1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 52 #include "flow_netlink.h" 53 54 struct ovs_len_tbl { 55 int len; 56 const struct ovs_len_tbl *next; 57 }; 58 59 #define OVS_ATTR_NESTED -1 60 #define OVS_ATTR_VARIABLE -2 61 62 static void update_range(struct sw_flow_match *match, 63 size_t offset, size_t size, bool is_mask) 64 { 65 struct sw_flow_key_range *range; 66 size_t start = rounddown(offset, sizeof(long)); 67 size_t end = roundup(offset + size, sizeof(long)); 68 69 if (!is_mask) 70 range = &match->range; 71 else 72 range = &match->mask->range; 73 74 if (range->start == range->end) { 75 range->start = start; 76 range->end = end; 77 return; 78 } 79 80 if (range->start > start) 81 range->start = start; 82 83 if (range->end < end) 84 range->end = end; 85 } 86 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 88 do { \ 89 update_range(match, offsetof(struct sw_flow_key, field), \ 90 sizeof((match)->key->field), is_mask); \ 91 if (is_mask) \ 92 (match)->mask->key.field = value; \ 93 else \ 94 (match)->key->field = value; \ 95 } while (0) 96 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 98 do { \ 99 update_range(match, offset, len, is_mask); \ 100 if (is_mask) \ 101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 102 len); \ 103 else \ 104 memcpy((u8 *)(match)->key + offset, value_p, len); \ 105 } while (0) 106 107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 109 value_p, len, is_mask) 110 111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 112 do { \ 113 update_range(match, offsetof(struct sw_flow_key, field), \ 114 sizeof((match)->key->field), is_mask); \ 115 if (is_mask) \ 116 memset((u8 *)&(match)->mask->key.field, value, \ 117 sizeof((match)->mask->key.field)); \ 118 else \ 119 memset((u8 *)&(match)->key->field, value, \ 120 sizeof((match)->key->field)); \ 121 } while (0) 122 123 static bool match_validate(const struct sw_flow_match *match, 124 u64 key_attrs, u64 mask_attrs, bool log) 125 { 126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; 127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 128 129 /* The following mask attributes allowed only if they 130 * pass the validation tests. */ 131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 132 | (1 << OVS_KEY_ATTR_IPV6) 133 | (1 << OVS_KEY_ATTR_TCP) 134 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 135 | (1 << OVS_KEY_ATTR_UDP) 136 | (1 << OVS_KEY_ATTR_SCTP) 137 | (1 << OVS_KEY_ATTR_ICMP) 138 | (1 << OVS_KEY_ATTR_ICMPV6) 139 | (1 << OVS_KEY_ATTR_ARP) 140 | (1 << OVS_KEY_ATTR_ND) 141 | (1 << OVS_KEY_ATTR_MPLS)); 142 143 /* Always allowed mask fields. */ 144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 145 | (1 << OVS_KEY_ATTR_IN_PORT) 146 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 147 148 /* Check key attributes. */ 149 if (match->key->eth.type == htons(ETH_P_ARP) 150 || match->key->eth.type == htons(ETH_P_RARP)) { 151 key_expected |= 1 << OVS_KEY_ATTR_ARP; 152 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 154 } 155 156 if (eth_p_mpls(match->key->eth.type)) { 157 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 158 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 160 } 161 162 if (match->key->eth.type == htons(ETH_P_IP)) { 163 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 164 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 166 167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 168 if (match->key->ip.proto == IPPROTO_UDP) { 169 key_expected |= 1 << OVS_KEY_ATTR_UDP; 170 if (match->mask && (match->mask->key.ip.proto == 0xff)) 171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 172 } 173 174 if (match->key->ip.proto == IPPROTO_SCTP) { 175 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 176 if (match->mask && (match->mask->key.ip.proto == 0xff)) 177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 178 } 179 180 if (match->key->ip.proto == IPPROTO_TCP) { 181 key_expected |= 1 << OVS_KEY_ATTR_TCP; 182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 183 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 186 } 187 } 188 189 if (match->key->ip.proto == IPPROTO_ICMP) { 190 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 191 if (match->mask && (match->mask->key.ip.proto == 0xff)) 192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 193 } 194 } 195 } 196 197 if (match->key->eth.type == htons(ETH_P_IPV6)) { 198 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 199 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 201 202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 203 if (match->key->ip.proto == IPPROTO_UDP) { 204 key_expected |= 1 << OVS_KEY_ATTR_UDP; 205 if (match->mask && (match->mask->key.ip.proto == 0xff)) 206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 207 } 208 209 if (match->key->ip.proto == IPPROTO_SCTP) { 210 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 211 if (match->mask && (match->mask->key.ip.proto == 0xff)) 212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 213 } 214 215 if (match->key->ip.proto == IPPROTO_TCP) { 216 key_expected |= 1 << OVS_KEY_ATTR_TCP; 217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 218 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 221 } 222 } 223 224 if (match->key->ip.proto == IPPROTO_ICMPV6) { 225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 226 if (match->mask && (match->mask->key.ip.proto == 0xff)) 227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 228 229 if (match->key->tp.src == 230 htons(NDISC_NEIGHBOUR_SOLICITATION) || 231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 232 key_expected |= 1 << OVS_KEY_ATTR_ND; 233 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 234 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 235 } 236 } 237 } 238 } 239 240 if ((key_attrs & key_expected) != key_expected) { 241 /* Key attributes check failed. */ 242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 243 (unsigned long long)key_attrs, 244 (unsigned long long)key_expected); 245 return false; 246 } 247 248 if ((mask_attrs & mask_allowed) != mask_attrs) { 249 /* Mask attributes check failed. */ 250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 251 (unsigned long long)mask_attrs, 252 (unsigned long long)mask_allowed); 253 return false; 254 } 255 256 return true; 257 } 258 259 size_t ovs_tun_key_attr_size(void) 260 { 261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 262 * updating this function. 263 */ 264 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 275 */ 276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 278 } 279 280 size_t ovs_key_attr_size(void) 281 { 282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 283 * updating this function. 284 */ 285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26); 286 287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 289 + ovs_tun_key_attr_size() 290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 306 } 307 308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 310 }; 311 312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 325 .next = ovs_vxlan_ext_key_lens }, 326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 328 }; 329 330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 352 .next = ovs_tunnel_key_lens, }, 353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 358 }; 359 360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 361 { 362 return expected_len == attr_len || 363 expected_len == OVS_ATTR_NESTED || 364 expected_len == OVS_ATTR_VARIABLE; 365 } 366 367 static bool is_all_zero(const u8 *fp, size_t size) 368 { 369 int i; 370 371 if (!fp) 372 return false; 373 374 for (i = 0; i < size; i++) 375 if (fp[i]) 376 return false; 377 378 return true; 379 } 380 381 static int __parse_flow_nlattrs(const struct nlattr *attr, 382 const struct nlattr *a[], 383 u64 *attrsp, bool log, bool nz) 384 { 385 const struct nlattr *nla; 386 u64 attrs; 387 int rem; 388 389 attrs = *attrsp; 390 nla_for_each_nested(nla, attr, rem) { 391 u16 type = nla_type(nla); 392 int expected_len; 393 394 if (type > OVS_KEY_ATTR_MAX) { 395 OVS_NLERR(log, "Key type %d is out of range max %d", 396 type, OVS_KEY_ATTR_MAX); 397 return -EINVAL; 398 } 399 400 if (attrs & (1 << type)) { 401 OVS_NLERR(log, "Duplicate key (type %d).", type); 402 return -EINVAL; 403 } 404 405 expected_len = ovs_key_lens[type].len; 406 if (!check_attr_len(nla_len(nla), expected_len)) { 407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 408 type, nla_len(nla), expected_len); 409 return -EINVAL; 410 } 411 412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 413 attrs |= 1 << type; 414 a[type] = nla; 415 } 416 } 417 if (rem) { 418 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 419 return -EINVAL; 420 } 421 422 *attrsp = attrs; 423 return 0; 424 } 425 426 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 427 const struct nlattr *a[], u64 *attrsp, 428 bool log) 429 { 430 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 431 } 432 433 static int parse_flow_nlattrs(const struct nlattr *attr, 434 const struct nlattr *a[], u64 *attrsp, 435 bool log) 436 { 437 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 438 } 439 440 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 441 struct sw_flow_match *match, bool is_mask, 442 bool log) 443 { 444 unsigned long opt_key_offset; 445 446 if (nla_len(a) > sizeof(match->key->tun_opts)) { 447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 448 nla_len(a), sizeof(match->key->tun_opts)); 449 return -EINVAL; 450 } 451 452 if (nla_len(a) % 4 != 0) { 453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 454 nla_len(a)); 455 return -EINVAL; 456 } 457 458 /* We need to record the length of the options passed 459 * down, otherwise packets with the same format but 460 * additional options will be silently matched. 