xref: /openbmc/linux/net/openvswitch/flow_netlink.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 #include <net/tun_proto.h>
52 #include <net/erspan.h>
53 
54 #include "flow_netlink.h"
55 
56 struct ovs_len_tbl {
57 	int len;
58 	const struct ovs_len_tbl *next;
59 };
60 
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
63 
64 static bool actions_may_change_flow(const struct nlattr *actions)
65 {
66 	struct nlattr *nla;
67 	int rem;
68 
69 	nla_for_each_nested(nla, actions, rem) {
70 		u16 action = nla_type(nla);
71 
72 		switch (action) {
73 		case OVS_ACTION_ATTR_OUTPUT:
74 		case OVS_ACTION_ATTR_RECIRC:
75 		case OVS_ACTION_ATTR_TRUNC:
76 		case OVS_ACTION_ATTR_USERSPACE:
77 			break;
78 
79 		case OVS_ACTION_ATTR_CT:
80 		case OVS_ACTION_ATTR_CT_CLEAR:
81 		case OVS_ACTION_ATTR_HASH:
82 		case OVS_ACTION_ATTR_POP_ETH:
83 		case OVS_ACTION_ATTR_POP_MPLS:
84 		case OVS_ACTION_ATTR_POP_NSH:
85 		case OVS_ACTION_ATTR_POP_VLAN:
86 		case OVS_ACTION_ATTR_PUSH_ETH:
87 		case OVS_ACTION_ATTR_PUSH_MPLS:
88 		case OVS_ACTION_ATTR_PUSH_NSH:
89 		case OVS_ACTION_ATTR_PUSH_VLAN:
90 		case OVS_ACTION_ATTR_SAMPLE:
91 		case OVS_ACTION_ATTR_SET:
92 		case OVS_ACTION_ATTR_SET_MASKED:
93 		case OVS_ACTION_ATTR_METER:
94 		default:
95 			return true;
96 		}
97 	}
98 	return false;
99 }
100 
101 static void update_range(struct sw_flow_match *match,
102 			 size_t offset, size_t size, bool is_mask)
103 {
104 	struct sw_flow_key_range *range;
105 	size_t start = rounddown(offset, sizeof(long));
106 	size_t end = roundup(offset + size, sizeof(long));
107 
108 	if (!is_mask)
109 		range = &match->range;
110 	else
111 		range = &match->mask->range;
112 
113 	if (range->start == range->end) {
114 		range->start = start;
115 		range->end = end;
116 		return;
117 	}
118 
119 	if (range->start > start)
120 		range->start = start;
121 
122 	if (range->end < end)
123 		range->end = end;
124 }
125 
126 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
127 	do { \
128 		update_range(match, offsetof(struct sw_flow_key, field),    \
129 			     sizeof((match)->key->field), is_mask);	    \
130 		if (is_mask)						    \
131 			(match)->mask->key.field = value;		    \
132 		else							    \
133 			(match)->key->field = value;		            \
134 	} while (0)
135 
136 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
137 	do {								    \
138 		update_range(match, offset, len, is_mask);		    \
139 		if (is_mask)						    \
140 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
141 			       len);					   \
142 		else							    \
143 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
144 	} while (0)
145 
146 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
147 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
148 				  value_p, len, is_mask)
149 
150 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
151 	do {								    \
152 		update_range(match, offsetof(struct sw_flow_key, field),    \
153 			     sizeof((match)->key->field), is_mask);	    \
154 		if (is_mask)						    \
155 			memset((u8 *)&(match)->mask->key.field, value,      \
156 			       sizeof((match)->mask->key.field));	    \
157 		else							    \
158 			memset((u8 *)&(match)->key->field, value,           \
159 			       sizeof((match)->key->field));                \
160 	} while (0)
161 
162 static bool match_validate(const struct sw_flow_match *match,
163 			   u64 key_attrs, u64 mask_attrs, bool log)
164 {
165 	u64 key_expected = 0;
166 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
167 
168 	/* The following mask attributes allowed only if they
169 	 * pass the validation tests. */
170 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
171 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
172 			| (1 << OVS_KEY_ATTR_IPV6)
173 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
174 			| (1 << OVS_KEY_ATTR_TCP)
175 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
176 			| (1 << OVS_KEY_ATTR_UDP)
177 			| (1 << OVS_KEY_ATTR_SCTP)
178 			| (1 << OVS_KEY_ATTR_ICMP)
179 			| (1 << OVS_KEY_ATTR_ICMPV6)
180 			| (1 << OVS_KEY_ATTR_ARP)
181 			| (1 << OVS_KEY_ATTR_ND)
182 			| (1 << OVS_KEY_ATTR_MPLS)
183 			| (1 << OVS_KEY_ATTR_NSH));
184 
185 	/* Always allowed mask fields. */
186 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
187 		       | (1 << OVS_KEY_ATTR_IN_PORT)
188 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
189 
190 	/* Check key attributes. */
191 	if (match->key->eth.type == htons(ETH_P_ARP)
192 			|| match->key->eth.type == htons(ETH_P_RARP)) {
193 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
194 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
195 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
196 	}
197 
198 	if (eth_p_mpls(match->key->eth.type)) {
199 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
200 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
201 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
202 	}
203 
204 	if (match->key->eth.type == htons(ETH_P_IP)) {
205 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
206 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
207 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
208 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
209 		}
210 
211 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
212 			if (match->key->ip.proto == IPPROTO_UDP) {
213 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
214 				if (match->mask && (match->mask->key.ip.proto == 0xff))
215 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
216 			}
217 
218 			if (match->key->ip.proto == IPPROTO_SCTP) {
219 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
220 				if (match->mask && (match->mask->key.ip.proto == 0xff))
221 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
222 			}
223 
224 			if (match->key->ip.proto == IPPROTO_TCP) {
225 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
226 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
227 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
228 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
229 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
230 				}
231 			}
232 
233 			if (match->key->ip.proto == IPPROTO_ICMP) {
234 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
235 				if (match->mask && (match->mask->key.ip.proto == 0xff))
236 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
237 			}
238 		}
239 	}
240 
241 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
242 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
243 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
244 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
245 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
246 		}
247 
248 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
249 			if (match->key->ip.proto == IPPROTO_UDP) {
250 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
251 				if (match->mask && (match->mask->key.ip.proto == 0xff))
252 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
253 			}
254 
255 			if (match->key->ip.proto == IPPROTO_SCTP) {
256 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
257 				if (match->mask && (match->mask->key.ip.proto == 0xff))
258 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
259 			}
260 
261 			if (match->key->ip.proto == IPPROTO_TCP) {
262 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
263 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
264 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
265 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
266 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
267 				}
268 			}
269 
270 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
271 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
272 				if (match->mask && (match->mask->key.ip.proto == 0xff))
273 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
274 
275 				if (match->key->tp.src ==
276 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
277 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
278 					key_expected |= 1 << OVS_KEY_ATTR_ND;
279 					/* Original direction conntrack tuple
280 					 * uses the same space as the ND fields
281 					 * in the key, so both are not allowed
282 					 * at the same time.
283 					 */
284 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
285 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
286 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
287 				}
288 			}
289 		}
290 	}
291 
292 	if (match->key->eth.type == htons(ETH_P_NSH)) {
293 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
294 		if (match->mask &&
295 		    match->mask->key.eth.type == htons(0xffff)) {
296 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
297 		}
298 	}
299 
300 	if ((key_attrs & key_expected) != key_expected) {
301 		/* Key attributes check failed. */
302 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
303 			  (unsigned long long)key_attrs,
304 			  (unsigned long long)key_expected);
305 		return false;
306 	}
307 
308 	if ((mask_attrs & mask_allowed) != mask_attrs) {
309 		/* Mask attributes check failed. */
310 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
311 			  (unsigned long long)mask_attrs,
312 			  (unsigned long long)mask_allowed);
313 		return false;
314 	}
315 
316 	return true;
317 }
318 
319 size_t ovs_tun_key_attr_size(void)
320 {
321 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
322 	 * updating this function.
323 	 */
324 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
325 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
326 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
327 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
328 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
329 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
330 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
331 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
332 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
333 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
334 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
335 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
336 		 */
337 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
338 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
339 }
340 
341 static size_t ovs_nsh_key_attr_size(void)
342 {
343 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
344 	 * updating this function.
345 	 */
346 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
347 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
348 		 * mutually exclusive, so the bigger one can cover
349 		 * the small one.
350 		 */
351 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
352 }
353 
354 size_t ovs_key_attr_size(void)
355 {
356 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
357 	 * updating this function.
358 	 */
359 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
360 
361 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
362 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
363 		  + ovs_tun_key_attr_size()
364 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
365 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
366 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
367 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
368 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
369 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
370 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
371 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
372 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
373 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
374 		  + ovs_nsh_key_attr_size()
375 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
376 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
377 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
378 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
379 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
380 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
381 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
382 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
383 }
384 
385 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
386 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
387 };
388 
389 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
390 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
391 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
392 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
393 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
394 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
395 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
396 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
397 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
398 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
399 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
400 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
401 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
402 						.next = ovs_vxlan_ext_key_lens },
403 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
404 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
405 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
406 };
407 
408 static const struct ovs_len_tbl
409 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
410 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
411 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
412 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
413 };
414 
415 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
416 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
417 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
418 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
419 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
420 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
421 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
422 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
423 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
424 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
425 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
426 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
427 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
428 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
429 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
430 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
431 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
432 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
433 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
434 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
435 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
436 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
437 				     .next = ovs_tunnel_key_lens, },
438 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
439 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
440 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
441 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
442 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
443 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
444 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
445 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
446 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
447 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
448 				     .next = ovs_nsh_key_attr_lens, },
449 };
450 
451 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
452 {
453 	return expected_len == attr_len ||
454 	       expected_len == OVS_ATTR_NESTED ||
455 	       expected_len == OVS_ATTR_VARIABLE;
456 }
457 
458 static bool is_all_zero(const u8 *fp, size_t size)
459 {
460 	int i;
461 
462 	if (!fp)
463 		return false;
464 
465 	for (i = 0; i < size; i++)
466 		if (fp[i])
467 			return false;
468 
469 	return true;
470 }
471 
472 static int __parse_flow_nlattrs(const struct nlattr *attr,
473 				const struct nlattr *a[],
474 				u64 *attrsp, bool log, bool nz)
475 {
476 	const struct nlattr *nla;
477 	u64 attrs;
478 	int rem;
479 
480 	attrs = *attrsp;
481 	nla_for_each_nested(nla, attr, rem) {
482 		u16 type = nla_type(nla);
483 		int expected_len;
484 
485 		if (type > OVS_KEY_ATTR_MAX) {
486 			OVS_NLERR(log, "Key type %d is out of range max %d",
487 				  type, OVS_KEY_ATTR_MAX);
488 			return -EINVAL;
489 		}
490 
491 		if (attrs & (1 << type)) {
492 			OVS_NLERR(log, "Duplicate key (type %d).", type);
493 			return -EINVAL;
494 		}
495 
496 		expected_len = ovs_key_lens[type].len;
497 		if (!check_attr_len(nla_len(nla), expected_len)) {
498 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
499 				  type, nla_len(nla), expected_len);
500 			return -EINVAL;
501 		}
502 
503 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
504 			attrs |= 1 << type;
505 			a[type] = nla;
506 		}
507 	}
508 	if (rem) {
509 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
510 		return -EINVAL;
511 	}
512 
513 	*attrsp = attrs;
514 	return 0;
515 }
516 
517 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
518 				   const struct nlattr *a[], u64 *attrsp,
519 				   bool log)
520 {
521 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
522 }
523 
524 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
525 		       u64 *attrsp, bool log)
526 {
527 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
528 }
529 
530 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
531 				     struct sw_flow_match *match, bool is_mask,
532 				     bool log)
533 {
534 	unsigned long opt_key_offset;
535 
536 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
537 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
538 			  nla_len(a), sizeof(match->key->tun_opts));
539 		return -EINVAL;
540 	}
541 
542 	if (nla_len(a) % 4 != 0) {
543 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
544 			  nla_len(a));
545 		return -EINVAL;
546 	}
547 
548 	/* We need to record the length of the options passed
549 	 * down, otherwise packets with the same format but
550 	 * additional options will be silently matched.
