1 /* 2 * Copyright (c) 2007-2017 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 #include <net/tun_proto.h> 52 #include <net/erspan.h> 53 54 #include "flow_netlink.h" 55 56 struct ovs_len_tbl { 57 int len; 58 const struct ovs_len_tbl *next; 59 }; 60 61 #define OVS_ATTR_NESTED -1 62 #define OVS_ATTR_VARIABLE -2 63 64 static bool actions_may_change_flow(const struct nlattr *actions) 65 { 66 struct nlattr *nla; 67 int rem; 68 69 nla_for_each_nested(nla, actions, rem) { 70 u16 action = nla_type(nla); 71 72 switch (action) { 73 case OVS_ACTION_ATTR_OUTPUT: 74 case OVS_ACTION_ATTR_RECIRC: 75 case OVS_ACTION_ATTR_TRUNC: 76 case OVS_ACTION_ATTR_USERSPACE: 77 break; 78 79 case OVS_ACTION_ATTR_CT: 80 case OVS_ACTION_ATTR_CT_CLEAR: 81 case OVS_ACTION_ATTR_HASH: 82 case OVS_ACTION_ATTR_POP_ETH: 83 case OVS_ACTION_ATTR_POP_MPLS: 84 case OVS_ACTION_ATTR_POP_NSH: 85 case OVS_ACTION_ATTR_POP_VLAN: 86 case OVS_ACTION_ATTR_PUSH_ETH: 87 case OVS_ACTION_ATTR_PUSH_MPLS: 88 case OVS_ACTION_ATTR_PUSH_NSH: 89 case OVS_ACTION_ATTR_PUSH_VLAN: 90 case OVS_ACTION_ATTR_SAMPLE: 91 case OVS_ACTION_ATTR_SET: 92 case OVS_ACTION_ATTR_SET_MASKED: 93 case OVS_ACTION_ATTR_METER: 94 default: 95 return true; 96 } 97 } 98 return false; 99 } 100 101 static void update_range(struct sw_flow_match *match, 102 size_t offset, size_t size, bool is_mask) 103 { 104 struct sw_flow_key_range *range; 105 size_t start = rounddown(offset, sizeof(long)); 106 size_t end = roundup(offset + size, sizeof(long)); 107 108 if (!is_mask) 109 range = &match->range; 110 else 111 range = &match->mask->range; 112 113 if (range->start == range->end) { 114 range->start = start; 115 range->end = end; 116 return; 117 } 118 119 if (range->start > start) 120 range->start = start; 121 122 if (range->end < end) 123 range->end = end; 124 } 125 126 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 127 do { \ 128 update_range(match, offsetof(struct sw_flow_key, field), \ 129 sizeof((match)->key->field), is_mask); \ 130 if (is_mask) \ 131 (match)->mask->key.field = value; \ 132 else \ 133 (match)->key->field = value; \ 134 } while (0) 135 136 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 137 do { \ 138 update_range(match, offset, len, is_mask); \ 139 if (is_mask) \ 140 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 141 len); \ 142 else \ 143 memcpy((u8 *)(match)->key + offset, value_p, len); \ 144 } while (0) 145 146 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 147 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 148 value_p, len, is_mask) 149 150 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 151 do { \ 152 update_range(match, offsetof(struct sw_flow_key, field), \ 153 sizeof((match)->key->field), is_mask); \ 154 if (is_mask) \ 155 memset((u8 *)&(match)->mask->key.field, value, \ 156 sizeof((match)->mask->key.field)); \ 157 else \ 158 memset((u8 *)&(match)->key->field, value, \ 159 sizeof((match)->key->field)); \ 160 } while (0) 161 162 static bool match_validate(const struct sw_flow_match *match, 163 u64 key_attrs, u64 mask_attrs, bool log) 164 { 165 u64 key_expected = 0; 166 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 167 168 /* The following mask attributes allowed only if they 169 * pass the validation tests. */ 170 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 171 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) 172 | (1 << OVS_KEY_ATTR_IPV6) 173 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) 174 | (1 << OVS_KEY_ATTR_TCP) 175 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 176 | (1 << OVS_KEY_ATTR_UDP) 177 | (1 << OVS_KEY_ATTR_SCTP) 178 | (1 << OVS_KEY_ATTR_ICMP) 179 | (1 << OVS_KEY_ATTR_ICMPV6) 180 | (1 << OVS_KEY_ATTR_ARP) 181 | (1 << OVS_KEY_ATTR_ND) 182 | (1 << OVS_KEY_ATTR_MPLS) 183 | (1 << OVS_KEY_ATTR_NSH)); 184 185 /* Always allowed mask fields. */ 186 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 187 | (1 << OVS_KEY_ATTR_IN_PORT) 188 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 189 190 /* Check key attributes. */ 191 if (match->key->eth.type == htons(ETH_P_ARP) 192 || match->key->eth.type == htons(ETH_P_RARP)) { 193 key_expected |= 1 << OVS_KEY_ATTR_ARP; 194 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 195 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 196 } 197 198 if (eth_p_mpls(match->key->eth.type)) { 199 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 200 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 201 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 202 } 203 204 if (match->key->eth.type == htons(ETH_P_IP)) { 205 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 206 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 207 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 208 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; 209 } 210 211 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 212 if (match->key->ip.proto == IPPROTO_UDP) { 213 key_expected |= 1 << OVS_KEY_ATTR_UDP; 214 if (match->mask && (match->mask->key.ip.proto == 0xff)) 215 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 216 } 217 218 if (match->key->ip.proto == IPPROTO_SCTP) { 219 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 220 if (match->mask && (match->mask->key.ip.proto == 0xff)) 221 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 222 } 223 224 if (match->key->ip.proto == IPPROTO_TCP) { 225 key_expected |= 1 << OVS_KEY_ATTR_TCP; 226 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 227 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 228 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 229 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 230 } 231 } 232 233 if (match->key->ip.proto == IPPROTO_ICMP) { 234 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 235 if (match->mask && (match->mask->key.ip.proto == 0xff)) 236 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 237 } 238 } 239 } 240 241 if (match->key->eth.type == htons(ETH_P_IPV6)) { 242 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 243 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 244 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 245 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; 246 } 247 248 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 249 if (match->key->ip.proto == IPPROTO_UDP) { 250 key_expected |= 1 << OVS_KEY_ATTR_UDP; 251 if (match->mask && (match->mask->key.ip.proto == 0xff)) 252 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 253 } 254 255 if (match->key->ip.proto == IPPROTO_SCTP) { 256 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 257 if (match->mask && (match->mask->key.ip.proto == 0xff)) 258 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 259 } 260 261 if (match->key->ip.proto == IPPROTO_TCP) { 262 key_expected |= 1 << OVS_KEY_ATTR_TCP; 263 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 264 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 265 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 266 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 267 } 268 } 269 270 if (match->key->ip.proto == IPPROTO_ICMPV6) { 271 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 272 if (match->mask && (match->mask->key.ip.proto == 0xff)) 273 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 274 275 if (match->key->tp.src == 276 htons(NDISC_NEIGHBOUR_SOLICITATION) || 277 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 278 key_expected |= 1 << OVS_KEY_ATTR_ND; 279 /* Original direction conntrack tuple 280 * uses the same space as the ND fields 281 * in the key, so both are not allowed 282 * at the same time. 283 */ 284 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 285 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 286 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 287 } 288 } 289 } 290 } 291 292 if (match->key->eth.type == htons(ETH_P_NSH)) { 293 key_expected |= 1 << OVS_KEY_ATTR_NSH; 294 if (match->mask && 295 match->mask->key.eth.type == htons(0xffff)) { 296 mask_allowed |= 1 << OVS_KEY_ATTR_NSH; 297 } 298 } 299 300 if ((key_attrs & key_expected) != key_expected) { 301 /* Key attributes check failed. */ 302 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 303 (unsigned long long)key_attrs, 304 (unsigned long long)key_expected); 305 return false; 306 } 307 308 if ((mask_attrs & mask_allowed) != mask_attrs) { 309 /* Mask attributes check failed. */ 310 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 311 (unsigned long long)mask_attrs, 312 (unsigned long long)mask_allowed); 313 return false; 314 } 315 316 return true; 317 } 318 319 size_t ovs_tun_key_attr_size(void) 320 { 321 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 322 * updating this function. 323 */ 324 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 325 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 326 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 327 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 328 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 329 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 330 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 331 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 332 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 333 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and 334 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with 335 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 336 */ 337 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 338 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 339 } 340 341 static size_t ovs_nsh_key_attr_size(void) 342 { 343 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider 344 * updating this function. 345 */ 346 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ 347 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are 348 * mutually exclusive, so the bigger one can cover 349 * the small one. 350 */ 351 + nla_total_size(NSH_CTX_HDRS_MAX_LEN); 352 } 353 354 size_t ovs_key_attr_size(void) 355 { 356 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 357 * updating this function. 358 */ 359 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29); 360 361 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 362 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 363 + ovs_tun_key_attr_size() 364 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 365 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 366 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 367 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 368 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 369 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 370 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 371 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 372 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ 373 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ 374 + ovs_nsh_key_attr_size() 375 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 376 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 377 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 378 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 379 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 380 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 381 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 382 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 383 } 384 385 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 386 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 387 }; 388 389 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 390 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 391 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 392 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 393 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 394 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 395 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 396 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 