1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
62 static void update_range(struct sw_flow_match *match,
63 			 size_t offset, size_t size, bool is_mask)
64 {
65 	struct sw_flow_key_range *range;
66 	size_t start = rounddown(offset, sizeof(long));
67 	size_t end = roundup(offset + size, sizeof(long));
68 
69 	if (!is_mask)
70 		range = &match->range;
71 	else
72 		range = &match->mask->range;
73 
74 	if (range->start == range->end) {
75 		range->start = start;
76 		range->end = end;
77 		return;
78 	}
79 
80 	if (range->start > start)
81 		range->start = start;
82 
83 	if (range->end < end)
84 		range->end = end;
85 }
86 
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 	do { \
89 		update_range(match, offsetof(struct sw_flow_key, field),    \
90 			     sizeof((match)->key->field), is_mask);	    \
91 		if (is_mask)						    \
92 			(match)->mask->key.field = value;		    \
93 		else							    \
94 			(match)->key->field = value;		            \
95 	} while (0)
96 
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
98 	do {								    \
99 		update_range(match, offset, len, is_mask);		    \
100 		if (is_mask)						    \
101 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 			       len);					   \
103 		else							    \
104 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
105 	} while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
108 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 				  value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
112 	do {								    \
113 		update_range(match, offsetof(struct sw_flow_key, field),    \
114 			     sizeof((match)->key->field), is_mask);	    \
115 		if (is_mask)						    \
116 			memset((u8 *)&(match)->mask->key.field, value,      \
117 			       sizeof((match)->mask->key.field));	    \
118 		else							    \
119 			memset((u8 *)&(match)->key->field, value,           \
120 			       sizeof((match)->key->field));                \
121 	} while (0)
122 
123 static bool match_validate(const struct sw_flow_match *match,
124 			   u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 	u64 key_expected = 0;
127 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129 	/* The following mask attributes allowed only if they
130 	 * pass the validation tests. */
131 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
133 			| (1 << OVS_KEY_ATTR_IPV6)
134 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
135 			| (1 << OVS_KEY_ATTR_TCP)
136 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
137 			| (1 << OVS_KEY_ATTR_UDP)
138 			| (1 << OVS_KEY_ATTR_SCTP)
139 			| (1 << OVS_KEY_ATTR_ICMP)
140 			| (1 << OVS_KEY_ATTR_ICMPV6)
141 			| (1 << OVS_KEY_ATTR_ARP)
142 			| (1 << OVS_KEY_ATTR_ND)
143 			| (1 << OVS_KEY_ATTR_MPLS));
144 
145 	/* Always allowed mask fields. */
146 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
147 		       | (1 << OVS_KEY_ATTR_IN_PORT)
148 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
149 
150 	/* Check key attributes. */
151 	if (match->key->eth.type == htons(ETH_P_ARP)
152 			|| match->key->eth.type == htons(ETH_P_RARP)) {
153 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
154 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
155 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
156 	}
157 
158 	if (eth_p_mpls(match->key->eth.type)) {
159 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
160 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
161 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
162 	}
163 
164 	if (match->key->eth.type == htons(ETH_P_IP)) {
165 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
166 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
167 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
168 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
169 		}
170 
171 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
172 			if (match->key->ip.proto == IPPROTO_UDP) {
173 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
174 				if (match->mask && (match->mask->key.ip.proto == 0xff))
175 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
176 			}
177 
178 			if (match->key->ip.proto == IPPROTO_SCTP) {
179 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
180 				if (match->mask && (match->mask->key.ip.proto == 0xff))
181 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
182 			}
183 
184 			if (match->key->ip.proto == IPPROTO_TCP) {
185 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
186 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
187 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
188 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
189 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
190 				}
191 			}
192 
193 			if (match->key->ip.proto == IPPROTO_ICMP) {
194 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
195 				if (match->mask && (match->mask->key.ip.proto == 0xff))
196 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
197 			}
198 		}
199 	}
200 
201 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
202 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
203 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
204 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
205 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
206 		}
207 
208 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
209 			if (match->key->ip.proto == IPPROTO_UDP) {
210 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
211 				if (match->mask && (match->mask->key.ip.proto == 0xff))
212 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
213 			}
214 
215 			if (match->key->ip.proto == IPPROTO_SCTP) {
216 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
217 				if (match->mask && (match->mask->key.ip.proto == 0xff))
218 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
219 			}
220 
221 			if (match->key->ip.proto == IPPROTO_TCP) {
222 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
223 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
224 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
225 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
226 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
227 				}
228 			}
229 
230 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
231 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
232 				if (match->mask && (match->mask->key.ip.proto == 0xff))
233 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
234 
235 				if (match->key->tp.src ==
236 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
237 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
238 					key_expected |= 1 << OVS_KEY_ATTR_ND;
239 					/* Original direction conntrack tuple
240 					 * uses the same space as the ND fields
241 					 * in the key, so both are not allowed
242 					 * at the same time.
243 					 */
244 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
245 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
246 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
247 				}
248 			}
249 		}
250 	}
251 
252 	if ((key_attrs & key_expected) != key_expected) {
253 		/* Key attributes check failed. */
254 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
255 			  (unsigned long long)key_attrs,
256 			  (unsigned long long)key_expected);
257 		return false;
258 	}
259 
260 	if ((mask_attrs & mask_allowed) != mask_attrs) {
261 		/* Mask attributes check failed. */
262 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
263 			  (unsigned long long)mask_attrs,
264 			  (unsigned long long)mask_allowed);
265 		return false;
266 	}
267 
268 	return true;
269 }
270 
271 size_t ovs_tun_key_attr_size(void)
272 {
273 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
274 	 * updating this function.
275 	 */
276 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
277 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
278 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
279 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
280 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
281 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
282 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
283 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
284 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
285 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
286 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
287 		 */
288 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
289 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
290 }
291 
292 size_t ovs_key_attr_size(void)
293 {
294 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
295 	 * updating this function.
296 	 */
297 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
298 
299 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
300 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
301 		  + ovs_tun_key_attr_size()
302 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
303 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
304 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
305 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
306 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
307 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
308 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
309 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
310 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
311 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
312 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
313 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
314 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
315 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
316 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
317 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
318 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
319 }
320 
321 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
322 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
323 };
324 
325 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
326 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
327 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
328 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
329 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
330 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
331 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
332 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
333 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
334 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
335 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
336 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
337 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
338 						.next = ovs_vxlan_ext_key_lens },
339 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
340 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
341 };
342 
343 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
344 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
345 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
346 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
347 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
348 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
349 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
350 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
351 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
352 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
353 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
354 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
355 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
356 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
357 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
358 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
359 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
360 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
361 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
362 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
363 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
364 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
365 				     .next = ovs_tunnel_key_lens, },
366 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
367 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
368 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
369 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
370 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
371 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
372 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
373 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
374 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
375 };
376 
377 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
378 {
379 	return expected_len == attr_len ||
380 	       expected_len == OVS_ATTR_NESTED ||
381 	       expected_len == OVS_ATTR_VARIABLE;
382 }
383 
384 static bool is_all_zero(const u8 *fp, size_t size)
385 {
386 	int i;
387 
388 	if (!fp)
389 		return false;
390 
391 	for (i = 0; i < size; i++)
392 		if (fp[i])
393 			return false;
394 
395 	return true;
396 }
397 
398 static int __parse_flow_nlattrs(const struct nlattr *attr,
399 				const struct nlattr *a[],
400 				u64 *attrsp, bool log, bool nz)
401 {
402 	const struct nlattr *nla;
403 	u64 attrs;
404 	int rem;
405 
406 	attrs = *attrsp;
407 	nla_for_each_nested(nla, attr, rem) {
408 		u16 type = nla_type(nla);
409 		int expected_len;
410 
411 		if (type > OVS_KEY_ATTR_MAX) {
412 			OVS_NLERR(log, "Key type %d is out of range max %d",
413 				  type, OVS_KEY_ATTR_MAX);
414 			return -EINVAL;
415 		}
416 
417 		if (attrs & (1 << type)) {
418 			OVS_NLERR(log, "Duplicate key (type %d).", type);
419 			return -EINVAL;
420 		}
421 
422 		expected_len = ovs_key_lens[type].len;
423 		if (!check_attr_len(nla_len(nla), expected_len)) {
424 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
425 				  type, nla_len(nla), expected_len);
426 			return -EINVAL;
427 		}
428 
429 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
430 			attrs |= 1 << type;
431 			a[type] = nla;
432 		}
433 	}
434 	if (rem) {
435 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
436 		return -EINVAL;
437 	}
438 
439 	*attrsp = attrs;
440 	return 0;
441 }
442 
443 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
444 				   const struct nlattr *a[], u64 *attrsp,
445 				   bool log)
446 {
447 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
448 }
449 
450 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
451 		       u64 *attrsp, bool log)
452 {
453 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
454 }
455 
456 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
457 				     struct sw_flow_match *match, bool is_mask,
458 				     bool log)
459 {
460 	unsigned long opt_key_offset;
461 
462 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
463 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
464 			  nla_len(a), sizeof(match->key->tun_opts));
465 		return -EINVAL;
466 	}
467 
468 	if (nla_len(a) % 4 != 0) {
469 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
470 			  nla_len(a));
471 		return -EINVAL;
472 	}
473 
474 	/* We need to record the length of the options passed
475 	 * down, otherwise packets with the same format but
476 	 * additional options will be silently matched.