551 	 */
552 	if (!is_mask) {
553 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
554 				false);
555 	} else {
556 		/* This is somewhat unusual because it looks at
557 		 * both the key and mask while parsing the
558 		 * attributes (and by extension assumes the key
559 		 * is parsed first). Normally, we would verify
560 		 * that each is the correct length and that the
561 		 * attributes line up in the validate function.
562 		 * However, that is difficult because this is
563 		 * variable length and we won't have the
564 		 * information later.
565 		 */
566 		if (match->key->tun_opts_len != nla_len(a)) {
567 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
568 				  match->key->tun_opts_len, nla_len(a));
569 			return -EINVAL;
570 		}
571 
572 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
573 	}
574 
575 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
576 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
577 				  nla_len(a), is_mask);
578 	return 0;
579 }
580 
581 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
582 				     struct sw_flow_match *match, bool is_mask,
583 				     bool log)
584 {
585 	struct nlattr *a;
586 	int rem;
587 	unsigned long opt_key_offset;
588 	struct vxlan_metadata opts;
589 
590 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
591 
592 	memset(&opts, 0, sizeof(opts));
593 	nla_for_each_nested(a, attr, rem) {
594 		int type = nla_type(a);
595 
596 		if (type > OVS_VXLAN_EXT_MAX) {
597 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
598 				  type, OVS_VXLAN_EXT_MAX);
599 			return -EINVAL;
600 		}
601 
602 		if (!check_attr_len(nla_len(a),
603 				    ovs_vxlan_ext_key_lens[type].len)) {
604 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
605 				  type, nla_len(a),
606 				  ovs_vxlan_ext_key_lens[type].len);
607 			return -EINVAL;
608 		}
609 
610 		switch (type) {
611 		case OVS_VXLAN_EXT_GBP:
612 			opts.gbp = nla_get_u32(a);
613 			break;
614 		default:
615 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
616 				  type);
617 			return -EINVAL;
618 		}
619 	}
620 	if (rem) {
621 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
622 			  rem);
623 		return -EINVAL;
624 	}
625 
626 	if (!is_mask)
627 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
628 	else
629 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
630 
631 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
632 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
633 				  is_mask);
634 	return 0;
635 }
636 
637 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
638 				      struct sw_flow_match *match, bool is_mask,
639 				      bool log)
640 {
641 	unsigned long opt_key_offset;
642 
643 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
644 		     sizeof(match->key->tun_opts));
645 
646 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
647 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
648 			  nla_len(a), sizeof(match->key->tun_opts));
649 		return -EINVAL;
650 	}
651 
652 	if (!is_mask)
653 		SW_FLOW_KEY_PUT(match, tun_opts_len,
654 				sizeof(struct erspan_metadata), false);
655 	else
656 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
657 
658 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
659 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
660 				  nla_len(a), is_mask);
661 	return 0;
662 }
663 
664 static int ip_tun_from_nlattr(const struct nlattr *attr,
665 			      struct sw_flow_match *match, bool is_mask,
666 			      bool log)
667 {
668 	bool ttl = false, ipv4 = false, ipv6 = false;
669 	__be16 tun_flags = 0;
670 	int opts_type = 0;
671 	struct nlattr *a;
672 	int rem;
673 
674 	nla_for_each_nested(a, attr, rem) {
675 		int type = nla_type(a);
676 		int err;
677 
678 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
679 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
680 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
681 			return -EINVAL;
682 		}
683 
684 		if (!check_attr_len(nla_len(a),
685 				    ovs_tunnel_key_lens[type].len)) {
686 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
687 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
688 			return -EINVAL;
689 		}
690 
691 		switch (type) {
692 		case OVS_TUNNEL_KEY_ATTR_ID:
693 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
694 					nla_get_be64(a), is_mask);
695 			tun_flags |= TUNNEL_KEY;
696 			break;
697 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
698 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
699 					nla_get_in_addr(a), is_mask);
700 			ipv4 = true;
701 			break;
702 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
703 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
704 					nla_get_in_addr(a), is_mask);
705 			ipv4 = true;
706 			break;
707 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
708 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
709 					nla_get_in6_addr(a), is_mask);
710 			ipv6 = true;
711 			break;
712 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
713 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
714 					nla_get_in6_addr(a), is_mask);
715 			ipv6 = true;
716 			break;
717 		case OVS_TUNNEL_KEY_ATTR_TOS:
718 			SW_FLOW_KEY_PUT(match, tun_key.tos,
719 					nla_get_u8(a), is_mask);
720 			break;
721 		case OVS_TUNNEL_KEY_ATTR_TTL:
722 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
723 					nla_get_u8(a), is_mask);
724 			ttl = true;
725 			break;
726 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
727 			tun_flags |= TUNNEL_DONT_FRAGMENT;
728 			break;
729 		case OVS_TUNNEL_KEY_ATTR_CSUM:
730 			tun_flags |= TUNNEL_CSUM;
731 			break;
732 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
733 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
734 					nla_get_be16(a), is_mask);
735 			break;
736 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
737 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
738 					nla_get_be16(a), is_mask);
739 			break;
740 		case OVS_TUNNEL_KEY_ATTR_OAM:
741 			tun_flags |= TUNNEL_OAM;
742 			break;
743 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
744 			if (opts_type) {
745 				OVS_NLERR(log, "Multiple metadata blocks provided");
746 				return -EINVAL;
747 			}
748 
749 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
750 			if (err)
751 				return err;
752 
753 			tun_flags |= TUNNEL_GENEVE_OPT;
754 			opts_type = type;
755 			break;
756 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
757 			if (opts_type) {
758 				OVS_NLERR(log, "Multiple metadata blocks provided");
759 				return -EINVAL;
760 			}
761 
762 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
763 			if (err)
764 				return err;
765 
766 			tun_flags |= TUNNEL_VXLAN_OPT;
767 			opts_type = type;
768 			break;
769 		case OVS_TUNNEL_KEY_ATTR_PAD:
770 			break;
771 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
772 			if (opts_type) {
773 				OVS_NLERR(log, "Multiple metadata blocks provided");
774 				return -EINVAL;
775 			}
776 
777 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
778 							 log);
779 			if (err)
780 				return err;
781 
782 			tun_flags |= TUNNEL_ERSPAN_OPT;
783 			opts_type = type;
784 			break;
785 		default:
786 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
787 				  type);
788 			return -EINVAL;
789 		}
790 	}
791 
792 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
793 	if (is_mask)
794 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
795 	else
796 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
797 				false);
798 
799 	if (rem > 0) {
800 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
801 			  rem);
802 		return -EINVAL;
803 	}
804 
805 	if (ipv4 && ipv6) {
806 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
807 		return -EINVAL;
808 	}
809 
810 	if (!is_mask) {
811 		if (!ipv4 && !ipv6) {
812 			OVS_NLERR(log, "IP tunnel dst address not specified");
813 			return -EINVAL;
814 		}
815 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
816 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
817 			return -EINVAL;
818 		}
819 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
820 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
821 			return -EINVAL;
822 		}
823 
824 		if (!ttl) {
825 			OVS_NLERR(log, "IP tunnel TTL not specified.");
826 			return -EINVAL;
827 		}
828 	}
829 
830 	return opts_type;
831 }
832 
833 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
834 			       const void *tun_opts, int swkey_tun_opts_len)
835 {
836 	const struct vxlan_metadata *opts = tun_opts;
837 	struct nlattr *nla;
838 
839 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
840 	if (!nla)
841 		return -EMSGSIZE;
842 
843 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
844 		return -EMSGSIZE;
845 
846 	nla_nest_end(skb, nla);
847 	return 0;
848 }
849 
850 static int __ip_tun_to_nlattr(struct sk_buff *skb,
851 			      const struct ip_tunnel_key *output,
852 			      const void *tun_opts, int swkey_tun_opts_len,
853 			      unsigned short tun_proto)
854 {
855 	if (output->tun_flags & TUNNEL_KEY &&
856 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
857 			 OVS_TUNNEL_KEY_ATTR_PAD))
858 		return -EMSGSIZE;
859 	switch (tun_proto) {
860 	case AF_INET:
861 		if (output->u.ipv4.src &&
862 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
863 				    output->u.ipv4.src))
864 			return -EMSGSIZE;
865 		if (output->u.ipv4.dst &&
866 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
867 				    output->u.ipv4.dst))
868 			return -EMSGSIZE;
869 		break;
870 	case AF_INET6:
871 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
872 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
873 				     &output->u.ipv6.src))
874 			return -EMSGSIZE;
875 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
876 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
877 				     &output->u.ipv6.dst))
878 			return -EMSGSIZE;
879 		break;
880 	}
881 	if (output->tos &&
882 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
883 		return -EMSGSIZE;
884 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
885 		return -EMSGSIZE;
886 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
887 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
888 		return -EMSGSIZE;
889 	if ((output->tun_flags & TUNNEL_CSUM) &&
890 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
891 		return -EMSGSIZE;
892 	if (output->tp_src &&
893 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
894 		return -EMSGSIZE;
895 	if (output->tp_dst &&
896 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
897 		return -EMSGSIZE;
898 	if ((output->tun_flags & TUNNEL_OAM) &&
899 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
900 		return -EMSGSIZE;
901 	if (swkey_tun_opts_len) {
902 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
903 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
904 			    swkey_tun_opts_len, tun_opts))
905 			return -EMSGSIZE;
906 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
907 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
908 			return -EMSGSIZE;
909 		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
