1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
62 static void update_range(struct sw_flow_match *match,
63 			 size_t offset, size_t size, bool is_mask)
64 {
65 	struct sw_flow_key_range *range;
66 	size_t start = rounddown(offset, sizeof(long));
67 	size_t end = roundup(offset + size, sizeof(long));
68 
69 	if (!is_mask)
70 		range = &match->range;
71 	else
72 		range = &match->mask->range;
73 
74 	if (range->start == range->end) {
75 		range->start = start;
76 		range->end = end;
77 		return;
78 	}
79 
80 	if (range->start > start)
81 		range->start = start;
82 
83 	if (range->end < end)
84 		range->end = end;
85 }
86 
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 	do { \
89 		update_range(match, offsetof(struct sw_flow_key, field),    \
90 			     sizeof((match)->key->field), is_mask);	    \
91 		if (is_mask)						    \
92 			(match)->mask->key.field = value;		    \
93 		else							    \
94 			(match)->key->field = value;		            \
95 	} while (0)
96 
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
98 	do {								    \
99 		update_range(match, offset, len, is_mask);		    \
100 		if (is_mask)						    \
101 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 			       len);					   \
103 		else							    \
104 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
105 	} while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
108 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 				  value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
112 	do {								    \
113 		update_range(match, offsetof(struct sw_flow_key, field),    \
114 			     sizeof((match)->key->field), is_mask);	    \
115 		if (is_mask)						    \
116 			memset((u8 *)&(match)->mask->key.field, value,      \
117 			       sizeof((match)->mask->key.field));	    \
118 		else							    \
119 			memset((u8 *)&(match)->key->field, value,           \
120 			       sizeof((match)->key->field));                \
121 	} while (0)
122 
123 static bool match_validate(const struct sw_flow_match *match,
124 			   u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129 	/* The following mask attributes allowed only if they
130 	 * pass the validation tests. */
131 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 			| (1 << OVS_KEY_ATTR_IPV6)
133 			| (1 << OVS_KEY_ATTR_TCP)
134 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 			| (1 << OVS_KEY_ATTR_UDP)
136 			| (1 << OVS_KEY_ATTR_SCTP)
137 			| (1 << OVS_KEY_ATTR_ICMP)
138 			| (1 << OVS_KEY_ATTR_ICMPV6)
139 			| (1 << OVS_KEY_ATTR_ARP)
140 			| (1 << OVS_KEY_ATTR_ND)
141 			| (1 << OVS_KEY_ATTR_MPLS));
142 
143 	/* Always allowed mask fields. */
144 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 		       | (1 << OVS_KEY_ATTR_IN_PORT)
146 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
147 
148 	/* Check key attributes. */
149 	if (match->key->eth.type == htons(ETH_P_ARP)
150 			|| match->key->eth.type == htons(ETH_P_RARP)) {
151 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 	}
155 
156 	if (eth_p_mpls(match->key->eth.type)) {
157 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 	}
161 
162 	if (match->key->eth.type == htons(ETH_P_IP)) {
163 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166 
167 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 			if (match->key->ip.proto == IPPROTO_UDP) {
169 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 				if (match->mask && (match->mask->key.ip.proto == 0xff))
171 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 			}
173 
174 			if (match->key->ip.proto == IPPROTO_SCTP) {
175 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 				if (match->mask && (match->mask->key.ip.proto == 0xff))
177 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 			}
179 
180 			if (match->key->ip.proto == IPPROTO_TCP) {
181 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 				}
187 			}
188 
189 			if (match->key->ip.proto == IPPROTO_ICMP) {
190 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 				if (match->mask && (match->mask->key.ip.proto == 0xff))
192 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 			}
194 		}
195 	}
196 
197 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201 
202 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 			if (match->key->ip.proto == IPPROTO_UDP) {
204 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 				if (match->mask && (match->mask->key.ip.proto == 0xff))
206 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 			}
208 
209 			if (match->key->ip.proto == IPPROTO_SCTP) {
210 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 				if (match->mask && (match->mask->key.ip.proto == 0xff))
212 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 			}
214 
215 			if (match->key->ip.proto == IPPROTO_TCP) {
216 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 				}
222 			}
223 
224 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 				if (match->mask && (match->mask->key.ip.proto == 0xff))
227 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228 
229 				if (match->key->tp.src ==
230 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 					key_expected |= 1 << OVS_KEY_ATTR_ND;
233 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 				}
236 			}
237 		}
238 	}
239 
240 	if ((key_attrs & key_expected) != key_expected) {
241 		/* Key attributes check failed. */
242 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 			  (unsigned long long)key_attrs,
244 			  (unsigned long long)key_expected);
245 		return false;
246 	}
247 
248 	if ((mask_attrs & mask_allowed) != mask_attrs) {
249 		/* Mask attributes check failed. */
250 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 			  (unsigned long long)mask_attrs,
252 			  (unsigned long long)mask_allowed);
253 		return false;
254 	}
255 
256 	return true;
257 }
258 
259 size_t ovs_tun_key_attr_size(void)
260 {
261 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 	 * updating this function.
263 	 */
264 	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
265 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 		 */
276 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279 
280 size_t ovs_key_attr_size(void)
281 {
282 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 	 * updating this function.
284 	 */
285 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286 
287 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289 		  + ovs_tun_key_attr_size()
290 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
295 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
296 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
297 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
298 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307 
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
310 };
311 
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
314 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
315 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
316 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
317 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
318 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
320 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
321 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
322 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
323 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325 						.next = ovs_vxlan_ext_key_lens },
326 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
327 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
328 };
329 
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
333 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
334 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
335 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
336 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
337 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
338 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
340 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
341 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
342 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
344 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
345 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
346 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
347 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
348 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
349 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
351 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
352 				     .next = ovs_tunnel_key_lens, },
353 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
354 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
355 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
356 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
357 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358 };
359 
360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361 {
362 	return expected_len == attr_len ||
363 	       expected_len == OVS_ATTR_NESTED ||
364 	       expected_len == OVS_ATTR_VARIABLE;
365 }
366 
367 static bool is_all_zero(const u8 *fp, size_t size)
368 {
369 	int i;
370 
371 	if (!fp)
372 		return false;
373 
374 	for (i = 0; i < size; i++)
375 		if (fp[i])
376 			return false;
377 
378 	return true;
379 }
380 
381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382 				const struct nlattr *a[],
383 				u64 *attrsp, bool log, bool nz)
384 {
385 	const struct nlattr *nla;
386 	u64 attrs;
387 	int rem;
388 
389 	attrs = *attrsp;
390 	nla_for_each_nested(nla, attr, rem) {
391 		u16 type = nla_type(nla);
392 		int expected_len;
393 
394 		if (type > OVS_KEY_ATTR_MAX) {
395 			OVS_NLERR(log, "Key type %d is out of range max %d",
396 				  type, OVS_KEY_ATTR_MAX);
397 			return -EINVAL;
398 		}
399 
400 		if (attrs & (1 << type)) {
401 			OVS_NLERR(log, "Duplicate key (type %d).", type);
402 			return -EINVAL;
403 		}
404 
405 		expected_len = ovs_key_lens[type].len;
406 		if (!check_attr_len(nla_len(nla), expected_len)) {
407 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 				  type, nla_len(nla), expected_len);
409 			return -EINVAL;
410 		}
411 
412 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 			attrs |= 1 << type;
414 			a[type] = nla;
415 		}
416 	}
417 	if (rem) {
418 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 		return -EINVAL;
420 	}
421 
422 	*attrsp = attrs;
423 	return 0;
424 }
425 
426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 				   const struct nlattr *a[], u64 *attrsp,
428 				   bool log)
429 {
430 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431 }
432 
433 static int parse_flow_nlattrs(const struct nlattr *attr,
434 			      const struct nlattr *a[], u64 *attrsp,
435 			      bool log)
436 {
437 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438 }
439 
440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 				     struct sw_flow_match *match, bool is_mask,
442 				     bool log)
443 {
444 	unsigned long opt_key_offset;
445 
446 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 			  nla_len(a), sizeof(match->key->tun_opts));
449 		return -EINVAL;
450 	}
451 
452 	if (nla_len(a) % 4 != 0) {
453 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 			  nla_len(a));
455 		return -EINVAL;
456 	}
457 
458 	/* We need to record the length of the options passed
459 	 * down, otherwise packets with the same format but
460 	 * additional options will be silently matched.
