	}
2098 
2099 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2100 		goto nla_put_failure;
2101 
2102 	if (eth_type_vlan(swkey->eth.type)) {
2103 		/* There are 3 VLAN tags, we don't know anything about the rest
2104 		 * of the packet, so truncate here.
2105 		 */
2106 		WARN_ON_ONCE(!(encap && in_encap));
2107 		goto unencap;
2108 	}
2109 
2110 	if (swkey->eth.type == htons(ETH_P_IP)) {
2111 		struct ovs_key_ipv4 *ipv4_key;
2112 
2113 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2114 		if (!nla)
2115 			goto nla_put_failure;
2116 		ipv4_key = nla_data(nla);
2117 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2118 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2119 		ipv4_key->ipv4_proto = output->ip.proto;
2120 		ipv4_key->ipv4_tos = output->ip.tos;
2121 		ipv4_key->ipv4_ttl = output->ip.ttl;
2122 		ipv4_key->ipv4_frag = output->ip.frag;
2123 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2124 		struct ovs_key_ipv6 *ipv6_key;
2125 		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2126 
2127 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2128 		if (!nla)
2129 			goto nla_put_failure;
2130 		ipv6_key = nla_data(nla);
2131 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2132 				sizeof(ipv6_key->ipv6_src));
2133 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2134 				sizeof(ipv6_key->ipv6_dst));
2135 		ipv6_key->ipv6_label = output->ipv6.label;
2136 		ipv6_key->ipv6_proto = output->ip.proto;
2137 		ipv6_key->ipv6_tclass = output->ip.tos;
2138 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2139 		ipv6_key->ipv6_frag = output->ip.frag;
2140 
2141 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2142 				  sizeof(*ipv6_exthdrs_key));
2143 		if (!nla)
2144 			goto nla_put_failure;
2145 		ipv6_exthdrs_key = nla_data(nla);
2146 		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2147 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2148 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2149 			goto nla_put_failure;
2150 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2151 		   swkey->eth.type == htons(ETH_P_RARP)) {
2152 		struct ovs_key_arp *arp_key;
2153 
2154 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2155 		if (!nla)
2156 			goto nla_put_failure;
2157 		arp_key = nla_data(nla);
2158 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2159 		arp_key->arp_sip = output->ipv4.addr.src;
2160 		arp_key->arp_tip = output->ipv4.addr.dst;
2161 		arp_key->arp_op = htons(output->ip.proto);
2162 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2163 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2164 	} else if (eth_p_mpls(swkey->eth.type)) {
2165 		u8 i, num_labels;
2166 		struct ovs_key_mpls *mpls_key;
2167 
2168 		num_labels = hweight_long(output->mpls.num_labels_mask);
2169 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2170 				  num_labels * sizeof(*mpls_key));
2171 		if (!nla)
2172 			goto nla_put_failure;
2173 
2174 		mpls_key = nla_data(nla);
2175 		for (i = 0; i < num_labels; i++)
2176 			mpls_key[i].mpls_lse = output->mpls.lse[i];
2177 	}
2178 
2179 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2180 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2181 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2182 
2183 		if (swkey->ip.proto == IPPROTO_TCP) {
2184 			struct ovs_key_tcp *tcp_key;
2185 
2186 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2187 			if (!nla)
2188 				goto nla_put_failure;
2189 			tcp_key = nla_data(nla);
2190 			tcp_key->tcp_src = output->tp.src;
2191 			tcp_key->tcp_dst = output->tp.dst;
2192 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2193 					 output->tp.flags))
2194 				goto nla_put_failure;
2195 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2196 			struct ovs_key_udp *udp_key;
2197 
2198 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2199 			if (!nla)
2200 				goto nla_put_failure;
2201 			udp_key = nla_data(nla);
2202 			udp_key->udp_src = output->tp.src;
2203 			udp_key->udp_dst = output->tp.dst;
2204 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2205 			struct ovs_key_sctp *sctp_key;
2206 
2207 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2208 			if (!nla)
2209 				goto nla_put_failure;
2210 			sctp_key = nla_data(nla);
2211 			sctp_key->sctp_src = output->tp.src;
2212 			sctp_key->sctp_dst = output->tp.dst;
2213 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2214 			   swkey->ip.proto == IPPROTO_ICMP) {
2215 			struct ovs_key_icmp *icmp_key;
2216 
2217 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2218 			if (!nla)
2219 				goto nla_put_failure;
2220 			icmp_key = nla_data(nla);
2221 			icmp_key->icmp_type = ntohs(output->tp.src);
2222 			icmp_key->icmp_code = ntohs(output->tp.dst);
2223 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2224 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2225 			struct ovs_key_icmpv6 *icmpv6_key;
2226 
2227 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2228 						sizeof(*icmpv6_key));
2229 			if (!nla)
2230 				goto nla_put_failure;
2231 			icmpv6_key = nla_data(nla);
2232 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2233 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2234 
2235 			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2236 			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2237 				struct ovs_key_nd *nd_key;
2238 
2239 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2240 				if (!nla)
2241 					goto nla_put_failure;
2242 				nd_key = nla_data(nla);
2243 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2244 							sizeof(nd_key->nd_target));
2245 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2246 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2247 			}
2248 		}
2249 	}
2250 
2251 unencap:
2252 	if (in_encap)
2253 		nla_nest_end(skb, in_encap);
2254 	if (encap)
2255 		nla_nest_end(skb, encap);
2256 
2257 	return 0;
2258 
2259 nla_put_failure:
2260 	return -EMSGSIZE;
2261 }
2262 
2263 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2264 		    const struct sw_flow_key *output, int attr, bool is_mask,
2265 		    struct sk_buff *skb)
2266 {
2267 	int err;
2268 	struct nlattr *nla;
2269 
2270 	nla = nla_nest_start_noflag(skb, attr);
2271 	if (!nla)
2272 		return -EMSGSIZE;
2273 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2274 	if (err)
2275 		return err;
2276 	nla_nest_end(skb, nla);
2277 
2278 	return 0;
2279 }
2280 
2281 /* Called with ovs_mutex or RCU read lock. */
2282 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2283 {
2284 	if (ovs_identifier_is_ufid(&flow->id))
2285 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2286 			       flow->id.ufid);
2287 
2288 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2289 			       OVS_FLOW_ATTR_KEY, false, skb);
2290 }
2291 
2292 /* Called with ovs_mutex or RCU read lock. */
2293 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2294 {
2295 	return ovs_nla_put_key(&flow->key, &flow->key,
2296 				OVS_FLOW_ATTR_KEY, false, skb);
2297 }
2298 
2299 /* Called with ovs_mutex or RCU read lock. */
2300 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2301 {
2302 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2303 				OVS_FLOW_ATTR_MASK, true, skb);
2304 }
2305 
2306 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2307 
2308 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2309 {
2310 	struct sw_flow_actions *sfa;
2311 
2312 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2313 
2314 	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2315 	if (!sfa)
2316 		return ERR_PTR(-ENOMEM);
2317 
2318 	sfa->actions_len = 0;