397 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 398 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 399 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 400 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 401 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 402 .next = ovs_vxlan_ext_key_lens }, 403 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 404 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 405 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE }, 406 }; 407 408 static const struct ovs_len_tbl 409 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { 410 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, 411 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, 412 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, 413 }; 414 415 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 416 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 417 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 418 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 419 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 420 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 421 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 422 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 423 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 424 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 425 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 426 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 427 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 428 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 429 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 430 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 431 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 432 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 433 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 434 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 435 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 436 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 437 .next = ovs_tunnel_key_lens, }, 438 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 439 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 440 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 441 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 442 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 443 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { 444 .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, 445 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { 446 .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, 447 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, 448 .next = ovs_nsh_key_attr_lens, }, 449 }; 450 451 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 452 { 453 return expected_len == attr_len || 454 expected_len == OVS_ATTR_NESTED || 455 expected_len == OVS_ATTR_VARIABLE; 456 } 457 458 static bool is_all_zero(const u8 *fp, size_t size) 459 { 460 int i; 461 462 if (!fp) 463 return false; 464 465 for (i = 0; i < size; i++) 466 if (fp[i]) 467 return false; 468 469 return true; 470 } 471 472 static int __parse_flow_nlattrs(const struct nlattr *attr, 473 const struct nlattr *a[], 474 u64 *attrsp, bool log, bool nz) 475 { 476 const struct nlattr *nla; 477 u64 attrs; 478 int rem; 479 480 attrs = *attrsp; 481 nla_for_each_nested(nla, attr, rem) { 482 u16 type = nla_type(nla); 483 int expected_len; 484 485 if (type > OVS_KEY_ATTR_MAX) { 486 OVS_NLERR(log, "Key type %d is out of range max %d", 487 type, OVS_KEY_ATTR_MAX); 488 return -EINVAL; 489 } 490 491 if (attrs & (1 << type)) { 492 OVS_NLERR(log, "Duplicate key (type %d).", type); 493 return -EINVAL; 494 } 495 496 expected_len = ovs_key_lens[type].len; 497 if (!check_attr_len(nla_len(nla), expected_len)) { 498 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 499 type, nla_len(nla), expected_len); 500 return -EINVAL; 501 } 502 503 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 504 attrs |= 1 << type; 505 a[type] = nla; 506 } 507 } 508 if (rem) { 509 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 510 return -EINVAL; 511 } 512 513 *attrsp = attrs; 514 return 0; 515 } 516 517 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 518 const struct nlattr *a[], u64 *attrsp, 519 bool log) 520 { 521 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 522 } 523 524 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], 525 u64 *attrsp, bool log) 526 { 527 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 528 } 529 530 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 531 struct sw_flow_match *match, bool is_mask, 532 bool log) 533 { 534 unsigned long opt_key_offset; 535 536 if (nla_len(a) > sizeof(match->key->tun_opts)) { 537 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 538 nla_len(a), sizeof(match->key->tun_opts)); 539 return -EINVAL; 540 } 541 542 if (nla_len(a) % 4 != 0) { 543 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 544 nla_len(a)); 545 return -EINVAL; 546 } 547 548 /* We need to record the length of the options passed 549 * down, otherwise packets with the same format but 550 * additional options will be silently matched. 551 */ 552 if (!is_mask) { 553 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 554 false); 555 } else { 556 /* This is somewhat unusual because it looks at 557 * both the key and mask while parsing the 558 * attributes (and by extension assumes the key 559 * is parsed first). Normally, we would verify 560 * that each is the correct length and that the 561 * attributes line up in the validate function. 562 * However, that is difficult because this is 563 * variable length and we won't have the 564 * information later. 565 */ 566 if (match->key->tun_opts_len != nla_len(a)) { 567 OVS_NLERR(log, "Geneve option len %d != mask len %d", 568 match->key->tun_opts_len, nla_len(a)); 569 return -EINVAL; 570 } 571 572 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 573 } 574 575 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 576 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 577 nla_len(a), is_mask); 578 return 0; 579 } 580 581 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 582 struct sw_flow_match *match, bool is_mask, 583 bool log) 584 { 585 struct nlattr *a; 586 int rem; 587 unsigned long opt_key_offset; 588 struct vxlan_metadata opts; 589 590 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 591 592 memset(&opts, 0, sizeof(opts)); 593 nla_for_each_nested(a, attr, rem) { 594 int type = nla_type(a); 595 596 if (type > OVS_VXLAN_EXT_MAX) { 597 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 598 type, OVS_VXLAN_EXT_MAX); 599 return -EINVAL; 600 } 601 602 if (!check_attr_len(nla_len(a), 603 ovs_vxlan_ext_key_lens[type].len)) { 604 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 605 type, nla_len(a), 606 ovs_vxlan_ext_key_lens[type].len); 607 return -EINVAL; 608 } 609 610 switch (type) { 611 case OVS_VXLAN_EXT_GBP: 612 opts.gbp = nla_get_u32(a); 613 break; 614 default: 615 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 616 type); 617 return -EINVAL; 618 } 619 } 620 if (rem) { 621 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 622 rem); 623 return -EINVAL; 624 } 625 626 if (!is_mask) 627 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 628 else 629 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 630 631 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 632 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 633 is_mask); 634 return 0; 635 } 636 637 static int erspan_tun_opt_from_nlattr(const struct nlattr *a, 638 struct sw_flow_match *match, bool is_mask, 639 bool log) 640 { 641 unsigned long opt_key_offset; 642 643 BUILD_BUG_ON(sizeof(struct erspan_metadata) > 644 sizeof(match->key->tun_opts)); 645 646 if (nla_len(a) > sizeof(match->key->tun_opts)) { 647 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", 648 nla_len(a), sizeof(match->key->tun_opts)); 649 return -EINVAL; 650 } 651 652 if (!is_mask) 653 SW_FLOW_KEY_PUT(match, tun_opts_len, 654 sizeof(struct erspan_metadata), false); 655 else 656 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 657 658 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 659 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 660 nla_len(a), is_mask); 661 return 0; 662 } 663 664 static int ip_tun_from_nlattr(const struct nlattr *attr, 665 struct sw_flow_match *match, bool is_mask, 666 bool log) 667 { 668 bool ttl = false, ipv4 = false, ipv6 = false; 669 __be16 tun_flags = 0; 670 int opts_type = 0; 671 struct nlattr *a; 672 int rem; 673 674 nla_for_each_nested(a, attr, rem) { 675 int type = nla_type(a); 676 int err; 677 678 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 679 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 680 type, OVS_TUNNEL_KEY_ATTR_MAX); 681 return -EINVAL; 682 } 683 684 if (!check_attr_len(nla_len(a), 685 ovs_tunnel_key_lens[type].len)) { 686 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 687 type, nla_len(a), ovs_tunnel_key_lens[type].len); 688 return -EINVAL; 689 } 690 691 switch (type) { 692 case OVS_TUNNEL_KEY_ATTR_ID: 693 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 694 nla_get_be64(a), is_mask); 695 tun_flags |= TUNNEL_KEY; 696 break; 697 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 698 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 699 nla_get_in_addr(a), is_mask); 700 ipv4 = true; 701 break; 702 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 703 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 704 nla_get_in_addr(a), is_mask); 705 ipv4 = true; 706 break; 707 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 708 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, 709 nla_get_in6_addr(a), is_mask); 710 ipv6 = true; 711 break; 712 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 713 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 714 nla_get_in6_addr(a), is_mask); 715 ipv6 = true; 716 break; 717 case OVS_TUNNEL_KEY_ATTR_TOS: 718 SW_FLOW_KEY_PUT(match, tun_key.tos, 719 nla_get_u8(a), is_mask); 720 break; 721 case OVS_TUNNEL_KEY_ATTR_TTL: 722 SW_FLOW_KEY_PUT(match, tun_key.ttl, 723 nla_get_u8(a), is_mask); 724 ttl = true; 725 break; 726 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 727 tun_flags |= TUNNEL_DONT_FRAGMENT; 728 break; 729 case OVS_TUNNEL_KEY_ATTR_CSUM: 730 tun_flags |= TUNNEL_CSUM; 731 break; 732 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 733 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 734 nla_get_be16(a), is_mask); 735 break; 736 case OVS_TUNNEL_KEY_ATTR_TP_DST: 737 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 738 nla_get_be16(a), is_mask); 739 break; 740 case OVS_TUNNEL_KEY_ATTR_OAM: 741 tun_flags |= TUNNEL_OAM; 742 break; 743 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 744 if (opts_type) { 745 OVS_NLERR(log, "Multiple metadata blocks provided"); 746 return -EINVAL; 747 } 748 749 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 750 if (err) 751 return err; 752 753 tun_flags |= TUNNEL_GENEVE_OPT; 754 opts_type = type; 755 break; 756 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 757 if (opts_type) { 758 OVS_NLERR(log, "Multiple metadata blocks provided"); 759 return -EINVAL; 760 } 761 762 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 763 if (err) 764 return err; 765 766 tun_flags |= TUNNEL_VXLAN_OPT; 767 opts_type = type; 768 break; 769 case OVS_TUNNEL_KEY_ATTR_PAD: 770 break; 771 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 772 if (opts_type) { 773 OVS_NLERR(log, "Multiple metadata blocks provided"); 774 return -EINVAL; 775 } 776 777 err = erspan_tun_opt_from_nlattr(a, match, is_mask, 778 log); 779 if (err) 780 return err; 781 782 tun_flags |= TUNNEL_ERSPAN_OPT; 783 opts_type = type; 784 break; 785 default: 786 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 787 type); 788 return -EINVAL; 789 } 790 } 791 792 