461 */ 462 if (!is_mask) { 463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 464 false); 465 } else { 466 /* This is somewhat unusual because it looks at 467 * both the key and mask while parsing the 468 * attributes (and by extension assumes the key 469 * is parsed first). Normally, we would verify 470 * that each is the correct length and that the 471 * attributes line up in the validate function. 472 * However, that is difficult because this is 473 * variable length and we won't have the 474 * information later. 475 */ 476 if (match->key->tun_opts_len != nla_len(a)) { 477 OVS_NLERR(log, "Geneve option len %d != mask len %d", 478 match->key->tun_opts_len, nla_len(a)); 479 return -EINVAL; 480 } 481 482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 483 } 484 485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 487 nla_len(a), is_mask); 488 return 0; 489 } 490 491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 492 struct sw_flow_match *match, bool is_mask, 493 bool log) 494 { 495 struct nlattr *a; 496 int rem; 497 unsigned long opt_key_offset; 498 struct vxlan_metadata opts; 499 500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 501 502 memset(&opts, 0, sizeof(opts)); 503 nla_for_each_nested(a, attr, rem) { 504 int type = nla_type(a); 505 506 if (type > OVS_VXLAN_EXT_MAX) { 507 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 508 type, OVS_VXLAN_EXT_MAX); 509 return -EINVAL; 510 } 511 512 if (!check_attr_len(nla_len(a), 513 ovs_vxlan_ext_key_lens[type].len)) { 514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 515 type, nla_len(a), 516 ovs_vxlan_ext_key_lens[type].len); 517 return -EINVAL; 518 } 519 520 switch (type) { 521 case OVS_VXLAN_EXT_GBP: 522 opts.gbp = nla_get_u32(a); 523 break; 524 default: 525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 526 type); 527 return -EINVAL; 528 } 529 } 530 if (rem) { 531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 532 rem); 533 return -EINVAL; 534 } 535 536 if (!is_mask) 537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 538 else 539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 540 541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 543 is_mask); 544 return 0; 545 } 546 547 static int ip_tun_from_nlattr(const struct nlattr *attr, 548 struct sw_flow_match *match, bool is_mask, 549 bool log) 550 { 551 bool ttl = false, ipv4 = false, ipv6 = false; 552 __be16 tun_flags = 0; 553 int opts_type = 0; 554 struct nlattr *a; 555 int rem; 556 557 nla_for_each_nested(a, attr, rem) { 558 int type = nla_type(a); 559 int err; 560 561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 562 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 563 type, OVS_TUNNEL_KEY_ATTR_MAX); 564 return -EINVAL; 565 } 566 567 if (!check_attr_len(nla_len(a), 568 ovs_tunnel_key_lens[type].len)) { 569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 570 type, nla_len(a), ovs_tunnel_key_lens[type].len); 571 return -EINVAL; 572 } 573 574 switch (type) { 575 case OVS_TUNNEL_KEY_ATTR_ID: 576 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 577 nla_get_be64(a), is_mask); 578 tun_flags |= TUNNEL_KEY; 579 break; 580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 582 nla_get_in_addr(a), is_mask); 583 ipv4 = true; 584 break; 585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 587 nla_get_in_addr(a), is_mask); 588 ipv4 = true; 589 break; 590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 592 nla_get_in6_addr(a), is_mask); 593 ipv6 = true; 594 break; 595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 597 nla_get_in6_addr(a), is_mask); 598 ipv6 = true; 599 break; 600 case OVS_TUNNEL_KEY_ATTR_TOS: 601 SW_FLOW_KEY_PUT(match, tun_key.tos, 602 nla_get_u8(a), is_mask); 603 break; 604 case OVS_TUNNEL_KEY_ATTR_TTL: 605 SW_FLOW_KEY_PUT(match, tun_key.ttl, 606 nla_get_u8(a), is_mask); 607 ttl = true; 608 break; 609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 610 tun_flags |= TUNNEL_DONT_FRAGMENT; 611 break; 612 case OVS_TUNNEL_KEY_ATTR_CSUM: 613 tun_flags |= TUNNEL_CSUM; 614 break; 615 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 616 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 617 nla_get_be16(a), is_mask); 618 break; 619 case OVS_TUNNEL_KEY_ATTR_TP_DST: 620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 621 nla_get_be16(a), is_mask); 622 break; 623 case OVS_TUNNEL_KEY_ATTR_OAM: 624 tun_flags |= TUNNEL_OAM; 625 break; 626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 627 if (opts_type) { 628 OVS_NLERR(log, "Multiple metadata blocks provided"); 629 return -EINVAL; 630 } 631 632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 633 if (err) 634 return err; 635 636 tun_flags |= TUNNEL_GENEVE_OPT; 637 opts_type = type; 638 break; 639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 640 if (opts_type) { 641 OVS_NLERR(log, "Multiple metadata blocks provided"); 642 return -EINVAL; 643 } 644 645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 646 if (err) 647 return err; 648 649 tun_flags |= TUNNEL_VXLAN_OPT; 650 opts_type = type; 651 break; 652 default: 653 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 654 type); 655 return -EINVAL; 656 } 657 } 658 659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 660 if (is_mask) 661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 662 else 663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 664 false); 665 666 if (rem > 0) { 667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 668 rem); 669 return -EINVAL; 670 } 671 672 if (ipv4 && ipv6) { 673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 674 return -EINVAL; 675 } 676 677 if (!is_mask) { 678 if (!ipv4 && !ipv6) { 679 OVS_NLERR(log, "IP tunnel dst address not specified"); 680 return -EINVAL; 681 } 682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 683 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 684 return -EINVAL; 685 } 686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 687 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 688 return -EINVAL; 689 } 690 691 if (!ttl) { 692 OVS_NLERR(log, "IP tunnel TTL not specified."); 693 return -EINVAL; 694 } 695 } 696 697 return opts_type; 698 } 699 700 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 701 const void *tun_opts, int swkey_tun_opts_len) 702 { 703 const struct vxlan_metadata *opts = tun_opts; 704 struct nlattr *nla; 705 706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 707 if (!nla) 708 return -EMSGSIZE; 709 710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 711 return -EMSGSIZE; 712 713 nla_nest_end(skb, nla); 714 return 0; 715 } 716 717 static int __ip_tun_to_nlattr(struct sk_buff *skb, 718 const struct ip_tunnel_key *output, 719 const void *tun_opts, int swkey_tun_opts_len, 720 unsigned short tun_proto) 721 { 722 if (output->tun_flags & TUNNEL_KEY && 723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 724 OVS_TUNNEL_KEY_ATTR_PAD)) 725 return -EMSGSIZE; 726 switch (tun_proto) { 727 case AF_INET: 728 if (output->u.ipv4.src && 729 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 730 output->u.ipv4.src)) 731 return -EMSGSIZE; 732 if (output->u.ipv4.dst && 733 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 734 output->u.ipv4.dst)) 735 return -EMSGSIZE; 736 break; 737 case AF_INET6: 738 if (!ipv6_addr_any(&output->u.ipv6.src) && 739 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 740 &output->u.ipv6.src)) 741 return -EMSGSIZE; 742 if (!ipv6_addr_any(&output->u.ipv6.dst) && 743 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 744 &output->u.ipv6.dst)) 745 return -EMSGSIZE; 746 break; 747 } 748 if (output->tos && 749 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 750 return -EMSGSIZE; 751 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 752 return -EMSGSIZE; 753 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 754 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 755 return -EMSGSIZE; 756 if ((output->tun_flags & TUNNEL_CSUM) && 757 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 758 return -EMSGSIZE; 759 if (output->tp_src && 760 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 761 return -EMSGSIZE; 762 if (output->tp_dst && 763 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 764 return -EMSGSIZE; 765 if ((output->tun_flags & TUNNEL_OAM) && 766 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 767 return -EMSGSIZE; 768 if (swkey_tun_opts_len) { 769 