2319 	return sfa;
2320 }
2321 
2322 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2323 
2324 static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2325 {
2326 	const struct nlattr *a;
2327 	int rem;
2328 
2329 	nla_for_each_nested(a, action, rem) {
2330 		switch (nla_type(a)) {
2331 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2332 		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2333 			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2334 			break;
2335 		}
2336 	}
2337 }
2338 
2339 static void ovs_nla_free_clone_action(const struct nlattr *action)
2340 {
2341 	const struct nlattr *a = nla_data(action);
2342 	int rem = nla_len(action);
2343 
2344 	switch (nla_type(a)) {
2345 	case OVS_CLONE_ATTR_EXEC:
2346 		/* The real list of actions follows this attribute. */
2347 		a = nla_next(a, &rem);
2348 		ovs_nla_free_nested_actions(a, rem);
2349 		break;
2350 	}
2351 }
2352 
2353 static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2354 {
2355 	const struct nlattr *a = nla_data(action);
2356 
2357 	switch (nla_type(a)) {
2358 	case OVS_DEC_TTL_ATTR_ACTION:
2359 		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2360 		break;
2361 	}
2362 }
2363 
2364 static void ovs_nla_free_sample_action(const struct nlattr *action)
2365 {
2366 	const struct nlattr *a = nla_data(action);
2367 	int rem = nla_len(action);
2368 
2369 	switch (nla_type(a)) {
2370 	case OVS_SAMPLE_ATTR_ARG:
2371 		/* The real list of actions follows this attribute. */
2372 		a = nla_next(a, &rem);
2373 		ovs_nla_free_nested_actions(a, rem);
2374 		break;
2375 	}
2376 }
2377 
2378 static void ovs_nla_free_set_action(const struct nlattr *a)
2379 {
2380 	const struct nlattr *ovs_key = nla_data(a);
2381 	struct ovs_tunnel_info *ovs_tun;
2382 
2383 	switch (nla_type(ovs_key)) {
2384 	case OVS_KEY_ATTR_TUNNEL_INFO:
2385 		ovs_tun = nla_data(ovs_key);
2386 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2387 		break;
2388 	}
2389 }
2390 
2391 static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2392 {
2393 	const struct nlattr *a;
2394 	int rem;
2395 
2396 	/* Whenever new actions are added, the need to update this
2397 	 * function should be considered.
2398 	 */
2399 	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24);
2400 
2401 	if (!actions)
2402 		return;
2403 
2404 	nla_for_each_attr(a, actions, len, rem) {
2405 		switch (nla_type(a)) {
2406 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2407 			ovs_nla_free_check_pkt_len_action(a);
2408 			break;
2409 
2410 		case OVS_ACTION_ATTR_CLONE:
2411 			ovs_nla_free_clone_action(a);
2412 			break;
2413 
2414 		case OVS_ACTION_ATTR_CT:
2415 			ovs_ct_free_action(a);
2416 			break;
2417 
2418 		case OVS_ACTION_ATTR_DEC_TTL:
2419 			ovs_nla_free_dec_ttl_action(a);
2420 			break;
2421 
2422 		case OVS_ACTION_ATTR_SAMPLE:
2423 			ovs_nla_free_sample_action(a);
2424 			break;
2425 
2426 		case OVS_ACTION_ATTR_SET:
2427 			ovs_nla_free_set_action(a);
2428 			break;
2429 		}
2430 	}
2431 }
2432 
2433 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2434 {
2435 	if (!sf_acts)
2436 		return;
2437 
2438 	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2439 	kfree(sf_acts);
2440 }
2441 
2442 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2443 {
2444 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2445 }
2446 
2447 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2448  * The caller must hold rcu_read_lock for this to be sensible. */
2449 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2450 {
2451 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2452 }
2453 
2454 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2455 				       int attr_len, bool log)
2456 {
2457 
2458 	struct sw_flow_actions *acts;
2459 	int new_acts_size;
2460 	size_t req_size = NLA_ALIGN(attr_len);
2461 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2462 					(*sfa)->actions_len;
2463 
2464 	if (req_size <= (ksize(*sfa) - next_offset))
2465 		goto out;
2466 
2467 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2468 
2469 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2470 		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2471 			OVS_NLERR(log, "Flow action size exceeds max %u",
2472 				  MAX_ACTIONS_BUFSIZE);
2473 			return ERR_PTR(-EMSGSIZE);
2474 		}
2475 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2476 	}
2477 
2478 	acts = nla_alloc_flow_actions(new_acts_size);
2479 	if (IS_ERR(acts))
2480 		return (void *)acts;
2481 
2482 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2483 	acts->actions_len = (*sfa)->actions_len;
2484 	acts->orig_len = (*sfa)->orig_len;
2485 	kfree(*sfa);
2486 	*sfa = acts;
2487 
2488 out:
2489 	(*sfa)->actions_len += req_size;
2490 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2491 }
2492 
2493 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2494 				   int attrtype, void *data, int len, bool log)
2495 {
2496 	struct nlattr *a;
2497 
2498 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2499 	if (IS_ERR(a))
2500 		return a;
2501 
2502 	a->nla_type = attrtype;
2503 	a->nla_len = nla_attr_size(len);
2504 
2505 	if (data)
2506 		memcpy(nla_data(a), data, len);
2507 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2508 
2509 	return a;
2510 }
2511 
2512 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2513 		       int len, bool log)
2514 {
2515 	struct nlattr *a;
2516 
2517 	a = __add_action(sfa, attrtype, data, len, log);
2518 
2519 	return PTR_ERR_OR_ZERO(a);
2520 }
2521 
2522 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2523 					  int attrtype, bool log)
2524 {
2525 	int used = (*sfa)->actions_len;
2526 	int err;
2527 
2528 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2529 	if (err)
2530 		return err;
2531 
2532 	return used;
2533 }
2534 
2535 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2536 					 int st_offset)
2537 {
2538 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2539 							       st_offset);
2540 
2541 	a->nla_len = sfa->actions_len - st_offset;
2542 }
2543 
2544 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2545 				  const struct sw_flow_key *key,
2546 				  struct sw_flow_actions **sfa,
2547 				  __be16 eth_type, __be16 vlan_tci,
2548 				  u32 mpls_label_count, bool log);
2549 
2550 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2551 				    const struct sw_flow_key *key,
2552 				    struct sw_flow_actions **sfa,
2553 				    __be16 eth_type, __be16 vlan_tci,
2554 				    u32 mpls_label_count, bool log, bool last)
2555 {
2556 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2557 	const struct nlattr *probability, *actions;
2558 	const struct nlattr *a;
2559 	int rem, start, err;
2560 	struct sample_arg arg;
2561 
2562 	memset(attrs, 0, sizeof(attrs));
2563 	nla_for_each_nested(a, attr, rem) {
2564 		int type = nla_type(a);
2565 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2566 			return -EINVAL;
2567 		attrs[type] = a;
2568 	}
2569 	if (rem)
2570 		return -EINVAL;
2571 
2572 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2573 	if (!probability || nla_len(probability) != sizeof(u32))
2574 		return -EINVAL;
2575 
2576 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2577 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2578 		return -EINVAL;
2579 
2580 	/* validation done, copy sample action. */
2581 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2582 	if (start < 0)
2583 		return start;
2584 
2585 	/* When both skb and flow may be changed, put the sample
2586 	 * into a deferred fifo. On the other hand, if only skb
2587 	 * may be modified, the actions can be executed in place.