910 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
911 				 swkey_tun_opts_len, tun_opts))
912 			return -EMSGSIZE;
913 	}
914 
915 	return 0;
916 }
917 
918 static int ip_tun_to_nlattr(struct sk_buff *skb,
919 			    const struct ip_tunnel_key *output,
920 			    const void *tun_opts, int swkey_tun_opts_len,
921 			    unsigned short tun_proto)
922 {
923 	struct nlattr *nla;
924 	int err;
925 
926 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
927 	if (!nla)
928 		return -EMSGSIZE;
929 
930 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
931 				 tun_proto);
932 	if (err)
933 		return err;
934 
935 	nla_nest_end(skb, nla);
936 	return 0;
937 }
938 
939 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
940 			    struct ip_tunnel_info *tun_info)
941 {
942 	return __ip_tun_to_nlattr(skb, &tun_info->key,
943 				  ip_tunnel_info_opts(tun_info),
944 				  tun_info->options_len,
945 				  ip_tunnel_info_af(tun_info));
946 }
947 
948 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
949 				    const struct nlattr *a[],
950 				    bool is_mask, bool inner)
951 {
952 	__be16 tci = 0;
953 	__be16 tpid = 0;
954 
955 	if (a[OVS_KEY_ATTR_VLAN])
956 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
957 
958 	if (a[OVS_KEY_ATTR_ETHERTYPE])
959 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
960 
961 	if (likely(!inner)) {
962 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
963 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
964 	} else {
965 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
966 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
967 	}
968 	return 0;
969 }
970 
971 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
972 				      u64 key_attrs, bool inner,
973 				      const struct nlattr **a, bool log)
974 {
975 	__be16 tci = 0;
976 
977 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
978 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
979 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
980 		/* Not a VLAN. */
981 		return 0;
982 	}
983 
984 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
985 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
986 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
987 		return -EINVAL;
988 	}
989 
990 	if (a[OVS_KEY_ATTR_VLAN])
991 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
992 
993 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
994 		if (tci) {
995 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
996 				  (inner) ? "C-VLAN" : "VLAN");
997 			return -EINVAL;
998 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
999 			/* Corner case for truncated VLAN header. */
1000 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1001 				  (inner) ? "C-VLAN" : "VLAN");
1002 			return -EINVAL;
1003 		}
1004 	}
1005 
1006 	return 1;
1007 }
1008 
1009 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1010 					   u64 key_attrs, bool inner,
1011 					   const struct nlattr **a, bool log)
1012 {
1013 	__be16 tci = 0;
1014 	__be16 tpid = 0;
1015 	bool encap_valid = !!(match->key->eth.vlan.tci &
1016 			      htons(VLAN_TAG_PRESENT));
1017 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1018 				htons(VLAN_TAG_PRESENT));
1019 
1020 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1021 		/* Not a VLAN. */
1022 		return 0;
1023 	}
1024 
1025 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1026 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1027 			  (inner) ? "C-VLAN" : "VLAN");
1028 		return -EINVAL;
1029 	}
1030 
1031 	if (a[OVS_KEY_ATTR_VLAN])
1032 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1033 
1034 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1035 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1036 
1037 	if (tpid != htons(0xffff)) {
1038 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1039 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1040 		return -EINVAL;
1041 	}
1042 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
1043 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
1044 			  (inner) ? "C-VLAN" : "VLAN");
1045 		return -EINVAL;
1046 	}
1047 
1048 	return 1;
1049 }
1050 
1051 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1052 				     u64 *key_attrs, bool inner,
1053 				     const struct nlattr **a, bool is_mask,
1054 				     bool log)
1055 {
1056 	int err;
1057 	const struct nlattr *encap;
1058 
1059 	if (!is_mask)
1060 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1061 						 a, log);
1062 	else
1063 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1064 						      a, log);
1065 	if (err <= 0)
1066 		return err;
1067 
1068 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1069 	if (err)
1070 		return err;
1071 
1072 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1073 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1074 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1075 
1076 	encap = a[OVS_KEY_ATTR_ENCAP];
1077 
1078 	if (!is_mask)
1079 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1080 	else
1081 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1082 
1083 	return err;
1084 }
1085 
1086 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1087 				   u64 *key_attrs, const struct nlattr **a,
1088 				   bool is_mask, bool log)
1089 {
1090 	int err;
1091 	bool encap_valid = false;
1092 
1093 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1094 					is_mask, log);
1095 	if (err)
1096 		return err;
1097 
1098 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1099 	if (encap_valid) {
1100 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1101 						is_mask, log);
1102 		if (err)
1103 			return err;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1110 				       u64 *attrs, const struct nlattr **a,
1111 				       bool is_mask, bool log)
1112 {
1113 	__be16 eth_type;
1114 
1115 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1116 	if (is_mask) {
1117 		/* Always exact match EtherType. */
1118 		eth_type = htons(0xffff);
1119 	} else if (!eth_proto_is_802_3(eth_type)) {
1120 		OVS_NLERR(log, "EtherType %x is less than min %x",
1121 				ntohs(eth_type), ETH_P_802_3_MIN);
1122 		return -EINVAL;
1123 	}
1124 
1125 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1126 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1127 	return 0;
1128 }
1129 
1130 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1131 				 u64 *attrs, const struct nlattr **a,
1132 				 bool is_mask, bool log)
1133 {
1134 	u8 mac_proto = MAC_PROTO_ETHERNET;
1135 
1136 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1137 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1138 
1139 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1140 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1141 	}
1142 
1143 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1144 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1145 
1146 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1147 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1148 	}
1149 
1150 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1151 		SW_FLOW_KEY_PUT(match, phy.priority,
1152 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1153 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1154 	}
1155 
1156 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1157 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1158 
1159 		if (is_mask) {
1160 			in_port = 0xffffffff; /* Always exact match in_port. */
1161 		} else if (in_port >= DP_MAX_PORTS) {
1162 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1163 				  in_port, DP_MAX_PORTS);
1164 			return -EINVAL;
1165 		}
1166 
1167 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1168 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1169 	} else if (!is_mask) {
1170 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1171 	}
1172 
1173 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1174 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1175 
1176 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1177 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1178 	}
1179 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1180 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1181 				       is_mask, log) < 0)
1182 			return -EINVAL;
1183 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1184 	}
1185 
1186 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1187 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1188 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1189 
1190 		if (ct_state & ~CT_SUPPORTED_MASK) {
1191 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1192 				  ct_state);
1193 			return -EINVAL;
1194 		}
1195 
1196 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1197 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1198 	}
1199 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1200 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1201 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1202 
1203 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1204 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1205 	}
1206 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1207 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1208 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1209 
1210 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1211 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1212 	}
1213 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1214 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1215 		const struct ovs_key_ct_labels *cl;
1216 
1217 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1218 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1219 				   sizeof(*cl), is_mask);
1220 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1221 	}
1222 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1223 		const struct ovs_key_ct_tuple_ipv4 *ct;
1224 
1225 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1226 
1227 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1228 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1229 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1230 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1231 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1232 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1233 	}
1234 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1235 		const struct ovs_key_ct_tuple_ipv6 *ct;
1236 
1237 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1238 
1239 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1240 				   sizeof(match->key->ipv6.ct_orig.src),
1241 				   is_mask);
1242 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1243 				   sizeof(match->key->ipv6.ct_orig.dst),
1244 				   is_mask);
1245 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1246 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1247 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1248 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1249 	}
1250 
1251 	/* For layer 3 packets the Ethernet type is provided
1252 	 * and treated as metadata but no MAC addresses are provided.