if (output->tun_flags & TUNNEL_GENEVE_OPT && 770 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 771 swkey_tun_opts_len, tun_opts)) 772 return -EMSGSIZE; 773 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 774 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 775 return -EMSGSIZE; 776 } 777 778 return 0; 779 } 780 781 static int ip_tun_to_nlattr(struct sk_buff *skb, 782 const struct ip_tunnel_key *output, 783 const void *tun_opts, int swkey_tun_opts_len, 784 unsigned short tun_proto) 785 { 786 struct nlattr *nla; 787 int err; 788 789 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 790 if (!nla) 791 return -EMSGSIZE; 792 793 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 794 tun_proto); 795 if (err) 796 return err; 797 798 nla_nest_end(skb, nla); 799 return 0; 800 } 801 802 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 803 struct ip_tunnel_info *tun_info) 804 { 805 return __ip_tun_to_nlattr(skb, &tun_info->key, 806 ip_tunnel_info_opts(tun_info), 807 tun_info->options_len, 808 ip_tunnel_info_af(tun_info)); 809 } 810 811 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 812 const struct nlattr *a[], 813 bool is_mask, bool inner) 814 { 815 __be16 tci = 0; 816 __be16 tpid = 0; 817 818 if (a[OVS_KEY_ATTR_VLAN]) 819 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 820 821 if (a[OVS_KEY_ATTR_ETHERTYPE]) 822 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 823 824 if (likely(!inner)) { 825 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 826 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 827 } else { 828 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 829 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 830 } 831 return 0; 832 } 833 834 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 835 u64 key_attrs, bool inner, 836 const struct nlattr **a, bool log) 837 { 838 __be16 tci = 0; 839 840 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 841 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 842 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 843 /* Not a VLAN. */ 844 return 0; 845 } 846 847 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 848 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 849 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 850 return -EINVAL; 851 } 852 853 if (a[OVS_KEY_ATTR_VLAN]) 854 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 855 856 if (!(tci & htons(VLAN_TAG_PRESENT))) { 857 if (tci) { 858 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.", 859 (inner) ? "C-VLAN" : "VLAN"); 860 return -EINVAL; 861 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 862 /* Corner case for truncated VLAN header. */ 863 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 864 (inner) ? "C-VLAN" : "VLAN"); 865 return -EINVAL; 866 } 867 } 868 869 return 1; 870 } 871 872 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 873 u64 key_attrs, bool inner, 874 const struct nlattr **a, bool log) 875 { 876 __be16 tci = 0; 877 __be16 tpid = 0; 878 bool encap_valid = !!(match->key->eth.vlan.tci & 879 htons(VLAN_TAG_PRESENT)); 880 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 881 htons(VLAN_TAG_PRESENT)); 882 883 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 884 /* Not a VLAN. */ 885 return 0; 886 } 887 888 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 889 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 890 (inner) ? "C-VLAN" : "VLAN"); 891 return -EINVAL; 892 } 893 894 if (a[OVS_KEY_ATTR_VLAN]) 895 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 896 897 if (a[OVS_KEY_ATTR_ETHERTYPE]) 898 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 899 900 if (tpid != htons(0xffff)) { 901 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 902 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 903 return -EINVAL; 904 } 905 if (!(tci & htons(VLAN_TAG_PRESENT))) { 906 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.", 907 (inner) ? "C-VLAN" : "VLAN"); 908 return -EINVAL; 909 } 910 911 return 1; 912 } 913 914 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 915 u64 *key_attrs, bool inner, 916 const struct nlattr **a, bool is_mask, 917 bool log) 918 { 919 int err; 920 const struct nlattr *encap; 921 922 if (!is_mask) 923 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 924 a, log); 925 else 926 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 927 a, log); 928 if (err <= 0) 929 return err; 930 931 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 932 if (err) 933 return err; 934 935 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 936 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 937 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 938 939 encap = a[OVS_KEY_ATTR_ENCAP]; 940 941 if (!is_mask) 942 err = parse_flow_nlattrs(encap, a, key_attrs, log); 943 else 944 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 945 946 return err; 947 } 948 949 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 950 u64 *key_attrs, const struct nlattr **a, 951 bool is_mask, bool log) 952 { 953 int err; 954 bool encap_valid = false; 955 956 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 957 is_mask, log); 958 if (err) 959 return err; 960 961 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT)); 962 if (encap_valid) { 963 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 964 is_mask, log); 965 if (err) 966 return err; 967 } 968 969 return 0; 970 } 971 972 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 973 u64 *attrs, const struct nlattr **a, 974 bool is_mask, bool log) 975 { 976 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 977 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 978 979 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 980 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 981 } 982 983 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 984 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 985 986 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 987 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 988 } 989 990 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 991 SW_FLOW_KEY_PUT(match, phy.priority, 992 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 993 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 994 } 995 996 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 997 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 998 999 if (is_mask) { 1000 in_port = 0xffffffff; /* Always exact match in_port. */ 1001 } else if (in_port >= DP_MAX_PORTS) { 1002 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1003 in_port, DP_MAX_PORTS); 1004 return -EINVAL; 1005 } 1006 1007 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1008 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1009 } else if (!is_mask) { 1010 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1011 } 1012 1013 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1014 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1015 1016 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1017 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1018 } 1019 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1020 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1021 is_mask, log) < 0) 1022 return -EINVAL; 1023 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1024 } 1025 1026 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1027 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1028 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1029 1030 if (ct_state & ~CT_SUPPORTED_MASK) { 1031 OVS_NLERR(log, "ct_state flags %08x unsupported", 1032 ct_state); 1033 return -EINVAL; 1034 } 1035 1036 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask); 1037 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1038 } 1039 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1040 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1041 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1042 1043 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask); 1044 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1045 } 1046 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1047 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1048 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1049 1050 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1051 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1052 } 1053 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1054 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1055 const struct ovs_key_ct_labels *cl; 1056 1057 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1058 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1059 sizeof(*cl), is_mask); 1060 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1061 } 1062 return 0; 1063 } 1064 1065 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1066 u64 attrs, const struct nlattr **a, 1067 bool is_mask, bool log) 1068 { 1069 int err; 1070 1071 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1072 if (err) 1073 return err; 1074 1075 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1076 const struct ovs_key_ethernet *eth_key; 1077 1078 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1079 SW_FLOW_KEY_MEMCPY(match, eth.src, 1080 eth_key->eth_src, ETH_ALEN, is_mask); 1081 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1082 eth_key->eth_dst, ETH_ALEN, is_mask); 1083 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1084 } 1085 1086 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1087 /* VLAN attribute is always parsed before getting here since it 1088 * may occur multiple times. 