2588 	 *
2589 	 * Do this analysis at the flow installation time.
2590 	 * Set 'clone_action->exec' to true if the actions can be
2591 	 * executed without being deferred.
2592 	 *
2593 	 * If the sample is the last action, it can always be excuted
2594 	 * rather than deferred.
2595 	 */
2596 	arg.exec = last || !actions_may_change_flow(actions);
2597 	arg.probability = nla_get_u32(probability);
2598 
2599 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2600 				 log);
2601 	if (err)
2602 		return err;
2603 
2604 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2605 				     eth_type, vlan_tci, mpls_label_count, log);
2606 
2607 	if (err)
2608 		return err;
2609 
2610 	add_nested_action_end(*sfa, start);
2611 
2612 	return 0;
2613 }
2614 
2615 static int validate_and_copy_dec_ttl(struct net *net,
2616 				     const struct nlattr *attr,
2617 				     const struct sw_flow_key *key,
2618 				     struct sw_flow_actions **sfa,
2619 				     __be16 eth_type, __be16 vlan_tci,
2620 				     u32 mpls_label_count, bool log)
2621 {
2622 	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2623 	int start, action_start, err, rem;
2624 	const struct nlattr *a, *actions;
2625 
2626 	memset(attrs, 0, sizeof(attrs));
2627 	nla_for_each_nested(a, attr, rem) {
2628 		int type = nla_type(a);
2629 
2630 		/* Ignore unknown attributes to be future proof. */
2631 		if (type > OVS_DEC_TTL_ATTR_MAX)
2632 			continue;
2633 
2634 		if (!type || attrs[type]) {
2635 			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2636 				  type);
2637 			return -EINVAL;
2638 		}
2639 
2640 		attrs[type] = a;
2641 	}
2642 
2643 	if (rem) {
2644 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2645 		return -EINVAL;
2646 	}
2647 
2648 	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2649 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2650 		OVS_NLERR(log, "Missing valid actions attribute.");
2651 		return -EINVAL;
2652 	}
2653 
2654 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2655 	if (start < 0)
2656 		return start;
2657 
2658 	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2659 	if (action_start < 0)
2660 		return action_start;
2661 
2662 	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2663 				     vlan_tci, mpls_label_count, log);
2664 	if (err)
2665 		return err;
2666 
2667 	add_nested_action_end(*sfa, action_start);
2668 	add_nested_action_end(*sfa, start);
2669 	return 0;
2670 }
2671 
2672 static int validate_and_copy_clone(struct net *net,
2673 				   const struct nlattr *attr,
2674 				   const struct sw_flow_key *key,
2675 				   struct sw_flow_actions **sfa,
2676 				   __be16 eth_type, __be16 vlan_tci,
2677 				   u32 mpls_label_count, bool log, bool last)
2678 {
2679 	int start, err;
2680 	u32 exec;
2681 
2682 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2683 		return -EINVAL;
2684 
2685 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2686 	if (start < 0)
2687 		return start;
2688 
2689 	exec = last || !actions_may_change_flow(attr);
2690 
2691 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2692 				 sizeof(exec), log);
2693 	if (err)
2694 		return err;
2695 
2696 	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2697 				     eth_type, vlan_tci, mpls_label_count, log);
2698 	if (err)
2699 		return err;
2700 
2701 	add_nested_action_end(*sfa, start);
2702 
2703 	return 0;
2704 }
2705 
2706 void ovs_match_init(struct sw_flow_match *match,
2707 		    struct sw_flow_key *key,
2708 		    bool reset_key,
2709 		    struct sw_flow_mask *mask)
2710 {
2711 	memset(match, 0, sizeof(*match));
2712 	match->key = key;
2713 	match->mask = mask;
2714 
2715 	if (reset_key)
2716 		memset(key, 0, sizeof(*key));
2717 
2718 	if (mask) {
2719 		memset(&mask->key, 0, sizeof(mask->key));
2720 		mask->range.start = mask->range.end = 0;
2721 	}
2722 }
2723 
2724 static int validate_geneve_opts(struct sw_flow_key *key)
2725 {
2726 	struct geneve_opt *option;
2727 	int opts_len = key->tun_opts_len;
2728 	bool crit_opt = false;
2729 
2730 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2731 	while (opts_len > 0) {
2732 		int len;
2733 
2734 		if (opts_len < sizeof(*option))
2735 			return -EINVAL;
2736 
2737 		len = sizeof(*option) + option->length * 4;
2738 		if (len > opts_len)
2739 			return -EINVAL;
2740 
2741 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2742 
2743 		option = (struct geneve_opt *)((u8 *)option + len);
2744 		opts_len -= len;
2745 	}
2746 
2747 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2748 
2749 	return 0;
2750 }
2751 
2752 static int validate_and_copy_set_tun(const struct nlattr *attr,
2753 				     struct sw_flow_actions **sfa, bool log)
2754 {
2755 	struct sw_flow_match match;
2756 	struct sw_flow_key key;
2757 	struct metadata_dst *tun_dst;
2758 	struct ip_tunnel_info *tun_info;
2759 	struct ovs_tunnel_info *ovs_tun;
2760 	struct nlattr *a;
2761 	int err = 0, start, opts_type;
2762 	__be16 dst_opt_type;
2763 
2764 	dst_opt_type = 0;
2765 	ovs_match_init(&match, &key, true, NULL);
2766 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2767 	if (opts_type < 0)
2768 		return opts_type;
2769 
2770 	if (key.tun_opts_len) {
2771 		switch (opts_type) {
2772 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2773 			err = validate_geneve_opts(&key);
2774 			if (err < 0)
2775 				return err;
2776 			dst_opt_type = TUNNEL_GENEVE_OPT;
2777 			break;
2778 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2779 			dst_opt_type = TUNNEL_VXLAN_OPT;
2780 			break;