461 	 */
462 	if (!is_mask) {
463 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 				false);
465 	} else {
466 		/* This is somewhat unusual because it looks at
467 		 * both the key and mask while parsing the
468 		 * attributes (and by extension assumes the key
469 		 * is parsed first). Normally, we would verify
470 		 * that each is the correct length and that the
471 		 * attributes line up in the validate function.
472 		 * However, that is difficult because this is
473 		 * variable length and we won't have the
474 		 * information later.
475 		 */
476 		if (match->key->tun_opts_len != nla_len(a)) {
477 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 				  match->key->tun_opts_len, nla_len(a));
479 			return -EINVAL;
480 		}
481 
482 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 	}
484 
485 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 				  nla_len(a), is_mask);
488 	return 0;
489 }
490 
491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 				     struct sw_flow_match *match, bool is_mask,
493 				     bool log)
494 {
495 	struct nlattr *a;
496 	int rem;
497 	unsigned long opt_key_offset;
498 	struct vxlan_metadata opts;
499 
500 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501 
502 	memset(&opts, 0, sizeof(opts));
503 	nla_for_each_nested(a, attr, rem) {
504 		int type = nla_type(a);
505 
506 		if (type > OVS_VXLAN_EXT_MAX) {
507 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 				  type, OVS_VXLAN_EXT_MAX);
509 			return -EINVAL;
510 		}
511 
512 		if (!check_attr_len(nla_len(a),
513 				    ovs_vxlan_ext_key_lens[type].len)) {
514 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 				  type, nla_len(a),
516 				  ovs_vxlan_ext_key_lens[type].len);
517 			return -EINVAL;
518 		}
519 
520 		switch (type) {
521 		case OVS_VXLAN_EXT_GBP:
522 			opts.gbp = nla_get_u32(a);
523 			break;
524 		default:
525 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 				  type);
527 			return -EINVAL;
528 		}
529 	}
530 	if (rem) {
531 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 			  rem);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_mask)
537 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 	else
539 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540 
541 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 				  is_mask);
544 	return 0;
545 }
546 
547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548 			      struct sw_flow_match *match, bool is_mask,
549 			      bool log)
550 {
551 	bool ttl = false, ipv4 = false, ipv6 = false;
552 	__be16 tun_flags = 0;
553 	int opts_type = 0;
554 	struct nlattr *a;
555 	int rem;
556 
557 	nla_for_each_nested(a, attr, rem) {
558 		int type = nla_type(a);
559 		int err;
560 
561 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
564 			return -EINVAL;
565 		}
566 
567 		if (!check_attr_len(nla_len(a),
568 				    ovs_tunnel_key_lens[type].len)) {
569 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 			return -EINVAL;
572 		}
573 
574 		switch (type) {
575 		case OVS_TUNNEL_KEY_ATTR_ID:
576 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 					nla_get_be64(a), is_mask);
578 			tun_flags |= TUNNEL_KEY;
579 			break;
580 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 					nla_get_in_addr(a), is_mask);
583 			ipv4 = true;
584 			break;
585 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 					nla_get_in_addr(a), is_mask);
588 			ipv4 = true;
589 			break;
590 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592 					nla_get_in6_addr(a), is_mask);
593 			ipv6 = true;
594 			break;
595 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 					nla_get_in6_addr(a), is_mask);
598 			ipv6 = true;
599 			break;
600 		case OVS_TUNNEL_KEY_ATTR_TOS:
601 			SW_FLOW_KEY_PUT(match, tun_key.tos,
602 					nla_get_u8(a), is_mask);
603 			break;
604 		case OVS_TUNNEL_KEY_ATTR_TTL:
605 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 					nla_get_u8(a), is_mask);
607 			ttl = true;
608 			break;
609 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 			tun_flags |= TUNNEL_DONT_FRAGMENT;
611 			break;
612 		case OVS_TUNNEL_KEY_ATTR_CSUM:
613 			tun_flags |= TUNNEL_CSUM;
614 			break;
615 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 					nla_get_be16(a), is_mask);
618 			break;
619 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 					nla_get_be16(a), is_mask);
622 			break;
623 		case OVS_TUNNEL_KEY_ATTR_OAM:
624 			tun_flags |= TUNNEL_OAM;
625 			break;
626 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 			if (opts_type) {
628 				OVS_NLERR(log, "Multiple metadata blocks provided");
629 				return -EINVAL;
630 			}
631 
632 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 			if (err)
634 				return err;
635 
636 			tun_flags |= TUNNEL_GENEVE_OPT;
637 			opts_type = type;
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 			if (opts_type) {
641 				OVS_NLERR(log, "Multiple metadata blocks provided");
642 				return -EINVAL;
643 			}
644 
645 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 			if (err)
647 				return err;
648 
649 			tun_flags |= TUNNEL_VXLAN_OPT;
650 			opts_type = type;
651 			break;
652 		default:
653 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654 				  type);
655 			return -EINVAL;
656 		}
657 	}
658 
659 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660 	if (is_mask)
661 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662 	else
663 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664 				false);
665 
666 	if (rem > 0) {
667 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668 			  rem);
669 		return -EINVAL;
670 	}
671 
672 	if (ipv4 && ipv6) {
673 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674 		return -EINVAL;
675 	}
676 
677 	if (!is_mask) {
678 		if (!ipv4 && !ipv6) {
679 			OVS_NLERR(log, "IP tunnel dst address not specified");
680 			return -EINVAL;
681 		}
682 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684 			return -EINVAL;
685 		}
686 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688 			return -EINVAL;
689 		}
690 
691 		if (!ttl) {
692 			OVS_NLERR(log, "IP tunnel TTL not specified.");
693 			return -EINVAL;
694 		}
695 	}
696 
697 	return opts_type;
698 }
699 
700 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701 			       const void *tun_opts, int swkey_tun_opts_len)
702 {
703 	const struct vxlan_metadata *opts = tun_opts;
704 	struct nlattr *nla;
705 
706 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707 	if (!nla)
708 		return -EMSGSIZE;
709 
710 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711 		return -EMSGSIZE;
712 
713 	nla_nest_end(skb, nla);
714 	return 0;
715 }
716 
717 static int __ip_tun_to_nlattr(struct sk_buff *skb,
718 			      const struct ip_tunnel_key *output,
719 			      const void *tun_opts, int swkey_tun_opts_len,
720 			      unsigned short tun_proto)
721 {
722 	if (output->tun_flags & TUNNEL_KEY &&
723 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
724 		return -EMSGSIZE;
725 	switch (tun_proto) {
726 	case AF_INET:
727 		if (output->u.ipv4.src &&
728 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
729 				    output->u.ipv4.src))
730 			return -EMSGSIZE;
731 		if (output->u.ipv4.dst &&
732 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
733 				    output->u.ipv4.dst))
734 			return -EMSGSIZE;
735 		break;
736 	case AF_INET6:
737 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
738 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
739 				     &output->u.ipv6.src))
740 			return -EMSGSIZE;
741 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
742 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
743 				     &output->u.ipv6.dst))
744 			return -EMSGSIZE;
745 		break;
746 	}
747 	if (output->tos &&
748 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
749 		return -EMSGSIZE;
750 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
751 		return -EMSGSIZE;
752 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
753 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
754 		return -EMSGSIZE;
755 	if ((output->tun_flags & TUNNEL_CSUM) &&
756 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
757 		return -EMSGSIZE;
758 	if (output->tp_src &&
759 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
760 		return -EMSGSIZE;
761 	if (output->tp_dst &&
762 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
763 		return -EMSGSIZE;
764 	if ((output->tun_flags & TUNNEL_OAM) &&
765 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
766 		return -EMSGSIZE;
767 	if (swkey_tun_opts_len) {
768 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
769 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
770 			    swkey_tun_opts_len, tun_opts))
771 			return -EMSGSIZE;
772 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
773 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
774 			return -EMSGSIZE;
775 	}
776 
777 	return 0;
778 }
779 
780 static int ip_tun_to_nlattr(struct sk_buff *skb,
781 			    const struct ip_tunnel_key *output,
782 			    const void *tun_opts, int swkey_tun_opts_len,
783 			    unsigned short tun_proto)
784 {
785 	struct nlattr *nla;
786 	int err;
787 
788 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
789 	if (!nla)
790 		return -EMSGSIZE;
791 
792 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
793 				 tun_proto);
794 	if (err)
795 		return err;
796 
797 	nla_nest_end(skb, nla);
798 	return 0;
799 }
800 
801 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
802 			    struct ip_tunnel_info *tun_info)
803 {
804 	return __ip_tun_to_nlattr(skb, &tun_info->key,
805 				  ip_tunnel_info_opts(tun_info),
806 				  tun_info->options_len,
807 				  ip_tunnel_info_af(tun_info));
808 }
809 
810 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
811 				 u64 *attrs, const struct nlattr **a,
812 				 bool is_mask, bool log)
813 {
814 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
815 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
816 
817 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
818 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
819 	}
820 
821 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
822 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
823 
824 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
825 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
826 	}
827 
828 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
829 		SW_FLOW_KEY_PUT(match, phy.priority,
830 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
831 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
832 	}
833 
834 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
835 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
836 
837 		if (is_mask) {
838 			in_port = 0xffffffff; /* Always exact match in_port. */
839 		} else if (in_port >= DP_MAX_PORTS) {
840 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
841 				  in_port, DP_MAX_PORTS);
842 			return -EINVAL;
843 		}
844 
845 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
846 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
847 	} else if (!is_mask) {
848 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
849 	}
850 