1089 */ 1090 OVS_NLERR(log, "VLAN attribute unexpected."); 1091 return -EINVAL; 1092 } 1093 1094 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1095 __be16 eth_type; 1096 1097 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1098 if (is_mask) { 1099 /* Always exact match EtherType. */ 1100 eth_type = htons(0xffff); 1101 } else if (!eth_proto_is_802_3(eth_type)) { 1102 OVS_NLERR(log, "EtherType %x is less than min %x", 1103 ntohs(eth_type), ETH_P_802_3_MIN); 1104 return -EINVAL; 1105 } 1106 1107 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1108 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1109 } else if (!is_mask) { 1110 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1111 } 1112 1113 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1114 const struct ovs_key_ipv4 *ipv4_key; 1115 1116 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1117 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1118 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1119 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1120 return -EINVAL; 1121 } 1122 SW_FLOW_KEY_PUT(match, ip.proto, 1123 ipv4_key->ipv4_proto, is_mask); 1124 SW_FLOW_KEY_PUT(match, ip.tos, 1125 ipv4_key->ipv4_tos, is_mask); 1126 SW_FLOW_KEY_PUT(match, ip.ttl, 1127 ipv4_key->ipv4_ttl, is_mask); 1128 SW_FLOW_KEY_PUT(match, ip.frag, 1129 ipv4_key->ipv4_frag, is_mask); 1130 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1131 ipv4_key->ipv4_src, is_mask); 1132 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1133 ipv4_key->ipv4_dst, is_mask); 1134 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1135 } 1136 1137 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1138 const struct ovs_key_ipv6 *ipv6_key; 1139 1140 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1141 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1142 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1143 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1144 return -EINVAL; 1145 } 1146 1147 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1148 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n", 1149 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1150 return -EINVAL; 1151 } 1152 1153 SW_FLOW_KEY_PUT(match, ipv6.label, 1154 ipv6_key->ipv6_label, is_mask); 1155 SW_FLOW_KEY_PUT(match, ip.proto, 1156 ipv6_key->ipv6_proto, is_mask); 1157 SW_FLOW_KEY_PUT(match, ip.tos, 1158 ipv6_key->ipv6_tclass, is_mask); 1159 SW_FLOW_KEY_PUT(match, ip.ttl, 1160 ipv6_key->ipv6_hlimit, is_mask); 1161 SW_FLOW_KEY_PUT(match, ip.frag, 1162 ipv6_key->ipv6_frag, is_mask); 1163 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1164 ipv6_key->ipv6_src, 1165 sizeof(match->key->ipv6.addr.src), 1166 is_mask); 1167 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1168 ipv6_key->ipv6_dst, 1169 sizeof(match->key->ipv6.addr.dst), 1170 is_mask); 1171 1172 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1173 } 1174 1175 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1176 const struct ovs_key_arp *arp_key; 1177 1178 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1179 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1180 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1181 arp_key->arp_op); 1182 return -EINVAL; 1183 } 1184 1185 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1186 arp_key->arp_sip, is_mask); 1187 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1188 arp_key->arp_tip, is_mask); 1189 SW_FLOW_KEY_PUT(match, ip.proto, 1190 ntohs(arp_key->arp_op), is_mask); 1191 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1192 arp_key->arp_sha, ETH_ALEN, is_mask); 1193 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1194 arp_key->arp_tha, ETH_ALEN, is_mask); 1195 1196 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1197 } 1198 1199 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1200 const struct ovs_key_mpls *mpls_key; 1201 1202 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1203 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1204 mpls_key->mpls_lse, is_mask); 1205 1206 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1207 } 1208 1209 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1210 const struct ovs_key_tcp *tcp_key; 1211 1212 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1213 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1214 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1215 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1216 } 1217 1218 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1219 SW_FLOW_KEY_PUT(match, tp.flags, 1220 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1221 is_mask); 1222 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1223 } 1224 1225 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1226 const struct ovs_key_udp *udp_key; 1227 1228 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1229 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1230 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1231 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1232 } 1233 1234 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1235 const struct ovs_key_sctp *sctp_key; 1236 1237 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1238 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1239 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1240 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1241 } 1242 1243 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1244 const struct ovs_key_icmp *icmp_key; 1245 1246 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1247 SW_FLOW_KEY_PUT(match, tp.src, 1248 htons(icmp_key->icmp_type), is_mask); 1249 SW_FLOW_KEY_PUT(match, tp.dst, 1250 htons(icmp_key->icmp_code), is_mask); 1251 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1252 } 1253 1254 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1255 const struct ovs_key_icmpv6 *icmpv6_key; 1256 1257 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1258 SW_FLOW_KEY_PUT(match, tp.src, 1259 htons(icmpv6_key->icmpv6_type), is_mask); 1260 SW_FLOW_KEY_PUT(match, tp.dst, 1261 htons(icmpv6_key->icmpv6_code), is_mask); 1262 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1263 } 1264 1265 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1266 const struct ovs_key_nd *nd_key; 1267 1268 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1269 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1270 nd_key->nd_target, 1271 sizeof(match->key->ipv6.nd.target), 1272 is_mask); 1273 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1274 nd_key->nd_sll, ETH_ALEN, is_mask); 1275 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1276 nd_key->nd_tll, ETH_ALEN, is_mask); 1277 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1278 } 1279 1280 if (attrs != 0) { 1281 OVS_NLERR(log, "Unknown key attributes %llx", 1282 (unsigned long long)attrs); 1283 return -EINVAL; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static void nlattr_set(struct nlattr *attr, u8 val, 1290 const struct ovs_len_tbl *tbl) 1291 { 1292 struct nlattr *nla; 1293 int rem; 1294 1295 /* The nlattr stream should already have been validated */ 1296 nla_for_each_nested(nla, attr, rem) { 1297 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1298 if (tbl[nla_type(nla)].next) 1299 tbl = tbl[nla_type(nla)].next; 1300 nlattr_set(nla, val, tbl); 1301 } else { 1302 memset(nla_data(nla), val, nla_len(nla)); 1303 } 1304 1305 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1306 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1307 } 1308 } 1309 1310 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1311 { 1312 nlattr_set(attr, val, ovs_key_lens); 1313 } 1314 1315 /** 1316 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1317 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1318 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1319 * does not include any don't care bit. 1320 * @net: Used to determine per-namespace field support. 1321 * @match: receives the extracted flow match information. 1322 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1323 * sequence. The fields should of the packet that triggered the creation 1324 * of this flow. 1325 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1326 * attribute specifies the mask field of the wildcarded flow. 1327 * @log: Boolean to allow kernel error logging. Normally true, but when 1328 * probing for feature compatibility this should be passed in as false to 1329 * suppress unnecessary error logging. 