477 	 */
478 	if (!is_mask) {
479 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
480 				false);
481 	} else {
482 		/* This is somewhat unusual because it looks at
483 		 * both the key and mask while parsing the
484 		 * attributes (and by extension assumes the key
485 		 * is parsed first). Normally, we would verify
486 		 * that each is the correct length and that the
487 		 * attributes line up in the validate function.
488 		 * However, that is difficult because this is
489 		 * variable length and we won't have the
490 		 * information later.
491 		 */
492 		if (match->key->tun_opts_len != nla_len(a)) {
493 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
494 				  match->key->tun_opts_len, nla_len(a));
495 			return -EINVAL;
496 		}
497 
498 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
499 	}
500 
501 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
502 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
503 				  nla_len(a), is_mask);
504 	return 0;
505 }
506 
507 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
508 				     struct sw_flow_match *match, bool is_mask,
509 				     bool log)
510 {
511 	struct nlattr *a;
512 	int rem;
513 	unsigned long opt_key_offset;
514 	struct vxlan_metadata opts;
515 
516 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
517 
518 	memset(&opts, 0, sizeof(opts));
519 	nla_for_each_nested(a, attr, rem) {
520 		int type = nla_type(a);
521 
522 		if (type > OVS_VXLAN_EXT_MAX) {
523 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
524 				  type, OVS_VXLAN_EXT_MAX);
525 			return -EINVAL;
526 		}
527 
528 		if (!check_attr_len(nla_len(a),
529 				    ovs_vxlan_ext_key_lens[type].len)) {
530 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
531 				  type, nla_len(a),
532 				  ovs_vxlan_ext_key_lens[type].len);
533 			return -EINVAL;
534 		}
535 
536 		switch (type) {
537 		case OVS_VXLAN_EXT_GBP:
538 			opts.gbp = nla_get_u32(a);
539 			break;
540 		default:
541 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
542 				  type);
543 			return -EINVAL;
544 		}
545 	}
546 	if (rem) {
547 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
548 			  rem);
549 		return -EINVAL;
550 	}
551 
552 	if (!is_mask)
553 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
554 	else
555 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
556 
557 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
558 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
559 				  is_mask);
560 	return 0;
561 }
562 
563 static int ip_tun_from_nlattr(const struct nlattr *attr,
564 			      struct sw_flow_match *match, bool is_mask,
565 			      bool log)
566 {
567 	bool ttl = false, ipv4 = false, ipv6 = false;
568 	__be16 tun_flags = 0;
569 	int opts_type = 0;
570 	struct nlattr *a;
571 	int rem;
572 
573 	nla_for_each_nested(a, attr, rem) {
574 		int type = nla_type(a);
575 		int err;
576 
577 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
578 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
579 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
580 			return -EINVAL;
581 		}
582 
583 		if (!check_attr_len(nla_len(a),
584 				    ovs_tunnel_key_lens[type].len)) {
585 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
586 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
587 			return -EINVAL;
588 		}
589 
590 		switch (type) {
591 		case OVS_TUNNEL_KEY_ATTR_ID:
592 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
593 					nla_get_be64(a), is_mask);
594 			tun_flags |= TUNNEL_KEY;
595 			break;
596 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
597 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
598 					nla_get_in_addr(a), is_mask);
599 			ipv4 = true;
600 			break;
601 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
602 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
603 					nla_get_in_addr(a), is_mask);
604 			ipv4 = true;
605 			break;
606 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
607 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
608 					nla_get_in6_addr(a), is_mask);
609 			ipv6 = true;
610 			break;
611 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
612 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
613 					nla_get_in6_addr(a), is_mask);
614 			ipv6 = true;
615 			break;
616 		case OVS_TUNNEL_KEY_ATTR_TOS:
617 			SW_FLOW_KEY_PUT(match, tun_key.tos,
618 					nla_get_u8(a), is_mask);
619 			break;
620 		case OVS_TUNNEL_KEY_ATTR_TTL:
621 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
622 					nla_get_u8(a), is_mask);
623 			ttl = true;
624 			break;
625 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
626 			tun_flags |= TUNNEL_DONT_FRAGMENT;
627 			break;
628 		case OVS_TUNNEL_KEY_ATTR_CSUM:
629 			tun_flags |= TUNNEL_CSUM;
630 			break;
631 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
632 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
633 					nla_get_be16(a), is_mask);
634 			break;
635 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
636 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
637 					nla_get_be16(a), is_mask);
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_OAM:
640 			tun_flags |= TUNNEL_OAM;
641 			break;
642 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
643 			if (opts_type) {
644 				OVS_NLERR(log, "Multiple metadata blocks provided");
645 				return -EINVAL;
646 			}
647 
648 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
649 			if (err)
650 				return err;
651 
652 			tun_flags |= TUNNEL_GENEVE_OPT;
653 			opts_type = type;
654 			break;
655 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
656 			if (opts_type) {
657 				OVS_NLERR(log, "Multiple metadata blocks provided");
658 				return -EINVAL;
659 			}
660 
661 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
662 			if (err)
663 				return err;
664 
665 			tun_flags |= TUNNEL_VXLAN_OPT;
666 			opts_type = type;
667 			break;
668 		default:
669 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
670 				  type);
671 			return -EINVAL;
672 		}
673 	}
674 
675 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
676 	if (is_mask)
677 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
678 	else
679 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
680 				false);
681 
682 	if (rem > 0) {
683 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
684 			  rem);
685 		return -EINVAL;
686 	}
687 
688 	if (ipv4 && ipv6) {
689 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
690 		return -EINVAL;
691 	}
692 
693 	if (!is_mask) {
694 		if (!ipv4 && !ipv6) {
695 			OVS_NLERR(log, "IP tunnel dst address not specified");
696 			return -EINVAL;
697 		}
698 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
699 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
700 			return -EINVAL;
701 		}
702 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
703 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
704 			return -EINVAL;
705 		}
706 
707 		if (!ttl) {
708 			OVS_NLERR(log, "IP tunnel TTL not specified.");
709 			return -EINVAL;
710 		}
711 	}
712 
713 	return opts_type;
714 }
715 
716 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
717 			       const void *tun_opts, int swkey_tun_opts_len)
718 {
719 	const struct vxlan_metadata *opts = tun_opts;
720 	struct nlattr *nla;
721 
722 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
723 	if (!nla)
724 		return -EMSGSIZE;
725 
726 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
727 		return -EMSGSIZE;
728 
729 	nla_nest_end(skb, nla);
730 	return 0;
731 }
732 
733 static int __ip_tun_to_nlattr(struct sk_buff *skb,
734 			      const struct ip_tunnel_key *output,
735 			      const void *tun_opts, int swkey_tun_opts_len,
736 			      unsigned short tun_proto)
737 {
738 	if (output->tun_flags & TUNNEL_KEY &&
739 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
740 			 OVS_TUNNEL_KEY_ATTR_PAD))
741 		return -EMSGSIZE;
742 	switch (tun_proto) {
743 	case AF_INET:
744 		if (output->u.ipv4.src &&
745 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
746 				    output->u.ipv4.src))
747 			return -EMSGSIZE;
748 		if (output->u.ipv4.dst &&
749 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
750 				    output->u.ipv4.dst))
751 			return -EMSGSIZE;
752 		break;
753 	case AF_INET6:
754 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
755 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
756 				     &output->u.ipv6.src))
757 			return -EMSGSIZE;
758 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
759 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
760 				     &output->u.ipv6.dst))
761 			return -EMSGSIZE;
762 		break;
763 	}
764 	if (output->tos &&
765 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
766 		return -EMSGSIZE;
767 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
768 		return -EMSGSIZE;
769 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
770 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
771 		return -EMSGSIZE;
772 	if ((output->tun_flags & TUNNEL_CSUM) &&
773 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
774 		return -EMSGSIZE;
775 	if (output->tp_src &&
776 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
777 		return -EMSGSIZE;
778 	if (output->tp_dst &&
779 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
780 		return -EMSGSIZE;
781 	if ((output->tun_flags & TUNNEL_OAM) &&
782 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
783 		return -EMSGSIZE;
784 	if (swkey_tun_opts_len) {
785 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
786 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
787 			    swkey_tun_opts_len, tun_opts))
788 			return -EMSGSIZE;
789 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
790 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
791 			return -EMSGSIZE;
792 	}
793 
794 	return 0;
795 }
796 
797 static int ip_tun_to_nlattr(struct sk_buff *skb,
798 			    const struct ip_tunnel_key *output,
799 			    const void *tun_opts, int swkey_tun_opts_len,
800 			    unsigned short tun_proto)
801 {
802 	struct nlattr *nla;
803 	int err;
804 
805 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
806 	if (!nla)
807 		return -EMSGSIZE;
808 
809 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
810 				 tun_proto);
811 	if (err)
812 		return err;
813 
814 	nla_nest_end(skb, nla);
815 	return 0;
816 }
817 
818 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
819 			    struct ip_tunnel_info *tun_info)
820 {
821 	return __ip_tun_to_nlattr(skb, &tun_info->key,
822 				  ip_tunnel_info_opts(tun_info),
823 				  tun_info->options_len,
824 				  ip_tunnel_info_af(tun_info));
825 }
826 
827 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
828 				    const struct nlattr *a[],
829 				    bool is_mask, bool inner)
830 {
831 	__be16 tci = 0;
832 	__be16 tpid = 0;
833 
834 	if (a[OVS_KEY_ATTR_VLAN])
835 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
836 
837 	if (a[OVS_KEY_ATTR_ETHERTYPE])
838 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