851 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
852 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
853 
854 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
855 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
856 	}
857 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
858 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
859 				       is_mask, log) < 0)
860 			return -EINVAL;
861 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
862 	}
863 
864 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
865 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
866 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
867 
868 		if (ct_state & ~CT_SUPPORTED_MASK) {
869 			OVS_NLERR(log, "ct_state flags %08x unsupported",
870 				  ct_state);
871 			return -EINVAL;
872 		}
873 
874 		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
875 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
876 	}
877 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
878 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
879 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
880 
881 		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
882 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
883 	}
884 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
885 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
886 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
887 
888 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
889 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
890 	}
891 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
892 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
893 		const struct ovs_key_ct_labels *cl;
894 
895 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
896 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
897 				   sizeof(*cl), is_mask);
898 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
899 	}
900 	return 0;
901 }
902 
903 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
904 				u64 attrs, const struct nlattr **a,
905 				bool is_mask, bool log)
906 {
907 	int err;
908 
909 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
910 	if (err)
911 		return err;
912 
913 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
914 		const struct ovs_key_ethernet *eth_key;
915 
916 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
917 		SW_FLOW_KEY_MEMCPY(match, eth.src,
918 				eth_key->eth_src, ETH_ALEN, is_mask);
919 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
920 				eth_key->eth_dst, ETH_ALEN, is_mask);
921 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
922 	}
923 
924 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
925 		__be16 tci;
926 
927 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
928 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
929 			if (is_mask)
930 				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
931 			else
932 				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
933 
934 			return -EINVAL;
935 		}
936 
937 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
938 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
939 	}
940 
941 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
942 		__be16 eth_type;
943 
944 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
945 		if (is_mask) {
946 			/* Always exact match EtherType. */
947 			eth_type = htons(0xffff);
948 		} else if (!eth_proto_is_802_3(eth_type)) {
949 			OVS_NLERR(log, "EtherType %x is less than min %x",
950 				  ntohs(eth_type), ETH_P_802_3_MIN);
951 			return -EINVAL;
952 		}
953 
954 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
955 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
956 	} else if (!is_mask) {
957 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
958 	}
959 
960 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
961 		const struct ovs_key_ipv4 *ipv4_key;
962 
963 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
964 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
965 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
966 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
967 			return -EINVAL;
968 		}
969 		SW_FLOW_KEY_PUT(match, ip.proto,
970 				ipv4_key->ipv4_proto, is_mask);
971 		SW_FLOW_KEY_PUT(match, ip.tos,
972 				ipv4_key->ipv4_tos, is_mask);
973 		SW_FLOW_KEY_PUT(match, ip.ttl,
974 				ipv4_key->ipv4_ttl, is_mask);
975 		SW_FLOW_KEY_PUT(match, ip.frag,
976 				ipv4_key->ipv4_frag, is_mask);
977 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
978 				ipv4_key->ipv4_src, is_mask);
979 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
980 				ipv4_key->ipv4_dst, is_mask);
981 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
982 	}
983 
984 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
985 		const struct ovs_key_ipv6 *ipv6_key;
986 
987 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
988 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
989 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
990 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
991 			return -EINVAL;
992 		}
993 
994 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
995 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
996 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
997 			return -EINVAL;
998 		}
999 
1000 		SW_FLOW_KEY_PUT(match, ipv6.label,
1001 				ipv6_key->ipv6_label, is_mask);
1002 		SW_FLOW_KEY_PUT(match, ip.proto,
1003 				ipv6_key->ipv6_proto, is_mask);
1004 		SW_FLOW_KEY_PUT(match, ip.tos,
1005 				ipv6_key->ipv6_tclass, is_mask);
1006 		SW_FLOW_KEY_PUT(match, ip.ttl,
1007 				ipv6_key->ipv6_hlimit, is_mask);
1008 		SW_FLOW_KEY_PUT(match, ip.frag,
1009 				ipv6_key->ipv6_frag, is_mask);
1010 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1011 				ipv6_key->ipv6_src,
1012 				sizeof(match->key->ipv6.addr.src),
1013 				is_mask);
1014 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1015 				ipv6_key->ipv6_dst,
1016 				sizeof(match->key->ipv6.addr.dst),
1017 				is_mask);
1018 
1019 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1020 	}
1021 
1022 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1023 		const struct ovs_key_arp *arp_key;
1024 
1025 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1026 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1027 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1028 				  arp_key->arp_op);
1029 			return -EINVAL;
1030 		}
1031 
1032 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1033 				arp_key->arp_sip, is_mask);
1034 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1035 			arp_key->arp_tip, is_mask);
1036 		SW_FLOW_KEY_PUT(match, ip.proto,
1037 				ntohs(arp_key->arp_op), is_mask);
1038 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1039 				arp_key->arp_sha, ETH_ALEN, is_mask);
1040 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1041 				arp_key->arp_tha, ETH_ALEN, is_mask);
1042 
1043 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1044 	}
1045 
1046 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1047 		const struct ovs_key_mpls *mpls_key;
1048 
1049 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1050 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1051 				mpls_key->mpls_lse, is_mask);
1052 
1053 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1054 	 }
1055 
1056 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1057 		const struct ovs_key_tcp *tcp_key;
1058 
1059 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1060 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1061 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1062 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1063 	}
1064 
1065 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1066 		SW_FLOW_KEY_PUT(match, tp.flags,
1067 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1068 				is_mask);
1069 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1070 	}
1071 
1072 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1073 		const struct ovs_key_udp *udp_key;
1074 
1075 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1076 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1077 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1078 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1079 	}
1080 
1081 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1082 		const struct ovs_key_sctp *sctp_key;
1083 
1084 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1085 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1086 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1087 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1088 	}
1089 
1090 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1091 		const struct ovs_key_icmp *icmp_key;
1092 
1093 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1094 		SW_FLOW_KEY_PUT(match, tp.src,
1095 				htons(icmp_key->icmp_type), is_mask);
1096 		SW_FLOW_KEY_PUT(match, tp.dst,
1097 				htons(icmp_key->icmp_code), is_mask);
1098 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1099 	}
1100 
1101 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1102 		const struct ovs_key_icmpv6 *icmpv6_key;
1103 
1104 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1105 		SW_FLOW_KEY_PUT(match, tp.src,
1106 				htons(icmpv6_key->icmpv6_type), is_mask);
1107 		SW_FLOW_KEY_PUT(match, tp.dst,
1108 				htons(icmpv6_key->icmpv6_code), is_mask);
1109 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1110 	}
1111 
1112 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1113 		const struct ovs_key_nd *nd_key;
1114 
1115 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1116 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1117 			nd_key->nd_target,
1118 			sizeof(match->key->ipv6.nd.target),
1119 			is_mask);
1120 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1121 			nd_key->nd_sll, ETH_ALEN, is_mask);
1122 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1123 				nd_key->nd_tll, ETH_ALEN, is_mask);
1124 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1125 	}
1126 
1127 	if (attrs != 0) {
1128 		OVS_NLERR(log, "Unknown key attributes %llx",
1129 			  (unsigned long long)attrs);
1130 		return -EINVAL;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static void nlattr_set(struct nlattr *attr, u8 val,
1137 		       const struct ovs_len_tbl *tbl)
1138 {
1139 	struct nlattr *nla;
1140 	int rem;
1141 
1142 	/* The nlattr stream should already have been validated */
1143 	nla_for_each_nested(nla, attr, rem) {
1144 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1145 			if (tbl[nla_type(nla)].next)
1146 				tbl = tbl[nla_type(nla)].next;
1147 			nlattr_set(nla, val, tbl);
1148 		} else {
1149 			memset(nla_data(nla), val, nla_len(nla));
1150 		}
1151 
1152 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1153 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1154 	}
1155 }
1156 
1157 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1158 {
1159 	nlattr_set(attr, val, ovs_key_lens);
1160 }
1161 
1162 /**
1163  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1164  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1165  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1166  * does not include any don't care bit.