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 793 if (is_mask) 794 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 795 else 796 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 797 false); 798 799 if (rem > 0) { 800 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 801 rem); 802 return -EINVAL; 803 } 804 805 if (ipv4 && ipv6) { 806 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 807 return -EINVAL; 808 } 809 810 if (!is_mask) { 811 if (!ipv4 && !ipv6) { 812 OVS_NLERR(log, "IP tunnel dst address not specified"); 813 return -EINVAL; 814 } 815 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 816 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 817 return -EINVAL; 818 } 819 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 820 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 821 return -EINVAL; 822 } 823 824 if (!ttl) { 825 OVS_NLERR(log, "IP tunnel TTL not specified."); 826 return -EINVAL; 827 } 828 } 829 830 return opts_type; 831 } 832 833 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 834 const void *tun_opts, int swkey_tun_opts_len) 835 { 836 const struct vxlan_metadata *opts = tun_opts; 837 struct nlattr *nla; 838 839 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 840 if (!nla) 841 return -EMSGSIZE; 842 843 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 844 return -EMSGSIZE; 845 846 nla_nest_end(skb, nla); 847 return 0; 848 } 849 850 static int __ip_tun_to_nlattr(struct sk_buff *skb, 851 const struct ip_tunnel_key *output, 852 const void *tun_opts, int swkey_tun_opts_len, 853 unsigned short tun_proto) 854 { 855 if (output->tun_flags & TUNNEL_KEY && 856 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 857 OVS_TUNNEL_KEY_ATTR_PAD)) 858 return -EMSGSIZE; 859 switch (tun_proto) { 860 case AF_INET: 861 if (output->u.ipv4.src && 862 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 863 output->u.ipv4.src)) 864 return -EMSGSIZE; 865 if (output->u.ipv4.dst && 866 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 867 output->u.ipv4.dst)) 868 return -EMSGSIZE; 869 break; 870 case AF_INET6: 871 if (!ipv6_addr_any(&output->u.ipv6.src) && 872 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 873 &output->u.ipv6.src)) 874 return -EMSGSIZE; 875 if (!ipv6_addr_any(&output->u.ipv6.dst) && 876 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 877 &output->u.ipv6.dst)) 878 return -EMSGSIZE; 879 break; 880 } 881 if (output->tos && 882 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 883 return -EMSGSIZE; 884 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 885 return -EMSGSIZE; 886 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 887 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 888 return -EMSGSIZE; 889 if ((output->tun_flags & TUNNEL_CSUM) && 890 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 891 return -EMSGSIZE; 892 if (output->tp_src && 893 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 894 return -EMSGSIZE; 895 if (output->tp_dst && 896 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 897 return -EMSGSIZE; 898 if ((output->tun_flags & TUNNEL_OAM) && 899 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 900 return -EMSGSIZE; 901 if (swkey_tun_opts_len) { 902 if (output->tun_flags & TUNNEL_GENEVE_OPT && 903 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 904 swkey_tun_opts_len, tun_opts)) 905 return -EMSGSIZE; 906 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 907 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 908 return -EMSGSIZE; 909 else if (output->tun_flags & TUNNEL_ERSPAN_OPT && 910 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, 911 swkey_tun_opts_len, tun_opts)) 912 return -EMSGSIZE; 913 } 914 915 return 0; 916 } 917 918 static int ip_tun_to_nlattr(struct sk_buff *skb, 919 const struct ip_tunnel_key *output, 920 const void *tun_opts, int swkey_tun_opts_len, 921 unsigned short tun_proto) 922 { 923 struct nlattr *nla; 924 int err; 925 926 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 927 if (!nla) 928 return -EMSGSIZE; 929 930 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 931 tun_proto); 932 if (err) 933 return err; 934 935 nla_nest_end(skb, nla); 936 return 0; 937 } 938 939 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 940 struct ip_tunnel_info *tun_info) 941 { 942 return __ip_tun_to_nlattr(skb, &tun_info->key, 943 ip_tunnel_info_opts(tun_info), 944 tun_info->options_len, 945 ip_tunnel_info_af(tun_info)); 946 } 947 948 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 949 const struct nlattr *a[], 950 bool is_mask, bool inner) 951 { 952 __be16 tci = 0; 953 __be16 tpid = 0; 954 955 if (a[OVS_KEY_ATTR_VLAN]) 956 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 957 958 if (a[OVS_KEY_ATTR_ETHERTYPE]) 959 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 960 961 if (likely(!inner)) { 962 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 963 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 964 } else { 965 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 966 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 967 } 968 return 0; 969 } 970 971 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 972 u64 key_attrs, bool inner, 973 const struct nlattr **a, bool log) 974 { 975 __be16 tci = 0; 976 977 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 978 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 979 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 980 /* Not a VLAN. */ 981 return 0; 982 } 983 984 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 985 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 986 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 987 return -EINVAL; 988 } 989 990 if (a[OVS_KEY_ATTR_VLAN]) 991 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 992 993 if (!(tci & htons(VLAN_CFI_MASK))) { 994 if (tci) { 995 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.", 996 (inner) ? "C-VLAN" : "VLAN"); 997 return -EINVAL; 998 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 999 /* Corner case for truncated VLAN header. */ 1000 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 1001 (inner) ? "C-VLAN" : "VLAN"); 1002 return -EINVAL; 1003 } 1004 } 1005 1006 return 1; 1007 } 1008 1009 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 1010 u64 key_attrs, bool inner, 1011 const struct nlattr **a, bool log) 1012 { 1013 __be16 tci = 0; 1014 __be16 tpid = 0; 1015 bool encap_valid = !!(match->key->eth.vlan.tci & 1016 htons(VLAN_CFI_MASK)); 1017 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 1018 htons(VLAN_CFI_MASK)); 1019 1020 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 1021 /* Not a VLAN. */ 1022 return 0; 1023 } 1024 1025 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 1026 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 1027 (inner) ? "C-VLAN" : "VLAN"); 1028 return -EINVAL; 1029 } 1030 1031 if (a[OVS_KEY_ATTR_VLAN]) 1032 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1033 1034 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1035 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1036 1037 if (tpid != htons(0xffff)) { 1038 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 1039 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 1040 return -EINVAL; 1041 } 1042 if (!(tci & htons(VLAN_CFI_MASK))) { 1043 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.", 1044 (inner) ? "C-VLAN" : "VLAN"); 1045 return -EINVAL; 1046 } 1047 1048 return 1; 1049 } 1050 1051 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 1052 u64 *key_attrs, bool inner, 1053 const struct nlattr **a, bool is_mask, 1054 bool log) 1055 { 1056 int err; 1057 const struct nlattr *encap; 1058 1059 if (!is_mask) 1060 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 1061 a, log); 1062 else 1063 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 1064 a, log); 1065 if (err <= 0) 1066 return err; 1067 1068 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 1069 if (err) 1070 return err; 1071 1072 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1073 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 1074 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1075 1076 encap = a[OVS_KEY_ATTR_ENCAP]; 1077 1078 if (!is_mask) 1079 err = parse_flow_nlattrs(encap, a, key_attrs, log); 1080 else 1081 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 1082 1083 return err; 1084 } 1085 1086 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 1087 u64 *key_attrs, const struct nlattr **a, 1088 bool is_mask, bool log) 1089 { 1090 int err; 1091 bool encap_valid = false; 1092 1093 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 1094 is_mask, log); 1095 if (err) 1096 return err; 1097 1098 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); 1099 if (encap_valid) { 1100 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 1101 is_mask, log); 1102 if (err) 1103 return err; 1104 } 1105 1106 return 0; 1107 } 1108 1109 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, 1110 u64 *attrs, const struct nlattr **a, 1111 bool is_mask, bool log) 1112 { 1113 __be16 eth_type; 1114 1115 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1116 if (is_mask) { 1117 /* Always exact match EtherType. */ 1118 eth_type = htons(0xffff); 1119 } else if (!eth_proto_is_802_3(eth_type)) { 1120 OVS_NLERR(log, "EtherType %x is less than min %x", 1121 ntohs(eth_type), ETH_P_802_3_MIN); 1122 return -EINVAL; 1123 } 1124 1125 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1126 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1127 return 0; 1128 } 1129 1130 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 1131 u64 *attrs, const struct nlattr **a, 1132 bool is_mask, bool log) 1133 { 1134 u8 mac_proto = MAC_PROTO_ETHERNET; 1135 1136 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 1137 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 1138 1139 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 1140 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 1141 } 1142 1143 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 1144 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 1145 1146 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 1147 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 1148 } 1149 1150 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 1151 SW_FLOW_KEY_PUT(match, phy.priority, 1152 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 1153 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 1154 } 1155 1156 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 1157 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 1158 1159 if (is_mask) { 1160 in_port = 0xffffffff; /* Always exact match in_port. */ 1161 } else if (in_port >= DP_MAX_PORTS) { 1162 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1163 in_port, DP_MAX_PORTS); 1164 return -EINVAL; 1165 } 1166 1167 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1168 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1169 } else if (!is_mask) { 1170 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1171 } 1172 1173 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1174 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1175 1176 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1177 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1178 } 1179 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1180 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1181 is_mask, log) < 0) 1182 return -EINVAL; 1183 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1184 } 1185 1186 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1187 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1188 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1189 1190 if (ct_state & ~CT_SUPPORTED_MASK) { 1191 OVS_NLERR(log, "ct_state flags %08x unsupported", 1192 ct_state); 1193 return -EINVAL; 1194 } 1195 1196 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); 1197 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1198 } 1199 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1200 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1201 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1202 1203 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); 1204 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1205 } 1206 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1207 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1208 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1209 1210 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1211 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1212 } 1213 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1214 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1215 const struct ovs_key_ct_labels *cl; 1216 1217 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1218 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1219 sizeof(*cl), is_mask); 1220 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1221 } 1222 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { 1223 const struct ovs_key_ct_tuple_ipv4 *ct; 1224 1225 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); 1226 1227 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); 1228 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); 1229 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1230 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1231 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); 1232 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); 1233 } 1234 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { 1235 const struct ovs_key_ct_tuple_ipv6 *ct; 1236 1237 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); 1238 1239 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, 1240 sizeof(match->key->ipv6.ct_orig.src), 1241 is_mask); 1242 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, 1243 sizeof(match->key->ipv6.ct_orig.dst), 1244 is_mask); 1245 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1246 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1247 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); 1248 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 1249 } 1250 1251 /* For layer 3 packets the Ethernet type is provided 1252 * and treated as metadata but no MAC addresses are provided. 1253 */ 1254 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && 1255 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) 1256 mac_proto = MAC_PROTO_NONE; 1257 1258 /* Always exact match mac_proto */ 1259 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); 1260 1261 if (mac_proto == MAC_PROTO_NONE) 1262 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, 1263 log); 1264 1265 return 0; 1266 } 1267 1268 int nsh_hdr_from_nlattr(const struct nlattr *attr, 1269 struct nshhdr *nh, size_t size) 1270 { 1271 struct nlattr *a; 1272 int rem; 1273 u8 flags = 0; 1274 u8 ttl = 0; 1275 int mdlen = 0; 1276 1277 /* validate_nsh has check this, so we needn't do duplicate check here 1278 */ 1279 if (size < NSH_BASE_HDR_LEN) 1280 return -ENOBUFS; 1281 1282 nla_for_each_nested(a, attr, rem) { 1283 int type = nla_type(a); 1284 1285 switch (type) { 1286 case OVS_NSH_KEY_ATTR_BASE: { 1287 const struct ovs_nsh_key_base *base = nla_data(a); 1288 1289 flags = base->flags; 1290 ttl = base->ttl; 1291 nh->np = base->np; 1292 nh->mdtype = base->mdtype; 1293 nh->path_hdr = base->path_hdr; 1294 break; 1295 } 1296 case OVS_NSH_KEY_ATTR_MD1: 1297 mdlen = nla_len(a); 1298 if (mdlen > size - NSH_BASE_HDR_LEN) 1299 return -ENOBUFS; 1300 memcpy(&nh->md1, nla_data(a), mdlen); 1301 break; 1302 1303 case OVS_NSH_KEY_ATTR_MD2: 1304 mdlen = nla_len(a); 1305 if (mdlen > size - NSH_BASE_HDR_LEN) 1306 return -ENOBUFS; 1307 memcpy(&nh->md2, nla_data(a), mdlen); 1308 break; 1309 1310 default: 1311 return -EINVAL; 1312 } 1313 } 1314 1315 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ 1316 nh->ver_flags_ttl_len = 0; 1317 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); 1318 1319 return 0; 1320 } 1321 1322 int nsh_key_from_nlattr(const struct nlattr *attr, 1323 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) 1324 { 1325 struct nlattr *a; 1326 int rem; 1327 1328 /* validate_nsh has check this, so we needn't do duplicate check here 1329 */ 1330 nla_for_each_nested(a, attr, rem) { 1331 int type = nla_type(a); 1332 1333 switch (type) { 1334 case OVS_NSH_KEY_ATTR_BASE: { 1335 const struct ovs_nsh_key_base *base = nla_data(a); 1336 const struct ovs_nsh_key_base *base_mask = base + 1; 1337 1338 nsh->base = *base; 1339 nsh_mask->base = *base_mask; 1340 break; 1341 } 1342 case OVS_NSH_KEY_ATTR_MD1: { 1343 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1344 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; 1345 1346 memcpy(nsh->context, md1->context, sizeof(*md1)); 1347 memcpy(nsh_mask->context, md1_mask->context, 1348 sizeof(*md1_mask)); 1349 break; 1350 } 1351 case OVS_NSH_KEY_ATTR_MD2: 1352 /* Not supported yet */ 1353 return -ENOTSUPP; 1354 default: 1355 return -EINVAL; 1356 } 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int nsh_key_put_from_nlattr(const struct nlattr *attr, 1363 struct sw_flow_match *match, bool is_mask, 1364 bool is_push_nsh, bool log) 1365 { 1366 struct nlattr *a; 1367 int rem; 1368 bool has_base = false; 1369 bool has_md1 = false; 1370 bool has_md2 = false; 1371 u8 mdtype = 0; 1372 int mdlen = 0; 1373 1374 if (WARN_ON(is_push_nsh && is_mask)) 1375 return -EINVAL; 1376 1377 nla_for_each_nested(a, attr, rem) { 1378 int type = nla_type(a); 1379 int i; 1380 1381 if (type > OVS_NSH_KEY_ATTR_MAX) { 1382 OVS_NLERR(log, "nsh attr %d is out of range max %d", 1383 type, OVS_NSH_KEY_ATTR_MAX); 1384 return -EINVAL; 1385 } 1386 1387 if (!check_attr_len(nla_len(a), 1388 ovs_nsh_key_attr_lens[type].len)) { 1389 OVS_NLERR( 1390 log, 1391 "nsh attr %d has unexpected len %d expected %d", 1392 type, 1393 nla_len(a), 1394 ovs_nsh_key_attr_lens[type].len 1395 ); 1396 return -EINVAL; 1397 } 1398 1399 switch (type) { 1400 case OVS_NSH_KEY_ATTR_BASE: { 1401 const struct ovs_nsh_key_base *base = nla_data(a); 1402 1403 has_base = true; 1404 mdtype = base->mdtype; 1405 SW_FLOW_KEY_PUT(match, nsh.base.flags, 1406 base->flags, is_mask); 1407 SW_FLOW_KEY_PUT(match, nsh.base.ttl, 1408 base->ttl, is_mask); 1409 SW_FLOW_KEY_PUT(match, nsh.base.mdtype, 1410 base->mdtype, is_mask); 1411 SW_FLOW_KEY_PUT(match, nsh.base.np, 1412 base->np, is_mask); 1413 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, 1414 base->path_hdr, is_mask); 1415 break; 1416 } 1417 case OVS_NSH_KEY_ATTR_MD1: { 1418 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1419 1420 has_md1 = true; 1421 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) 1422 SW_FLOW_KEY_PUT(match, nsh.context[i], 1423 md1->context[i], is_mask); 1424 break; 1425 } 1426 case OVS_NSH_KEY_ATTR_MD2: 1427 if (!is_push_nsh) /* Not supported MD type 2 yet */ 1428 return -ENOTSUPP; 1429 1430 has_md2 = true; 1431 mdlen = nla_len(a); 1432 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { 1433 OVS_NLERR( 1434 log, 1435 "Invalid MD length %d for MD type %d", 1436 mdlen, 1437 mdtype 1438 ); 1439 return -EINVAL; 1440 } 1441 break; 1442 default: 1443 OVS_NLERR(log, "Unknown nsh attribute %d", 1444 type); 1445 return -EINVAL; 1446 } 1447 } 1448 1449 if (rem > 0) { 1450 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); 1451 return -EINVAL; 1452 } 1453 1454 if (has_md1 && has_md2) { 1455 OVS_NLERR( 1456 1, 1457 "invalid nsh attribute: md1 and md2 are exclusive." 1458 ); 1459 return -EINVAL; 1460 } 1461 1462 if (!is_mask) { 1463 if ((has_md1 && mdtype != NSH_M_TYPE1) || 1464 (has_md2 && mdtype != NSH_M_TYPE2)) { 1465 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", 1466 mdtype); 1467 return -EINVAL; 1468 } 1469 1470 if (is_push_nsh && 1471 (!has_base || (!has_md1 && !has_md2))) { 1472 OVS_NLERR( 1473 1, 1474 "push_nsh: missing base or metadata attributes" 1475 ); 1476 return -EINVAL; 1477 } 1478 } 1479 1480 return 0; 1481 } 1482 1483 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1484 u64 attrs, const struct nlattr **a, 1485 bool is_mask, bool log) 1486 { 1487 int err; 1488 1489 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1490 if (err) 1491 return err; 1492 1493 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1494 const struct ovs_key_ethernet *eth_key; 1495 1496 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1497 SW_FLOW_KEY_MEMCPY(match, eth.src, 1498 eth_key->eth_src, ETH_ALEN, is_mask); 1499 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1500 eth_key->eth_dst, ETH_ALEN, is_mask); 1501 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1502 1503 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1504 /* VLAN attribute is always parsed before getting here since it 1505 * may occur multiple times. 1506 */ 1507 OVS_NLERR(log, "VLAN attribute unexpected."); 1508 return -EINVAL; 1509 } 1510 1511 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1512 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, 1513 log); 1514 if (err) 1515 return err; 1516 } else if (!is_mask) { 1517 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1518 } 1519 } else if (!match->key->eth.type) { 1520 OVS_NLERR(log, "Either Ethernet header or EtherType is required."); 1521 return -EINVAL; 1522 } 1523 1524 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1525 const struct ovs_key_ipv4 *ipv4_key; 1526 1527 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1528 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1529 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1530 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1531 return -EINVAL; 1532 } 1533 SW_FLOW_KEY_PUT(match, ip.proto, 1534 ipv4_key->ipv4_proto, is_mask); 1535 SW_FLOW_KEY_PUT(match, ip.tos, 1536 ipv4_key->ipv4_tos, is_mask); 1537 SW_FLOW_KEY_PUT(match, ip.ttl, 1538 ipv4_key->ipv4_ttl, is_mask); 1539 SW_FLOW_KEY_PUT(match, ip.frag, 1540 ipv4_key->ipv4_frag, is_mask); 1541 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1542 ipv4_key->ipv4_src, is_mask); 1543 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1544 ipv4_key->ipv4_dst, is_mask); 1545 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1546 } 1547 1548 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1549 const struct ovs_key_ipv6 *ipv6_key; 1550 1551 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1552 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1553 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1554 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1555 return -EINVAL; 1556 } 1557 1558 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1559 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", 1560 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1561 return -EINVAL; 1562 } 1563 1564 SW_FLOW_KEY_PUT(match, ipv6.label, 1565 ipv6_key->ipv6_label, is_mask); 1566 SW_FLOW_KEY_PUT(match, ip.proto, 1567 ipv6_key->ipv6_proto, is_mask); 1568 SW_FLOW_KEY_PUT(match, ip.tos, 1569 ipv6_key->ipv6_tclass, is_mask); 1570 SW_FLOW_KEY_PUT(match, ip.ttl, 1571 ipv6_key->ipv6_hlimit, is_mask); 1572 SW_FLOW_KEY_PUT(match, ip.frag, 1573 ipv6_key->ipv6_frag, is_mask); 1574 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1575 ipv6_key->ipv6_src, 1576 sizeof(match->key->ipv6.addr.src), 1577 is_mask); 1578 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1579 ipv6_key->ipv6_dst, 1580 sizeof(match->key->ipv6.addr.dst), 1581 is_mask); 1582 1583 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1584 } 1585 1586 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1587 const struct ovs_key_arp *arp_key; 1588 1589 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1590 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1591 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1592 arp_key->arp_op); 1593 return -EINVAL; 1594 } 1595 1596 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1597 arp_key->arp_sip, is_mask); 1598 