839 
840 	if (likely(!inner)) {
841 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
842 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
843 	} else {
844 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
845 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
846 	}
847 	return 0;
848 }
849 
850 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
851 				      u64 key_attrs, bool inner,
852 				      const struct nlattr **a, bool log)
853 {
854 	__be16 tci = 0;
855 
856 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
857 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
858 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
859 		/* Not a VLAN. */
860 		return 0;
861 	}
862 
863 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
864 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
865 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
866 		return -EINVAL;
867 	}
868 
869 	if (a[OVS_KEY_ATTR_VLAN])
870 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
871 
872 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
873 		if (tci) {
874 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
875 				  (inner) ? "C-VLAN" : "VLAN");
876 			return -EINVAL;
877 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
878 			/* Corner case for truncated VLAN header. */
879 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
880 				  (inner) ? "C-VLAN" : "VLAN");
881 			return -EINVAL;
882 		}
883 	}
884 
885 	return 1;
886 }
887 
888 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
889 					   u64 key_attrs, bool inner,
890 					   const struct nlattr **a, bool log)
891 {
892 	__be16 tci = 0;
893 	__be16 tpid = 0;
894 	bool encap_valid = !!(match->key->eth.vlan.tci &
895 			      htons(VLAN_TAG_PRESENT));
896 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
897 				htons(VLAN_TAG_PRESENT));
898 
899 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
900 		/* Not a VLAN. */
901 		return 0;
902 	}
903 
904 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
905 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
906 			  (inner) ? "C-VLAN" : "VLAN");
907 		return -EINVAL;
908 	}
909 
910 	if (a[OVS_KEY_ATTR_VLAN])
911 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
912 
913 	if (a[OVS_KEY_ATTR_ETHERTYPE])
914 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
915 
916 	if (tpid != htons(0xffff)) {
917 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
918 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
919 		return -EINVAL;
920 	}
921 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
922 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
923 			  (inner) ? "C-VLAN" : "VLAN");
924 		return -EINVAL;
925 	}
926 
927 	return 1;
928 }
929 
930 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
931 				     u64 *key_attrs, bool inner,
932 				     const struct nlattr **a, bool is_mask,
933 				     bool log)
934 {
935 	int err;
936 	const struct nlattr *encap;
937 
938 	if (!is_mask)
939 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
940 						 a, log);
941 	else
942 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
943 						      a, log);
944 	if (err <= 0)
945 		return err;
946 
947 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
948 	if (err)
949 		return err;
950 
951 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
952 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
953 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
954 
955 	encap = a[OVS_KEY_ATTR_ENCAP];
956 
957 	if (!is_mask)
958 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
959 	else
960 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
961 
962 	return err;
963 }
964 
965 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
966 				   u64 *key_attrs, const struct nlattr **a,
967 				   bool is_mask, bool log)
968 {
969 	int err;
970 	bool encap_valid = false;
971 
972 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
973 					is_mask, log);
974 	if (err)
975 		return err;
976 
977 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
978 	if (encap_valid) {
979 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
980 						is_mask, log);
981 		if (err)
982 			return err;
983 	}
984 
985 	return 0;
986 }
987 
988 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
989 				       u64 *attrs, const struct nlattr **a,
990 				       bool is_mask, bool log)
991 {
992 	__be16 eth_type;
993 
994 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
995 	if (is_mask) {
996 		/* Always exact match EtherType. */
997 		eth_type = htons(0xffff);
998 	} else if (!eth_proto_is_802_3(eth_type)) {
999 		OVS_NLERR(log, "EtherType %x is less than min %x",
1000 				ntohs(eth_type), ETH_P_802_3_MIN);
1001 		return -EINVAL;
1002 	}
1003 
1004 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1005 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1006 	return 0;
1007 }
1008 
1009 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1010 				 u64 *attrs, const struct nlattr **a,
1011 				 bool is_mask, bool log)
1012 {
1013 	u8 mac_proto = MAC_PROTO_ETHERNET;
1014 
1015 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1016 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1017 
1018 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1019 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1020 	}
1021 
1022 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1023 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1024 
1025 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1026 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1027 	}
1028 
1029 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1030 		SW_FLOW_KEY_PUT(match, phy.priority,
1031 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1032 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1033 	}
1034 
1035 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1036 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1037 
1038 		if (is_mask) {
1039 			in_port = 0xffffffff; /* Always exact match in_port. */
1040 		} else if (in_port >= DP_MAX_PORTS) {
1041 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1042 				  in_port, DP_MAX_PORTS);
1043 			return -EINVAL;
1044 		}
1045 
1046 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1047 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1048 	} else if (!is_mask) {
1049 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1050 	}
1051 
1052 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1053 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1054 
1055 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1056 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1057 	}
1058 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1059 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1060 				       is_mask, log) < 0)
1061 			return -EINVAL;
1062 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1063 	}
1064 
1065 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1066 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1067 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1068 
1069 		if (ct_state & ~CT_SUPPORTED_MASK) {
1070 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1071 				  ct_state);
1072 			return -EINVAL;
1073 		}
1074 
1075 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1076 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1077 	}
1078 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1079 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1080 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1081 
1082 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1083 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1084 	}
1085 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1086 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1087 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1088 
1089 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1090 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1091 	}
1092 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1093 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1094 		const struct ovs_key_ct_labels *cl;
1095 
1096 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1097 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1098 				   sizeof(*cl), is_mask);
1099 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1100 	}
1101 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1102 		const struct ovs_key_ct_tuple_ipv4 *ct;
1103 
1104 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1105 
1106 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1107 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1108 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1109 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1110 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1111 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1112 	}
1113 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1114 		const struct ovs_key_ct_tuple_ipv6 *ct;
1115 
1116 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1117 
1118 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1119 				   sizeof(match->key->ipv6.ct_orig.src),
1120 				   is_mask);
1121 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1122 				   sizeof(match->key->ipv6.ct_orig.dst),
1123 				   is_mask);
1124 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1125 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1126 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1127 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1128 	}
1129 
1130 	/* For layer 3 packets the Ethernet type is provided
1131 	 * and treated as metadata but no MAC addresses are provided.
1132 	 */
1133 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1134 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1135 		mac_proto = MAC_PROTO_NONE;
1136 
1137 	/* Always exact match mac_proto */
1138 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1139 
1140 	if (mac_proto == MAC_PROTO_NONE)
1141 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1142 						   log);
1143 
1144 	return 0;
1145 }
1146 
1147 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1148 				u64 attrs, const struct nlattr **a,
1149 				bool is_mask, bool log)
1150 {
1151 	int err;
1152 
1153 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1154 	if (err)
1155 		return err;
1156 
1157 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1158 		const struct ovs_key_ethernet *eth_key;
1159 
1160 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1161 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1162 				eth_key->eth_src, ETH_ALEN, is_mask);
1163 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1164 				eth_key->eth_dst, ETH_ALEN, is_mask);
1165 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1166 
1167 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1168 			/* VLAN attribute is always parsed before getting here since it
1169 			 * may occur multiple times.