1330 */ 1331 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1332 const struct nlattr *nla_key, 1333 const struct nlattr *nla_mask, 1334 bool log) 1335 { 1336 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1337 struct nlattr *newmask = NULL; 1338 u64 key_attrs = 0; 1339 u64 mask_attrs = 0; 1340 int err; 1341 1342 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1343 if (err) 1344 return err; 1345 1346 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1347 if (err) 1348 return err; 1349 1350 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1351 if (err) 1352 return err; 1353 1354 if (match->mask) { 1355 if (!nla_mask) { 1356 /* Create an exact match mask. We need to set to 0xff 1357 * all the 'match->mask' fields that have been touched 1358 * in 'match->key'. We cannot simply memset 1359 * 'match->mask', because padding bytes and fields not 1360 * specified in 'match->key' should be left to 0. 1361 * Instead, we use a stream of netlink attributes, 1362 * copied from 'key' and set to 0xff. 1363 * ovs_key_from_nlattrs() will take care of filling 1364 * 'match->mask' appropriately. 1365 */ 1366 newmask = kmemdup(nla_key, 1367 nla_total_size(nla_len(nla_key)), 1368 GFP_KERNEL); 1369 if (!newmask) 1370 return -ENOMEM; 1371 1372 mask_set_nlattr(newmask, 0xff); 1373 1374 /* The userspace does not send tunnel attributes that 1375 * are 0, but we should not wildcard them nonetheless. 1376 */ 1377 if (match->key->tun_proto) 1378 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1379 0xff, true); 1380 1381 nla_mask = newmask; 1382 } 1383 1384 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1385 if (err) 1386 goto free_newmask; 1387 1388 /* Always match on tci. */ 1389 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1390 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1391 1392 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1393 if (err) 1394 goto free_newmask; 1395 1396 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1397 log); 1398 if (err) 1399 goto free_newmask; 1400 } 1401 1402 if (!match_validate(match, key_attrs, mask_attrs, log)) 1403 err = -EINVAL; 1404 1405 free_newmask: 1406 kfree(newmask); 1407 return err; 1408 } 1409 1410 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1411 { 1412 size_t len; 1413 1414 if (!attr) 1415 return 0; 1416 1417 len = nla_len(attr); 1418 if (len < 1 || len > MAX_UFID_LENGTH) { 1419 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1420 nla_len(attr), MAX_UFID_LENGTH); 1421 return 0; 1422 } 1423 1424 return len; 1425 } 1426 1427 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1428 * or false otherwise. 1429 */ 1430 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1431 bool log) 1432 { 1433 sfid->ufid_len = get_ufid_len(attr, log); 1434 if (sfid->ufid_len) 1435 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1436 1437 return sfid->ufid_len; 1438 } 1439 1440 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1441 const struct sw_flow_key *key, bool log) 1442 { 1443 struct sw_flow_key *new_key; 1444 1445 if (ovs_nla_get_ufid(sfid, ufid, log)) 1446 return 0; 1447 1448 /* If UFID was not provided, use unmasked key. */ 1449 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1450 if (!new_key) 1451 return -ENOMEM; 1452 memcpy(new_key, key, sizeof(*key)); 1453 sfid->unmasked_key = new_key; 1454 1455 return 0; 1456 } 1457 1458 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1459 { 1460 return attr ? nla_get_u32(attr) : 0; 1461 } 1462 1463 /** 1464 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1465 * @key: Receives extracted in_port, priority, tun_key and skb_mark. 1466 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1467 * sequence. 1468 * @log: Boolean to allow kernel error logging. Normally true, but when 1469 * probing for feature compatibility this should be passed in as false to 1470 * suppress unnecessary error logging. 1471 * 1472 * This parses a series of Netlink attributes that form a flow key, which must 1473 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1474 * get the metadata, that is, the parts of the flow key that cannot be 1475 * extracted from the packet itself. 1476 */ 1477 1478 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr, 1479 struct sw_flow_key *key, 1480 bool log) 1481 { 1482 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1483 struct sw_flow_match match; 1484 u64 attrs = 0; 1485 int err; 1486 1487 err = parse_flow_nlattrs(attr, a, &attrs, log); 1488 if (err) 1489 return -EINVAL; 1490 1491 memset(&match, 0, sizeof(match)); 1492 match.key = key; 1493 1494 memset(&key->ct, 0, sizeof(key->ct)); 1495 key->phy.in_port = DP_MAX_PORTS; 1496 1497 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1498 } 1499 1500 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1501 bool is_mask) 1502 { 1503 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1504 1505 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1506 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1507 return -EMSGSIZE; 1508 return 0; 1509 } 1510 1511 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1512 const struct sw_flow_key *output, bool is_mask, 1513 struct sk_buff *skb) 1514 { 1515 struct ovs_key_ethernet *eth_key; 1516 struct nlattr *nla; 1517 struct nlattr *encap = NULL; 1518 struct nlattr *in_encap = NULL; 1519 1520 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1521 goto nla_put_failure; 1522 1523 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1524 goto nla_put_failure; 1525 1526 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1527 goto nla_put_failure; 1528 1529 if ((swkey->tun_proto || is_mask)) { 1530 const void *opts = NULL; 1531 1532 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1533 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1534 1535 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1536 swkey->tun_opts_len, swkey->tun_proto)) 1537 goto nla_put_failure; 1538 } 1539 1540 if (swkey->phy.in_port == DP_MAX_PORTS) { 1541 if (is_mask && (output->phy.in_port == 0xffff)) 1542 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1543 goto nla_put_failure; 1544 } else { 1545 u16 upper_u16; 1546 upper_u16 = !is_mask ? 0 : 0xffff; 1547 1548 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1549 (upper_u16 << 16) | output->phy.in_port)) 1550 goto nla_put_failure; 1551 } 1552 1553 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 1554 goto nla_put_failure; 1555 1556 if (ovs_ct_put_key(output, skb)) 1557 goto nla_put_failure; 1558 1559 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1560 if (!nla) 1561 goto nla_put_failure; 1562 1563 eth_key = nla_data(nla); 1564 ether_addr_copy(eth_key->eth_src, output->eth.src); 1565 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 1566 1567 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 1568 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 1569 goto nla_put_failure; 1570 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1571 if (!swkey->eth.vlan.tci) 1572 goto unencap; 1573 1574 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 1575 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 1576 goto nla_put_failure; 1577 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1578 if (!swkey->eth.cvlan.tci) 1579 goto unencap; 1580 } 1581 } 1582 1583 if (swkey->eth.type == htons(ETH_P_802_2)) { 1584 /* 1585 * Ethertype 802.2 is represented in the netlink with omitted 1586 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 1587 * 0xffff in the mask attribute. Ethertype can also 1588 * be wildcarded. 1589 */ 1590 if (is_mask && output->eth.type) 1591 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 1592 output->eth.type)) 1593 goto nla_put_failure; 1594 goto unencap; 1595 } 1596 1597 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 1598 goto nla_put_failure; 1599 1600 if (eth_type_vlan(swkey->eth.type)) { 1601 /* There are 3 VLAN tags, we don't know anything about the rest 1602 * of the packet, so truncate here. 1603 */ 1604 WARN_ON_ONCE(!