1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
62 static void update_range(struct sw_flow_match *match,
63 			 size_t offset, size_t size, bool is_mask)
64 {
65 	struct sw_flow_key_range *range;
66 	size_t start = rounddown(offset, sizeof(long));
67 	size_t end = roundup(offset + size, sizeof(long));
68 
69 	if (!is_mask)
70 		range = &match->range;
71 	else
72 		range = &match->mask->range;
73 
74 	if (range->start == range->end) {
75 		range->start = start;
76 		range->end = end;
77 		return;
78 	}
79 
80 	if (range->start > start)
81 		range->start = start;
82 
83 	if (range->end < end)
84 		range->end = end;
85 }
86 
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 	do { \
89 		update_range(match, offsetof(struct sw_flow_key, field),    \
90 			     sizeof((match)->key->field), is_mask);	    \
91 		if (is_mask)						    \
92 			(match)->mask->key.field = value;		    \
93 		else							    \
94 			(match)->key->field = value;		            \
95 	} while (0)
96 
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
98 	do {								    \
99 		update_range(match, offset, len, is_mask);		    \
100 		if (is_mask)						    \
101 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 			       len);					   \
103 		else							    \
104 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
105 	} while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
108 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 				  value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
112 	do {								    \
113 		update_range(match, offsetof(struct sw_flow_key, field),    \
114 			     sizeof((match)->key->field), is_mask);	    \
115 		if (is_mask)						    \
116 			memset((u8 *)&(match)->mask->key.field, value,      \
117 			       sizeof((match)->mask->key.field));	    \
118 		else							    \
119 			memset((u8 *)&(match)->key->field, value,           \
120 			       sizeof((match)->key->field));                \
121 	} while (0)
122 
123 static bool match_validate(const struct sw_flow_match *match,
124 			   u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 	u64 key_expected = 0;
127 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129 	/* The following mask attributes allowed only if they
130 	 * pass the validation tests. */
131 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
133 			| (1 << OVS_KEY_ATTR_IPV6)
134 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
135 			| (1 << OVS_KEY_ATTR_TCP)
136 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
137 			| (1 << OVS_KEY_ATTR_UDP)
138 			| (1 << OVS_KEY_ATTR_SCTP)
139 			| (1 << OVS_KEY_ATTR_ICMP)
140 			| (1 << OVS_KEY_ATTR_ICMPV6)
141 			| (1 << OVS_KEY_ATTR_ARP)
142 			| (1 << OVS_KEY_ATTR_ND)
143 			| (1 << OVS_KEY_ATTR_MPLS));
144 
145 	/* Always allowed mask fields. */
146 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
147 		       | (1 << OVS_KEY_ATTR_IN_PORT)
148 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
149 
150 	/* Check key attributes. */
151 	if (match->key->eth.type == htons(ETH_P_ARP)
152 			|| match->key->eth.type == htons(ETH_P_RARP)) {
153 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
154 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
155 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
156 	}
157 
158 	if (eth_p_mpls(match->key->eth.type)) {
159 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
160 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
161 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
162 	}
163 
164 	if (match->key->eth.type == htons(ETH_P_IP)) {
165 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
166 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
167 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
168 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
169 		}
170 
171 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
172 			if (match->key->ip.proto == IPPROTO_UDP) {
173 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
174 				if (match->mask && (match->mask->key.ip.proto == 0xff))
175 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
176 			}
177 
178 			if (match->key->ip.proto == IPPROTO_SCTP) {
179 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
180 				if (match->mask && (match->mask->key.ip.proto == 0xff))
181 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
182 			}
183 
184 			if (match->key->ip.proto == IPPROTO_TCP) {
185 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
186 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
187 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
188 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
189 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
190 				}
191 			}
192 
193 			if (match->key->ip.proto == IPPROTO_ICMP) {
194 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
195 				if (match->mask && (match->mask->key.ip.proto == 0xff))
196 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
197 			}
198 		}
199 	}
200 
201 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
202 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
203 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
204 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
205 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
206 		}
207 
208 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
209 			if (match->key->ip.proto == IPPROTO_UDP) {
210 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
211 				if (match->mask && (match->mask->key.ip.proto == 0xff))
212 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
213 			}
214 
215 			if (match->key->ip.proto == IPPROTO_SCTP) {
216 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
217 				if (match->mask && (match->mask->key.ip.proto == 0xff))
218 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
219 			}
220 
221 			if (match->key->ip.proto == IPPROTO_TCP) {
222 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
223 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
224 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
225 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
226 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
227 				}
228 			}
229 
230 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
231 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
232 				if (match->mask && (match->mask->key.ip.proto == 0xff))
233 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
234 
235 				if (match->key->tp.src ==
236 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
237 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
238 					key_expected |= 1 << OVS_KEY_ATTR_ND;
239 					/* Original direction conntrack tuple
240 					 * uses the same space as the ND fields
241 					 * in the key, so both are not allowed
242 					 * at the same time.
243 					 */
244 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
245 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
246 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
247 				}
248 			}
249 		}
250 	}
251 
252 	if ((key_attrs & key_expected) != key_expected) {
253 		/* Key attributes check failed. */
254 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
255 			  (unsigned long long)key_attrs,
256 			  (unsigned long long)key_expected);
257 		return false;
258 	}
259 
260 	if ((mask_attrs & mask_allowed) != mask_attrs) {
261 		/* Mask attributes check failed. */
262 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
263 			  (unsigned long long)mask_attrs,
264 			  (unsigned long long)mask_allowed);
265 		return false;
266 	}
267 
268 	return true;
269 }
270 
271 size_t ovs_tun_key_attr_size(void)
272 {
273 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
274 	 * updating this function.
275 	 */
276 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
277 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
278 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
279 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
280 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
281 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
282 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
283 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
284 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
285 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
286 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
287 		 */
288 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
289 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
290 }
291 
292 size_t ovs_key_attr_size(void)
293 {
294 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
295 	 * updating this function.
296 	 */
297 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
298 
299 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
300 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
301 		  + ovs_tun_key_attr_size()
302 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
303 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
304 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
305 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
306 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
307 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
308 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
309 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
310 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
311 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
312 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
313 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
314 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
315 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
316 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
317 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
318 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
319 }
320 
321 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
322 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
323 };
324 
325 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
326 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
327 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
328 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
329 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
330 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
331 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
332 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
333 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
334 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
335 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
336 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
337 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
338 						.next = ovs_vxlan_ext_key_lens },
339 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
340 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
341 };
342 
343 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
344 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
345 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
346 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
347 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
348 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
349 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
350 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
351 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
352 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
353 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
354 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
355 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
356 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
357 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
358 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
359 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
360 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
361 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
362 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
363 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
364 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
365 				     .next = ovs_tunnel_key_lens, },
366 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
367 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
368 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
369 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
370 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
371 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
372 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
373 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
374 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
375 };
376 
377 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
378 {
379 	return expected_len == attr_len ||
380 	       expected_len == OVS_ATTR_NESTED ||
381 	       expected_len == OVS_ATTR_VARIABLE;
382 }
383 
384 static bool is_all_zero(const u8 *fp, size_t size)
385 {
386 	int i;
387 
388 	if (!fp)
389 		return false;
390 
391 	for (i = 0; i < size; i++)
392 		if (fp[i])
393 			return false;
394 
395 	return true;
396 }
397 
398 static int __parse_flow_nlattrs(const struct nlattr *attr,
399 				const struct nlattr *a[],
400 				u64 *attrsp, bool log, bool nz)
401 {
402 	const struct nlattr *nla;
403 	u64 attrs;
404 	int rem;
405 
406 	attrs = *attrsp;
407 	nla_for_each_nested(nla, attr, rem) {
408 		u16 type = nla_type(nla);
409 		int expected_len;
410 
411 		if (type > OVS_KEY_ATTR_MAX) {
412 			OVS_NLERR(log, "Key type %d is out of range max %d",
413 				  type, OVS_KEY_ATTR_MAX);
414 			return -EINVAL;
415 		}
416 
417 		if (attrs & (1 << type)) {
418 			OVS_NLERR(log, "Duplicate key (type %d).", type);
419 			return -EINVAL;
420 		}
421 
422 		expected_len = ovs_key_lens[type].len;
423 		if (!check_attr_len(nla_len(nla), expected_len)) {
424 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
425 				  type, nla_len(nla), expected_len);
426 			return -EINVAL;
427 		}
428 
429 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
430 			attrs |= 1 << type;
431 			a[type] = nla;
432 		}
433 	}
434 	if (rem) {
435 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
436 		return -EINVAL;
437 	}
438 
439 	*attrsp = attrs;
440 	return 0;
441 }
442 
443 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
444 				   const struct nlattr *a[], u64 *attrsp,
445 				   bool log)
446 {
447 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
448 }
449 
450 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
451 		       u64 *attrsp, bool log)
452 {
453 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
454 }
455 
456 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
457 				     struct sw_flow_match *match, bool is_mask,
458 				     bool log)
459 {
460 	unsigned long opt_key_offset;
461 
462 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
463 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
464 			  nla_len(a), sizeof(match->key->tun_opts));
465 		return -EINVAL;
466 	}
467 
468 	if (nla_len(a) % 4 != 0) {
469 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
470 			  nla_len(a));
471 		return -EINVAL;
472 	}
473 
474 	/* We need to record the length of the options passed
475 	 * down, otherwise packets with the same format but
476 	 * additional options will be silently matched.