1253 	 */
1254 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1255 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1256 		mac_proto = MAC_PROTO_NONE;
1257 
1258 	/* Always exact match mac_proto */
1259 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1260 
1261 	if (mac_proto == MAC_PROTO_NONE)
1262 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1263 						   log);
1264 
1265 	return 0;
1266 }
1267 
1268 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1269 			struct nshhdr *nh, size_t size)
1270 {
1271 	struct nlattr *a;
1272 	int rem;
1273 	u8 flags = 0;
1274 	u8 ttl = 0;
1275 	int mdlen = 0;
1276 
1277 	/* validate_nsh has check this, so we needn't do duplicate check here
1278 	 */
1279 	if (size < NSH_BASE_HDR_LEN)
1280 		return -ENOBUFS;
1281 
1282 	nla_for_each_nested(a, attr, rem) {
1283 		int type = nla_type(a);
1284 
1285 		switch (type) {
1286 		case OVS_NSH_KEY_ATTR_BASE: {
1287 			const struct ovs_nsh_key_base *base = nla_data(a);
1288 
1289 			flags = base->flags;
1290 			ttl = base->ttl;
1291 			nh->np = base->np;
1292 			nh->mdtype = base->mdtype;
1293 			nh->path_hdr = base->path_hdr;
1294 			break;
1295 		}
1296 		case OVS_NSH_KEY_ATTR_MD1:
1297 			mdlen = nla_len(a);
1298 			if (mdlen > size - NSH_BASE_HDR_LEN)
1299 				return -ENOBUFS;
1300 			memcpy(&nh->md1, nla_data(a), mdlen);
1301 			break;
1302 
1303 		case OVS_NSH_KEY_ATTR_MD2:
1304 			mdlen = nla_len(a);
1305 			if (mdlen > size - NSH_BASE_HDR_LEN)
1306 				return -ENOBUFS;
1307 			memcpy(&nh->md2, nla_data(a), mdlen);
1308 			break;
1309 
1310 		default:
1311 			return -EINVAL;
1312 		}
1313 	}
1314 
1315 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1316 	nh->ver_flags_ttl_len = 0;
1317 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1318 
1319 	return 0;
1320 }
1321 
1322 int nsh_key_from_nlattr(const struct nlattr *attr,
1323 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1324 {
1325 	struct nlattr *a;
1326 	int rem;
1327 
1328 	/* validate_nsh has check this, so we needn't do duplicate check here
1329 	 */
1330 	nla_for_each_nested(a, attr, rem) {
1331 		int type = nla_type(a);
1332 
1333 		switch (type) {
1334 		case OVS_NSH_KEY_ATTR_BASE: {
1335 			const struct ovs_nsh_key_base *base = nla_data(a);
1336 			const struct ovs_nsh_key_base *base_mask = base + 1;
1337 
1338 			nsh->base = *base;
1339 			nsh_mask->base = *base_mask;
1340 			break;
1341 		}
1342 		case OVS_NSH_KEY_ATTR_MD1: {
1343 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1344 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1345 
1346 			memcpy(nsh->context, md1->context, sizeof(*md1));
1347 			memcpy(nsh_mask->context, md1_mask->context,
1348 			       sizeof(*md1_mask));
1349 			break;
1350 		}
1351 		case OVS_NSH_KEY_ATTR_MD2:
1352 			/* Not supported yet */
1353 			return -ENOTSUPP;
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1363 				   struct sw_flow_match *match, bool is_mask,
1364 				   bool is_push_nsh, bool log)
1365 {
1366 	struct nlattr *a;
1367 	int rem;
1368 	bool has_base = false;
1369 	bool has_md1 = false;
1370 	bool has_md2 = false;
1371 	u8 mdtype = 0;
1372 	int mdlen = 0;
1373 
1374 	if (WARN_ON(is_push_nsh && is_mask))
1375 		return -EINVAL;
1376 
1377 	nla_for_each_nested(a, attr, rem) {
1378 		int type = nla_type(a);
1379 		int i;
1380 
1381 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1382 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1383 				  type, OVS_NSH_KEY_ATTR_MAX);
1384 			return -EINVAL;
1385 		}
1386 
1387 		if (!check_attr_len(nla_len(a),
1388 				    ovs_nsh_key_attr_lens[type].len)) {
1389 			OVS_NLERR(
1390 			    log,
1391 			    "nsh attr %d has unexpected len %d expected %d",
1392 			    type,
1393 			    nla_len(a),
1394 			    ovs_nsh_key_attr_lens[type].len
1395 			);
1396 			return -EINVAL;
1397 		}
1398 
1399 		switch (type) {
1400 		case OVS_NSH_KEY_ATTR_BASE: {
1401 			const struct ovs_nsh_key_base *base = nla_data(a);
1402 
1403 			has_base = true;
1404 			mdtype = base->mdtype;
1405 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1406 					base->flags, is_mask);
1407 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1408 					base->ttl, is_mask);
1409 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1410 					base->mdtype, is_mask);
1411 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1412 					base->np, is_mask);
1413 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1414 					base->path_hdr, is_mask);
1415 			break;
1416 		}
1417 		case OVS_NSH_KEY_ATTR_MD1: {
1418 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1419 
1420 			has_md1 = true;
1421 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1422 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1423 						md1->context[i], is_mask);
1424 			break;
1425 		}
1426 		case OVS_NSH_KEY_ATTR_MD2:
1427 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1428 				return -ENOTSUPP;
1429 
1430 			has_md2 = true;
1431 			mdlen = nla_len(a);
1432 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1433 				OVS_NLERR(
1434 				    log,
1435 				    "Invalid MD length %d for MD type %d",
1436 				    mdlen,
1437 				    mdtype
1438 				);
1439 				return -EINVAL;
1440 			}
1441 			break;
1442 		default:
1443 			OVS_NLERR(log, "Unknown nsh attribute %d",
1444 				  type);
1445 			return -EINVAL;
1446 		}
1447 	}
1448 
1449 	if (rem > 0) {
1450 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1451 		return -EINVAL;
1452 	}
1453 
1454 	if (has_md1 && has_md2) {
1455 		OVS_NLERR(
1456 		    1,
1457 		    "invalid nsh attribute: md1 and md2 are exclusive."
1458 		);
1459 		return -EINVAL;
1460 	}
1461 
1462 	if (!is_mask) {
1463 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1464 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1465 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1466 				  mdtype);
1467 			return -EINVAL;
1468 		}
1469 
1470 		if (is_push_nsh &&
1471 		    (!has_base || (!has_md1 && !has_md2))) {
1472 			OVS_NLERR(
1473 			    1,
1474 			    "push_nsh: missing base or metadata attributes"
1475 			);
1476 			return -EINVAL;
1477 		}
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1484 				u64 attrs, const struct nlattr **a,
1485 				bool is_mask, bool log)
1486 {
1487 	int err;
1488 
1489 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1490 	if (err)
1491 		return err;
1492 
1493 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1494 		const struct ovs_key_ethernet *eth_key;
1495 
1496 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1497 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1498 				eth_key->eth_src, ETH_ALEN, is_mask);
1499 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1500 				eth_key->eth_dst, ETH_ALEN, is_mask);
1501 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1502 
1503 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1504 			/* VLAN attribute is always parsed before getting here since it
1505 			 * may occur multiple times.
1506 			 */
1507 			OVS_NLERR(log, "VLAN attribute unexpected.");
1508 			return -EINVAL;
1509 		}
1510 
1511 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1512 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1513 							  log);
1514 			if (err)
1515 				return err;
1516 		} else if (!is_mask) {
1517 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1518 		}
1519 	} else if (!match->key->eth.type) {
1520 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1521 		return -EINVAL;
1522 	}
1523 
1524 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1525 		const struct ovs_key_ipv4 *ipv4_key;
1526 
1527 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1528 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1529 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1530 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1531 			return -EINVAL;
1532 		}
1533 		SW_FLOW_KEY_PUT(match, ip.proto,
1534 				ipv4_key->ipv4_proto, is_mask);
1535 		SW_FLOW_KEY_PUT(match, ip.tos,
1536 				ipv4_key->ipv4_tos, is_mask);
1537 		SW_FLOW_KEY_PUT(match, ip.ttl,
1538 				ipv4_key->ipv4_ttl, is_mask);
1539 		SW_FLOW_KEY_PUT(match, ip.frag,
1540 				ipv4_key->ipv4_frag, is_mask);
1541 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1542 				ipv4_key->ipv4_src, is_mask);
1543 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1544 				ipv4_key->ipv4_dst, is_mask);
1545 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1546 	}
1547 
1548 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1549 		const struct ovs_key_ipv6 *ipv6_key;
1550 
1551 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1552 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1553 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1554 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1555 			return -EINVAL;
1556 		}
1557 
1558 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1559 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1560 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1561 			return -EINVAL;
1562 		}
1563 
1564 		SW_FLOW_KEY_PUT(match, ipv6.label,
1565 				ipv6_key->ipv6_label, is_mask);
1566 		SW_FLOW_KEY_PUT(match, ip.proto,
1567 				ipv6_key->ipv6_proto, is_mask);
1568 		SW_FLOW_KEY_PUT(match, ip.tos,
1569 				ipv6_key->ipv6_tclass, is_mask);
1570 		SW_FLOW_KEY_PUT(match, ip.ttl,
1571 				ipv6_key->ipv6_hlimit, is_mask);
1572 		SW_FLOW_KEY_PUT(match, ip.frag,
1573 				ipv6_key->ipv6_frag, is_mask);
1574 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1575 				ipv6_key->ipv6_src,
1576 				sizeof(match->key->ipv6.addr.src),
1577 				is_mask);
1578 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1579 				ipv6_key->ipv6_dst,
1580 				sizeof(match->key->ipv6.addr.dst),
1581 				is_mask);
1582 
1583 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1584 	}
1585 
1586 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1587 		const struct ovs_key_arp *arp_key;
1588 
1589 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1590 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1591 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1592 				  arp_key->arp_op);
1593 			return -EINVAL;
1594 		}
1595 
1596 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1597 				arp_key->arp_sip, is_mask);
1598 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1599 			arp_key->arp_tip, is_mask);
1600 		SW_FLOW_KEY_PUT(match, ip.proto,
1601 				ntohs(arp_key->arp_op), is_mask);
1602 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1603 				arp_key->arp_sha, ETH_ALEN, is_mask);
1604 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1605 				arp_key->arp_tha, ETH_ALEN, is_mask);
1606 
1607 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1608 	}
1609 
1610 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1611 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1612 					    is_mask, false, log) < 0)
1613 			return -EINVAL;
1614 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1615 	}
1616 
1617 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1618 		const struct ovs_key_mpls *mpls_key;
1619 
1620 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1621 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1622 				mpls_key->mpls_lse, is_mask);
1623 
1624 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1625 	 }
1626 
1627 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1628 		const struct ovs_key_tcp *tcp_key;
1629 
1630 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1631 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1632 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1633 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1634 	}
1635 
1636 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1637 		SW_FLOW_KEY_PUT(match, tp.flags,
1638 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1639 				is_mask);
1640 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1641 	}
1642 
1643 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1644 		const struct ovs_key_udp *udp_key;
1645 
1646 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1647 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1648 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1649 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1650 	}
1651 
1652 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1653 		const struct ovs_key_sctp *sctp_key;
1654 
1655 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1656 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1657 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1658 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1659 	}
1660 
1661 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1662 		const struct ovs_key_icmp *icmp_key;
1663 
1664 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1665 		SW_FLOW_KEY_PUT(match, tp.src,
1666 				htons(icmp_key->icmp_type), is_mask);
1667 		SW_FLOW_KEY_PUT(match, tp.dst,
1668 				htons(icmp_key->icmp_code), is_mask);
1669 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1670 	}
1671 
1672 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1673 		const struct ovs_key_icmpv6 *icmpv6_key;
1674 
1675 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1676 		SW_FLOW_KEY_PUT(match, tp.src,
1677 				htons(icmpv6_key->icmpv6_type), is_mask);
1678 		SW_FLOW_KEY_PUT(match, tp.dst,
1679 				htons(icmpv6_key->icmpv6_code), is_mask);
1680 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1681 	}
1682 
1683 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1684 		const struct ovs_key_nd *nd_key;
1685 
1686 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1687 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1688 			nd_key->nd_target,
1689 			sizeof(match->key->ipv6.nd.target),
1690 			is_mask);
1691 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1692 			nd_key->nd_sll, ETH_ALEN, is_mask);
1693 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1694 				nd_key->nd_tll, ETH_ALEN, is_mask);
1695 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1696 	}
1697 
1698 	if (attrs != 0) {
1699 		OVS_NLERR(log, "Unknown key attributes %llx",
1700 			  (unsigned long long)attrs);
1701 		return -EINVAL;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static void nlattr_set(struct nlattr *attr, u8 val,
1708 		       const struct ovs_len_tbl *tbl)
1709 {
1710 	struct nlattr *nla;
1711 	int rem;
1712 
1713 	/* The nlattr stream should already have been validated */
1714 	nla_for_each_nested(nla, attr, rem) {
1715 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1716 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1717 		else
1718 			memset(nla_data(nla), val, nla_len(nla));
1719 
1720 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1721 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1722 	}
1723 }
1724 
1725 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1726 {
1727 	nlattr_set(attr, val, ovs_key_lens);
1728 }
1729 
1730 /**
1731  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1732  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1733  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1734  * does not include any don't care bit.
1735  * @net: Used to determine per-namespace field support.
1736  * @match: receives the extracted flow match information.
1737  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1738  * sequence. The fields should of the packet that triggered the creation
1739  * of this flow.