2781 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2782 			dst_opt_type = TUNNEL_ERSPAN_OPT;
2783 			break;
2784 		}
2785 	}
2786 
2787 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2788 	if (start < 0)
2789 		return start;
2790 
2791 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2792 				     GFP_KERNEL);
2793 
2794 	if (!tun_dst)
2795 		return -ENOMEM;
2796 
2797 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2798 	if (err) {
2799 		dst_release((struct dst_entry *)tun_dst);
2800 		return err;
2801 	}
2802 
2803 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2804 			 sizeof(*ovs_tun), log);
2805 	if (IS_ERR(a)) {
2806 		dst_release((struct dst_entry *)tun_dst);
2807 		return PTR_ERR(a);
2808 	}
2809 
2810 	ovs_tun = nla_data(a);
2811 	ovs_tun->tun_dst = tun_dst;
2812 
2813 	tun_info = &tun_dst->u.tun_info;
2814 	tun_info->mode = IP_TUNNEL_INFO_TX;
2815 	if (key.tun_proto == AF_INET6)
2816 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2817 	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2818 		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2819 	tun_info->key = key.tun_key;
2820 
2821 	/* We need to store the options in the action itself since
2822 	 * everything else will go away after flow setup. We can append
2823 	 * it to tun_info and then point there.
2824 	 */
2825 	ip_tunnel_info_opts_set(tun_info,
2826 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2827 				key.tun_opts_len, dst_opt_type);
2828 	add_nested_action_end(*sfa, start);
2829 
2830 	return err;
2831 }
2832 
2833 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2834 			 bool is_push_nsh, bool log)
2835 {
2836 	struct sw_flow_match match;
2837 	struct sw_flow_key key;
2838 	int ret = 0;
2839 
2840 	ovs_match_init(&match, &key, true, NULL);
2841 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2842 				      is_push_nsh, log);
2843 	return !ret;
2844 }
2845 
2846 /* Return false if there are any non-masked bits set.
2847  * Mask follows data immediately, before any netlink padding.
2848  */
2849 static bool validate_masked(u8 *data, int len)
2850 {
2851 	u8 *mask = data + len;
2852 
2853 	while (len--)
2854 		if (*data++ & ~*mask++)
2855 			return false;
2856 
2857 	return true;
2858 }
2859 
2860 static int validate_set(const struct nlattr *a,
2861 			const struct sw_flow_key *flow_key,
2862 			struct sw_flow_actions **sfa, bool *skip_copy,
2863 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2864 {
2865 	const struct nlattr *ovs_key = nla_data(a);
2866 	int key_type = nla_type(ovs_key);
2867 	size_t key_len;
2868 
2869 	/* There can be only one key in a action */
2870 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2871 		return -EINVAL;
2872 
2873 	key_len = nla_len(ovs_key);
2874 	if (masked)
2875 		key_len /= 2;
2876 
2877 	if (key_type > OVS_KEY_ATTR_MAX ||
2878 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2879 		return -EINVAL;
2880 
2881 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2882 		return -EINVAL;
2883 
2884 	switch (key_type) {
2885 	case OVS_KEY_ATTR_PRIORITY:
2886 	case OVS_KEY_ATTR_SKB_MARK:
2887 	case OVS_KEY_ATTR_CT_MARK:
2888 	case OVS_KEY_ATTR_CT_LABELS:
2889 		break;
2890 
2891 	case OVS_KEY_ATTR_ETHERNET:
2892 		if (mac_proto != MAC_PROTO_ETHERNET)
2893 			return -EINVAL;
2894 		break;
2895 
2896 	case OVS_KEY_ATTR_TUNNEL: {
2897 		int err;
2898 
2899 		if (masked)
2900 			return -EINVAL; /* Masked tunnel set not supported. */
2901 
2902 		*skip_copy = true;
2903 		err = validate_and_copy_set_tun(a, sfa, log);
2904 		if (err)
2905 			return err;
2906 		break;
2907 	}
2908 	case OVS_KEY_ATTR_IPV4: {
2909 		const struct ovs_key_ipv4 *ipv4_key;
2910 
2911 		if (eth_type != htons(ETH_P_IP))
2912 			return -EINVAL;
2913 
2914 		ipv4_key = nla_data(ovs_key);
2915 
2916 		if (masked) {
2917 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2918 
2919 			/* Non-writeable fields. */
2920 			if (mask->ipv4_proto || mask->ipv4_frag)
2921 				return -EINVAL;
2922 		} else {
2923 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2924 				return -EINVAL;
2925 
2926 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2927 				return -EINVAL;
2928 		}
2929 		break;
2930 	}
2931 	case OVS_KEY_ATTR_IPV6: {
2932 		const struct ovs_key_ipv6 *ipv6_key;
2933 
2934 		if (eth_type != htons(ETH_P_IPV6))
2935 			return -EINVAL;
2936 
2937 		ipv6_key = nla_data(ovs_key);
2938 
2939 		if (masked) {
2940 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2941 
2942 			/* Non-writeable fields. */
2943 			if (mask->ipv6_proto || mask->ipv6_frag)
2944 				return -EINVAL;
2945 
2946 			/* Invalid bits in the flow label mask? */
2947 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2948 				return -EINVAL;
2949 		} else {
2950 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2951 				return -EINVAL;
2952 
2953 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2954 				return -EINVAL;
2955 		}
2956 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2957 			return -EINVAL;
2958 
2959 		break;
2960 	}
2961 	case OVS_KEY_ATTR_TCP:
2962 		if ((eth_type != htons(ETH_P_IP) &&
2963 		     eth_type != htons(ETH_P_IPV6)) ||
2964 		    flow_key->ip.proto != IPPROTO_TCP)
2965 			return -EINVAL;
2966 
2967 		break;
2968 
2969 	case OVS_KEY_ATTR_UDP:
2970 		if ((eth_type != htons(ETH_P_IP) &&
2971 		     eth_type != htons(ETH_P_IPV6)) ||
2972 		    flow_key->ip.proto != IPPROTO_UDP)
2973 			return -EINVAL;
2974 
2975 		break;
2976 
2977 	case OVS_KEY_ATTR_MPLS:
2978 		if (!eth_p_mpls(eth_type))