477 	 */
478 	if (!is_mask) {
479 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
480 				false);
481 	} else {
482 		/* This is somewhat unusual because it looks at
483 		 * both the key and mask while parsing the
484 		 * attributes (and by extension assumes the key
485 		 * is parsed first). Normally, we would verify
486 		 * that each is the correct length and that the
487 		 * attributes line up in the validate function.
488 		 * However, that is difficult because this is
489 		 * variable length and we won't have the
490 		 * information later.
491 		 */
492 		if (match->key->tun_opts_len != nla_len(a)) {
493 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
494 				  match->key->tun_opts_len, nla_len(a));
495 			return -EINVAL;
496 		}
497 
498 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
499 	}
500 
501 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
502 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
503 				  nla_len(a), is_mask);
504 	return 0;
505 }
506 
507 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
508 				     struct sw_flow_match *match, bool is_mask,
509 				     bool log)
510 {
511 	struct nlattr *a;
512 	int rem;
513 	unsigned long opt_key_offset;
514 	struct vxlan_metadata opts;
515 
516 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
517 
518 	memset(&opts, 0, sizeof(opts));
519 	nla_for_each_nested(a, attr, rem) {
520 		int type = nla_type(a);
521 
522 		if (type > OVS_VXLAN_EXT_MAX) {
523 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
524 				  type, OVS_VXLAN_EXT_MAX);
525 			return -EINVAL;
526 		}
527 
528 		if (!check_attr_len(nla_len(a),
529 				    ovs_vxlan_ext_key_lens[type].len)) {
530 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
531 				  type, nla_len(a),
532 				  ovs_vxlan_ext_key_lens[type].len);
533 			return -EINVAL;
534 		}
535 
536 		switch (type) {
537 		case OVS_VXLAN_EXT_GBP:
538 			opts.gbp = nla_get_u32(a);
539 			break;
540 		default:
541 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
542 				  type);
543 			return -EINVAL;
544 		}
545 	}
546 	if (rem) {
547 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
548 			  rem);
549 		return -EINVAL;
550 	}
551 
552 	if (!is_mask)
553 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
554 	else
555 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
556 
557 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
558 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
559 				  is_mask);
560 	return 0;
561 }
562 
563 static int ip_tun_from_nlattr(const struct nlattr *attr,
564 			      struct sw_flow_match *match, bool is_mask,
565 			      bool log)
566 {
567 	bool ttl = false, ipv4 = false, ipv6 = false;
568 	__be16 tun_flags = 0;
569 	int opts_type = 0;
570 	struct nlattr *a;
571 	int rem;
572 
573 	nla_for_each_nested(a, attr, rem) {
574 		int type = nla_type(a);
575 		int err;
576 
577 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
578 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
579 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
580 			return -EINVAL;
581 		}
582 
583 		if (!check_attr_len(nla_len(a),
584 				    ovs_tunnel_key_lens[type].len)) {
585 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
586 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
587 			return -EINVAL;
588 		}
589 
590 		switch (type) {
591 		case OVS_TUNNEL_KEY_ATTR_ID:
592 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
593 					nla_get_be64(a), is_mask);
594 			tun_flags |= TUNNEL_KEY;
595 			break;
596 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
597 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
598 					nla_get_in_addr(a), is_mask);
599 			ipv4 = true;
600 			break;
601 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
602 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
603 					nla_get_in_addr(a), is_mask);
604 			ipv4 = true;
605 			break;
606 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
607 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
608 					nla_get_in6_addr(a), is_mask);
609 			ipv6 = true;
610 			break;
611 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
612 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
613 					nla_get_in6_addr(a), is_mask);
614 			ipv6 = true;
615 			break;
616 		case OVS_TUNNEL_KEY_ATTR_TOS:
617 			SW_FLOW_KEY_PUT(match, tun_key.tos,
618 					nla_get_u8(a), is_mask);
619 			break;
620 		case OVS_TUNNEL_KEY_ATTR_TTL:
621 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
622 					nla_get_u8(a), is_mask);
623 			ttl = true;
624 			break;
625 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
626 			tun_flags |= TUNNEL_DONT_FRAGMENT;
627 			break;
628 		case OVS_TUNNEL_KEY_ATTR_CSUM:
629 			tun_flags |= TUNNEL_CSUM;
630 			break;
631 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
632 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
633 					nla_get_be16(a), is_mask);
634 			break;
635 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
636 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
637 					nla_get_be16(a), is_mask);
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_OAM:
640 			tun_flags |= TUNNEL_OAM;
641 			break;
642 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
643 			if (opts_type) {
644 				OVS_NLERR(log, "Multiple metadata blocks provided");
645 				return -EINVAL;
646 			}
647 
648 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
649 			if (err)
650 				return err;
651 
652 			tun_flags |= TUNNEL_GENEVE_OPT;
653 			opts_type = type;
654 			break;
655 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
656 			if (opts_type) {
657 				OVS_NLERR(log, "Multiple metadata blocks provided");
658 				return -EINVAL;
659 			}
660 
661 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
662 			if (err)
663 				return err;
664 
665 			tun_flags |= TUNNEL_VXLAN_OPT;
666 			opts_type = type;
667 			break;
668 		case OVS_TUNNEL_KEY_ATTR_PAD:
669 			break;
670 		default:
671 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
672 				  type);
673 			return -EINVAL;
674 		}
675 	}
676 
677 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
678 	if (is_mask)
679 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
680 	else
681 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
682 				false);
683 
684 	if (rem > 0) {
685 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
686 			  rem);
687 		return -EINVAL;
688 	}
689 
690 	if (ipv4 && ipv6) {
691 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
692 		return -EINVAL;
693 	}
694 
695 	if (!is_mask) {
696 		if (!ipv4 && !ipv6) {
697 			OVS_NLERR(log, "IP tunnel dst address not specified");
698 			return -EINVAL;
699 		}
700 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
701 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
702 			return -EINVAL;
703 		}
704 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
705 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
706 			return -EINVAL;
707 		}
708 
709 		if (!ttl) {
710 			OVS_NLERR(log, "IP tunnel TTL not specified.");
711 			return -EINVAL;
712 		}
713 	}
714 
715 	return opts_type;
716 }
717 
718 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
719 			       const void *tun_opts, int swkey_tun_opts_len)
720 {
721 	const struct vxlan_metadata *opts = tun_opts;
722 	struct nlattr *nla;
723 
724 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
725 	if (!nla)
726 		return -EMSGSIZE;
727 
728 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
729 		return -EMSGSIZE;
730 
731 	nla_nest_end(skb, nla);
732 	return 0;
733 }
734 
735 static int __ip_tun_to_nlattr(struct sk_buff *skb,
736 			      const struct ip_tunnel_key *output,
737 			      const void *tun_opts, int swkey_tun_opts_len,
738 			      unsigned short tun_proto)
739 {
740 	if (output->tun_flags & TUNNEL_KEY &&
741 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
742 			 OVS_TUNNEL_KEY_ATTR_PAD))
743 		return -EMSGSIZE;
744 	switch (tun_proto) {
745 	case AF_INET:
746 		if (output->u.ipv4.src &&
747 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
748 				    output->u.ipv4.src))
749 			return -EMSGSIZE;
750 		if (output->u.ipv4.dst &&
751 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
752 				    output->u.ipv4.dst))
753 			return -EMSGSIZE;
754 		break;
755 	case AF_INET6:
756 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
757 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
758 				     &output->u.ipv6.src))
759 			return -EMSGSIZE;
760 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
761 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
762 				     &output->u.ipv6.dst))
763 			return -EMSGSIZE;
764 		break;
765 	}
766 	if (output->tos &&
767 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
768 		return -EMSGSIZE;
769 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
770 		return -EMSGSIZE;
771 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
772 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
773 		return -EMSGSIZE;
774 	if ((output->tun_flags & TUNNEL_CSUM) &&
775 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
776 		return -EMSGSIZE;
777 	if (output->tp_src &&
778 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
779 		return -EMSGSIZE;
780 	if (output->tp_dst &&
781 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
782 		return -EMSGSIZE;
783 	if ((output->tun_flags & TUNNEL_OAM) &&
784 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
785 		return -EMSGSIZE;
786 	if (swkey_tun_opts_len) {
787 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
788 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
789 			    swkey_tun_opts_len, tun_opts))
790 			return -EMSGSIZE;
791 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
792 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
793 			return -EMSGSIZE;
794 	}
795 
796 	return 0;
797 }
798 
799 static int ip_tun_to_nlattr(struct sk_buff *skb,
800 			    const struct ip_tunnel_key *output,
801 			    const void *tun_opts, int swkey_tun_opts_len,
802 			    unsigned short tun_proto)
803 {
804 	struct nlattr *nla;
805 	int err;
806 
807 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
808 	if (!nla)
809 		return -EMSGSIZE;
810 
811 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
812 				 tun_proto);
813 	if (err)
814 		return err;
815 
816 	nla_nest_end(skb, nla);
817 	return 0;
818 }
819 
820 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
821 			    struct ip_tunnel_info *tun_info)
822 {
823 	return __ip_tun_to_nlattr(skb, &tun_info->key,
824 				  ip_tunnel_info_opts(tun_info),
825 				  tun_info->options_len,
826 				  ip_tunnel_info_af(tun_info));
827 }
828 
829 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
830 				    const struct nlattr *a[],
831 				    bool is_mask, bool inner)
832 {
833 	__be16 tci = 0;
834 	__be16 tpid = 0;
835 
836 	if (a[OVS_KEY_ATTR_VLAN])
837 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
838 
839 	if (a[OVS_KEY_ATTR_ETHERTYPE])
840 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