1740  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1741  * attribute specifies the mask field of the wildcarded flow.
1742  * @log: Boolean to allow kernel error logging.  Normally true, but when
1743  * probing for feature compatibility this should be passed in as false to
1744  * suppress unnecessary error logging.
1745  */
1746 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1747 		      const struct nlattr *nla_key,
1748 		      const struct nlattr *nla_mask,
1749 		      bool log)
1750 {
1751 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1752 	struct nlattr *newmask = NULL;
1753 	u64 key_attrs = 0;
1754 	u64 mask_attrs = 0;
1755 	int err;
1756 
1757 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1758 	if (err)
1759 		return err;
1760 
1761 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1762 	if (err)
1763 		return err;
1764 
1765 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1766 	if (err)
1767 		return err;
1768 
1769 	if (match->mask) {
1770 		if (!nla_mask) {
1771 			/* Create an exact match mask. We need to set to 0xff
1772 			 * all the 'match->mask' fields that have been touched
1773 			 * in 'match->key'. We cannot simply memset
1774 			 * 'match->mask', because padding bytes and fields not
1775 			 * specified in 'match->key' should be left to 0.
1776 			 * Instead, we use a stream of netlink attributes,
1777 			 * copied from 'key' and set to 0xff.
1778 			 * ovs_key_from_nlattrs() will take care of filling
1779 			 * 'match->mask' appropriately.
1780 			 */
1781 			newmask = kmemdup(nla_key,
1782 					  nla_total_size(nla_len(nla_key)),
1783 					  GFP_KERNEL);
1784 			if (!newmask)
1785 				return -ENOMEM;
1786 
1787 			mask_set_nlattr(newmask, 0xff);
1788 
1789 			/* The userspace does not send tunnel attributes that
1790 			 * are 0, but we should not wildcard them nonetheless.
1791 			 */
1792 			if (match->key->tun_proto)
1793 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1794 							 0xff, true);
1795 
1796 			nla_mask = newmask;
1797 		}
1798 
1799 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1800 		if (err)
1801 			goto free_newmask;
1802 
1803 		/* Always match on tci. */
1804 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1805 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1806 
1807 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1808 		if (err)
1809 			goto free_newmask;
1810 
1811 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1812 					   log);
1813 		if (err)
1814 			goto free_newmask;
1815 	}
1816 
1817 	if (!match_validate(match, key_attrs, mask_attrs, log))
1818 		err = -EINVAL;
1819 
1820 free_newmask:
1821 	kfree(newmask);
1822 	return err;
1823 }
1824 
1825 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1826 {
1827 	size_t len;
1828 
1829 	if (!attr)
1830 		return 0;
1831 
1832 	len = nla_len(attr);
1833 	if (len < 1 || len > MAX_UFID_LENGTH) {
1834 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1835 			  nla_len(attr), MAX_UFID_LENGTH);
1836 		return 0;
1837 	}
1838 
1839 	return len;
1840 }
1841 
1842 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1843  * or false otherwise.
1844  */
1845 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1846 		      bool log)
1847 {
1848 	sfid->ufid_len = get_ufid_len(attr, log);
1849 	if (sfid->ufid_len)
1850 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1851 
1852 	return sfid->ufid_len;
1853 }
1854 
1855 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1856 			   const struct sw_flow_key *key, bool log)
1857 {
1858 	struct sw_flow_key *new_key;
1859 
1860 	if (ovs_nla_get_ufid(sfid, ufid, log))
1861 		return 0;
1862 
1863 	/* If UFID was not provided, use unmasked key. */
1864 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1865 	if (!new_key)
1866 		return -ENOMEM;
1867 	memcpy(new_key, key, sizeof(*key));
1868 	sfid->unmasked_key = new_key;
1869 
1870 	return 0;
1871 }
1872 
1873 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1874 {
1875 	return attr ? nla_get_u32(attr) : 0;
1876 }
1877 
1878 /**
1879  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1880  * @net: Network namespace.
1881  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1882  * metadata.
1883  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1884  * attributes.
1885  * @attrs: Bit mask for the netlink attributes included in @a.
1886  * @log: Boolean to allow kernel error logging.  Normally true, but when
1887  * probing for feature compatibility this should be passed in as false to
1888  * suppress unnecessary error logging.
1889  *
1890  * This parses a series of Netlink attributes that form a flow key, which must
1891  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1892  * get the metadata, that is, the parts of the flow key that cannot be
1893  * extracted from the packet itself.
1894  *
1895  * This must be called before the packet key fields are filled in 'key'.
1896  */
1897 
1898 int ovs_nla_get_flow_metadata(struct net *net,
1899 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1900 			      u64 attrs, struct sw_flow_key *key, bool log)
1901 {
1902 	struct sw_flow_match match;
1903 
1904 	memset(&match, 0, sizeof(match));
1905 	match.key = key;
1906 
1907 	key->ct_state = 0;
1908 	key->ct_zone = 0;
1909 	key->ct_orig_proto = 0;
1910 	memset(&key->ct, 0, sizeof(key->ct));
1911 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1912 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1913 
1914 	key->phy.in_port = DP_MAX_PORTS;
1915 
1916 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1917 }
1918 
1919 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1920 			    bool is_mask)
1921 {
1922 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1923 
1924 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1925 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1926 		return -EMSGSIZE;
1927 	return 0;
1928 }
1929 
1930 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1931 			     struct sk_buff *skb)
1932 {
1933 	struct nlattr *start;
1934 
1935 	start = nla_nest_start(skb, OVS_KEY_ATTR_NSH);
1936 	if (!start)
1937 		return -EMSGSIZE;
1938 
1939 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1940 		goto nla_put_failure;
1941 
1942 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1943 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1944 			    sizeof(nsh->context), nsh->context))
1945 			goto nla_put_failure;
1946 	}
1947 
1948 	/* Don't support MD type 2 yet */
1949 
1950 	nla_nest_end(skb, start);
1951 
1952 	return 0;
1953 
1954 nla_put_failure:
1955 	return -EMSGSIZE;
1956 }
1957 
1958 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1959 			     const struct sw_flow_key *output, bool is_mask,
1960 			     struct sk_buff *skb)
1961 {
1962 	struct ovs_key_ethernet *eth_key;
1963 	struct nlattr *nla;
1964 	struct nlattr *encap = NULL;
1965 	struct nlattr *in_encap = NULL;
1966 
1967 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1968 		goto nla_put_failure;
1969 
1970 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1971 		goto nla_put_failure;
1972 
1973 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1974 		goto nla_put_failure;
1975 
1976 	if ((swkey->tun_proto || is_mask)) {
1977 		const void *opts = NULL;
1978 
1979 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1980 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1981 
1982 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1983 				     swkey->tun_opts_len, swkey->tun_proto))
1984 			goto nla_put_failure;
1985 	}
1986 
1987 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1988 		if (is_mask && (output->phy.in_port == 0xffff))
1989 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1990 				goto nla_put_failure;
1991 	} else {
1992 		u16 upper_u16;
1993 		upper_u16 = !is_mask ? 0 : 0xffff;
1994 
1995 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1996 				(upper_u16 << 16) | output->phy.in_port))
1997 			goto nla_put_failure;
1998 	}
1999 
2000 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2001 		goto nla_put_failure;
2002 
2003 	if (ovs_ct_put_key(swkey, output, skb))
2004 		goto nla_put_failure;
2005 
2006 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2007 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2008 		if (!nla)
2009 			goto nla_put_failure;
2010 
2011 		eth_key = nla_data(nla);
2012 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2013 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2014 
2015 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2016 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2017 				goto nla_put_failure;
2018 			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
2019 			if (!swkey->eth.vlan.tci)
2020 				goto unencap;
2021 
2022 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2023 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2024 					goto nla_put_failure;
2025 				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
2026 				if (!swkey->eth.cvlan.tci)
2027 					goto unencap;
2028 			}
2029 		}
2030 
2031 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2032 			/*
2033 			* Ethertype 802.2 is represented in the netlink with omitted
2034 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2035 			* 0xffff in the mask attribute.  Ethertype can also
2036 			* be wildcarded.
2037 			*/
2038 			if (is_mask && output->eth.type)
2039 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2040 							output->eth.type))
2041 					goto nla_put_failure;
2042 			goto unencap;
2043 		}
2044 	}
2045 
2046 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2047 		goto nla_put_failure;
2048 
2049 	if (eth_type_vlan(swkey->eth.type)) {
2050 		/* There are 3 VLAN tags, we don't know anything about the rest
2051 		 * of the packet, so truncate here.