1167  * @net: Used to determine per-namespace field support.
1168  * @match: receives the extracted flow match information.
1169  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1170  * sequence. The fields should of the packet that triggered the creation
1171  * of this flow.
1172  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1173  * attribute specifies the mask field of the wildcarded flow.
1174  * @log: Boolean to allow kernel error logging.  Normally true, but when
1175  * probing for feature compatibility this should be passed in as false to
1176  * suppress unnecessary error logging.
1177  */
1178 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1179 		      const struct nlattr *nla_key,
1180 		      const struct nlattr *nla_mask,
1181 		      bool log)
1182 {
1183 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1184 	const struct nlattr *encap;
1185 	struct nlattr *newmask = NULL;
1186 	u64 key_attrs = 0;
1187 	u64 mask_attrs = 0;
1188 	bool encap_valid = false;
1189 	int err;
1190 
1191 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1192 	if (err)
1193 		return err;
1194 
1195 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1196 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1197 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1198 		__be16 tci;
1199 
1200 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1201 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1202 			OVS_NLERR(log, "Invalid Vlan frame.");
1203 			return -EINVAL;
1204 		}
1205 
1206 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1207 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1208 		encap = a[OVS_KEY_ATTR_ENCAP];
1209 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1210 		encap_valid = true;
1211 
1212 		if (tci & htons(VLAN_TAG_PRESENT)) {
1213 			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1214 			if (err)
1215 				return err;
1216 		} else if (!tci) {
1217 			/* Corner case for truncated 802.1Q header. */
1218 			if (nla_len(encap)) {
1219 				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1220 				return -EINVAL;
1221 			}
1222 		} else {
1223 			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1224 			return  -EINVAL;
1225 		}
1226 	}
1227 
1228 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1229 	if (err)
1230 		return err;
1231 
1232 	if (match->mask) {
1233 		if (!nla_mask) {
1234 			/* Create an exact match mask. We need to set to 0xff
1235 			 * all the 'match->mask' fields that have been touched
1236 			 * in 'match->key'. We cannot simply memset
1237 			 * 'match->mask', because padding bytes and fields not
1238 			 * specified in 'match->key' should be left to 0.
1239 			 * Instead, we use a stream of netlink attributes,
1240 			 * copied from 'key' and set to 0xff.
1241 			 * ovs_key_from_nlattrs() will take care of filling
1242 			 * 'match->mask' appropriately.
1243 			 */
1244 			newmask = kmemdup(nla_key,
1245 					  nla_total_size(nla_len(nla_key)),
1246 					  GFP_KERNEL);
1247 			if (!newmask)
1248 				return -ENOMEM;
1249 
1250 			mask_set_nlattr(newmask, 0xff);
1251 
1252 			/* The userspace does not send tunnel attributes that
1253 			 * are 0, but we should not wildcard them nonetheless.
1254 			 */
1255 			if (match->key->tun_proto)
1256 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1257 							 0xff, true);
1258 
1259 			nla_mask = newmask;
1260 		}
1261 
1262 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1263 		if (err)
1264 			goto free_newmask;
1265 
1266 		/* Always match on tci. */
1267 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1268 
1269 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1270 			__be16 eth_type = 0;
1271 			__be16 tci = 0;
1272 
1273 			if (!encap_valid) {
1274 				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1275 				err = -EINVAL;
1276 				goto free_newmask;
1277 			}
1278 
1279 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1280 			if (a[OVS_KEY_ATTR_ETHERTYPE])
1281 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1282 
1283 			if (eth_type == htons(0xffff)) {
1284 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1285 				encap = a[OVS_KEY_ATTR_ENCAP];
1286 				err = parse_flow_mask_nlattrs(encap, a,
1287 							      &mask_attrs, log);
1288 				if (err)
1289 					goto free_newmask;
1290 			} else {
1291 				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1292 					  ntohs(eth_type));
1293 				err = -EINVAL;
1294 				goto free_newmask;
1295 			}
1296 
1297 			if (a[OVS_KEY_ATTR_VLAN])
1298 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1299 
1300 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1301 				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1302 					  ntohs(tci));
1303 				err = -EINVAL;
1304 				goto free_newmask;
1305 			}
1306 		}
1307 
1308 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1309 					   log);
1310 		if (err)
1311 			goto free_newmask;
1312 	}
1313 
1314 	if (!match_validate(match, key_attrs, mask_attrs, log))
1315 		err = -EINVAL;
1316 
1317 free_newmask:
1318 	kfree(newmask);
1319 	return err;
1320 }
1321 
1322 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1323 {
1324 	size_t len;
1325 
1326 	if (!attr)
1327 		return 0;
1328 
1329 	len = nla_len(attr);
1330 	if (len < 1 || len > MAX_UFID_LENGTH) {
1331 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1332 			  nla_len(attr), MAX_UFID_LENGTH);
1333 		return 0;
1334 	}
1335 
1336 	return len;
1337 }
1338 
1339 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1340  * or false otherwise.
1341  */
1342 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1343 		      bool log)
1344 {
1345 	sfid->ufid_len = get_ufid_len(attr, log);
1346 	if (sfid->ufid_len)
1347 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1348 
1349 	return sfid->ufid_len;
1350 }
1351 
1352 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1353 			   const struct sw_flow_key *key, bool log)
1354 {
1355 	struct sw_flow_key *new_key;
1356 
1357 	if (ovs_nla_get_ufid(sfid, ufid, log))
1358 		return 0;
1359 
1360 	/* If UFID was not provided, use unmasked key. */
1361 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1362 	if (!new_key)
1363 		return -ENOMEM;
1364 	memcpy(new_key, key, sizeof(*key));
1365 	sfid->unmasked_key = new_key;
1366 
1367 	return 0;
1368 }
1369 
1370 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1371 {
1372 	return attr ? nla_get_u32(attr) : 0;
1373 }
1374 
1375 /**
1376  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1377  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1378  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1379  * sequence.
1380  * @log: Boolean to allow kernel error logging.  Normally true, but when
1381  * probing for feature compatibility this should be passed in as false to
1382  * suppress unnecessary error logging.
1383  *
1384  * This parses a series of Netlink attributes that form a flow key, which must
1385  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1386  * get the metadata, that is, the parts of the flow key that cannot be
1387  * extracted from the packet itself.
