1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 52 #include "flow_netlink.h" 53 54 struct ovs_len_tbl { 55 int len; 56 const struct ovs_len_tbl *next; 57 }; 58 59 #define OVS_ATTR_NESTED -1 60 #define OVS_ATTR_VARIABLE -2 61 62 static void update_range(struct sw_flow_match *match, 63 size_t offset, size_t size, bool is_mask) 64 { 65 struct sw_flow_key_range *range; 66 size_t start = rounddown(offset, sizeof(long)); 67 size_t end = roundup(offset + size, sizeof(long)); 68 69 if (!is_mask) 70 range = &match->range; 71 else 72 range = &match->mask->range; 73 74 if (range->start == range->end) { 75 range->start = start; 76 range->end = end; 77 return; 78 } 79 80 if (range->start > start) 81 range->start = start; 82 83 if (range->end < end) 84 range->end = end; 85 } 86 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 88 do { \ 89 update_range(match, offsetof(struct sw_flow_key, field), \ 90 sizeof((match)->key->field), is_mask); \ 91 if (is_mask) \ 92 (match)->mask->key.field = value; \ 93 else \ 94 (match)->key->field = value; \ 95 } while (0) 96 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 98 do { \ 99 update_range(match, offset, len, is_mask); \ 100 if (is_mask) \ 101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 102 len); \ 103 else \ 104 memcpy((u8 *)(match)->key + offset, value_p, len); \ 105 } while (0) 106 107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 109 value_p, len, is_mask) 110 111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 112 do { \ 113 update_range(match, offsetof(struct sw_flow_key, field), \ 114 sizeof((match)->key->field), is_mask); \ 115 if (is_mask) \ 116 memset((u8 *)&(match)->mask->key.field, value, \ 117 sizeof((match)->mask->key.field)); \ 118 else \ 119 memset((u8 *)&(match)->key->field, value, \ 120 sizeof((match)->key->field)); \ 121 } while (0) 122 123 static bool match_validate(const struct sw_flow_match *match, 124 u64 key_attrs, u64 mask_attrs, bool log) 125 { 126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; 127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 128 129 /* The following mask attributes allowed only if they 130 * pass the validation tests. */ 131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 132 | (1 << OVS_KEY_ATTR_IPV6) 133 | (1 << OVS_KEY_ATTR_TCP) 134 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 135 | (1 << OVS_KEY_ATTR_UDP) 136 | (1 << OVS_KEY_ATTR_SCTP) 137 | (1 << OVS_KEY_ATTR_ICMP) 138 | (1 << OVS_KEY_ATTR_ICMPV6) 139 | (1 << OVS_KEY_ATTR_ARP) 140 | (1 << OVS_KEY_ATTR_ND) 141 | (1 << OVS_KEY_ATTR_MPLS)); 142 143 /* Always allowed mask fields. */ 144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 145 | (1 << OVS_KEY_ATTR_IN_PORT) 146 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 147 148 /* Check key attributes. */ 149 if (match->key->eth.type == htons(ETH_P_ARP) 150 || match->key->eth.type == htons(ETH_P_RARP)) { 151 key_expected |= 1 << OVS_KEY_ATTR_ARP; 152 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 154 } 155 156 if (eth_p_mpls(match->key->eth.type)) { 157 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 158 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 160 } 161 162 if (match->key->eth.type == htons(ETH_P_IP)) { 163 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 164 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 166 167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 168 if (match->key->ip.proto == IPPROTO_UDP) { 169 key_expected |= 1 << OVS_KEY_ATTR_UDP; 170 if (match->mask && (match->mask->key.ip.proto == 0xff)) 171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 172 } 173 174 if (match->key->ip.proto == IPPROTO_SCTP) { 175 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 176 if (match->mask && (match->mask->key.ip.proto == 0xff)) 177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 178 } 179 180 if (match->key->ip.proto == IPPROTO_TCP) { 181 key_expected |= 1 << OVS_KEY_ATTR_TCP; 182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 183 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 186 } 187 } 188 189 if (match->key->ip.proto == IPPROTO_ICMP) { 190 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 191 if (match->mask && (match->mask->key.ip.proto == 0xff)) 192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 193 } 194 } 195 } 196 197 if (match->key->eth.type == htons(ETH_P_IPV6)) { 198 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 199 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 201 202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 203 if (match->key->ip.proto == IPPROTO_UDP) { 204 key_expected |= 1 << OVS_KEY_ATTR_UDP; 205 if (match->mask && (match->mask->key.ip.proto == 0xff)) 206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 207 } 208 209 if (match->key->ip.proto == IPPROTO_SCTP) { 210 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 211 if (match->mask && (match->mask->key.ip.proto == 0xff)) 212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 213 } 214 215 if (match->key->ip.proto == IPPROTO_TCP) { 216 key_expected |= 1 << OVS_KEY_ATTR_TCP; 217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 218 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 221 } 222 } 223 224 if (match->key->ip.proto == IPPROTO_ICMPV6) { 225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 226 if (match->mask && (match->mask->key.ip.proto == 0xff)) 227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 228 229 if (match->key->tp.src == 230 htons(NDISC_NEIGHBOUR_SOLICITATION) || 231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 232 key_expected |= 1 << OVS_KEY_ATTR_ND; 233 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 234 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 235 } 236 } 237 } 238 } 239 240 if ((key_attrs & key_expected) != key_expected) { 241 /* Key attributes check failed. */ 242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 243 (unsigned long long)key_attrs, 244 (unsigned long long)key_expected); 245 return false; 246 } 247 248 if ((mask_attrs & mask_allowed) != mask_attrs) { 249 /* Mask attributes check failed. */ 250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 251 (unsigned long long)mask_attrs, 252 (unsigned long long)mask_allowed); 253 return false; 254 } 255 256 return true; 257 } 258 259 size_t ovs_tun_key_attr_size(void) 260 { 261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 262 * updating this function. 263 */ 264 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 275 */ 276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 278 } 279 280 size_t ovs_key_attr_size(void) 281 { 282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 283 * updating this function. 284 */ 285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26); 286 287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 289 + ovs_tun_key_attr_size() 290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 306 } 307 308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 310 }; 311 312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 325 .next = ovs_vxlan_ext_key_lens }, 326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 328 }; 329 330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 352 .next = ovs_tunnel_key_lens, }, 353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 358 }; 359 360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 361 { 362 return expected_len == attr_len || 363 expected_len == OVS_ATTR_NESTED || 364 expected_len == OVS_ATTR_VARIABLE; 365 } 366 367 static bool is_all_zero(const u8 *fp, size_t size) 368 { 369 int i; 370 371 if (!fp) 372 return false; 373 374 for (i = 0; i < size; i++) 375 if (fp[i]) 376 return false; 377 378 return true; 379 } 380 381 static int __parse_flow_nlattrs(const struct nlattr *attr, 382 const struct nlattr *a[], 383 u64 *attrsp, bool log, bool nz) 384 { 385 const struct nlattr *nla; 386 u64 attrs; 387 int rem; 388 389 attrs = *attrsp; 390 nla_for_each_nested(nla, attr, rem) { 391 u16 type = nla_type(nla); 392 int expected_len; 393 394 if (type > OVS_KEY_ATTR_MAX) { 395 OVS_NLERR(log, "Key type %d is out of range max %d", 396 type, OVS_KEY_ATTR_MAX); 397 return -EINVAL; 398 } 399 400 if (attrs & (1 << type)) { 401 OVS_NLERR(log, "Duplicate key (type %d).", type); 402 return -EINVAL; 403 } 404 405 expected_len = ovs_key_lens[type].len; 406 if (!check_attr_len(nla_len(nla), expected_len)) { 407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 408 type, nla_len(nla), expected_len); 409 return -EINVAL; 410 } 411 412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 413 attrs |= 1 << type; 414 a[type] = nla; 415 } 416 } 417 if (rem) { 418 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 419 return -EINVAL; 420 } 421 422 *attrsp = attrs; 423 return 0; 424 } 425 426 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 427 const struct nlattr *a[], u64 *attrsp, 428 bool log) 429 { 430 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 431 } 432 433 static int parse_flow_nlattrs(const struct nlattr *attr, 434 const struct nlattr *a[], u64 *attrsp, 435 bool log) 436 { 437 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 438 } 439 440 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 441 struct sw_flow_match *match, bool is_mask, 442 bool log) 443 { 444 unsigned long opt_key_offset; 445 446 if (nla_len(a) > sizeof(match->key->tun_opts)) { 447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 448 nla_len(a), sizeof(match->key->tun_opts)); 449 return -EINVAL; 450 } 451 452 if (nla_len(a) % 4 != 0) { 453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 454 nla_len(a)); 455 return -EINVAL; 456 } 457 458 /* We need to record the length of the options passed 459 * down, otherwise packets with the same format but 460 * additional options will be silently matched. 