841 
842 	if (likely(!inner)) {
843 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
844 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
845 	} else {
846 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
847 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
848 	}
849 	return 0;
850 }
851 
852 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
853 				      u64 key_attrs, bool inner,
854 				      const struct nlattr **a, bool log)
855 {
856 	__be16 tci = 0;
857 
858 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
859 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
860 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
861 		/* Not a VLAN. */
862 		return 0;
863 	}
864 
865 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
866 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
867 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
868 		return -EINVAL;
869 	}
870 
871 	if (a[OVS_KEY_ATTR_VLAN])
872 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
873 
874 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
875 		if (tci) {
876 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
877 				  (inner) ? "C-VLAN" : "VLAN");
878 			return -EINVAL;
879 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
880 			/* Corner case for truncated VLAN header. */
881 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
882 				  (inner) ? "C-VLAN" : "VLAN");
883 			return -EINVAL;
884 		}
885 	}
886 
887 	return 1;
888 }
889 
890 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
891 					   u64 key_attrs, bool inner,
892 					   const struct nlattr **a, bool log)
893 {
894 	__be16 tci = 0;
895 	__be16 tpid = 0;
896 	bool encap_valid = !!(match->key->eth.vlan.tci &
897 			      htons(VLAN_TAG_PRESENT));
898 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
899 				htons(VLAN_TAG_PRESENT));
900 
901 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
902 		/* Not a VLAN. */
903 		return 0;
904 	}
905 
906 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
907 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
908 			  (inner) ? "C-VLAN" : "VLAN");
909 		return -EINVAL;
910 	}
911 
912 	if (a[OVS_KEY_ATTR_VLAN])
913 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
914 
915 	if (a[OVS_KEY_ATTR_ETHERTYPE])
916 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
917 
918 	if (tpid != htons(0xffff)) {
919 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
920 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
921 		return -EINVAL;
922 	}
923 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
924 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
925 			  (inner) ? "C-VLAN" : "VLAN");
926 		return -EINVAL;
927 	}
928 
929 	return 1;
930 }
931 
932 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
933 				     u64 *key_attrs, bool inner,
934 				     const struct nlattr **a, bool is_mask,
935 				     bool log)
936 {
937 	int err;
938 	const struct nlattr *encap;
939 
940 	if (!is_mask)
941 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
942 						 a, log);
943 	else
944 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
945 						      a, log);
946 	if (err <= 0)
947 		return err;
948 
949 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
950 	if (err)
951 		return err;
952 
953 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
954 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
955 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
956 
957 	encap = a[OVS_KEY_ATTR_ENCAP];
958 
959 	if (!is_mask)
960 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
961 	else
962 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
963 
964 	return err;
965 }
966 
967 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
968 				   u64 *key_attrs, const struct nlattr **a,
969 				   bool is_mask, bool log)
970 {
971 	int err;
972 	bool encap_valid = false;
973 
974 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
975 					is_mask, log);
976 	if (err)
977 		return err;
978 
979 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
980 	if (encap_valid) {
981 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
982 						is_mask, log);
983 		if (err)
984 			return err;
985 	}
986 
987 	return 0;
988 }
989 
990 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
991 				       u64 *attrs, const struct nlattr **a,
992 				       bool is_mask, bool log)
993 {
994 	__be16 eth_type;
995 
996 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
997 	if (is_mask) {
998 		/* Always exact match EtherType. */
999 		eth_type = htons(0xffff);
1000 	} else if (!eth_proto_is_802_3(eth_type)) {
1001 		OVS_NLERR(log, "EtherType %x is less than min %x",
1002 				ntohs(eth_type), ETH_P_802_3_MIN);
1003 		return -EINVAL;
1004 	}
1005 
1006 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1007 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1008 	return 0;
1009 }
1010 
1011 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1012 				 u64 *attrs, const struct nlattr **a,
1013 				 bool is_mask, bool log)
1014 {
1015 	u8 mac_proto = MAC_PROTO_ETHERNET;
1016 
1017 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1018 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1019 
1020 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1021 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1022 	}
1023 
1024 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1025 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1026 
1027 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1028 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1029 	}
1030 
1031 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1032 		SW_FLOW_KEY_PUT(match, phy.priority,
1033 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1034 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1035 	}
1036 
1037 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1038 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1039 
1040 		if (is_mask) {
1041 			in_port = 0xffffffff; /* Always exact match in_port. */
1042 		} else if (in_port >= DP_MAX_PORTS) {
1043 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1044 				  in_port, DP_MAX_PORTS);
1045 			return -EINVAL;
1046 		}
1047 
1048 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1049 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1050 	} else if (!is_mask) {
1051 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1052 	}
1053 
1054 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1055 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1056 
1057 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1058 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1059 	}
1060 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1061 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1062 				       is_mask, log) < 0)
1063 			return -EINVAL;
1064 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1065 	}
1066 
1067 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1068 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1069 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1070 
1071 		if (ct_state & ~CT_SUPPORTED_MASK) {
1072 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1073 				  ct_state);
1074 			return -EINVAL;
1075 		}
1076 
1077 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1078 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1079 	}
1080 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1081 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1082 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1083 
1084 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1085 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1086 	}
1087 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1088 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1089 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1090 
1091 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1092 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1093 	}
1094 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1095 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1096 		const struct ovs_key_ct_labels *cl;
1097 
1098 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1099 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1100 				   sizeof(*cl), is_mask);
1101 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1102 	}
1103 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1104 		const struct ovs_key_ct_tuple_ipv4 *ct;
1105 
1106 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1107 
1108 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1109 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1110 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1111 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1112 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1113 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1114 	}
1115 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1116 		const struct ovs_key_ct_tuple_ipv6 *ct;
1117 
1118 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1119 
1120 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1121 				   sizeof(match->key->ipv6.ct_orig.src),
1122 				   is_mask);
1123 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1124 				   sizeof(match->key->ipv6.ct_orig.dst),
1125 				   is_mask);
1126 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1127 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1128 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1129 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1130 	}
1131 
1132 	/* For layer 3 packets the Ethernet type is provided
1133 	 * and treated as metadata but no MAC addresses are provided.
1134 	 */
1135 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1136 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1137 		mac_proto = MAC_PROTO_NONE;
1138 
1139 	/* Always exact match mac_proto */
1140 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1141 
1142 	if (mac_proto == MAC_PROTO_NONE)
1143 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1144 						   log);
1145 
1146 	return 0;
1147 }
1148 
1149 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1150 				u64 attrs, const struct nlattr **a,
1151 				bool is_mask, bool log)
1152 {
1153 	int err;
1154 
1155 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1156 	if (err)
1157 		return err;
1158 
1159 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1160 		const struct ovs_key_ethernet *eth_key;
1161 
1162 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1163 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1164 				eth_key->eth_src, ETH_ALEN, is_mask);
1165 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1166 				eth_key->eth_dst, ETH_ALEN, is_mask);
1167 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1168 
1169 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1170 			/* VLAN attribute is always parsed before getting here since it
1171 			 * may occur multiple times.