2979 			return -EINVAL;
2980 		break;
2981 
2982 	case OVS_KEY_ATTR_SCTP:
2983 		if ((eth_type != htons(ETH_P_IP) &&
2984 		     eth_type != htons(ETH_P_IPV6)) ||
2985 		    flow_key->ip.proto != IPPROTO_SCTP)
2986 			return -EINVAL;
2987 
2988 		break;
2989 
2990 	case OVS_KEY_ATTR_NSH:
2991 		if (eth_type != htons(ETH_P_NSH))
2992 			return -EINVAL;
2993 		if (!validate_nsh(nla_data(a), masked, false, log))
2994 			return -EINVAL;
2995 		break;
2996 
2997 	default:
2998 		return -EINVAL;
2999 	}
3000 
3001 	/* Convert non-masked non-tunnel set actions to masked set actions. */
3002 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3003 		int start, len = key_len * 2;
3004 		struct nlattr *at;
3005 
3006 		*skip_copy = true;
3007 
3008 		start = add_nested_action_start(sfa,
3009 						OVS_ACTION_ATTR_SET_TO_MASKED,
3010 						log);
3011 		if (start < 0)
3012 			return start;
3013 
3014 		at = __add_action(sfa, key_type, NULL, len, log);
3015 		if (IS_ERR(at))
3016 			return PTR_ERR(at);
3017 
3018 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3019 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3020 		/* Clear non-writeable bits from otherwise writeable fields. */
3021 		if (key_type == OVS_KEY_ATTR_IPV6) {
3022 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3023 
3024 			mask->ipv6_label &= htonl(0x000FFFFF);
3025 		}
3026 		add_nested_action_end(*sfa, start);
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 static int validate_userspace(const struct nlattr *attr)
3033 {
3034 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3035 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3036 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3037 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3038 	};
3039 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3040 	int error;
3041 
3042 	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3043 					    userspace_policy, NULL);
3044 	if (error)
3045 		return error;
3046 
3047 	if (!a[OVS_USERSPACE_ATTR_PID] ||
3048 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3049 		return -EINVAL;
3050 
3051 	return 0;
3052 }
3053 
3054 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3055 	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3056 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3057 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3058 };
3059 
3060 static int validate_and_copy_check_pkt_len(struct net *net,
3061 					   const struct nlattr *attr,
3062 					   const struct sw_flow_key *key,
3063 					   struct sw_flow_actions **sfa,
3064 					   __be16 eth_type, __be16 vlan_tci,
3065 					   u32 mpls_label_count,
3066 					   bool log, bool last)
3067 {
3068 	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3069 	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3070 	struct check_pkt_len_arg arg;
3071 	int nested_acts_start;
3072 	int start, err;
3073 
3074 	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3075 					  nla_data(attr), nla_len(attr),
3076 					  cpl_policy, NULL);
3077 	if (err)
3078 		return err;
3079 
3080 	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3081 	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3082 		return -EINVAL;
3083 
3084 	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3085 	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3086 
3087 	/* Both the nested action should be present. */
3088 	if (!acts_if_greater || !acts_if_lesser_eq)
3089 		return -EINVAL;
3090 
3091 	/* validation done, copy the nested actions. */
3092 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3093 					log);
3094 	if (start < 0)
3095 		return start;
3096 
3097 	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3098 	arg.exec_for_lesser_equal =
3099 		last || !actions_may_change_flow(acts_if_lesser_eq);
3100 	arg.exec_for_greater =
3101 		last || !actions_may_change_flow(acts_if_greater);
3102 
3103 	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3104 				 sizeof(arg), log);
3105 	if (err)
3106 		return err;
3107 
3108 	nested_acts_start = add_nested_action_start(sfa,
3109 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3110 	if (nested_acts_start < 0)
3111 		return nested_acts_start;
3112 
3113 	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3114 				     eth_type, vlan_tci, mpls_label_count, log);
3115 
3116 	if (err)
3117 		return err;
3118 
3119 	add_nested_action_end(*sfa, nested_acts_start);
3120 
3121 	nested_acts_start = add_nested_action_start(sfa,
3122 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3123 	if (nested_acts_start < 0)
3124 		return nested_acts_start;
3125 
3126 	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3127 				     eth_type, vlan_tci, mpls_label_count, log);
3128 
3129 	if (err)
3130 		return err;
3131 
3132 	add_nested_action_end(*sfa, nested_acts_start);
3133 	add_nested_action_end(*sfa, start);
3134 	return 0;
3135 }
3136 
3137 static int copy_action(const struct nlattr *from,
3138 		       struct sw_flow_actions **sfa, bool log)
3139 {
3140 	int totlen = NLA_ALIGN(from->nla_len);
3141 	struct nlattr *to;
3142 
3143 	to = reserve_sfa_size(sfa, from->nla_len, log);
3144 	if (IS_ERR(to))
3145 		return PTR_ERR(to);
3146 
3147 	memcpy(to, from, totlen);
3148 	return 0;
3149 }
3150 
3151 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3152 				  const struct sw_flow_key *key,
3153 				  struct sw_flow_actions **sfa,
3154 				  __be16 eth_type, __be16 vlan_tci,
3155 				  u32 mpls_label_count, bool log)