461 */ 462 if (!is_mask) { 463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 464 false); 465 } else { 466 /* This is somewhat unusual because it looks at 467 * both the key and mask while parsing the 468 * attributes (and by extension assumes the key 469 * is parsed first). Normally, we would verify 470 * that each is the correct length and that the 471 * attributes line up in the validate function. 472 * However, that is difficult because this is 473 * variable length and we won't have the 474 * information later. 475 */ 476 if (match->key->tun_opts_len != nla_len(a)) { 477 OVS_NLERR(log, "Geneve option len %d != mask len %d", 478 match->key->tun_opts_len, nla_len(a)); 479 return -EINVAL; 480 } 481 482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 483 } 484 485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 487 nla_len(a), is_mask); 488 return 0; 489 } 490 491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 492 struct sw_flow_match *match, bool is_mask, 493 bool log) 494 { 495 struct nlattr *a; 496 int rem; 497 unsigned long opt_key_offset; 498 struct vxlan_metadata opts; 499 500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 501 502 memset(&opts, 0, sizeof(opts)); 503 nla_for_each_nested(a, attr, rem) { 504 int type = nla_type(a); 505 506 if (type > OVS_VXLAN_EXT_MAX) { 507 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 508 type, OVS_VXLAN_EXT_MAX); 509 return -EINVAL; 510 } 511 512 if (!check_attr_len(nla_len(a), 513 ovs_vxlan_ext_key_lens[type].len)) { 514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 515 type, nla_len(a), 516 ovs_vxlan_ext_key_lens[type].len); 517 return -EINVAL; 518 } 519 520 switch (type) { 521 case OVS_VXLAN_EXT_GBP: 522 opts.gbp = nla_get_u32(a); 523 break; 524 default: 525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 526 type); 527 return -EINVAL; 528 } 529 } 530 if (rem) { 531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 532 rem); 533 return -EINVAL; 534 } 535 536 if (!is_mask) 537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 538 else 539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 540 541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 543 is_mask); 544 return 0; 545 } 546 547 static int ip_tun_from_nlattr(const struct nlattr *attr, 548 struct sw_flow_match *match, bool is_mask, 549 bool log) 550 { 551 bool ttl = false, ipv4 = false, ipv6 = false; 552 __be16 tun_flags = 0; 553 int opts_type = 0; 554 struct nlattr *a; 555 int rem; 556 557 nla_for_each_nested(a, attr, rem) { 558 int type = nla_type(a); 559 int err; 560 561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 562 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 563 type, OVS_TUNNEL_KEY_ATTR_MAX); 564 return -EINVAL; 565 } 566 567 if (!check_attr_len(nla_len(a), 568 ovs_tunnel_key_lens[type].len)) { 569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 570 type, nla_len(a), ovs_tunnel_key_lens[type].len); 571 return -EINVAL; 572 } 573 574 switch (type) { 575 case OVS_TUNNEL_KEY_ATTR_ID: 576 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 577 nla_get_be64(a), is_mask); 578 tun_flags |= TUNNEL_KEY; 579 break; 580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 582 nla_get_in_addr(a), is_mask); 583 ipv4 = true; 584 break; 585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 587 nla_get_in_addr(a), is_mask); 588 ipv4 = true; 589 break; 590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 592 nla_get_in6_addr(a), is_mask); 593 ipv6 = true; 594 break; 595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 597 nla_get_in6_addr(a), is_mask); 598 ipv6 = true; 599 break; 600 case OVS_TUNNEL_KEY_ATTR_TOS: 601 SW_FLOW_KEY_PUT(match, tun_key.tos, 602 nla_get_u8(a), is_mask); 603 break; 604 case OVS_TUNNEL_KEY_ATTR_TTL: 605 SW_FLOW_KEY_PUT(match, tun_key.ttl, 606 nla_get_u8(a), is_mask); 607 ttl = true; 608 break; 609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 610 tun_flags |= TUNNEL_DONT_FRAGMENT; 611 break; 612 case OVS_TUNNEL_KEY_ATTR_CSUM: 613 tun_flags |= TUNNEL_CSUM; 614 break; 615 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 616 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 617 nla_get_be16(a), is_mask); 618 break; 619 case OVS_TUNNEL_KEY_ATTR_TP_DST: 620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 621 nla_get_be16(a), is_mask); 622 break; 623 case OVS_TUNNEL_KEY_ATTR_OAM: 624 tun_flags |= TUNNEL_OAM; 625 break; 626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 627 if (opts_type) { 628 OVS_NLERR(log, "Multiple metadata blocks provided"); 629 return -EINVAL; 630 } 631 632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 633 if (err) 634 return err; 635 636 tun_flags |= TUNNEL_GENEVE_OPT; 637 opts_type = type; 638 break; 639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 640 if (opts_type) { 641 OVS_NLERR(log, "Multiple metadata blocks provided"); 642 return -EINVAL; 643 } 644 645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 646 if (err) 647 return err; 648 649 tun_flags |= TUNNEL_VXLAN_OPT; 650 opts_type = type; 651 break; 652 default: 653 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 654 type); 655 return -EINVAL; 656 } 657 } 658 659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 660 if (is_mask) 661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 662 else 663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 664 false); 665 666 if (rem > 0) { 667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 668 rem); 669 return -EINVAL; 670 } 671 672 if (ipv4 && ipv6) { 673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 674 return -EINVAL; 675 } 676 677 if (!is_mask) { 678 if (!ipv4 && !ipv6) { 679 OVS_NLERR(log, "IP tunnel dst address not specified"); 680 return -EINVAL; 681 } 682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 683 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 684 return -EINVAL; 685 } 686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 687 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 688 return -EINVAL; 689 } 690 691 if (!ttl) { 692 OVS_NLERR(log, "IP tunnel TTL not specified."); 693 return -EINVAL; 694 } 695 } 696 697 return opts_type; 698 } 699 700 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 701 const void *tun_opts, int swkey_tun_opts_len) 702 { 703 const struct vxlan_metadata *opts = tun_opts; 704 struct nlattr *nla; 705 706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 707 if (!nla) 708 return -EMSGSIZE; 709 710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 711 return -EMSGSIZE; 712 713 nla_nest_end(skb, nla); 714 return 0; 715 } 716 717 static int __ip_tun_to_nlattr(struct sk_buff *skb, 718 const struct ip_tunnel_key *output, 719 const void *tun_opts, int swkey_tun_opts_len, 720 unsigned short tun_proto) 721 { 722 if (output->tun_flags & TUNNEL_KEY && 723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) 724 return -EMSGSIZE; 725 switch (tun_proto) { 726 case AF_INET: 727 if (output->u.ipv4.src && 728 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 729 output->u.ipv4.src)) 730 return -EMSGSIZE; 731 if (output->u.ipv4.dst && 732 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 733 output->u.ipv4.dst)) 734 return -EMSGSIZE; 735 break; 736 case AF_INET6: 737 if (!ipv6_addr_any(&output->u.ipv6.src) && 738 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 739 &output->u.ipv6.src)) 740 return -EMSGSIZE; 741 if (!ipv6_addr_any(&output->u.ipv6.dst) && 742 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 743 &output->u.ipv6.dst)) 744 return -EMSGSIZE; 745 break; 746 } 747 