1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
62 static bool actions_may_change_flow(const struct nlattr *actions)
63 {
64 	struct nlattr *nla;
65 	int rem;
66 
67 	nla_for_each_nested(nla, actions, rem) {
68 		u16 action = nla_type(nla);
69 
70 		switch (action) {
71 		case OVS_ACTION_ATTR_OUTPUT:
72 		case OVS_ACTION_ATTR_RECIRC:
73 		case OVS_ACTION_ATTR_TRUNC:
74 		case OVS_ACTION_ATTR_USERSPACE:
75 			break;
76 
77 		case OVS_ACTION_ATTR_CT:
78 		case OVS_ACTION_ATTR_HASH:
79 		case OVS_ACTION_ATTR_POP_ETH:
80 		case OVS_ACTION_ATTR_POP_MPLS:
81 		case OVS_ACTION_ATTR_POP_VLAN:
82 		case OVS_ACTION_ATTR_PUSH_ETH:
83 		case OVS_ACTION_ATTR_PUSH_MPLS:
84 		case OVS_ACTION_ATTR_PUSH_VLAN:
85 		case OVS_ACTION_ATTR_SAMPLE:
86 		case OVS_ACTION_ATTR_SET:
87 		case OVS_ACTION_ATTR_SET_MASKED:
88 		default:
89 			return true;
90 		}
91 	}
92 	return false;
93 }
94 
95 static void update_range(struct sw_flow_match *match,
96 			 size_t offset, size_t size, bool is_mask)
97 {
98 	struct sw_flow_key_range *range;
99 	size_t start = rounddown(offset, sizeof(long));
100 	size_t end = roundup(offset + size, sizeof(long));
101 
102 	if (!is_mask)
103 		range = &match->range;
104 	else
105 		range = &match->mask->range;
106 
107 	if (range->start == range->end) {
108 		range->start = start;
109 		range->end = end;
110 		return;
111 	}
112 
113 	if (range->start > start)
114 		range->start = start;
115 
116 	if (range->end < end)
117 		range->end = end;
118 }
119 
120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
121 	do { \
122 		update_range(match, offsetof(struct sw_flow_key, field),    \
123 			     sizeof((match)->key->field), is_mask);	    \
124 		if (is_mask)						    \
125 			(match)->mask->key.field = value;		    \
126 		else							    \
127 			(match)->key->field = value;		            \
128 	} while (0)
129 
130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
131 	do {								    \
132 		update_range(match, offset, len, is_mask);		    \
133 		if (is_mask)						    \
134 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
135 			       len);					   \
136 		else							    \
137 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
138 	} while (0)
139 
140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
141 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
142 				  value_p, len, is_mask)
143 
144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
145 	do {								    \
146 		update_range(match, offsetof(struct sw_flow_key, field),    \
147 			     sizeof((match)->key->field), is_mask);	    \
148 		if (is_mask)						    \
149 			memset((u8 *)&(match)->mask->key.field, value,      \
150 			       sizeof((match)->mask->key.field));	    \
151 		else							    \
152 			memset((u8 *)&(match)->key->field, value,           \
153 			       sizeof((match)->key->field));                \
154 	} while (0)
155 
156 static bool match_validate(const struct sw_flow_match *match,
157 			   u64 key_attrs, u64 mask_attrs, bool log)
158 {
159 	u64 key_expected = 0;
160 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
161 
162 	/* The following mask attributes allowed only if they
163 	 * pass the validation tests. */
164 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
165 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
166 			| (1 << OVS_KEY_ATTR_IPV6)
167 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
168 			| (1 << OVS_KEY_ATTR_TCP)
169 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
170 			| (1 << OVS_KEY_ATTR_UDP)
171 			| (1 << OVS_KEY_ATTR_SCTP)
172 			| (1 << OVS_KEY_ATTR_ICMP)
173 			| (1 << OVS_KEY_ATTR_ICMPV6)
174 			| (1 << OVS_KEY_ATTR_ARP)
175 			| (1 << OVS_KEY_ATTR_ND)
176 			| (1 << OVS_KEY_ATTR_MPLS));
177 
178 	/* Always allowed mask fields. */
179 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
180 		       | (1 << OVS_KEY_ATTR_IN_PORT)
181 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
182 
183 	/* Check key attributes. */
184 	if (match->key->eth.type == htons(ETH_P_ARP)
185 			|| match->key->eth.type == htons(ETH_P_RARP)) {
186 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
187 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
188 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
189 	}
190 
191 	if (eth_p_mpls(match->key->eth.type)) {
192 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
193 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
194 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
195 	}
196 
197 	if (match->key->eth.type == htons(ETH_P_IP)) {
198 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
199 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
200 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
201 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
202 		}
203 
204 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205 			if (match->key->ip.proto == IPPROTO_UDP) {
206 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
207 				if (match->mask && (match->mask->key.ip.proto == 0xff))
208 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
209 			}
210 
211 			if (match->key->ip.proto == IPPROTO_SCTP) {
212 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
213 				if (match->mask && (match->mask->key.ip.proto == 0xff))
214 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
215 			}
216 
217 			if (match->key->ip.proto == IPPROTO_TCP) {
218 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
219 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
222 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
223 				}
224 			}
225 
226 			if (match->key->ip.proto == IPPROTO_ICMP) {
227 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
228 				if (match->mask && (match->mask->key.ip.proto == 0xff))
229 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
230 			}
231 		}
232 	}
233 
234 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
235 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
236 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
237 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
238 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
239 		}
240 
241 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
242 			if (match->key->ip.proto == IPPROTO_UDP) {
243 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
244 				if (match->mask && (match->mask->key.ip.proto == 0xff))
245 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
246 			}
247 
248 			if (match->key->ip.proto == IPPROTO_SCTP) {
249 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
250 				if (match->mask && (match->mask->key.ip.proto == 0xff))
251 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
252 			}
253 
254 			if (match->key->ip.proto == IPPROTO_TCP) {
255 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
256 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
258 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
259 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
260 				}
261 			}
262 
263 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
264 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
265 				if (match->mask && (match->mask->key.ip.proto == 0xff))
266 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
267 
268 				if (match->key->tp.src ==
269 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
270 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
271 					key_expected |= 1 << OVS_KEY_ATTR_ND;
272 					/* Original direction conntrack tuple
273 					 * uses the same space as the ND fields
274 					 * in the key, so both are not allowed
275 					 * at the same time.