3156 {
3157 	u8 mac_proto = ovs_key_mac_proto(key);
3158 	const struct nlattr *a;
3159 	int rem, err;
3160 
3161 	nla_for_each_nested(a, attr, rem) {
3162 		/* Expected argument lengths, (u32)-1 for variable length. */
3163 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3164 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3165 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3166 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3167 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3168 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3169 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3170 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3171 			[OVS_ACTION_ATTR_SET] = (u32)-1,
3172 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3173 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3174 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3175 			[OVS_ACTION_ATTR_CT] = (u32)-1,
3176 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3177 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3178 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3179 			[OVS_ACTION_ATTR_POP_ETH] = 0,
3180 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3181 			[OVS_ACTION_ATTR_POP_NSH] = 0,
3182 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3183 			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3184 			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3185 			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3186 			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3187 			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3188 		};
3189 		const struct ovs_action_push_vlan *vlan;
3190 		int type = nla_type(a);
3191 		bool skip_copy;
3192 
3193 		if (type > OVS_ACTION_ATTR_MAX ||
3194 		    (action_lens[type] != nla_len(a) &&
3195 		     action_lens[type] != (u32)-1))
3196 			return -EINVAL;
3197 
3198 		skip_copy = false;
3199 		switch (type) {
3200 		case OVS_ACTION_ATTR_UNSPEC:
3201 			return -EINVAL;
3202 
3203 		case OVS_ACTION_ATTR_USERSPACE:
3204 			err = validate_userspace(a);
3205 			if (err)
3206 				return err;
3207 			break;
3208 
3209 		case OVS_ACTION_ATTR_OUTPUT:
3210 			if (nla_get_u32(a) >= DP_MAX_PORTS)
3211 				return -EINVAL;
3212 			break;
3213 
3214 		case OVS_ACTION_ATTR_TRUNC: {
3215 			const struct ovs_action_trunc *trunc = nla_data(a);
3216 
3217 			if (trunc->max_len < ETH_HLEN)
3218 				return -EINVAL;
3219 			break;
3220 		}
3221 
3222 		case OVS_ACTION_ATTR_HASH: {
3223 			const struct ovs_action_hash *act_hash = nla_data(a);
3224 
3225 			switch (act_hash->hash_alg) {
3226 			case OVS_HASH_ALG_L4:
3227 				fallthrough;
3228 			case OVS_HASH_ALG_SYM_L4:
3229 				break;
3230 			default:
3231 				return  -EINVAL;
3232 			}
3233 
3234 			break;
3235 		}
3236 
3237 		case OVS_ACTION_ATTR_POP_VLAN:
3238 			if (mac_proto != MAC_PROTO_ETHERNET)
3239 				return -EINVAL;
3240 			vlan_tci = htons(0);
3241 			break;
3242 
3243 		case OVS_ACTION_ATTR_PUSH_VLAN:
3244 			if (mac_proto != MAC_PROTO_ETHERNET)
3245 				return -EINVAL;
3246 			vlan = nla_data(a);
3247 			if (!eth_type_vlan(vlan->vlan_tpid))
3248 				return -EINVAL;
3249 			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3250 				return -EINVAL;
3251 			vlan_tci = vlan->vlan_tci;
3252 			break;
3253 
3254 		case OVS_ACTION_ATTR_RECIRC:
3255 			break;
3256 
3257 		case OVS_ACTION_ATTR_ADD_MPLS: {
3258 			const struct ovs_action_add_mpls *mpls = nla_data(a);
3259 
3260 			if (!eth_p_mpls(mpls->mpls_ethertype))
3261 				return -EINVAL;
3262 
3263 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3264 				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3265 				    (eth_type != htons(ETH_P_IP) &&
3266 				     eth_type != htons(ETH_P_IPV6) &&
3267 				     eth_type != htons(ETH_P_ARP) &&
3268 				     eth_type != htons(ETH_P_RARP) &&
3269 				     !eth_p_mpls(eth_type)))
3270 					return -EINVAL;
3271 				mpls_label_count++;
3272 			} else {
3273 				if (mac_proto == MAC_PROTO_ETHERNET) {
3274 					mpls_label_count = 1;
3275 					mac_proto = MAC_PROTO_NONE;
3276 				} else {
3277 					mpls_label_count++;
3278 				}
3279 			}
3280 			eth_type = mpls->mpls_ethertype;
3281 			break;
3282 		}
3283 
3284 		case OVS_ACTION_ATTR_PUSH_MPLS: {
3285 			const struct ovs_action_push_mpls *mpls = nla_data(a);
3286 
3287 			if (!eth_p_mpls(mpls->mpls_ethertype))
3288 				return -EINVAL;
3289 			/* Prohibit push MPLS other than to a white list
3290 			 * for packets that have a known tag order.
3291 			 */
3292 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3293 			    (eth_type != htons(ETH_P_IP) &&
3294 			     eth_type != htons(ETH_P_IPV6) &&
3295 			     eth_type != htons(ETH_P_ARP) &&
3296 			     eth_type != htons(ETH_P_RARP) &&
3297 			     !eth_p_mpls(eth_type)))
3298 				return -EINVAL;
3299 			eth_type = mpls->mpls_ethertype;
3300 			mpls_label_count++;
3301 			break;
3302 		}
3303 
3304 		case OVS_ACTION_ATTR_POP_MPLS: {
3305 			__be16  proto;
3306 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3307 			    !eth_p_mpls(eth_type))
3308 				return -EINVAL;
3309 
3310 			/* Disallow subsequent L2.5+ set actions and mpls_pop
3311 			 * actions once the last MPLS label in the packet is
3312 			 * popped as there is no check here to ensure that
3313 			 * the new eth type is valid and thus set actions could
3314 			 * write off the end of the packet or otherwise corrupt
3315 			 * it.
3316 			 *
3317 			 * Support for these actions is planned using packet
3318 			 * recirculation.