if (output->tos && 748 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 749 return -EMSGSIZE; 750 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 751 return -EMSGSIZE; 752 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 753 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 754 return -EMSGSIZE; 755 if ((output->tun_flags & TUNNEL_CSUM) && 756 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 757 return -EMSGSIZE; 758 if (output->tp_src && 759 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 760 return -EMSGSIZE; 761 if (output->tp_dst && 762 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 763 return -EMSGSIZE; 764 if ((output->tun_flags & TUNNEL_OAM) && 765 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 766 return -EMSGSIZE; 767 if (swkey_tun_opts_len) { 768 if (output->tun_flags & TUNNEL_GENEVE_OPT && 769 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 770 swkey_tun_opts_len, tun_opts)) 771 return -EMSGSIZE; 772 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 773 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 774 return -EMSGSIZE; 775 } 776 777 return 0; 778 } 779 780 static int ip_tun_to_nlattr(struct sk_buff *skb, 781 const struct ip_tunnel_key *output, 782 const void *tun_opts, int swkey_tun_opts_len, 783 unsigned short tun_proto) 784 { 785 struct nlattr *nla; 786 int err; 787 788 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 789 if (!nla) 790 return -EMSGSIZE; 791 792 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 793 tun_proto); 794 if (err) 795 return err; 796 797 nla_nest_end(skb, nla); 798 return 0; 799 } 800 801 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 802 struct ip_tunnel_info *tun_info) 803 { 804 return __ip_tun_to_nlattr(skb, &tun_info->key, 805 ip_tunnel_info_opts(tun_info), 806 tun_info->options_len, 807 ip_tunnel_info_af(tun_info)); 808 } 809 810 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 811 u64 *attrs, const struct nlattr **a, 812 bool is_mask, bool log) 813 { 814 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 815 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 816 817 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 818 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 819 } 820 821 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 822 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 823 824 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 825 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 826 } 827 828 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 829 SW_FLOW_KEY_PUT(match, phy.priority, 830 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 831 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 832 } 833 834 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 835 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 836 837 if (is_mask) { 838 in_port = 0xffffffff; /* Always exact match in_port. */ 839 } else if (in_port >= DP_MAX_PORTS) { 840 OVS_NLERR(log, "Port %d exceeds max allowable %d", 841 in_port, DP_MAX_PORTS); 842 return -EINVAL; 843 } 844 845 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 846 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 847 } else if (!is_mask) { 848 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 849 } 850 851 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 852 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 853 854 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 855 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 856 } 857 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 858 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 859 is_mask, log) < 0) 860 return -EINVAL; 861 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 862 } 863 864 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 865 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 866 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 867 868 if (ct_state & ~CT_SUPPORTED_MASK) { 869 OVS_NLERR(log, "ct_state flags %08x unsupported", 870 ct_state); 871 return -EINVAL; 872 } 873 874 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask); 875 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 876 } 877 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 878 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 879 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 880 881 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask); 882 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 883 } 884 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 885 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 886 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 887 888 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 889 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 890 } 891 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 892 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 893 const struct ovs_key_ct_labels *cl; 894 895 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 896 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 897 sizeof(*cl), is_mask); 898 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 899 } 900 return 0; 901 } 902 903 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 904 u64 attrs, const struct nlattr **a, 905 bool is_mask, bool log) 906 { 907 int err; 908 909 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 910 if (err) 911 return err; 912 913 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 914 const struct ovs_key_ethernet *eth_key; 915 916 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 917 SW_FLOW_KEY_MEMCPY(match, eth.src, 918 eth_key->eth_src, ETH_ALEN, is_mask); 919 SW_FLOW_KEY_MEMCPY(match, eth.dst, 920 eth_key->eth_dst, ETH_ALEN, is_mask); 921 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 922 } 923 924 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 925 __be16 tci; 926 927 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 928 if (!(tci & htons(VLAN_TAG_PRESENT))) { 929 if (is_mask) 930 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit."); 931 else 932 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set."); 933 934 return -EINVAL; 935 } 936 937 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); 938 attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 939 } 940 941 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 942 __be16 eth_type; 943 944 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 945 if (is_mask) { 946 /* Always exact match EtherType. */ 947 eth_type = htons(0xffff); 948 } else if (!eth_proto_is_802_3(eth_type)) { 949 OVS_NLERR(log, "EtherType %x is less than min %x", 950 ntohs(eth_type), ETH_P_802_3_MIN); 951 return -EINVAL; 952 } 953 954 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 955 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 956 } else if (!is_mask) { 957 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 958 } 959 960 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 961 const struct ovs_key_ipv4 *ipv4_key; 962 963 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 964 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 965 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 966 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 967 return -EINVAL; 968 } 969 SW_FLOW_KEY_PUT(match, ip.proto, 970 ipv4_key->ipv4_proto, is_mask); 971 SW_FLOW_KEY_PUT(match, ip.tos, 972 ipv4_key->ipv4_tos, is_mask); 973 SW_FLOW_KEY_PUT(match, ip.ttl, 974 ipv4_key->ipv4_ttl, is_mask); 975 SW_FLOW_KEY_PUT(match, ip.frag, 976 ipv4_key->ipv4_frag, is_mask); 977 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 978 ipv4_key->ipv4_src, is_mask); 979 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 980 ipv4_key->ipv4_dst, is_mask); 981 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 982 } 983 984 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 985 const struct ovs_key_ipv6 *ipv6_key; 986 987 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 988 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 989 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 990 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 991 return -EINVAL; 992 } 993 994 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 995 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n", 996 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 997 return -EINVAL; 998 } 999 1000 SW_FLOW_KEY_PUT(match, ipv6.label, 1001 ipv6_key->ipv6_label, is_mask); 1002 SW_FLOW_KEY_PUT(match, ip.proto, 1003 ipv6_key->ipv6_proto, is_mask); 1004 SW_FLOW_KEY_PUT(match, ip.tos, 1005 ipv6_key->ipv6_tclass, is_mask); 1006 SW_FLOW_KEY_PUT(match, ip.ttl, 1007 