1 /*
2  * Copyright (c) 2007-2013 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
46 
47 #include "flow_netlink.h"
48 
49 static void update_range__(struct sw_flow_match *match,
50 			   size_t offset, size_t size, bool is_mask)
51 {
52 	struct sw_flow_key_range *range = NULL;
53 	size_t start = rounddown(offset, sizeof(long));
54 	size_t end = roundup(offset + size, sizeof(long));
55 
56 	if (!is_mask)
57 		range = &match->range;
58 	else if (match->mask)
59 		range = &match->mask->range;
60 
61 	if (!range)
62 		return;
63 
64 	if (range->start == range->end) {
65 		range->start = start;
66 		range->end = end;
67 		return;
68 	}
69 
70 	if (range->start > start)
71 		range->start = start;
72 
73 	if (range->end < end)
74 		range->end = end;
75 }
76 
77 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
78 	do { \
79 		update_range__(match, offsetof(struct sw_flow_key, field),  \
80 				     sizeof((match)->key->field), is_mask); \
81 		if (is_mask) {						    \
82 			if ((match)->mask)				    \
83 				(match)->mask->key.field = value;	    \
84 		} else {                                                    \
85 			(match)->key->field = value;		            \
86 		}                                                           \
87 	} while (0)
88 
89 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
90 	do { \
91 		update_range__(match, offsetof(struct sw_flow_key, field),  \
92 				len, is_mask);                              \
93 		if (is_mask) {						    \
94 			if ((match)->mask)				    \
95 				memcpy(&(match)->mask->key.field, value_p, len);\
96 		} else {                                                    \
97 			memcpy(&(match)->key->field, value_p, len);         \
98 		}                                                           \
99 	} while (0)
100 
101 static u16 range_n_bytes(const struct sw_flow_key_range *range)
102 {
103 	return range->end - range->start;
104 }
105 
106 static bool match_validate(const struct sw_flow_match *match,
107 			   u64 key_attrs, u64 mask_attrs)
108 {
109 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
110 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
111 
112 	/* The following mask attributes allowed only if they
113 	 * pass the validation tests. */
114 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
115 			| (1 << OVS_KEY_ATTR_IPV6)
116 			| (1 << OVS_KEY_ATTR_TCP)
117 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
118 			| (1 << OVS_KEY_ATTR_UDP)
119 			| (1 << OVS_KEY_ATTR_SCTP)
120 			| (1 << OVS_KEY_ATTR_ICMP)
121 			| (1 << OVS_KEY_ATTR_ICMPV6)
122 			| (1 << OVS_KEY_ATTR_ARP)
123 			| (1 << OVS_KEY_ATTR_ND));
124 
125 	/* Always allowed mask fields. */
126 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
127 		       | (1 << OVS_KEY_ATTR_IN_PORT)
128 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
129 
130 	/* Check key attributes. */
131 	if (match->key->eth.type == htons(ETH_P_ARP)
132 			|| match->key->eth.type == htons(ETH_P_RARP)) {
133 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
134 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
135 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
136 	}
137 
138 	if (match->key->eth.type == htons(ETH_P_IP)) {
139 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
140 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
141 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
142 
143 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
144 			if (match->key->ip.proto == IPPROTO_UDP) {
145 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
146 				if (match->mask && (match->mask->key.ip.proto == 0xff))
147 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
148 			}
149 
150 			if (match->key->ip.proto == IPPROTO_SCTP) {
151 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
152 				if (match->mask && (match->mask->key.ip.proto == 0xff))
153 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
154 			}
155 
156 			if (match->key->ip.proto == IPPROTO_TCP) {
157 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
158 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
159 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
160 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
161 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
162 				}
163 			}
164 
165 			if (match->key->ip.proto == IPPROTO_ICMP) {
166 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
167 				if (match->mask && (match->mask->key.ip.proto == 0xff))
168 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
169 			}
170 		}
171 	}
172 
173 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
174 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
175 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
176 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
177 
178 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
179 			if (match->key->ip.proto == IPPROTO_UDP) {
180 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
181 				if (match->mask && (match->mask->key.ip.proto == 0xff))
182 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
183 			}
184 
185 			if (match->key->ip.proto == IPPROTO_SCTP) {
186 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
187 				if (match->mask && (match->mask->key.ip.proto == 0xff))
188 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
189 			}
190 
191 			if (match->key->ip.proto == IPPROTO_TCP) {
192 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
193 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
194 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
195 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
196 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
197 				}
198 			}
199 
200 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
201 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
202 				if (match->mask && (match->mask->key.ip.proto == 0xff))
203 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
204 
205 				if (match->key->ipv6.tp.src ==
206 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
207 				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
208 					key_expected |= 1 << OVS_KEY_ATTR_ND;
209 					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
210 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
211 				}
212 			}
213 		}
214 	}
215 
216 	if ((key_attrs & key_expected) != key_expected) {
217 		/* Key attributes check failed. */
218 		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
219 				key_attrs, key_expected);
220 		return false;
221 	}
222 
223 	if ((mask_attrs & mask_allowed) != mask_attrs) {
224 		/* Mask attributes check failed. */
225 		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
226 				mask_attrs, mask_allowed);
227 		return false;
228 	}
229 
230 	return true;
231 }
232 
233 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
234 static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
235 	[OVS_KEY_ATTR_ENCAP] = -1,
236 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
237 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
238 	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
239 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
240 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
241 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
242 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
243 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