1172 			 */
1173 			OVS_NLERR(log, "VLAN attribute unexpected.");
1174 			return -EINVAL;
1175 		}
1176 
1177 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1178 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1179 							  log);
1180 			if (err)
1181 				return err;
1182 		} else if (!is_mask) {
1183 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1184 		}
1185 	} else if (!match->key->eth.type) {
1186 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1187 		return -EINVAL;
1188 	}
1189 
1190 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1191 		const struct ovs_key_ipv4 *ipv4_key;
1192 
1193 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1194 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1195 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1196 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1197 			return -EINVAL;
1198 		}
1199 		SW_FLOW_KEY_PUT(match, ip.proto,
1200 				ipv4_key->ipv4_proto, is_mask);
1201 		SW_FLOW_KEY_PUT(match, ip.tos,
1202 				ipv4_key->ipv4_tos, is_mask);
1203 		SW_FLOW_KEY_PUT(match, ip.ttl,
1204 				ipv4_key->ipv4_ttl, is_mask);
1205 		SW_FLOW_KEY_PUT(match, ip.frag,
1206 				ipv4_key->ipv4_frag, is_mask);
1207 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1208 				ipv4_key->ipv4_src, is_mask);
1209 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1210 				ipv4_key->ipv4_dst, is_mask);
1211 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1212 	}
1213 
1214 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1215 		const struct ovs_key_ipv6 *ipv6_key;
1216 
1217 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1218 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1219 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1220 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1221 			return -EINVAL;
1222 		}
1223 
1224 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1225 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1226 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1227 			return -EINVAL;
1228 		}
1229 
1230 		SW_FLOW_KEY_PUT(match, ipv6.label,
1231 				ipv6_key->ipv6_label, is_mask);
1232 		SW_FLOW_KEY_PUT(match, ip.proto,
1233 				ipv6_key->ipv6_proto, is_mask);
1234 		SW_FLOW_KEY_PUT(match, ip.tos,
1235 				ipv6_key->ipv6_tclass, is_mask);
1236 		SW_FLOW_KEY_PUT(match, ip.ttl,
1237 				ipv6_key->ipv6_hlimit, is_mask);
1238 		SW_FLOW_KEY_PUT(match, ip.frag,
1239 				ipv6_key->ipv6_frag, is_mask);
1240 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1241 				ipv6_key->ipv6_src,
1242 				sizeof(match->key->ipv6.addr.src),
1243 				is_mask);
1244 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1245 				ipv6_key->ipv6_dst,
1246 				sizeof(match->key->ipv6.addr.dst),
1247 				is_mask);
1248 
1249 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1250 	}
1251 
1252 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1253 		const struct ovs_key_arp *arp_key;
1254 
1255 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1256 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1257 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1258 				  arp_key->arp_op);
1259 			return -EINVAL;
1260 		}
1261 
1262 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1263 				arp_key->arp_sip, is_mask);
1264 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1265 			arp_key->arp_tip, is_mask);
1266 		SW_FLOW_KEY_PUT(match, ip.proto,
1267 				ntohs(arp_key->arp_op), is_mask);
1268 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1269 				arp_key->arp_sha, ETH_ALEN, is_mask);
1270 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1271 				arp_key->arp_tha, ETH_ALEN, is_mask);
1272 
1273 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1274 	}
1275 
1276 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1277 		const struct ovs_key_mpls *mpls_key;
1278 
1279 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1280 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1281 				mpls_key->mpls_lse, is_mask);
1282 
1283 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1284 	 }
1285 
1286 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1287 		const struct ovs_key_tcp *tcp_key;
1288 
1289 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1290 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1291 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1292 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1293 	}
1294 
1295 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1296 		SW_FLOW_KEY_PUT(match, tp.flags,
1297 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1298 				is_mask);
1299 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1300 	}
1301 
1302 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1303 		const struct ovs_key_udp *udp_key;
1304 
1305 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1306 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1307 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1308 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1309 	}
1310 
1311 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1312 		const struct ovs_key_sctp *sctp_key;
1313 
1314 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1315 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1316 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1317 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1318 	}
1319 
1320 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1321 		const struct ovs_key_icmp *icmp_key;
1322 
1323 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1324 		SW_FLOW_KEY_PUT(match, tp.src,
1325 				htons(icmp_key->icmp_type), is_mask);
1326 		SW_FLOW_KEY_PUT(match, tp.dst,
1327 				htons(icmp_key->icmp_code), is_mask);
1328 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1329 	}
1330 
1331 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1332 		const struct ovs_key_icmpv6 *icmpv6_key;
1333 
1334 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1335 		SW_FLOW_KEY_PUT(match, tp.src,
1336 				htons(icmpv6_key->icmpv6_type), is_mask);
1337 		SW_FLOW_KEY_PUT(match, tp.dst,
1338 				htons(icmpv6_key->icmpv6_code), is_mask);
1339 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1340 	}
1341 
1342 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1343 		const struct ovs_key_nd *nd_key;
1344 
1345 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1346 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1347 			nd_key->nd_target,
1348 			sizeof(match->key->ipv6.nd.target),
1349 			is_mask);
1350 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1351 			nd_key->nd_sll, ETH_ALEN, is_mask);
1352 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1353 				nd_key->nd_tll, ETH_ALEN, is_mask);
1354 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1355 	}
1356 
1357 	if (attrs != 0) {
1358 		OVS_NLERR(log, "Unknown key attributes %llx",
1359 			  (unsigned long long)attrs);
1360 		return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static void nlattr_set(struct nlattr *attr, u8 val,
1367 		       const struct ovs_len_tbl *tbl)
1368 {
1369 	struct nlattr *nla;
1370 	int rem;
1371 
1372 	/* The nlattr stream should already have been validated */
1373 	nla_for_each_nested(nla, attr, rem) {
1374 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1375 			if (tbl[nla_type(nla)].next)
1376 				tbl = tbl[nla_type(nla)].next;
1377 			nlattr_set(nla, val, tbl);
1378 		} else {
1379 			memset(nla_data(nla), val, nla_len(nla));
1380 		}
1381 
1382 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1383 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1384 	}
1385 }
1386 
1387 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1388 {
1389 	nlattr_set(attr, val, ovs_key_lens);
1390 }
1391 
1392 /**
1393  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1394  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1395  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1396  * does not include any don't care bit.
1397  * @net: Used to determine per-namespace field support.
1398  * @match: receives the extracted flow match information.
1399  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1400  * sequence. The fields should of the packet that triggered the creation
1401  * of this flow.
1402  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1403  * attribute specifies the mask field of the wildcarded flow.
1404  * @log: Boolean to allow kernel error logging.  Normally true, but when
1405  * probing for feature compatibility this should be passed in as false to
1406  * suppress unnecessary error logging.
1407  */
1408 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1409 		      const struct nlattr *nla_key,
1410 		      const struct nlattr *nla_mask,
1411 		      bool log)
1412 {
1413 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1414 	struct nlattr *newmask = NULL;
1415 	u64 key_attrs = 0;
1416 	u64 mask_attrs = 0;
1417 	int err;
1418 
1419 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1420 	if (err)
1421 		return err;
1422 
1423 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1424 	if (err)
1425 		return err;
1426 
1427 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1428 	if (err)
1429 		return err;
1430 
1431 	if (match->mask) {
1432 		if (!nla_mask) {
1433 			/* Create an exact match mask. We need to set to 0xff
1434 			 * all the 'match->mask' fields that have been touched
1435 			 * in 'match->key'. We cannot simply memset
1436 			 * 'match->mask', because padding bytes and fields not
1437 			 * specified in 'match->key' should be left to 0.
1438 			 * Instead, we use a stream of netlink attributes,
1439 			 * copied from 'key' and set to 0xff.
1440 			 * ovs_key_from_nlattrs() will take care of filling
1441 			 * 'match->mask' appropriately.
1442 			 */
1443 			newmask = kmemdup(nla_key,
1444 					  nla_total_size(nla_len(nla_key)),
1445 					  GFP_KERNEL);
1446 			if (!newmask)
1447 				return -ENOMEM;
1448 
1449 			mask_set_nlattr(newmask, 0xff);
1450 
1451 			/* The userspace does not send tunnel attributes that
1452 			 * are 0, but we should not wildcard them nonetheless.
1453 			 */
1454 			if (match->key->tun_proto)
1455 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1456 							 0xff, true);
1457 
1458 			nla_mask = newmask;
1459 		}
1460 
1461 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1462 		if (err)
1463 			goto free_newmask;
1464 
1465 		/* Always match on tci. */
1466 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1467 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1468 
1469 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1470 		if (err)
1471 			goto free_newmask;
1472 
1473 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1474 					   log);
1475 		if (err)
1476 			goto free_newmask;
1477 	}
1478 
1479 	if (!match_validate(match, key_attrs, mask_attrs, log))
1480 		err = -EINVAL;
1481 
1482 free_newmask:
1483 	kfree(newmask);
1484 	return err;
1485 }
1486 
1487 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1488 {
1489 	size_t len;
1490 
1491 	if (!attr)
1492 		return 0;
1493 
1494 	len = nla_len(attr);
1495 	if (len < 1 || len > MAX_UFID_LENGTH) {
1496 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1497 			  nla_len(attr), MAX_UFID_LENGTH);
1498 		return 0;
1499 	}
1500 
1501 	return len;
1502 }
1503 
1504 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1505  * or false otherwise.
1506  */
1507 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1508 		      bool log)
1509 {
1510 	sfid->ufid_len = get_ufid_len(attr, log);
1511 	if (sfid->ufid_len)
1512 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1513 
1514 	return sfid->ufid_len;
1515 }
1516 
1517 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1518 			   const struct sw_flow_key *key, bool log)
1519 {
1520 	struct sw_flow_key *new_key;
1521 
1522 	if (ovs_nla_get_ufid(sfid, ufid, log))
1523 		return 0;
1524 
1525 	/* If UFID was not provided, use unmasked key. */
1526 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1527 	if (!new_key)
1528 		return -ENOMEM;
1529 	memcpy(new_key, key, sizeof(*key));
1530 	sfid->unmasked_key = new_key;
1531 
1532 	return 0;
1533 }
1534 
1535 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1536 {
1537 	return attr ? nla_get_u32(attr) : 0;
1538 }
1539 
1540 /**
1541  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1542  * @net: Network namespace.