ipv6_key->ipv6_hlimit, is_mask); 1008 SW_FLOW_KEY_PUT(match, ip.frag, 1009 ipv6_key->ipv6_frag, is_mask); 1010 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1011 ipv6_key->ipv6_src, 1012 sizeof(match->key->ipv6.addr.src), 1013 is_mask); 1014 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1015 ipv6_key->ipv6_dst, 1016 sizeof(match->key->ipv6.addr.dst), 1017 is_mask); 1018 1019 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1020 } 1021 1022 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1023 const struct ovs_key_arp *arp_key; 1024 1025 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1026 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1027 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1028 arp_key->arp_op); 1029 return -EINVAL; 1030 } 1031 1032 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1033 arp_key->arp_sip, is_mask); 1034 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1035 arp_key->arp_tip, is_mask); 1036 SW_FLOW_KEY_PUT(match, ip.proto, 1037 ntohs(arp_key->arp_op), is_mask); 1038 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1039 arp_key->arp_sha, ETH_ALEN, is_mask); 1040 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1041 arp_key->arp_tha, ETH_ALEN, is_mask); 1042 1043 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1044 } 1045 1046 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1047 const struct ovs_key_mpls *mpls_key; 1048 1049 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1050 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1051 mpls_key->mpls_lse, is_mask); 1052 1053 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1054 } 1055 1056 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1057 const struct ovs_key_tcp *tcp_key; 1058 1059 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1060 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1061 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1062 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1063 } 1064 1065 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1066 SW_FLOW_KEY_PUT(match, tp.flags, 1067 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1068 is_mask); 1069 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1070 } 1071 1072 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1073 const struct ovs_key_udp *udp_key; 1074 1075 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1076 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1077 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1078 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1079 } 1080 1081 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1082 const struct ovs_key_sctp *sctp_key; 1083 1084 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1085 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1086 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1087 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1088 } 1089 1090 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1091 const struct ovs_key_icmp *icmp_key; 1092 1093 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1094 SW_FLOW_KEY_PUT(match, tp.src, 1095 htons(icmp_key->icmp_type), is_mask); 1096 SW_FLOW_KEY_PUT(match, tp.dst, 1097 htons(icmp_key->icmp_code), is_mask); 1098 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1099 } 1100 1101 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1102 const struct ovs_key_icmpv6 *icmpv6_key; 1103 1104 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1105 SW_FLOW_KEY_PUT(match, tp.src, 1106 htons(icmpv6_key->icmpv6_type), is_mask); 1107 SW_FLOW_KEY_PUT(match, tp.dst, 1108 htons(icmpv6_key->icmpv6_code), is_mask); 1109 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1110 } 1111 1112 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1113 const struct ovs_key_nd *nd_key; 1114 1115 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1116 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1117 nd_key->nd_target, 1118 sizeof(match->key->ipv6.nd.target), 1119 is_mask); 1120 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1121 nd_key->nd_sll, ETH_ALEN, is_mask); 1122 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1123 nd_key->nd_tll, ETH_ALEN, is_mask); 1124 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1125 } 1126 1127 if (attrs != 0) { 1128 OVS_NLERR(log, "Unknown key attributes %llx", 1129 (unsigned long long)attrs); 1130 return -EINVAL; 1131 } 1132 1133 return 0; 1134 } 1135 1136 static void nlattr_set(struct nlattr *attr, u8 val, 1137 const struct ovs_len_tbl *tbl) 1138 { 1139 struct nlattr *nla; 1140 int rem; 1141 1142 /* The nlattr stream should already have been validated */ 1143 nla_for_each_nested(nla, attr, rem) { 1144 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1145 if (tbl[nla_type(nla)].next) 1146 tbl = tbl[nla_type(nla)].next; 1147 nlattr_set(nla, val, tbl); 1148 } else { 1149 memset(nla_data(nla), val, nla_len(nla)); 1150 } 1151 1152 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1153 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1154 } 1155 } 1156 1157 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1158 { 1159 nlattr_set(attr, val, ovs_key_lens); 1160 } 1161 1162 /** 1163 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1164 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1165 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1166 * does not include any don't care bit. 1167 * @net: Used to determine per-namespace field support. 1168 * @match: receives the extracted flow match information. 1169 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1170 * sequence. The fields should of the packet that triggered the creation 1171 * of this flow. 1172 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1173 * attribute specifies the mask field of the wildcarded flow. 1174 * @log: Boolean to allow kernel error logging. Normally true, but when 1175 * probing for feature compatibility this should be passed in as false to 1176 * suppress unnecessary error logging. 1177 */ 1178 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1179 const struct nlattr *nla_key, 1180 const struct nlattr *nla_mask, 1181 bool log) 1182 { 1183 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1184 const struct nlattr *encap; 1185 struct nlattr *newmask = NULL; 1186 u64 key_attrs = 0; 1187 u64 mask_attrs = 0; 1188 bool encap_valid = false; 1189 int err; 1190 1191 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1192 if (err) 1193 return err; 1194 1195 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 1196 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 1197 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { 1198 __be16 tci; 1199 1200 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 1201 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 1202 OVS_NLERR(log, "Invalid Vlan frame."); 1203 return -EINVAL; 1204 } 1205 1206 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1207 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1208 encap = a[OVS_KEY_ATTR_ENCAP]; 1209 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1210 encap_valid = true; 1211 1212 if (tci & htons(VLAN_TAG_PRESENT)) { 1213 err = parse_flow_nlattrs(encap, a, &key_attrs, log); 1214 if (err) 1215 return err; 1216 } else if (!tci) { 1217 /* Corner case for truncated 802.1Q header. */ 1218 if (nla_len(encap)) { 1219 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute."); 1220 return -EINVAL; 1221 } 1222 } else { 1223 OVS_NLERR(log, "Encap attr is set for non-VLAN frame"); 1224 return -EINVAL; 1225 } 1226 } 1227 1228 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1229 if (err) 1230 return err; 1231 1232 if (match->mask) { 1233 if (!nla_mask) { 1234 /* Create an exact match mask. We need to set to 0xff 1235 * all the 'match->mask' fields that have been touched 1236 * in 'match->key'. We cannot simply memset 1237 * 'match->mask', because padding bytes and fields not 1238 * specified in 'match->key' should be left to 0. 1239 * Instead, we use a stream of netlink attributes, 1240 * copied from 'key' and set to 0xff. 1241 * ovs_key_from_nlattrs() will take care of filling 1242 * 'match->mask' appropriately. 1243 */ 1244 newmask = kmemdup(nla_key, 1245 nla_total_size(nla_len(nla_key)), 1246 GFP_KERNEL); 1247 if (!newmask) 1248 return -ENOMEM; 1249 1250 mask_set_nlattr(newmask, 0xff); 1251 1252 /* The userspace does not send tunnel attributes that 1253 * are 0, but we should not wildcard them nonetheless. 