2052 		 */
2053 		WARN_ON_ONCE(!(encap && in_encap));
2054 		goto unencap;
2055 	}
2056 
2057 	if (swkey->eth.type == htons(ETH_P_IP)) {
2058 		struct ovs_key_ipv4 *ipv4_key;
2059 
2060 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2061 		if (!nla)
2062 			goto nla_put_failure;
2063 		ipv4_key = nla_data(nla);
2064 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2065 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2066 		ipv4_key->ipv4_proto = output->ip.proto;
2067 		ipv4_key->ipv4_tos = output->ip.tos;
2068 		ipv4_key->ipv4_ttl = output->ip.ttl;
2069 		ipv4_key->ipv4_frag = output->ip.frag;
2070 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2071 		struct ovs_key_ipv6 *ipv6_key;
2072 
2073 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2074 		if (!nla)
2075 			goto nla_put_failure;
2076 		ipv6_key = nla_data(nla);
2077 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2078 				sizeof(ipv6_key->ipv6_src));
2079 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2080 				sizeof(ipv6_key->ipv6_dst));
2081 		ipv6_key->ipv6_label = output->ipv6.label;
2082 		ipv6_key->ipv6_proto = output->ip.proto;
2083 		ipv6_key->ipv6_tclass = output->ip.tos;
2084 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2085 		ipv6_key->ipv6_frag = output->ip.frag;
2086 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2087 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2088 			goto nla_put_failure;
2089 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2090 		   swkey->eth.type == htons(ETH_P_RARP)) {
2091 		struct ovs_key_arp *arp_key;
2092 
2093 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2094 		if (!nla)
2095 			goto nla_put_failure;
2096 		arp_key = nla_data(nla);
2097 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2098 		arp_key->arp_sip = output->ipv4.addr.src;
2099 		arp_key->arp_tip = output->ipv4.addr.dst;
2100 		arp_key->arp_op = htons(output->ip.proto);
2101 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2102 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2103 	} else if (eth_p_mpls(swkey->eth.type)) {
2104 		struct ovs_key_mpls *mpls_key;
2105 
2106 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2107 		if (!nla)
2108 			goto nla_put_failure;
2109 		mpls_key = nla_data(nla);
2110 		mpls_key->mpls_lse = output->mpls.top_lse;
2111 	}
2112 
2113 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2114 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2115 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2116 
2117 		if (swkey->ip.proto == IPPROTO_TCP) {
2118 			struct ovs_key_tcp *tcp_key;
2119 
2120 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2121 			if (!nla)
2122 				goto nla_put_failure;
2123 			tcp_key = nla_data(nla);
2124 			tcp_key->tcp_src = output->tp.src;
2125 			tcp_key->tcp_dst = output->tp.dst;
2126 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2127 					 output->tp.flags))
2128 				goto nla_put_failure;
2129 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2130 			struct ovs_key_udp *udp_key;
2131 
2132 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2133 			if (!nla)
2134 				goto nla_put_failure;
2135 			udp_key = nla_data(nla);
2136 			udp_key->udp_src = output->tp.src;
2137 			udp_key->udp_dst = output->tp.dst;
2138 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2139 			struct ovs_key_sctp *sctp_key;
2140 
2141 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2142 			if (!nla)
2143 				goto nla_put_failure;
2144 			sctp_key = nla_data(nla);
2145 			sctp_key->sctp_src = output->tp.src;
2146 			sctp_key->sctp_dst = output->tp.dst;
2147 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2148 			   swkey->ip.proto == IPPROTO_ICMP) {
2149 			struct ovs_key_icmp *icmp_key;
2150 
2151 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2152 			if (!nla)
2153 				goto nla_put_failure;
2154 			icmp_key = nla_data(nla);
2155 			icmp_key->icmp_type = ntohs(output->tp.src);
2156 			icmp_key->icmp_code = ntohs(output->tp.dst);
2157 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2158 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2159 			struct ovs_key_icmpv6 *icmpv6_key;
2160 
2161 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2162 						sizeof(*icmpv6_key));
2163 			if (!nla)
2164 				goto nla_put_failure;
2165 			icmpv6_key = nla_data(nla);
2166 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2167 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2168 
2169 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2170 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2171 				struct ovs_key_nd *nd_key;
2172 
2173 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2174 				if (!nla)
2175 					goto nla_put_failure;
2176 				nd_key = nla_data(nla);
2177 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2178 							sizeof(nd_key->nd_target));
2179 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2180 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2181 			}
2182 		}
2183 	}
2184 
2185 unencap:
2186 	if (in_encap)
2187 		nla_nest_end(skb, in_encap);
2188 	if (encap)
2189 		nla_nest_end(skb, encap);
2190 
2191 	return 0;
2192 
2193 nla_put_failure:
2194 	return -EMSGSIZE;
2195 }
2196 
2197 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2198 		    const struct sw_flow_key *output, int attr, bool is_mask,
2199 		    struct sk_buff *skb)
2200 {
2201 	int err;
2202 	struct nlattr *nla;
2203 
2204 	nla = nla_nest_start(skb, attr);
2205 	if (!nla)
2206 		return -EMSGSIZE;
2207 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2208 	if (err)
2209 		return err;
2210 	nla_nest_end(skb, nla);
2211 
2212 	return 0;
2213 }
2214 
2215 /* Called with ovs_mutex or RCU read lock. */
2216 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2217 {
2218 	if (ovs_identifier_is_ufid(&flow->id))
2219 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2220 			       flow->id.ufid);
2221 
2222 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2223 			       OVS_FLOW_ATTR_KEY, false, skb);
2224 }
2225 
2226 /* Called with ovs_mutex or RCU read lock. */
2227 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2228 {
2229 	return ovs_nla_put_key(&flow->key, &flow->key,
2230 				OVS_FLOW_ATTR_KEY, false, skb);
2231 }
2232 
2233 /* Called with ovs_mutex or RCU read lock. */
2234 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2235 {
2236 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2237 				OVS_FLOW_ATTR_MASK, true, skb);
2238 }
2239 
2240 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2241 
2242 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2243 {
2244 	struct sw_flow_actions *sfa;
2245 
2246 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2247 
2248 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2249 	if (!sfa)
2250 		return ERR_PTR(-ENOMEM);
2251 
2252 	sfa->actions_len = 0;
2253 	return sfa;
2254 }
2255 
2256 static void ovs_nla_free_set_action(const struct nlattr *a)
2257 {
2258 	const struct nlattr *ovs_key = nla_data(a);
2259 	struct ovs_tunnel_info *ovs_tun;
2260 
2261 	switch (nla_type(ovs_key)) {
2262 	case OVS_KEY_ATTR_TUNNEL_INFO:
2263 		ovs_tun = nla_data(ovs_key);
2264 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2265 		break;
2266 	}
2267 }
2268 
2269 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2270 {
2271 	const struct nlattr *a;
2272 	int rem;
2273 
2274 	if (!sf_acts)
2275 		return;
2276 
2277 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2278 		switch (nla_type(a)) {
2279 		case OVS_ACTION_ATTR_SET:
2280 			ovs_nla_free_set_action(a);
2281 			break;
2282 		case OVS_ACTION_ATTR_CT:
2283 			ovs_ct_free_action(a);
2284 			break;
2285 		}
2286 	}
2287 
2288 	kfree(sf_acts);
2289 }
2290 
2291 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2292 {
2293 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2294 }
2295 
2296 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2297  * The caller must hold rcu_read_lock for this to be sensible. */
2298 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2299 {
2300 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2301 }
2302 
2303 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2304 				       int attr_len, bool log)
2305 {
2306 
2307 	struct sw_flow_actions *acts;
2308 	int new_acts_size;
2309 	int req_size = NLA_ALIGN(attr_len);
2310 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2311 					(*sfa)->actions_len;
2312 
2313 	if (req_size <= (ksize(*sfa) - next_offset))
2314 		goto out;
2315 
2316 	new_acts_size = ksize(*sfa) * 2;
2317 
2318 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2319 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2320 			OVS_NLERR(log, "Flow action size exceeds max %u",
2321 				  MAX_ACTIONS_BUFSIZE);
2322 			return ERR_PTR(-EMSGSIZE);
2323 		}
2324 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2325 	}
2326 
2327 	acts = nla_alloc_flow_actions(new_acts_size);
2328 	if (IS_ERR(acts))
2329 		return (void *)acts;
2330 
2331 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2332 	acts->actions_len = (*sfa)->actions_len;
2333 	acts->orig_len = (*sfa)->orig_len;
2334 	kfree(*sfa);
2335 	*sfa = acts;
2336 
2337 out:
2338 	(*sfa)->actions_len += req_size;
2339 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2340 }
2341 
2342 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2343 				   int attrtype, void *data, int len, bool log)
2344 {
2345 	struct nlattr *a;
2346 
2347 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2348 	if (IS_ERR(a))
2349 		return a;
2350 
2351 	a->nla_type = attrtype;
2352 	a->nla_len = nla_attr_size(len);
2353 
2354 	if (data)
2355 		memcpy(nla_data(a), data, len);
2356 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2357 
2358 	return a;
2359 }
2360 
2361 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2362 		       int len, bool log)
2363 {
2364 	struct nlattr *a;
2365 
2366 	a = __add_action(sfa, attrtype, data, len, log);
2367 
2368 	return PTR_ERR_OR_ZERO(a);
2369 }
2370 
2371 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2372 					  int attrtype, bool log)
2373 {
2374 	int used = (*sfa)->actions_len;
2375 	int err;
2376 
2377 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2378 	if (err)
2379 		return err;
2380 
2381 	return used;
2382 }
2383 
2384 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2385 					 int st_offset)
2386 {
2387 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2388 							       st_offset);
2389 
2390 	a->nla_len = sfa->actions_len - st_offset;
2391 }
2392 
2393 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2394 				  const struct sw_flow_key *key,
2395 				  struct sw_flow_actions **sfa,
2396 				  __be16 eth_type, __be16 vlan_tci, bool log);
2397 
2398 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2399 				    const struct sw_flow_key *key,
2400 				    struct sw_flow_actions **sfa,
2401 				    __be16 eth_type, __be16 vlan_tci,
2402 				    bool log, bool last)
2403 {
2404 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2405 	const struct nlattr *probability, *actions;
2406 	const struct nlattr *a;
2407 	int rem, start, err;
2408 	struct sample_arg arg;
2409 
2410 	memset(attrs, 0, sizeof(attrs));
2411 	nla_for_each_nested(a, attr, rem) {
2412 		int type = nla_type(a);
2413 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2414 			return -EINVAL;
2415 		attrs[type] = a;
2416 	}
2417 	if (rem)
2418 		return -EINVAL;
2419 
2420 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2421 	if (!probability || nla_len(probability) != sizeof(u32))
2422 		return -EINVAL;
2423 
2424 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2425 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2426 		return -EINVAL;
2427 
2428 	/* validation done, copy sample action. */
2429 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2430 	if (start < 0)
2431 		return start;
2432 
2433 	/* When both skb and flow may be changed, put the sample
2434 	 * into a deferred fifo. On the other hand, if only skb
2435 	 * may be modified, the actions can be executed in place.
2436 	 *
2437 	 * Do this analysis at the flow installation time.
2438 	 * Set 'clone_action->exec' to true if the actions can be
2439 	 * executed without being deferred.
2440 	 *
2441 	 * If the sample is the last action, it can always be excuted
2442 	 * rather than deferred.
