1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 52 #include "flow_netlink.h" 53 54 struct ovs_len_tbl { 55 int len; 56 const struct ovs_len_tbl *next; 57 }; 58 59 #define OVS_ATTR_NESTED -1 60 #define OVS_ATTR_VARIABLE -2 61 62 static void update_range(struct sw_flow_match *match, 63 size_t offset, size_t size, bool is_mask) 64 { 65 struct sw_flow_key_range *range; 66 size_t start = rounddown(offset, sizeof(long)); 67 size_t end = roundup(offset + size, sizeof(long)); 68 69 if (!is_mask) 70 range = &match->range; 71 else 72 range = &match->mask->range; 73 74 if (range->start == range->end) { 75 range->start = start; 76 range->end = end; 77 return; 78 } 79 80 if (range->start > start) 81 range->start = start; 82 83 if (range->end < end) 84 range->end = end; 85 } 86 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 88 do { \ 89 update_range(match, offsetof(struct sw_flow_key, field), \ 90 sizeof((match)->key->field), is_mask); \ 91 if (is_mask) \ 92 (match)->mask->key.field = value; \ 93 else \ 94 (match)->key->field = value; \ 95 } while (0) 96 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 98 do { \ 99 update_range(match, offset, len, is_mask); \ 100 if (is_mask) \ 101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 102 len); \ 103 else \ 104 memcpy((u8 *)(match)->key + offset, value_p, len); \ 105 } while (0) 106 107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 109 value_p, len, is_mask) 110 111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 112 do { \ 113 update_range(match, offsetof(struct sw_flow_key, field), \ 114 sizeof((match)->key->field), is_mask); \ 115 if (is_mask) \ 116 memset((u8 *)&(match)->mask->key.field, value, \ 117 sizeof((match)->mask->key.field)); \ 118 else \ 119 memset((u8 *)&(match)->key->field, value, \ 120 sizeof((match)->key->field)); \ 121 } while (0) 122 123 static bool match_validate(const struct sw_flow_match *match, 124 u64 key_attrs, u64 mask_attrs, bool log) 125 { 126 u64 key_expected = 0; 127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 128 129 /* The following mask attributes allowed only if they 130 * pass the validation tests. */ 131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 132 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) 133 | (1 << OVS_KEY_ATTR_IPV6) 134 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) 135 | (1 << OVS_KEY_ATTR_TCP) 136 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 137 | (1 << OVS_KEY_ATTR_UDP) 138 | (1 << OVS_KEY_ATTR_SCTP) 139 | (1 << OVS_KEY_ATTR_ICMP) 140 | (1 << OVS_KEY_ATTR_ICMPV6) 141 | (1 << OVS_KEY_ATTR_ARP) 142 | (1 << OVS_KEY_ATTR_ND) 143 | (1 << OVS_KEY_ATTR_MPLS)); 144 145 /* Always allowed mask fields. */ 146 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 147 | (1 << OVS_KEY_ATTR_IN_PORT) 148 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 149 150 /* Check key attributes. */ 151 if (match->key->eth.type == htons(ETH_P_ARP) 152 || match->key->eth.type == htons(ETH_P_RARP)) { 153 key_expected |= 1 << OVS_KEY_ATTR_ARP; 154 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 155 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 156 } 157 158 if (eth_p_mpls(match->key->eth.type)) { 159 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 160 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 161 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 162 } 163 164 if (match->key->eth.type == htons(ETH_P_IP)) { 165 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 166 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 167 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 168 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; 169 } 170 171 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 172 if (match->key->ip.proto == IPPROTO_UDP) { 173 key_expected |= 1 << OVS_KEY_ATTR_UDP; 174 if (match->mask && (match->mask->key.ip.proto == 0xff)) 175 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 176 } 177 178 if (match->key->ip.proto == IPPROTO_SCTP) { 179 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 180 if (match->mask && (match->mask->key.ip.proto == 0xff)) 181 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 182 } 183 184 if (match->key->ip.proto == IPPROTO_TCP) { 185 key_expected |= 1 << OVS_KEY_ATTR_TCP; 186 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 187 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 188 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 189 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 190 } 191 } 192 193 if (match->key->ip.proto == IPPROTO_ICMP) { 194 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 195 if (match->mask && (match->mask->key.ip.proto == 0xff)) 196 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 197 } 198 } 199 } 200 201 if (match->key->eth.type == htons(ETH_P_IPV6)) { 202 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 203 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 204 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 205 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; 206 } 207 208 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 209 if (match->key->ip.proto == IPPROTO_UDP) { 210 key_expected |= 1 << OVS_KEY_ATTR_UDP; 211 if (match->mask && (match->mask->key.ip.proto == 0xff)) 212 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 213 } 214 215 if (match->key->ip.proto == IPPROTO_SCTP) { 216 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 217 if (match->mask && (match->mask->key.ip.proto == 0xff)) 218 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 219 } 220 221 if (match->key->ip.proto == IPPROTO_TCP) { 222 key_expected |= 1 << OVS_KEY_ATTR_TCP; 223 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 224 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 225 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 226 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 227 } 228 } 229 230 if (match->key->ip.proto == IPPROTO_ICMPV6) { 231 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 232 if (match->mask && (match->mask->key.ip.proto == 0xff)) 233 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 234 235 if (match->key->tp.src == 236 htons(NDISC_NEIGHBOUR_SOLICITATION) || 237 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 238 key_expected |= 1 << OVS_KEY_ATTR_ND; 239 /* Original direction conntrack tuple 240 * uses the same space as the ND fields 241 * in the key, so both are not allowed 242 * at the same time. 243 */ 244 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 245 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 246 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 247 } 248 } 249 } 250 } 251 252 if ((key_attrs & key_expected) != key_expected) { 253 /* Key attributes check failed. */ 254 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 255 (unsigned long long)key_attrs, 256 (unsigned long long)key_expected); 257 return false; 258 } 259 260 if ((mask_attrs & mask_allowed) != mask_attrs) { 261 /* Mask attributes check failed. */ 262 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 263 (unsigned long long)mask_attrs, 264 (unsigned long long)mask_allowed); 265 return false; 266 } 267 268 return true; 269 } 270 271 size_t ovs_tun_key_attr_size(void) 272 { 273 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 274 * updating this function. 275 */ 276 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 277 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 278 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 279 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 280 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 281 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 282 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 283 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 284 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 285 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 286 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 287 */ 288 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 289 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 290 } 291 292 size_t ovs_key_attr_size(void) 293 { 294 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 295 * updating this function. 296 */ 297 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28); 298 299 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 300 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 301 + ovs_tun_key_attr_size() 302 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 303 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 304 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 305 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 306 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 307 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 308 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 309 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 310 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ 311 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 312 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 313 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 314 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 315 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 316 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 317 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 318 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 319 } 320 321 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 322 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 323 }; 324 325 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 326 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 327 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 328 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 329 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 330 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 331 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 332 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 333 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 334 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 335 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 