1388  */
1389 
1390 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1391 			      struct sw_flow_key *key,
1392 			      bool log)
1393 {
1394 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1395 	struct sw_flow_match match;
1396 	u64 attrs = 0;
1397 	int err;
1398 
1399 	err = parse_flow_nlattrs(attr, a, &attrs, log);
1400 	if (err)
1401 		return -EINVAL;
1402 
1403 	memset(&match, 0, sizeof(match));
1404 	match.key = key;
1405 
1406 	memset(&key->ct, 0, sizeof(key->ct));
1407 	key->phy.in_port = DP_MAX_PORTS;
1408 
1409 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1410 }
1411 
1412 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1413 			     const struct sw_flow_key *output, bool is_mask,
1414 			     struct sk_buff *skb)
1415 {
1416 	struct ovs_key_ethernet *eth_key;
1417 	struct nlattr *nla, *encap;
1418 
1419 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1420 		goto nla_put_failure;
1421 
1422 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1423 		goto nla_put_failure;
1424 
1425 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1426 		goto nla_put_failure;
1427 
1428 	if ((swkey->tun_proto || is_mask)) {
1429 		const void *opts = NULL;
1430 
1431 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1432 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1433 
1434 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1435 				     swkey->tun_opts_len, swkey->tun_proto))
1436 			goto nla_put_failure;
1437 	}
1438 
1439 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1440 		if (is_mask && (output->phy.in_port == 0xffff))
1441 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1442 				goto nla_put_failure;
1443 	} else {
1444 		u16 upper_u16;
1445 		upper_u16 = !is_mask ? 0 : 0xffff;
1446 
1447 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1448 				(upper_u16 << 16) | output->phy.in_port))
1449 			goto nla_put_failure;
1450 	}
1451 
1452 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1453 		goto nla_put_failure;
1454 
1455 	if (ovs_ct_put_key(output, skb))
1456 		goto nla_put_failure;
1457 
1458 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1459 	if (!nla)
1460 		goto nla_put_failure;
1461 
1462 	eth_key = nla_data(nla);
1463 	ether_addr_copy(eth_key->eth_src, output->eth.src);
1464 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1465 
1466 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1467 		__be16 eth_type;
1468 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1469 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1470 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1471 			goto nla_put_failure;
1472 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1473 		if (!swkey->eth.tci)
1474 			goto unencap;
1475 	} else
1476 		encap = NULL;
1477 
1478 	if (swkey->eth.type == htons(ETH_P_802_2)) {
1479 		/*
1480 		 * Ethertype 802.2 is represented in the netlink with omitted
1481 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1482 		 * 0xffff in the mask attribute.  Ethertype can also
1483 		 * be wildcarded.
1484 		 */
1485 		if (is_mask && output->eth.type)
1486 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1487 						output->eth.type))
1488 				goto nla_put_failure;
1489 		goto unencap;
1490 	}
1491 
1492 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1493 		goto nla_put_failure;
1494 
1495 	if (swkey->eth.type == htons(ETH_P_IP)) {
1496 		struct ovs_key_ipv4 *ipv4_key;
1497 
1498 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1499 		if (!nla)
1500 			goto nla_put_failure;
1501 		ipv4_key = nla_data(nla);
1502 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1503 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1504 		ipv4_key->ipv4_proto = output->ip.proto;
1505 		ipv4_key->ipv4_tos = output->ip.tos;
1506 		ipv4_key->ipv4_ttl = output->ip.ttl;
1507 		ipv4_key->ipv4_frag = output->ip.frag;
1508 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1509 		struct ovs_key_ipv6 *ipv6_key;
1510 
1511 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1512 		if (!nla)
1513 			goto nla_put_failure;
1514 		ipv6_key = nla_data(nla);
1515 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1516 				sizeof(ipv6_key->ipv6_src));
1517 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1518 				sizeof(ipv6_key->ipv6_dst));
1519 		ipv6_key->ipv6_label = output->ipv6.label;
1520 		ipv6_key->ipv6_proto = output->ip.proto;
1521 		ipv6_key->ipv6_tclass = output->ip.tos;
1522 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1523 		ipv6_key->ipv6_frag = output->ip.frag;
1524 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1525 		   swkey->eth.type == htons(ETH_P_RARP)) {
1526 		struct ovs_key_arp *arp_key;
1527 
1528 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1529 		if (!nla)
1530 			goto nla_put_failure;
1531 		arp_key = nla_data(nla);
1532 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1533 		arp_key->arp_sip = output->ipv4.addr.src;
1534 		arp_key->arp_tip = output->ipv4.addr.dst;
1535 		arp_key->arp_op = htons(output->ip.proto);
1536 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1537 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1538 	} else if (eth_p_mpls(swkey->eth.type)) {
1539 		struct ovs_key_mpls *mpls_key;
1540 
1541 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1542 		if (!nla)
1543 			goto nla_put_failure;
1544 		mpls_key = nla_data(nla);
1545 		mpls_key->mpls_lse = output->mpls.top_lse;
1546 	}
1547 
1548 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1549 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1550 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1551 
1552 		if (swkey->ip.proto == IPPROTO_TCP) {
1553 			struct ovs_key_tcp *tcp_key;
1554 
1555 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1556 			if (!nla)
1557 				goto nla_put_failure;
1558 			tcp_key = nla_data(nla);
1559 			tcp_key->tcp_src = output->tp.src;
1560 			tcp_key->tcp_dst = output->tp.dst;
1561 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1562 					 output->tp.flags))
1563 				goto nla_put_failure;
1564 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1565 			struct ovs_key_udp *udp_key;
1566 
1567 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1568 			if (!nla)
1569 				goto nla_put_failure;
1570 			udp_key = nla_data(nla);
1571 			udp_key->udp_src = output->tp.src;
1572 			udp_key->udp_dst = output->tp.dst;
1573 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1574 			struct ovs_key_sctp *sctp_key;
1575 
1576 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1577 			if (!nla)
1578 				goto nla_put_failure;
1579 			sctp_key = nla_data(nla);
1580 			sctp_key->sctp_src = output->tp.src;
1581 			sctp_key->sctp_dst = output->tp.dst;
1582 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1583 			   swkey->ip.proto == IPPROTO_ICMP) {
1584 			struct ovs_key_icmp *icmp_key;
1585 
1586 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1587 			if (!nla)
1588 				goto nla_put_failure;
1589 			icmp_key = nla_data(nla);
1590 			icmp_key->icmp_type = ntohs(output->tp.src);
1591 			icmp_key->icmp_code = ntohs(output->tp.dst);
1592 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1593 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1594 			struct ovs_key_icmpv6 *icmpv6_key;
1595 
1596 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1597 						sizeof(*icmpv6_key));
1598 			if (!nla)
1599 				goto nla_put_failure;
1600 			icmpv6_key = nla_data(nla);
1601 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1602 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1603 
1604 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1605 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1606 				struct ovs_key_nd *nd_key;
1607 
1608 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1609 				if (!nla)
1610 					goto nla_put_failure;
1611 				nd_key = nla_data(nla);
1612 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1613 							sizeof(nd_key->nd_target));
1614 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1615 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1616 			}
1617 		}
1618 	}
1619 
1620 unencap:
1621 	if (encap)
1622 		nla_nest_end(skb, encap);
1623 
1624 	return 0;
1625 
1626 nla_put_failure:
1627 	return -EMSGSIZE;
1628 }
1629 
1630 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1631 		    const struct sw_flow_key *output, int attr, bool is_mask,
1632 		    struct sk_buff *skb)
1633 {
1634 	int err;
1635 	struct nlattr *nla;
1636 
1637 	nla = nla_nest_start(skb, attr);
1638 	if (!nla)
1639 		return -EMSGSIZE;
1640 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1641 	if (err)
1642 		return err;
1643 	nla_nest_end(skb, nla);
1644 
1645 	return 0;
1646 }
1647 
1648 /* Called with ovs_mutex or RCU read lock. */
1649 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1650 {
1651 	if (ovs_identifier_is_ufid(&flow->id))
1652 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1653 			       flow->id.ufid);
1654 
1655 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1656 			       OVS_FLOW_ATTR_KEY, false, skb);
1657 }
1658 
1659 /* Called with ovs_mutex or RCU read lock. */