1543  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1544  * metadata.
1545  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1546  * attributes.
1547  * @attrs: Bit mask for the netlink attributes included in @a.
1548  * @log: Boolean to allow kernel error logging.  Normally true, but when
1549  * probing for feature compatibility this should be passed in as false to
1550  * suppress unnecessary error logging.
1551  *
1552  * This parses a series of Netlink attributes that form a flow key, which must
1553  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1554  * get the metadata, that is, the parts of the flow key that cannot be
1555  * extracted from the packet itself.
1556  *
1557  * This must be called before the packet key fields are filled in 'key'.
1558  */
1559 
1560 int ovs_nla_get_flow_metadata(struct net *net,
1561 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1562 			      u64 attrs, struct sw_flow_key *key, bool log)
1563 {
1564 	struct sw_flow_match match;
1565 
1566 	memset(&match, 0, sizeof(match));
1567 	match.key = key;
1568 
1569 	key->ct_state = 0;
1570 	key->ct_zone = 0;
1571 	key->ct_orig_proto = 0;
1572 	memset(&key->ct, 0, sizeof(key->ct));
1573 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1574 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1575 
1576 	key->phy.in_port = DP_MAX_PORTS;
1577 
1578 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1579 }
1580 
1581 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1582 			    bool is_mask)
1583 {
1584 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1585 
1586 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1587 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1588 		return -EMSGSIZE;
1589 	return 0;
1590 }
1591 
1592 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1593 			     const struct sw_flow_key *output, bool is_mask,
1594 			     struct sk_buff *skb)
1595 {
1596 	struct ovs_key_ethernet *eth_key;
1597 	struct nlattr *nla;
1598 	struct nlattr *encap = NULL;
1599 	struct nlattr *in_encap = NULL;
1600 
1601 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1602 		goto nla_put_failure;
1603 
1604 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1605 		goto nla_put_failure;
1606 
1607 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1608 		goto nla_put_failure;
1609 
1610 	if ((swkey->tun_proto || is_mask)) {
1611 		const void *opts = NULL;
1612 
1613 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1614 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1615 
1616 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1617 				     swkey->tun_opts_len, swkey->tun_proto))
1618 			goto nla_put_failure;
1619 	}
1620 
1621 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1622 		if (is_mask && (output->phy.in_port == 0xffff))
1623 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1624 				goto nla_put_failure;
1625 	} else {
1626 		u16 upper_u16;
1627 		upper_u16 = !is_mask ? 0 : 0xffff;
1628 
1629 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1630 				(upper_u16 << 16) | output->phy.in_port))
1631 			goto nla_put_failure;
1632 	}
1633 
1634 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1635 		goto nla_put_failure;
1636 
1637 	if (ovs_ct_put_key(swkey, output, skb))
1638 		goto nla_put_failure;
1639 
1640 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1641 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1642 		if (!nla)
1643 			goto nla_put_failure;
1644 
1645 		eth_key = nla_data(nla);
1646 		ether_addr_copy(eth_key->eth_src, output->eth.src);
1647 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1648 
1649 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1650 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1651 				goto nla_put_failure;
1652 			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1653 			if (!swkey->eth.vlan.tci)
1654 				goto unencap;
1655 
1656 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1657 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1658 					goto nla_put_failure;
1659 				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1660 				if (!swkey->eth.cvlan.tci)
1661 					goto unencap;
1662 			}
1663 		}
1664 
1665 		if (swkey->eth.type == htons(ETH_P_802_2)) {
1666 			/*
1667 			* Ethertype 802.2 is represented in the netlink with omitted
1668 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1669 			* 0xffff in the mask attribute.  Ethertype can also
1670 			* be wildcarded.
1671 			*/
1672 			if (is_mask && output->eth.type)
1673 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1674 							output->eth.type))
1675 					goto nla_put_failure;
1676 			goto unencap;
1677 		}
1678 	}
1679 
1680 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1681 		goto nla_put_failure;
1682 
1683 	if (eth_type_vlan(swkey->eth.type)) {
1684 		/* There are 3 VLAN tags, we don't know anything about the rest
1685 		 * of the packet, so truncate here.
1686 		 */
1687 		WARN_ON_ONCE(!(encap && in_encap));
1688 		goto unencap;
1689 	}
1690 
1691 	if (swkey->eth.type == htons(ETH_P_IP)) {
1692 		struct ovs_key_ipv4 *ipv4_key;
1693 
1694 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1695 		if (!nla)
1696 			goto nla_put_failure;
1697 		ipv4_key = nla_data(nla);
1698 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1699 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1700 		ipv4_key->ipv4_proto = output->ip.proto;
1701 		ipv4_key->ipv4_tos = output->ip.tos;
1702 		ipv4_key->ipv4_ttl = output->ip.ttl;
1703 		ipv4_key->ipv4_frag = output->ip.frag;
1704 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1705 		struct ovs_key_ipv6 *ipv6_key;
1706 
1707 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1708 		if (!nla)
1709 			goto nla_put_failure;
1710 		ipv6_key = nla_data(nla);
1711 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1712 				sizeof(ipv6_key->ipv6_src));
1713 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1714 				sizeof(ipv6_key->ipv6_dst));
1715 		ipv6_key->ipv6_label = output->ipv6.label;
1716 		ipv6_key->ipv6_proto = output->ip.proto;
1717 		ipv6_key->ipv6_tclass = output->ip.tos;
1718 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1719 		ipv6_key->ipv6_frag = output->ip.frag;
1720 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1721 		   swkey->eth.type == htons(ETH_P_RARP)) {
1722 		struct ovs_key_arp *arp_key;
1723 
1724 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1725 		if (!nla)
1726 			goto nla_put_failure;
1727 		arp_key = nla_data(nla);
1728 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1729 		arp_key->arp_sip = output->ipv4.addr.src;
1730 		arp_key->arp_tip = output->ipv4.addr.dst;
1731 		arp_key->arp_op = htons(output->ip.proto);
1732 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1733 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1734 	} else if (eth_p_mpls(swkey->eth.type)) {
1735 		struct ovs_key_mpls *mpls_key;
1736 
1737 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1738 		if (!nla)
1739 			goto nla_put_failure;
1740 		mpls_key = nla_data(nla);
1741 		mpls_key->mpls_lse = output->mpls.top_lse;
1742 	}
1743 
1744 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1745 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1746 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1747 
1748 		if (swkey->ip.proto == IPPROTO_TCP) {
1749 			struct ovs_key_tcp *tcp_key;
1750 
1751 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1752 			if (!nla)
1753 				goto nla_put_failure;
1754 			tcp_key = nla_data(nla);
1755 			tcp_key->tcp_src = output->tp.src;
1756 			tcp_key->tcp_dst = output->tp.dst;
1757 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1758 					 output->tp.flags))
1759 				goto nla_put_failure;
1760 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1761 			struct ovs_key_udp *udp_key;
1762 
1763 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1764 			if (!nla)
1765 				goto nla_put_failure;
1766 			udp_key = nla_data(nla);
1767 			udp_key->udp_src = output->tp.src;
1768 			udp_key->udp_dst = output->tp.dst;
1769 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1770 			struct ovs_key_sctp *sctp_key;
1771 
1772 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1773 			if (!nla)
1774 				goto nla_put_failure;
1775 			sctp_key = nla_data(nla);
1776 			sctp_key->sctp_src = output->tp.src;
1777 			sctp_key->sctp_dst = output->tp.dst;
1778 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1779 			   swkey->ip.proto == IPPROTO_ICMP) {
1780 			struct ovs_key_icmp *icmp_key;
1781 
1782 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1783 			if (!nla)
1784 				goto nla_put_failure;
1785 			icmp_key = nla_data(nla);
1786 			icmp_key->icmp_type = ntohs(output->tp.src);
1787 			icmp_key->icmp_code = ntohs(output->tp.dst);
1788 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1789 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1790 			struct ovs_key_icmpv6 *icmpv6_key;
1791 
1792 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1793 						sizeof(*icmpv6_key));
1794 			if (!nla)
1795 				goto nla_put_failure;
1796 			icmpv6_key = nla_data(nla);
1797 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1798 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1799 
1800 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1801 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1802 				struct ovs_key_nd *nd_key;
1803 
1804 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1805 				if (!nla)
1806 					goto nla_put_failure;
1807 				nd_key = nla_data(nla);
1808 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1809 							sizeof(nd_key->nd_target));
1810 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1811 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1812 			}
1813 		}
1814 	}
1815 
1816 unencap:
1817 	if (in_encap)
1818 		nla_nest_end(skb, in_encap);
1819 	if (encap)
1820 		nla_nest_end(skb, encap);
1821 
1822 	return 0;
1823 
1824 nla_put_failure:
1825 	return -EMSGSIZE;
1826 }
1827 
1828 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1829 		    const struct sw_flow_key *output, int attr, bool is_mask,