336 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 337 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 338 .next = ovs_vxlan_ext_key_lens }, 339 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 340 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 341 }; 342 343 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 344 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 345 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 346 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 347 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 348 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 349 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 350 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 351 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 352 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 353 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 354 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 355 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 356 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 357 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 358 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 359 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 360 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 361 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 362 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 363 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 364 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 365 .next = ovs_tunnel_key_lens, }, 366 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 367 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 368 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 369 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 370 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 371 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { 372 .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, 373 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { 374 .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, 375 }; 376 377 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 378 { 379 return expected_len == attr_len || 380 expected_len == OVS_ATTR_NESTED || 381 expected_len == OVS_ATTR_VARIABLE; 382 } 383 384 static bool is_all_zero(const u8 *fp, size_t size) 385 { 386 int i; 387 388 if (!fp) 389 return false; 390 391 for (i = 0; i < size; i++) 392 if (fp[i]) 393 return false; 394 395 return true; 396 } 397 398 static int __parse_flow_nlattrs(const struct nlattr *attr, 399 const struct nlattr *a[], 400 u64 *attrsp, bool log, bool nz) 401 { 402 const struct nlattr *nla; 403 u64 attrs; 404 int rem; 405 406 attrs = *attrsp; 407 nla_for_each_nested(nla, attr, rem) { 408 u16 type = nla_type(nla); 409 int expected_len; 410 411 if (type > OVS_KEY_ATTR_MAX) { 412 OVS_NLERR(log, "Key type %d is out of range max %d", 413 type, OVS_KEY_ATTR_MAX); 414 return -EINVAL; 415 } 416 417 if (attrs & (1 << type)) { 418 OVS_NLERR(log, "Duplicate key (type %d).", type); 419 return -EINVAL; 420 } 421 422 expected_len = ovs_key_lens[type].len; 423 if (!check_attr_len(nla_len(nla), expected_len)) { 424 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 425 type, nla_len(nla), expected_len); 426 return -EINVAL; 427 } 428 429 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 430 attrs |= 1 << type; 431 a[type] = nla; 432 } 433 } 434 if (rem) { 435 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 436 return -EINVAL; 437 } 438 439 *attrsp = attrs; 440 return 0; 441 } 442 443 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 444 const struct nlattr *a[], u64 *attrsp, 445 bool log) 446 { 447 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 448 } 449 450 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], 451 u64 *attrsp, bool log) 452 { 453 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 454 } 455 456 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 457 struct sw_flow_match *match, bool is_mask, 458 bool log) 459 { 460 unsigned long opt_key_offset; 461 462 if (nla_len(a) > sizeof(match->key->tun_opts)) { 463 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 464 nla_len(a), sizeof(match->key->tun_opts)); 465 return -EINVAL; 466 } 467 468 if (nla_len(a) % 4 != 0) { 469 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 470 nla_len(a)); 471 return -EINVAL; 472 } 473 474 /* We need to record the length of the options passed 475 * down, otherwise packets with the same format but 476 * additional options will be silently matched. 477 */ 478 if (!is_mask) { 479 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 480 false); 481 } else { 482 /* This is somewhat unusual because it looks at 483 * both the key and mask while parsing the 484 * attributes (and by extension assumes the key 485 * is parsed first). Normally, we would verify 486 * that each is the correct length and that the 487 * attributes line up in the validate function. 488 * However, that is difficult because this is 489 * variable length and we won't have the 490 * information later. 491 */ 492 if (match->key->tun_opts_len != nla_len(a)) { 493 OVS_NLERR(log, "Geneve option len %d != mask len %d", 494 match->key->tun_opts_len, nla_len(a)); 495 return -EINVAL; 496 } 497 498 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 499 } 500 501 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 502 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 503 nla_len(a), is_mask); 504 return 0; 505 } 506 507 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 508 struct sw_flow_match *match, bool is_mask, 509 bool log) 510 { 511 struct nlattr *a; 512 int rem; 513 unsigned long opt_key_offset; 514 struct vxlan_metadata opts; 515 516 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 517 518 memset(&opts, 0, sizeof(opts)); 519 nla_for_each_nested(a, attr, rem) { 520 int type = nla_type(a); 521 522 if (type > OVS_VXLAN_EXT_MAX) { 523 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 524 type, OVS_VXLAN_EXT_MAX); 525 return -EINVAL; 526 } 527 528 if (!check_attr_len(nla_len(a), 529 ovs_vxlan_ext_key_lens[type].len)) { 530 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 531 type, nla_len(a), 532 ovs_vxlan_ext_key_lens[type].len); 533 return -EINVAL; 534 } 535 536 switch (type) { 537 case OVS_VXLAN_EXT_GBP: 538 opts.gbp = nla_get_u32(a); 539 break; 540 default: 541 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 542 type); 543 return -EINVAL; 544 } 545 } 546 if (rem) { 547 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 548 rem); 549 return -EINVAL; 550 } 551 552 if (!is_mask) 553 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 554 else 555 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 556 557 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 558 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 559 is_mask); 560 return 0; 561 } 562 563 static int ip_tun_from_nlattr(const struct nlattr *attr, 564 struct sw_flow_match *match, bool is_mask, 565 bool log) 566 { 567 bool ttl = false, ipv4 = false, ipv6 = false; 568 __be16 tun_flags = 0; 569 int opts_type = 0; 570 struct nlattr *a; 571 int rem; 572 573 nla_for_each_nested(a, attr, rem) { 574 int type = nla_type(a); 575 int err; 576 577 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 578 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 579 type, OVS_TUNNEL_KEY_ATTR_MAX); 580 return -EINVAL; 581 } 582 583 if (!check_attr_len(nla_len(a), 584 ovs_tunnel_key_lens[type].len)) { 585 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 586 type, nla_len(a), ovs_tunnel_key_lens[type].len); 587 return -EINVAL; 588 } 589 590 switch (type) { 591 case OVS_TUNNEL_KEY_ATTR_ID: 592 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 593 nla_get_be64(a), is_mask); 594 tun_flags |= TUNNEL_KEY; 595 break; 596 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 597 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 598 nla_get_in_addr(a), is_mask); 599 ipv4 = true; 600 break; 601 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 602 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 603 nla_get_in_addr(a), is_mask); 604 ipv4 = true; 605 break; 606 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 607 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 608 nla_get_in6_addr(a), is_mask); 609 ipv6 = true; 610 break; 611 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 612 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 613 nla_get_in6_addr(a), is_mask); 614 ipv6 = true; 615 break; 616 case OVS_TUNNEL_KEY_ATTR_TOS: 617 SW_FLOW_KEY_PUT(match, tun_key.tos, 618 nla_get_u8(a), is_mask); 619 break; 620 case OVS_TUNNEL_KEY_ATTR_TTL: 621 SW_FLOW_KEY_PUT(match, tun_key.ttl, 622 nla_get_u8(a), is_mask); 623 ttl = true; 624 break; 625 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 626 tun_flags |= TUNNEL_DONT_FRAGMENT; 627 break; 628 case OVS_TUNNEL_KEY_ATTR_CSUM: 629 tun_flags |= TUNNEL_CSUM; 630 break; 631 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 632 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 633 nla_get_be16(a), is_mask); 634 break; 635 case OVS_TUNNEL_KEY_ATTR_TP_DST: 636 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 637 nla_get_be16(a), is_mask); 638 break; 639 case OVS_TUNNEL_KEY_ATTR_OAM: 640 tun_flags |= TUNNEL_OAM; 641 break; 642 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 643 if (opts_type) { 644 OVS_NLERR(log, "Multiple metadata blocks provided"); 645 return -EINVAL; 646 } 647 648 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 649 if (err) 650 return err; 651 652 tun_flags |= TUNNEL_GENEVE_OPT; 653 opts_type = type; 654 break; 655 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 656 if (opts_type) { 657 OVS_NLERR(log, "Multiple metadata blocks provided"); 658 return -EINVAL; 659 } 660 661 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 662 if (err) 663 return err; 664 665 tun_flags |= TUNNEL_VXLAN_OPT; 666 opts_type = type; 667 break; 668 default: 669 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 670 type); 671 return -EINVAL; 672 } 673 } 674 675 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 