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1599 arp_key->arp_tip, is_mask); 1600 SW_FLOW_KEY_PUT(match, ip.proto, 1601 ntohs(arp_key->arp_op), is_mask); 1602 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1603 arp_key->arp_sha, ETH_ALEN, is_mask); 1604 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1605 arp_key->arp_tha, ETH_ALEN, is_mask); 1606 1607 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1608 } 1609 1610 if (attrs & (1 << OVS_KEY_ATTR_NSH)) { 1611 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, 1612 is_mask, false, log) < 0) 1613 return -EINVAL; 1614 attrs &= ~(1 << OVS_KEY_ATTR_NSH); 1615 } 1616 1617 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1618 const struct ovs_key_mpls *mpls_key; 1619 1620 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1621 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1622 mpls_key->mpls_lse, is_mask); 1623 1624 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1625 } 1626 1627 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1628 const struct ovs_key_tcp *tcp_key; 1629 1630 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1631 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1632 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1633 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1634 } 1635 1636 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1637 SW_FLOW_KEY_PUT(match, tp.flags, 1638 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1639 is_mask); 1640 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1641 } 1642 1643 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1644 const struct ovs_key_udp *udp_key; 1645 1646 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1647 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1648 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1649 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1650 } 1651 1652 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1653 const struct ovs_key_sctp *sctp_key; 1654 1655 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1656 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1657 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1658 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1659 } 1660 1661 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1662 const struct ovs_key_icmp *icmp_key; 1663 1664 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1665 SW_FLOW_KEY_PUT(match, tp.src, 1666 htons(icmp_key->icmp_type), is_mask); 1667 SW_FLOW_KEY_PUT(match, tp.dst, 1668 htons(icmp_key->icmp_code), is_mask); 1669 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1670 } 1671 1672 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1673 const struct ovs_key_icmpv6 *icmpv6_key; 1674 1675 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1676 SW_FLOW_KEY_PUT(match, tp.src, 1677 htons(icmpv6_key->icmpv6_type), is_mask); 1678 SW_FLOW_KEY_PUT(match, tp.dst, 1679 htons(icmpv6_key->icmpv6_code), is_mask); 1680 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1681 } 1682 1683 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1684 const struct ovs_key_nd *nd_key; 1685 1686 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1687 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1688 nd_key->nd_target, 1689 sizeof(match->key->ipv6.nd.target), 1690 is_mask); 1691 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1692 nd_key->nd_sll, ETH_ALEN, is_mask); 1693 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1694 nd_key->nd_tll, ETH_ALEN, is_mask); 1695 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1696 } 1697 1698 if (attrs != 0) { 1699 OVS_NLERR(log, "Unknown key attributes %llx", 1700 (unsigned long long)attrs); 1701 return -EINVAL; 1702 } 1703 1704 return 0; 1705 } 1706 1707 static void nlattr_set(struct nlattr *attr, u8 val, 1708 const struct ovs_len_tbl *tbl) 1709 { 1710 struct nlattr *nla; 1711 int rem; 1712 1713 /* The nlattr stream should already have been validated */ 1714 nla_for_each_nested(nla, attr, rem) { 1715 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) 1716 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); 1717 else 1718 memset(nla_data(nla), val, nla_len(nla)); 1719 1720 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1721 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1722 } 1723 } 1724 1725 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1726 { 1727 nlattr_set(attr, val, ovs_key_lens); 1728 } 1729 1730 /** 1731 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1732 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1733 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1734 * does not include any don't care bit. 1735 * @net: Used to determine per-namespace field support. 1736 * @match: receives the extracted flow match information. 1737 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1738 * sequence. The fields should of the packet that triggered the creation 1739 * of this flow. 1740 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1741 * attribute specifies the mask field of the wildcarded flow. 1742 * @log: Boolean to allow kernel error logging. Normally true, but when 1743 * probing for feature compatibility this should be passed in as false to 1744 * suppress unnecessary error logging. 1745 */ 1746 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1747 const struct nlattr *nla_key, 1748 const struct nlattr *nla_mask, 1749 bool log) 1750 { 1751 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1752 struct nlattr *newmask = NULL; 1753 u64 key_attrs = 0; 1754 u64 mask_attrs = 0; 1755 int err; 1756 1757 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1758 if (err) 1759 return err; 1760 1761 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1762 if (err) 1763 return err; 1764 1765 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1766 if (err) 1767 return err; 1768 1769 if (match->mask) { 1770 if (!nla_mask) { 1771 /* Create an exact match mask. We need to set to 0xff 1772 * all the 'match->mask' fields that have been touched 1773 * in 'match->key'. We cannot simply memset 1774 * 'match->mask', because padding bytes and fields not 1775 * specified in 'match->key' should be left to 0. 1776 * Instead, we use a stream of netlink attributes, 1777 * copied from 'key' and set to 0xff. 1778 * ovs_key_from_nlattrs() will take care of filling 1779 * 'match->mask' appropriately. 1780 */ 1781 newmask = kmemdup(nla_key, 1782 nla_total_size(nla_len(nla_key)), 1783 GFP_KERNEL); 1784 if (!newmask) 1785 return -ENOMEM; 1786 1787 mask_set_nlattr(newmask, 0xff); 1788 1789 /* The userspace does not send tunnel attributes that 1790 * are 0, but we should not wildcard them nonetheless. 1791 */ 1792 if (match->key->tun_proto) 1793 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1794 0xff, true); 1795 1796 nla_mask = newmask; 1797 } 1798 1799 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1800 if (err) 1801 goto free_newmask; 1802 1803 /* Always match on tci. */ 1804 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1805 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1806 1807 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1808 if (err) 1809 goto free_newmask; 1810 1811 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1812 log); 1813 if (err) 1814 goto free_newmask; 1815 } 1816 1817 if (!match_validate(match, key_attrs, mask_attrs, log)) 1818 err = -EINVAL; 1819 1820 free_newmask: 1821 kfree(newmask); 1822 return err; 1823 } 1824 1825 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1826 { 1827 size_t len; 1828 1829 if (!attr) 1830 return 0; 1831 1832 len = nla_len(attr); 1833 if (len < 1 || len > MAX_UFID_LENGTH) { 1834 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1835 nla_len(attr), MAX_UFID_LENGTH); 1836 return 0; 1837 } 1838 1839 return len; 1840 } 1841 1842 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1843 * or false otherwise. 1844 */ 1845 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1846 bool log) 1847 { 1848 sfid->ufid_len = get_ufid_len(attr, log); 1849 if (sfid->ufid_len) 1850 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1851 1852 return sfid->ufid_len; 1853 } 1854 1855 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1856 const struct sw_flow_key *key, bool log) 1857 { 1858 struct sw_flow_key *new_key; 1859 1860 if (ovs_nla_get_ufid(sfid, ufid, log)) 1861 return 0; 1862 1863 /* If UFID was not provided, use unmasked key. */ 1864 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1865 if (!new_key) 1866 return -ENOMEM; 1867 memcpy(new_key, key, sizeof(*key)); 1868 sfid->unmasked_key = new_key; 1869 1870 return 0; 1871 } 1872 1873 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1874 { 1875 return attr ? nla_get_u32(attr) : 0; 1876 } 1877 1878 /** 1879 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1880 * @net: Network namespace. 1881 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack 1882 * metadata. 1883 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink 1884 * attributes. 1885 * @attrs: Bit mask for the netlink attributes included in @a. 1886 * @log: Boolean to allow kernel error logging. Normally true, but when 1887 * probing for feature compatibility this should be passed in as false to 1888 * suppress unnecessary error logging. 1889 * 1890 * This parses a series of Netlink attributes that form a flow key, which must 1891 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1892 * get the metadata, that is, the parts of the flow key that cannot be 1893 * extracted from the packet itself. 1894 * 1895 * This must be called before the packet key fields are filled in 'key'. 1896 */ 1897 1898 int ovs_nla_get_flow_metadata(struct net *net, 1899 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], 1900 u64 attrs, struct sw_flow_key *key, bool log) 1901 { 1902 struct sw_flow_match match; 1903 1904 memset(&match, 0, sizeof(match)); 1905 match.key = key; 1906 1907 key->ct_state = 0; 1908 key->ct_zone = 0; 1909 key->ct_orig_proto = 0; 1910 memset(&key->ct, 0, sizeof(key->ct)); 1911 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); 1912 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); 1913 1914 key->phy.in_port = DP_MAX_PORTS; 1915 1916 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1917 } 1918 1919 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1920 bool is_mask) 1921 { 1922 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1923 1924 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1925 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1926 return -EMSGSIZE; 1927 return 0; 1928 } 1929 1930 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, 1931 struct sk_buff *skb) 1932 { 1933 struct nlattr *start; 1934 1935 start = nla_nest_start(skb, OVS_KEY_ATTR_NSH); 1936 if (!start) 1937 return -EMSGSIZE; 1938 1939 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) 1940 goto nla_put_failure; 1941 1942 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { 1943 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, 1944 sizeof(nsh->context), nsh->context)) 1945 goto nla_put_failure; 1946 } 1947 1948 /* Don't support MD type 2 yet */ 1949 1950 nla_nest_end(skb, start); 1951 1952 return 0; 1953 1954 nla_put_failure: 1955 return -EMSGSIZE; 1956 } 1957 1958 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1959 const struct sw_flow_key *output, bool is_mask, 1960 struct sk_buff *skb) 1961 { 1962 struct ovs_key_ethernet *eth_key; 1963 struct nlattr *nla; 1964 struct nlattr *encap = NULL; 1965 struct nlattr *in_encap = NULL; 1966 1967 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1968 goto nla_put_failure; 1969 1970 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1971 goto nla_put_failure; 1972 1973 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1974 goto nla_put_failure; 1975 1976 if ((swkey->tun_proto || is_mask)) { 1977 const void *opts = NULL; 1978 1979 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1980 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1981 1982 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1983 swkey->tun_opts_len, swkey->tun_proto)) 1984 goto nla_put_failure; 1985 } 1986 1987 if (swkey->phy.in_port == DP_MAX_PORTS) { 1988 if (is_mask && (output->phy.in_port == 0xffff)) 1989 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1990 goto nla_put_failure; 1991 } else { 1992 u16 upper_u16; 1993 upper_u16 = !is_mask ? 