1830 		    struct sk_buff *skb)
1831 {
1832 	int err;
1833 	struct nlattr *nla;
1834 
1835 	nla = nla_nest_start(skb, attr);
1836 	if (!nla)
1837 		return -EMSGSIZE;
1838 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1839 	if (err)
1840 		return err;
1841 	nla_nest_end(skb, nla);
1842 
1843 	return 0;
1844 }
1845 
1846 /* Called with ovs_mutex or RCU read lock. */
1847 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1848 {
1849 	if (ovs_identifier_is_ufid(&flow->id))
1850 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1851 			       flow->id.ufid);
1852 
1853 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1854 			       OVS_FLOW_ATTR_KEY, false, skb);
1855 }
1856 
1857 /* Called with ovs_mutex or RCU read lock. */
1858 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1859 {
1860 	return ovs_nla_put_key(&flow->key, &flow->key,
1861 				OVS_FLOW_ATTR_KEY, false, skb);
1862 }
1863 
1864 /* Called with ovs_mutex or RCU read lock. */
1865 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1866 {
1867 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1868 				OVS_FLOW_ATTR_MASK, true, skb);
1869 }
1870 
1871 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1872 
1873 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1874 {
1875 	struct sw_flow_actions *sfa;
1876 
1877 	if (size > MAX_ACTIONS_BUFSIZE) {
1878 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1879 		return ERR_PTR(-EINVAL);
1880 	}
1881 
1882 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1883 	if (!sfa)
1884 		return ERR_PTR(-ENOMEM);
1885 
1886 	sfa->actions_len = 0;
1887 	return sfa;
1888 }
1889 
1890 static void ovs_nla_free_set_action(const struct nlattr *a)
1891 {
1892 	const struct nlattr *ovs_key = nla_data(a);
1893 	struct ovs_tunnel_info *ovs_tun;
1894 
1895 	switch (nla_type(ovs_key)) {
1896 	case OVS_KEY_ATTR_TUNNEL_INFO:
1897 		ovs_tun = nla_data(ovs_key);
1898 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1899 		break;
1900 	}
1901 }
1902 
1903 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1904 {
1905 	const struct nlattr *a;
1906 	int rem;
1907 
1908 	if (!sf_acts)
1909 		return;
1910 
1911 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1912 		switch (nla_type(a)) {
1913 		case OVS_ACTION_ATTR_SET:
1914 			ovs_nla_free_set_action(a);
1915 			break;
1916 		case OVS_ACTION_ATTR_CT:
1917 			ovs_ct_free_action(a);
1918 			break;
1919 		}
1920 	}
1921 
1922 	kfree(sf_acts);
1923 }
1924 
1925 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1926 {
1927 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1928 }
1929 
1930 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1931  * The caller must hold rcu_read_lock for this to be sensible. */
1932 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1933 {
1934 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1935 }
1936 
1937 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1938 				       int attr_len, bool log)
1939 {
1940 
1941 	struct sw_flow_actions *acts;
1942 	int new_acts_size;
1943 	int req_size = NLA_ALIGN(attr_len);
1944 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1945 					(*sfa)->actions_len;
1946 
1947 	if (req_size <= (ksize(*sfa) - next_offset))
1948 		goto out;
1949 
1950 	new_acts_size = ksize(*sfa) * 2;
1951 
1952 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1953 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1954 			return ERR_PTR(-EMSGSIZE);
1955 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1956 	}
1957 
1958 	acts = nla_alloc_flow_actions(new_acts_size, log);
1959 	if (IS_ERR(acts))
1960 		return (void *)acts;
1961 
1962 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1963 	acts->actions_len = (*sfa)->actions_len;
1964 	acts->orig_len = (*sfa)->orig_len;
1965 	kfree(*sfa);
1966 	*sfa = acts;
1967 
1968 out:
1969 	(*sfa)->actions_len += req_size;
1970 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1971 }
1972 
1973 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1974 				   int attrtype, void *data, int len, bool log)
1975 {
1976 	struct nlattr *a;
1977 
1978 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1979 	if (IS_ERR(a))
1980 		return a;
1981 
1982 	a->nla_type = attrtype;
1983 	a->nla_len = nla_attr_size(len);
1984 
1985 	if (data)
1986 		memcpy(nla_data(a), data, len);
1987 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1988 
1989 	return a;
1990 }
1991 
1992 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1993 		       int len, bool log)
1994 {
1995 	struct nlattr *a;
1996 
1997 	a = __add_action(sfa, attrtype, data, len, log);
1998 
1999 	return PTR_ERR_OR_ZERO(a);
2000 }
2001 
2002 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2003 					  int attrtype, bool log)
2004 {
2005 	int used = (*sfa)->actions_len;
2006 	int err;
2007 
2008 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2009 	if (err)
2010 		return err;
2011 
2012 	return used;
2013 }
2014 
2015 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2016 					 int st_offset)
2017 {
2018 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2019 							       st_offset);
2020 
2021 	a->nla_len = sfa->actions_len - st_offset;
2022 }
2023 
2024 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2025 				  const struct sw_flow_key *key,
2026 				  int depth, struct sw_flow_actions **sfa,
2027 				  __be16 eth_type, __be16 vlan_tci, bool log);
2028 
2029 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2030 				    const struct sw_flow_key *key, int depth,
2031 				    struct sw_flow_actions **sfa,
2032 				    __be16 eth_type, __be16 vlan_tci, bool log)
2033 {
2034 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2035 	const struct nlattr *probability, *actions;
2036 	const struct nlattr *a;
2037 	int rem, start, err, st_acts;
2038 
2039 	memset(attrs, 0, sizeof(attrs));
2040 	nla_for_each_nested(a, attr, rem) {
2041 		int type = nla_type(a);
2042 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2043 			return -EINVAL;
2044 		attrs[type] = a;
2045 	}
2046 	if (rem)
2047 		return -EINVAL;
2048 
2049 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2050 	if (!probability || nla_len(probability) != sizeof(u32))
2051 		return -EINVAL;
2052 
2053 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2054 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2055 		return -EINVAL;
2056 
2057 	/* validation done, copy sample action. */
2058 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2059 	if (start < 0)
2060 		return start;
2061 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2062 				 nla_data(probability), sizeof(u32), log);
2063 	if (err)
2064 		return err;
2065 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2066 	if (st_acts < 0)
2067 		return st_acts;
2068 
2069 	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2070 				     eth_type, vlan_tci, log);
2071 	if (err)
2072 		return err;
2073 
2074 	add_nested_action_end(*sfa, st_acts);
2075 	add_nested_action_end(*sfa, start);
2076 
2077 	return 0;
2078 }
2079 
2080 void ovs_match_init(struct sw_flow_match *match,
2081 		    struct sw_flow_key *key,
2082 		    bool reset_key,
2083 		    struct sw_flow_mask *mask)
2084 {
2085 	memset(match, 0, sizeof(*match));
2086 	match->key = key;
2087 	match->mask = mask;
2088 
2089 	if (reset_key)
2090 		memset(key, 0, sizeof(*key));
2091 
2092 	if (mask) {
2093 		memset(&mask->key, 0, sizeof(mask->key));
2094 		mask->range.start = mask->range.end = 0;
2095 	}
2096 }
2097 
2098 static int validate_geneve_opts(struct sw_flow_key *key)
2099 {
2100 	struct geneve_opt *option;
2101 	int opts_len = key->tun_opts_len;
2102 	bool crit_opt = false;
2103 
2104 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2105 	while (opts_len > 0) {
2106 		int len;
2107 
2108 		if (opts_len < sizeof(*option))
2109 			return -EINVAL;
2110 
2111 		len = sizeof(*option) + option->length * 4;
2112 		if (len > opts_len)
2113 			return -EINVAL;
2114 
2115 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2116 
2117 		option = (struct geneve_opt *)((u8 *)option + len);
2118 		opts_len -= len;
2119 	};
2120 
2121 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2122 
2123 	return 0;
2124 }
2125 
2126 static int validate_and_copy_set_tun(const struct nlattr *attr,
2127 				     struct sw_flow_actions **sfa, bool log)
2128 {
2129 	struct sw_flow_match match;
2130 	struct sw_flow_key key;
2131 	struct metadata_dst *tun_dst;
2132 	struct ip_tunnel_info *tun_info;
2133 	struct ovs_tunnel_info *ovs_tun;
2134 	struct nlattr *a;
2135 	int err = 0, start, opts_type;
2136 
2137 	ovs_match_init(&match, &key, true, NULL);
2138 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2139 	if (opts_type < 0)
2140 		return opts_type;
2141 
2142 	if (key.tun_opts_len) {
2143 		switch (opts_type) {
2144 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2145 			err = validate_geneve_opts(&key);
2146 			if (err < 0)
2147 				return err;
2148 			break;
2149 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2150 			break;
2151 		}
2152 	};
2153 
2154 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2155 	if (start < 0)
2156 		return start;
2157 
2158 	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2159 	if (!tun_dst)
2160 		return -ENOMEM;
2161 
2162 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2163 	if (err) {
2164 		dst_release((struct dst_entry *)tun_dst);
2165 		return err;
2166 	}
2167 
2168 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2169 			 sizeof(*ovs_tun), log);
2170 	if (IS_ERR(a)) {
2171 		dst_release((struct dst_entry *)tun_dst);
2172 		return PTR_ERR(a);
2173 	}
2174 
2175 	ovs_tun = nla_data(a);
2176 	ovs_tun->tun_dst = tun_dst;
2177 
2178 	tun_info = &tun_dst->u.tun_info;
2179 	tun_info->mode = IP_TUNNEL_INFO_TX;
2180 	if (key.tun_proto == AF_INET6)
2181 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2182 	tun_info->key = key.tun_key;
2183 
2184 	/* We need to store the options in the action itself since
2185 	 * everything else will go away after flow setup. We can append
2186 	 * it to tun_info and then point there.