244 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
245 	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
246 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
247 	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
248 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
249 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
250 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
251 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
252 	[OVS_KEY_ATTR_TUNNEL] = -1,
253 };
254 
255 static bool is_all_zero(const u8 *fp, size_t size)
256 {
257 	int i;
258 
259 	if (!fp)
260 		return false;
261 
262 	for (i = 0; i < size; i++)
263 		if (fp[i])
264 			return false;
265 
266 	return true;
267 }
268 
269 static bool is_all_set(const u8 *fp, size_t size)
270 {
271 	int i;
272 
273 	if (!fp)
274 		return false;
275 
276 	for (i = 0; i < size; i++)
277 		if (fp[i] != 0xff)
278 			return false;
279 
280 	return true;
281 }
282 
283 static int __parse_flow_nlattrs(const struct nlattr *attr,
284 				const struct nlattr *a[],
285 				u64 *attrsp, bool nz)
286 {
287 	const struct nlattr *nla;
288 	u64 attrs;
289 	int rem;
290 
291 	attrs = *attrsp;
292 	nla_for_each_nested(nla, attr, rem) {
293 		u16 type = nla_type(nla);
294 		int expected_len;
295 
296 		if (type > OVS_KEY_ATTR_MAX) {
297 			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
298 				  type, OVS_KEY_ATTR_MAX);
299 			return -EINVAL;
300 		}
301 
302 		if (attrs & (1 << type)) {
303 			OVS_NLERR("Duplicate key attribute (type %d).\n", type);
304 			return -EINVAL;
305 		}
306 
307 		expected_len = ovs_key_lens[type];
308 		if (nla_len(nla) != expected_len && expected_len != -1) {
309 			OVS_NLERR("Key attribute has unexpected length (type=%d"
310 				  ", length=%d, expected=%d).\n", type,
311 				  nla_len(nla), expected_len);
312 			return -EINVAL;
313 		}
314 
315 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
316 			attrs |= 1 << type;
317 			a[type] = nla;
318 		}
319 	}
320 	if (rem) {
321 		OVS_NLERR("Message has %d unknown bytes.\n", rem);
322 		return -EINVAL;
323 	}
324 
325 	*attrsp = attrs;
326 	return 0;
327 }
328 
329 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
330 				   const struct nlattr *a[], u64 *attrsp)
331 {
332 	return __parse_flow_nlattrs(attr, a, attrsp, true);
333 }
334 
335 static int parse_flow_nlattrs(const struct nlattr *attr,
336 			      const struct nlattr *a[], u64 *attrsp)
337 {
338 	return __parse_flow_nlattrs(attr, a, attrsp, false);
339 }
340 
341 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
342 				struct sw_flow_match *match, bool is_mask)
343 {
344 	struct nlattr *a;
345 	int rem;
346 	bool ttl = false;
347 	__be16 tun_flags = 0;
348 
349 	nla_for_each_nested(a, attr, rem) {
350 		int type = nla_type(a);
351 		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
352 			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
353 			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
354 			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
355 			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
356 			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
357 			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
358 			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
359 		};
360 
361 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
362 			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
363 			type, OVS_TUNNEL_KEY_ATTR_MAX);
364 			return -EINVAL;
365 		}
366 
367 		if (ovs_tunnel_key_lens[type] != nla_len(a)) {
368 			OVS_NLERR("IPv4 tunnel attribute type has unexpected "
369 				  " length (type=%d, length=%d, expected=%d).\n",
370 				  type, nla_len(a), ovs_tunnel_key_lens[type]);
371 			return -EINVAL;
372 		}
373 
374 		switch (type) {
375 		case OVS_TUNNEL_KEY_ATTR_ID:
376 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
377 					nla_get_be64(a), is_mask);
378 			tun_flags |= TUNNEL_KEY;
379 			break;
380 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
381 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
382 					nla_get_be32(a), is_mask);
383 			break;
384 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
385 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
386 					nla_get_be32(a), is_mask);
387 			break;
388 		case OVS_TUNNEL_KEY_ATTR_TOS:
389 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
390 					nla_get_u8(a), is_mask);
391 			break;
392 		case OVS_TUNNEL_KEY_ATTR_TTL:
393 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
394 					nla_get_u8(a), is_mask);
395 			ttl = true;
396 			break;
397 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
398 			tun_flags |= TUNNEL_DONT_FRAGMENT;
399 			break;
400 		case OVS_TUNNEL_KEY_ATTR_CSUM:
401 			tun_flags |= TUNNEL_CSUM;
402 			break;
403 		default:
404 			return -EINVAL;
405 		}
406 	}
407 
408 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
409 
410 	if (rem > 0) {
411 		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
412 		return -EINVAL;
413 	}
414 
415 	if (!is_mask) {
416 		if (!match->key->tun_key.ipv4_dst) {
417 			OVS_NLERR("IPv4 tunnel destination address is zero.\n");
418 			return -EINVAL;
419 		}
420 
421 		if (!ttl) {
422 			OVS_NLERR("IPv4 tunnel TTL not specified.\n");
423 			return -EINVAL;
424 		}
425 	}
426 
427 	return 0;
428 }
429 
430 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
431 			      const struct ovs_key_ipv4_tunnel *tun_key,
432 			      const struct ovs_key_ipv4_tunnel *output)
433 {
434 	struct nlattr *nla;
435 
436 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
437 	if (!nla)
438 		return -EMSGSIZE;
439 
440 	if (output->tun_flags & TUNNEL_KEY &&
441 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
442 		return -EMSGSIZE;
443 	if (output->ipv4_src &&
444 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
445 		return -EMSGSIZE;
446 	if (output->ipv4_dst &&
447 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
448 		return -EMSGSIZE;
449 	if (output->ipv4_tos &&
450 		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
451 		return -EMSGSIZE;
452 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
453 		return -EMSGSIZE;
454 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
455 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
456 		return -EMSGSIZE;
457 	if ((output->tun_flags & TUNNEL_CSUM) &&
458 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
459 		return -EMSGSIZE;
460 
461 	nla_nest_end(skb, nla);
462 	return 0;
463 }
464 
465 
466 static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
467 				 const struct nlattr **a, bool is_mask)
468 {
469 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
470 		SW_FLOW_KEY_PUT(match, phy.priority,
471 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
472 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
473 	}
474 
475 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
476 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
477 
478 		if (is_mask)
479 			in_port = 0xffffffff; /* Always exact match in_port. */
480 		else if (in_port >= DP_MAX_PORTS)
481 			return -EINVAL;
482 
483 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
484 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
485 	} else if (!is_mask) {
486 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
487 	}
488 
489 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