276 					 */
277 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
278 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
279 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
280 				}
281 			}
282 		}
283 	}
284 
285 	if ((key_attrs & key_expected) != key_expected) {
286 		/* Key attributes check failed. */
287 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
288 			  (unsigned long long)key_attrs,
289 			  (unsigned long long)key_expected);
290 		return false;
291 	}
292 
293 	if ((mask_attrs & mask_allowed) != mask_attrs) {
294 		/* Mask attributes check failed. */
295 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
296 			  (unsigned long long)mask_attrs,
297 			  (unsigned long long)mask_allowed);
298 		return false;
299 	}
300 
301 	return true;
302 }
303 
304 size_t ovs_tun_key_attr_size(void)
305 {
306 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
307 	 * updating this function.
308 	 */
309 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
310 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
311 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
312 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
313 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
314 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
315 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
316 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
317 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
318 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
319 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
320 		 */
321 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
322 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
323 }
324 
325 size_t ovs_key_attr_size(void)
326 {
327 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
328 	 * updating this function.
329 	 */
330 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
331 
332 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
333 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
334 		  + ovs_tun_key_attr_size()
335 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
336 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
337 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
338 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
339 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
340 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
341 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
342 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
343 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
344 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
345 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
346 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
347 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
348 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
349 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
350 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
351 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
352 }
353 
354 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
355 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
356 };
357 
358 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
359 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
360 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
361 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
362 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
363 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
364 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
365 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
366 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
367 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
368 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
369 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
370 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
371 						.next = ovs_vxlan_ext_key_lens },
372 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
373 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
374 };
375 
376 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
377 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
378 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
379 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
380 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
381 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
382 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
383 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
384 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
385 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
386 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
387 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
388 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
389 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
390 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
391 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
392 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
393 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
394 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
395 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
396 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
397 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
398 				     .next = ovs_tunnel_key_lens, },
399 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
400 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
401 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
402 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
403 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
404 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
405 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
406 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
407 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
408 };
409 
410 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
411 {
412 	return expected_len == attr_len ||
413 	       expected_len == OVS_ATTR_NESTED ||
414 	       expected_len == OVS_ATTR_VARIABLE;
415 }
416 
417 static bool is_all_zero(const u8 *fp, size_t size)
418 {
419 	int i;
420 
421 	if (!fp)
422 		return false;
423 
424 	for (i = 0; i < size; i++)
425 		if (fp[i])
426 			return false;
427 
428 	return true;
429 }
430 
431 static int __parse_flow_nlattrs(const struct nlattr *attr,
432 				const struct nlattr *a[],
433 				u64 *attrsp, bool log, bool nz)
434 {
435 	const struct nlattr *nla;
436 	u64 attrs;
437 	int rem;
438 
439 	attrs = *attrsp;
440 	nla_for_each_nested(nla, attr, rem) {
441 		u16 type = nla_type(nla);
442 		int expected_len;
443 
444 		if (type > OVS_KEY_ATTR_MAX) {
445 			OVS_NLERR(log, "Key type %d is out of range max %d",
446 				  type, OVS_KEY_ATTR_MAX);
447 			return -EINVAL;
448 		}
449 
450 		if (attrs & (1 << type)) {
451 			OVS_NLERR(log, "Duplicate key (type %d).", type);
452 			return -EINVAL;
453 		}
454 
455 		expected_len = ovs_key_lens[type].len;
456 		if (!check_attr_len(nla_len(nla), expected_len)) {
457 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
458 				  type, nla_len(nla), expected_len);
459 			return -EINVAL;
460 		}
461 
462 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
463 			attrs |= 1 << type;
464 			a[type] = nla;
465 		}
466 	}
467 	if (rem) {
468 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
469 		return -EINVAL;
470 	}
471 
472 	*attrsp = attrs;
473 	return 0;
474 }
475 
476 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
477 				   const struct nlattr *a[], u64 *attrsp,
478 				   bool log)
479 {
480 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
481 }
482 
483 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
484 		       u64 *attrsp, bool log)
485 {
486 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
487 }
488 
489 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
490 				     struct sw_flow_match *match, bool is_mask,
491 				     bool log)
492 {
493 	unsigned long opt_key_offset;
494 
495 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
496 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
497 			  nla_len(a), sizeof(match->key->tun_opts));
498 		return -EINVAL;
499 	}
500 
501 	if (nla_len(a) % 4 != 0) {
502 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
503 			  nla_len(a));
504 		return -EINVAL;
505 	}
506 
507 	/* We need to record the length of the options passed
508 	 * down, otherwise packets with the same format but
509 	 * additional options will be silently matched.