676 if (is_mask) 677 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 678 else 679 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 680 false); 681 682 if (rem > 0) { 683 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 684 rem); 685 return -EINVAL; 686 } 687 688 if (ipv4 && ipv6) { 689 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 690 return -EINVAL; 691 } 692 693 if (!is_mask) { 694 if (!ipv4 && !ipv6) { 695 OVS_NLERR(log, "IP tunnel dst address not specified"); 696 return -EINVAL; 697 } 698 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 699 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 700 return -EINVAL; 701 } 702 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 703 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 704 return -EINVAL; 705 } 706 707 if (!ttl) { 708 OVS_NLERR(log, "IP tunnel TTL not specified."); 709 return -EINVAL; 710 } 711 } 712 713 return opts_type; 714 } 715 716 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 717 const void *tun_opts, int swkey_tun_opts_len) 718 { 719 const struct vxlan_metadata *opts = tun_opts; 720 struct nlattr *nla; 721 722 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 723 if (!nla) 724 return -EMSGSIZE; 725 726 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 727 return -EMSGSIZE; 728 729 nla_nest_end(skb, nla); 730 return 0; 731 } 732 733 static int __ip_tun_to_nlattr(struct sk_buff *skb, 734 const struct ip_tunnel_key *output, 735 const void *tun_opts, int swkey_tun_opts_len, 736 unsigned short tun_proto) 737 { 738 if (output->tun_flags & TUNNEL_KEY && 739 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 740 OVS_TUNNEL_KEY_ATTR_PAD)) 741 return -EMSGSIZE; 742 switch (tun_proto) { 743 case AF_INET: 744 if (output->u.ipv4.src && 745 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 746 output->u.ipv4.src)) 747 return -EMSGSIZE; 748 if (output->u.ipv4.dst && 749 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 750 output->u.ipv4.dst)) 751 return -EMSGSIZE; 752 break; 753 case AF_INET6: 754 if (!ipv6_addr_any(&output->u.ipv6.src) && 755 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 756 &output->u.ipv6.src)) 757 return -EMSGSIZE; 758 if (!ipv6_addr_any(&output->u.ipv6.dst) && 759 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 760 &output->u.ipv6.dst)) 761 return -EMSGSIZE; 762 break; 763 } 764 if (output->tos && 765 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 766 return -EMSGSIZE; 767 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 768 return -EMSGSIZE; 769 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 770 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 771 return -EMSGSIZE; 772 if ((output->tun_flags & TUNNEL_CSUM) && 773 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 774 return -EMSGSIZE; 775 if (output->tp_src && 776 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 777 return -EMSGSIZE; 778 if (output->tp_dst && 779 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 780 return -EMSGSIZE; 781 if ((output->tun_flags & TUNNEL_OAM) && 782 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 783 return -EMSGSIZE; 784 if (swkey_tun_opts_len) { 785 if (output->tun_flags & TUNNEL_GENEVE_OPT && 786 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 787 swkey_tun_opts_len, tun_opts)) 788 return -EMSGSIZE; 789 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 790 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 791 return -EMSGSIZE; 792 } 793 794 return 0; 795 } 796 797 static int ip_tun_to_nlattr(struct sk_buff *skb, 798 const struct ip_tunnel_key *output, 799 const void *tun_opts, int swkey_tun_opts_len, 800 unsigned short tun_proto) 801 { 802 struct nlattr *nla; 803 int err; 804 805 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 806 if (!nla) 807 return -EMSGSIZE; 808 809 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 810 tun_proto); 811 if (err) 812 return err; 813 814 nla_nest_end(skb, nla); 815 return 0; 816 } 817 818 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 819 struct ip_tunnel_info *tun_info) 820 { 821 return __ip_tun_to_nlattr(skb, &tun_info->key, 822 ip_tunnel_info_opts(tun_info), 823 tun_info->options_len, 824 ip_tunnel_info_af(tun_info)); 825 } 826 827 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 828 const struct nlattr *a[], 829 bool is_mask, bool inner) 830 { 831 __be16 tci = 0; 832 __be16 tpid = 0; 833 834 if (a[OVS_KEY_ATTR_VLAN]) 835 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 836 837 if (a[OVS_KEY_ATTR_ETHERTYPE]) 838 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 839 840 if (likely(!inner)) { 841 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 842 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 843 } else { 844 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 845 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 846 } 847 return 0; 848 } 849 850 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 851 u64 key_attrs, bool inner, 852 const struct nlattr **a, bool log) 853 { 854 __be16 tci = 0; 855 856 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 857 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 858 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 859 /* Not a VLAN. */ 860 return 0; 861 } 862 863 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 864 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 865 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 866 return -EINVAL; 867 } 868 869 if (a[OVS_KEY_ATTR_VLAN]) 870 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 871 872 if (!(tci & htons(VLAN_TAG_PRESENT))) { 873 if (tci) { 874 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.", 875 (inner) ? "C-VLAN" : "VLAN"); 876 return -EINVAL; 877 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 878 /* Corner case for truncated VLAN header. */ 879 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 880 (inner) ? "C-VLAN" : "VLAN"); 881 return -EINVAL; 882 } 883 } 884 885 return 1; 886 } 887 888 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 889 u64 key_attrs, bool inner, 890 const struct nlattr **a, bool log) 891 { 892 __be16 tci = 0; 893 __be16 tpid = 0; 894 bool encap_valid = !!(match->key->eth.vlan.tci & 895 htons(VLAN_TAG_PRESENT)); 896 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 897 htons(VLAN_TAG_PRESENT)); 898 899 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 900 /* Not a VLAN. */ 901 return 0; 902 } 903 904 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 905 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 906 (inner) ? "C-VLAN" : "VLAN"); 907 return -EINVAL; 908 } 909 910 if (a[OVS_KEY_ATTR_VLAN]) 911 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 912 913 if (a[OVS_KEY_ATTR_ETHERTYPE]) 914 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 915 916 if (tpid != htons(0xffff)) { 917 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 918 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 919 return -EINVAL; 920 } 921 if (!(tci & htons(VLAN_TAG_PRESENT))) { 922 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.", 923 (inner) ? "C-VLAN" : "VLAN"); 924 return -EINVAL; 925 } 926 927 return 1; 928 } 929 930 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 931 u64 *key_attrs, bool inner, 932 const struct nlattr **a, bool is_mask, 933 bool log) 934 { 935 int err; 936 const struct nlattr *encap; 937 938 if (!is_mask) 939 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 940 a, log); 941 else 942 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 943 a, log); 944 if (err <= 0) 945 return err; 946 947 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 948 if (err) 949 return err; 950 951 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 952 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 953 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 954 955 encap = a[OVS_KEY_ATTR_ENCAP]; 956 957 if (!is_mask) 958 err = parse_flow_nlattrs(encap, a, key_attrs, log); 959 else 960 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 961 962 return err; 963 } 964 965 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 966 u64 *key_attrs, const struct nlattr **a, 967 bool is_mask, bool log) 968 { 969 int err; 970 bool encap_valid = false; 971 972 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 973 is_mask, log); 974 if (err) 975 return err; 976 977 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT)); 978 if (encap_valid) { 979 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 980 is_mask, log); 981 if (err) 982 return err; 983 } 984 985 return 0; 986 } 987 988 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, 989 u64 *attrs, const struct nlattr **a, 990 bool is_mask, bool log) 991 { 992 __be16 eth_type; 993 994 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 995 if (is_mask) { 996 /* Always exact match EtherType. */ 997 eth_type = htons(0xffff); 998 } else if (!eth_proto_is_802_3(eth_type)) { 999 OVS_NLERR(log, "EtherType %x is less than min %x", 1000 ntohs(eth_type), ETH_P_802_3_MIN); 1001 return -EINVAL; 1002 } 1003 1004 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1005 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1006 return 0; 1007 } 1008 1009 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 1010 u64 *attrs, const struct nlattr **a, 1011 bool is_mask, bool log) 1012 { 1013 u8 mac_proto = MAC_PROTO_ETHERNET; 1014 1015 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 1016 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 1017 1018 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 1019 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 1020 } 1021 1022 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 1023 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 1024 1025 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 1026 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 1027 } 1028 1029 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 1030 SW_FLOW_KEY_PUT(match, phy.priority, 1031 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 1032 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 1033 } 1034 1035 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 