490 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
491 
492 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
493 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
494 	}
495 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
496 		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
497 					 is_mask))
498 			return -EINVAL;
499 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
500 	}
501 	return 0;
502 }
503 
504 static int ovs_key_from_nlattrs(struct sw_flow_match *match,  bool *exact_5tuple,
505 				u64 attrs, const struct nlattr **a,
506 				bool is_mask)
507 {
508 	int err;
509 	u64 orig_attrs = attrs;
510 
511 	err = metadata_from_nlattrs(match, &attrs, a, is_mask);
512 	if (err)
513 		return err;
514 
515 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
516 		const struct ovs_key_ethernet *eth_key;
517 
518 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
519 		SW_FLOW_KEY_MEMCPY(match, eth.src,
520 				eth_key->eth_src, ETH_ALEN, is_mask);
521 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
522 				eth_key->eth_dst, ETH_ALEN, is_mask);
523 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
524 	}
525 
526 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
527 		__be16 tci;
528 
529 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
530 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
531 			if (is_mask)
532 				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
533 			else
534 				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
535 
536 			return -EINVAL;
537 		}
538 
539 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
540 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
541 	} else if (!is_mask)
542 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
543 
544 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
545 		__be16 eth_type;
546 
547 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
548 		if (is_mask) {
549 			/* Always exact match EtherType. */
550 			eth_type = htons(0xffff);
551 		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
552 			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
553 					ntohs(eth_type), ETH_P_802_3_MIN);
554 			return -EINVAL;
555 		}
556 
557 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
558 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
559 	} else if (!is_mask) {
560 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
561 	}
562 
563 	if (is_mask && exact_5tuple) {
564 		if (match->mask->key.eth.type != htons(0xffff))
565 			*exact_5tuple = false;
566 	}
567 
568 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
569 		const struct ovs_key_ipv4 *ipv4_key;
570 
571 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
572 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
573 			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
574 				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
575 			return -EINVAL;
576 		}
577 		SW_FLOW_KEY_PUT(match, ip.proto,
578 				ipv4_key->ipv4_proto, is_mask);
579 		SW_FLOW_KEY_PUT(match, ip.tos,
580 				ipv4_key->ipv4_tos, is_mask);
581 		SW_FLOW_KEY_PUT(match, ip.ttl,
582 				ipv4_key->ipv4_ttl, is_mask);
583 		SW_FLOW_KEY_PUT(match, ip.frag,
584 				ipv4_key->ipv4_frag, is_mask);
585 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
586 				ipv4_key->ipv4_src, is_mask);
587 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
588 				ipv4_key->ipv4_dst, is_mask);
589 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
590 
591 		if (is_mask && exact_5tuple && *exact_5tuple) {
592 			if (ipv4_key->ipv4_proto != 0xff ||
593 			    ipv4_key->ipv4_src != htonl(0xffffffff) ||
594 			    ipv4_key->ipv4_dst != htonl(0xffffffff))
595 				*exact_5tuple = false;
596 		}
597 	}
598 
599 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
600 		const struct ovs_key_ipv6 *ipv6_key;
601 
602 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
603 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
604 			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
605 				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
606 			return -EINVAL;
607 		}
608 		SW_FLOW_KEY_PUT(match, ipv6.label,
609 				ipv6_key->ipv6_label, is_mask);
610 		SW_FLOW_KEY_PUT(match, ip.proto,
611 				ipv6_key->ipv6_proto, is_mask);
612 		SW_FLOW_KEY_PUT(match, ip.tos,
613 				ipv6_key->ipv6_tclass, is_mask);
614 		SW_FLOW_KEY_PUT(match, ip.ttl,
615 				ipv6_key->ipv6_hlimit, is_mask);
616 		SW_FLOW_KEY_PUT(match, ip.frag,
617 				ipv6_key->ipv6_frag, is_mask);
618 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
619 				ipv6_key->ipv6_src,
620 				sizeof(match->key->ipv6.addr.src),
621 				is_mask);
622 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
623 				ipv6_key->ipv6_dst,
624 				sizeof(match->key->ipv6.addr.dst),
625 				is_mask);
626 
627 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
628 
629 		if (is_mask && exact_5tuple && *exact_5tuple) {
630 			if (ipv6_key->ipv6_proto != 0xff ||
631 			    !is_all_set((u8 *)ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src)) ||
632 			    !is_all_set((u8 *)ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst)))
633 				*exact_5tuple = false;
634 		}
635 	}
636 
637 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
638 		const struct ovs_key_arp *arp_key;
639 
640 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
641 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
642 			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
643 				  arp_key->arp_op);
644 			return -EINVAL;
645 		}
646 
647 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
648 				arp_key->arp_sip, is_mask);
649 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
650 			arp_key->arp_tip, is_mask);
651 		SW_FLOW_KEY_PUT(match, ip.proto,
652 				ntohs(arp_key->arp_op), is_mask);
653 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
654 				arp_key->arp_sha, ETH_ALEN, is_mask);
655 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
656 				arp_key->arp_tha, ETH_ALEN, is_mask);
657 
658 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
659 	}
660 
661 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
662 		const struct ovs_key_tcp *tcp_key;
663 
664 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
665 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
666 			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
667 					tcp_key->tcp_src, is_mask);
668 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
669 					tcp_key->tcp_dst, is_mask);
670 		} else {
671 			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
672 					tcp_key->tcp_src, is_mask);
673 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
674 					tcp_key->tcp_dst, is_mask);
675 		}
676 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
677 
678 		if (is_mask && exact_5tuple && *exact_5tuple &&
679 		    (tcp_key->tcp_src != htons(0xffff) ||
680 		     tcp_key->tcp_dst != htons(0xffff)))
681 			*exact_5tuple = false;
682 	}
683 
684 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
685 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
686 			SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
687 					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
688 					is_mask);
689 		} else {
690 			SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
691 					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
692 					is_mask);
693 		}