510 	 */
511 	if (!is_mask) {
512 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
513 				false);
514 	} else {
515 		/* This is somewhat unusual because it looks at
516 		 * both the key and mask while parsing the
517 		 * attributes (and by extension assumes the key
518 		 * is parsed first). Normally, we would verify
519 		 * that each is the correct length and that the
520 		 * attributes line up in the validate function.
521 		 * However, that is difficult because this is
522 		 * variable length and we won't have the
523 		 * information later.
524 		 */
525 		if (match->key->tun_opts_len != nla_len(a)) {
526 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
527 				  match->key->tun_opts_len, nla_len(a));
528 			return -EINVAL;
529 		}
530 
531 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
532 	}
533 
534 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
535 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
536 				  nla_len(a), is_mask);
537 	return 0;
538 }
539 
540 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
541 				     struct sw_flow_match *match, bool is_mask,
542 				     bool log)
543 {
544 	struct nlattr *a;
545 	int rem;
546 	unsigned long opt_key_offset;
547 	struct vxlan_metadata opts;
548 
549 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
550 
551 	memset(&opts, 0, sizeof(opts));
552 	nla_for_each_nested(a, attr, rem) {
553 		int type = nla_type(a);
554 
555 		if (type > OVS_VXLAN_EXT_MAX) {
556 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
557 				  type, OVS_VXLAN_EXT_MAX);
558 			return -EINVAL;
559 		}
560 
561 		if (!check_attr_len(nla_len(a),
562 				    ovs_vxlan_ext_key_lens[type].len)) {
563 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
564 				  type, nla_len(a),
565 				  ovs_vxlan_ext_key_lens[type].len);
566 			return -EINVAL;
567 		}
568 
569 		switch (type) {
570 		case OVS_VXLAN_EXT_GBP:
571 			opts.gbp = nla_get_u32(a);
572 			break;
573 		default:
574 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
575 				  type);
576 			return -EINVAL;
577 		}
578 	}
579 	if (rem) {
580 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
581 			  rem);
582 		return -EINVAL;
583 	}
584 
585 	if (!is_mask)
586 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
587 	else
588 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
589 
590 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
591 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
592 				  is_mask);
593 	return 0;
594 }
595 
596 static int ip_tun_from_nlattr(const struct nlattr *attr,
597 			      struct sw_flow_match *match, bool is_mask,
598 			      bool log)
599 {
600 	bool ttl = false, ipv4 = false, ipv6 = false;
601 	__be16 tun_flags = 0;
602 	int opts_type = 0;
603 	struct nlattr *a;
604 	int rem;
605 
606 	nla_for_each_nested(a, attr, rem) {
607 		int type = nla_type(a);
608 		int err;
609 
610 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
611 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
612 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
613 			return -EINVAL;
614 		}
615 
616 		if (!check_attr_len(nla_len(a),
617 				    ovs_tunnel_key_lens[type].len)) {
618 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
619 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
620 			return -EINVAL;
621 		}
622 
623 		switch (type) {
624 		case OVS_TUNNEL_KEY_ATTR_ID:
625 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
626 					nla_get_be64(a), is_mask);
627 			tun_flags |= TUNNEL_KEY;
628 			break;
629 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
630 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
631 					nla_get_in_addr(a), is_mask);
632 			ipv4 = true;
633 			break;
634 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
635 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
636 					nla_get_in_addr(a), is_mask);
637 			ipv4 = true;
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
640 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
641 					nla_get_in6_addr(a), is_mask);
642 			ipv6 = true;
643 			break;
644 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
645 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
646 					nla_get_in6_addr(a), is_mask);
647 			ipv6 = true;
648 			break;
649 		case OVS_TUNNEL_KEY_ATTR_TOS:
650 			SW_FLOW_KEY_PUT(match, tun_key.tos,
651 					nla_get_u8(a), is_mask);
652 			break;
653 		case OVS_TUNNEL_KEY_ATTR_TTL:
654 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
655 					nla_get_u8(a), is_mask);
656 			ttl = true;
657 			break;
658 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
659 			tun_flags |= TUNNEL_DONT_FRAGMENT;
660 			break;
661 		case OVS_TUNNEL_KEY_ATTR_CSUM:
662 			tun_flags |= TUNNEL_CSUM;
663 			break;
664 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
665 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
666 					nla_get_be16(a), is_mask);
667 			break;
668 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
669 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
670 					nla_get_be16(a), is_mask);
671 			break;
672 		case OVS_TUNNEL_KEY_ATTR_OAM:
673 			tun_flags |= TUNNEL_OAM;
674 			break;
675 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
676 			if (opts_type) {
677 				OVS_NLERR(log, "Multiple metadata blocks provided");
678 				return -EINVAL;
679 			}
680 
681 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
682 			if (err)
683 				return err;
684 
685 			tun_flags |= TUNNEL_GENEVE_OPT;
686 			opts_type = type;
687 			break;
688 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
689 			if (opts_type) {
690 				OVS_NLERR(log, "Multiple metadata blocks provided");
691 				return -EINVAL;
692 			}
693 
694 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
695 			if (err)
696 				return err;
697 
698 			tun_flags |= TUNNEL_VXLAN_OPT;
699 			opts_type = type;
700 			break;
701 		case OVS_TUNNEL_KEY_ATTR_PAD:
702 			break;
703 		default:
704 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
705 				  type);
706 			return -EINVAL;
707 		}
708 	}
709 
710 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
711 	if (is_mask)
712 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
713 	else
714 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
715 				false);
716 
717 	if (rem > 0) {
718 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
719 			  rem);
720 		return -EINVAL;
721 	}
722 
723 	if (ipv4 && ipv6) {
724 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
725 		return -EINVAL;
726 	}
727 
728 	if (!is_mask) {
729 		if (!ipv4 && !ipv6) {
730 			OVS_NLERR(log, "IP tunnel dst address not specified");
731 			return -EINVAL;
732 		}
733 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
734 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
735 			return -EINVAL;
736 		}
737 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
738 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
739 			return -EINVAL;
740 		}
741 
742 		if (!ttl) {
743 			OVS_NLERR(log, "IP tunnel TTL not specified.");
744 			return -EINVAL;
745 		}
746 	}
747 
748 	return opts_type;
749 }
750 
751 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
752 			       const void *tun_opts, int swkey_tun_opts_len)
753 {
754 	const struct vxlan_metadata *opts = tun_opts;
755 	struct nlattr *nla;
756 