(encap && in_encap)); 1605 goto unencap; 1606 } 1607 1608 if (swkey->eth.type == htons(ETH_P_IP)) { 1609 struct ovs_key_ipv4 *ipv4_key; 1610 1611 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1612 if (!nla) 1613 goto nla_put_failure; 1614 ipv4_key = nla_data(nla); 1615 ipv4_key->ipv4_src = output->ipv4.addr.src; 1616 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 1617 ipv4_key->ipv4_proto = output->ip.proto; 1618 ipv4_key->ipv4_tos = output->ip.tos; 1619 ipv4_key->ipv4_ttl = output->ip.ttl; 1620 ipv4_key->ipv4_frag = output->ip.frag; 1621 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1622 struct ovs_key_ipv6 *ipv6_key; 1623 1624 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1625 if (!nla) 1626 goto nla_put_failure; 1627 ipv6_key = nla_data(nla); 1628 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 1629 sizeof(ipv6_key->ipv6_src)); 1630 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 1631 sizeof(ipv6_key->ipv6_dst)); 1632 ipv6_key->ipv6_label = output->ipv6.label; 1633 ipv6_key->ipv6_proto = output->ip.proto; 1634 ipv6_key->ipv6_tclass = output->ip.tos; 1635 ipv6_key->ipv6_hlimit = output->ip.ttl; 1636 ipv6_key->ipv6_frag = output->ip.frag; 1637 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1638 swkey->eth.type == htons(ETH_P_RARP)) { 1639 struct ovs_key_arp *arp_key; 1640 1641 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1642 if (!nla) 1643 goto nla_put_failure; 1644 arp_key = nla_data(nla); 1645 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1646 arp_key->arp_sip = output->ipv4.addr.src; 1647 arp_key->arp_tip = output->ipv4.addr.dst; 1648 arp_key->arp_op = htons(output->ip.proto); 1649 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 1650 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 1651 } else if (eth_p_mpls(swkey->eth.type)) { 1652 struct ovs_key_mpls *mpls_key; 1653 1654 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 1655 if (!nla) 1656 goto nla_put_failure; 1657 mpls_key = nla_data(nla); 1658 mpls_key->mpls_lse = output->mpls.top_lse; 1659 } 1660 1661 if ((swkey->eth.type == htons(ETH_P_IP) || 1662 swkey->eth.type == htons(ETH_P_IPV6)) && 1663 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1664 1665 if (swkey->ip.proto == IPPROTO_TCP) { 1666 struct ovs_key_tcp *tcp_key; 1667 1668 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1669 if (!nla) 1670 goto nla_put_failure; 1671 tcp_key = nla_data(nla); 1672 tcp_key->tcp_src = output->tp.src; 1673 tcp_key->tcp_dst = output->tp.dst; 1674 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 1675 output->tp.flags)) 1676 goto nla_put_failure; 1677 } else if (swkey->ip.proto == IPPROTO_UDP) { 1678 struct ovs_key_udp *udp_key; 1679 1680 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1681 if (!nla) 1682 goto nla_put_failure; 1683 udp_key = nla_data(nla); 1684 udp_key->udp_src = output->tp.src; 1685 udp_key->udp_dst = output->tp.dst; 1686 } else if (swkey->ip.proto == IPPROTO_SCTP) { 1687 struct ovs_key_sctp *sctp_key; 1688 1689 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 1690 if (!nla) 1691 goto nla_put_failure; 1692 sctp_key = nla_data(nla); 1693 sctp_key->sctp_src = output->tp.src; 1694 sctp_key->sctp_dst = output->tp.dst; 1695 } else if (swkey->eth.type == htons(ETH_P_IP) && 1696 swkey->ip.proto == IPPROTO_ICMP) { 1697 struct ovs_key_icmp *icmp_key; 1698 1699 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1700 if (!nla) 1701 goto nla_put_failure; 1702 icmp_key = nla_data(nla); 1703 icmp_key->icmp_type = ntohs(output->tp.src); 1704 icmp_key->icmp_code = ntohs(output->tp.dst); 1705 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1706 swkey->ip.proto == IPPROTO_ICMPV6) { 1707 struct ovs_key_icmpv6 *icmpv6_key; 1708 1709 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1710 sizeof(*icmpv6_key)); 1711 if (!nla) 1712 goto nla_put_failure; 1713 icmpv6_key = nla_data(nla); 1714 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 1715 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 1716 1717 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1718 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1719 struct ovs_key_nd *nd_key; 1720 1721 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1722 if (!nla) 1723 goto nla_put_failure; 1724 nd_key = nla_data(nla); 1725 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 1726 sizeof(nd_key->nd_target)); 1727 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 1728 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 1729 } 1730 } 1731 } 1732 1733 unencap: 1734 if (in_encap) 1735 nla_nest_end(skb, in_encap); 1736 if (encap) 1737 nla_nest_end(skb, encap); 1738 1739 return 0; 1740 1741 nla_put_failure: 1742 return -EMSGSIZE; 1743 } 1744 1745 int ovs_nla_put_key(const struct sw_flow_key *swkey, 1746 const struct sw_flow_key *output, int attr, bool is_mask, 1747 struct sk_buff *skb) 1748 { 1749 int err; 1750 struct nlattr *nla; 1751 1752 nla = nla_nest_start(skb, attr); 1753 if (!nla) 1754 return -EMSGSIZE; 1755 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 1756 if (err) 1757 return err; 1758 nla_nest_end(skb, nla); 1759 1760 return 0; 1761 } 1762 1763 /* Called with ovs_mutex or RCU read lock. */ 1764 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 1765 { 1766 if (ovs_identifier_is_ufid(&flow->id)) 1767 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 1768 flow->id.ufid); 1769 1770 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 1771 OVS_FLOW_ATTR_KEY, false, skb); 1772 } 1773 1774 /* Called with ovs_mutex or RCU read lock. */ 1775 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 1776 { 1777 return ovs_nla_put_key(&flow->key, &flow->key, 1778 OVS_FLOW_ATTR_KEY, false, skb); 1779 } 1780 1781 /* Called with ovs_mutex or RCU read lock. */ 1782 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 1783 { 1784 return ovs_nla_put_key(&flow->key, &flow->mask->key, 1785 OVS_FLOW_ATTR_MASK, true, skb); 1786 } 1787 1788 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 1789 1790 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 1791 { 1792 struct sw_flow_actions *sfa; 1793 1794 if (size > MAX_ACTIONS_BUFSIZE) { 1795 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 1796 return ERR_PTR(-EINVAL); 1797 } 1798 1799 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 1800 if (!sfa) 1801 return ERR_PTR(-ENOMEM); 1802 1803 sfa->actions_len = 0; 1804 return sfa; 1805 } 1806 1807 static void ovs_nla_free_set_action(const struct nlattr *a) 1808 { 1809 const struct nlattr *ovs_key = nla_data(a); 1810 struct ovs_tunnel_info *ovs_tun; 1811 1812 switch (nla_type(ovs_key)) { 1813 case OVS_KEY_ATTR_TUNNEL_INFO: 1814 ovs_tun = nla_data(ovs_key); 1815 dst_release((struct dst_entry *)ovs_tun->tun_dst); 1816 break; 1817 } 1818 } 1819 1820 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 1821 { 1822 const struct nlattr *a; 1823 int rem; 1824 1825 if (!sf_acts) 1826 return; 1827 1828 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 1829 switch (nla_type(a)) { 1830 case OVS_ACTION_ATTR_SET: 1831 ovs_nla_free_set_action(a); 1832 break; 1833 case OVS_ACTION_ATTR_CT: 1834 ovs_ct_free_action(a); 1835 break; 1836 } 1837 } 1838 1839 kfree(sf_acts); 1840 } 1841 1842 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 1843 { 1844 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 1845 } 1846 1847 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 1848 * The caller must hold rcu_read_lock for this to be sensible. */ 1849 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 1850 { 1851 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 1852 } 1853 1854 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 1855 int attr_len, bool log) 1856 { 1857 1858 struct sw_flow_actions *acts; 1859 int new_acts_size; 1860 int req_size = NLA_ALIGN(attr_len); 1861 int next_offset = offsetof(struct sw_flow_actions, actions) + 1862 (*sfa)->actions_len; 1863 1864 if (req_size <= (ksize(*sfa) - next_offset)) 1865 goto out; 1866 1867 new_acts_size = ksize(*sfa) * 2; 1868 1869 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 1870 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 1871 return ERR_PTR(-EMSGSIZE); 1872 new_acts_size = MAX_ACTIONS_BUFSIZE; 1873 } 1874 1875 acts = nla_alloc_flow_actions(new_acts_size, log); 1876 if (IS_ERR(acts)) 1877 return (void *)acts; 1878 1879 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 1880 acts->actions_len = (*sfa)->actions_len; 1881 acts->orig_len = (*sfa)->orig_len; 1882 kfree(*sfa); 1883 *sfa = acts; 1884 1885 out: 1886 (*sfa)->actions_len += req_size; 1887 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 1888 } 1889 1890 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 1891 int attrtype, void *data, int len, bool log) 1892 { 1893 struct nlattr *a; 1894 1895 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 1896 if (IS_ERR(a)) 1897 return a; 1898 1899 a->nla_type = attrtype; 1900 a->nla_len = nla_attr_size(len); 1901 1902 if (data) 1903 memcpy(nla_data(a), data, len); 1904 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 1905 1906 return a; 1907 } 1908 1909 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 1910 int len, bool log) 1911 { 1912 struct nlattr *a; 1913 1914 a = __add_action(sfa, attrtype, data, len, log); 1915 1916 return PTR_ERR_OR_ZERO(a); 1917 } 1918 1919 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 1920 int attrtype, bool log) 1921 { 1922 int used = (*sfa)->actions_len; 1923 int err; 1924 1925 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 1926 if (err) 1927 return err; 1928 1929 return used; 1930 } 1931 1932 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 1933 int st_offset) 1934 { 1935 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 1936 st_offset); 1937 1938 a->nla_len = sfa->actions_len - st_offset; 1939 } 1940 1941 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 1942 const struct sw_flow_key *key, 1943 int depth, struct sw_flow_actions **sfa, 1944 __be16 eth_type, __be16 vlan_tci, bool log); 1945 1946 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 1947 const struct sw_flow_key *key, int depth, 1948 struct sw_flow_actions **sfa, 1949 __be16 eth_type, __be16 vlan_tci, bool log) 1950 { 1951 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 1952 const