694 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
695 	}
696 
697 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
698 		const struct ovs_key_udp *udp_key;
699 
700 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
701 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
702 			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
703 					udp_key->udp_src, is_mask);
704 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
705 					udp_key->udp_dst, is_mask);
706 		} else {
707 			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
708 					udp_key->udp_src, is_mask);
709 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
710 					udp_key->udp_dst, is_mask);
711 		}
712 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
713 
714 		if (is_mask && exact_5tuple && *exact_5tuple &&
715 		    (udp_key->udp_src != htons(0xffff) ||
716 		     udp_key->udp_dst != htons(0xffff)))
717 			*exact_5tuple = false;
718 	}
719 
720 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
721 		const struct ovs_key_sctp *sctp_key;
722 
723 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
724 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
725 			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
726 					sctp_key->sctp_src, is_mask);
727 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
728 					sctp_key->sctp_dst, is_mask);
729 		} else {
730 			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
731 					sctp_key->sctp_src, is_mask);
732 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
733 					sctp_key->sctp_dst, is_mask);
734 		}
735 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
736 	}
737 
738 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
739 		const struct ovs_key_icmp *icmp_key;
740 
741 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
742 		SW_FLOW_KEY_PUT(match, ipv4.tp.src,
743 				htons(icmp_key->icmp_type), is_mask);
744 		SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
745 				htons(icmp_key->icmp_code), is_mask);
746 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
747 	}
748 
749 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
750 		const struct ovs_key_icmpv6 *icmpv6_key;
751 
752 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
753 		SW_FLOW_KEY_PUT(match, ipv6.tp.src,
754 				htons(icmpv6_key->icmpv6_type), is_mask);
755 		SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
756 				htons(icmpv6_key->icmpv6_code), is_mask);
757 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
758 	}
759 
760 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
761 		const struct ovs_key_nd *nd_key;
762 
763 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
764 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
765 			nd_key->nd_target,
766 			sizeof(match->key->ipv6.nd.target),
767 			is_mask);
768 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
769 			nd_key->nd_sll, ETH_ALEN, is_mask);
770 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
771 				nd_key->nd_tll, ETH_ALEN, is_mask);
772 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
773 	}
774 
775 	if (attrs != 0)
776 		return -EINVAL;
777 
778 	return 0;
779 }
780 
781 static void sw_flow_mask_set(struct sw_flow_mask *mask,
782 			     struct sw_flow_key_range *range, u8 val)
783 {
784 	u8 *m = (u8 *)&mask->key + range->start;
785 
786 	mask->range = *range;
787 	memset(m, val, range_n_bytes(range));
788 }
789 
790 /**
791  * ovs_nla_get_match - parses Netlink attributes into a flow key and
792  * mask. In case the 'mask' is NULL, the flow is treated as exact match
793  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
794  * does not include any don't care bit.
795  * @match: receives the extracted flow match information.
796  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
797  * sequence. The fields should of the packet that triggered the creation
798  * of this flow.
799  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
800  * attribute specifies the mask field of the wildcarded flow.
801  */
802 int ovs_nla_get_match(struct sw_flow_match *match,
803 		      bool *exact_5tuple,
804 		      const struct nlattr *key,
805 		      const struct nlattr *mask)
806 {
807 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
808 	const struct nlattr *encap;
809 	u64 key_attrs = 0;
810 	u64 mask_attrs = 0;
811 	bool encap_valid = false;
812 	int err;
813 
814 	err = parse_flow_nlattrs(key, a, &key_attrs);
815 	if (err)
816 		return err;
817 
818 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
819 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
820 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
821 		__be16 tci;
822 
823 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
824 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
825 			OVS_NLERR("Invalid Vlan frame.\n");
826 			return -EINVAL;
827 		}
828 
829 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
830 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
831 		encap = a[OVS_KEY_ATTR_ENCAP];
832 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
833 		encap_valid = true;
834 
835 		if (tci & htons(VLAN_TAG_PRESENT)) {
836 			err = parse_flow_nlattrs(encap, a, &key_attrs);
837 			if (err)
838 				return err;
839 		} else if (!tci) {
840 			/* Corner case for truncated 802.1Q header. */
841 			if (nla_len(encap)) {
842 				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
843 				return -EINVAL;
844 			}
845 		} else {
846 			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
847 			return  -EINVAL;
848 		}
849 	}
850 
851 	err = ovs_key_from_nlattrs(match, NULL, key_attrs, a, false);
852 	if (err)
853 		return err;
854 
855 	if (exact_5tuple)
856 		*exact_5tuple = true;
857 
858 	if (mask) {
859 		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
860 		if (err)
861 			return err;
862 
863 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  {
864 			__be16 eth_type = 0;
865 			__be16 tci = 0;
866 
867 			if (!encap_valid) {
868 				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
869 				return  -EINVAL;
870 			}
871 
872 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
873 			if (a[OVS_KEY_ATTR_ETHERTYPE])
874 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
875 
876 			if (eth_type == htons(0xffff)) {
877 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
878 				encap = a[OVS_KEY_ATTR_ENCAP];
879 				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
880 			} else {
881 				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
882 						ntohs(eth_type));
883 				return -EINVAL;
884 			}
885 
886 			if (a[OVS_KEY_ATTR_VLAN])
887 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
888 
889 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
890 				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
891 				return -EINVAL;
892 			}
893 		}
894 
895 		err = ovs_key_from_nlattrs(match, exact_5tuple, mask_attrs, a, true);
896 		if (err)
897 			return err;
898 	} else {
899 		/* Populate exact match flow's key mask. */
900 		if (match->mask)
901 			sw_flow_mask_set(match->mask, &match->range, 0xff);
902 	}
903 
904 	if (!match_validate(match, key_attrs, mask_attrs))
905 		return -EINVAL;
906 
907 	return 0;
908 }
909 
910 /**
911  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
912  * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
913  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
914  * sequence.