757 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
758 	if (!nla)
759 		return -EMSGSIZE;
760 
761 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
762 		return -EMSGSIZE;
763 
764 	nla_nest_end(skb, nla);
765 	return 0;
766 }
767 
768 static int __ip_tun_to_nlattr(struct sk_buff *skb,
769 			      const struct ip_tunnel_key *output,
770 			      const void *tun_opts, int swkey_tun_opts_len,
771 			      unsigned short tun_proto)
772 {
773 	if (output->tun_flags & TUNNEL_KEY &&
774 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
775 			 OVS_TUNNEL_KEY_ATTR_PAD))
776 		return -EMSGSIZE;
777 	switch (tun_proto) {
778 	case AF_INET:
779 		if (output->u.ipv4.src &&
780 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
781 				    output->u.ipv4.src))
782 			return -EMSGSIZE;
783 		if (output->u.ipv4.dst &&
784 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
785 				    output->u.ipv4.dst))
786 			return -EMSGSIZE;
787 		break;
788 	case AF_INET6:
789 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
790 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
791 				     &output->u.ipv6.src))
792 			return -EMSGSIZE;
793 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
794 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
795 				     &output->u.ipv6.dst))
796 			return -EMSGSIZE;
797 		break;
798 	}
799 	if (output->tos &&
800 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
801 		return -EMSGSIZE;
802 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
803 		return -EMSGSIZE;
804 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
805 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
806 		return -EMSGSIZE;
807 	if ((output->tun_flags & TUNNEL_CSUM) &&
808 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
809 		return -EMSGSIZE;
810 	if (output->tp_src &&
811 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
812 		return -EMSGSIZE;
813 	if (output->tp_dst &&
814 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
815 		return -EMSGSIZE;
816 	if ((output->tun_flags & TUNNEL_OAM) &&
817 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
818 		return -EMSGSIZE;
819 	if (swkey_tun_opts_len) {
820 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
821 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
822 			    swkey_tun_opts_len, tun_opts))
823 			return -EMSGSIZE;
824 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
825 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
826 			return -EMSGSIZE;
827 	}
828 
829 	return 0;
830 }
831 
832 static int ip_tun_to_nlattr(struct sk_buff *skb,
833 			    const struct ip_tunnel_key *output,
834 			    const void *tun_opts, int swkey_tun_opts_len,
835 			    unsigned short tun_proto)
836 {
837 	struct nlattr *nla;
838 	int err;
839 
840 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
841 	if (!nla)
842 		return -EMSGSIZE;
843 
844 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
845 				 tun_proto);
846 	if (err)
847 		return err;
848 
849 	nla_nest_end(skb, nla);
850 	return 0;
851 }
852 
853 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
854 			    struct ip_tunnel_info *tun_info)
855 {
856 	return __ip_tun_to_nlattr(skb, &tun_info->key,
857 				  ip_tunnel_info_opts(tun_info),
858 				  tun_info->options_len,
859 				  ip_tunnel_info_af(tun_info));
860 }
861 
862 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
863 				    const struct nlattr *a[],
864 				    bool is_mask, bool inner)
865 {
866 	__be16 tci = 0;
867 	__be16 tpid = 0;
868 
869 	if (a[OVS_KEY_ATTR_VLAN])
870 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
871 
872 	if (a[OVS_KEY_ATTR_ETHERTYPE])
873 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
874 
875 	if (likely(!inner)) {
876 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
877 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
878 	} else {
879 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
880 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
881 	}
882 	return 0;
883 }
884 
885 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
886 				      u64 key_attrs, bool inner,
887 				      const struct nlattr **a, bool log)
888 {
889 	__be16 tci = 0;
890 
891 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
892 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
893 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
894 		/* Not a VLAN. */
895 		return 0;
896 	}
897 
898 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
899 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
900 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
901 		return -EINVAL;
902 	}
903 
904 	if (a[OVS_KEY_ATTR_VLAN])
905 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
906 
907 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
908 		if (tci) {
909 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
910 				  (inner) ? "C-VLAN" : "VLAN");
911 			return -EINVAL;
912 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
913 			/* Corner case for truncated VLAN header. */
914 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
915 				  (inner) ? "C-VLAN" : "VLAN");
916 			return -EINVAL;
917 		}
918 	}
919 
920 	return 1;
921 }
922 
923 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
924 					   u64 key_attrs, bool inner,
925 					   const struct nlattr **a, bool log)
926 {
927 	__be16 tci = 0;
928 	__be16 tpid = 0;
929 	bool encap_valid = !!(match->key->eth.vlan.tci &
930 			      htons(VLAN_TAG_PRESENT));
931 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
932 				htons(VLAN_TAG_PRESENT));
933 
934 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
935 		/* Not a VLAN. */
936 		return 0;
937 	}
938 
939 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
940 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
941 			  (inner) ? "C-VLAN" : "VLAN");
942 		return -EINVAL;
943 	}
944 
945 	if (a[OVS_KEY_ATTR_VLAN])
946 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
947 
948 	if (a[OVS_KEY_ATTR_ETHERTYPE])
949 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
950 
951 	if (tpid != htons(0xffff)) {
952 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
953 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
954 		return -EINVAL;
955 	}
956 	if (!(tci & htons(VLAN_TAG_PRESENT))) {
957 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
958 			  (inner) ? "C-VLAN" : "VLAN");
959 		return -EINVAL;
960 	}
961 
962 	return 1;
963 }
964 
965 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
966 				     u64 *key_attrs, bool inner,
967 				     const struct nlattr **a, bool is_mask,
968 				     bool log)
969 {
970 	int err;
971 	const struct nlattr *encap;
972 
973 	if (!is_mask)
974 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
975 						 a, log);
976 	else
977 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
978 						      a, log);
979 	if (err <= 0)
980 		return err;
981 
982 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
983 	if (err)
984 		return err;
985 
986 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
987 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
988 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
989 
990 	encap = a[OVS_KEY_ATTR_ENCAP];
991 
992 	if (!is_mask)
993 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
994 	else
995 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