0 : 0xffff; 1994 1995 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1996 (upper_u16 << 16) | output->phy.in_port)) 1997 goto nla_put_failure; 1998 } 1999 2000 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 2001 goto nla_put_failure; 2002 2003 if (ovs_ct_put_key(swkey, output, skb)) 2004 goto nla_put_failure; 2005 2006 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { 2007 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 2008 if (!nla) 2009 goto nla_put_failure; 2010 2011 eth_key = nla_data(nla); 2012 ether_addr_copy(eth_key->eth_src, output->eth.src); 2013 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 2014 2015 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 2016 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 2017 goto nla_put_failure; 2018 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 2019 if (!swkey->eth.vlan.tci) 2020 goto unencap; 2021 2022 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 2023 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 2024 goto nla_put_failure; 2025 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 2026 if (!swkey->eth.cvlan.tci) 2027 goto unencap; 2028 } 2029 } 2030 2031 if (swkey->eth.type == htons(ETH_P_802_2)) { 2032 /* 2033 * Ethertype 802.2 is represented in the netlink with omitted 2034 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 2035 * 0xffff in the mask attribute. Ethertype can also 2036 * be wildcarded. 2037 */ 2038 if (is_mask && output->eth.type) 2039 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 2040 output->eth.type)) 2041 goto nla_put_failure; 2042 goto unencap; 2043 } 2044 } 2045 2046 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 2047 goto nla_put_failure; 2048 2049 if (eth_type_vlan(swkey->eth.type)) { 2050 /* There are 3 VLAN tags, we don't know anything about the rest 2051 * of the packet, so truncate here. 2052 */ 2053 WARN_ON_ONCE(!(encap && in_encap)); 2054 goto unencap; 2055 } 2056 2057 if (swkey->eth.type == htons(ETH_P_IP)) { 2058 struct ovs_key_ipv4 *ipv4_key; 2059 2060 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 2061 if (!nla) 2062 goto nla_put_failure; 2063 ipv4_key = nla_data(nla); 2064 ipv4_key->ipv4_src = output->ipv4.addr.src; 2065 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 2066 ipv4_key->ipv4_proto = output->ip.proto; 2067 ipv4_key->ipv4_tos = output->ip.tos; 2068 ipv4_key->ipv4_ttl = output->ip.ttl; 2069 ipv4_key->ipv4_frag = output->ip.frag; 2070 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 2071 struct ovs_key_ipv6 *ipv6_key; 2072 2073 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 2074 if (!nla) 2075 goto nla_put_failure; 2076 ipv6_key = nla_data(nla); 2077 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 2078 sizeof(ipv6_key->ipv6_src)); 2079 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 2080 sizeof(ipv6_key->ipv6_dst)); 2081 ipv6_key->ipv6_label = output->ipv6.label; 2082 ipv6_key->ipv6_proto = output->ip.proto; 2083 ipv6_key->ipv6_tclass = output->ip.tos; 2084 ipv6_key->ipv6_hlimit = output->ip.ttl; 2085 ipv6_key->ipv6_frag = output->ip.frag; 2086 } else if (swkey->eth.type == htons(ETH_P_NSH)) { 2087 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) 2088 goto nla_put_failure; 2089 } else if (swkey->eth.type == htons(ETH_P_ARP) || 2090 swkey->eth.type == htons(ETH_P_RARP)) { 2091 struct ovs_key_arp *arp_key; 2092 2093 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 2094 if (!nla) 2095 goto nla_put_failure; 2096 arp_key = nla_data(nla); 2097 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 2098 arp_key->arp_sip = output->ipv4.addr.src; 2099 arp_key->arp_tip = output->ipv4.addr.dst; 2100 arp_key->arp_op = htons(output->ip.proto); 2101 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 2102 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 2103 } else if (eth_p_mpls(swkey->eth.type)) { 2104 struct ovs_key_mpls *mpls_key; 2105 2106 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 2107 if (!nla) 2108 goto nla_put_failure; 2109 mpls_key = nla_data(nla); 2110 mpls_key->mpls_lse = output->mpls.top_lse; 2111 } 2112 2113 if ((swkey->eth.type == htons(ETH_P_IP) || 2114 swkey->eth.type == htons(ETH_P_IPV6)) && 2115 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 2116 2117 if (swkey->ip.proto == IPPROTO_TCP) { 2118 struct ovs_key_tcp *tcp_key; 2119 2120 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 2121 if (!nla) 2122 goto nla_put_failure; 2123 tcp_key = nla_data(nla); 2124 tcp_key->tcp_src = output->tp.src; 2125 tcp_key->tcp_dst = output->tp.dst; 2126 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 2127 output->tp.flags)) 2128 goto nla_put_failure; 2129 } else if (swkey->ip.proto == IPPROTO_UDP) { 2130 struct ovs_key_udp *udp_key; 2131 2132 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 2133 if (!nla) 2134 goto nla_put_failure; 2135 udp_key = nla_data(nla); 2136 udp_key->udp_src = output->tp.src; 2137 udp_key->udp_dst = output->tp.dst; 2138 } else if (swkey->ip.proto == IPPROTO_SCTP) { 2139 struct ovs_key_sctp *sctp_key; 2140 2141 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 2142 if (!nla) 2143 goto nla_put_failure; 2144 sctp_key = nla_data(nla); 2145 sctp_key->sctp_src = output->tp.src; 2146 sctp_key->sctp_dst = output->tp.dst; 2147 } else if (swkey->eth.type == htons(ETH_P_IP) && 2148 swkey->ip.proto == IPPROTO_ICMP) { 2149 struct ovs_key_icmp *icmp_key; 2150 2151 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 2152 if (!nla) 2153 goto nla_put_failure; 2154 icmp_key = nla_data(nla); 2155 icmp_key->icmp_type = ntohs(output->tp.src); 2156 icmp_key->icmp_code = ntohs(output->tp.dst); 2157 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 2158 swkey->ip.proto == IPPROTO_ICMPV6) { 2159 struct ovs_key_icmpv6 *icmpv6_key; 2160 2161 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 2162 sizeof(*icmpv6_key)); 2163 if (!nla) 2164 goto nla_put_failure; 2165 icmpv6_key = nla_data(nla); 2166 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 2167 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 2168 2169 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 2170 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 2171 struct ovs_key_nd *nd_key; 2172 2173 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 2174 if (!nla) 2175 goto nla_put_failure; 2176 nd_key = nla_data(nla); 2177 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 2178 sizeof(nd_key->nd_target)); 2179 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 2180 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 2181 } 2182 } 2183 } 2184 2185 unencap: 2186 if (in_encap) 2187 nla_nest_end(skb, in_encap); 2188 if (encap) 2189 nla_nest_end(skb, encap); 2190 2191 return 0; 2192 2193 nla_put_failure: 2194 return -EMSGSIZE; 2195 } 2196 2197 int ovs_nla_put_key(const struct sw_flow_key *swkey, 2198 const struct sw_flow_key *output, int attr, bool is_mask, 2199 struct sk_buff *skb) 2200 { 2201 int err; 2202 struct nlattr *nla; 2203 2204 nla = nla_nest_start(skb, attr); 2205 if (!nla) 2206 return -EMSGSIZE; 2207 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 2208 if (err) 2209 return err; 2210 nla_nest_end(skb, nla); 2211 2212 return 0; 2213 } 2214 2215 /* Called with ovs_mutex or RCU read lock. */ 2216 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 2217 { 2218 if (ovs_identifier_is_ufid(&flow->id)) 2219 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 2220 flow->id.ufid); 2221 2222 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 2223 OVS_FLOW_ATTR_KEY, false, skb); 2224 } 2225 2226 /* Called with ovs_mutex or RCU read lock. */ 2227 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 2228 { 2229 return ovs_nla_put_key(&flow->key, &flow->key, 2230 OVS_FLOW_ATTR_KEY, false, skb); 2231 } 2232 2233 /* Called with ovs_mutex or RCU read lock. */ 2234 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 2235 { 2236 return ovs_nla_put_key(&flow->key, &flow->mask->key, 2237 OVS_FLOW_ATTR_MASK, true, skb); 2238 } 2239 2240 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 2241 2242 static struct sw_flow_actions *nla_alloc_flow_actions(int size) 2243 { 2244 struct sw_flow_actions *sfa; 2245 2246 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); 2247 2248 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 2249 if (!sfa) 2250 return ERR_PTR(-ENOMEM); 2251 2252 sfa->actions_len = 0; 2253 return sfa; 2254 } 2255 2256 static void ovs_nla_free_set_action(const struct nlattr *a) 2257 { 2258 const struct nlattr *ovs_key = nla_data(a); 2259 struct ovs_tunnel_info *ovs_tun; 2260 2261 switch (nla_type(ovs_key)) { 2262 case OVS_KEY_ATTR_TUNNEL_INFO: 2263 ovs_tun = nla_data(ovs_key); 2264 dst_release((struct dst_entry *)ovs_tun->tun_dst); 2265 break; 2266 } 2267 } 2268 2269 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 2270 { 2271 const struct nlattr *a; 2272 int rem; 2273 2274 if (!sf_acts) 2275 return; 2276 2277 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 2278 switch (nla_type(a)) { 2279 case OVS_ACTION_ATTR_SET: 2280 ovs_nla_free_set_action(a); 2281 break; 2282 case OVS_ACTION_ATTR_CT: 2283 ovs_ct_free_action(a); 2284 break; 2285 } 2286 } 2287 2288 kfree(sf_acts); 2289 } 2290 2291 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 2292 { 2293 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 2294 } 2295 2296 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 2297 * The caller must hold rcu_read_lock for this to be sensible. */ 2298 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 2299 { 2300 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 2301 } 2302 2303 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 2304 int attr_len, bool log) 2305 { 2306 2307 struct sw_flow_actions *acts; 2308 int new_acts_size; 2309 int req_size = NLA_ALIGN(attr_len); 2310 int next_offset = offsetof(struct sw_flow_actions, actions) + 2311 (*sfa)->actions_len; 2312 2313 if (req_size <= (ksize(*sfa) - next_offset)) 2314 goto out; 2315 2316 new_acts_size = ksize(*sfa) * 2; 2317 2318 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 2319 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) { 2320 OVS_NLERR(log, "Flow action size exceeds max %u", 2321 MAX_ACTIONS_BUFSIZE); 2322 return ERR_PTR(-EMSGSIZE); 2323 } 2324 new_acts_size = MAX_ACTIONS_BUFSIZE; 2325 } 2326 2327 acts = nla_alloc_flow_actions(new_acts_size); 2328 if (IS_ERR(acts)) 2329 return (void *)acts; 2330 2331 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 2332 acts->actions_len = (*sfa)->actions_len; 2333 acts->orig_len = (*sfa)->orig_len; 2334 kfree(*sfa); 2335 *sfa = acts; 2336 2337 out: 2338 (*sfa)->actions_len += req_size; 2339 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 2340 } 2341 2342 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 2343 int attrtype, void *data, int len, bool log) 2344 { 2345 struct nlattr *a; 2346 2347 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 2348 if (IS_ERR(a)) 2349 return a; 2350 2351 a->nla_type = attrtype; 2352 a->nla_len = nla_attr_size(len); 2353 2354 if (data) 2355 memcpy(nla_data(a), data, len); 2356 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 2357 2358 return a; 2359 } 2360 2361 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 2362 int len, bool log) 2363 { 2364 struct nlattr *a; 2365 2366 a = __add_action(sfa, attrtype, data, len, log); 2367 2368 return PTR_ERR_OR_ZERO(a); 2369 } 2370 2371 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 2372 int attrtype, bool log) 2373 { 2374 int used = (*sfa)->actions_len; 