1660 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1661 {
1662 	return ovs_nla_put_key(&flow->key, &flow->key,
1663 				OVS_FLOW_ATTR_KEY, false, skb);
1664 }
1665 
1666 /* Called with ovs_mutex or RCU read lock. */
1667 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1668 {
1669 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1670 				OVS_FLOW_ATTR_MASK, true, skb);
1671 }
1672 
1673 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1674 
1675 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1676 {
1677 	struct sw_flow_actions *sfa;
1678 
1679 	if (size > MAX_ACTIONS_BUFSIZE) {
1680 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1681 		return ERR_PTR(-EINVAL);
1682 	}
1683 
1684 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1685 	if (!sfa)
1686 		return ERR_PTR(-ENOMEM);
1687 
1688 	sfa->actions_len = 0;
1689 	return sfa;
1690 }
1691 
1692 static void ovs_nla_free_set_action(const struct nlattr *a)
1693 {
1694 	const struct nlattr *ovs_key = nla_data(a);
1695 	struct ovs_tunnel_info *ovs_tun;
1696 
1697 	switch (nla_type(ovs_key)) {
1698 	case OVS_KEY_ATTR_TUNNEL_INFO:
1699 		ovs_tun = nla_data(ovs_key);
1700 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1701 		break;
1702 	}
1703 }
1704 
1705 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1706 {
1707 	const struct nlattr *a;
1708 	int rem;
1709 
1710 	if (!sf_acts)
1711 		return;
1712 
1713 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1714 		switch (nla_type(a)) {
1715 		case OVS_ACTION_ATTR_SET:
1716 			ovs_nla_free_set_action(a);
1717 			break;
1718 		case OVS_ACTION_ATTR_CT:
1719 			ovs_ct_free_action(a);
1720 			break;
1721 		}
1722 	}
1723 
1724 	kfree(sf_acts);
1725 }
1726 
1727 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1728 {
1729 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1730 }
1731 
1732 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1733  * The caller must hold rcu_read_lock for this to be sensible. */
1734 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1735 {
1736 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1737 }
1738 
1739 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1740 				       int attr_len, bool log)
1741 {
1742 
1743 	struct sw_flow_actions *acts;
1744 	int new_acts_size;
1745 	int req_size = NLA_ALIGN(attr_len);
1746 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1747 					(*sfa)->actions_len;
1748 
1749 	if (req_size <= (ksize(*sfa) - next_offset))
1750 		goto out;
1751 
1752 	new_acts_size = ksize(*sfa) * 2;
1753 
1754 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1755 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1756 			return ERR_PTR(-EMSGSIZE);
1757 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1758 	}
1759 
1760 	acts = nla_alloc_flow_actions(new_acts_size, log);
1761 	if (IS_ERR(acts))
1762 		return (void *)acts;
1763 
1764 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1765 	acts->actions_len = (*sfa)->actions_len;
1766 	acts->orig_len = (*sfa)->orig_len;
1767 	kfree(*sfa);
1768 	*sfa = acts;
1769 
1770 out:
1771 	(*sfa)->actions_len += req_size;
1772 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1773 }
1774 
1775 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1776 				   int attrtype, void *data, int len, bool log)
1777 {
1778 	struct nlattr *a;
1779 
1780 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1781 	if (IS_ERR(a))
1782 		return a;
1783 
1784 	a->nla_type = attrtype;
1785 	a->nla_len = nla_attr_size(len);
1786 
1787 	if (data)
1788 		memcpy(nla_data(a), data, len);
1789 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1790 
1791 	return a;
1792 }
1793 
1794 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1795 		       int len, bool log)
1796 {
1797 	struct nlattr *a;
1798 
1799 	a = __add_action(sfa, attrtype, data, len, log);
1800 
1801 	return PTR_ERR_OR_ZERO(a);
1802 }
1803 
1804 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1805 					  int attrtype, bool log)
1806 {
1807 	int used = (*sfa)->actions_len;
1808 	int err;
1809 
1810 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1811 	if (err)
1812 		return err;
1813 
1814 	return used;
1815 }
1816 
1817 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1818 					 int st_offset)
1819 {
1820 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1821 							       st_offset);
1822 
1823 	a->nla_len = sfa->actions_len - st_offset;
1824 }
1825 
1826 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1827 				  const struct sw_flow_key *key,
1828 				  int depth, struct sw_flow_actions **sfa,
1829 				  __be16 eth_type, __be16 vlan_tci, bool log);
1830 
1831 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1832 				    const struct sw_flow_key *key, int depth,
1833 				    struct sw_flow_actions **sfa,
1834 				    __be16 eth_type, __be16 vlan_tci, bool log)
1835 {
1836 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1837 	const struct nlattr *probability, *actions;
1838 	const struct nlattr *a;
1839 	int rem, start, err, st_acts;
1840 
1841 	memset(attrs, 0, sizeof(attrs));
1842 	nla_for_each_nested(a, attr, rem) {
1843 		int type = nla_type(a);
1844 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1845 			return -EINVAL;
1846 		attrs[type] = a;
1847 	}
1848 	if (rem)
1849 		return -EINVAL;
1850 
1851 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1852 	if (!probability || nla_len(probability) != sizeof(u32))
1853 		return -EINVAL;
1854 
1855 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1856 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1857 		return -EINVAL;
1858 
1859 	/* validation done, copy sample action. */
1860 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1861 	if (start < 0)
1862 		return start;
1863 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1864 				 nla_data(probability), sizeof(u32), log);
1865 	if (err)
1866 		return err;
1867 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1868 	if (st_acts < 0)
1869 		return st_acts;
1870 
1871 	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1872 				     eth_type, vlan_tci, log);
1873 	if (err)
1874 		return err;
1875 
1876 	add_nested_action_end(*sfa, st_acts);
1877 	add_nested_action_end(*sfa, start);
1878 
1879 	return 0;
1880 }
1881 
1882 void ovs_match_init(struct sw_flow_match *match,
1883 		    struct sw_flow_key *key,
1884 		    struct sw_flow_mask *mask)
1885 {
1886 	memset(match, 0, sizeof(*match));
1887 	match->key = key;
1888 	match->mask = mask;
1889 
1890 	memset(key, 0, sizeof(*key));
1891 
1892 	if (mask) {
1893 		memset(&mask->key, 0, sizeof(mask->key));
1894 		mask->range.start = mask->range.end = 0;
1895 	}
1896 }
1897 
1898 static int validate_geneve_opts(struct sw_flow_key *key)
1899 {
1900 	struct geneve_opt *option;
1901 	int opts_len = key->tun_opts_len;
1902 	bool crit_opt = false;
1903 
1904 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1905 	while (opts_len > 0) {
1906 		int len;
1907 
1908 		if (opts_len < sizeof(*option))
1909 			return -EINVAL;
1910 
1911 		len = sizeof(*option) + option->length * 4;
1912 		if (len > opts_len)
1913 			return -EINVAL;
1914 
1915 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1916 
1917 		option = (struct geneve_opt *)((u8 *)option + len);
1918 		opts_len -= len;
1919 	};
1920 
1921 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1922 
1923 	return 0;
1924 }
1925 
1926 static int validate_and_copy_set_tun(const struct nlattr *attr,
1927 				     struct sw_flow_actions **sfa, bool log)
1928 {
1929 	struct sw_flow_match match;
1930 	struct sw_flow_key key;
1931 	struct metadata_dst *tun_dst;
1932 	struct ip_tunnel_info *tun_info;
1933 	struct ovs_tunnel_info *ovs_tun;
1934 	struct nlattr *a;
1935 	int err = 0, start, opts_type;
1936 
1937 	ovs_match_init(&match, &key, NULL);
1938 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1939 	if (opts_type < 0)
1940 		return opts_type;
1941 
1942 	if (key.tun_opts_len) {
1943 		switch (opts_type) {
1944 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1945 			err = validate_geneve_opts(&key);
1946 			if (err < 0)
1947 				return err;
1948 			break;
1949 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1950 			break;
1951 		}
1952 	};
1953 
1954 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1955 	if (start < 0)
1956 		return start;
1957 
1958 	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1959 	if (!tun_dst)
1960 		return -ENOMEM;
1961 
1962 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1963 			 sizeof(*ovs_tun), log);
1964 	if (IS_ERR(a)) {
1965 		dst_release((struct dst_entry *)tun_dst);
1966 		return PTR_ERR(a);
1967 	}
1968 
1969 	ovs_tun = nla_data(a);
1970 	ovs_tun->tun_dst = tun_dst;
1971 
1972 	tun_info = &tun_dst->u.tun_info;
1973 	tun_info->mode = IP_TUNNEL_INFO_TX;
1974 	if (key.tun_proto == AF_INET6)
1975 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1976 	tun_info->key = key.tun_key;
1977 
1978 	/* We need to store the options in the action itself since
1979 	 * everything else will go away after flow setup. We can append
1980 	 * it to tun_info and then point there.