996 
997 	return err;
998 }
999 
1000 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1001 				   u64 *key_attrs, const struct nlattr **a,
1002 				   bool is_mask, bool log)
1003 {
1004 	int err;
1005 	bool encap_valid = false;
1006 
1007 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1008 					is_mask, log);
1009 	if (err)
1010 		return err;
1011 
1012 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1013 	if (encap_valid) {
1014 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1015 						is_mask, log);
1016 		if (err)
1017 			return err;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1024 				       u64 *attrs, const struct nlattr **a,
1025 				       bool is_mask, bool log)
1026 {
1027 	__be16 eth_type;
1028 
1029 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1030 	if (is_mask) {
1031 		/* Always exact match EtherType. */
1032 		eth_type = htons(0xffff);
1033 	} else if (!eth_proto_is_802_3(eth_type)) {
1034 		OVS_NLERR(log, "EtherType %x is less than min %x",
1035 				ntohs(eth_type), ETH_P_802_3_MIN);
1036 		return -EINVAL;
1037 	}
1038 
1039 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1040 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1041 	return 0;
1042 }
1043 
1044 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1045 				 u64 *attrs, const struct nlattr **a,
1046 				 bool is_mask, bool log)
1047 {
1048 	u8 mac_proto = MAC_PROTO_ETHERNET;
1049 
1050 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1051 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1052 
1053 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1054 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1055 	}
1056 
1057 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1058 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1059 
1060 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1061 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1062 	}
1063 
1064 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1065 		SW_FLOW_KEY_PUT(match, phy.priority,
1066 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1067 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1068 	}
1069 
1070 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1071 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1072 
1073 		if (is_mask) {
1074 			in_port = 0xffffffff; /* Always exact match in_port. */
1075 		} else if (in_port >= DP_MAX_PORTS) {
1076 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1077 				  in_port, DP_MAX_PORTS);
1078 			return -EINVAL;
1079 		}
1080 
1081 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1082 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1083 	} else if (!is_mask) {
1084 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1085 	}
1086 
1087 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1088 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1089 
1090 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1091 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1092 	}
1093 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1094 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1095 				       is_mask, log) < 0)
1096 			return -EINVAL;
1097 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1098 	}
1099 
1100 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1101 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1102 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1103 
1104 		if (ct_state & ~CT_SUPPORTED_MASK) {
1105 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1106 				  ct_state);
1107 			return -EINVAL;
1108 		}
1109 
1110 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1111 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1112 	}
1113 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1114 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1115 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1116 
1117 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1118 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1119 	}
1120 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1121 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1122 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1123 
1124 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1125 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1126 	}
1127 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1128 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1129 		const struct ovs_key_ct_labels *cl;
1130 
1131 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1132 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1133 				   sizeof(*cl), is_mask);
1134 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1135 	}
1136 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1137 		const struct ovs_key_ct_tuple_ipv4 *ct;
1138 
1139 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1140 
1141 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1142 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1143 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1144 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1145 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1146 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1147 	}
1148 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1149 		const struct ovs_key_ct_tuple_ipv6 *ct;
1150 
1151 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1152 
1153 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1154 				   sizeof(match->key->ipv6.ct_orig.src),
1155 				   is_mask);
1156 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1157 				   sizeof(match->key->ipv6.ct_orig.dst),
1158 				   is_mask);
1159 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1160 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1161 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1162 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1163 	}
1164 
1165 	/* For layer 3 packets the Ethernet type is provided
1166 	 * and treated as metadata but no MAC addresses are provided.
1167 	 */
1168 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1169 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1170 		mac_proto = MAC_PROTO_NONE;
1171 
1172 	/* Always exact match mac_proto */
1173 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1174 
1175 	if (mac_proto == MAC_PROTO_NONE)
1176 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1177 						   log);
1178 
1179 	return 0;
1180 }
1181 
1182 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1183 				u64 attrs, const struct nlattr **a,
1184 				bool is_mask, bool log)
1185 {
1186 	int err;
1187 
1188 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1189 	if (err)
1190 		return err;
1191 
1192 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1193 		const struct ovs_key_ethernet *eth_key;
1194 
1195 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1196 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1197 				eth_key->eth_src, ETH_ALEN, is_mask);
1198 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1199 				eth_key->eth_dst, ETH_ALEN, is_mask);
1200 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1201 
1202 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1203 			/* VLAN attribute is always parsed before getting here since it
1204 			 * may occur multiple times.