1254 */ 1255 if (match->key->tun_proto) 1256 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1257 0xff, true); 1258 1259 nla_mask = newmask; 1260 } 1261 1262 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1263 if (err) 1264 goto free_newmask; 1265 1266 /* Always match on tci. */ 1267 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); 1268 1269 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { 1270 __be16 eth_type = 0; 1271 __be16 tci = 0; 1272 1273 if (!encap_valid) { 1274 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame."); 1275 err = -EINVAL; 1276 goto free_newmask; 1277 } 1278 1279 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1280 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1281 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1282 1283 if (eth_type == htons(0xffff)) { 1284 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1285 encap = a[OVS_KEY_ATTR_ENCAP]; 1286 err = parse_flow_mask_nlattrs(encap, a, 1287 &mask_attrs, log); 1288 if (err) 1289 goto free_newmask; 1290 } else { 1291 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).", 1292 ntohs(eth_type)); 1293 err = -EINVAL; 1294 goto free_newmask; 1295 } 1296 1297 if (a[OVS_KEY_ATTR_VLAN]) 1298 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1299 1300 if (!(tci & htons(VLAN_TAG_PRESENT))) { 1301 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).", 1302 ntohs(tci)); 1303 err = -EINVAL; 1304 goto free_newmask; 1305 } 1306 } 1307 1308 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1309 log); 1310 if (err) 1311 goto free_newmask; 1312 } 1313 1314 if (!match_validate(match, key_attrs, mask_attrs, log)) 1315 err = -EINVAL; 1316 1317 free_newmask: 1318 kfree(newmask); 1319 return err; 1320 } 1321 1322 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1323 { 1324 size_t len; 1325 1326 if (!attr) 1327 return 0; 1328 1329 len = nla_len(attr); 1330 if (len < 1 || len > MAX_UFID_LENGTH) { 1331 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1332 nla_len(attr), MAX_UFID_LENGTH); 1333 return 0; 1334 } 1335 1336 return len; 1337 } 1338 1339 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1340 * or false otherwise. 1341 */ 1342 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1343 bool log) 1344 { 1345 sfid->ufid_len = get_ufid_len(attr, log); 1346 if (sfid->ufid_len) 1347 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1348 1349 return sfid->ufid_len; 1350 } 1351 1352 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1353 const struct sw_flow_key *key, bool log) 1354 { 1355 struct sw_flow_key *new_key; 1356 1357 if (ovs_nla_get_ufid(sfid, ufid, log)) 1358 return 0; 1359 1360 /* If UFID was not provided, use unmasked key. */ 1361 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1362 if (!new_key) 1363 return -ENOMEM; 1364 memcpy(new_key, key, sizeof(*key)); 1365 sfid->unmasked_key = new_key; 1366 1367 return 0; 1368 } 1369 1370 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1371 { 1372 return attr ? nla_get_u32(attr) : 0; 1373 } 1374 1375 /** 1376 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1377 * @key: Receives extracted in_port, priority, tun_key and skb_mark. 1378 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1379 * sequence. 1380 * @log: Boolean to allow kernel error logging. Normally true, but when 1381 * probing for feature compatibility this should be passed in as false to 1382 * suppress unnecessary error logging. 1383 * 1384 * This parses a series of Netlink attributes that form a flow key, which must 1385 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1386 * get the metadata, that is, the parts of the flow key that cannot be 1387 * extracted from the packet itself. 1388 */ 1389 1390 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr, 1391 struct sw_flow_key *key, 1392 bool log) 1393 { 1394 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1395 struct sw_flow_match match; 1396 u64 attrs = 0; 1397 int err; 1398 1399 err = parse_flow_nlattrs(attr, a, &attrs, log); 1400 if (err) 1401 return -EINVAL; 1402 1403 memset(&match, 0, sizeof(match)); 1404 match.key = key; 1405 1406 memset(&key->ct, 0, sizeof(key->ct)); 1407 key->phy.in_port = DP_MAX_PORTS; 1408 1409 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1410 } 1411 1412 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1413 const struct sw_flow_key *output, bool is_mask, 1414 struct sk_buff *skb) 1415 { 1416 struct ovs_key_ethernet *eth_key; 1417 struct nlattr *nla, *encap; 1418 1419 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1420 goto nla_put_failure; 1421 1422 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1423 goto nla_put_failure; 1424 1425 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1426 goto nla_put_failure; 1427 1428 if ((swkey->tun_proto || is_mask)) { 1429 const void *opts = NULL; 1430 1431 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1432 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1433 1434 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1435 swkey->tun_opts_len, swkey->tun_proto)) 1436 goto nla_put_failure; 1437 } 1438 1439 if (swkey->phy.in_port == DP_MAX_PORTS) { 1440 if (is_mask && (output->phy.in_port == 0xffff)) 1441 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1442 goto nla_put_failure; 1443 } else { 1444 u16 upper_u16; 1445 upper_u16 = !is_mask ? 0 : 0xffff; 1446 1447 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1448 (upper_u16 << 16) | output->phy.in_port)) 1449 goto nla_put_failure; 1450 } 1451 1452 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 1453 goto nla_put_failure; 1454 1455 if (ovs_ct_put_key(output, skb)) 1456 goto nla_put_failure; 1457 1458 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1459 if (!nla) 1460 goto nla_put_failure; 1461 1462 eth_key = nla_data(nla); 1463 ether_addr_copy(eth_key->eth_src, output->eth.src); 1464 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 1465 1466 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1467 __be16 eth_type; 1468 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); 1469 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1470 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) 1471 goto nla_put_failure; 1472 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1473 if (!swkey->eth.tci) 1474 goto unencap; 1475 } else 1476 encap = NULL; 1477 1478 if (swkey->eth.type == htons(ETH_P_802_2)) { 1479 /* 1480 * Ethertype 802.2 is represented in the netlink with omitted 1481 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 1482 * 0xffff in the mask attribute. Ethertype can also 1483 * be wildcarded. 1484 */ 1485 if (is_mask && output->eth.type) 1486 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 1487 output->eth.type)) 1488 goto nla_put_failure; 1489 goto unencap; 1490 } 1491 1492 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 1493 goto nla_put_failure; 1494 1495 if (swkey->eth.type == htons(ETH_P_IP)) { 1496 struct ovs_key_ipv4 *ipv4_key; 1497 1498 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1499 if (!nla) 1500 goto nla_put_failure; 1501 ipv4_key = nla_data(nla); 1502 ipv4_key->ipv4_src = output->ipv4.addr.src; 1503 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 1504 ipv4_key->ipv4_proto = output->ip.proto; 1505 ipv4_key->ipv4_tos = output->ip.tos; 1506 ipv4_key->ipv4_ttl = output->ip.ttl; 1507 ipv4_key->ipv4_frag = output->ip.frag; 1508 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1509 struct ovs_key_ipv6 *ipv6_key; 1510 1511 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1512 if (!nla) 1513 goto nla_put_failure; 1514 ipv6_key = nla_data(nla); 1515 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 1516 sizeof(ipv6_key->ipv6_src)); 1517 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 1518 sizeof(ipv6_key->ipv6_dst)); 1519 ipv6_key->ipv6_label = output->ipv6.label; 1520 ipv6_key->ipv6_proto = output->ip.proto; 1521 ipv6_key->ipv6_tclass = output->ip.tos; 1522 ipv6_key->ipv6_hlimit = output->ip.ttl; 1523 ipv6_key->ipv6_frag = output->ip.frag; 1524 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1525 swkey->eth.type == htons(ETH_P_RARP)) { 1526 struct ovs_key_arp *arp_key; 1527 1528 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1529 if (!nla) 1530 goto nla_put_failure; 1531 arp_key = nla_data(nla); 1532 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1533 arp_key->arp_sip = output->ipv4.addr.src; 1534 arp_key->arp_tip = output->ipv4.addr.dst; 1535 arp_key->arp_op = htons(output->ip.proto); 1536 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 1537 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 1538 } else if (eth_p_mpls(swkey->eth.type)) { 1539 struct ovs_key_mpls *mpls_key; 1540 1541 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 1542 if (!nla) 1543 goto nla_put_failure; 1544 mpls_key = nla_data(nla); 1545 mpls_key->mpls_lse = output->mpls.top_lse; 1546 } 1547 1548 if ((swkey->eth.type == htons(ETH_P_IP) || 1549 swkey->eth.type == htons(ETH_P_IPV6)) && 1550 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1551 1552 if (swkey->ip.proto == IPPROTO_TCP) { 1553 struct ovs_key_tcp *tcp_key; 1554 1555 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1556 if (!nla) 1557 goto nla_put_failure; 1558 tcp_key = nla_data(nla); 1559 tcp_key->tcp_src = output->tp.src; 1560 tcp_key->tcp_dst = output->tp.dst; 1561 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 1562 output->tp.flags)) 1563 goto nla_put_failure; 1564 } else if (swkey->ip.proto == IPPROTO_UDP) { 1565 struct ovs_key_udp *udp_key; 1566 1567 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1568 if (!nla) 1569 goto nla_put_failure; 1570 udp_key = nla_data(nla); 1571 udp_key->udp_src = output->tp.src; 1572 udp_key->udp_dst = output->tp.dst; 1573 } else if (swkey->ip.proto == IPPROTO_SCTP) { 1574 struct ovs_key_sctp *sctp_key; 1575 1576 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 1577 if (!nla) 1578 goto nla_put_failure; 1579 sctp_key = nla_data(nla); 1580 sctp_key->sctp_src = output->tp.src; 1581 sctp_key->sctp_dst = output->tp.dst; 1582 } else if (swkey->eth.type == htons(ETH_P_IP) && 1583 swkey->ip.proto == IPPROTO_ICMP) { 1584 struct ovs_key_icmp *icmp_key; 1585 1586 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1587 if (!nla) 1588 goto nla_put_failure; 1589 icmp_key = nla_data(nla); 1590 icmp_key->icmp_type = ntohs(output->tp.src); 1591 icmp_key->icmp_code = ntohs(output->tp.dst); 1592 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1593 swkey->ip.proto == IPPROTO_ICMPV6) { 1594 struct ovs_key_icmpv6 *icmpv6_key; 1595 1596 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1597 sizeof(*icmpv6_key)); 1598 if (!nla) 1599 goto nla_put_failure; 1600 icmpv6_key = nla_data(nla); 1601 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 1602 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 1603 1604 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1605 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1606 struct ovs_key_nd *nd_key; 1607 1608 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1609 if (!nla) 1610 goto nla_put_failure; 1611 nd_key = nla_data(nla); 1612 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 1613 sizeof(nd_key->nd_target)); 1614 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 1615 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 1616 } 1617 } 1618 } 1619 1620 unencap: 1621 if (encap) 1622 nla_nest_end(skb, encap); 1623 1624 return 0; 1625 1626 nla_put_failure: 1627 return -EMSGSIZE; 1628 } 1629 1630 int ovs_nla_put_key(const struct sw_flow_key *swkey, 1631 const struct sw_flow_key *output, int attr, bool is_mask, 1632 struct sk_buff *skb) 1633 { 1634 int err; 1635 struct nlattr *nla; 1636 1637 nla = nla_nest_start(skb, attr); 1638 if (!nla) 1639 return -EMSGSIZE; 1640 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 1641 if (err) 1642 return err; 1643 nla_nest_end(skb, nla); 1644 1645 return 0; 1646 } 1647 1648 /* Called with ovs_mutex or RCU read lock. */ 1649 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 1650 { 1651 if (ovs_identifier_is_ufid(&flow->id)) 1652 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 1653 flow->id.ufid); 1654 1655 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 1656 OVS_FLOW_ATTR_KEY, false, skb); 1657 } 1658 1659 /* Called with ovs_mutex or RCU read lock. */ 1660 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 1661 { 1662 return ovs_nla_put_key(&flow->key, &flow->key, 1663 OVS_FLOW_ATTR_KEY, false, skb); 1664 } 1665 1666 /* Called with ovs_mutex or RCU read lock. */ 1667 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 1668 { 1669 return ovs_nla_put_key(&flow->key, &flow->mask->key, 1670 OVS_FLOW_ATTR_MASK, true, skb); 1671 } 1672 1673 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 1674 1675 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 1676 { 1677 struct sw_flow_actions *sfa; 1678 1679 if (size > MAX_ACTIONS_BUFSIZE) { 1680 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 1681 return ERR_PTR(-EINVAL); 1682 } 1683 1684 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 1685 if (!sfa) 1686 return ERR_PTR(-ENOMEM); 1687 1688 sfa->actions_len = 0; 1689 return sfa; 1690 } 1691 1692 static void ovs_nla_free_set_action(const struct nlattr *a) 1693 { 1694 const struct nlattr *ovs_key = nla_data(a); 1695 struct ovs_tunnel_info *ovs_tun; 1696 1697 switch (nla_type(ovs_key)) { 1698 case OVS_KEY_ATTR_TUNNEL_INFO: 1699 ovs_tun = nla_data(ovs_key); 1700 dst_release((struct dst_entry *)ovs_tun->tun_dst); 1701 break; 1702 } 1703 } 1704 1705 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 1706 { 1707 const struct nlattr *a; 1708 int rem; 1709 1710 if (!sf_acts) 1711 return; 1712 1713 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 1714 switch (nla_type(a)) { 1715 case OVS_ACTION_ATTR_SET: 1716 ovs_nla_free_set_action(a); 1717 break; 1718 case OVS_ACTION_ATTR_CT: 1719 ovs_ct_free_action(a); 1720 break; 1721 } 1722 } 1723 1724 kfree(sf_acts); 1725 } 1726 1727 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 1728 { 1729 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 1730 } 1731 1732 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 1733 * The caller must hold rcu_read_lock for this to be sensible. */ 1734 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 1735 { 1736 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 1737 } 1738 1739 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 1740 int attr_len, bool log) 1741 { 1742 1743 struct sw_flow_actions *acts; 1744 int new_acts_size; 1745 int req_size = NLA_ALIGN(attr_len); 1746 int next_offset = offsetof(struct sw_flow_actions, actions) + 1747 (*sfa)->actions_len; 1748 1749 if (req_size <= (ksize(*sfa) - next_offset)) 1750 goto out; 1751 1752 new_acts_size = ksize(*sfa) * 2; 1753 1754 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 1755 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 1756 return ERR_PTR(-EMSGSIZE); 1757 new_acts_size = MAX_ACTIONS_BUFSIZE; 1758 } 1759 1760 acts = nla_alloc_flow_actions(new_acts_size, log); 1761 if (IS_ERR(acts)) 1762 return (void *)acts; 1763 1764 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 1765 acts->actions_len = (*sfa)->actions_len; 1766 acts->orig_len = (*sfa)->orig_len; 1767 kfree(*sfa); 1768 *sfa = acts; 1769 1770 out: 1771 (*sfa)->actions_len += req_size; 1772 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 1773 } 1774 1775 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 1776 int attrtype, void *data, int len, bool log) 1777 { 1778 struct nlattr *a; 1779 1780 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 1781 if (IS_ERR(a)) 1782 return a; 1783 1784 a->nla_type = attrtype; 1785 a->nla_len = nla_attr_size(len); 1786 1787 if (data) 1788 memcpy(nla_data(a), data, len); 1789 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 1790 1791 return a; 1792 } 1793 1794 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 1795 int len, bool log) 1796 { 1797 struct nlattr *a; 1798 1799 a = __add_action(sfa, attrtype, data, len, log); 1800 1801 return PTR_ERR_OR_ZERO(a); 1802 } 1803 1804 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 1805 int attrtype, bool log) 1806 { 1807 int used = (*sfa)->actions_len; 1808 int err; 1809 1810 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 1811 if (err) 1812 return err; 1813 1814 return used; 1815 } 1816 1817 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 1818 int st_offset) 1819 { 1820 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 1821 st_offset); 1822 1823 a->nla_len = sfa->actions_len - st_offset; 1824 } 1825 1826 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 1827 const struct sw_flow_key *key, 1828 int depth, struct sw_flow_actions **sfa, 1829 __be16 eth_type, __be16 vlan_tci, bool log); 1830 1831 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 1832 const struct sw_flow_key *key, int depth, 1833 struct sw_flow_actions **sfa, 1834 __be16 eth_type, __be16 vlan_tci, bool log) 1835 { 1836 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 1837 const struct nlattr *probability, *actions; 1838 const struct nlattr *a; 1839 int rem, start, err, st_acts; 1840 1841 memset(attrs, 0, sizeof(attrs)); 1842 nla_for_each_nested(a, attr, rem) { 1843 int type = nla_type(a); 1844 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 1845 return -EINVAL; 1846 attrs[type] = a; 1847 } 1848 if (rem) 1849 return -EINVAL; 1850 1851 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 1852 if (!probability || nla_len(probability) != sizeof(u32)) 1853 return -EINVAL; 