915  *
916  * This parses a series of Netlink attributes that form a flow key, which must
917  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
918  * get the metadata, that is, the parts of the flow key that cannot be
919  * extracted from the packet itself.
920  */
921 
922 int ovs_nla_get_flow_metadata(struct sw_flow *flow,
923 			      const struct nlattr *attr)
924 {
925 	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
926 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
927 	u64 attrs = 0;
928 	int err;
929 	struct sw_flow_match match;
930 
931 	flow->key.phy.in_port = DP_MAX_PORTS;
932 	flow->key.phy.priority = 0;
933 	flow->key.phy.skb_mark = 0;
934 	memset(tun_key, 0, sizeof(flow->key.tun_key));
935 
936 	err = parse_flow_nlattrs(attr, a, &attrs);
937 	if (err)
938 		return -EINVAL;
939 
940 	memset(&match, 0, sizeof(match));
941 	match.key = &flow->key;
942 
943 	err = metadata_from_nlattrs(&match, &attrs, a, false);
944 	if (err)
945 		return err;
946 
947 	return 0;
948 }
949 
950 int ovs_nla_put_flow(const struct sw_flow_key *swkey,
951 		     const struct sw_flow_key *output, struct sk_buff *skb)
952 {
953 	struct ovs_key_ethernet *eth_key;
954 	struct nlattr *nla, *encap;
955 	bool is_mask = (swkey != output);
956 
957 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
958 		goto nla_put_failure;
959 
960 	if ((swkey->tun_key.ipv4_dst || is_mask) &&
961 	    ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
962 		goto nla_put_failure;
963 
964 	if (swkey->phy.in_port == DP_MAX_PORTS) {
965 		if (is_mask && (output->phy.in_port == 0xffff))
966 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
967 				goto nla_put_failure;
968 	} else {
969 		u16 upper_u16;
970 		upper_u16 = !is_mask ? 0 : 0xffff;
971 
972 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
973 				(upper_u16 << 16) | output->phy.in_port))
974 			goto nla_put_failure;
975 	}
976 
977 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
978 		goto nla_put_failure;
979 
980 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
981 	if (!nla)
982 		goto nla_put_failure;
983 
984 	eth_key = nla_data(nla);
985 	memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
986 	memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
987 
988 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
989 		__be16 eth_type;
990 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
991 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
992 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
993 			goto nla_put_failure;
994 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
995 		if (!swkey->eth.tci)
996 			goto unencap;
997 	} else
998 		encap = NULL;
999 
1000 	if (swkey->eth.type == htons(ETH_P_802_2)) {
1001 		/*
1002 		 * Ethertype 802.2 is represented in the netlink with omitted
1003 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1004 		 * 0xffff in the mask attribute.  Ethertype can also
1005 		 * be wildcarded.
1006 		 */
1007 		if (is_mask && output->eth.type)
1008 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1009 						output->eth.type))
1010 				goto nla_put_failure;
1011 		goto unencap;
1012 	}
1013 
1014 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1015 		goto nla_put_failure;
1016 
1017 	if (swkey->eth.type == htons(ETH_P_IP)) {
1018 		struct ovs_key_ipv4 *ipv4_key;
1019 
1020 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1021 		if (!nla)
1022 			goto nla_put_failure;
1023 		ipv4_key = nla_data(nla);
1024 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1025 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1026 		ipv4_key->ipv4_proto = output->ip.proto;
1027 		ipv4_key->ipv4_tos = output->ip.tos;
1028 		ipv4_key->ipv4_ttl = output->ip.ttl;
1029 		ipv4_key->ipv4_frag = output->ip.frag;
1030 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1031 		struct ovs_key_ipv6 *ipv6_key;
1032 
1033 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1034 		if (!nla)
1035 			goto nla_put_failure;
1036 		ipv6_key = nla_data(nla);
1037 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1038 				sizeof(ipv6_key->ipv6_src));
1039 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1040 				sizeof(ipv6_key->ipv6_dst));
1041 		ipv6_key->ipv6_label = output->ipv6.label;
1042 		ipv6_key->ipv6_proto = output->ip.proto;
1043 		ipv6_key->ipv6_tclass = output->ip.tos;
1044 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1045 		ipv6_key->ipv6_frag = output->ip.frag;
1046 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1047 		   swkey->eth.type == htons(ETH_P_RARP)) {
1048 		struct ovs_key_arp *arp_key;
1049 
1050 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1051 		if (!nla)
1052 			goto nla_put_failure;
1053 		arp_key = nla_data(nla);
1054 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1055 		arp_key->arp_sip = output->ipv4.addr.src;
1056 		arp_key->arp_tip = output->ipv4.addr.dst;
1057 		arp_key->arp_op = htons(output->ip.proto);
1058 		memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1059 		memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
1060 	}
1061 
1062 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1063 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1064 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1065 
1066 		if (swkey->ip.proto == IPPROTO_TCP) {
1067 			struct ovs_key_tcp *tcp_key;
1068 
1069 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1070 			if (!nla)
1071 				goto nla_put_failure;
1072 			tcp_key = nla_data(nla);
1073 			if (swkey->eth.type == htons(ETH_P_IP)) {
1074 				tcp_key->tcp_src = output->ipv4.tp.src;