1170 			 */
1171 			OVS_NLERR(log, "VLAN attribute unexpected.");
1172 			return -EINVAL;
1173 		}
1174 
1175 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1176 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1177 							  log);
1178 			if (err)
1179 				return err;
1180 		} else if (!is_mask) {
1181 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1182 		}
1183 	} else if (!match->key->eth.type) {
1184 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1185 		return -EINVAL;
1186 	}
1187 
1188 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1189 		const struct ovs_key_ipv4 *ipv4_key;
1190 
1191 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1192 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1193 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1194 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1195 			return -EINVAL;
1196 		}
1197 		SW_FLOW_KEY_PUT(match, ip.proto,
1198 				ipv4_key->ipv4_proto, is_mask);
1199 		SW_FLOW_KEY_PUT(match, ip.tos,
1200 				ipv4_key->ipv4_tos, is_mask);
1201 		SW_FLOW_KEY_PUT(match, ip.ttl,
1202 				ipv4_key->ipv4_ttl, is_mask);
1203 		SW_FLOW_KEY_PUT(match, ip.frag,
1204 				ipv4_key->ipv4_frag, is_mask);
1205 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1206 				ipv4_key->ipv4_src, is_mask);
1207 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1208 				ipv4_key->ipv4_dst, is_mask);
1209 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1210 	}
1211 
1212 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1213 		const struct ovs_key_ipv6 *ipv6_key;
1214 
1215 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1216 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1217 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1218 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1219 			return -EINVAL;
1220 		}
1221 
1222 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1223 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1224 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1225 			return -EINVAL;
1226 		}
1227 
1228 		SW_FLOW_KEY_PUT(match, ipv6.label,
1229 				ipv6_key->ipv6_label, is_mask);
1230 		SW_FLOW_KEY_PUT(match, ip.proto,
1231 				ipv6_key->ipv6_proto, is_mask);
1232 		SW_FLOW_KEY_PUT(match, ip.tos,
1233 				ipv6_key->ipv6_tclass, is_mask);
1234 		SW_FLOW_KEY_PUT(match, ip.ttl,
1235 				ipv6_key->ipv6_hlimit, is_mask);
1236 		SW_FLOW_KEY_PUT(match, ip.frag,
1237 				ipv6_key->ipv6_frag, is_mask);
1238 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1239 				ipv6_key->ipv6_src,
1240 				sizeof(match->key->ipv6.addr.src),
1241 				is_mask);
1242 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1243 				ipv6_key->ipv6_dst,
1244 				sizeof(match->key->ipv6.addr.dst),
1245 				is_mask);
1246 
1247 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1248 	}
1249 
1250 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1251 		const struct ovs_key_arp *arp_key;
1252 
1253 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1254 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1255 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1256 				  arp_key->arp_op);
1257 			return -EINVAL;
1258 		}
1259 
1260 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1261 				arp_key->arp_sip, is_mask);
1262 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1263 			arp_key->arp_tip, is_mask);
1264 		SW_FLOW_KEY_PUT(match, ip.proto,
1265 				ntohs(arp_key->arp_op), is_mask);
1266 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1267 				arp_key->arp_sha, ETH_ALEN, is_mask);
1268 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1269 				arp_key->arp_tha, ETH_ALEN, is_mask);
1270 
1271 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1272 	}
1273 
1274 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1275 		const struct ovs_key_mpls *mpls_key;
1276 
1277 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1278 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1279 				mpls_key->mpls_lse, is_mask);
1280 
1281 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1282 	 }
1283 
1284 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1285 		const struct ovs_key_tcp *tcp_key;
1286 
1287 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1288 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1289 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1290 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1291 	}
1292 
1293 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1294 		SW_FLOW_KEY_PUT(match, tp.flags,
1295 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1296 				is_mask);
1297 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1298 	}
1299 
1300 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1301 		const struct ovs_key_udp *udp_key;
1302 
1303 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1304 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1305 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1306 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1307 	}
1308 
1309 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1310 		const struct ovs_key_sctp *sctp_key;
1311 
1312 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1313 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1314 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1315 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1316 	}
1317 
1318 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1319 		const struct ovs_key_icmp *icmp_key;
1320 
1321 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1322 		SW_FLOW_KEY_PUT(match, tp.src,
1323 				htons(icmp_key->icmp_type), is_mask);
1324 		SW_FLOW_KEY_PUT(match, tp.dst,
1325 				htons(icmp_key->icmp_code), is_mask);
1326 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1327 	}
1328 
1329 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1330 		const struct ovs_key_icmpv6 *icmpv6_key;
1331 
1332 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1333 		SW_FLOW_KEY_PUT(match, tp.src,
1334 				htons(icmpv6_key->icmpv6_type), is_mask);
1335 		SW_FLOW_KEY_PUT(match, tp.dst,
1336 				htons(icmpv6_key->icmpv6_code), is_mask);
1337 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1338 	}
1339 
1340 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1341 		const struct ovs_key_nd *nd_key;
1342 
1343 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1344 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1345 			nd_key->nd_target,
1346 			sizeof(match->key->ipv6.nd.target),
1347 			is_mask);
1348 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1349 			nd_key->nd_sll, ETH_ALEN, is_mask);
1350 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1351 				nd_key->nd_tll, ETH_ALEN, is_mask);
1352 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1353 	}
1354 
1355 	if (attrs != 0) {
1356 		OVS_NLERR(log, "Unknown key attributes %llx",
1357 			  (unsigned long long)attrs);
1358 		return -EINVAL;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 static void nlattr_set(struct nlattr *attr, u8 val,
1365 		       const struct ovs_len_tbl *tbl)
1366 {
1367 	struct nlattr *nla;
1368 	int rem;
1369 
1370 	/* The nlattr stream should already have been validated */
1371 	nla_for_each_nested(nla, attr, rem) {
1372 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1373 			if (tbl[nla_type(nla)].next)
1374 				tbl = tbl[nla_type(nla)].next;
1375 			nlattr_set(nla, val, tbl);
1376 		} else {
1377 			memset(nla_data(nla), val, nla_len(nla));
1378 		}
1379 
1380 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1381 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1382 	}
1383 }
1384 
1385 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1386 {
1387 	nlattr_set(attr, val, ovs_key_lens);
1388 }
1389 
1390 /**
1391  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1392  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1393  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1394  * does not include any don't care bit.
1395  * @net: Used to determine per-namespace field support.
1396  * @match: receives the extracted flow match information.
1397  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1398  * sequence. The fields should of the packet that triggered the creation
1399  * of this flow.
1400  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1401  * attribute specifies the mask field of the wildcarded flow.
1402  * @log: Boolean to allow kernel error logging.  Normally true, but when
1403  * probing for feature compatibility this should be passed in as false to
1404  * suppress unnecessary error logging.
1405  */
1406 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1407 		      const struct nlattr *nla_key,
1408 		      const struct nlattr *nla_mask,
1409 		      bool log)
1410 {
1411 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1412 	struct nlattr *newmask = NULL;
1413 	u64 key_attrs = 0;
1414 	u64 mask_attrs = 0;
1415 	int err;
1416 
1417 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1418 	if (err)
1419 		return err;
1420 
1421 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1422 	if (err)
1423 		return err;
1424 
1425 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1426 	if (err)
1427 		return err;
1428 
1429 	if (match->mask) {
1430 		if (!nla_mask) {
1431 			/* Create an exact match mask. We need to set to 0xff
1432 			 * all the 'match->mask' fields that have been touched
1433 			 * in 'match->key'. We cannot simply memset
1434 			 * 'match->mask', because padding bytes and fields not
1435 			 * specified in 'match->key' should be left to 0.
1436 			 * Instead, we use a stream of netlink attributes,
1437 			 * copied from 'key' and set to 0xff.
1438 			 * ovs_key_from_nlattrs() will take care of filling
1439 			 * 'match->mask' appropriately.
1440 			 */
1441 			newmask = kmemdup(nla_key,
1442 					  nla_total_size(nla_len(nla_key)),
1443 					  GFP_KERNEL);
1444 			if (!newmask)
1445 				return -ENOMEM;
1446 
1447 			mask_set_nlattr(newmask, 0xff);
1448 
1449 			/* The userspace does not send tunnel attributes that
1450 			 * are 0, but we should not wildcard them nonetheless.
1451 			 */
1452 			if (match->key->tun_proto)
1453 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1454 							 0xff, true);
1455 
1456 			nla_mask = newmask;
1457 		}
1458 
1459 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1460 		if (err)
1461 			goto free_newmask;
1462 
1463 		/* Always match on tci. */
1464 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1465 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1466 
1467 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1468 		if (err)
1469 			goto free_newmask;
1470 
1471 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1472 					   log);
1473 		if (err)
1474 			goto free_newmask;
1475 	}
1476 
1477 	if (!match_validate(match, key_attrs, mask_attrs, log))
1478 		err = -EINVAL;
1479 
1480 free_newmask:
1481 	kfree(newmask);
1482 	return err;
1483 }
1484 
1485 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1486 {
1487 	size_t len;
1488 
1489 	if (!attr)
1490 		return 0;
1491 
1492 	len = nla_len(attr);
1493 	if (len < 1 || len > MAX_UFID_LENGTH) {
1494 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1495 			  nla_len(attr), MAX_UFID_LENGTH);
1496 		return 0;
1497 	}
1498 
1499 	return len;
1500 }
1501 
1502 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1503  * or false otherwise.
1504  */
1505 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1506 		      bool log)
1507 {
1508 	sfid->ufid_len = get_ufid_len(attr, log);
1509 	if (sfid->ufid_len)
1510 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1511 
1512 	return sfid->ufid_len;
1513 }
1514 
1515 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1516 			   const struct sw_flow_key *key, bool log)
1517 {
1518 	struct sw_flow_key *new_key;
1519 
1520 	if (ovs_nla_get_ufid(sfid, ufid, log))
1521 		return 0;
1522 
1523 	/* If UFID was not provided, use unmasked key. */
1524 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1525 	if (!new_key)
1526 		return -ENOMEM;
1527 	memcpy(new_key, key, sizeof(*key));
1528 	sfid->unmasked_key = new_key;
1529 
1530 	return 0;
1531 }
1532 
1533 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1534 {
1535 	return attr ? nla_get_u32(attr) : 0;
1536 }
1537 
1538 /**
1539  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1540  * @net: Network namespace.