2443 	 */
2444 	arg.exec = last || !actions_may_change_flow(actions);
2445 	arg.probability = nla_get_u32(probability);
2446 
2447 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2448 				 log);
2449 	if (err)
2450 		return err;
2451 
2452 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2453 				     eth_type, vlan_tci, log);
2454 
2455 	if (err)
2456 		return err;
2457 
2458 	add_nested_action_end(*sfa, start);
2459 
2460 	return 0;
2461 }
2462 
2463 void ovs_match_init(struct sw_flow_match *match,
2464 		    struct sw_flow_key *key,
2465 		    bool reset_key,
2466 		    struct sw_flow_mask *mask)
2467 {
2468 	memset(match, 0, sizeof(*match));
2469 	match->key = key;
2470 	match->mask = mask;
2471 
2472 	if (reset_key)
2473 		memset(key, 0, sizeof(*key));
2474 
2475 	if (mask) {
2476 		memset(&mask->key, 0, sizeof(mask->key));
2477 		mask->range.start = mask->range.end = 0;
2478 	}
2479 }
2480 
2481 static int validate_geneve_opts(struct sw_flow_key *key)
2482 {
2483 	struct geneve_opt *option;
2484 	int opts_len = key->tun_opts_len;
2485 	bool crit_opt = false;
2486 
2487 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2488 	while (opts_len > 0) {
2489 		int len;
2490 
2491 		if (opts_len < sizeof(*option))
2492 			return -EINVAL;
2493 
2494 		len = sizeof(*option) + option->length * 4;
2495 		if (len > opts_len)
2496 			return -EINVAL;
2497 
2498 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2499 
2500 		option = (struct geneve_opt *)((u8 *)option + len);
2501 		opts_len -= len;
2502 	}
2503 
2504 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2505 
2506 	return 0;
2507 }
2508 
2509 static int validate_and_copy_set_tun(const struct nlattr *attr,
2510 				     struct sw_flow_actions **sfa, bool log)
2511 {
2512 	struct sw_flow_match match;
2513 	struct sw_flow_key key;
2514 	struct metadata_dst *tun_dst;
2515 	struct ip_tunnel_info *tun_info;
2516 	struct ovs_tunnel_info *ovs_tun;
2517 	struct nlattr *a;
2518 	int err = 0, start, opts_type;
2519 
2520 	ovs_match_init(&match, &key, true, NULL);
2521 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2522 	if (opts_type < 0)
2523 		return opts_type;
2524 
2525 	if (key.tun_opts_len) {
2526 		switch (opts_type) {
2527 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2528 			err = validate_geneve_opts(&key);
2529 			if (err < 0)
2530 				return err;
2531 			break;
2532 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2533 			break;
2534 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2535 			break;
2536 		}
2537 	}
2538 
2539 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2540 	if (start < 0)
2541 		return start;
2542 
2543 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2544 				     GFP_KERNEL);
2545 
2546 	if (!tun_dst)
2547 		return -ENOMEM;
2548 
2549 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2550 	if (err) {
2551 		dst_release((struct dst_entry *)tun_dst);
2552 		return err;
2553 	}
2554 
2555 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2556 			 sizeof(*ovs_tun), log);
2557 	if (IS_ERR(a)) {
2558 		dst_release((struct dst_entry *)tun_dst);
2559 		return PTR_ERR(a);
2560 	}
2561 
2562 	ovs_tun = nla_data(a);
2563 	ovs_tun->tun_dst = tun_dst;
2564 
2565 	tun_info = &tun_dst->u.tun_info;
2566 	tun_info->mode = IP_TUNNEL_INFO_TX;
2567 	if (key.tun_proto == AF_INET6)
2568 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2569 	tun_info->key = key.tun_key;
2570 
2571 	/* We need to store the options in the action itself since
2572 	 * everything else will go away after flow setup. We can append
2573 	 * it to tun_info and then point there.
2574 	 */
2575 	ip_tunnel_info_opts_set(tun_info,
2576 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2577 				key.tun_opts_len);
2578 	add_nested_action_end(*sfa, start);
2579 
2580 	return err;
2581 }
2582 
2583 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2584 			 bool is_push_nsh, bool log)
2585 {
2586 	struct sw_flow_match match;
2587 	struct sw_flow_key key;
2588 	int ret = 0;
2589 
2590 	ovs_match_init(&match, &key, true, NULL);
2591 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2592 				      is_push_nsh, log);
2593 	return !ret;
2594 }
2595 
2596 /* Return false if there are any non-masked bits set.
2597  * Mask follows data immediately, before any netlink padding.
2598  */
2599 static bool validate_masked(u8 *data, int len)
2600 {
2601 	u8 *mask = data + len;
2602 
2603 	while (len--)
2604 		if (*data++ & ~*mask++)
2605 			return false;
2606 
2607 	return true;
2608 }
2609 
2610 static int validate_set(const struct nlattr *a,
2611 			const struct sw_flow_key *flow_key,
2612 			struct sw_flow_actions **sfa, bool *skip_copy,
2613 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2614 {
2615 	const struct nlattr *ovs_key = nla_data(a);
2616 	int key_type = nla_type(ovs_key);
2617 	size_t key_len;
2618 
2619 	/* There can be only one key in a action */
2620 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2621 		return -EINVAL;
2622 
2623 	key_len = nla_len(ovs_key);
2624 	if (masked)
2625 		key_len /= 2;
2626 
2627 	if (key_type > OVS_KEY_ATTR_MAX ||
2628 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2629 		return -EINVAL;
2630 
2631 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2632 		return -EINVAL;
2633 
2634 	switch (key_type) {
2635 	const struct ovs_key_ipv4 *ipv4_key;
2636 	const struct ovs_key_ipv6 *ipv6_key;
2637 	int err;
2638 
2639 	case OVS_KEY_ATTR_PRIORITY:
2640 	case OVS_KEY_ATTR_SKB_MARK:
2641 	case OVS_KEY_ATTR_CT_MARK:
2642 	case OVS_KEY_ATTR_CT_LABELS:
2643 		break;
2644 
2645 	case OVS_KEY_ATTR_ETHERNET:
2646 		if (mac_proto != MAC_PROTO_ETHERNET)
2647 			return -EINVAL;
2648 		break;
2649 
2650 	case OVS_KEY_ATTR_TUNNEL:
2651 		if (masked)
2652 			return -EINVAL; /* Masked tunnel set not supported. */
2653 
2654 		*skip_copy = true;
2655 		err = validate_and_copy_set_tun(a, sfa, log);
2656 		if (err)
2657 			return err;
2658 		break;
2659 
2660 	case OVS_KEY_ATTR_IPV4:
2661 		if (eth_type != htons(ETH_P_IP))
2662 			return -EINVAL;
2663 
2664 		ipv4_key = nla_data(ovs_key);
2665 
2666 		if (masked) {
2667 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2668 
2669 			/* Non-writeable fields. */
2670 			if (mask->ipv4_proto || mask->ipv4_frag)
2671 				return -EINVAL;
2672 		} else {
2673 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2674 				return -EINVAL;
2675 
2676 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2677 				return -EINVAL;
2678 		}
2679 		break;
2680 
2681 	case OVS_KEY_ATTR_IPV6:
2682 		if (eth_type != htons(ETH_P_IPV6))
2683 			return -EINVAL;
2684 
2685 		ipv6_key = nla_data(ovs_key);
2686 
2687 		if (masked) {
2688 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2689 
2690 			/* Non-writeable fields. */
2691 			if (mask->ipv6_proto || mask->ipv6_frag)
2692 				return -EINVAL;
2693 
2694 			/* Invalid bits in the flow label mask? */
2695 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2696 				return -EINVAL;
2697 		} else {
2698 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2699 				return -EINVAL;
2700 
2701 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2702 				return -EINVAL;
2703 		}
2704 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2705 			return -EINVAL;
2706 
2707 		break;
2708 
2709 	case OVS_KEY_ATTR_TCP:
2710 		if ((eth_type != htons(ETH_P_IP) &&
2711 		     eth_type != htons(ETH_P_IPV6)) ||
2712 		    flow_key->ip.proto != IPPROTO_TCP)
2713 			return -EINVAL;
2714 
2715 		break;
2716 
2717 	case OVS_KEY_ATTR_UDP:
2718 		if ((eth_type != htons(ETH_P_IP) &&
2719 		     eth_type != htons(ETH_P_IPV6)) ||
2720 		    flow_key->ip.proto != IPPROTO_UDP)
2721 			return -EINVAL;
2722 
2723 		break;
2724 
2725 	case OVS_KEY_ATTR_MPLS:
2726 		if (!eth_p_mpls(eth_type))
2727 			return -EINVAL;
2728 		break;
2729 
2730 	case OVS_KEY_ATTR_SCTP:
2731 		if ((eth_type != htons(ETH_P_IP) &&
2732 		     eth_type != htons(ETH_P_IPV6)) ||
2733 		    flow_key->ip.proto != IPPROTO_SCTP)
2734 			return -EINVAL;
2735 
2736 		break;
2737 
2738 	case OVS_KEY_ATTR_NSH:
2739 		if (eth_type != htons(ETH_P_NSH))
2740 			return -EINVAL;
2741 		if (!validate_nsh(nla_data(a), masked, false, log))
2742 			return -EINVAL;
2743 		break;
2744 
2745 	default:
2746 		return -EINVAL;
2747 	}
2748 
2749 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2750 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2751 		int start, len = key_len * 2;
2752 		struct nlattr *at;
2753 
2754 		*skip_copy = true;
2755 
2756 		start = add_nested_action_start(sfa,
2757 						OVS_ACTION_ATTR_SET_TO_MASKED,
2758 						log);
2759 		if (start < 0)
2760 			return start;
2761 
2762 		at = __add_action(sfa, key_type, NULL, len, log);
2763 		if (IS_ERR(at))
2764 			return PTR_ERR(at);
2765 
2766 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2767 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2768 		/* Clear non-writeable bits from otherwise writeable fields. */
2769 		if (key_type == OVS_KEY_ATTR_IPV6) {
2770 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2771 
2772 			mask->ipv6_label &= htonl(0x000FFFFF);
2773 		}
2774 		add_nested_action_end(*sfa, start);
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static int validate_userspace(const struct nlattr *attr)
2781 {
2782 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2783 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2784 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2785 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2786 	};
2787 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2788 	int error;
2789 
2790 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2791 				 userspace_policy, NULL);
2792 	if (error)
2793 		return error;
2794 
2795 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2796 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2797 		return -EINVAL;
2798 
2799 	return 0;
2800 }
2801 
2802 static int copy_action(const struct nlattr *from,
2803 		       struct sw_flow_actions **sfa, bool log)
2804 {
2805 	int totlen = NLA_ALIGN(from->nla_len);
2806 	struct nlattr *to;
2807 
2808 	to = reserve_sfa_size(sfa, from->nla_len, log);
2809 	if (IS_ERR(to))
2810 		return PTR_ERR(to);
2811 
2812 	memcpy(to, from, totlen);
2813 	return 0;
2814 }
2815 
2816 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2817 				  const struct sw_flow_key *key,
2818 				  struct sw_flow_actions **sfa,
2819 				  __be16 eth_type, __be16 vlan_tci, bool log)
2820 {
2821 	u8 mac_proto = ovs_key_mac_proto(key);
2822 	const struct nlattr *a;
2823 	int rem, err;
2824 
2825 	nla_for_each_nested(a, attr, rem) {
2826 		/* Expected argument lengths, (u32)-1 for variable length. */
2827 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2828 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2829 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2830 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2831 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2832 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2833 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2834 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2835 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2836 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2837 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2838 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2839 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2840 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
2841 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2842 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2843 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2844 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2845 			[OVS_ACTION_ATTR_POP_NSH] = 0,
2846 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
2847 		};
2848 		const struct ovs_action_push_vlan *vlan;
2849 		int type = nla_type(a);
2850 		bool skip_copy;
2851 
2852 		if (type > OVS_ACTION_ATTR_MAX ||
2853 		    (action_lens[type] != nla_len(a) &&
2854 		     action_lens[type] != (u32)-1))
2855 			return -EINVAL;
2856 
2857 		skip_copy = false;
2858 		switch (type) {
2859 		case OVS_ACTION_ATTR_UNSPEC:
2860 			return -EINVAL;
2861 
2862 		case OVS_ACTION_ATTR_USERSPACE:
2863 			err = validate_userspace(a);
2864 			if (err)
2865 				return err;
2866 			break;
2867 
2868 		case OVS_ACTION_ATTR_OUTPUT:
2869 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2870 				return -EINVAL;
2871 			break;
2872 
2873 		case OVS_ACTION_ATTR_TRUNC: {
2874 			const struct ovs_action_trunc *trunc = nla_data(a);
2875 
2876 			if (trunc->max_len < ETH_HLEN)
2877 				return -EINVAL;
2878 			break;
2879 		}
2880 
2881 		case OVS_ACTION_ATTR_HASH: {
2882 			const struct ovs_action_hash *act_hash = nla_data(a);
2883 
2884 			switch (act_hash->hash_alg) {
2885 			case OVS_HASH_ALG_L4:
2886 				break;
2887 			default:
2888 				return  -EINVAL;
2889 			}
2890 
2891 			break;
2892 		}
2893 
2894 		case OVS_ACTION_ATTR_POP_VLAN:
2895 			if (mac_proto != MAC_PROTO_ETHERNET)
2896 				return -EINVAL;
2897 			vlan_tci = htons(0);
2898 			break;
2899 
2900 		case OVS_ACTION_ATTR_PUSH_VLAN:
2901 			if (mac_proto != MAC_PROTO_ETHERNET)
2902 				return -EINVAL;
2903 			vlan = nla_data(a);
2904 			if (!eth_type_vlan(vlan->vlan_tpid))
2905 				return -EINVAL;
2906 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2907 				return -EINVAL;
2908 			vlan_tci = vlan->vlan_tci;
2909 			break;
2910 
2911 		case OVS_ACTION_ATTR_RECIRC:
2912 			break;
2913 
2914 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2915 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2916 
2917 			if (!eth_p_mpls(mpls->mpls_ethertype))
2918 				return -EINVAL;
2919 			/* Prohibit push MPLS other than to a white list
2920 			 * for packets that have a known tag order.