1205 			 */
1206 			OVS_NLERR(log, "VLAN attribute unexpected.");
1207 			return -EINVAL;
1208 		}
1209 
1210 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1211 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1212 							  log);
1213 			if (err)
1214 				return err;
1215 		} else if (!is_mask) {
1216 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1217 		}
1218 	} else if (!match->key->eth.type) {
1219 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1220 		return -EINVAL;
1221 	}
1222 
1223 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1224 		const struct ovs_key_ipv4 *ipv4_key;
1225 
1226 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1227 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1228 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1229 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1230 			return -EINVAL;
1231 		}
1232 		SW_FLOW_KEY_PUT(match, ip.proto,
1233 				ipv4_key->ipv4_proto, is_mask);
1234 		SW_FLOW_KEY_PUT(match, ip.tos,
1235 				ipv4_key->ipv4_tos, is_mask);
1236 		SW_FLOW_KEY_PUT(match, ip.ttl,
1237 				ipv4_key->ipv4_ttl, is_mask);
1238 		SW_FLOW_KEY_PUT(match, ip.frag,
1239 				ipv4_key->ipv4_frag, is_mask);
1240 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1241 				ipv4_key->ipv4_src, is_mask);
1242 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1243 				ipv4_key->ipv4_dst, is_mask);
1244 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1245 	}
1246 
1247 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1248 		const struct ovs_key_ipv6 *ipv6_key;
1249 
1250 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1251 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1252 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1253 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1254 			return -EINVAL;
1255 		}
1256 
1257 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1258 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1259 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1260 			return -EINVAL;
1261 		}
1262 
1263 		SW_FLOW_KEY_PUT(match, ipv6.label,
1264 				ipv6_key->ipv6_label, is_mask);
1265 		SW_FLOW_KEY_PUT(match, ip.proto,
1266 				ipv6_key->ipv6_proto, is_mask);
1267 		SW_FLOW_KEY_PUT(match, ip.tos,
1268 				ipv6_key->ipv6_tclass, is_mask);
1269 		SW_FLOW_KEY_PUT(match, ip.ttl,
1270 				ipv6_key->ipv6_hlimit, is_mask);
1271 		SW_FLOW_KEY_PUT(match, ip.frag,
1272 				ipv6_key->ipv6_frag, is_mask);
1273 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1274 				ipv6_key->ipv6_src,
1275 				sizeof(match->key->ipv6.addr.src),
1276 				is_mask);
1277 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1278 				ipv6_key->ipv6_dst,
1279 				sizeof(match->key->ipv6.addr.dst),
1280 				is_mask);
1281 
1282 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1283 	}
1284 
1285 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1286 		const struct ovs_key_arp *arp_key;
1287 
1288 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1289 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1290 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1291 				  arp_key->arp_op);
1292 			return -EINVAL;
1293 		}
1294 
1295 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1296 				arp_key->arp_sip, is_mask);
1297 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1298 			arp_key->arp_tip, is_mask);
1299 		SW_FLOW_KEY_PUT(match, ip.proto,
1300 				ntohs(arp_key->arp_op), is_mask);
1301 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1302 				arp_key->arp_sha, ETH_ALEN, is_mask);
1303 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1304 				arp_key->arp_tha, ETH_ALEN, is_mask);
1305 
1306 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1307 	}
1308 
1309 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1310 		const struct ovs_key_mpls *mpls_key;
1311 
1312 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1313 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1314 				mpls_key->mpls_lse, is_mask);
1315 
1316 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1317 	 }
1318 
1319 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1320 		const struct ovs_key_tcp *tcp_key;
1321 
1322 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1323 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1324 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1325 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1326 	}
1327 
1328 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1329 		SW_FLOW_KEY_PUT(match, tp.flags,
1330 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1331 				is_mask);
1332 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1333 	}
1334 
1335 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1336 		const struct ovs_key_udp *udp_key;
1337 
1338 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1339 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1340 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1341 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1342 	}
1343 
1344 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1345 		const struct ovs_key_sctp *sctp_key;
1346 
1347 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1348 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1349 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1350 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1351 	}
1352 
1353 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1354 		const struct ovs_key_icmp *icmp_key;
1355 
1356 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1357 		SW_FLOW_KEY_PUT(match, tp.src,
1358 				htons(icmp_key->icmp_type), is_mask);
1359 		SW_FLOW_KEY_PUT(match, tp.dst,
1360 				htons(icmp_key->icmp_code), is_mask);
1361 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1362 	}
1363 
1364 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1365 		const struct ovs_key_icmpv6 *icmpv6_key;
1366 
1367 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1368 		SW_FLOW_KEY_PUT(match, tp.src,
1369 				htons(icmpv6_key->icmpv6_type), is_mask);
1370 		SW_FLOW_KEY_PUT(match, tp.dst,
1371 				htons(icmpv6_key->icmpv6_code), is_mask);
1372 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1373 	}
1374 
1375 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1376 		const struct ovs_key_nd *nd_key;
1377 
1378 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1379 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1380 			nd_key->nd_target,
1381 			sizeof(match->key->ipv6.nd.target),
1382 			is_mask);
1383 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1384 			nd_key->nd_sll, ETH_ALEN, is_mask);
1385 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1386 				nd_key->nd_tll, ETH_ALEN, is_mask);
1387 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1388 	}
1389 
1390 	if (attrs != 0) {
1391 		OVS_NLERR(log, "Unknown key attributes %llx",
1392 			  (unsigned long long)attrs);
1393 		return -EINVAL;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static void nlattr_set(struct nlattr *attr, u8 val,
1400 		       const struct ovs_len_tbl *tbl)
1401 {
1402 	struct nlattr *nla;
1403 	int rem;
1404 
1405 	/* The nlattr stream should already have been validated */
1406 	nla_for_each_nested(nla, attr, rem) {
1407 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1408 			if (tbl[nla_type(nla)].next)
1409 				tbl = tbl[nla_type(nla)].next;
1410 			nlattr_set(nla, val, tbl);
1411 		} else {
1412 			memset(nla_data(nla), val, nla_len(nla));
1413 		}
1414 
1415 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1416 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1417 	}
1418 }
1419 
1420 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1421 {
1422 	nlattr_set(attr, val, ovs_key_lens);
1423 }
1424 
1425 /**
1426  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1427  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1428  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1429  * does not include any don't care bit.