1541  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1542  * metadata.
1543  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1544  * attributes.
1545  * @attrs: Bit mask for the netlink attributes included in @a.
1546  * @log: Boolean to allow kernel error logging.  Normally true, but when
1547  * probing for feature compatibility this should be passed in as false to
1548  * suppress unnecessary error logging.
1549  *
1550  * This parses a series of Netlink attributes that form a flow key, which must
1551  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1552  * get the metadata, that is, the parts of the flow key that cannot be
1553  * extracted from the packet itself.
1554  *
1555  * This must be called before the packet key fields are filled in 'key'.
1556  */
1557 
1558 int ovs_nla_get_flow_metadata(struct net *net,
1559 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1560 			      u64 attrs, struct sw_flow_key *key, bool log)
1561 {
1562 	struct sw_flow_match match;
1563 
1564 	memset(&match, 0, sizeof(match));
1565 	match.key = key;
1566 
1567 	key->ct_state = 0;
1568 	key->ct_zone = 0;
1569 	key->ct_orig_proto = 0;
1570 	memset(&key->ct, 0, sizeof(key->ct));
1571 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1572 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1573 
1574 	key->phy.in_port = DP_MAX_PORTS;
1575 
1576 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1577 }
1578 
1579 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1580 			    bool is_mask)
1581 {
1582 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1583 
1584 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1585 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1586 		return -EMSGSIZE;
1587 	return 0;
1588 }
1589 
1590 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1591 			     const struct sw_flow_key *output, bool is_mask,
1592 			     struct sk_buff *skb)
1593 {
1594 	struct ovs_key_ethernet *eth_key;
1595 	struct nlattr *nla;
1596 	struct nlattr *encap = NULL;
1597 	struct nlattr *in_encap = NULL;
1598 
1599 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1600 		goto nla_put_failure;
1601 
1602 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1603 		goto nla_put_failure;
1604 
1605 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1606 		goto nla_put_failure;
1607 
1608 	if ((swkey->tun_proto || is_mask)) {
1609 		const void *opts = NULL;
1610 
1611 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1612 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1613 
1614 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1615 				     swkey->tun_opts_len, swkey->tun_proto))
1616 			goto nla_put_failure;
1617 	}
1618 
1619 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1620 		if (is_mask && (output->phy.in_port == 0xffff))
1621 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1622 				goto nla_put_failure;
1623 	} else {
1624 		u16 upper_u16;
1625 		upper_u16 = !is_mask ? 0 : 0xffff;
1626 
1627 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1628 				(upper_u16 << 16) | output->phy.in_port))
1629 			goto nla_put_failure;
1630 	}
1631 
1632 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1633 		goto nla_put_failure;
1634 
1635 	if (ovs_ct_put_key(swkey, output, skb))
1636 		goto nla_put_failure;
1637 
1638 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1639 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1640 		if (!nla)
1641 			goto nla_put_failure;
1642 
1643 		eth_key = nla_data(nla);
1644 		ether_addr_copy(eth_key->eth_src, output->eth.src);
1645 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1646 
1647 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1648 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1649 				goto nla_put_failure;
1650 			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1651 			if (!swkey->eth.vlan.tci)
1652 				goto unencap;
1653 
1654 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1655 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1656 					goto nla_put_failure;
1657 				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1658 				if (!swkey->eth.cvlan.tci)
1659 					goto unencap;
1660 			}
1661 		}
1662 
1663 		if (swkey->eth.type == htons(ETH_P_802_2)) {
1664 			/*
1665 			* Ethertype 802.2 is represented in the netlink with omitted
1666 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1667 			* 0xffff in the mask attribute.  Ethertype can also
1668 			* be wildcarded.
1669 			*/
1670 			if (is_mask && output->eth.type)
1671 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1672 							output->eth.type))
1673 					goto nla_put_failure;
1674 			goto unencap;
1675 		}
1676 	}
1677 
1678 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1679 		goto nla_put_failure;
1680 
1681 	if (eth_type_vlan(swkey->eth.type)) {
1682 		/* There are 3 VLAN tags, we don't know anything about the rest
1683 		 * of the packet, so truncate here.
1684 		 */
1685 		WARN_ON_ONCE(!(encap && in_encap));
1686 		goto unencap;
1687 	}
1688 
1689 	if (swkey->eth.type == htons(ETH_P_IP)) {
1690 		struct ovs_key_ipv4 *ipv4_key;
1691 
1692 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1693 		if (!nla)
1694 			goto nla_put_failure;
1695 		ipv4_key = nla_data(nla);
1696 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1697 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1698 		ipv4_key->ipv4_proto = output->ip.proto;
1699 		ipv4_key->ipv4_tos = output->ip.tos;
1700 		ipv4_key->ipv4_ttl = output->ip.ttl;
1701 		ipv4_key->ipv4_frag = output->ip.frag;
1702 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1703 		struct ovs_key_ipv6 *ipv6_key;
1704 
1705 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1706 		if (!nla)
1707 			goto nla_put_failure;
1708 		ipv6_key = nla_data(nla);
1709 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1710 				sizeof(ipv6_key->ipv6_src));
1711 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1712 				sizeof(ipv6_key->ipv6_dst));
1713 		ipv6_key->ipv6_label = output->ipv6.label;
1714 		ipv6_key->ipv6_proto = output->ip.proto;
1715 		ipv6_key->ipv6_tclass = output->ip.tos;
1716 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1717 		ipv6_key->ipv6_frag = output->ip.frag;
1718 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1719 		   swkey->eth.type == htons(ETH_P_RARP)) {
1720 		struct ovs_key_arp *arp_key;
1721 
1722 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1723 		if (!nla)
1724 			goto nla_put_failure;
1725 		arp_key = nla_data(nla);
1726 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1727 		arp_key->arp_sip = output->ipv4.addr.src;
1728 		arp_key->arp_tip = output->ipv4.addr.dst;
1729 		arp_key->arp_op = htons(output->ip.proto);
1730 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1731 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1732 	} else if (eth_p_mpls(swkey->eth.type)) {
1733 		struct ovs_key_mpls *mpls_key;
1734 
1735 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1736 		if (!nla)
1737 			goto nla_put_failure;
1738 		mpls_key = nla_data(nla);
1739 		mpls_key->mpls_lse = output->mpls.top_lse;
1740 	}
1741 
1742 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1743 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1744 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1745 
1746 		if (swkey->ip.proto == IPPROTO_TCP) {
1747 			struct ovs_key_tcp *tcp_key;
1748 
1749 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1750 			if (!nla)
1751 				goto nla_put_failure;
1752 			tcp_key = nla_data(nla);
1753 			tcp_key->tcp_src = output->tp.src;
1754 			tcp_key->tcp_dst = output->tp.dst;
1755 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1756 					 output->tp.flags))
1757 				goto nla_put_failure;
1758 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1759 			struct ovs_key_udp *udp_key;
1760 
1761 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1762 			if (!nla)
1763 				goto nla_put_failure;
1764 			udp_key = nla_data(nla);
1765 			udp_key->udp_src = output->tp.src;
1766 			udp_key->udp_dst = output->tp.dst;
1767 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1768 			struct ovs_key_sctp *sctp_key;
1769 
1770 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1771 			if (!nla)
1772 				goto nla_put_failure;
1773 			sctp_key = nla_data(nla);
1774 			sctp_key->sctp_src = output->tp.src;
1775 			sctp_key->sctp_dst = output->tp.dst;
1776 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1777 			   swkey->ip.proto == IPPROTO_ICMP) {
1778 			struct ovs_key_icmp *icmp_key;
1779 
1780 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1781 			if (!nla)
1782 				goto nla_put_failure;
1783 			icmp_key = nla_data(nla);
1784 			icmp_key->icmp_type = ntohs(output->tp.src);
1785 			icmp_key->icmp_code = ntohs(output->tp.dst);
1786 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1787 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1788 			struct ovs_key_icmpv6 *icmpv6_key;
1789 
1790 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1791 						sizeof(*icmpv6_key));
1792 			if (!nla)
1793 				goto nla_put_failure;
1794 			icmpv6_key = nla_data(nla);
1795 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1796 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1797 
1798 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1799 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1800 				struct ovs_key_nd *nd_key;
1801 
1802 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1803 				if (!nla)
1804 					goto nla_put_failure;
1805 				nd_key = nla_data(nla);
1806 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1807 							sizeof(nd_key->nd_target));
1808 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1809 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1810 			}
1811 		}
1812 	}
1813 
1814 unencap:
1815 	if (in_encap)
1816 		nla_nest_end(skb, in_encap);
1817 	if (encap)
1818 		nla_nest_end(skb, encap);
1819 
1820 	return 0;
1821 
1822 nla_put_failure:
1823 	return -EMSGSIZE;
1824 }
1825 
1826 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1827 		    const struct sw_flow_key *output, int attr, bool is_mask,