3319 			 */
3320 			proto = nla_get_be16(a);
3321 
3322 			if (proto == htons(ETH_P_TEB) &&
3323 			    mac_proto != MAC_PROTO_NONE)
3324 				return -EINVAL;
3325 
3326 			mpls_label_count--;
3327 
3328 			if (!eth_p_mpls(proto) || !mpls_label_count)
3329 				eth_type = htons(0);
3330 			else
3331 				eth_type =  proto;
3332 
3333 			break;
3334 		}
3335 
3336 		case OVS_ACTION_ATTR_SET:
3337 			err = validate_set(a, key, sfa,
3338 					   &skip_copy, mac_proto, eth_type,
3339 					   false, log);
3340 			if (err)
3341 				return err;
3342 			break;
3343 
3344 		case OVS_ACTION_ATTR_SET_MASKED:
3345 			err = validate_set(a, key, sfa,
3346 					   &skip_copy, mac_proto, eth_type,
3347 					   true, log);
3348 			if (err)
3349 				return err;
3350 			break;
3351 
3352 		case OVS_ACTION_ATTR_SAMPLE: {
3353 			bool last = nla_is_last(a, rem);
3354 
3355 			err = validate_and_copy_sample(net, a, key, sfa,
3356 						       eth_type, vlan_tci,
3357 						       mpls_label_count,
3358 						       log, last);
3359 			if (err)
3360 				return err;
3361 			skip_copy = true;
3362 			break;
3363 		}
3364 
3365 		case OVS_ACTION_ATTR_CT:
3366 			err = ovs_ct_copy_action(net, a, key, sfa, log);
3367 			if (err)
3368 				return err;
3369 			skip_copy = true;
3370 			break;
3371 
3372 		case OVS_ACTION_ATTR_CT_CLEAR:
3373 			break;
3374 
3375 		case OVS_ACTION_ATTR_PUSH_ETH:
3376 			/* Disallow pushing an Ethernet header if one
3377 			 * is already present */
3378 			if (mac_proto != MAC_PROTO_NONE)
3379 				return -EINVAL;
3380 			mac_proto = MAC_PROTO_ETHERNET;
3381 			break;
3382 
3383 		case OVS_ACTION_ATTR_POP_ETH:
3384 			if (mac_proto != MAC_PROTO_ETHERNET)
3385 				return -EINVAL;
3386 			if (vlan_tci & htons(VLAN_CFI_MASK))
3387 				return -EINVAL;
3388 			mac_proto = MAC_PROTO_NONE;
3389 			break;
3390 
3391 		case OVS_ACTION_ATTR_PUSH_NSH:
3392 			if (mac_proto != MAC_PROTO_ETHERNET) {
3393 				u8 next_proto;
3394 
3395 				next_proto = tun_p_from_eth_p(eth_type);
3396 				if (!next_proto)
3397 					return -EINVAL;
3398 			}
3399 			mac_proto = MAC_PROTO_NONE;
3400 			if (!validate_nsh(nla_data(a), false, true, true))
3401 				return -EINVAL;
3402 			break;
3403 
3404 		case OVS_ACTION_ATTR_POP_NSH: {
3405 			__be16 inner_proto;
3406 
3407 			if (eth_type != htons(ETH_P_NSH))
3408 				return -EINVAL;
3409 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3410 			if (!inner_proto)
3411 				return -EINVAL;
3412 			if (key->nsh.base.np == TUN_P_ETHERNET)
3413 				mac_proto = MAC_PROTO_ETHERNET;
3414 			else
3415 				mac_proto = MAC_PROTO_NONE;
3416 			break;
3417 		}
3418 
3419 		case OVS_ACTION_ATTR_METER:
3420 			/* Non-existent meters are simply ignored.  */
3421 			break;
3422 
3423 		case OVS_ACTION_ATTR_CLONE: {
3424 			bool last = nla_is_last(a, rem);
3425 
3426 			err = validate_and_copy_clone(net, a, key, sfa,
3427 						      eth_type, vlan_tci,
3428 						      mpls_label_count,
3429 						      log, last);
3430 			if (err)
3431 				return err;
3432 			skip_copy = true;
3433 			break;
3434 		}
3435 
3436 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3437 			bool last = nla_is_last(a, rem);
3438 
3439 			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3440 							      eth_type,
3441 							      vlan_tci,
3442 							      mpls_label_count,
3443 							      log, last);
3444 			if (err)
3445 				return err;
3446 			skip_copy = true;
3447 			break;
3448 		}
3449 
3450 		case OVS_ACTION_ATTR_DEC_TTL:
3451 			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3452 							eth_type, vlan_tci,
3453 							mpls_label_count, log);
3454 			if (err)
3455 				return err;
3456 			skip_copy = true;
3457 			break;
3458 
3459 		case OVS_ACTION_ATTR_DROP:
3460 			if (!nla_is_last(a, rem))
3461 				return -EINVAL;
3462 			break;
3463 
3464 		default:
3465 			OVS_NLERR(log, "Unknown Action type %d", type);
3466 			return -EINVAL;
3467 		}
3468 		if (!skip_copy) {
3469 			err = copy_action(a, sfa, log);
3470 			if (err)
3471 				return err;
3472 		}
3473 	}
3474 
3475 	if (rem > 0)
3476 		return -EINVAL;
3477 
3478 	return 0;
3479 }
3480 
3481 /* 'key' must be the masked key. */
3482 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3483 			 const struct sw_flow_key *key,
3484 			 struct sw_flow_actions **sfa, bool log)
3485 {
3486 	int err;
3487 	u32 mpls_label_count = 0;
3488 
3489 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3490 	if (IS_ERR(*sfa))
3491 		return PTR_ERR(*sfa);
3492 
3493 	if (eth_p_mpls(key->eth.type))
3494 		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3495 
3496 	(*sfa)->orig_len = nla_len(attr);
3497 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3498 				     key->eth.vlan.tci, mpls_label_count, log);
3499 	if (err)
3500 		ovs_nla_free_flow_actions(*sfa);
3501 
3502 	return err;
3503 }
3504 
3505 static int sample_action_to_attr(const struct nlattr *attr,
3506 				 struct sk_buff *skb)
3507 {
3508 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3509 	int err = 0, rem = nla_len(attr);
3510 	const struct sample_arg *arg;
3511 	struct nlattr *actions;
3512 
3513 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3514 	if (!start)
3515 		return -EMSGSIZE;
3516 
3517 	sample_arg = nla_data(attr);
3518 	arg = nla_data(sample_arg);
3519 	actions = nla_next(sample_arg, &rem);
3520 
3521 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3522 		err = -EMSGSIZE;
3523 		goto out;
3524 	}
3525 
3526 	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3527 	if (!ac_start) {
3528 		err = -EMSGSIZE;
3529 		goto out;
3530 	}
3531 
3532 	err = ovs_nla_put_actions(actions, rem, skb);
3533 
3534 out:
3535 	if (err) {
3536 		nla_nest_cancel(skb, ac_start);
3537 		nla_nest_cancel(skb, start);
3538 	} else {
3539 		nla_nest_end(skb, ac_start);
3540 		nla_nest_end(skb, start);
3541 	}
3542 
3543 	return err;
3544 }
3545 
3546 static int clone_action_to_attr(const struct nlattr *attr,
3547 				struct sk_buff *skb)
3548 {
3549 	struct nlattr *start;
3550 	int err = 0, rem = nla_len(attr);
3551 
3552 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3553 	if (!start)
3554 		return -EMSGSIZE;
3555 