1854 1855 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 1856 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 1857 return -EINVAL; 1858 1859 /* validation done, copy sample action. */ 1860 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 1861 if (start < 0) 1862 return start; 1863 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, 1864 nla_data(probability), sizeof(u32), log); 1865 if (err) 1866 return err; 1867 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log); 1868 if (st_acts < 0) 1869 return st_acts; 1870 1871 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa, 1872 eth_type, vlan_tci, log); 1873 if (err) 1874 return err; 1875 1876 add_nested_action_end(*sfa, st_acts); 1877 add_nested_action_end(*sfa, start); 1878 1879 return 0; 1880 } 1881 1882 void ovs_match_init(struct sw_flow_match *match, 1883 struct sw_flow_key *key, 1884 struct sw_flow_mask *mask) 1885 { 1886 memset(match, 0, sizeof(*match)); 1887 match->key = key; 1888 match->mask = mask; 1889 1890 memset(key, 0, sizeof(*key)); 1891 1892 if (mask) { 1893 memset(&mask->key, 0, sizeof(mask->key)); 1894 mask->range.start = mask->range.end = 0; 1895 } 1896 } 1897 1898 static int validate_geneve_opts(struct sw_flow_key *key) 1899 { 1900 struct geneve_opt *option; 1901 int opts_len = key->tun_opts_len; 1902 bool crit_opt = false; 1903 1904 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 1905 while (opts_len > 0) { 1906 int len; 1907 1908 if (opts_len < sizeof(*option)) 1909 return -EINVAL; 1910 1911 len = sizeof(*option) + option->length * 4; 1912 if (len > opts_len) 1913 return -EINVAL; 1914 1915 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 1916 1917 option = (struct geneve_opt *)((u8 *)option + len); 1918 opts_len -= len; 1919 }; 1920 1921 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 1922 1923 return 0; 1924 } 1925 1926 static int validate_and_copy_set_tun(const struct nlattr *attr, 1927 struct sw_flow_actions **sfa, bool log) 1928 { 1929 struct sw_flow_match match; 1930 struct sw_flow_key key; 1931 struct metadata_dst *tun_dst; 1932 struct ip_tunnel_info *tun_info; 1933 struct ovs_tunnel_info *ovs_tun; 1934 struct nlattr *a; 1935 int err = 0, start, opts_type; 1936 1937 ovs_match_init(&match, &key, NULL); 1938 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 1939 if (opts_type < 0) 1940 return opts_type; 1941 1942 if (key.tun_opts_len) { 1943 switch (opts_type) { 1944 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 1945 err = validate_geneve_opts(&key); 1946 if (err < 0) 1947 return err; 1948 break; 1949 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 1950 break; 1951 } 1952 }; 1953 1954 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 1955 if (start < 0) 1956 return start; 1957 1958 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL); 1959 if (!tun_dst) 1960 return -ENOMEM; 1961 1962 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 1963 sizeof(*ovs_tun), log); 1964 if (IS_ERR(a)) { 1965 dst_release((struct dst_entry *)tun_dst); 1966 return PTR_ERR(a); 1967 } 1968 1969 ovs_tun = nla_data(a); 1970 ovs_tun->tun_dst = tun_dst; 1971 1972 tun_info = &tun_dst->u.tun_info; 1973 tun_info->mode = IP_TUNNEL_INFO_TX; 1974 if (key.tun_proto == AF_INET6) 1975 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 1976 tun_info->key = key.tun_key; 1977 1978 /* We need to store the options in the action itself since 1979 * everything else will go away after flow setup. We can append 1980 * it to tun_info and then point there. 1981 */ 1982 ip_tunnel_info_opts_set(tun_info, 1983 TUN_METADATA_OPTS(&key, key.tun_opts_len), 1984 key.tun_opts_len); 1985 add_nested_action_end(*sfa, start); 1986 1987 return err; 1988 } 1989 1990 /* Return false if there are any non-masked bits set. 1991 * Mask follows data immediately, before any netlink padding. 1992 */ 1993 static bool validate_masked(u8 *data, int len) 1994 { 1995 u8 *mask = data + len; 1996 1997 while (len--) 1998 if (*data++ & ~*mask++) 1999 return false; 2000 2001 return true; 2002 } 2003 2004 static int validate_set(const struct nlattr *a, 2005 const struct sw_flow_key *flow_key, 2006 struct sw_flow_actions **sfa, 2007 bool *skip_copy, __be16 eth_type, bool masked, bool log) 2008 { 2009 const struct nlattr *ovs_key = nla_data(a); 2010 int key_type = nla_type(ovs_key); 2011 size_t key_len; 2012 2013 /* There can be only one key in a action */ 2014 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2015 return -EINVAL; 2016 2017 key_len = nla_len(ovs_key); 2018 if (masked) 2019 key_len /= 2; 2020 2021 if (key_type > OVS_KEY_ATTR_MAX || 2022 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2023 return -EINVAL; 2024 2025 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2026 return -EINVAL; 2027 2028 switch (key_type) { 2029 const struct ovs_key_ipv4 *ipv4_key; 2030 const struct ovs_key_ipv6 *ipv6_key; 2031 int err; 2032 2033 case OVS_KEY_ATTR_PRIORITY: 2034 case OVS_KEY_ATTR_SKB_MARK: 2035 case OVS_KEY_ATTR_CT_MARK: 2036 case OVS_KEY_ATTR_CT_LABELS: 2037 case OVS_KEY_ATTR_ETHERNET: 2038 break; 2039 2040 case OVS_KEY_ATTR_TUNNEL: 2041 if (eth_p_mpls(eth_type)) 2042 return -EINVAL; 2043 2044 if (masked) 2045 return -EINVAL; /* Masked tunnel set not supported. */ 2046 2047 *skip_copy = true; 2048 err = validate_and_copy_set_tun(a, sfa, log); 2049 if (err) 2050 return err; 2051 break; 2052 2053 case OVS_KEY_ATTR_IPV4: 2054 if (eth_type != htons(ETH_P_IP)) 2055 return -EINVAL; 2056 2057 ipv4_key = nla_data(ovs_key); 2058 2059 if (masked) { 2060 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2061 2062 /* Non-writeable fields. */ 2063 if (mask->ipv4_proto || mask->ipv4_frag) 2064 return -EINVAL; 2065 } else { 2066 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2067 return -EINVAL; 2068 2069 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2070 return -EINVAL; 2071 } 2072 break; 2073 2074 case OVS_KEY_ATTR_IPV6: 2075 if (eth_type != htons(ETH_P_IPV6)) 2076 return -EINVAL; 2077 2078 ipv6_key = nla_data(ovs_key); 2079 2080 if (masked) { 2081 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2082 2083 /* Non-writeable fields. */ 2084 if (mask->ipv6_proto || mask->ipv6_frag) 2085 return -EINVAL; 2086 2087 /* Invalid bits in the flow label mask? */ 2088 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2089 return -EINVAL; 2090 } else { 2091 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2092 return -EINVAL; 2093 2094 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2095 return -EINVAL; 2096 } 2097 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2098 return -EINVAL; 2099 2100 break; 2101 2102 case OVS_KEY_ATTR_TCP: 2103 if ((eth_type != htons(ETH_P_IP) && 2104 eth_type != htons(ETH_P_IPV6)) || 2105 flow_key->ip.proto != IPPROTO_TCP) 2106 return -EINVAL; 2107 2108 break; 2109 2110 case OVS_KEY_ATTR_UDP: 2111 if ((eth_type != htons(ETH_P_IP) && 2112 eth_type != htons(ETH_P_IPV6)) || 2113 flow_key->ip.proto != IPPROTO_UDP) 2114 return -EINVAL; 2115 2116 break; 2117 2118 case OVS_KEY_ATTR_MPLS: 2119 if (!eth_p_mpls(eth_type)) 2120 return -EINVAL; 2121 break; 2122 2123 case OVS_KEY_ATTR_SCTP: 2124 if ((eth_type != htons(ETH_P_IP) && 2125 eth_type != htons(ETH_P_IPV6)) || 2126 flow_key->ip.proto != IPPROTO_SCTP) 2127 return -EINVAL; 2128 2129 break; 2130 2131 default: 2132 return -EINVAL; 2133 } 2134 2135 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2136 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2137 int start, len = key_len * 2; 2138 struct nlattr *at; 2139 2140 *skip_copy = true; 2141 2142 start = add_nested_action_start(sfa, 2143 OVS_ACTION_ATTR_SET_TO_MASKED, 2144 log); 2145 if (start < 0) 2146 return start; 2147 2148 at = __add_action(sfa, key_type, NULL, len, log); 2149 if (IS_ERR(at)) 2150 return PTR_ERR(at); 2151 2152 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2153 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2154 /* Clear non-writeable bits from otherwise writeable fields. */ 2155 if (key_type == OVS_KEY_ATTR_IPV6) { 2156 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2157 2158 mask->ipv6_label &= htonl(0x000FFFFF); 2159 } 2160 add_nested_action_end(*sfa, start); 2161 } 2162 2163 return 0; 2164 } 2165 2166 static int validate_userspace(const struct nlattr *attr) 2167 { 2168 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2169 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2170 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2171 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2172 }; 2173 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2174 int error; 2175 2176 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, 2177 attr, userspace_policy); 2178 