1036 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 1037 1038 if (is_mask) { 1039 in_port = 0xffffffff; /* Always exact match in_port. */ 1040 } else if (in_port >= DP_MAX_PORTS) { 1041 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1042 in_port, DP_MAX_PORTS); 1043 return -EINVAL; 1044 } 1045 1046 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1047 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1048 } else if (!is_mask) { 1049 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1050 } 1051 1052 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1053 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1054 1055 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1056 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1057 } 1058 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1059 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1060 is_mask, log) < 0) 1061 return -EINVAL; 1062 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1063 } 1064 1065 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1066 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1067 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1068 1069 if (ct_state & ~CT_SUPPORTED_MASK) { 1070 OVS_NLERR(log, "ct_state flags %08x unsupported", 1071 ct_state); 1072 return -EINVAL; 1073 } 1074 1075 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); 1076 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1077 } 1078 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1079 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1080 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1081 1082 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); 1083 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1084 } 1085 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1086 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1087 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1088 1089 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1090 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1091 } 1092 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1093 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1094 const struct ovs_key_ct_labels *cl; 1095 1096 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1097 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1098 sizeof(*cl), is_mask); 1099 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1100 } 1101 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { 1102 const struct ovs_key_ct_tuple_ipv4 *ct; 1103 1104 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); 1105 1106 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); 1107 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); 1108 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1109 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1110 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); 1111 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); 1112 } 1113 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { 1114 const struct ovs_key_ct_tuple_ipv6 *ct; 1115 1116 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); 1117 1118 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, 1119 sizeof(match->key->ipv6.ct_orig.src), 1120 is_mask); 1121 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, 1122 sizeof(match->key->ipv6.ct_orig.dst), 1123 is_mask); 1124 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1125 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1126 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); 1127 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 1128 } 1129 1130 /* For layer 3 packets the Ethernet type is provided 1131 * and treated as metadata but no MAC addresses are provided. 1132 */ 1133 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && 1134 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) 1135 mac_proto = MAC_PROTO_NONE; 1136 1137 /* Always exact match mac_proto */ 1138 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); 1139 1140 if (mac_proto == MAC_PROTO_NONE) 1141 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, 1142 log); 1143 1144 return 0; 1145 } 1146 1147 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1148 u64 attrs, const struct nlattr **a, 1149 bool is_mask, bool log) 1150 { 1151 int err; 1152 1153 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1154 if (err) 1155 return err; 1156 1157 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1158 const struct ovs_key_ethernet *eth_key; 1159 1160 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1161 SW_FLOW_KEY_MEMCPY(match, eth.src, 1162 eth_key->eth_src, ETH_ALEN, is_mask); 1163 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1164 eth_key->eth_dst, ETH_ALEN, is_mask); 1165 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1166 1167 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1168 /* VLAN attribute is always parsed before getting here since it 1169 * may occur multiple times. 1170 */ 1171 OVS_NLERR(log, "VLAN attribute unexpected."); 1172 return -EINVAL; 1173 } 1174 1175 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1176 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, 1177 log); 1178 if (err) 1179 return err; 1180 } else if (!is_mask) { 1181 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1182 } 1183 } else if (!match->key->eth.type) { 1184 OVS_NLERR(log, "Either Ethernet header or EtherType is required."); 1185 return -EINVAL; 1186 } 1187 1188 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1189 const struct ovs_key_ipv4 *ipv4_key; 1190 1191 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1192 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1193 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1194 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1195 return -EINVAL; 1196 } 1197 SW_FLOW_KEY_PUT(match, ip.proto, 1198 ipv4_key->ipv4_proto, is_mask); 1199 SW_FLOW_KEY_PUT(match, ip.tos, 1200 ipv4_key->ipv4_tos, is_mask); 1201 SW_FLOW_KEY_PUT(match, ip.ttl, 1202 ipv4_key->ipv4_ttl, is_mask); 1203 SW_FLOW_KEY_PUT(match, ip.frag, 1204 ipv4_key->ipv4_frag, is_mask); 1205 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1206 ipv4_key->ipv4_src, is_mask); 1207 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1208 ipv4_key->ipv4_dst, is_mask); 1209 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1210 } 1211 1212 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1213 const struct ovs_key_ipv6 *ipv6_key; 1214 1215 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1216 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1217 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1218 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1219 return -EINVAL; 1220 } 1221 1222 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1223 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n", 1224 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1225 return -EINVAL; 1226 } 1227 1228 SW_FLOW_KEY_PUT(match, ipv6.label, 1229 ipv6_key->ipv6_label, is_mask); 1230 SW_FLOW_KEY_PUT(match, ip.proto, 1231 ipv6_key->ipv6_proto, is_mask); 1232 SW_FLOW_KEY_PUT(match, ip.tos, 1233 ipv6_key->ipv6_tclass, is_mask); 1234 SW_FLOW_KEY_PUT(match, ip.ttl, 1235 ipv6_key->ipv6_hlimit, is_mask); 1236 SW_FLOW_KEY_PUT(match, ip.frag, 1237 ipv6_key->ipv6_frag, is_mask); 1238 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1239 ipv6_key->ipv6_src, 1240 sizeof(match->key->ipv6.addr.src), 1241 is_mask); 1242 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1243 ipv6_key->ipv6_dst, 1244 sizeof(match->key->ipv6.addr.dst), 1245 is_mask); 1246 1247 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1248 } 1249 1250 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1251 const struct ovs_key_arp *arp_key; 1252 1253 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1254 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1255 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1256 arp_key->arp_op); 1257 return -EINVAL; 1258 } 1259 1260 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1261 arp_key->arp_sip, is_mask); 1262 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1263 arp_key->arp_tip, is_mask); 1264 SW_FLOW_KEY_PUT(match, ip.proto, 1265 ntohs(arp_key->arp_op), is_mask); 1266 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1267 arp_key->arp_sha, ETH_ALEN, is_mask); 1268 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1269 arp_key->arp_tha, ETH_ALEN, is_mask); 1270 1271 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1272 } 1273 1274 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1275 const struct ovs_key_mpls *mpls_key; 1276 1277 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1278 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1279 mpls_key->mpls_lse, is_mask); 1280 1281 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1282 } 1283 1284 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1285 const struct ovs_key_tcp *tcp_key; 1286 1287 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1288 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1289 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1290 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1291 } 1292 1293 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1294 SW_FLOW_KEY_PUT(match, tp.flags, 1295 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1296 is_mask); 1297 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1298 } 1299 1300 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1301 const struct ovs_key_udp *udp_key; 1302 1303 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1304 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1305 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1306 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1307 } 1308 1309 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1310 const struct ovs_key_sctp *sctp_key; 1311 1312 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1313 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1314 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1315 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1316 } 1317 1318 