1828 		    struct sk_buff *skb)
1829 {
1830 	int err;
1831 	struct nlattr *nla;
1832 
1833 	nla = nla_nest_start(skb, attr);
1834 	if (!nla)
1835 		return -EMSGSIZE;
1836 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1837 	if (err)
1838 		return err;
1839 	nla_nest_end(skb, nla);
1840 
1841 	return 0;
1842 }
1843 
1844 /* Called with ovs_mutex or RCU read lock. */
1845 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1846 {
1847 	if (ovs_identifier_is_ufid(&flow->id))
1848 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1849 			       flow->id.ufid);
1850 
1851 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1852 			       OVS_FLOW_ATTR_KEY, false, skb);
1853 }
1854 
1855 /* Called with ovs_mutex or RCU read lock. */
1856 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1857 {
1858 	return ovs_nla_put_key(&flow->key, &flow->key,
1859 				OVS_FLOW_ATTR_KEY, false, skb);
1860 }
1861 
1862 /* Called with ovs_mutex or RCU read lock. */
1863 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1864 {
1865 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1866 				OVS_FLOW_ATTR_MASK, true, skb);
1867 }
1868 
1869 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1870 
1871 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1872 {
1873 	struct sw_flow_actions *sfa;
1874 
1875 	if (size > MAX_ACTIONS_BUFSIZE) {
1876 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1877 		return ERR_PTR(-EINVAL);
1878 	}
1879 
1880 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1881 	if (!sfa)
1882 		return ERR_PTR(-ENOMEM);
1883 
1884 	sfa->actions_len = 0;
1885 	return sfa;
1886 }
1887 
1888 static void ovs_nla_free_set_action(const struct nlattr *a)
1889 {
1890 	const struct nlattr *ovs_key = nla_data(a);
1891 	struct ovs_tunnel_info *ovs_tun;
1892 
1893 	switch (nla_type(ovs_key)) {
1894 	case OVS_KEY_ATTR_TUNNEL_INFO:
1895 		ovs_tun = nla_data(ovs_key);
1896 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1897 		break;
1898 	}
1899 }
1900 
1901 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1902 {
1903 	const struct nlattr *a;
1904 	int rem;
1905 
1906 	if (!sf_acts)
1907 		return;
1908 
1909 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1910 		switch (nla_type(a)) {
1911 		case OVS_ACTION_ATTR_SET:
1912 			ovs_nla_free_set_action(a);
1913 			break;
1914 		case OVS_ACTION_ATTR_CT:
1915 			ovs_ct_free_action(a);
1916 			break;
1917 		}
1918 	}
1919 
1920 	kfree(sf_acts);
1921 }
1922 
1923 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1924 {
1925 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1926 }
1927 
1928 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1929  * The caller must hold rcu_read_lock for this to be sensible. */
1930 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1931 {
1932 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1933 }
1934 
1935 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1936 				       int attr_len, bool log)
1937 {
1938 
1939 	struct sw_flow_actions *acts;
1940 	int new_acts_size;
1941 	int req_size = NLA_ALIGN(attr_len);
1942 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1943 					(*sfa)->actions_len;
1944 
1945 	if (req_size <= (ksize(*sfa) - next_offset))
1946 		goto out;
1947 
1948 	new_acts_size = ksize(*sfa) * 2;
1949 
1950 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1951 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1952 			return ERR_PTR(-EMSGSIZE);
1953 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1954 	}
1955 
1956 	acts = nla_alloc_flow_actions(new_acts_size, log);
1957 	if (IS_ERR(acts))
1958 		return (void *)acts;
1959 
1960 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1961 	acts->actions_len = (*sfa)->actions_len;
1962 	acts->orig_len = (*sfa)->orig_len;
1963 	kfree(*sfa);
1964 	*sfa = acts;
1965 
1966 out:
1967 	(*sfa)->actions_len += req_size;
1968 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1969 }
1970 
1971 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1972 				   int attrtype, void *data, int len, bool log)
1973 {
1974 	struct nlattr *a;
1975 
1976 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1977 	if (IS_ERR(a))
1978 		return a;
1979 
1980 	a->nla_type = attrtype;
1981 	a->nla_len = nla_attr_size(len);
1982 
1983 	if (data)
1984 		memcpy(nla_data(a), data, len);
1985 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1986 
1987 	return a;
1988 }
1989 
1990 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1991 		       int len, bool log)
1992 {
1993 	struct nlattr *a;
1994 
1995 	a = __add_action(sfa, attrtype, data, len, log);
1996 
1997 	return PTR_ERR_OR_ZERO(a);
1998 }
1999 
2000 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2001 					  int attrtype, bool log)
2002 {
2003 	int used = (*sfa)->actions_len;
2004 	int err;
2005 
2006 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2007 	if (err)
2008 		return err;
2009 
2010 	return used;
2011 }
2012 
2013 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2014 					 int st_offset)
2015 {
2016 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2017 							       st_offset);
2018 
2019 	a->nla_len = sfa->actions_len - st_offset;
2020 }
2021 
2022 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2023 				  const struct sw_flow_key *key,
2024 				  int depth, struct sw_flow_actions **sfa,
2025 				  __be16 eth_type, __be16 vlan_tci, bool log);
2026 
2027 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2028 				    const struct sw_flow_key *key, int depth,
2029 				    struct sw_flow_actions **sfa,
2030 				    __be16 eth_type, __be16 vlan_tci, bool log)
2031 {
2032 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2033 	const struct nlattr *probability, *actions;
2034 	const struct nlattr *a;
2035 	int rem, start, err, st_acts;
2036 
2037 	memset(attrs, 0, sizeof(attrs));
2038 	nla_for_each_nested(a, attr, rem) {
2039 		int type = nla_type(a);
2040 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2041 			return -EINVAL;
2042 		attrs[type] = a;
2043 	}
2044 	if (rem)
2045 		return -EINVAL;
2046 
2047 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2048 	if (!probability || nla_len(probability) != sizeof(u32))
2049 		return -EINVAL;
2050 
2051 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2052 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2053 		return -EINVAL;
2054 
2055 	/* validation done, copy sample action. */
2056 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2057 	if (start < 0)
2058 		return start;
2059 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2060 				 nla_data(probability), sizeof(u32), log);
2061 	if (err)
2062 		return err;
2063 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2064 	if (st_acts < 0)
2065 		return st_acts;
2066 
2067 	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2068 				     eth_type, vlan_tci, log);
2069 	if (err)
2070 		return err;
2071 
2072 	add_nested_action_end(*sfa, st_acts);
2073 	add_nested_action_end(*sfa, start);
2074 
2075 	return 0;
2076 }
2077 
2078 void ovs_match_init(struct sw_flow_match *match,
2079 		    struct sw_flow_key *key,
2080 		    bool reset_key,
2081 		    struct sw_flow_mask *mask)
2082 {
2083 	memset(match, 0, sizeof(*match));
2084 	match->key = key;
2085 	match->mask = mask;
2086 
2087 	if (reset_key)
2088 		memset(key, 0, sizeof(*key));
2089 
2090 	if (mask) {
2091 		memset(&mask->key, 0, sizeof(mask->key));
2092 		mask->range.start = mask->range.end = 0;
2093 	}
2094 }
2095 
2096 static int validate_geneve_opts(struct sw_flow_key *key)
2097 {
2098 	struct geneve_opt *option;
2099 	int opts_len = key->tun_opts_len;
2100 	bool crit_opt = false;
2101 
2102 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2103 	while (opts_len > 0) {
2104 		int len;
2105 
2106 		if (opts_len < sizeof(*option))
2107 			return -EINVAL;
2108 
2109 		len = sizeof(*option) + option->length * 4;
2110 		if (len > opts_len)
2111 			return -EINVAL;
2112 
2113 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2114 
2115 		option = (struct geneve_opt *)((u8 *)option + len);
2116 		opts_len -= len;
2117 	};
2118 
2119 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2120 
2121 	return 0;
2122 }
2123 
2124 static int validate_and_copy_set_tun(const struct nlattr *attr,
2125 				     struct sw_flow_actions **sfa, bool log)
2126 {
2127 	struct sw_flow_match match;
2128 	struct sw_flow_key key;
2129 	struct metadata_dst *tun_dst;
2130 	struct ip_tunnel_info *tun_info;
2131 	struct ovs_tunnel_info *ovs_tun;
2132 	struct nlattr *a;
2133 	int err = 0, start, opts_type;
2134 
2135 	ovs_match_init(&match, &key, true, NULL);
2136 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2137 	if (opts_type < 0)
2138 		return opts_type;
2139 
2140 	if (key.tun_opts_len) {
2141 		switch (opts_type) {
2142 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2143 			err = validate_geneve_opts(&key);
2144 			if (err < 0)
2145 				return err;
2146 			break;
2147 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2148 			break;
2149 		}
2150 	};
2151 
2152 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2153 	if (start < 0)
2154 		return start;
2155 
2156 	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2157 	if (!tun_dst)
2158 		return -ENOMEM;
2159 
2160 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2161 	if (err) {
2162 		dst_release((struct dst_entry *)tun_dst);
2163 		return err;
2164 	}
2165 
2166 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2167 			 sizeof(*ovs_tun), log);
2168 	if (IS_ERR(a)) {
2169 		dst_release((struct dst_entry *)tun_dst);
2170 		return PTR_ERR(a);
2171 	}
2172 
2173 	ovs_tun = nla_data(a);
2174 	ovs_tun->tun_dst = tun_dst;
2175 
2176 	tun_info = &tun_dst->u.tun_info;
2177 	tun_info->mode = IP_TUNNEL_INFO_TX;
2178 	if (key.tun_proto == AF_INET6)
2179 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2180 	tun_info->key = key.tun_key;
2181 
2182 	/* We need to store the options in the action itself since
2183 	 * everything else will go away after flow setup. We can append
2184 	 * it to tun_info and then point there.