1430  * @net: Used to determine per-namespace field support.
1431  * @match: receives the extracted flow match information.
1432  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1433  * sequence. The fields should of the packet that triggered the creation
1434  * of this flow.
1435  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1436  * attribute specifies the mask field of the wildcarded flow.
1437  * @log: Boolean to allow kernel error logging.  Normally true, but when
1438  * probing for feature compatibility this should be passed in as false to
1439  * suppress unnecessary error logging.
1440  */
1441 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1442 		      const struct nlattr *nla_key,
1443 		      const struct nlattr *nla_mask,
1444 		      bool log)
1445 {
1446 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1447 	struct nlattr *newmask = NULL;
1448 	u64 key_attrs = 0;
1449 	u64 mask_attrs = 0;
1450 	int err;
1451 
1452 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1453 	if (err)
1454 		return err;
1455 
1456 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1457 	if (err)
1458 		return err;
1459 
1460 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1461 	if (err)
1462 		return err;
1463 
1464 	if (match->mask) {
1465 		if (!nla_mask) {
1466 			/* Create an exact match mask. We need to set to 0xff
1467 			 * all the 'match->mask' fields that have been touched
1468 			 * in 'match->key'. We cannot simply memset
1469 			 * 'match->mask', because padding bytes and fields not
1470 			 * specified in 'match->key' should be left to 0.
1471 			 * Instead, we use a stream of netlink attributes,
1472 			 * copied from 'key' and set to 0xff.
1473 			 * ovs_key_from_nlattrs() will take care of filling
1474 			 * 'match->mask' appropriately.
1475 			 */
1476 			newmask = kmemdup(nla_key,
1477 					  nla_total_size(nla_len(nla_key)),
1478 					  GFP_KERNEL);
1479 			if (!newmask)
1480 				return -ENOMEM;
1481 
1482 			mask_set_nlattr(newmask, 0xff);
1483 
1484 			/* The userspace does not send tunnel attributes that
1485 			 * are 0, but we should not wildcard them nonetheless.
1486 			 */
1487 			if (match->key->tun_proto)
1488 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1489 							 0xff, true);
1490 
1491 			nla_mask = newmask;
1492 		}
1493 
1494 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1495 		if (err)
1496 			goto free_newmask;
1497 
1498 		/* Always match on tci. */
1499 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1500 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1501 
1502 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1503 		if (err)
1504 			goto free_newmask;
1505 
1506 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1507 					   log);
1508 		if (err)
1509 			goto free_newmask;
1510 	}
1511 
1512 	if (!match_validate(match, key_attrs, mask_attrs, log))
1513 		err = -EINVAL;
1514 
1515 free_newmask:
1516 	kfree(newmask);
1517 	return err;
1518 }
1519 
1520 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1521 {
1522 	size_t len;
1523 
1524 	if (!attr)
1525 		return 0;
1526 
1527 	len = nla_len(attr);
1528 	if (len < 1 || len > MAX_UFID_LENGTH) {
1529 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1530 			  nla_len(attr), MAX_UFID_LENGTH);
1531 		return 0;
1532 	}
1533 
1534 	return len;
1535 }
1536 
1537 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1538  * or false otherwise.
1539  */
1540 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1541 		      bool log)
1542 {
1543 	sfid->ufid_len = get_ufid_len(attr, log);
1544 	if (sfid->ufid_len)
1545 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1546 
1547 	return sfid->ufid_len;
1548 }
1549 
1550 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1551 			   const struct sw_flow_key *key, bool log)
1552 {
1553 	struct sw_flow_key *new_key;
1554 
1555 	if (ovs_nla_get_ufid(sfid, ufid, log))
1556 		return 0;
1557 
1558 	/* If UFID was not provided, use unmasked key. */
1559 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1560 	if (!new_key)
1561 		return -ENOMEM;
1562 	memcpy(new_key, key, sizeof(*key));
1563 	sfid->unmasked_key = new_key;
1564 
1565 	return 0;
1566 }
1567 
1568 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1569 {
1570 	return attr ? nla_get_u32(attr) : 0;
1571 }
1572 
1573 /**
1574  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1575  * @net: Network namespace.
1576  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1577  * metadata.