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1319 const struct ovs_key_icmp *icmp_key; 1320 1321 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1322 SW_FLOW_KEY_PUT(match, tp.src, 1323 htons(icmp_key->icmp_type), is_mask); 1324 SW_FLOW_KEY_PUT(match, tp.dst, 1325 htons(icmp_key->icmp_code), is_mask); 1326 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1327 } 1328 1329 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1330 const struct ovs_key_icmpv6 *icmpv6_key; 1331 1332 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1333 SW_FLOW_KEY_PUT(match, tp.src, 1334 htons(icmpv6_key->icmpv6_type), is_mask); 1335 SW_FLOW_KEY_PUT(match, tp.dst, 1336 htons(icmpv6_key->icmpv6_code), is_mask); 1337 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1338 } 1339 1340 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1341 const struct ovs_key_nd *nd_key; 1342 1343 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1344 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1345 nd_key->nd_target, 1346 sizeof(match->key->ipv6.nd.target), 1347 is_mask); 1348 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1349 nd_key->nd_sll, ETH_ALEN, is_mask); 1350 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1351 nd_key->nd_tll, ETH_ALEN, is_mask); 1352 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1353 } 1354 1355 if (attrs != 0) { 1356 OVS_NLERR(log, "Unknown key attributes %llx", 1357 (unsigned long long)attrs); 1358 return -EINVAL; 1359 } 1360 1361 return 0; 1362 } 1363 1364 static void nlattr_set(struct nlattr *attr, u8 val, 1365 const struct ovs_len_tbl *tbl) 1366 { 1367 struct nlattr *nla; 1368 int rem; 1369 1370 /* The nlattr stream should already have been validated */ 1371 nla_for_each_nested(nla, attr, rem) { 1372 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1373 if (tbl[nla_type(nla)].next) 1374 tbl = tbl[nla_type(nla)].next; 1375 nlattr_set(nla, val, tbl); 1376 } else { 1377 memset(nla_data(nla), val, nla_len(nla)); 1378 } 1379 1380 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1381 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1382 } 1383 } 1384 1385 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1386 { 1387 nlattr_set(attr, val, ovs_key_lens); 1388 } 1389 1390 /** 1391 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1392 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1393 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1394 * does not include any don't care bit. 1395 * @net: Used to determine per-namespace field support. 1396 * @match: receives the extracted flow match information. 1397 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1398 * sequence. The fields should of the packet that triggered the creation 1399 * of this flow. 1400 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1401 * attribute specifies the mask field of the wildcarded flow. 1402 * @log: Boolean to allow kernel error logging. Normally true, but when 1403 * probing for feature compatibility this should be passed in as false to 1404 * suppress unnecessary error logging. 1405 */ 1406 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1407 const struct nlattr *nla_key, 1408 const struct nlattr *nla_mask, 1409 bool log) 1410 { 1411 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1412 struct nlattr *newmask = NULL; 1413 u64 key_attrs = 0; 1414 u64 mask_attrs = 0; 1415 int err; 1416 1417 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1418 if (err) 1419 return err; 1420 1421 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1422 if (err) 1423 return err; 1424 1425 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1426 if (err) 1427 return err; 1428 1429 if (match->mask) { 1430 if (!nla_mask) { 1431 /* Create an exact match mask. We need to set to 0xff 1432 * all the 'match->mask' fields that have been touched 1433 * in 'match->key'. We cannot simply memset 1434 * 'match->mask', because padding bytes and fields not 1435 * specified in 'match->key' should be left to 0. 1436 * Instead, we use a stream of netlink attributes, 1437 * copied from 'key' and set to 0xff. 1438 * ovs_key_from_nlattrs() will take care of filling 1439 * 'match->mask' appropriately. 1440 */ 1441 newmask = kmemdup(nla_key, 1442 nla_total_size(nla_len(nla_key)), 1443 GFP_KERNEL); 1444 if (!newmask) 1445 return -ENOMEM; 1446 1447 mask_set_nlattr(newmask, 0xff); 1448 1449 /* The userspace does not send tunnel attributes that 1450 * are 0, but we should not wildcard them nonetheless. 1451 */ 1452 if (match->key->tun_proto) 1453 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1454 0xff, true); 1455 1456 nla_mask = newmask; 1457 } 1458 1459 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1460 if (err) 1461 goto free_newmask; 1462 1463 /* Always match on tci. */ 1464 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1465 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1466 1467 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1468 if (err) 1469 goto free_newmask; 1470 1471 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1472 log); 1473 if (err) 1474 goto free_newmask; 1475 } 1476 1477 if (!match_validate(match, key_attrs, mask_attrs, log)) 1478 err = -EINVAL; 1479 1480 free_newmask: 1481 kfree(newmask); 1482 return err; 1483 } 1484 1485 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1486 { 1487 size_t len; 1488 1489 if (!attr) 1490 return 0; 1491 1492 len = nla_len(attr); 1493 if (len < 1 || len > MAX_UFID_LENGTH) { 1494 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1495 nla_len(attr), MAX_UFID_LENGTH); 1496 return 0; 1497 } 1498 1499 return len; 1500 } 1501 1502 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1503 * or false otherwise. 1504 */ 1505 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1506 bool log) 1507 { 1508 sfid->ufid_len = get_ufid_len(attr, log); 1509 if (sfid->ufid_len) 1510 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1511 1512 return sfid->ufid_len; 1513 } 1514 1515 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1516 const struct sw_flow_key *key, bool log) 1517 { 1518 struct sw_flow_key *new_key; 1519 1520 if (ovs_nla_get_ufid(sfid, ufid, log)) 1521 return 0; 1522 1523 /* If UFID was not provided, use unmasked key. */ 1524 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1525 if (!new_key) 1526 return -ENOMEM; 1527 memcpy(new_key, key, sizeof(*key)); 1528 sfid->unmasked_key = new_key; 1529 1530 return 0; 1531 } 1532 1533 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1534 { 1535 return attr ? nla_get_u32(attr) : 0; 1536 } 1537 1538 /** 1539 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1540 * @net: Network namespace. 1541 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack 1542 * metadata. 1543 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink 1544 * attributes. 1545 * @attrs: Bit mask for the netlink attributes included in @a. 1546 * @log: Boolean to allow kernel error logging. Normally true, but when 1547 * probing for feature compatibility this should be passed in as false to 1548 * suppress unnecessary error logging. 1549 * 1550 * This parses a series of Netlink attributes that form a flow key, which must 1551 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1552 * get the metadata, that is, the parts of the flow key that cannot be 1553 * extracted from the packet itself. 1554 * 1555 * This must be called before the packet key fields are filled in 'key'. 1556 */ 1557 1558 int ovs_nla_get_flow_metadata(struct net *net, 1559 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], 1560 u64 attrs, struct sw_flow_key *key, bool log) 1561 { 1562 struct sw_flow_match match; 1563 1564 memset(&match, 0, sizeof(match)); 1565 match.key = key; 1566 1567 key->ct_state = 0; 1568 key->ct_zone = 0; 1569 key->ct_orig_proto = 0; 1570 memset(&key->ct, 0, sizeof(key->ct)); 1571 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); 1572 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); 1573 1574 key->phy.in_port = DP_MAX_PORTS; 1575 1576 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1577 } 1578 1579 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1580 bool is_mask) 1581 { 1582 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1583 1584 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1585 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1586 return -EMSGSIZE; 1587 return 0; 1588 } 1589 1590 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1591 const struct sw_flow_key *output, bool is_mask, 1592 struct sk_buff *skb) 1593 { 1594 struct ovs_key_ethernet *eth_key; 1595 struct nlattr *nla; 1596 struct nlattr *encap = NULL; 1597 struct nlattr *in_encap = NULL; 1598 1599 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1600 goto nla_put_failure; 1601 1602 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1603 goto nla_put_failure; 1604 1605 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1606 goto nla_put_failure; 1607 1608 if ((swkey->tun_proto || is_mask)) { 1609 const void *opts = NULL; 1610 1611 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1612 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1613 1614 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1615 swkey->tun_opts_len, swkey->tun_proto)) 1616 goto nla_put_failure; 1617 } 1618 1619 if (swkey->phy.in_port == DP_MAX_PORTS) { 1620 if (is_mask && (output->phy.in_port == 0xffff)) 1621 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1622 goto nla_put_failure; 1623 } else { 1624 u16 upper_u16; 1625 upper_u16 = !is_mask ? 