3556 	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3557 	attr = nla_next(nla_data(attr), &rem);
3558 	err = ovs_nla_put_actions(attr, rem, skb);
3559 
3560 	if (err)
3561 		nla_nest_cancel(skb, start);
3562 	else
3563 		nla_nest_end(skb, start);
3564 
3565 	return err;
3566 }
3567 
3568 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3569 					struct sk_buff *skb)
3570 {
3571 	struct nlattr *start, *ac_start = NULL;
3572 	const struct check_pkt_len_arg *arg;
3573 	const struct nlattr *a, *cpl_arg;
3574 	int err = 0, rem = nla_len(attr);
3575 
3576 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3577 	if (!start)
3578 		return -EMSGSIZE;
3579 
3580 	/* The first nested attribute in 'attr' is always
3581 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3582 	 */
3583 	cpl_arg = nla_data(attr);
3584 	arg = nla_data(cpl_arg);
3585 
3586 	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3587 		err = -EMSGSIZE;
3588 		goto out;
3589 	}
3590 
3591 	/* Second nested attribute in 'attr' is always
3592 	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3593 	 */
3594 	a = nla_next(cpl_arg, &rem);
3595 	ac_start =  nla_nest_start_noflag(skb,
3596 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3597 	if (!ac_start) {
3598 		err = -EMSGSIZE;
3599 		goto out;
3600 	}
3601 
3602 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3603 	if (err) {
3604 		nla_nest_cancel(skb, ac_start);
3605 		goto out;
3606 	} else {
3607 		nla_nest_end(skb, ac_start);
3608 	}
3609 
3610 	/* Third nested attribute in 'attr' is always
3611 	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3612 	 */
3613 	a = nla_next(a, &rem);
3614 	ac_start =  nla_nest_start_noflag(skb,
3615 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3616 	if (!ac_start) {
3617 		err = -EMSGSIZE;
3618 		goto out;
3619 	}
3620 
3621 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3622 	if (err) {
3623 		nla_nest_cancel(skb, ac_start);
3624 		goto out;
3625 	} else {
3626 		nla_nest_end(skb, ac_start);
3627 	}
3628 
3629 	nla_nest_end(skb, start);
3630 	return 0;
3631 
3632 out:
3633 	nla_nest_cancel(skb, start);
3634 	return err;
3635 }
3636 
3637 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3638 				  struct sk_buff *skb)
3639 {
3640 	struct nlattr *start, *action_start;
3641 	const struct nlattr *a;
3642 	int err = 0, rem;
3643 
3644 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3645 	if (!start)
3646 		return -EMSGSIZE;
3647 
3648 	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3649 		switch (nla_type(a)) {
3650 		case OVS_DEC_TTL_ATTR_ACTION:
3651 
3652 			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3653 			if (!action_start) {
3654 				err = -EMSGSIZE;
3655 				goto out;
3656 			}
3657 
3658 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3659 			if (err)
3660 				goto out;
3661 
3662 			nla_nest_end(skb, action_start);
3663 			break;
3664 
3665 		default:
3666 			/* Ignore all other option to be future compatible */
3667 			break;
3668 		}
3669 	}
3670 
3671 	nla_nest_end(skb, start);
3672 	return 0;
3673 
3674 out:
3675 	nla_nest_cancel(skb, start);
3676 	return err;
3677 }
3678 
3679 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3680 {
3681 	const struct nlattr *ovs_key = nla_data(a);
3682 	int key_type = nla_type(ovs_key);
3683 	struct nlattr *start;
3684 	int err;
3685 
3686 	switch (key_type) {
3687 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3688 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3689 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3690 
3691 		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3692 		if (!start)
3693 			return -EMSGSIZE;
3694 
3695 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3696 					ip_tunnel_info_opts(tun_info),
3697 					tun_info->options_len,
3698 					ip_tunnel_info_af(tun_info), tun_info->mode);
3699 		if (err)
3700 			return err;
3701 		nla_nest_end(skb, start);
3702 		break;
3703 	}
3704 	default:
3705 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3706 			return -EMSGSIZE;
3707 		break;
3708 	}
3709 
3710 	return 0;
3711 }
3712 
3713 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3714 						struct sk_buff *skb)
3715 {
3716 	const struct nlattr *ovs_key = nla_data(a);
3717 	struct nlattr *nla;
3718 	size_t key_len = nla_len(ovs_key) / 2;
3719 
3720 	/* Revert the conversion we did from a non-masked set action to
3721 	 * masked set action.
3722 	 */
3723 	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3724 	if (!nla)
3725 		return -EMSGSIZE;
3726 
3727 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3728 		return -EMSGSIZE;
3729 
3730 	nla_nest_end(skb, nla);
3731 	return 0;
3732 }
3733 
3734 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3735 {
3736 	const struct nlattr *a;
3737 	int rem, err;
3738 
3739 	nla_for_each_attr(a, attr, len, rem) {
3740 		int type = nla_type(a);
3741 
3742 		switch (type) {
3743 		case OVS_ACTION_ATTR_SET:
3744 			err = set_action_to_attr(a, skb);
3745 			if (err)
3746 				return err;
3747 			break;
3748 
3749 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3750 			err = masked_set_action_to_set_action_attr(a, skb);
3751 			if (err)
3752 				return err;
3753 			break;
3754 
3755 		case OVS_ACTION_ATTR_SAMPLE:
3756 			err = sample_action_to_attr(a, skb);
3757 			if (err)
3758 				return err;
3759 			break;
3760 
3761 		case OVS_ACTION_ATTR_CT:
3762 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3763 			if (err)
3764 				return err;
3765 			break;
3766 
3767 		case OVS_ACTION_ATTR_CLONE:
3768 			err = clone_action_to_attr(a, skb);
3769 			if (err)
3770 				return err;
3771 			break;
3772 
3773 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3774 			err = check_pkt_len_action_to_attr(a, skb);
3775 			if (err)
3776 				return err;
3777 			break;
3778 
3779 		case OVS_ACTION_ATTR_DEC_TTL:
3780 			err = dec_ttl_action_to_attr(a, skb);
3781 			if (err)
3782 				return err;
3783 			break;
3784 
3785 		default:
3786 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3787 				return -EMSGSIZE;
3788 			break;
3789 		}
3790 	}
3791 
3792 	return 0;
3793 }
3794