2921 			 */
2922 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2923 			    (eth_type != htons(ETH_P_IP) &&
2924 			     eth_type != htons(ETH_P_IPV6) &&
2925 			     eth_type != htons(ETH_P_ARP) &&
2926 			     eth_type != htons(ETH_P_RARP) &&
2927 			     !eth_p_mpls(eth_type)))
2928 				return -EINVAL;
2929 			eth_type = mpls->mpls_ethertype;
2930 			break;
2931 		}
2932 
2933 		case OVS_ACTION_ATTR_POP_MPLS:
2934 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2935 			    !eth_p_mpls(eth_type))
2936 				return -EINVAL;
2937 
2938 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2939 			 * as there is no check here to ensure that the new
2940 			 * eth_type is valid and thus set actions could
2941 			 * write off the end of the packet or otherwise
2942 			 * corrupt it.
2943 			 *
2944 			 * Support for these actions is planned using packet
2945 			 * recirculation.
2946 			 */
2947 			eth_type = htons(0);
2948 			break;
2949 
2950 		case OVS_ACTION_ATTR_SET:
2951 			err = validate_set(a, key, sfa,
2952 					   &skip_copy, mac_proto, eth_type,
2953 					   false, log);
2954 			if (err)
2955 				return err;
2956 			break;
2957 
2958 		case OVS_ACTION_ATTR_SET_MASKED:
2959 			err = validate_set(a, key, sfa,
2960 					   &skip_copy, mac_proto, eth_type,
2961 					   true, log);
2962 			if (err)
2963 				return err;
2964 			break;
2965 
2966 		case OVS_ACTION_ATTR_SAMPLE: {
2967 			bool last = nla_is_last(a, rem);
2968 
2969 			err = validate_and_copy_sample(net, a, key, sfa,
2970 						       eth_type, vlan_tci,
2971 						       log, last);
2972 			if (err)
2973 				return err;
2974 			skip_copy = true;
2975 			break;
2976 		}
2977 
2978 		case OVS_ACTION_ATTR_CT:
2979 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2980 			if (err)
2981 				return err;
2982 			skip_copy = true;
2983 			break;
2984 
2985 		case OVS_ACTION_ATTR_CT_CLEAR:
2986 			break;
2987 
2988 		case OVS_ACTION_ATTR_PUSH_ETH:
2989 			/* Disallow pushing an Ethernet header if one
2990 			 * is already present */
2991 			if (mac_proto != MAC_PROTO_NONE)
2992 				return -EINVAL;
2993 			mac_proto = MAC_PROTO_NONE;
2994 			break;
2995 
2996 		case OVS_ACTION_ATTR_POP_ETH:
2997 			if (mac_proto != MAC_PROTO_ETHERNET)
2998 				return -EINVAL;
2999 			if (vlan_tci & htons(VLAN_TAG_PRESENT))
3000 				return -EINVAL;
3001 			mac_proto = MAC_PROTO_ETHERNET;
3002 			break;
3003 
3004 		case OVS_ACTION_ATTR_PUSH_NSH:
3005 			if (mac_proto != MAC_PROTO_ETHERNET) {
3006 				u8 next_proto;
3007 
3008 				next_proto = tun_p_from_eth_p(eth_type);
3009 				if (!next_proto)
3010 					return -EINVAL;
3011 			}
3012 			mac_proto = MAC_PROTO_NONE;
3013 			if (!validate_nsh(nla_data(a), false, true, true))
3014 				return -EINVAL;
3015 			break;
3016 
3017 		case OVS_ACTION_ATTR_POP_NSH: {
3018 			__be16 inner_proto;
3019 
3020 			if (eth_type != htons(ETH_P_NSH))
3021 				return -EINVAL;
3022 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3023 			if (!inner_proto)
3024 				return -EINVAL;
3025 			if (key->nsh.base.np == TUN_P_ETHERNET)
3026 				mac_proto = MAC_PROTO_ETHERNET;
3027 			else
3028 				mac_proto = MAC_PROTO_NONE;
3029 			break;
3030 		}
3031 
3032 		case OVS_ACTION_ATTR_METER:
3033 			/* Non-existent meters are simply ignored.  */
3034 			break;
3035 
3036 		default:
3037 			OVS_NLERR(log, "Unknown Action type %d", type);
3038 			return -EINVAL;
3039 		}
3040 		if (!skip_copy) {
3041 			err = copy_action(a, sfa, log);
3042 			if (err)
3043 				return err;
3044 		}
3045 	}
3046 
3047 	if (rem > 0)
3048 		return -EINVAL;
3049 
3050 	return 0;
3051 }
3052 
3053 /* 'key' must be the masked key. */
3054 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3055 			 const struct sw_flow_key *key,
3056 			 struct sw_flow_actions **sfa, bool log)
3057 {
3058 	int err;
3059 
3060 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3061 	if (IS_ERR(*sfa))
3062 		return PTR_ERR(*sfa);
3063 
3064 	(*sfa)->orig_len = nla_len(attr);
3065 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3066 				     key->eth.vlan.tci, log);
3067 	if (err)
3068 		ovs_nla_free_flow_actions(*sfa);
3069 
3070 	return err;
3071 }
3072 
3073 static int sample_action_to_attr(const struct nlattr *attr,
3074 				 struct sk_buff *skb)
3075 {
3076 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3077 	int err = 0, rem = nla_len(attr);
3078 	const struct sample_arg *arg;
3079 	struct nlattr *actions;
3080 
3081 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
3082 	if (!start)
3083 		return -EMSGSIZE;
3084 
3085 	sample_arg = nla_data(attr);
3086 	arg = nla_data(sample_arg);
3087 	actions = nla_next(sample_arg, &rem);
3088 
3089 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3090 		err = -EMSGSIZE;
3091 		goto out;
3092 	}
3093 
3094 	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
3095 	if (!ac_start) {
3096 		err = -EMSGSIZE;
3097 		goto out;
3098 	}
3099 
3100 	err = ovs_nla_put_actions(actions, rem, skb);
3101 
3102 out:
3103 	if (err) {
3104 		nla_nest_cancel(skb, ac_start);
3105 		nla_nest_cancel(skb, start);
3106 	} else {
3107 		nla_nest_end(skb, ac_start);
3108 		nla_nest_end(skb, start);
3109 	}
3110 
3111 	return err;
3112 }
3113 
3114 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3115 {
3116 	const struct nlattr *ovs_key = nla_data(a);
3117 	int key_type = nla_type(ovs_key);
3118 	struct nlattr *start;
3119 	int err;
3120 
3121 	switch (key_type) {
3122 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3123 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3124 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3125 
3126 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3127 		if (!start)
3128 			return -EMSGSIZE;
3129 
3130 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3131 					ip_tunnel_info_opts(tun_info),
3132 					tun_info->options_len,
3133 					ip_tunnel_info_af(tun_info));
3134 		if (err)
3135 			return err;
3136 		nla_nest_end(skb, start);
3137 		break;
3138 	}
3139 	default:
3140 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3141 			return -EMSGSIZE;
3142 		break;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3149 						struct sk_buff *skb)
3150 {
3151 	const struct nlattr *ovs_key = nla_data(a);
3152 	struct nlattr *nla;
3153 	size_t key_len = nla_len(ovs_key) / 2;
3154 
3155 	/* Revert the conversion we did from a non-masked set action to
3156 	 * masked set action.
3157 	 */
3158 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3159 	if (!nla)
3160 		return -EMSGSIZE;
3161 
3162 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3163 		return -EMSGSIZE;
3164 
3165 	nla_nest_end(skb, nla);
3166 	return 0;
3167 }
3168 
3169 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3170 {
3171 	const struct nlattr *a;
3172 	int rem, err;
3173 
3174 	nla_for_each_attr(a, attr, len, rem) {
3175 		int type = nla_type(a);
3176 
3177 		switch (type) {
3178 		case OVS_ACTION_ATTR_SET:
3179 			err = set_action_to_attr(a, skb);
3180 			if (err)
3181 				return err;
3182 			break;
3183 
3184 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3185 			err = masked_set_action_to_set_action_attr(a, skb);
3186 			if (err)
3187 				return err;
3188 			break;
3189 
3190 		case OVS_ACTION_ATTR_SAMPLE:
3191 			err = sample_action_to_attr(a, skb);
3192 			if (err)
3193 				return err;
3194 			break;
3195 
3196 		case OVS_ACTION_ATTR_CT:
3197 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3198 			if (err)
3199 				return err;
3200 			break;
3201 
3202 		default:
3203 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3204 				return -EMSGSIZE;
3205 			break;
3206 		}
3207 	}
3208 
3209 	return 0;
3210 }
3211