0 : 0xffff; 1626 1627 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1628 (upper_u16 << 16) | output->phy.in_port)) 1629 goto nla_put_failure; 1630 } 1631 1632 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 1633 goto nla_put_failure; 1634 1635 if (ovs_ct_put_key(swkey, output, skb)) 1636 goto nla_put_failure; 1637 1638 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { 1639 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1640 if (!nla) 1641 goto nla_put_failure; 1642 1643 eth_key = nla_data(nla); 1644 ether_addr_copy(eth_key->eth_src, output->eth.src); 1645 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 1646 1647 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 1648 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 1649 goto nla_put_failure; 1650 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1651 if (!swkey->eth.vlan.tci) 1652 goto unencap; 1653 1654 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 1655 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 1656 goto nla_put_failure; 1657 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1658 if (!swkey->eth.cvlan.tci) 1659 goto unencap; 1660 } 1661 } 1662 1663 if (swkey->eth.type == htons(ETH_P_802_2)) { 1664 /* 1665 * Ethertype 802.2 is represented in the netlink with omitted 1666 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 1667 * 0xffff in the mask attribute. Ethertype can also 1668 * be wildcarded. 1669 */ 1670 if (is_mask && output->eth.type) 1671 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 1672 output->eth.type)) 1673 goto nla_put_failure; 1674 goto unencap; 1675 } 1676 } 1677 1678 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 1679 goto nla_put_failure; 1680 1681 if (eth_type_vlan(swkey->eth.type)) { 1682 /* There are 3 VLAN tags, we don't know anything about the rest 1683 * of the packet, so truncate here. 1684 */ 1685 WARN_ON_ONCE(!(encap && in_encap)); 1686 goto unencap; 1687 } 1688 1689 if (swkey->eth.type == htons(ETH_P_IP)) { 1690 struct ovs_key_ipv4 *ipv4_key; 1691 1692 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1693 if (!nla) 1694 goto nla_put_failure; 1695 ipv4_key = nla_data(nla); 1696 ipv4_key->ipv4_src = output->ipv4.addr.src; 1697 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 1698 ipv4_key->ipv4_proto = output->ip.proto; 1699 ipv4_key->ipv4_tos = output->ip.tos; 1700 ipv4_key->ipv4_ttl = output->ip.ttl; 1701 ipv4_key->ipv4_frag = output->ip.frag; 1702 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1703 struct ovs_key_ipv6 *ipv6_key; 1704 1705 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1706 if (!nla) 1707 goto nla_put_failure; 1708 ipv6_key = nla_data(nla); 1709 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 1710 sizeof(ipv6_key->ipv6_src)); 1711 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 1712 sizeof(ipv6_key->ipv6_dst)); 1713 ipv6_key->ipv6_label = output->ipv6.label; 1714 ipv6_key->ipv6_proto = output->ip.proto; 1715 ipv6_key->ipv6_tclass = output->ip.tos; 1716 ipv6_key->ipv6_hlimit = output->ip.ttl; 1717 ipv6_key->ipv6_frag = output->ip.frag; 1718 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1719 swkey->eth.type == htons(ETH_P_RARP)) { 1720 struct ovs_key_arp *arp_key; 1721 1722 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1723 if (!nla) 1724 goto nla_put_failure; 1725 arp_key = nla_data(nla); 1726 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1727 arp_key->arp_sip = output->ipv4.addr.src; 1728 arp_key->arp_tip = output->ipv4.addr.dst; 1729 arp_key->arp_op = htons(output->ip.proto); 1730 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 1731 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 1732 } else if (eth_p_mpls(swkey->eth.type)) { 1733 struct ovs_key_mpls *mpls_key; 1734 1735 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 1736 if (!nla) 1737 goto nla_put_failure; 1738 mpls_key = nla_data(nla); 1739 mpls_key->mpls_lse = output->mpls.top_lse; 1740 } 1741 1742 if ((swkey->eth.type == htons(ETH_P_IP) || 1743 swkey->eth.type == htons(ETH_P_IPV6)) && 1744 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1745 1746 if (swkey->ip.proto == IPPROTO_TCP) { 1747 struct ovs_key_tcp *tcp_key; 1748 1749 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1750 if (!nla) 1751 goto nla_put_failure; 1752 tcp_key = nla_data(nla); 1753 tcp_key->tcp_src = output->tp.src; 1754 tcp_key->tcp_dst = output->tp.dst; 1755 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 1756 output->tp.flags)) 1757 goto nla_put_failure; 1758 } else if (swkey->ip.proto == IPPROTO_UDP) { 1759 struct ovs_key_udp *udp_key; 1760 1761 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1762 if (!nla) 1763 goto nla_put_failure; 1764 udp_key = nla_data(nla); 1765 udp_key->udp_src = output->tp.src; 1766 udp_key->udp_dst = output->tp.dst; 1767 } else if (swkey->ip.proto == IPPROTO_SCTP) { 1768 struct ovs_key_sctp *sctp_key; 1769 1770 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 1771 if (!nla) 1772 goto nla_put_failure; 1773 sctp_key = nla_data(nla); 1774 sctp_key->sctp_src = output->tp.src; 1775 sctp_key->sctp_dst = output->tp.dst; 1776 } else if (swkey->eth.type == htons(ETH_P_IP) && 1777 swkey->ip.proto == IPPROTO_ICMP) { 1778 struct ovs_key_icmp *icmp_key; 1779 1780 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1781 if (!nla) 1782 goto nla_put_failure; 1783 icmp_key = nla_data(nla); 1784 icmp_key->icmp_type = ntohs(output->tp.src); 1785 icmp_key->icmp_code = ntohs(output->tp.dst); 1786 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1787 swkey->ip.proto == IPPROTO_ICMPV6) { 1788 struct ovs_key_icmpv6 *icmpv6_key; 1789 1790 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1791 sizeof(*icmpv6_key)); 1792 if (!nla) 1793 goto nla_put_failure; 1794 icmpv6_key = nla_data(nla); 1795 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 1796 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 1797 1798 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1799 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1800 struct ovs_key_nd *nd_key; 1801 1802 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1803 if (!nla) 1804 goto nla_put_failure; 1805 nd_key = nla_data(nla); 1806 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 1807 sizeof(nd_key->nd_target)); 1808 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 1809 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 1810 } 1811 } 1812 } 1813 1814 unencap: 1815 if (in_encap) 1816 nla_nest_end(skb, in_encap); 1817 if (encap) 1818 nla_nest_end(skb, encap); 1819 1820 return 0; 1821 1822 nla_put_failure: 1823 return -EMSGSIZE; 1824 } 1825 1826 int ovs_nla_put_key(const struct sw_flow_key *swkey, 1827 const struct sw_flow_key *output, int attr, bool is_mask, 1828 struct sk_buff *skb) 1829 { 1830 int err; 1831 struct nlattr *nla; 1832 1833 nla = nla_nest_start(skb, attr); 1834 if (!nla) 1835 return -EMSGSIZE; 1836 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 1837 if (err) 1838 return err; 1839 nla_nest_end(skb, nla); 1840 1841 return 0; 1842 } 1843 1844 /* Called with ovs_mutex or RCU read lock. */ 1845 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 1846 { 1847 if (ovs_identifier_is_ufid(&flow->id)) 1848 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 1849 flow->id.ufid); 1850 1851 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 1852 OVS_FLOW_ATTR_KEY, false, skb); 1853 } 1854 1855 /* Called with ovs_mutex or RCU read lock. */ 1856 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 1857 { 1858 return ovs_nla_put_key(&flow->key, &flow->key, 1859 OVS_FLOW_ATTR_KEY, false, skb); 1860 } 1861 1862 /* Called with ovs_mutex or RCU read lock. */ 1863 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 1864 { 1865 return ovs_nla_put_key(&flow->key, &flow->mask->key, 1866 OVS_FLOW_ATTR_MASK, true, skb); 1867 } 1868 1869 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 1870 1871 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 1872 { 1873 struct sw_flow_actions *sfa; 1874 1875 if (size > MAX_ACTIONS_BUFSIZE) { 1876 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 1877 return ERR_PTR(-EINVAL); 1878 } 1879 1880 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 1881 if (!sfa) 1882 return ERR_PTR(-ENOMEM); 1883 1884 sfa->actions_len = 0; 1885 return sfa; 1886 } 1887 1888 static void ovs_nla_free_set_action(const struct nlattr *a) 1889 { 1890 const struct nlattr *ovs_key = nla_data(a); 1891 struct ovs_tunnel_info *ovs_tun; 1892 1893 switch (nla_type(ovs_key)) { 1894 case OVS_KEY_ATTR_TUNNEL_INFO: 1895 ovs_tun = nla_data(ovs_key); 1896 dst_release((struct dst_entry *)ovs_tun->tun_dst); 1897 break; 1898 } 1899 } 1900 1901 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 1902 { 1903 const struct nlattr *a; 1904 int rem; 1905 1906 if (!sf_acts) 1907 return; 1908 1909 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 1910 switch (nla_type(a)) { 1911 case OVS_ACTION_ATTR_SET: 1912 ovs_nla_free_set_action(a); 1913 break; 1914 case OVS_ACTION_ATTR_CT: 1915 ovs_ct_free_action(a); 1916 break; 1917 } 1918 } 1919 1920 kfree(sf_acts); 1921 } 1922 1923 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 1924 { 1925 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 1926 } 1927 1928 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 1929 * The caller must hold rcu_read_lock for this to be sensible. */ 1930 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 1931 { 1932 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 1933 } 1934 1935 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 1936 int attr_len, bool log) 1937 { 1938 1939 struct sw_flow_actions *acts; 1940 int new_acts_size; 1941 int req_size = NLA_ALIGN(attr_len); 1942 int next_offset = offsetof(struct sw_flow_actions, actions) + 1943 (*sfa)->actions_len; 1944 1945 if (req_size <= (ksize(*sfa) - next_offset)) 1946 goto out; 1947 1948 new_acts_size = ksize(*sfa) * 2; 1949 1950 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 1951 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 1952 return ERR_PTR(-EMSGSIZE); 1953 new_acts_size = MAX_ACTIONS_BUFSIZE; 1954 } 1955 1956 acts = nla_alloc_flow_actions(new_acts_size, log); 1957 if (IS_ERR(acts)) 1958 return (void *)acts; 1959 1960 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 1961 acts->actions_len = (*sfa)->actions_len; 1962 acts->orig_len = (*sfa)->orig_len; 1963 kfree(*sfa); 1964 *sfa = acts; 1965 1966 out: 1967 (*sfa)->actions_len += req_size; 1968 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 1969 } 1970 1971 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 1972 int attrtype, void *data, int len, bool log) 1973 { 1974 struct nlattr *a; 1975 1976 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 1977 if (IS_ERR(a)) 1978 return a; 1979 1980 a->nla_type = attrtype; 1981 a->nla_len = nla_attr_size(len); 1982 1983 if (data) 1984 memcpy(nla_data(a), data, len); 1985 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 1986 1987 return a; 1988 } 1989 1990 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 1991 int len, bool log) 1992 { 1993 struct nlattr *a; 1994 1995 a = __add_action(sfa, attrtype, data, len, log); 1996 1997 return PTR_ERR_OR_ZERO(a); 1998 } 1999 2000 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 2001 int attrtype, bool log) 2002 { 2003 int used = (*sfa)->actions_len; 2004 int err; 2005 2006 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 2007 if (err) 2008 return err; 2009 2010 return used; 2011 } 2012 2013 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 2014 int st_offset) 2015 { 2016 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 2017 st_offset); 2018 2019 a->nla_len = sfa->actions_len - st_offset; 2020 } 2021 2022 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2023 const struct sw_flow_key *key, 2024 int depth, struct sw_flow_actions **sfa, 2025 __be16 eth_type, __be16 vlan_tci, bool log); 2026 2027 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 2028 const struct sw_flow_key *key, int depth, 2029 struct sw_flow_actions **sfa, 2030 __be16 eth_type, __be16 vlan_tci, bool log) 2031 { 2032 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 2033 const struct nlattr *probability, *actions; 2034 const struct nlattr *a; 2035 int rem, start, err, st_acts; 2036 2037 memset(attrs, 0, sizeof(attrs)); 2038 nla_for_each_nested(a, attr, rem) { 2039 int type = nla_type(a); 2040 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 2041 return -EINVAL; 2042 attrs[type] = a; 2043 } 2044 if (rem) 2045 return -EINVAL; 2046 2047 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 2048 if (!probability || nla_len(probability) != sizeof(u32)) 2049 return -EINVAL; 2050 2051 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 2052 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 2053 return -EINVAL; 2054 2055 /* validation done, copy sample action. */ 2056 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 2057 if (start < 0) 2058 return start; 2059 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, 2060 nla_data(probability), sizeof(u32), log); 2061 if (err) 2062 return err; 2063 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log); 2064 if (st_acts < 0) 2065 return st_acts; 2066 2067 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa, 2068 eth_type, vlan_tci, log); 2069 if (err) 2070 return err; 2071 2072 add_nested_action_end(*sfa, st_acts); 2073 add_nested_action_end(*sfa, start); 2074 2075 return 0; 2076 } 2077 2078 void ovs_match_init(struct sw_flow_match *match, 2079 struct sw_flow_key *key, 2080 bool reset_key, 2081 struct sw_flow_mask *mask) 2082 { 2083 memset(match, 0, sizeof(*match)); 2084 match->key = key; 2085 match->mask = mask; 2086 2087 if (reset_key) 2088 memset(key, 0, sizeof(*key)); 2089 2090 if (mask) { 2091 memset(&mask->key, 0, sizeof(mask->key)); 2092 mask->range.start = mask->range.end = 0; 2093 } 2094 } 2095 2096 static int validate_geneve_opts(struct sw_flow_key *key) 2097 { 2098 struct geneve_opt *option; 2099 int opts_len = key->tun_opts_len; 2100 bool crit_opt = false; 2101 2102 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2103 while (opts_len > 0) { 2104 int len; 2105 2106 if (opts_len < sizeof(*option)) 2107 return -EINVAL; 2108 2109 len = sizeof(*option) + option->length * 4; 2110 if (len > opts_len) 2111 return -EINVAL; 2112 2113 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2114 2115 option = (struct geneve_opt *)((u8 *)option + len); 2116 opts_len -= len; 2117 }; 2118 2119 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 2120 2121 return 0; 2122 } 2123 2124 static int validate_and_copy_set_tun(const struct nlattr *attr, 2125 struct sw_flow_actions **sfa, bool log) 2126 { 2127 struct sw_flow_match match; 2128 struct sw_flow_key key; 2129 struct metadata_dst *tun_dst; 2130 struct ip_tunnel_info *tun_info; 2131 struct ovs_tunnel_info *ovs_tun; 2132 struct nlattr *a; 2133 int err = 0, start, opts_type; 2134 2135 ovs_match_init(&match, &key, true, NULL); 2136 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2137 if (opts_type < 0) 2138 return opts_type; 2139 2140 if (key.tun_opts_len) { 2141 switch (opts_type) { 2142 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2143 err = validate_geneve_opts(&key); 2144 if (err < 0) 2145 return err; 2146 break; 2147 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2148 break; 2149 } 2150 }; 2151 2152 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2153 if (start < 0) 2154 return start; 2155 2156 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL); 2157 if (!tun_dst) 2158 return -ENOMEM; 2159 2160 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2161 if (err) { 2162 dst_release((struct dst_entry *)tun_dst); 2163 return err; 2164 } 2165 2166 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2167 sizeof(*ovs_tun), log); 2168 if (IS_ERR(a)) { 2169 dst_release((struct dst_entry *)tun_dst); 2170 return PTR_ERR(a); 2171 } 2172 2173 ovs_tun = nla_data(a); 2174 ovs_tun->tun_dst = tun_dst; 2175 2176 tun_info = &tun_dst->u.tun_info; 2177 tun_info->mode = IP_TUNNEL_INFO_TX; 2178 if (key.tun_proto == AF_INET6) 2179 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2180 tun_info->key = key.tun_key; 2181 2182 /* We need to store the options in the action itself since 2183 * everything else will go away after flow setup. We can append 2184 * it to tun_info and then point there. 2185 */ 2186 ip_tunnel_info_opts_set(tun_info, 2187 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2188 key.tun_opts_len); 2189 add_nested_action_end(*sfa, start); 2190 2191 return err; 2192 } 2193 2194 /* Return false if there are any non-masked bits set. 2195 * Mask follows data immediately, before any netlink padding. 2196 */ 2197 static bool validate_masked(u8 *data, int len) 2198 { 2199 u8 *mask = data + len; 2200 2201 while (len--) 2202 if (*data++ & ~*mask++) 2203 return false; 2204 2205 return true; 2206 } 2207 2208 static int validate_set(const struct nlattr *a, 2209 const struct sw_flow_key *flow_key, 2210 struct sw_flow_actions **sfa, bool *skip_copy, 2211 u8 mac_proto, __be16 eth_type, bool masked, bool log) 2212 { 2213 const struct nlattr *ovs_key = nla_data(a); 2214 int key_type = nla_type(ovs_key); 2215 size_t key_len; 2216 2217 /* There can be only one key in a action */ 2218 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2219 return -EINVAL; 2220 2221 key_len = nla_len(ovs_key); 2222 if (masked) 2223 key_len /= 2; 2224 2225 if (key_type > OVS_KEY_ATTR_MAX || 2226 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2227 return -EINVAL; 2228 2229 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2230 return -EINVAL; 2231 2232 switch (key_type) { 2233 const struct ovs_key_ipv4 *ipv4_key; 2234 const struct ovs_key_ipv6 *ipv6_key; 2235 int err; 2236 2237 case OVS_KEY_ATTR_PRIORITY: 2238 case OVS_KEY_ATTR_SKB_MARK: 2239 case OVS_KEY_ATTR_CT_MARK: 2240 case OVS_KEY_ATTR_CT_LABELS: 2241 break; 2242 2243 case OVS_KEY_ATTR_ETHERNET: 2244 if (mac_proto != MAC_PROTO_ETHERNET) 2245 return -EINVAL; 2246 break; 2247 2248 case OVS_KEY_ATTR_TUNNEL: 2249 if (masked) 2250 return -EINVAL; /* Masked tunnel set not supported. */ 2251 2252 *skip_copy = true; 2253 err = validate_and_copy_set_tun(a, sfa, log); 2254 if (err) 2255 return err; 2256 break; 2257 2258 case OVS_KEY_ATTR_IPV4: 2259 if (eth_type != htons(ETH_P_IP)) 2260 return -EINVAL; 2261 2262 ipv4_key = nla_data(ovs_key); 2263 2264 if (masked) { 2265 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2266 2267 /* Non-writeable fields. */ 2268 if (mask->ipv4_proto || mask->ipv4_frag) 2269 return -EINVAL; 2270 } else { 2271 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2272 return -EINVAL; 2273 2274 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2275 return -EINVAL; 2276 } 2277 break; 2278 2279 case OVS_KEY_ATTR_IPV6: 2280 if (eth_type != htons(ETH_P_IPV6)) 2281 return -EINVAL; 2282 2283 ipv6_key = nla_data(ovs_key); 2284 2285 if (masked) { 2286 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2287 2288 /* Non-writeable fields. */ 2289 if (mask->ipv6_proto || mask->ipv6_frag) 2290 return -EINVAL; 2291 2292 /* Invalid bits in the flow label mask? */ 2293 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2294 return -EINVAL; 2295 } else { 2296 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2297 return -EINVAL; 2298 2299 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2300 return -EINVAL; 2301 } 2302 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2303 return -EINVAL; 2304 2305 break; 2306 2307 case OVS_KEY_ATTR_TCP: 2308 if ((eth_type != htons(ETH_P_IP) && 2309 eth_type != htons(ETH_P_IPV6)) || 2310 flow_key->ip.proto != IPPROTO_TCP) 2311 return -EINVAL; 2312 2313 break; 2314 2315 case OVS_KEY_ATTR_UDP: 2316 if ((eth_type != htons(ETH_P_IP) && 2317 eth_type != htons(ETH_P_IPV6)) || 2318 flow_key->ip.proto != IPPROTO_UDP) 2319 return -EINVAL; 2320 2321 break; 2322 2323 case OVS_KEY_ATTR_MPLS: 2324 if (!eth_p_mpls(eth_type)) 2325 return -EINVAL; 2326 break; 2327 2328 case OVS_KEY_ATTR_SCTP: 2329 if ((eth_type != htons(ETH_P_IP) && 2330 eth_type != htons(ETH_P_IPV6)) || 2331 flow_key->ip.proto != IPPROTO_SCTP) 2332 return -EINVAL; 2333 2334 break; 2335 2336 default: 2337 return -EINVAL; 2338 } 2339 2340 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2341 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2342 int start, len = key_len * 2; 2343 struct nlattr *at; 2344 2345 *skip_copy = true; 2346 2347 start = add_nested_action_start(sfa, 2348 OVS_ACTION_ATTR_SET_TO_MASKED, 2349 log); 2350 if (start < 0) 2351 return start; 2352 2353 at = __add_action(sfa, key_type, NULL, len, log); 2354 if (IS_ERR(at)) 2355 return PTR_ERR(at); 2356 2357 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2358 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2359 /* Clear non-writeable bits from otherwise writeable fields. */ 2360 if (key_type == OVS_KEY_ATTR_IPV6) { 2361 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2362 2363 mask->ipv6_label &= htonl(0x000FFFFF); 2364 } 2365 