2375 int err; 2376 2377 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 2378 if (err) 2379 return err; 2380 2381 return used; 2382 } 2383 2384 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 2385 int st_offset) 2386 { 2387 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 2388 st_offset); 2389 2390 a->nla_len = sfa->actions_len - st_offset; 2391 } 2392 2393 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2394 const struct sw_flow_key *key, 2395 struct sw_flow_actions **sfa, 2396 __be16 eth_type, __be16 vlan_tci, bool log); 2397 2398 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 2399 const struct sw_flow_key *key, 2400 struct sw_flow_actions **sfa, 2401 __be16 eth_type, __be16 vlan_tci, 2402 bool log, bool last) 2403 { 2404 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 2405 const struct nlattr *probability, *actions; 2406 const struct nlattr *a; 2407 int rem, start, err; 2408 struct sample_arg arg; 2409 2410 memset(attrs, 0, sizeof(attrs)); 2411 nla_for_each_nested(a, attr, rem) { 2412 int type = nla_type(a); 2413 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 2414 return -EINVAL; 2415 attrs[type] = a; 2416 } 2417 if (rem) 2418 return -EINVAL; 2419 2420 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 2421 if (!probability || nla_len(probability) != sizeof(u32)) 2422 return -EINVAL; 2423 2424 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 2425 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 2426 return -EINVAL; 2427 2428 /* validation done, copy sample action. */ 2429 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 2430 if (start < 0) 2431 return start; 2432 2433 /* When both skb and flow may be changed, put the sample 2434 * into a deferred fifo. On the other hand, if only skb 2435 * may be modified, the actions can be executed in place. 2436 * 2437 * Do this analysis at the flow installation time. 2438 * Set 'clone_action->exec' to true if the actions can be 2439 * executed without being deferred. 2440 * 2441 * If the sample is the last action, it can always be excuted 2442 * rather than deferred. 2443 */ 2444 arg.exec = last || !actions_may_change_flow(actions); 2445 arg.probability = nla_get_u32(probability); 2446 2447 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), 2448 log); 2449 if (err) 2450 return err; 2451 2452 err = __ovs_nla_copy_actions(net, actions, key, sfa, 2453 eth_type, vlan_tci, log); 2454 2455 if (err) 2456 return err; 2457 2458 add_nested_action_end(*sfa, start); 2459 2460 return 0; 2461 } 2462 2463 static int validate_and_copy_clone(struct net *net, 2464 const struct nlattr *attr, 2465 const struct sw_flow_key *key, 2466 struct sw_flow_actions **sfa, 2467 __be16 eth_type, __be16 vlan_tci, 2468 bool log, bool last) 2469 { 2470 int start, err; 2471 u32 exec; 2472 2473 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) 2474 return -EINVAL; 2475 2476 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); 2477 if (start < 0) 2478 return start; 2479 2480 exec = last || !actions_may_change_flow(attr); 2481 2482 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, 2483 sizeof(exec), log); 2484 if (err) 2485 return err; 2486 2487 err = __ovs_nla_copy_actions(net, attr, key, sfa, 2488 eth_type, vlan_tci, log); 2489 if (err) 2490 return err; 2491 2492 add_nested_action_end(*sfa, start); 2493 2494 return 0; 2495 } 2496 2497 void ovs_match_init(struct sw_flow_match *match, 2498 struct sw_flow_key *key, 2499 bool reset_key, 2500 struct sw_flow_mask *mask) 2501 { 2502 memset(match, 0, sizeof(*match)); 2503 match->key = key; 2504 match->mask = mask; 2505 2506 if (reset_key) 2507 memset(key, 0, sizeof(*key)); 2508 2509 if (mask) { 2510 memset(&mask->key, 0, sizeof(mask->key)); 2511 mask->range.start = mask->range.end = 0; 2512 } 2513 } 2514 2515 static int validate_geneve_opts(struct sw_flow_key *key) 2516 { 2517 struct geneve_opt *option; 2518 int opts_len = key->tun_opts_len; 2519 bool crit_opt = false; 2520 2521 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2522 while (opts_len > 0) { 2523 int len; 2524 2525 if (opts_len < sizeof(*option)) 2526 return -EINVAL; 2527 2528 len = sizeof(*option) + option->length * 4; 2529 if (len > opts_len) 2530 return -EINVAL; 2531 2532 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2533 2534 option = (struct geneve_opt *)((u8 *)option + len); 2535 opts_len -= len; 2536 } 2537 2538 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 2539 2540 return 0; 2541 } 2542 2543 static int validate_and_copy_set_tun(const struct nlattr *attr, 2544 struct sw_flow_actions **sfa, bool log) 2545 { 2546 struct sw_flow_match match; 2547 struct sw_flow_key key; 2548 struct metadata_dst *tun_dst; 2549 struct ip_tunnel_info *tun_info; 2550 struct ovs_tunnel_info *ovs_tun; 2551 struct nlattr *a; 2552 int err = 0, start, opts_type; 2553 __be16 dst_opt_type; 2554 2555 dst_opt_type = 0; 2556 ovs_match_init(&match, &key, true, NULL); 2557 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2558 if (opts_type < 0) 2559 return opts_type; 2560 2561 if (key.tun_opts_len) { 2562 switch (opts_type) { 2563 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2564 err = validate_geneve_opts(&key); 2565 if (err < 0) 2566 return err; 2567 dst_opt_type = TUNNEL_GENEVE_OPT; 2568 break; 2569 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2570 dst_opt_type = TUNNEL_VXLAN_OPT; 2571 break; 2572 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 2573 dst_opt_type = TUNNEL_ERSPAN_OPT; 2574 break; 2575 } 2576 } 2577 2578 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2579 if (start < 0) 2580 return start; 2581 2582 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, 2583 GFP_KERNEL); 2584 2585 if (!tun_dst) 2586 return -ENOMEM; 2587 2588 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2589 if (err) { 2590 dst_release((struct dst_entry *)tun_dst); 2591 return err; 2592 } 2593 2594 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2595 sizeof(*ovs_tun), log); 2596 if (IS_ERR(a)) { 2597 dst_release((struct dst_entry *)tun_dst); 2598 return PTR_ERR(a); 2599 } 2600 2601 ovs_tun = nla_data(a); 2602 ovs_tun->tun_dst = tun_dst; 2603 2604 tun_info = &tun_dst->u.tun_info; 2605 tun_info->mode = IP_TUNNEL_INFO_TX; 2606 if (key.tun_proto == AF_INET6) 2607 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2608 tun_info->key = key.tun_key; 2609 2610 /* We need to store the options in the action itself since 2611 * everything else will go away after flow setup. We can append 2612 * it to tun_info and then point there. 2613 */ 2614 ip_tunnel_info_opts_set(tun_info, 2615 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2616 key.tun_opts_len, dst_opt_type); 2617 add_nested_action_end(*sfa, start); 2618 2619 return err; 2620 } 2621 2622 static bool validate_nsh(const struct nlattr *attr, bool is_mask, 2623 bool is_push_nsh, bool log) 2624 { 2625 struct sw_flow_match match; 2626 struct sw_flow_key key; 2627 int ret = 0; 2628 2629 ovs_match_init(&match, &key, true, NULL); 2630 ret = nsh_key_put_from_nlattr(attr, &match, is_mask, 2631 is_push_nsh, log); 2632 return !ret; 2633 } 2634 2635 /* Return false if there are any non-masked bits set. 2636 * Mask follows data immediately, before any netlink padding. 2637 */ 2638 static bool validate_masked(u8 *data, int len) 2639 { 2640 u8 *mask = data + len; 2641 2642 while (len--) 2643 if (*data++ & ~*mask++) 2644 return false; 2645 2646 return true; 2647 } 2648 2649 static int validate_set(const struct nlattr *a, 2650 const struct sw_flow_key *flow_key, 2651 struct sw_flow_actions **sfa, bool *skip_copy, 2652 u8 mac_proto, __be16 eth_type, bool masked, bool log) 2653 { 2654 const struct nlattr *ovs_key = nla_data(a); 2655 int key_type = nla_type(ovs_key); 2656 size_t key_len; 2657 2658 /* There can be only one key in a action */ 2659 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2660 return -EINVAL; 2661 2662 key_len = nla_len(ovs_key); 2663 if (masked) 2664 key_len /= 2; 2665 2666 if (key_type > OVS_KEY_ATTR_MAX || 2667 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2668 return -EINVAL; 2669 2670 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2671 return -EINVAL; 2672 2673 switch (key_type) { 2674 const struct ovs_key_ipv4 *ipv4_key; 2675 const struct ovs_key_ipv6 *ipv6_key; 2676 int err; 2677 2678 case OVS_KEY_ATTR_PRIORITY: 2679 case OVS_KEY_ATTR_SKB_MARK: 2680 case OVS_KEY_ATTR_CT_MARK: 2681 case OVS_KEY_ATTR_CT_LABELS: 2682 break; 2683 2684 case OVS_KEY_ATTR_ETHERNET: 2685 if (mac_proto != MAC_PROTO_ETHERNET) 2686 return -EINVAL; 2687 break; 2688 2689 case OVS_KEY_ATTR_TUNNEL: 2690 if (masked) 2691 return -EINVAL; /* Masked tunnel set not supported. */ 2692 2693 *skip_copy = true; 2694 err = validate_and_copy_set_tun(a, sfa, log); 2695 if (err) 2696 return err; 2697 break; 2698 2699 case OVS_KEY_ATTR_IPV4: 2700 if (eth_type != htons(ETH_P_IP)) 2701 return -EINVAL; 2702 2703 ipv4_key = nla_data(ovs_key); 2704 2705 if (masked) { 2706 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2707 2708 /* Non-writeable fields. */ 2709 if (mask->ipv4_proto || mask->ipv4_frag) 2710 return -EINVAL; 2711 } else { 2712 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2713 return -EINVAL; 2714 2715 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2716 return -EINVAL; 2717 } 2718 break; 2719 2720 case OVS_KEY_ATTR_IPV6: 2721 if (eth_type != htons(ETH_P_IPV6)) 2722 return -EINVAL; 2723 2724 ipv6_key = nla_data(ovs_key); 2725 2726 if (masked) { 2727 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2728 2729 /* Non-writeable fields. */ 2730 if (mask->ipv6_proto || mask->ipv6_frag) 2731 return -EINVAL; 2732 2733 /* Invalid bits in the flow label mask? */ 2734 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2735 return -EINVAL; 2736 } else { 2737 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2738 return -EINVAL; 2739 2740 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2741 return -EINVAL; 2742 } 2743 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2744 return -EINVAL; 2745 2746 break; 2747 2748 case OVS_KEY_ATTR_TCP: 2749 if ((eth_type != htons(ETH_P_IP) && 2750 eth_type != htons(ETH_P_IPV6)) || 2751 flow_key->ip.proto != IPPROTO_TCP) 2752 return -EINVAL; 2753 2754 break; 2755 2756 case OVS_KEY_ATTR_UDP: 2757 if ((eth_type != htons(ETH_P_IP) && 2758 eth_type != htons(ETH_P_IPV6)) || 2759 flow_key->ip.proto != IPPROTO_UDP) 2760 return -EINVAL; 2761 2762 break; 2763 2764 case OVS_KEY_ATTR_MPLS: 2765 if (!eth_p_mpls(eth_type)) 2766 return -EINVAL; 2767 break; 2768 2769 case OVS_KEY_ATTR_SCTP: 2770 if ((eth_type != htons(ETH_P_IP) && 2771 eth_type != htons(ETH_P_IPV6)) || 2772 flow_key->ip.proto != IPPROTO_SCTP) 2773 return -EINVAL; 2774 2775 break; 2776 2777 case OVS_KEY_ATTR_NSH: 2778 if (eth_type != htons(ETH_P_NSH)) 2779 return -EINVAL; 2780 if (!validate_nsh(nla_data(a), masked, false, log)) 2781 return -EINVAL; 2782 break; 2783 2784 default: 2785 return -EINVAL; 2786 } 2787 2788 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2789 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2790 int start, len = key_len * 2; 2791 struct nlattr *at; 2792 2793 *skip_copy = true; 2794 2795 start = add_nested_action_start(sfa, 2796 OVS_ACTION_ATTR_SET_TO_MASKED, 2797 log); 2798 if (start < 0) 2799 return start; 2800 2801 at = __add_action(sfa, key_type, NULL, len, log); 2802 if (IS_ERR(at)) 2803 return PTR_ERR(at); 2804 2805 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2806 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2807 /* Clear non-writeable bits from otherwise writeable fields. */ 2808 if (key_type == OVS_KEY_ATTR_IPV6) { 2809 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2810 2811 mask->ipv6_label &= htonl(0x000FFFFF); 2812 } 2813 add_nested_action_end(*sfa, start); 2814 } 2815 2816 return 0; 2817 } 2818 2819 static int validate_userspace(const struct nlattr *attr) 2820 { 2821 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2822 