2187 	 */
2188 	ip_tunnel_info_opts_set(tun_info,
2189 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2190 				key.tun_opts_len);
2191 	add_nested_action_end(*sfa, start);
2192 
2193 	return err;
2194 }
2195 
2196 /* Return false if there are any non-masked bits set.
2197  * Mask follows data immediately, before any netlink padding.
2198  */
2199 static bool validate_masked(u8 *data, int len)
2200 {
2201 	u8 *mask = data + len;
2202 
2203 	while (len--)
2204 		if (*data++ & ~*mask++)
2205 			return false;
2206 
2207 	return true;
2208 }
2209 
2210 static int validate_set(const struct nlattr *a,
2211 			const struct sw_flow_key *flow_key,
2212 			struct sw_flow_actions **sfa, bool *skip_copy,
2213 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2214 {
2215 	const struct nlattr *ovs_key = nla_data(a);
2216 	int key_type = nla_type(ovs_key);
2217 	size_t key_len;
2218 
2219 	/* There can be only one key in a action */
2220 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2221 		return -EINVAL;
2222 
2223 	key_len = nla_len(ovs_key);
2224 	if (masked)
2225 		key_len /= 2;
2226 
2227 	if (key_type > OVS_KEY_ATTR_MAX ||
2228 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2229 		return -EINVAL;
2230 
2231 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2232 		return -EINVAL;
2233 
2234 	switch (key_type) {
2235 	const struct ovs_key_ipv4 *ipv4_key;
2236 	const struct ovs_key_ipv6 *ipv6_key;
2237 	int err;
2238 
2239 	case OVS_KEY_ATTR_PRIORITY:
2240 	case OVS_KEY_ATTR_SKB_MARK:
2241 	case OVS_KEY_ATTR_CT_MARK:
2242 	case OVS_KEY_ATTR_CT_LABELS:
2243 		break;
2244 
2245 	case OVS_KEY_ATTR_ETHERNET:
2246 		if (mac_proto != MAC_PROTO_ETHERNET)
2247 			return -EINVAL;
2248 		break;
2249 
2250 	case OVS_KEY_ATTR_TUNNEL:
2251 		if (masked)
2252 			return -EINVAL; /* Masked tunnel set not supported. */
2253 
2254 		*skip_copy = true;
2255 		err = validate_and_copy_set_tun(a, sfa, log);
2256 		if (err)
2257 			return err;
2258 		break;
2259 
2260 	case OVS_KEY_ATTR_IPV4:
2261 		if (eth_type != htons(ETH_P_IP))
2262 			return -EINVAL;
2263 
2264 		ipv4_key = nla_data(ovs_key);
2265 
2266 		if (masked) {
2267 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2268 
2269 			/* Non-writeable fields. */
2270 			if (mask->ipv4_proto || mask->ipv4_frag)
2271 				return -EINVAL;
2272 		} else {
2273 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2274 				return -EINVAL;
2275 
2276 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2277 				return -EINVAL;
2278 		}
2279 		break;
2280 
2281 	case OVS_KEY_ATTR_IPV6:
2282 		if (eth_type != htons(ETH_P_IPV6))
2283 			return -EINVAL;
2284 
2285 		ipv6_key = nla_data(ovs_key);
2286 
2287 		if (masked) {
2288 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2289 
2290 			/* Non-writeable fields. */
2291 			if (mask->ipv6_proto || mask->ipv6_frag)
2292 				return -EINVAL;
2293 
2294 			/* Invalid bits in the flow label mask? */
2295 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2296 				return -EINVAL;
2297 		} else {
2298 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2299 				return -EINVAL;
2300 
2301 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2302 				return -EINVAL;
2303 		}
2304 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2305 			return -EINVAL;
2306 
2307 		break;
2308 
2309 	case OVS_KEY_ATTR_TCP:
2310 		if ((eth_type != htons(ETH_P_IP) &&
2311 		     eth_type != htons(ETH_P_IPV6)) ||
2312 		    flow_key->ip.proto != IPPROTO_TCP)
2313 			return -EINVAL;
2314 
2315 		break;
2316 
2317 	case OVS_KEY_ATTR_UDP:
2318 		if ((eth_type != htons(ETH_P_IP) &&
2319 		     eth_type != htons(ETH_P_IPV6)) ||
2320 		    flow_key->ip.proto != IPPROTO_UDP)
2321 			return -EINVAL;
2322 
2323 		break;
2324 
2325 	case OVS_KEY_ATTR_MPLS:
2326 		if (!eth_p_mpls(eth_type))
2327 			return -EINVAL;
2328 		break;
2329 
2330 	case OVS_KEY_ATTR_SCTP:
2331 		if ((eth_type != htons(ETH_P_IP) &&
2332 		     eth_type != htons(ETH_P_IPV6)) ||
2333 		    flow_key->ip.proto != IPPROTO_SCTP)
2334 			return -EINVAL;
2335 
2336 		break;
2337 
2338 	default:
2339 		return -EINVAL;
2340 	}
2341 
2342 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2343 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2344 		int start, len = key_len * 2;
2345 		struct nlattr *at;
2346 
2347 		*skip_copy = true;
2348 
2349 		start = add_nested_action_start(sfa,
2350 						OVS_ACTION_ATTR_SET_TO_MASKED,
2351 						log);
2352 		if (start < 0)
2353 			return start;
2354 
2355 		at = __add_action(sfa, key_type, NULL, len, log);
2356 		if (IS_ERR(at))
2357 			return PTR_ERR(at);
2358 
2359 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2360 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2361 		/* Clear non-writeable bits from otherwise writeable fields. */
2362 		if (key_type == OVS_KEY_ATTR_IPV6) {
2363 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2364 
2365 			mask->ipv6_label &= htonl(0x000FFFFF);
2366 		}
2367 		add_nested_action_end(*sfa, start);
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static int validate_userspace(const struct nlattr *attr)
2374 {
2375 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2376 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2377 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2378 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2379 	};
2380 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2381 	int error;
2382 
2383 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2384 				 attr, userspace_policy);
2385 	if (error)
2386 		return error;
2387 
2388 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2389 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2390 		return -EINVAL;
2391 
2392 	return 0;
2393 }
2394 
2395 static int copy_action(const struct nlattr *from,
2396 		       struct sw_flow_actions **sfa, bool log)
2397 {
2398 	int totlen = NLA_ALIGN(from->nla_len);
2399 	struct nlattr *to;
2400 
2401 	to = reserve_sfa_size(sfa, from->nla_len, log);
2402 	if (IS_ERR(to))
2403 		return PTR_ERR(to);
2404 
2405 	memcpy(to, from, totlen);
2406 	return 0;
2407 }
2408 
2409 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2410 				  const struct sw_flow_key *key,
2411 				  int depth, struct sw_flow_actions **sfa,
2412 				  __be16 eth_type, __be16 vlan_tci, bool log)
2413 {
2414 	u8 mac_proto = ovs_key_mac_proto(key);
2415 	const struct nlattr *a;
2416 	int rem, err;
2417 
2418 	if (depth >= SAMPLE_ACTION_DEPTH)
2419 		return -EOVERFLOW;
2420 
2421 	nla_for_each_nested(a, attr, rem) {
2422 		/* Expected argument lengths, (u32)-1 for variable length. */
2423 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2424 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2425 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2426 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2427 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2428 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2429 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2430 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2431 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2432 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2433 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2434 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2435 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2436 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2437 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2438 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2439 		};
2440 		const struct ovs_action_push_vlan *vlan;
2441 		int type = nla_type(a);
2442 		bool skip_copy;
2443 
2444 		if (type > OVS_ACTION_ATTR_MAX ||
2445 		    (action_lens[type] != nla_len(a) &&
2446 		     action_lens[type] != (u32)-1))
2447 			return -EINVAL;
2448 
2449 		skip_copy = false;
2450 		switch (type) {
2451 		case OVS_ACTION_ATTR_UNSPEC:
2452 			return -EINVAL;
2453 
2454 		case OVS_ACTION_ATTR_USERSPACE:
2455 			err = validate_userspace(a);
2456 			if (err)
2457 				return err;
2458 			break;
2459 
2460 		case OVS_ACTION_ATTR_OUTPUT:
2461 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2462 				return -EINVAL;
2463 			break;
2464 
2465 		case OVS_ACTION_ATTR_TRUNC: {
2466 			const struct ovs_action_trunc *trunc = nla_data(a);
2467 
2468 			if (trunc->max_len < ETH_HLEN)
2469 				return -EINVAL;
2470 			break;
2471 		}
2472 
2473 		case OVS_ACTION_ATTR_HASH: {
2474 			const struct ovs_action_hash *act_hash = nla_data(a);
2475 
2476 			switch (act_hash->hash_alg) {
2477 			case OVS_HASH_ALG_L4:
2478 				break;
2479 			default:
2480 				return  -EINVAL;
2481 			}
2482 
2483 			break;
2484 		}
2485 
2486 		case OVS_ACTION_ATTR_POP_VLAN:
2487 			if (mac_proto != MAC_PROTO_ETHERNET)
2488 				return -EINVAL;
2489 			vlan_tci = htons(0);
2490 			break;
2491 
2492 		case OVS_ACTION_ATTR_PUSH_VLAN:
2493 			if (mac_proto != MAC_PROTO_ETHERNET)
2494 				return -EINVAL;
2495 			vlan = nla_data(a);
2496 			if (!eth_type_vlan(vlan->vlan_tpid))
2497 				return -EINVAL;
2498 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2499 				return -EINVAL;
2500 			vlan_tci = vlan->vlan_tci;
2501 			break;
2502 
2503 		case OVS_ACTION_ATTR_RECIRC:
2504 			break;
2505 
2506 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2507 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2508 
2509 			if (!eth_p_mpls(mpls->mpls_ethertype))
2510 				return -EINVAL;
2511 			/* Prohibit push MPLS other than to a white list
2512 			 * for packets that have a known tag order.