2185 	 */
2186 	ip_tunnel_info_opts_set(tun_info,
2187 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2188 				key.tun_opts_len);
2189 	add_nested_action_end(*sfa, start);
2190 
2191 	return err;
2192 }
2193 
2194 /* Return false if there are any non-masked bits set.
2195  * Mask follows data immediately, before any netlink padding.
2196  */
2197 static bool validate_masked(u8 *data, int len)
2198 {
2199 	u8 *mask = data + len;
2200 
2201 	while (len--)
2202 		if (*data++ & ~*mask++)
2203 			return false;
2204 
2205 	return true;
2206 }
2207 
2208 static int validate_set(const struct nlattr *a,
2209 			const struct sw_flow_key *flow_key,
2210 			struct sw_flow_actions **sfa, bool *skip_copy,
2211 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2212 {
2213 	const struct nlattr *ovs_key = nla_data(a);
2214 	int key_type = nla_type(ovs_key);
2215 	size_t key_len;
2216 
2217 	/* There can be only one key in a action */
2218 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2219 		return -EINVAL;
2220 
2221 	key_len = nla_len(ovs_key);
2222 	if (masked)
2223 		key_len /= 2;
2224 
2225 	if (key_type > OVS_KEY_ATTR_MAX ||
2226 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2227 		return -EINVAL;
2228 
2229 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2230 		return -EINVAL;
2231 
2232 	switch (key_type) {
2233 	const struct ovs_key_ipv4 *ipv4_key;
2234 	const struct ovs_key_ipv6 *ipv6_key;
2235 	int err;
2236 
2237 	case OVS_KEY_ATTR_PRIORITY:
2238 	case OVS_KEY_ATTR_SKB_MARK:
2239 	case OVS_KEY_ATTR_CT_MARK:
2240 	case OVS_KEY_ATTR_CT_LABELS:
2241 		break;
2242 
2243 	case OVS_KEY_ATTR_ETHERNET:
2244 		if (mac_proto != MAC_PROTO_ETHERNET)
2245 			return -EINVAL;
2246 		break;
2247 
2248 	case OVS_KEY_ATTR_TUNNEL:
2249 		if (masked)
2250 			return -EINVAL; /* Masked tunnel set not supported. */
2251 
2252 		*skip_copy = true;
2253 		err = validate_and_copy_set_tun(a, sfa, log);
2254 		if (err)
2255 			return err;
2256 		break;
2257 
2258 	case OVS_KEY_ATTR_IPV4:
2259 		if (eth_type != htons(ETH_P_IP))
2260 			return -EINVAL;
2261 
2262 		ipv4_key = nla_data(ovs_key);
2263 
2264 		if (masked) {
2265 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2266 
2267 			/* Non-writeable fields. */
2268 			if (mask->ipv4_proto || mask->ipv4_frag)
2269 				return -EINVAL;
2270 		} else {
2271 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2272 				return -EINVAL;
2273 
2274 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2275 				return -EINVAL;
2276 		}
2277 		break;
2278 
2279 	case OVS_KEY_ATTR_IPV6:
2280 		if (eth_type != htons(ETH_P_IPV6))
2281 			return -EINVAL;
2282 
2283 		ipv6_key = nla_data(ovs_key);
2284 
2285 		if (masked) {
2286 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2287 
2288 			/* Non-writeable fields. */
2289 			if (mask->ipv6_proto || mask->ipv6_frag)
2290 				return -EINVAL;
2291 
2292 			/* Invalid bits in the flow label mask? */
2293 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2294 				return -EINVAL;
2295 		} else {
2296 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2297 				return -EINVAL;
2298 
2299 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2300 				return -EINVAL;
2301 		}
2302 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2303 			return -EINVAL;
2304 
2305 		break;
2306 
2307 	case OVS_KEY_ATTR_TCP:
2308 		if ((eth_type != htons(ETH_P_IP) &&
2309 		     eth_type != htons(ETH_P_IPV6)) ||
2310 		    flow_key->ip.proto != IPPROTO_TCP)
2311 			return -EINVAL;
2312 
2313 		break;
2314 
2315 	case OVS_KEY_ATTR_UDP:
2316 		if ((eth_type != htons(ETH_P_IP) &&
2317 		     eth_type != htons(ETH_P_IPV6)) ||
2318 		    flow_key->ip.proto != IPPROTO_UDP)
2319 			return -EINVAL;
2320 
2321 		break;
2322 
2323 	case OVS_KEY_ATTR_MPLS:
2324 		if (!eth_p_mpls(eth_type))
2325 			return -EINVAL;
2326 		break;
2327 
2328 	case OVS_KEY_ATTR_SCTP:
2329 		if ((eth_type != htons(ETH_P_IP) &&
2330 		     eth_type != htons(ETH_P_IPV6)) ||
2331 		    flow_key->ip.proto != IPPROTO_SCTP)
2332 			return -EINVAL;
2333 
2334 		break;
2335 
2336 	default:
2337 		return -EINVAL;
2338 	}
2339 
2340 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2341 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2342 		int start, len = key_len * 2;
2343 		struct nlattr *at;
2344 
2345 		*skip_copy = true;
2346 
2347 		start = add_nested_action_start(sfa,
2348 						OVS_ACTION_ATTR_SET_TO_MASKED,
2349 						log);
2350 		if (start < 0)
2351 			return start;
2352 
2353 		at = __add_action(sfa, key_type, NULL, len, log);
2354 		if (IS_ERR(at))
2355 			return PTR_ERR(at);
2356 
2357 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2358 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2359 		/* Clear non-writeable bits from otherwise writeable fields. */
2360 		if (key_type == OVS_KEY_ATTR_IPV6) {
2361 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2362 
2363 			mask->ipv6_label &= htonl(0x000FFFFF);
2364 		}
2365 		add_nested_action_end(*sfa, start);
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 static int validate_userspace(const struct nlattr *attr)
2372 {
2373 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2374 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2375 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2376 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2377 	};
2378 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2379 	int error;
2380 
2381 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2382 				 attr, userspace_policy);
2383 	if (error)
2384 		return error;
2385 
2386 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2387 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2388 		return -EINVAL;
2389 
2390 	return 0;
2391 }
2392 
2393 static int copy_action(const struct nlattr *from,
2394 		       struct sw_flow_actions **sfa, bool log)
2395 {
2396 	int totlen = NLA_ALIGN(from->nla_len);
2397 	struct nlattr *to;
2398 
2399 	to = reserve_sfa_size(sfa, from->nla_len, log);
2400 	if (IS_ERR(to))
2401 		return PTR_ERR(to);
2402 
2403 	memcpy(to, from, totlen);
2404 	return 0;
2405 }
2406 
2407 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2408 				  const struct sw_flow_key *key,
2409 				  int depth, struct sw_flow_actions **sfa,
2410 				  __be16 eth_type, __be16 vlan_tci, bool log)
2411 {
2412 	u8 mac_proto = ovs_key_mac_proto(key);
2413 	const struct nlattr *a;
2414 	int rem, err;
2415 
2416 	if (depth >= SAMPLE_ACTION_DEPTH)
2417 		return -EOVERFLOW;
2418 
2419 	nla_for_each_nested(a, attr, rem) {
2420 		/* Expected argument lengths, (u32)-1 for variable length. */
2421 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2422 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2423 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2424 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2425 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2426 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2427 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2428 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2429 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2430 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2431 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2432 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2433 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2434 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2435 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2436 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2437 		};
2438 		const struct ovs_action_push_vlan *vlan;
2439 		int type = nla_type(a);
2440 		bool skip_copy;
2441 
2442 		if (type > OVS_ACTION_ATTR_MAX ||
2443 		    (action_lens[type] != nla_len(a) &&
2444 		     action_lens[type] != (u32)-1))
2445 			return -EINVAL;
2446 
2447 		skip_copy = false;
2448 		switch (type) {
2449 		case OVS_ACTION_ATTR_UNSPEC:
2450 			return -EINVAL;
2451 
2452 		case OVS_ACTION_ATTR_USERSPACE:
2453 			err = validate_userspace(a);
2454 			if (err)
2455 				return err;
2456 			break;
2457 
2458 		case OVS_ACTION_ATTR_OUTPUT:
2459 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2460 				return -EINVAL;
2461 			break;
2462 
2463 		case OVS_ACTION_ATTR_TRUNC: {
2464 			const struct ovs_action_trunc *trunc = nla_data(a);
2465 
2466 			if (trunc->max_len < ETH_HLEN)
2467 				return -EINVAL;
2468 			break;
2469 		}
2470 
2471 		case OVS_ACTION_ATTR_HASH: {
2472 			const struct ovs_action_hash *act_hash = nla_data(a);
2473 
2474 			switch (act_hash->hash_alg) {
2475 			case OVS_HASH_ALG_L4:
2476 				break;
2477 			default:
2478 				return  -EINVAL;
2479 			}
2480 
2481 			break;
2482 		}
2483 
2484 		case OVS_ACTION_ATTR_POP_VLAN:
2485 			if (mac_proto != MAC_PROTO_ETHERNET)
2486 				return -EINVAL;
2487 			vlan_tci = htons(0);
2488 			break;
2489 
2490 		case OVS_ACTION_ATTR_PUSH_VLAN:
2491 			if (mac_proto != MAC_PROTO_ETHERNET)
2492 				return -EINVAL;
2493 			vlan = nla_data(a);
2494 			if (!eth_type_vlan(vlan->vlan_tpid))
2495 				return -EINVAL;
2496 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2497 				return -EINVAL;
2498 			vlan_tci = vlan->vlan_tci;
2499 			break;
2500 
2501 		case OVS_ACTION_ATTR_RECIRC:
2502 			break;
2503 
2504 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2505 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2506 
2507 			if (!eth_p_mpls(mpls->mpls_ethertype))
2508 				return -EINVAL;
2509 			/* Prohibit push MPLS other than to a white list
2510 			 * for packets that have a known tag order.