add_nested_action_end(*sfa, start); 2366 } 2367 2368 return 0; 2369 } 2370 2371 static int validate_userspace(const struct nlattr *attr) 2372 { 2373 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2374 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2375 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2376 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2377 }; 2378 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2379 int error; 2380 2381 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, 2382 attr, userspace_policy); 2383 if (error) 2384 return error; 2385 2386 if (!a[OVS_USERSPACE_ATTR_PID] || 2387 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2388 return -EINVAL; 2389 2390 return 0; 2391 } 2392 2393 static int copy_action(const struct nlattr *from, 2394 struct sw_flow_actions **sfa, bool log) 2395 { 2396 int totlen = NLA_ALIGN(from->nla_len); 2397 struct nlattr *to; 2398 2399 to = reserve_sfa_size(sfa, from->nla_len, log); 2400 if (IS_ERR(to)) 2401 return PTR_ERR(to); 2402 2403 memcpy(to, from, totlen); 2404 return 0; 2405 } 2406 2407 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2408 const struct sw_flow_key *key, 2409 int depth, struct sw_flow_actions **sfa, 2410 __be16 eth_type, __be16 vlan_tci, bool log) 2411 { 2412 u8 mac_proto = ovs_key_mac_proto(key); 2413 const struct nlattr *a; 2414 int rem, err; 2415 2416 if (depth >= SAMPLE_ACTION_DEPTH) 2417 return -EOVERFLOW; 2418 2419 nla_for_each_nested(a, attr, rem) { 2420 /* Expected argument lengths, (u32)-1 for variable length. */ 2421 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2422 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2423 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2424 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2425 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2426 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2427 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2428 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2429 [OVS_ACTION_ATTR_SET] = (u32)-1, 2430 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2431 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2432 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2433 [OVS_ACTION_ATTR_CT] = (u32)-1, 2434 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 2435 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), 2436 [OVS_ACTION_ATTR_POP_ETH] = 0, 2437 }; 2438 const struct ovs_action_push_vlan *vlan; 2439 int type = nla_type(a); 2440 bool skip_copy; 2441 2442 if (type > OVS_ACTION_ATTR_MAX || 2443 (action_lens[type] != nla_len(a) && 2444 action_lens[type] != (u32)-1)) 2445 return -EINVAL; 2446 2447 skip_copy = false; 2448 switch (type) { 2449 case OVS_ACTION_ATTR_UNSPEC: 2450 return -EINVAL; 2451 2452 case OVS_ACTION_ATTR_USERSPACE: 2453 err = validate_userspace(a); 2454 if (err) 2455 return err; 2456 break; 2457 2458 case OVS_ACTION_ATTR_OUTPUT: 2459 if (nla_get_u32(a) >= DP_MAX_PORTS) 2460 return -EINVAL; 2461 break; 2462 2463 case OVS_ACTION_ATTR_TRUNC: { 2464 const struct ovs_action_trunc *trunc = nla_data(a); 2465 2466 if (trunc->max_len < ETH_HLEN) 2467 return -EINVAL; 2468 break; 2469 } 2470 2471 case OVS_ACTION_ATTR_HASH: { 2472 const struct ovs_action_hash *act_hash = nla_data(a); 2473 2474 switch (act_hash->hash_alg) { 2475 case OVS_HASH_ALG_L4: 2476 break; 2477 default: 2478 return -EINVAL; 2479 } 2480 2481 break; 2482 } 2483 2484 case OVS_ACTION_ATTR_POP_VLAN: 2485 if (mac_proto != MAC_PROTO_ETHERNET) 2486 return -EINVAL; 2487 vlan_tci = htons(0); 2488 break; 2489 2490 case OVS_ACTION_ATTR_PUSH_VLAN: 2491 if (mac_proto != MAC_PROTO_ETHERNET) 2492 return -EINVAL; 2493 vlan = nla_data(a); 2494 if (!eth_type_vlan(vlan->vlan_tpid)) 2495 return -EINVAL; 2496 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2497 return -EINVAL; 2498 vlan_tci = vlan->vlan_tci; 2499 break; 2500 2501 case OVS_ACTION_ATTR_RECIRC: 2502 break; 2503 2504 case OVS_ACTION_ATTR_PUSH_MPLS: { 2505 const struct ovs_action_push_mpls *mpls = nla_data(a); 2506 2507 if (!eth_p_mpls(mpls->mpls_ethertype)) 2508 return -EINVAL; 2509 /* Prohibit push MPLS other than to a white list 2510 * for packets that have a known tag order. 2511 */ 2512 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2513 (eth_type != htons(ETH_P_IP) && 2514 eth_type != htons(ETH_P_IPV6) && 2515 eth_type != htons(ETH_P_ARP) && 2516 eth_type != htons(ETH_P_RARP) && 2517 !eth_p_mpls(eth_type))) 2518 return -EINVAL; 2519 eth_type = mpls->mpls_ethertype; 2520 break; 2521 } 2522 2523 case OVS_ACTION_ATTR_POP_MPLS: 2524 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2525 !eth_p_mpls(eth_type)) 2526 return -EINVAL; 2527 2528 /* Disallow subsequent L2.5+ set and mpls_pop actions 2529 * as there is no check here to ensure that the new 2530 * eth_type is valid and thus set actions could 2531 * write off the end of the packet or otherwise 2532 * corrupt it. 2533 * 2534 * Support for these actions is planned using packet 2535 * recirculation. 2536 */ 2537 eth_type = htons(0); 2538 break; 2539 2540 case OVS_ACTION_ATTR_SET: 2541 err = validate_set(a, key, sfa, 2542 &skip_copy, mac_proto, eth_type, 2543 false, log); 2544 if (err) 2545 return err; 2546 break; 2547 2548 case OVS_ACTION_ATTR_SET_MASKED: 2549 err = validate_set(a, key, sfa, 2550 &skip_copy, mac_proto, eth_type, 2551 true, log); 2552 if (err) 2553 return err; 2554 break; 2555 2556 case OVS_ACTION_ATTR_SAMPLE: 2557 err = validate_and_copy_sample(net, a, key, depth, sfa, 2558 eth_type, vlan_tci, log); 2559 if (err) 2560 return err; 2561 skip_copy = true; 2562 break; 2563 2564 case OVS_ACTION_ATTR_CT: 2565 err = ovs_ct_copy_action(net, a, key, sfa, log); 2566 if (err) 2567 return err; 2568 skip_copy = true; 2569 break; 2570 2571 case OVS_ACTION_ATTR_PUSH_ETH: 2572 /* Disallow pushing an Ethernet header if one 2573 * is already present */ 2574 if (mac_proto != MAC_PROTO_NONE) 2575 return -EINVAL; 2576 mac_proto = MAC_PROTO_NONE; 2577 break; 2578 2579 case OVS_ACTION_ATTR_POP_ETH: 2580 if (mac_proto != MAC_PROTO_ETHERNET) 2581 return -EINVAL; 2582 if (vlan_tci & htons(VLAN_TAG_PRESENT)) 2583 return -EINVAL; 2584 mac_proto = MAC_PROTO_ETHERNET; 2585 break; 2586 2587 default: 2588 OVS_NLERR(log, "Unknown Action type %d", type); 2589 return -EINVAL; 2590 } 2591 if (!skip_copy) { 2592 err = copy_action(a, sfa, log); 2593 if (err) 2594 return err; 2595 } 2596 } 2597 2598 if (rem > 0) 2599 return -EINVAL; 2600 2601 return 0; 2602 } 2603 2604 /* 'key' must be the masked key. */ 2605 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2606 const struct sw_flow_key *key, 2607 struct sw_flow_actions **sfa, bool log) 2608 { 2609 int err; 2610 2611 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 2612 if (IS_ERR(*sfa)) 2613 return PTR_ERR(*sfa); 2614 2615 (*sfa)->orig_len = nla_len(attr); 2616 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, 2617 key->eth.vlan.tci, log); 2618 if (err) 2619 ovs_nla_free_flow_actions(*sfa); 2620 2621 return err; 2622 } 2623 2624 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) 2625 { 2626 const struct nlattr *a; 2627 struct nlattr *start; 2628 int err = 0, rem; 2629 2630 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 2631 if (!start) 2632 return -EMSGSIZE; 2633 2634 nla_for_each_nested(a, attr, rem) { 2635 int type = nla_type(a); 2636 struct nlattr *st_sample; 2637 2638 switch (type) { 2639 case OVS_SAMPLE_ATTR_PROBABILITY: 2640 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, 2641 sizeof(u32), nla_data(a))) 2642 return -EMSGSIZE; 2643 break; 2644 case OVS_SAMPLE_ATTR_ACTIONS: 2645 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 2646 if (!st_sample) 2647 return -EMSGSIZE; 2648 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 2649 if (err) 2650 return err; 2651 nla_nest_end(skb, st_sample); 2652 break; 2653 } 2654 } 2655 2656 nla_nest_end(skb, start); 2657 return err; 2658 } 2659 2660 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 2661 { 2662 const struct nlattr *ovs_key = nla_data(a); 2663 int key_type = nla_type(ovs_key); 2664 struct nlattr *start; 2665 int err; 2666 2667 switch (key_type) { 2668 case OVS_KEY_ATTR_TUNNEL_INFO: { 2669 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 2670 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 2671 2672 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2673 if (!start) 2674 return -EMSGSIZE; 2675 2676 err = ip_tun_to_nlattr(skb, &tun_info->key, 2677 ip_tunnel_info_opts(tun_info), 2678 tun_info->options_len, 2679 ip_tunnel_info_af(tun_info)); 2680 if (err) 2681 return err; 2682 nla_nest_end(skb, start); 2683 break; 2684 } 2685 default: 2686 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 2687 return -EMSGSIZE; 2688 break; 2689 } 2690 2691 return 0; 2692 } 2693 2694 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 2695 struct sk_buff *skb) 2696 { 2697 const struct nlattr *ovs_key = nla_data(a); 2698 struct nlattr *nla; 2699 size_t key_len = nla_len(ovs_key) / 2; 2700 2701 /* Revert the conversion we did from a non-masked set action to 2702 * masked set action. 2703 */ 2704 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2705 if (!nla) 2706 return -EMSGSIZE; 2707 2708 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 2709 return -EMSGSIZE; 2710 2711 nla_nest_end(skb, nla); 2712 return 0; 2713 } 2714 2715 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 2716 { 2717 const struct nlattr *a; 2718 int rem, err; 2719 2720 nla_for_each_attr(a, attr, len, rem) { 2721 int type = nla_type(a); 2722 2723 switch (type) { 2724 case OVS_ACTION_ATTR_SET: 2725 err = set_action_to_attr(a, skb); 2726 if (err) 2727 return err; 2728 break; 2729 2730 case OVS_ACTION_ATTR_SET_TO_MASKED: 2731 err = masked_set_action_to_set_action_attr(a, skb); 2732 if (err) 2733 return err; 2734 break; 2735 2736 case OVS_ACTION_ATTR_SAMPLE: 2737 err = sample_action_to_attr(a, skb); 2738 if (err) 2739 return err; 2740 break; 2741 2742 case OVS_ACTION_ATTR_CT: 2743 err = ovs_ct_action_to_attr(nla_data(a), skb); 2744 if (err) 2745 return err; 2746 break; 2747 2748 default: 2749 if (nla_put(skb, type, nla_len(a), nla_data(a))) 2750 return -EMSGSIZE; 2751 break; 2752 } 2753 } 2754 2755 return 0; 2756 } 2757