2513 			 */
2514 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2515 			    (eth_type != htons(ETH_P_IP) &&
2516 			     eth_type != htons(ETH_P_IPV6) &&
2517 			     eth_type != htons(ETH_P_ARP) &&
2518 			     eth_type != htons(ETH_P_RARP) &&
2519 			     !eth_p_mpls(eth_type)))
2520 				return -EINVAL;
2521 			eth_type = mpls->mpls_ethertype;
2522 			break;
2523 		}
2524 
2525 		case OVS_ACTION_ATTR_POP_MPLS:
2526 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2527 			    !eth_p_mpls(eth_type))
2528 				return -EINVAL;
2529 
2530 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2531 			 * as there is no check here to ensure that the new
2532 			 * eth_type is valid and thus set actions could
2533 			 * write off the end of the packet or otherwise
2534 			 * corrupt it.
2535 			 *
2536 			 * Support for these actions is planned using packet
2537 			 * recirculation.
2538 			 */
2539 			eth_type = htons(0);
2540 			break;
2541 
2542 		case OVS_ACTION_ATTR_SET:
2543 			err = validate_set(a, key, sfa,
2544 					   &skip_copy, mac_proto, eth_type,
2545 					   false, log);
2546 			if (err)
2547 				return err;
2548 			break;
2549 
2550 		case OVS_ACTION_ATTR_SET_MASKED:
2551 			err = validate_set(a, key, sfa,
2552 					   &skip_copy, mac_proto, eth_type,
2553 					   true, log);
2554 			if (err)
2555 				return err;
2556 			break;
2557 
2558 		case OVS_ACTION_ATTR_SAMPLE:
2559 			err = validate_and_copy_sample(net, a, key, depth, sfa,
2560 						       eth_type, vlan_tci, log);
2561 			if (err)
2562 				return err;
2563 			skip_copy = true;
2564 			break;
2565 
2566 		case OVS_ACTION_ATTR_CT:
2567 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2568 			if (err)
2569 				return err;
2570 			skip_copy = true;
2571 			break;
2572 
2573 		case OVS_ACTION_ATTR_PUSH_ETH:
2574 			/* Disallow pushing an Ethernet header if one
2575 			 * is already present */
2576 			if (mac_proto != MAC_PROTO_NONE)
2577 				return -EINVAL;
2578 			mac_proto = MAC_PROTO_NONE;
2579 			break;
2580 
2581 		case OVS_ACTION_ATTR_POP_ETH:
2582 			if (mac_proto != MAC_PROTO_ETHERNET)
2583 				return -EINVAL;
2584 			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2585 				return -EINVAL;
2586 			mac_proto = MAC_PROTO_ETHERNET;
2587 			break;
2588 
2589 		default:
2590 			OVS_NLERR(log, "Unknown Action type %d", type);
2591 			return -EINVAL;
2592 		}
2593 		if (!skip_copy) {
2594 			err = copy_action(a, sfa, log);
2595 			if (err)
2596 				return err;
2597 		}
2598 	}
2599 
2600 	if (rem > 0)
2601 		return -EINVAL;
2602 
2603 	return 0;
2604 }
2605 
2606 /* 'key' must be the masked key. */
2607 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2608 			 const struct sw_flow_key *key,
2609 			 struct sw_flow_actions **sfa, bool log)
2610 {
2611 	int err;
2612 
2613 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2614 	if (IS_ERR(*sfa))
2615 		return PTR_ERR(*sfa);
2616 
2617 	(*sfa)->orig_len = nla_len(attr);
2618 	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2619 				     key->eth.vlan.tci, log);
2620 	if (err)
2621 		ovs_nla_free_flow_actions(*sfa);
2622 
2623 	return err;
2624 }
2625 
2626 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2627 {
2628 	const struct nlattr *a;
2629 	struct nlattr *start;
2630 	int err = 0, rem;
2631 
2632 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2633 	if (!start)
2634 		return -EMSGSIZE;
2635 
2636 	nla_for_each_nested(a, attr, rem) {
2637 		int type = nla_type(a);
2638 		struct nlattr *st_sample;
2639 
2640 		switch (type) {
2641 		case OVS_SAMPLE_ATTR_PROBABILITY:
2642 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2643 				    sizeof(u32), nla_data(a)))
2644 				return -EMSGSIZE;
2645 			break;
2646 		case OVS_SAMPLE_ATTR_ACTIONS:
2647 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2648 			if (!st_sample)
2649 				return -EMSGSIZE;
2650 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2651 			if (err)
2652 				return err;
2653 			nla_nest_end(skb, st_sample);
2654 			break;
2655 		}
2656 	}
2657 
2658 	nla_nest_end(skb, start);
2659 	return err;
2660 }
2661 
2662 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2663 {
2664 	const struct nlattr *ovs_key = nla_data(a);
2665 	int key_type = nla_type(ovs_key);
2666 	struct nlattr *start;
2667 	int err;
2668 
2669 	switch (key_type) {
2670 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2671 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2672 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2673 
2674 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2675 		if (!start)
2676 			return -EMSGSIZE;
2677 
2678 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2679 					ip_tunnel_info_opts(tun_info),
2680 					tun_info->options_len,
2681 					ip_tunnel_info_af(tun_info));
2682 		if (err)
2683 			return err;
2684 		nla_nest_end(skb, start);
2685 		break;
2686 	}
2687 	default:
2688 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2689 			return -EMSGSIZE;
2690 		break;
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2697 						struct sk_buff *skb)
2698 {
2699 	const struct nlattr *ovs_key = nla_data(a);
2700 	struct nlattr *nla;
2701 	size_t key_len = nla_len(ovs_key) / 2;
2702 
2703 	/* Revert the conversion we did from a non-masked set action to
2704 	 * masked set action.
2705 	 */
2706 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2707 	if (!nla)
2708 		return -EMSGSIZE;
2709 
2710 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2711 		return -EMSGSIZE;
2712 
2713 	nla_nest_end(skb, nla);
2714 	return 0;
2715 }
2716 
2717 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2718 {
2719 	const struct nlattr *a;
2720 	int rem, err;
2721 
2722 	nla_for_each_attr(a, attr, len, rem) {
2723 		int type = nla_type(a);
2724 
2725 		switch (type) {
2726 		case OVS_ACTION_ATTR_SET:
2727 			err = set_action_to_attr(a, skb);
2728 			if (err)
2729 				return err;
2730 			break;
2731 
2732 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2733 			err = masked_set_action_to_set_action_attr(a, skb);
2734 			if (err)
2735 				return err;
2736 			break;
2737 
2738 		case OVS_ACTION_ATTR_SAMPLE:
2739 			err = sample_action_to_attr(a, skb);
2740 			if (err)
2741 				return err;
2742 			break;
2743 
2744 		case OVS_ACTION_ATTR_CT:
2745 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2746 			if (err)
2747 				return err;
2748 			break;
2749 
2750 		default:
2751 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2752 				return -EMSGSIZE;
2753 			break;
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759