struct nlattr *probability, *actions; 1953 const struct nlattr *a; 1954 int rem, start, err, st_acts; 1955 1956 memset(attrs, 0, sizeof(attrs)); 1957 nla_for_each_nested(a, attr, rem) { 1958 int type = nla_type(a); 1959 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 1960 return -EINVAL; 1961 attrs[type] = a; 1962 } 1963 if (rem) 1964 return -EINVAL; 1965 1966 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 1967 if (!probability || nla_len(probability) != sizeof(u32)) 1968 return -EINVAL; 1969 1970 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 1971 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 1972 return -EINVAL; 1973 1974 /* validation done, copy sample action. */ 1975 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 1976 if (start < 0) 1977 return start; 1978 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, 1979 nla_data(probability), sizeof(u32), log); 1980 if (err) 1981 return err; 1982 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log); 1983 if (st_acts < 0) 1984 return st_acts; 1985 1986 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa, 1987 eth_type, vlan_tci, log); 1988 if (err) 1989 return err; 1990 1991 add_nested_action_end(*sfa, st_acts); 1992 add_nested_action_end(*sfa, start); 1993 1994 return 0; 1995 } 1996 1997 void ovs_match_init(struct sw_flow_match *match, 1998 struct sw_flow_key *key, 1999 bool reset_key, 2000 struct sw_flow_mask *mask) 2001 { 2002 memset(match, 0, sizeof(*match)); 2003 match->key = key; 2004 match->mask = mask; 2005 2006 if (reset_key) 2007 memset(key, 0, sizeof(*key)); 2008 2009 if (mask) { 2010 memset(&mask->key, 0, sizeof(mask->key)); 2011 mask->range.start = mask->range.end = 0; 2012 } 2013 } 2014 2015 static int validate_geneve_opts(struct sw_flow_key *key) 2016 { 2017 struct geneve_opt *option; 2018 int opts_len = key->tun_opts_len; 2019 bool crit_opt = false; 2020 2021 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2022 while (opts_len > 0) { 2023 int len; 2024 2025 if (opts_len < sizeof(*option)) 2026 return -EINVAL; 2027 2028 len = sizeof(*option) + option->length * 4; 2029 if (len > opts_len) 2030 return -EINVAL; 2031 2032 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2033 2034 option = (struct geneve_opt *)((u8 *)option + len); 2035 opts_len -= len; 2036 }; 2037 2038 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 2039 2040 return 0; 2041 } 2042 2043 static int validate_and_copy_set_tun(const struct nlattr *attr, 2044 struct sw_flow_actions **sfa, bool log) 2045 { 2046 struct sw_flow_match match; 2047 struct sw_flow_key key; 2048 struct metadata_dst *tun_dst; 2049 struct ip_tunnel_info *tun_info; 2050 struct ovs_tunnel_info *ovs_tun; 2051 struct nlattr *a; 2052 int err = 0, start, opts_type; 2053 2054 ovs_match_init(&match, &key, true, NULL); 2055 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2056 if (opts_type < 0) 2057 return opts_type; 2058 2059 if (key.tun_opts_len) { 2060 switch (opts_type) { 2061 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2062 err = validate_geneve_opts(&key); 2063 if (err < 0) 2064 return err; 2065 break; 2066 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2067 break; 2068 } 2069 }; 2070 2071 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2072 if (start < 0) 2073 return start; 2074 2075 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL); 2076 if (!tun_dst) 2077 return -ENOMEM; 2078 2079 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2080 if (err) { 2081 dst_release((struct dst_entry *)tun_dst); 2082 return err; 2083 } 2084 2085 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2086 sizeof(*ovs_tun), log); 2087 if (IS_ERR(a)) { 2088 dst_release((struct dst_entry *)tun_dst); 2089 return PTR_ERR(a); 2090 } 2091 2092 ovs_tun = nla_data(a); 2093 ovs_tun->tun_dst = tun_dst; 2094 2095 tun_info = &tun_dst->u.tun_info; 2096 tun_info->mode = IP_TUNNEL_INFO_TX; 2097 if (key.tun_proto == AF_INET6) 2098 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2099 tun_info->key = key.tun_key; 2100 2101 /* We need to store the options in the action itself since 2102 * everything else will go away after flow setup. We can append 2103 * it to tun_info and then point there. 2104 */ 2105 ip_tunnel_info_opts_set(tun_info, 2106 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2107 key.tun_opts_len); 2108 add_nested_action_end(*sfa, start); 2109 2110 return err; 2111 } 2112 2113 /* Return false if there are any non-masked bits set. 2114 * Mask follows data immediately, before any netlink padding. 2115 */ 2116 static bool validate_masked(u8 *data, int len) 2117 { 2118 u8 *mask = data + len; 2119 2120 while (len--) 2121 if (*data++ & ~*mask++) 2122 return false; 2123 2124 return true; 2125 } 2126 2127 static int validate_set(const struct nlattr *a, 2128 const struct sw_flow_key *flow_key, 2129 struct sw_flow_actions **sfa, 2130 bool *skip_copy, __be16 eth_type, bool masked, bool log) 2131 { 2132 const struct nlattr *ovs_key = nla_data(a); 2133 int key_type = nla_type(ovs_key); 2134 size_t key_len; 2135 2136 /* There can be only one key in a action */ 2137 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2138 return -EINVAL; 2139 2140 key_len = nla_len(ovs_key); 2141 if (masked) 2142 key_len /= 2; 2143 2144 if (key_type > OVS_KEY_ATTR_MAX || 2145 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2146 return -EINVAL; 2147 2148 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2149 return -EINVAL; 2150 2151 switch (key_type) { 2152 const struct ovs_key_ipv4 *ipv4_key; 2153 const struct ovs_key_ipv6 *ipv6_key; 2154 int err; 2155 2156 case OVS_KEY_ATTR_PRIORITY: 2157 case OVS_KEY_ATTR_SKB_MARK: 2158 case OVS_KEY_ATTR_CT_MARK: 2159 case OVS_KEY_ATTR_CT_LABELS: 2160 case OVS_KEY_ATTR_ETHERNET: 2161 break; 2162 2163 case OVS_KEY_ATTR_TUNNEL: 2164 if (masked) 2165 return -EINVAL; /* Masked tunnel set not supported. */ 2166 2167 *skip_copy = true; 2168 err = validate_and_copy_set_tun(a, sfa, log); 2169 if (err) 2170 return err; 2171 break; 2172 2173 case OVS_KEY_ATTR_IPV4: 2174 if (eth_type != htons(ETH_P_IP)) 2175 return -EINVAL; 2176 2177 ipv4_key = nla_data(ovs_key); 2178 2179 if (masked) { 2180 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2181 2182 /* Non-writeable fields. */ 2183 if (mask->ipv4_proto || mask->ipv4_frag) 2184 return -EINVAL; 2185 } else { 2186 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2187 return -EINVAL; 2188 2189 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2190 return -EINVAL; 2191 } 2192 break; 2193 2194 case OVS_KEY_ATTR_IPV6: 2195 if (eth_type != htons(ETH_P_IPV6)) 2196 return -EINVAL; 2197 2198 ipv6_key = nla_data(ovs_key); 2199 2200 if (masked) { 2201 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2202 2203 /* Non-writeable fields. */ 2204 if (mask->ipv6_proto || mask->ipv6_frag) 2205 return -EINVAL; 2206 2207 /* Invalid bits in the flow label mask? */ 2208 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2209 return -EINVAL; 2210 } else { 2211 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2212 return -EINVAL; 2213 2214 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2215 return -EINVAL; 2216 } 2217 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2218 return -EINVAL; 2219 2220 break; 2221 2222 case OVS_KEY_ATTR_TCP: 2223 if ((eth_type != htons(ETH_P_IP) && 2224 eth_type != htons(ETH_P_IPV6)) || 2225 flow_key->ip.proto != IPPROTO_TCP) 2226 return -EINVAL; 2227 2228 break; 2229 2230 case OVS_KEY_ATTR_UDP: 2231 if ((eth_type != htons(ETH_P_IP) && 2232 eth_type != htons(ETH_P_IPV6)) || 2233 flow_key->ip.proto != IPPROTO_UDP) 2234 return -EINVAL; 2235 2236 break; 2237 2238 case OVS_KEY_ATTR_MPLS: 2239 if (!eth_p_mpls(eth_type)) 2240 return -EINVAL; 2241 break; 2242 2243 case OVS_KEY_ATTR_SCTP: 2244 if ((eth_type != htons(ETH_P_IP) && 2245 eth_type != htons(ETH_P_IPV6)) || 2246 flow_key->ip.proto != IPPROTO_SCTP) 2247 return -EINVAL; 2248 2249 break; 2250 2251 default: 2252 return -EINVAL; 2253 } 2254 2255 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2256 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2257 int start, len = key_len * 2; 2258 struct nlattr *at; 2259 2260 *skip_copy = true; 2261 2262 start = add_nested_action_start(sfa, 2263 OVS_ACTION_ATTR_SET_TO_MASKED, 2264 log); 2265 if (start < 0) 2266 return start; 2267 2268 at = __add_action(sfa, key_type, NULL, len, log); 2269 if (IS_ERR(at)) 2270 return PTR_ERR(at); 2271 2272 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2273 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2274 /* Clear non-writeable bits from otherwise writeable fields. */ 2275 if (key_type == OVS_KEY_ATTR_IPV6) { 2276 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2277 2278 mask->ipv6_label &= htonl(0x000FFFFF); 2279 } 2280 add_nested_action_end(*sfa, start); 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int validate_userspace(const struct nlattr *attr) 2287 { 2288 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2289 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2290 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2291 