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2823 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2824 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2825 }; 2826 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2827 int error; 2828 2829 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr, 2830 userspace_policy, NULL); 2831 if (error) 2832 return error; 2833 2834 if (!a[OVS_USERSPACE_ATTR_PID] || 2835 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2836 return -EINVAL; 2837 2838 return 0; 2839 } 2840 2841 static int copy_action(const struct nlattr *from, 2842 struct sw_flow_actions **sfa, bool log) 2843 { 2844 int totlen = NLA_ALIGN(from->nla_len); 2845 struct nlattr *to; 2846 2847 to = reserve_sfa_size(sfa, from->nla_len, log); 2848 if (IS_ERR(to)) 2849 return PTR_ERR(to); 2850 2851 memcpy(to, from, totlen); 2852 return 0; 2853 } 2854 2855 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2856 const struct sw_flow_key *key, 2857 struct sw_flow_actions **sfa, 2858 __be16 eth_type, __be16 vlan_tci, bool log) 2859 { 2860 u8 mac_proto = ovs_key_mac_proto(key); 2861 const struct nlattr *a; 2862 int rem, err; 2863 2864 nla_for_each_nested(a, attr, rem) { 2865 /* Expected argument lengths, (u32)-1 for variable length. */ 2866 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2867 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2868 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2869 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2870 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2871 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2872 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2873 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2874 [OVS_ACTION_ATTR_SET] = (u32)-1, 2875 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2876 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2877 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2878 [OVS_ACTION_ATTR_CT] = (u32)-1, 2879 [OVS_ACTION_ATTR_CT_CLEAR] = 0, 2880 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 2881 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), 2882 [OVS_ACTION_ATTR_POP_ETH] = 0, 2883 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, 2884 [OVS_ACTION_ATTR_POP_NSH] = 0, 2885 [OVS_ACTION_ATTR_METER] = sizeof(u32), 2886 [OVS_ACTION_ATTR_CLONE] = (u32)-1, 2887 }; 2888 const struct ovs_action_push_vlan *vlan; 2889 int type = nla_type(a); 2890 bool skip_copy; 2891 2892 if (type > OVS_ACTION_ATTR_MAX || 2893 (action_lens[type] != nla_len(a) && 2894 action_lens[type] != (u32)-1)) 2895 return -EINVAL; 2896 2897 skip_copy = false; 2898 switch (type) { 2899 case OVS_ACTION_ATTR_UNSPEC: 2900 return -EINVAL; 2901 2902 case OVS_ACTION_ATTR_USERSPACE: 2903 err = validate_userspace(a); 2904 if (err) 2905 return err; 2906 break; 2907 2908 case OVS_ACTION_ATTR_OUTPUT: 2909 if (nla_get_u32(a) >= DP_MAX_PORTS) 2910 return -EINVAL; 2911 break; 2912 2913 case OVS_ACTION_ATTR_TRUNC: { 2914 const struct ovs_action_trunc *trunc = nla_data(a); 2915 2916 if (trunc->max_len < ETH_HLEN) 2917 return -EINVAL; 2918 break; 2919 } 2920 2921 case OVS_ACTION_ATTR_HASH: { 2922 const struct ovs_action_hash *act_hash = nla_data(a); 2923 2924 switch (act_hash->hash_alg) { 2925 case OVS_HASH_ALG_L4: 2926 break; 2927 default: 2928 return -EINVAL; 2929 } 2930 2931 break; 2932 } 2933 2934 case OVS_ACTION_ATTR_POP_VLAN: 2935 if (mac_proto != MAC_PROTO_ETHERNET) 2936 return -EINVAL; 2937 vlan_tci = htons(0); 2938 break; 2939 2940 case OVS_ACTION_ATTR_PUSH_VLAN: 2941 if (mac_proto != MAC_PROTO_ETHERNET) 2942 return -EINVAL; 2943 vlan = nla_data(a); 2944 if (!eth_type_vlan(vlan->vlan_tpid)) 2945 return -EINVAL; 2946 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK))) 2947 return -EINVAL; 2948 vlan_tci = vlan->vlan_tci; 2949 break; 2950 2951 case OVS_ACTION_ATTR_RECIRC: 2952 break; 2953 2954 case OVS_ACTION_ATTR_PUSH_MPLS: { 2955 const struct ovs_action_push_mpls *mpls = nla_data(a); 2956 2957 if (!eth_p_mpls(mpls->mpls_ethertype)) 2958 return -EINVAL; 2959 /* Prohibit push MPLS other than to a white list 2960 * for packets that have a known tag order. 2961 */ 2962 if (vlan_tci & htons(VLAN_CFI_MASK) || 2963 (eth_type != htons(ETH_P_IP) && 2964 eth_type != htons(ETH_P_IPV6) && 2965 eth_type != htons(ETH_P_ARP) && 2966 eth_type != htons(ETH_P_RARP) && 2967 !eth_p_mpls(eth_type))) 2968 return -EINVAL; 2969 eth_type = mpls->mpls_ethertype; 2970 break; 2971 } 2972 2973 case OVS_ACTION_ATTR_POP_MPLS: 2974 if (vlan_tci & htons(VLAN_CFI_MASK) || 2975 !eth_p_mpls(eth_type)) 2976 return -EINVAL; 2977 2978 /* Disallow subsequent L2.5+ set and mpls_pop actions 2979 * as there is no check here to ensure that the new 2980 * eth_type is valid and thus set actions could 2981 * write off the end of the packet or otherwise 2982 * corrupt it. 2983 * 2984 * Support for these actions is planned using packet 2985 * recirculation. 2986 */ 2987 eth_type = htons(0); 2988 break; 2989 2990 case OVS_ACTION_ATTR_SET: 2991 err = validate_set(a, key, sfa, 2992 &skip_copy, mac_proto, eth_type, 2993 false, log); 2994 if (err) 2995 return err; 2996 break; 2997 2998 case OVS_ACTION_ATTR_SET_MASKED: 2999 err = validate_set(a, key, sfa, 3000 &skip_copy, mac_proto, eth_type, 3001 true, log); 3002 if (err) 3003 return err; 3004 break; 3005 3006 case OVS_ACTION_ATTR_SAMPLE: { 3007 bool last = nla_is_last(a, rem); 3008 3009 err = validate_and_copy_sample(net, a, key, sfa, 3010 eth_type, vlan_tci, 3011 log, last); 3012 if (err) 3013 return err; 3014 skip_copy = true; 3015 break; 3016 } 3017 3018 case OVS_ACTION_ATTR_CT: 3019 err = ovs_ct_copy_action(net, a, key, sfa, log); 3020 if (err) 3021 return err; 3022 skip_copy = true; 3023 break; 3024 3025 case OVS_ACTION_ATTR_CT_CLEAR: 3026 break; 3027 3028 case OVS_ACTION_ATTR_PUSH_ETH: 3029 /* Disallow pushing an Ethernet header if one 3030 * is already present */ 3031 if (mac_proto != MAC_PROTO_NONE) 3032 return -EINVAL; 3033 mac_proto = MAC_PROTO_ETHERNET; 3034 break; 3035 3036 case OVS_ACTION_ATTR_POP_ETH: 3037 if (mac_proto != MAC_PROTO_ETHERNET) 3038 return -EINVAL; 3039 if (vlan_tci & htons(VLAN_CFI_MASK)) 3040 return -EINVAL; 3041 mac_proto = MAC_PROTO_NONE; 3042 break; 3043 3044 case OVS_ACTION_ATTR_PUSH_NSH: 3045 if (mac_proto != MAC_PROTO_ETHERNET) { 3046 u8 next_proto; 3047 3048 next_proto = tun_p_from_eth_p(eth_type); 3049 if (!next_proto) 3050 return -EINVAL; 3051 } 3052 mac_proto = MAC_PROTO_NONE; 3053 if (!validate_nsh(nla_data(a), false, true, true)) 3054 return -EINVAL; 3055 break; 3056 3057 case OVS_ACTION_ATTR_POP_NSH: { 3058 __be16 inner_proto; 3059 3060 if (eth_type != htons(ETH_P_NSH)) 3061 return -EINVAL; 3062 inner_proto = tun_p_to_eth_p(key->nsh.base.np); 3063 if (!inner_proto) 3064 return -EINVAL; 3065 if (key->nsh.base.np == TUN_P_ETHERNET) 3066 mac_proto = MAC_PROTO_ETHERNET; 3067 else 3068 mac_proto = MAC_PROTO_NONE; 3069 break; 3070 } 3071 3072 case OVS_ACTION_ATTR_METER: 3073 /* Non-existent meters are simply ignored. */ 3074 break; 3075 3076 case OVS_ACTION_ATTR_CLONE: { 3077 bool last = nla_is_last(a, rem); 3078 3079 err = validate_and_copy_clone(net, a, key, sfa, 3080 eth_type, vlan_tci, 3081 log, last); 3082 if (err) 3083 return err; 3084 skip_copy = true; 3085 break; 3086 } 3087 3088 default: 3089 OVS_NLERR(log, "Unknown Action type %d", type); 3090 return -EINVAL; 3091 } 3092 if (!skip_copy) { 3093 err = copy_action(a, sfa, log); 3094 if (err) 3095 return err; 3096 } 3097 } 3098 3099 if (rem > 0) 3100 return -EINVAL; 3101 3102 return 0; 3103 } 3104 3105 /* 'key' must be the masked key. */ 3106 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3107 const struct sw_flow_key *key, 3108 struct sw_flow_actions **sfa, bool log) 3109 { 3110 int err; 3111 3112 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); 3113 if (IS_ERR(*sfa)) 3114 return PTR_ERR(*sfa); 3115 3116 (*sfa)->orig_len = nla_len(attr); 3117 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, 3118 key->eth.vlan.tci, log); 3119 if (err) 3120 ovs_nla_free_flow_actions(*sfa); 3121 3122 return err; 3123 } 3124 3125 static int sample_action_to_attr(const struct nlattr *attr, 3126 struct sk_buff *skb) 3127 { 3128 struct nlattr *start, *ac_start = NULL, *sample_arg; 3129 int err = 0, rem = nla_len(attr); 3130 const struct sample_arg *arg; 3131 struct nlattr *actions; 3132 3133 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 3134 if (!start) 3135 return -EMSGSIZE; 3136 3137 sample_arg = nla_data(attr); 3138 arg = nla_data(sample_arg); 3139 actions = nla_next(sample_arg, &rem); 3140 3141 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { 3142 err = -EMSGSIZE; 3143 goto out; 3144 } 3145 3146 ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 3147 if (!ac_start) { 3148 err = -EMSGSIZE; 3149 goto out; 3150 } 3151 3152 err = ovs_nla_put_actions(actions, rem, skb); 3153 3154 out: 3155 if (err) { 3156 nla_nest_cancel(skb, ac_start); 3157 nla_nest_cancel(skb, start); 3158 } else { 3159 nla_nest_end(skb, ac_start); 3160 nla_nest_end(skb, start); 3161 } 3162 3163 return err; 3164 } 3165 3166 static int clone_action_to_attr(const struct nlattr *attr, 3167 struct sk_buff *skb) 3168 { 3169 struct nlattr *start; 3170 int err = 0, rem = nla_len(attr); 3171 3172 start = nla_nest_start(skb, OVS_ACTION_ATTR_CLONE); 3173 if (!start) 3174 return -EMSGSIZE; 3175 3176 err = ovs_nla_put_actions(nla_data(attr), rem, skb); 3177 3178 if (err) 3179 nla_nest_cancel(skb, start); 3180 else 3181 nla_nest_end(skb, start); 3182 3183 return err; 3184 } 3185 3186 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 3187 { 3188 const struct nlattr *ovs_key = nla_data(a); 3189 int key_type = nla_type(ovs_key); 3190 struct nlattr *start; 3191 int err; 3192 3193 switch (key_type) { 3194 case OVS_KEY_ATTR_TUNNEL_INFO: { 3195 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 3196 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 3197 3198 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 3199 if (!start) 3200 return -EMSGSIZE; 3201 3202 err = ip_tun_to_nlattr(skb, &tun_info->key, 3203 ip_tunnel_info_opts(tun_info), 3204 tun_info->options_len, 3205 ip_tunnel_info_af(tun_info)); 3206 if (err) 3207 return err; 3208 nla_nest_end(skb, start); 3209 break; 3210 } 3211 default: 3212 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 3213 return -EMSGSIZE; 3214 break; 3215 } 3216 3217 return 0; 3218 } 3219 3220 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 3221 struct sk_buff *skb) 3222 { 3223 const struct nlattr *ovs_key = nla_data(a); 3224 struct nlattr *nla; 3225 size_t key_len = nla_len(ovs_key) / 2; 3226 3227 /* Revert the conversion we did from a non-masked set action to 3228 * masked set action. 3229 */ 3230 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 3231 if (!nla) 3232 return -EMSGSIZE; 3233 3234 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 3235 return -EMSGSIZE; 3236 3237 nla_nest_end(skb, nla); 3238 return 0; 3239 } 3240 3241 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 3242 { 3243 const struct nlattr *a; 3244 int rem, err; 3245 3246 nla_for_each_attr(a, attr, len, rem) { 3247 int type = nla_type(a); 3248 3249 switch (type) { 3250 case OVS_ACTION_ATTR_SET: 3251 err = set_action_to_attr(a, skb); 3252 if (err) 3253 return err; 3254 break; 3255 3256 case OVS_ACTION_ATTR_SET_TO_MASKED: 3257 err = masked_set_action_to_set_action_attr(a, skb); 3258 if (err) 3259 return err; 3260 break; 3261 3262 case OVS_ACTION_ATTR_SAMPLE: 3263 err = sample_action_to_attr(a, skb); 3264 if (err) 3265 return err; 3266 break; 3267 3268 case OVS_ACTION_ATTR_CT: 3269 err = ovs_ct_action_to_attr(nla_data(a), skb); 3270 if (err) 3271 return err; 3272 break; 3273 3274 case OVS_ACTION_ATTR_CLONE: 3275 err = clone_action_to_attr(a, skb); 3276 if (err) 3277 return err; 3278 break; 3279 3280 default: 3281 if (nla_put(skb, type, nla_len(a), nla_data(a))) 3282 return -EMSGSIZE; 3283 break; 3284 } 3285 } 3286 3287 return 0; 3288 } 3289