1075 				tcp_key->tcp_dst = output->ipv4.tp.dst;
1076 				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1077 						 output->ipv4.tp.flags))
1078 					goto nla_put_failure;
1079 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1080 				tcp_key->tcp_src = output->ipv6.tp.src;
1081 				tcp_key->tcp_dst = output->ipv6.tp.dst;
1082 				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1083 						 output->ipv6.tp.flags))
1084 					goto nla_put_failure;
1085 			}
1086 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1087 			struct ovs_key_udp *udp_key;
1088 
1089 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1090 			if (!nla)
1091 				goto nla_put_failure;
1092 			udp_key = nla_data(nla);
1093 			if (swkey->eth.type == htons(ETH_P_IP)) {
1094 				udp_key->udp_src = output->ipv4.tp.src;
1095 				udp_key->udp_dst = output->ipv4.tp.dst;
1096 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1097 				udp_key->udp_src = output->ipv6.tp.src;
1098 				udp_key->udp_dst = output->ipv6.tp.dst;
1099 			}
1100 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1101 			struct ovs_key_sctp *sctp_key;
1102 
1103 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1104 			if (!nla)
1105 				goto nla_put_failure;
1106 			sctp_key = nla_data(nla);
1107 			if (swkey->eth.type == htons(ETH_P_IP)) {
1108 				sctp_key->sctp_src = swkey->ipv4.tp.src;
1109 				sctp_key->sctp_dst = swkey->ipv4.tp.dst;
1110 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1111 				sctp_key->sctp_src = swkey->ipv6.tp.src;
1112 				sctp_key->sctp_dst = swkey->ipv6.tp.dst;
1113 			}
1114 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1115 			   swkey->ip.proto == IPPROTO_ICMP) {
1116 			struct ovs_key_icmp *icmp_key;
1117 
1118 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1119 			if (!nla)
1120 				goto nla_put_failure;
1121 			icmp_key = nla_data(nla);
1122 			icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1123 			icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1124 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1125 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1126 			struct ovs_key_icmpv6 *icmpv6_key;
1127 
1128 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1129 						sizeof(*icmpv6_key));
1130 			if (!nla)
1131 				goto nla_put_failure;
1132 			icmpv6_key = nla_data(nla);
1133 			icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1134 			icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1135 
1136 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1137 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1138 				struct ovs_key_nd *nd_key;
1139 
1140 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1141 				if (!nla)
1142 					goto nla_put_failure;
1143 				nd_key = nla_data(nla);
1144 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1145 							sizeof(nd_key->nd_target));
1146 				memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1147 				memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1148 			}
1149 		}
1150 	}
1151 
1152 unencap:
1153 	if (encap)
1154 		nla_nest_end(skb, encap);
1155 
1156 	return 0;
1157 
1158 nla_put_failure:
1159 	return -EMSGSIZE;
1160 }
1161 
1162 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1163 
1164 struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
1165 {
1166 	struct sw_flow_actions *sfa;
1167 
1168 	if (size > MAX_ACTIONS_BUFSIZE)
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1172 	if (!sfa)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	sfa->actions_len = 0;
1176 	return sfa;
1177 }
1178 
1179 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1180  * The caller must hold rcu_read_lock for this to be sensible. */
1181 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1182 {
1183 	kfree_rcu(sf_acts, rcu);
1184 }
1185 
1186 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1187 				       int attr_len)
1188 {
1189 
1190 	struct sw_flow_actions *acts;
1191 	int new_acts_size;
1192 	int req_size = NLA_ALIGN(attr_len);
1193 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1194 					(*sfa)->actions_len;
1195 
1196 	if (req_size <= (ksize(*sfa) - next_offset))
1197 		goto out;
1198 
1199 	new_acts_size = ksize(*sfa) * 2;
1200 
1201 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1202 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1203 			return ERR_PTR(-EMSGSIZE);
1204 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1205 	}
1206 
1207 	acts = ovs_nla_alloc_flow_actions(new_acts_size);
1208 	if (IS_ERR(acts))
1209 		return (void *)acts;
1210 
1211 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1212 	acts->actions_len = (*sfa)->actions_len;
1213 	kfree(*sfa);
1214 	*sfa = acts;
1215 
1216 out:
1217 	(*sfa)->actions_len += req_size;
1218 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1219 }
1220 
1221 static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
1222 {
1223 	struct nlattr *a;
1224 
1225 	a = reserve_sfa_size(sfa, nla_attr_size(len));
1226 	if (IS_ERR(a))
1227 		return PTR_ERR(a);
1228 
1229 	a->nla_type = attrtype;
1230 	a->nla_len = nla_attr_size(len);
1231 
1232 	if (data)
1233 		memcpy(nla_data(a), data, len);
1234 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1235 
1236 	return 0;
1237 }
1238 
1239 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1240 					  int attrtype)
1241 {
1242 	int used = (*sfa)->actions_len;
1243 	int err;
1244 
1245 	err = add_action(sfa, attrtype, NULL, 0);
1246 	if (err)
1247 		return err;
1248 
1249 	return used;
1250 }
1251 
1252 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1253 					 int st_offset)