if (error) 2179 return error; 2180 2181 if (!a[OVS_USERSPACE_ATTR_PID] || 2182 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2183 return -EINVAL; 2184 2185 return 0; 2186 } 2187 2188 static int copy_action(const struct nlattr *from, 2189 struct sw_flow_actions **sfa, bool log) 2190 { 2191 int totlen = NLA_ALIGN(from->nla_len); 2192 struct nlattr *to; 2193 2194 to = reserve_sfa_size(sfa, from->nla_len, log); 2195 if (IS_ERR(to)) 2196 return PTR_ERR(to); 2197 2198 memcpy(to, from, totlen); 2199 return 0; 2200 } 2201 2202 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2203 const struct sw_flow_key *key, 2204 int depth, struct sw_flow_actions **sfa, 2205 __be16 eth_type, __be16 vlan_tci, bool log) 2206 { 2207 const struct nlattr *a; 2208 int rem, err; 2209 2210 if (depth >= SAMPLE_ACTION_DEPTH) 2211 return -EOVERFLOW; 2212 2213 nla_for_each_nested(a, attr, rem) { 2214 /* Expected argument lengths, (u32)-1 for variable length. */ 2215 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2216 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2217 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2218 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2219 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2220 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2221 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2222 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2223 [OVS_ACTION_ATTR_SET] = (u32)-1, 2224 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2225 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2226 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2227 [OVS_ACTION_ATTR_CT] = (u32)-1, 2228 }; 2229 const struct ovs_action_push_vlan *vlan; 2230 int type = nla_type(a); 2231 bool skip_copy; 2232 2233 if (type > OVS_ACTION_ATTR_MAX || 2234 (action_lens[type] != nla_len(a) && 2235 action_lens[type] != (u32)-1)) 2236 return -EINVAL; 2237 2238 skip_copy = false; 2239 switch (type) { 2240 case OVS_ACTION_ATTR_UNSPEC: 2241 return -EINVAL; 2242 2243 case OVS_ACTION_ATTR_USERSPACE: 2244 err = validate_userspace(a); 2245 if (err) 2246 return err; 2247 break; 2248 2249 case OVS_ACTION_ATTR_OUTPUT: 2250 if (nla_get_u32(a) >= DP_MAX_PORTS) 2251 return -EINVAL; 2252 break; 2253 2254 case OVS_ACTION_ATTR_HASH: { 2255 const struct ovs_action_hash *act_hash = nla_data(a); 2256 2257 switch (act_hash->hash_alg) { 2258 case OVS_HASH_ALG_L4: 2259 break; 2260 default: 2261 return -EINVAL; 2262 } 2263 2264 break; 2265 } 2266 2267 case OVS_ACTION_ATTR_POP_VLAN: 2268 vlan_tci = htons(0); 2269 break; 2270 2271 case OVS_ACTION_ATTR_PUSH_VLAN: 2272 vlan = nla_data(a); 2273 if (vlan->vlan_tpid != htons(ETH_P_8021Q)) 2274 return -EINVAL; 2275 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2276 return -EINVAL; 2277 vlan_tci = vlan->vlan_tci; 2278 break; 2279 2280 case OVS_ACTION_ATTR_RECIRC: 2281 break; 2282 2283 case OVS_ACTION_ATTR_PUSH_MPLS: { 2284 const struct ovs_action_push_mpls *mpls = nla_data(a); 2285 2286 if (!eth_p_mpls(mpls->mpls_ethertype)) 2287 return -EINVAL; 2288 /* Prohibit push MPLS other than to a white list 2289 * for packets that have a known tag order. 2290 */ 2291 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2292 (eth_type != htons(ETH_P_IP) && 2293 eth_type != htons(ETH_P_IPV6) && 2294 eth_type != htons(ETH_P_ARP) && 2295 eth_type != htons(ETH_P_RARP) && 2296 !eth_p_mpls(eth_type))) 2297 return -EINVAL; 2298 eth_type = mpls->mpls_ethertype; 2299 break; 2300 } 2301 2302 case OVS_ACTION_ATTR_POP_MPLS: 2303 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2304 !eth_p_mpls(eth_type)) 2305 return -EINVAL; 2306 2307 /* Disallow subsequent L2.5+ set and mpls_pop actions 2308 * as there is no check here to ensure that the new 2309 * eth_type is valid and thus set actions could 2310 * write off the end of the packet or otherwise 2311 * corrupt it. 2312 * 2313 * Support for these actions is planned using packet 2314 * recirculation. 2315 */ 2316 eth_type = htons(0); 2317 break; 2318 2319 case OVS_ACTION_ATTR_SET: 2320 err = validate_set(a, key, sfa, 2321 &skip_copy, eth_type, false, log); 2322 if (err) 2323 return err; 2324 break; 2325 2326 case OVS_ACTION_ATTR_SET_MASKED: 2327 err = validate_set(a, key, sfa, 2328 &skip_copy, eth_type, true, log); 2329 if (err) 2330 return err; 2331 break; 2332 2333 case OVS_ACTION_ATTR_SAMPLE: 2334 err = validate_and_copy_sample(net, a, key, depth, sfa, 2335 eth_type, vlan_tci, log); 2336 if (err) 2337 return err; 2338 skip_copy = true; 2339 break; 2340 2341 case OVS_ACTION_ATTR_CT: 2342 err = ovs_ct_copy_action(net, a, key, sfa, log); 2343 if (err) 2344 return err; 2345 skip_copy = true; 2346 break; 2347 2348 default: 2349 OVS_NLERR(log, "Unknown Action type %d", type); 2350 return -EINVAL; 2351 } 2352 if (!skip_copy) { 2353 err = copy_action(a, sfa, log); 2354 if (err) 2355 return err; 2356 } 2357 } 2358 2359 if (rem > 0) 2360 return -EINVAL; 2361 2362 return 0; 2363 } 2364 2365 /* 'key' must be the masked key. */ 2366 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2367 const struct sw_flow_key *key, 2368 struct sw_flow_actions **sfa, bool log) 2369 { 2370 int err; 2371 2372 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 2373 if (IS_ERR(*sfa)) 2374 return PTR_ERR(*sfa); 2375 2376 (*sfa)->orig_len = nla_len(attr); 2377 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, 2378 key->eth.tci, log); 2379 if (err) 2380 ovs_nla_free_flow_actions(*sfa); 2381 2382 return err; 2383 } 2384 2385 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) 2386 { 2387 const struct nlattr *a; 2388 struct nlattr *start; 2389 int err = 0, rem; 2390 2391 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 2392 if (!start) 2393 return -EMSGSIZE; 2394 2395 nla_for_each_nested(a, attr, rem) { 2396 int type = nla_type(a); 2397 struct nlattr *st_sample; 2398 2399 switch (type) { 2400 case OVS_SAMPLE_ATTR_PROBABILITY: 2401 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, 2402 sizeof(u32), nla_data(a))) 2403 return -EMSGSIZE; 2404 break; 2405 case OVS_SAMPLE_ATTR_ACTIONS: 2406 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 2407 if (!st_sample) 2408 return -EMSGSIZE; 2409 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 2410 if (err) 2411 return err; 2412 nla_nest_end(skb, st_sample); 2413 break; 2414 } 2415 } 2416 2417 nla_nest_end(skb, start); 2418 return err; 2419 } 2420 2421 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 2422 { 2423 const struct nlattr *ovs_key = nla_data(a); 2424 int key_type = nla_type(ovs_key); 2425 struct nlattr *start; 2426 int err; 2427 2428 switch (key_type) { 2429 case OVS_KEY_ATTR_TUNNEL_INFO: { 2430 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 2431 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 2432 2433 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2434 if (!start) 2435 return -EMSGSIZE; 2436 2437 err = ip_tun_to_nlattr(skb, &tun_info->key, 2438 ip_tunnel_info_opts(tun_info), 2439 tun_info->options_len, 2440 ip_tunnel_info_af(tun_info)); 2441 if (err) 2442 return err; 2443 nla_nest_end(skb, start); 2444 break; 2445 } 2446 default: 2447 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 2448 return -EMSGSIZE; 2449 break; 2450 } 2451 2452 return 0; 2453 } 2454 2455 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 2456 struct sk_buff *skb) 2457 { 2458 const struct nlattr *ovs_key = nla_data(a); 2459 struct nlattr *nla; 2460 size_t key_len = nla_len(ovs_key) / 2; 2461 2462 /* Revert the conversion we did from a non-masked set action to 2463 * masked set action. 2464 */ 2465 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2466 if (!nla) 2467 return -EMSGSIZE; 2468 2469 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 2470 return -EMSGSIZE; 2471 2472 nla_nest_end(skb, nla); 2473 return 0; 2474 } 2475 2476 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 2477 { 2478 const struct nlattr *a; 2479 int rem, err; 2480 2481 nla_for_each_attr(a, attr, len, rem) { 2482 int type = nla_type(a); 2483 2484 switch (type) { 2485 case OVS_ACTION_ATTR_SET: 2486 err = set_action_to_attr(a, skb); 2487 if (err) 2488 return err; 2489 break; 2490 2491 case OVS_ACTION_ATTR_SET_TO_MASKED: 2492 err = masked_set_action_to_set_action_attr(a, skb); 2493 if (err) 2494 return err; 2495 break; 2496 2497 case OVS_ACTION_ATTR_SAMPLE: 2498 err = sample_action_to_attr(a, skb); 2499 if (err) 2500 return err; 2501 break; 2502 2503 case OVS_ACTION_ATTR_CT: 2504 err = ovs_ct_action_to_attr(nla_data(a), skb); 2505 if (err) 2506 return err; 2507 break; 2508 2509 default: 2510 if (nla_put(skb, type, nla_len(a), nla_data(a))) 2511 return -EMSGSIZE; 2512 break; 2513 } 2514 } 2515 2516 return 0; 2517 } 2518