1981 	 */
1982 	ip_tunnel_info_opts_set(tun_info,
1983 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
1984 				key.tun_opts_len);
1985 	add_nested_action_end(*sfa, start);
1986 
1987 	return err;
1988 }
1989 
1990 /* Return false if there are any non-masked bits set.
1991  * Mask follows data immediately, before any netlink padding.
1992  */
1993 static bool validate_masked(u8 *data, int len)
1994 {
1995 	u8 *mask = data + len;
1996 
1997 	while (len--)
1998 		if (*data++ & ~*mask++)
1999 			return false;
2000 
2001 	return true;
2002 }
2003 
2004 static int validate_set(const struct nlattr *a,
2005 			const struct sw_flow_key *flow_key,
2006 			struct sw_flow_actions **sfa,
2007 			bool *skip_copy, __be16 eth_type, bool masked, bool log)
2008 {
2009 	const struct nlattr *ovs_key = nla_data(a);
2010 	int key_type = nla_type(ovs_key);
2011 	size_t key_len;
2012 
2013 	/* There can be only one key in a action */
2014 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2015 		return -EINVAL;
2016 
2017 	key_len = nla_len(ovs_key);
2018 	if (masked)
2019 		key_len /= 2;
2020 
2021 	if (key_type > OVS_KEY_ATTR_MAX ||
2022 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2023 		return -EINVAL;
2024 
2025 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2026 		return -EINVAL;
2027 
2028 	switch (key_type) {
2029 	const struct ovs_key_ipv4 *ipv4_key;
2030 	const struct ovs_key_ipv6 *ipv6_key;
2031 	int err;
2032 
2033 	case OVS_KEY_ATTR_PRIORITY:
2034 	case OVS_KEY_ATTR_SKB_MARK:
2035 	case OVS_KEY_ATTR_CT_MARK:
2036 	case OVS_KEY_ATTR_CT_LABELS:
2037 	case OVS_KEY_ATTR_ETHERNET:
2038 		break;
2039 
2040 	case OVS_KEY_ATTR_TUNNEL:
2041 		if (eth_p_mpls(eth_type))
2042 			return -EINVAL;
2043 
2044 		if (masked)
2045 			return -EINVAL; /* Masked tunnel set not supported. */
2046 
2047 		*skip_copy = true;
2048 		err = validate_and_copy_set_tun(a, sfa, log);
2049 		if (err)
2050 			return err;
2051 		break;
2052 
2053 	case OVS_KEY_ATTR_IPV4:
2054 		if (eth_type != htons(ETH_P_IP))
2055 			return -EINVAL;
2056 
2057 		ipv4_key = nla_data(ovs_key);
2058 
2059 		if (masked) {
2060 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2061 
2062 			/* Non-writeable fields. */
2063 			if (mask->ipv4_proto || mask->ipv4_frag)
2064 				return -EINVAL;
2065 		} else {
2066 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2067 				return -EINVAL;
2068 
2069 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2070 				return -EINVAL;
2071 		}
2072 		break;
2073 
2074 	case OVS_KEY_ATTR_IPV6:
2075 		if (eth_type != htons(ETH_P_IPV6))
2076 			return -EINVAL;
2077 
2078 		ipv6_key = nla_data(ovs_key);
2079 
2080 		if (masked) {
2081 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2082 
2083 			/* Non-writeable fields. */
2084 			if (mask->ipv6_proto || mask->ipv6_frag)
2085 				return -EINVAL;
2086 
2087 			/* Invalid bits in the flow label mask? */
2088 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2089 				return -EINVAL;
2090 		} else {
2091 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2092 				return -EINVAL;
2093 
2094 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2095 				return -EINVAL;
2096 		}
2097 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2098 			return -EINVAL;
2099 
2100 		break;
2101 
2102 	case OVS_KEY_ATTR_TCP:
2103 		if ((eth_type != htons(ETH_P_IP) &&
2104 		     eth_type != htons(ETH_P_IPV6)) ||
2105 		    flow_key->ip.proto != IPPROTO_TCP)
2106 			return -EINVAL;
2107 
2108 		break;
2109 
2110 	case OVS_KEY_ATTR_UDP:
2111 		if ((eth_type != htons(ETH_P_IP) &&
2112 		     eth_type != htons(ETH_P_IPV6)) ||
2113 		    flow_key->ip.proto != IPPROTO_UDP)
2114 			return -EINVAL;
2115 
2116 		break;
2117 
2118 	case OVS_KEY_ATTR_MPLS:
2119 		if (!eth_p_mpls(eth_type))
2120 			return -EINVAL;
2121 		break;
2122 
2123 	case OVS_KEY_ATTR_SCTP:
2124 		if ((eth_type != htons(ETH_P_IP) &&
2125 		     eth_type != htons(ETH_P_IPV6)) ||
2126 		    flow_key->ip.proto != IPPROTO_SCTP)
2127 			return -EINVAL;
2128 
2129 		break;
2130 
2131 	default:
2132 		return -EINVAL;
2133 	}
2134 
2135 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2136 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2137 		int start, len = key_len * 2;
2138 		struct nlattr *at;
2139 
2140 		*skip_copy = true;
2141 
2142 		start = add_nested_action_start(sfa,
2143 						OVS_ACTION_ATTR_SET_TO_MASKED,
2144 						log);
2145 		if (start < 0)
2146 			return start;
2147 
2148 		at = __add_action(sfa, key_type, NULL, len, log);
2149 		if (IS_ERR(at))
2150 			return PTR_ERR(at);
2151 
2152 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2153 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2154 		/* Clear non-writeable bits from otherwise writeable fields. */
2155 		if (key_type == OVS_KEY_ATTR_IPV6) {
2156 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2157 
2158 			mask->ipv6_label &= htonl(0x000FFFFF);
2159 		}
2160 		add_nested_action_end(*sfa, start);
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static int validate_userspace(const struct nlattr *attr)
2167 {
2168 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2169 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2170 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2171 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2172 	};
2173 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2174 	int error;
2175 
2176 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2177 				 attr, userspace_policy);
2178 	if (error)
2179 		return error;
2180 
2181 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2182 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2183 		return -EINVAL;
2184 
2185 	return 0;
2186 }
2187 
2188 static int copy_action(const struct nlattr *from,
2189 		       struct sw_flow_actions **sfa, bool log)
2190 {
2191 	int totlen = NLA_ALIGN(from->nla_len);
2192 	struct nlattr *to;
2193 
2194 	to = reserve_sfa_size(sfa, from->nla_len, log);
2195 	if (IS_ERR(to))
2196 		return PTR_ERR(to);
2197 
2198 	memcpy(to, from, totlen);
2199 	return 0;
2200 }
2201 
2202 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2203 				  const struct sw_flow_key *key,
2204 				  int depth, struct sw_flow_actions **sfa,
2205 				  __be16 eth_type, __be16 vlan_tci, bool log)
2206 {
2207 	const struct nlattr *a;
2208 	int rem, err;
2209 
2210 	if (depth >= SAMPLE_ACTION_DEPTH)
2211 		return -EOVERFLOW;
2212 
2213 	nla_for_each_nested(a, attr, rem) {
2214 		/* Expected argument lengths, (u32)-1 for variable length. */
2215 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2216 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2217 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2218 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2219 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2220 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2221 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2222 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2223 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2224 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2225 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2226 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2227 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2228 		};
2229 		const struct ovs_action_push_vlan *vlan;
2230 		int type = nla_type(a);
2231 		bool skip_copy;
2232 
2233 		if (type > OVS_ACTION_ATTR_MAX ||
2234 		    (action_lens[type] != nla_len(a) &&
2235 		     action_lens[type] != (u32)-1))
2236 			return -EINVAL;
2237 
2238 		skip_copy = false;
2239 		switch (type) {
2240 		case OVS_ACTION_ATTR_UNSPEC:
2241 			return -EINVAL;
2242 
2243 		case OVS_ACTION_ATTR_USERSPACE:
2244 			err = validate_userspace(a);
2245 			if (err)
2246 				return err;
2247 			break;
2248 
2249 		case OVS_ACTION_ATTR_OUTPUT:
2250 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2251 				return -EINVAL;
2252 			break;
2253 
2254 		case OVS_ACTION_ATTR_HASH: {
2255 			const struct ovs_action_hash *act_hash = nla_data(a);
2256 
2257 			switch (act_hash->hash_alg) {
2258 			case OVS_HASH_ALG_L4:
2259 				break;
2260 			default:
2261 				return  -EINVAL;
2262 			}
2263 
2264 			break;
2265 		}
2266 
2267 		case OVS_ACTION_ATTR_POP_VLAN:
2268 			vlan_tci = htons(0);
2269 			break;
2270 
2271 		case OVS_ACTION_ATTR_PUSH_VLAN:
2272 			vlan = nla_data(a);
2273 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2274 				return -EINVAL;
2275 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2276 				return -EINVAL;
2277 			vlan_tci = vlan->vlan_tci;
2278 			break;
2279 
2280 		case OVS_ACTION_ATTR_RECIRC:
2281 			break;
2282 
2283 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2284 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2285 
2286 			if (!eth_p_mpls(mpls->mpls_ethertype))
2287 				return -EINVAL;
2288 			/* Prohibit push MPLS other than to a white list
2289 			 * for packets that have a known tag order.