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2292 }; 2293 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2294 int error; 2295 2296 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, 2297 attr, userspace_policy); 2298 if (error) 2299 return error; 2300 2301 if (!a[OVS_USERSPACE_ATTR_PID] || 2302 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2303 return -EINVAL; 2304 2305 return 0; 2306 } 2307 2308 static int copy_action(const struct nlattr *from, 2309 struct sw_flow_actions **sfa, bool log) 2310 { 2311 int totlen = NLA_ALIGN(from->nla_len); 2312 struct nlattr *to; 2313 2314 to = reserve_sfa_size(sfa, from->nla_len, log); 2315 if (IS_ERR(to)) 2316 return PTR_ERR(to); 2317 2318 memcpy(to, from, totlen); 2319 return 0; 2320 } 2321 2322 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2323 const struct sw_flow_key *key, 2324 int depth, struct sw_flow_actions **sfa, 2325 __be16 eth_type, __be16 vlan_tci, bool log) 2326 { 2327 const struct nlattr *a; 2328 int rem, err; 2329 2330 if (depth >= SAMPLE_ACTION_DEPTH) 2331 return -EOVERFLOW; 2332 2333 nla_for_each_nested(a, attr, rem) { 2334 /* Expected argument lengths, (u32)-1 for variable length. */ 2335 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2336 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2337 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2338 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2339 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2340 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2341 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2342 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2343 [OVS_ACTION_ATTR_SET] = (u32)-1, 2344 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2345 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2346 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2347 [OVS_ACTION_ATTR_CT] = (u32)-1, 2348 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 2349 }; 2350 const struct ovs_action_push_vlan *vlan; 2351 int type = nla_type(a); 2352 bool skip_copy; 2353 2354 if (type > OVS_ACTION_ATTR_MAX || 2355 (action_lens[type] != nla_len(a) && 2356 action_lens[type] != (u32)-1)) 2357 return -EINVAL; 2358 2359 skip_copy = false; 2360 switch (type) { 2361 case OVS_ACTION_ATTR_UNSPEC: 2362 return -EINVAL; 2363 2364 case OVS_ACTION_ATTR_USERSPACE: 2365 err = validate_userspace(a); 2366 if (err) 2367 return err; 2368 break; 2369 2370 case OVS_ACTION_ATTR_OUTPUT: 2371 if (nla_get_u32(a) >= DP_MAX_PORTS) 2372 return -EINVAL; 2373 break; 2374 2375 case OVS_ACTION_ATTR_TRUNC: { 2376 const struct ovs_action_trunc *trunc = nla_data(a); 2377 2378 if (trunc->max_len < ETH_HLEN) 2379 return -EINVAL; 2380 break; 2381 } 2382 2383 case OVS_ACTION_ATTR_HASH: { 2384 const struct ovs_action_hash *act_hash = nla_data(a); 2385 2386 switch (act_hash->hash_alg) { 2387 case OVS_HASH_ALG_L4: 2388 break; 2389 default: 2390 return -EINVAL; 2391 } 2392 2393 break; 2394 } 2395 2396 case OVS_ACTION_ATTR_POP_VLAN: 2397 vlan_tci = htons(0); 2398 break; 2399 2400 case OVS_ACTION_ATTR_PUSH_VLAN: 2401 vlan = nla_data(a); 2402 if (!eth_type_vlan(vlan->vlan_tpid)) 2403 return -EINVAL; 2404 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2405 return -EINVAL; 2406 vlan_tci = vlan->vlan_tci; 2407 break; 2408 2409 case OVS_ACTION_ATTR_RECIRC: 2410 break; 2411 2412 case OVS_ACTION_ATTR_PUSH_MPLS: { 2413 const struct ovs_action_push_mpls *mpls = nla_data(a); 2414 2415 if (!eth_p_mpls(mpls->mpls_ethertype)) 2416 return -EINVAL; 2417 /* Prohibit push MPLS other than to a white list 2418 * for packets that have a known tag order. 2419 */ 2420 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2421 (eth_type != htons(ETH_P_IP) && 2422 eth_type != htons(ETH_P_IPV6) && 2423 eth_type != htons(ETH_P_ARP) && 2424 eth_type != htons(ETH_P_RARP) && 2425 !eth_p_mpls(eth_type))) 2426 return -EINVAL; 2427 eth_type = mpls->mpls_ethertype; 2428 break; 2429 } 2430 2431 case OVS_ACTION_ATTR_POP_MPLS: 2432 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2433 !eth_p_mpls(eth_type)) 2434 return -EINVAL; 2435 2436 /* Disallow subsequent L2.5+ set and mpls_pop actions 2437 * as there is no check here to ensure that the new 2438 * eth_type is valid and thus set actions could 2439 * write off the end of the packet or otherwise 2440 * corrupt it. 2441 * 2442 * Support for these actions is planned using packet 2443 * recirculation. 2444 */ 2445 eth_type = htons(0); 2446 break; 2447 2448 case OVS_ACTION_ATTR_SET: 2449 err = validate_set(a, key, sfa, 2450 &skip_copy, eth_type, false, log); 2451 if (err) 2452 return err; 2453 break; 2454 2455 case OVS_ACTION_ATTR_SET_MASKED: 2456 err = validate_set(a, key, sfa, 2457 &skip_copy, eth_type, true, log); 2458 if (err) 2459 return err; 2460 break; 2461 2462 case OVS_ACTION_ATTR_SAMPLE: 2463 err = validate_and_copy_sample(net, a, key, depth, sfa, 2464 eth_type, vlan_tci, log); 2465 if (err) 2466 return err; 2467 skip_copy = true; 2468 break; 2469 2470 case OVS_ACTION_ATTR_CT: 2471 err = ovs_ct_copy_action(net, a, key, sfa, log); 2472 if (err) 2473 return err; 2474 skip_copy = true; 2475 break; 2476 2477 default: 2478 OVS_NLERR(log, "Unknown Action type %d", type); 2479 return -EINVAL; 2480 } 2481 if (!skip_copy) { 2482 err = copy_action(a, sfa, log); 2483 if (err) 2484 return err; 2485 } 2486 } 2487 2488 if (rem > 0) 2489 return -EINVAL; 2490 2491 return 0; 2492 } 2493 2494 /* 'key' must be the masked key. */ 2495 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2496 const struct sw_flow_key *key, 2497 struct sw_flow_actions **sfa, bool log) 2498 { 2499 int err; 2500 2501 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 2502 if (IS_ERR(*sfa)) 2503 return PTR_ERR(*sfa); 2504 2505 (*sfa)->orig_len = nla_len(attr); 2506 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, 2507 key->eth.vlan.tci, log); 2508 if (err) 2509 ovs_nla_free_flow_actions(*sfa); 2510 2511 return err; 2512 } 2513 2514 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) 2515 { 2516 const struct nlattr *a; 2517 struct nlattr *start; 2518 int err = 0, rem; 2519 2520 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 2521 if (!start) 2522 return -EMSGSIZE; 2523 2524 nla_for_each_nested(a, attr, rem) { 2525 int type = nla_type(a); 2526 struct nlattr *st_sample; 2527 2528 switch (type) { 2529 case OVS_SAMPLE_ATTR_PROBABILITY: 2530 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, 2531 sizeof(u32), nla_data(a))) 2532 return -EMSGSIZE; 2533 break; 2534 case OVS_SAMPLE_ATTR_ACTIONS: 2535 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 2536 if (!st_sample) 2537 return -EMSGSIZE; 2538 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 2539 if (err) 2540 return err; 2541 nla_nest_end(skb, st_sample); 2542 break; 2543 } 2544 } 2545 2546 nla_nest_end(skb, start); 2547 return err; 2548 } 2549 2550 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 2551 { 2552 const struct nlattr *ovs_key = nla_data(a); 2553 int key_type = nla_type(ovs_key); 2554 struct nlattr *start; 2555 int err; 2556 2557 switch (key_type) { 2558 case OVS_KEY_ATTR_TUNNEL_INFO: { 2559 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 2560 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 2561 2562 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2563 if (!start) 2564 return -EMSGSIZE; 2565 2566 err = ip_tun_to_nlattr(skb, &tun_info->key, 2567 ip_tunnel_info_opts(tun_info), 2568 tun_info->options_len, 2569 ip_tunnel_info_af(tun_info)); 2570 if (err) 2571 return err; 2572 nla_nest_end(skb, start); 2573 break; 2574 } 2575 default: 2576 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 2577 return -EMSGSIZE; 2578 break; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 2585 struct sk_buff *skb) 2586 { 2587 const struct nlattr *ovs_key = nla_data(a); 2588 struct nlattr *nla; 2589 size_t key_len = nla_len(ovs_key) / 2; 2590 2591 /* Revert the conversion we did from a non-masked set action to 2592 * masked set action. 2593 */ 2594 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2595 if (!nla) 2596 return -EMSGSIZE; 2597 2598 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 2599 return -EMSGSIZE; 2600 2601 nla_nest_end(skb, nla); 2602 return 0; 2603 } 2604 2605 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 2606 { 2607 const struct nlattr *a; 2608 int rem, err; 2609 2610 nla_for_each_attr(a, attr, len, rem) { 2611 int type = nla_type(a); 2612 2613 switch (type) { 2614 case OVS_ACTION_ATTR_SET: 2615 err = set_action_to_attr(a, skb); 2616 if (err) 2617 return err; 2618 break; 2619 2620 case OVS_ACTION_ATTR_SET_TO_MASKED: 2621 err = masked_set_action_to_set_action_attr(a, skb); 2622 if (err) 2623 return err; 2624 break; 2625 2626 case OVS_ACTION_ATTR_SAMPLE: 2627 err = sample_action_to_attr(a, skb); 2628 if (err) 2629 return err; 2630 break; 2631 2632 case OVS_ACTION_ATTR_CT: 2633 err = ovs_ct_action_to_attr(nla_data(a), skb); 2634 if (err) 2635 return err; 2636 break; 2637 2638 default: 2639 if (nla_put(skb, type, nla_len(a), nla_data(a))) 2640 return -EMSGSIZE; 2641 break; 2642 } 2643 } 2644 2645 return 0; 2646 } 2647