2511 			 */
2512 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2513 			    (eth_type != htons(ETH_P_IP) &&
2514 			     eth_type != htons(ETH_P_IPV6) &&
2515 			     eth_type != htons(ETH_P_ARP) &&
2516 			     eth_type != htons(ETH_P_RARP) &&
2517 			     !eth_p_mpls(eth_type)))
2518 				return -EINVAL;
2519 			eth_type = mpls->mpls_ethertype;
2520 			break;
2521 		}
2522 
2523 		case OVS_ACTION_ATTR_POP_MPLS:
2524 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2525 			    !eth_p_mpls(eth_type))
2526 				return -EINVAL;
2527 
2528 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2529 			 * as there is no check here to ensure that the new
2530 			 * eth_type is valid and thus set actions could
2531 			 * write off the end of the packet or otherwise
2532 			 * corrupt it.
2533 			 *
2534 			 * Support for these actions is planned using packet
2535 			 * recirculation.
2536 			 */
2537 			eth_type = htons(0);
2538 			break;
2539 
2540 		case OVS_ACTION_ATTR_SET:
2541 			err = validate_set(a, key, sfa,
2542 					   &skip_copy, mac_proto, eth_type,
2543 					   false, log);
2544 			if (err)
2545 				return err;
2546 			break;
2547 
2548 		case OVS_ACTION_ATTR_SET_MASKED:
2549 			err = validate_set(a, key, sfa,
2550 					   &skip_copy, mac_proto, eth_type,
2551 					   true, log);
2552 			if (err)
2553 				return err;
2554 			break;
2555 
2556 		case OVS_ACTION_ATTR_SAMPLE:
2557 			err = validate_and_copy_sample(net, a, key, depth, sfa,
2558 						       eth_type, vlan_tci, log);
2559 			if (err)
2560 				return err;
2561 			skip_copy = true;
2562 			break;
2563 
2564 		case OVS_ACTION_ATTR_CT:
2565 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2566 			if (err)
2567 				return err;
2568 			skip_copy = true;
2569 			break;
2570 
2571 		case OVS_ACTION_ATTR_PUSH_ETH:
2572 			/* Disallow pushing an Ethernet header if one
2573 			 * is already present */
2574 			if (mac_proto != MAC_PROTO_NONE)
2575 				return -EINVAL;
2576 			mac_proto = MAC_PROTO_NONE;
2577 			break;
2578 
2579 		case OVS_ACTION_ATTR_POP_ETH:
2580 			if (mac_proto != MAC_PROTO_ETHERNET)
2581 				return -EINVAL;
2582 			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2583 				return -EINVAL;
2584 			mac_proto = MAC_PROTO_ETHERNET;
2585 			break;
2586 
2587 		default:
2588 			OVS_NLERR(log, "Unknown Action type %d", type);
2589 			return -EINVAL;
2590 		}
2591 		if (!skip_copy) {
2592 			err = copy_action(a, sfa, log);
2593 			if (err)
2594 				return err;
2595 		}
2596 	}
2597 
2598 	if (rem > 0)
2599 		return -EINVAL;
2600 
2601 	return 0;
2602 }
2603 
2604 /* 'key' must be the masked key. */
2605 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2606 			 const struct sw_flow_key *key,
2607 			 struct sw_flow_actions **sfa, bool log)
2608 {
2609 	int err;
2610 
2611 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2612 	if (IS_ERR(*sfa))
2613 		return PTR_ERR(*sfa);
2614 
2615 	(*sfa)->orig_len = nla_len(attr);
2616 	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2617 				     key->eth.vlan.tci, log);
2618 	if (err)
2619 		ovs_nla_free_flow_actions(*sfa);
2620 
2621 	return err;
2622 }
2623 
2624 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2625 {
2626 	const struct nlattr *a;
2627 	struct nlattr *start;
2628 	int err = 0, rem;
2629 
2630 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2631 	if (!start)
2632 		return -EMSGSIZE;
2633 
2634 	nla_for_each_nested(a, attr, rem) {
2635 		int type = nla_type(a);
2636 		struct nlattr *st_sample;
2637 
2638 		switch (type) {
2639 		case OVS_SAMPLE_ATTR_PROBABILITY:
2640 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2641 				    sizeof(u32), nla_data(a)))
2642 				return -EMSGSIZE;
2643 			break;
2644 		case OVS_SAMPLE_ATTR_ACTIONS:
2645 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2646 			if (!st_sample)
2647 				return -EMSGSIZE;
2648 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2649 			if (err)
2650 				return err;
2651 			nla_nest_end(skb, st_sample);
2652 			break;
2653 		}
2654 	}
2655 
2656 	nla_nest_end(skb, start);
2657 	return err;
2658 }
2659 
2660 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2661 {
2662 	const struct nlattr *ovs_key = nla_data(a);
2663 	int key_type = nla_type(ovs_key);
2664 	struct nlattr *start;
2665 	int err;
2666 
2667 	switch (key_type) {
2668 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2669 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2670 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2671 
2672 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2673 		if (!start)
2674 			return -EMSGSIZE;
2675 
2676 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2677 					ip_tunnel_info_opts(tun_info),
2678 					tun_info->options_len,
2679 					ip_tunnel_info_af(tun_info));
2680 		if (err)
2681 			return err;
2682 		nla_nest_end(skb, start);
2683 		break;
2684 	}
2685 	default:
2686 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2687 			return -EMSGSIZE;
2688 		break;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2695 						struct sk_buff *skb)
2696 {
2697 	const struct nlattr *ovs_key = nla_data(a);
2698 	struct nlattr *nla;
2699 	size_t key_len = nla_len(ovs_key) / 2;
2700 
2701 	/* Revert the conversion we did from a non-masked set action to
2702 	 * masked set action.
2703 	 */
2704 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2705 	if (!nla)
2706 		return -EMSGSIZE;
2707 
2708 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2709 		return -EMSGSIZE;
2710 
2711 	nla_nest_end(skb, nla);
2712 	return 0;
2713 }
2714 
2715 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2716 {
2717 	const struct nlattr *a;
2718 	int rem, err;
2719 
2720 	nla_for_each_attr(a, attr, len, rem) {
2721 		int type = nla_type(a);
2722 
2723 		switch (type) {
2724 		case OVS_ACTION_ATTR_SET:
2725 			err = set_action_to_attr(a, skb);
2726 			if (err)
2727 				return err;
2728 			break;
2729 
2730 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2731 			err = masked_set_action_to_set_action_attr(a, skb);
2732 			if (err)
2733 				return err;
2734 			break;
2735 
2736 		case OVS_ACTION_ATTR_SAMPLE:
2737 			err = sample_action_to_attr(a, skb);
2738 			if (err)
2739 				return err;
2740 			break;
2741 
2742 		case OVS_ACTION_ATTR_CT:
2743 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2744 			if (err)
2745 				return err;
2746 			break;
2747 
2748 		default:
2749 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2750 				return -EMSGSIZE;
2751 			break;
2752 		}
2753 	}
2754 
2755 	return 0;
2756 }
2757