2290 			 */
2291 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2292 			    (eth_type != htons(ETH_P_IP) &&
2293 			     eth_type != htons(ETH_P_IPV6) &&
2294 			     eth_type != htons(ETH_P_ARP) &&
2295 			     eth_type != htons(ETH_P_RARP) &&
2296 			     !eth_p_mpls(eth_type)))
2297 				return -EINVAL;
2298 			eth_type = mpls->mpls_ethertype;
2299 			break;
2300 		}
2301 
2302 		case OVS_ACTION_ATTR_POP_MPLS:
2303 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2304 			    !eth_p_mpls(eth_type))
2305 				return -EINVAL;
2306 
2307 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2308 			 * as there is no check here to ensure that the new
2309 			 * eth_type is valid and thus set actions could
2310 			 * write off the end of the packet or otherwise
2311 			 * corrupt it.
2312 			 *
2313 			 * Support for these actions is planned using packet
2314 			 * recirculation.
2315 			 */
2316 			eth_type = htons(0);
2317 			break;
2318 
2319 		case OVS_ACTION_ATTR_SET:
2320 			err = validate_set(a, key, sfa,
2321 					   &skip_copy, eth_type, false, log);
2322 			if (err)
2323 				return err;
2324 			break;
2325 
2326 		case OVS_ACTION_ATTR_SET_MASKED:
2327 			err = validate_set(a, key, sfa,
2328 					   &skip_copy, eth_type, true, log);
2329 			if (err)
2330 				return err;
2331 			break;
2332 
2333 		case OVS_ACTION_ATTR_SAMPLE:
2334 			err = validate_and_copy_sample(net, a, key, depth, sfa,
2335 						       eth_type, vlan_tci, log);
2336 			if (err)
2337 				return err;
2338 			skip_copy = true;
2339 			break;
2340 
2341 		case OVS_ACTION_ATTR_CT:
2342 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2343 			if (err)
2344 				return err;
2345 			skip_copy = true;
2346 			break;
2347 
2348 		default:
2349 			OVS_NLERR(log, "Unknown Action type %d", type);
2350 			return -EINVAL;
2351 		}
2352 		if (!skip_copy) {
2353 			err = copy_action(a, sfa, log);
2354 			if (err)
2355 				return err;
2356 		}
2357 	}
2358 
2359 	if (rem > 0)
2360 		return -EINVAL;
2361 
2362 	return 0;
2363 }
2364 
2365 /* 'key' must be the masked key. */
2366 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2367 			 const struct sw_flow_key *key,
2368 			 struct sw_flow_actions **sfa, bool log)
2369 {
2370 	int err;
2371 
2372 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2373 	if (IS_ERR(*sfa))
2374 		return PTR_ERR(*sfa);
2375 
2376 	(*sfa)->orig_len = nla_len(attr);
2377 	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2378 				     key->eth.tci, log);
2379 	if (err)
2380 		ovs_nla_free_flow_actions(*sfa);
2381 
2382 	return err;
2383 }
2384 
2385 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2386 {
2387 	const struct nlattr *a;
2388 	struct nlattr *start;
2389 	int err = 0, rem;
2390 
2391 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2392 	if (!start)
2393 		return -EMSGSIZE;
2394 
2395 	nla_for_each_nested(a, attr, rem) {
2396 		int type = nla_type(a);
2397 		struct nlattr *st_sample;
2398 
2399 		switch (type) {
2400 		case OVS_SAMPLE_ATTR_PROBABILITY:
2401 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2402 				    sizeof(u32), nla_data(a)))
2403 				return -EMSGSIZE;
2404 			break;
2405 		case OVS_SAMPLE_ATTR_ACTIONS:
2406 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2407 			if (!st_sample)
2408 				return -EMSGSIZE;
2409 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2410 			if (err)
2411 				return err;
2412 			nla_nest_end(skb, st_sample);
2413 			break;
2414 		}
2415 	}
2416 
2417 	nla_nest_end(skb, start);
2418 	return err;
2419 }
2420 
2421 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2422 {
2423 	const struct nlattr *ovs_key = nla_data(a);
2424 	int key_type = nla_type(ovs_key);
2425 	struct nlattr *start;
2426 	int err;
2427 
2428 	switch (key_type) {
2429 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2430 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2431 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2432 
2433 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2434 		if (!start)
2435 			return -EMSGSIZE;
2436 
2437 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2438 					ip_tunnel_info_opts(tun_info),
2439 					tun_info->options_len,
2440 					ip_tunnel_info_af(tun_info));
2441 		if (err)
2442 			return err;
2443 		nla_nest_end(skb, start);
2444 		break;
2445 	}
2446 	default:
2447 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2448 			return -EMSGSIZE;
2449 		break;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2456 						struct sk_buff *skb)
2457 {
2458 	const struct nlattr *ovs_key = nla_data(a);
2459 	struct nlattr *nla;
2460 	size_t key_len = nla_len(ovs_key) / 2;
2461 
2462 	/* Revert the conversion we did from a non-masked set action to
2463 	 * masked set action.
2464 	 */
2465 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2466 	if (!nla)
2467 		return -EMSGSIZE;
2468 
2469 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2470 		return -EMSGSIZE;
2471 
2472 	nla_nest_end(skb, nla);
2473 	return 0;
2474 }
2475 
2476 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2477 {
2478 	const struct nlattr *a;
2479 	int rem, err;
2480 
2481 	nla_for_each_attr(a, attr, len, rem) {
2482 		int type = nla_type(a);
2483 
2484 		switch (type) {
2485 		case OVS_ACTION_ATTR_SET:
2486 			err = set_action_to_attr(a, skb);
2487 			if (err)
2488 				return err;
2489 			break;
2490 
2491 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2492 			err = masked_set_action_to_set_action_attr(a, skb);
2493 			if (err)
2494 				return err;
2495 			break;
2496 
2497 		case OVS_ACTION_ATTR_SAMPLE:
2498 			err = sample_action_to_attr(a, skb);
2499 			if (err)
2500 				return err;
2501 			break;
2502 
2503 		case OVS_ACTION_ATTR_CT:
2504 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2505 			if (err)
2506 				return err;
2507 			break;
2508 
2509 		default:
2510 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2511 				return -EMSGSIZE;
2512 			break;
2513 		}
2514 	}
2515 
2516 	return 0;
2517 }
2518