1254 {
1255 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1256 							       st_offset);
1257 
1258 	a->nla_len = sfa->actions_len - st_offset;
1259 }
1260 
1261 static int validate_and_copy_sample(const struct nlattr *attr,
1262 				    const struct sw_flow_key *key, int depth,
1263 				    struct sw_flow_actions **sfa)
1264 {
1265 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1266 	const struct nlattr *probability, *actions;
1267 	const struct nlattr *a;
1268 	int rem, start, err, st_acts;
1269 
1270 	memset(attrs, 0, sizeof(attrs));
1271 	nla_for_each_nested(a, attr, rem) {
1272 		int type = nla_type(a);
1273 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1274 			return -EINVAL;
1275 		attrs[type] = a;
1276 	}
1277 	if (rem)
1278 		return -EINVAL;
1279 
1280 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1281 	if (!probability || nla_len(probability) != sizeof(u32))
1282 		return -EINVAL;
1283 
1284 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1285 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1286 		return -EINVAL;
1287 
1288 	/* validation done, copy sample action. */
1289 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
1290 	if (start < 0)
1291 		return start;
1292 	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1293 			 nla_data(probability), sizeof(u32));
1294 	if (err)
1295 		return err;
1296 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
1297 	if (st_acts < 0)
1298 		return st_acts;
1299 
1300 	err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
1301 	if (err)
1302 		return err;
1303 
1304 	add_nested_action_end(*sfa, st_acts);
1305 	add_nested_action_end(*sfa, start);
1306 
1307 	return 0;
1308 }
1309 
1310 static int validate_tp_port(const struct sw_flow_key *flow_key)
1311 {
1312 	if (flow_key->eth.type == htons(ETH_P_IP)) {
1313 		if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
1314 			return 0;
1315 	} else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
1316 		if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
1317 			return 0;
1318 	}
1319 
1320 	return -EINVAL;
1321 }
1322 
1323 void ovs_match_init(struct sw_flow_match *match,
1324 		    struct sw_flow_key *key,
1325 		    struct sw_flow_mask *mask)
1326 {
1327 	memset(match, 0, sizeof(*match));
1328 	match->key = key;
1329 	match->mask = mask;
1330 
1331 	memset(key, 0, sizeof(*key));
1332 
1333 	if (mask) {
1334 		memset(&mask->key, 0, sizeof(mask->key));
1335 		mask->range.start = mask->range.end = 0;
1336 	}
1337 }
1338 
1339 static int validate_and_copy_set_tun(const struct nlattr *attr,
1340 				     struct sw_flow_actions **sfa)
1341 {
1342 	struct sw_flow_match match;
1343 	struct sw_flow_key key;
1344 	int err, start;
1345 
1346 	ovs_match_init(&match, &key, NULL);
1347 	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
1348 	if (err)
1349 		return err;
1350 
1351 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
1352 	if (start < 0)
1353 		return start;
1354 
1355 	err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
1356 			sizeof(match.key->tun_key));
1357 	add_nested_action_end(*sfa, start);
1358 
1359 	return err;
1360 }
1361 
1362 static int validate_set(const struct nlattr *a,
1363 			const struct sw_flow_key *flow_key,
1364 			struct sw_flow_actions **sfa,
1365 			bool *set_tun)
1366 {
1367 	const struct nlattr *ovs_key = nla_data(a);
1368 	int key_type = nla_type(ovs_key);
1369 
1370 	/* There can be only one key in a action */
1371 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1372 		return -EINVAL;
1373 
1374 	if (key_type > OVS_KEY_ATTR_MAX ||
1375 	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1376 	     ovs_key_lens[key_type] != -1))
1377 		return -EINVAL;
1378 
1379 	switch (key_type) {
1380 	const struct ovs_key_ipv4 *ipv4_key;
1381 	const struct ovs_key_ipv6 *ipv6_key;
1382 	int err;
1383 
1384 	case OVS_KEY_ATTR_PRIORITY:
1385 	case OVS_KEY_ATTR_SKB_MARK:
1386 	case OVS_KEY_ATTR_ETHERNET:
1387 		break;
1388 
1389 	case OVS_KEY_ATTR_TUNNEL:
1390 		*set_tun = true;
1391 		err = validate_and_copy_set_tun(a, sfa);
1392 		if (err)
1393 			return err;
1394 		break;
1395 
1396 	case OVS_KEY_ATTR_IPV4:
1397 		if (flow_key->eth.type != htons(ETH_P_IP))
1398 			return -EINVAL;
1399 
1400 		if (!flow_key->ip.proto)
1401 			return -EINVAL;
1402 
1403 		ipv4_key = nla_data(ovs_key);
1404 		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1405 			return -EINVAL;
1406 
1407 		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1408 			return -EINVAL;
1409 
1410 		break;
1411 
1412 	case OVS_KEY_ATTR_IPV6:
1413 		if (flow_key->eth.type != htons(ETH_P_IPV6))
1414 			return -EINVAL;
1415 
1416 		if (!flow_key->ip.proto)
1417 			return -EINVAL;
1418 
1419 		ipv6_key = nla_data(ovs_key);
1420 		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1421 			return -EINVAL;
1422 
1423 		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1424 			return -EINVAL;
1425 
1426 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1427 			return -EINVAL;
1428 
1429 		break;
1430 
1431 	case OVS_KEY_ATTR_TCP:
1432 		if (flow_key->ip.proto != IPPROTO_TCP)
1433 			return -EINVAL;
1434 
1435 		return validate_tp_port(flow_key);
1436 
1437 	case OVS_KEY_ATTR_UDP:
1438 		if (flow_key->ip.proto != IPPROTO_UDP)
1439 			return -EINVAL;
1440 
1441 		return validate_tp_port(flow_key);
1442 
1443 	case OVS_KEY_ATTR_SCTP:
1444 		if (flow_key->ip.proto != IPPROTO_SCTP)
1445 			return -EINVAL;
1446 
1447 		return validate_tp_port(flow_key);
1448 
1449 	default:
1450 		return -EINVAL;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int validate_userspace(const struct nlattr *attr)
1457 {
1458 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1459 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1460 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1461 	};
1462 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1463 	int error;
1464 
1465 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1466 				 attr, userspace_policy);
1467 	if (error)
1468 		return error;
1469 
1470 	if (!a[OVS_USERSPACE_ATTR_PID] ||
1471 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1472 		return -EINVAL;
1473 
1474 	return 0;
1475 }
1476 
1477 static int copy_action(const struct nlattr *from,
1478 		       struct sw_flow_actions **sfa)
1479 {
1480 	int totlen = NLA_ALIGN(from->nla_len);
1481 	struct nlattr *to;
1482 
1483 	to = reserve_sfa_size(sfa, from->nla_len);
1484 	if (IS_ERR(to))
1485 		return PTR_ERR(to);
1486 
1487 	memcpy(to, from, totlen);
1488 	return 0;
1489 }
1490 
1491 int ovs_nla_copy_actions(const struct nlattr *attr,
1492 			 const struct sw_flow_key *key,
1493 			 int depth,
1494 			 struct sw_flow_actions **sfa)
1495 {
1496 	const struct nlattr *a;
1497 	int rem, err;
1498 
1499 	if (depth >= SAMPLE_ACTION_DEPTH)
1500 		return -EOVERFLOW;
1501 
1502 	nla_for_each_nested(a, attr, rem) {
1503 		/* Expected argument lengths, (u32)-1 for variable length. */
1504 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1505 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1506 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1507 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1508 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
1509 			[OVS_ACTION_ATTR_SET] = (u32)-1,
1510 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
1511 		};
1512 		const struct ovs_action_push_vlan *vlan;
1513 		int type = nla_type(a);
1514 		bool skip_copy;
1515 
1516 		if (type > OVS_ACTION_ATTR_MAX ||
1517 		    (action_lens[type] != nla_len(a) &&
1518 		     action_lens[type] != (u32)-1))
1519 			return -EINVAL;
1520 
1521 		skip_copy = false;
1522 		switch (type) {
1523 		case OVS_ACTION_ATTR_UNSPEC:
1524 			return -EINVAL;
1525 
1526 		case OVS_ACTION_ATTR_USERSPACE:
1527 			err = validate_userspace(a);
1528 			if (err)
1529 				return err;
1530 			break;
1531 
1532 		case OVS_ACTION_ATTR_OUTPUT:
1533 			if (nla_get_u32(a) >= DP_MAX_PORTS)
1534 				return -EINVAL;
1535 			break;
1536 
1537 
1538 		case OVS_ACTION_ATTR_POP_VLAN:
1539 			break;
1540 
1541 		case OVS_ACTION_ATTR_PUSH_VLAN:
1542 			vlan = nla_data(a);
1543 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1544 				return -EINVAL;
1545 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1546 				return -EINVAL;
1547 			break;
1548 
1549 		case OVS_ACTION_ATTR_SET:
1550 			err = validate_set(a, key, sfa, &skip_copy);
1551 			if (err)
1552 				return err;
1553 			break;
1554 
1555 		case OVS_ACTION_ATTR_SAMPLE:
1556 			err = validate_and_copy_sample(a, key, depth, sfa);
1557 			if (err)
1558 				return err;
1559 			skip_copy = true;
1560 			break;
1561 
1562 		default:
1563 			return -EINVAL;
1564 		}
1565 		if (!skip_copy) {
1566 			err = copy_action(a, sfa);
1567 			if (err)
1568 				return err;
1569 		}
1570 	}
1571 
1572 	if (rem > 0)
1573 		return -EINVAL;
1574 
1575 	return 0;
1576 }
1577 
1578 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1579 {
1580 	const struct nlattr *a;
1581 	struct nlattr *start;
1582 	int err = 0, rem;
1583 
1584 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1585 	if (!start)
1586 		return -EMSGSIZE;
1587 
1588 	nla_for_each_nested(a, attr, rem) {
1589 		int type = nla_type(a);
1590 		struct nlattr *st_sample;
1591 
1592 		switch (type) {
1593 		case OVS_SAMPLE_ATTR_PROBABILITY:
1594 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1595 				    sizeof(u32), nla_data(a)))
1596 				return -EMSGSIZE;
1597 			break;
1598 		case OVS_SAMPLE_ATTR_ACTIONS:
1599 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1600 			if (!st_sample)
1601 				return -EMSGSIZE;
1602 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1603 			if (err)
1604 				return err;
1605 			nla_nest_end(skb, st_sample);
1606 			break;
1607 		}
1608 	}
1609 
1610 	nla_nest_end(skb, start);
1611 	return err;
1612 }
1613 
1614 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1615 {
1616 	const struct nlattr *ovs_key = nla_data(a);
1617 	int key_type = nla_type(ovs_key);
1618 	struct nlattr *start;
1619 	int err;
1620 
1621 	switch (key_type) {
1622 	case OVS_KEY_ATTR_IPV4_TUNNEL:
1623 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1624 		if (!start)
1625 			return -EMSGSIZE;
1626 
1627 		err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
1628 					     nla_data(ovs_key));
1629 		if (err)
1630 			return err;
1631 		nla_nest_end(skb, start);
1632 		break;
1633 	default:
1634 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1635 			return -EMSGSIZE;
1636 		break;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
1643 {
1644 	const struct nlattr *a;
1645 	int rem, err;
1646 
1647 	nla_for_each_attr(a, attr, len, rem) {
1648 		int type = nla_type(a);
1649 
1650 		switch (type) {
1651 		case OVS_ACTION_ATTR_SET:
1652 			err = set_action_to_attr(a, skb);
1653 			if (err)
1654 				return err;
1655 			break;
1656 
1657 		case OVS_ACTION_ATTR_SAMPLE:
1658 			err = sample_action_to_attr(a, skb);
1659 			if (err)
1660 				return err;
1661 			break;
1662 		default:
1663 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
1664 				return -EMSGSIZE;
1665 			break;
1666 		}
1667 	}
1668 
1669 	return 0;
1670 }
1671