1578  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1579  * attributes.
1580  * @attrs: Bit mask for the netlink attributes included in @a.
1581  * @log: Boolean to allow kernel error logging.  Normally true, but when
1582  * probing for feature compatibility this should be passed in as false to
1583  * suppress unnecessary error logging.
1584  *
1585  * This parses a series of Netlink attributes that form a flow key, which must
1586  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1587  * get the metadata, that is, the parts of the flow key that cannot be
1588  * extracted from the packet itself.
1589  *
1590  * This must be called before the packet key fields are filled in 'key'.
1591  */
1592 
1593 int ovs_nla_get_flow_metadata(struct net *net,
1594 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1595 			      u64 attrs, struct sw_flow_key *key, bool log)
1596 {
1597 	struct sw_flow_match match;
1598 
1599 	memset(&match, 0, sizeof(match));
1600 	match.key = key;
1601 
1602 	key->ct_state = 0;
1603 	key->ct_zone = 0;
1604 	key->ct_orig_proto = 0;
1605 	memset(&key->ct, 0, sizeof(key->ct));
1606 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1607 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1608 
1609 	key->phy.in_port = DP_MAX_PORTS;
1610 
1611 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1612 }
1613 
1614 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1615 			    bool is_mask)
1616 {
1617 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1618 
1619 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1620 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1621 		return -EMSGSIZE;
1622 	return 0;
1623 }
1624 
1625 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1626 			     const struct sw_flow_key *output, bool is_mask,
1627 			     struct sk_buff *skb)
1628 {
1629 	struct ovs_key_ethernet *eth_key;
1630 	struct nlattr *nla;
1631 	struct nlattr *encap = NULL;
1632 	struct nlattr *in_encap = NULL;
1633 
1634 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1635 		goto nla_put_failure;
1636 
1637 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1638 		goto nla_put_failure;
1639 
1640 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1641 		goto nla_put_failure;
1642 
1643 	if ((swkey->tun_proto || is_mask)) {
1644 		const void *opts = NULL;
1645 
1646 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1647 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1648 
1649 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1650 				     swkey->tun_opts_len, swkey->tun_proto))
1651 			goto nla_put_failure;
1652 	}
1653 
1654 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1655 		if (is_mask && (output->phy.in_port == 0xffff))
1656 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1657 				goto nla_put_failure;
1658 	} else {
1659 		u16 upper_u16;
1660 		upper_u16 = !is_mask ? 0 : 0xffff;
1661 
1662 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1663 				(upper_u16 << 16) | output->phy.in_port))
1664 			goto nla_put_failure;
1665 	}
1666 
1667 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1668 		goto nla_put_failure;
1669 
1670 	if (ovs_ct_put_key(swkey, output, skb))
1671 		goto nla_put_failure;
1672 
1673 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1674 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1675 		if (!nla)
1676 			goto nla_put_failure;
1677 
1678 		eth_key = nla_data(nla);
1679 		ether_addr_copy(eth_key->eth_src, output->eth.src);
1680 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1681 
1682 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1683 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1684 				goto nla_put_failure;
1685 			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1686 			if (!swkey->eth.vlan.tci)
1687 				goto unencap;
1688 
1689 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1690 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1691 					goto nla_put_failure;
1692 				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1693 				if (!swkey->eth.cvlan.tci)
1694 					goto unencap;
1695 			}
1696 		}
1697 
1698 		if (swkey->eth.type == htons(ETH_P_802_2)) {
1699 			/*
1700 			* Ethertype 802.2 is represented in the netlink with omitted
1701 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1702 			* 0xffff in the mask attribute.  Ethertype can also
1703 			* be wildcarded.
1704 			*/
1705 			if (is_mask && output->eth.type)
1706 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1707 							output->eth.type))
1708 					goto nla_put_failure;
1709 			goto unencap;
1710 		}
1711 	}
1712 
1713 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1714 		goto nla_put_failure;
1715 
1716 	if (eth_type_vlan(swkey->eth.type)) {
1717 		/* There are 3 VLAN tags, we don't know anything about the rest
1718 		 * of the packet, so truncate here.
1719 		 */
1720 		WARN_ON_ONCE(!(encap && in_encap));
1721 		goto unencap;
1722 	}
1723 
1724 	if (swkey->eth.type == htons(ETH_P_IP)) {
1725 		struct ovs_key_ipv4 *ipv4_key;
1726 
1727 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1728 		if (!nla)
1729 			goto nla_put_failure;
1730 		ipv4_key = nla_data(nla);
1731 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1732 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1733 		ipv4_key->ipv4_proto = output->ip.proto;
1734 		ipv4_key->ipv4_tos = output->ip.tos;
1735 		ipv4_key->ipv4_ttl = output->ip.ttl;
1736 		ipv4_key->ipv4_frag = output->ip.frag;
1737 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1738 		struct ovs_key_ipv6 *ipv6_key;
1739 
1740 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1741 		if (!nla)
1742 			goto nla_put_failure;
1743 		ipv6_key = nla_data(nla);
1744 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1745 				sizeof(ipv6_key->ipv6_src));
1746 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1747 				sizeof(ipv6_key->ipv6_dst));
1748 		ipv6_key->ipv6_label = output->ipv6.label;
1749 		ipv6_key->ipv6_proto = output->ip.proto;
1750 		ipv6_key->ipv6_tclass = output->ip.tos;
1751 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1752 		ipv6_key->ipv6_frag = output->ip.frag;
1753 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1754 		   swkey->eth.type == htons(ETH_P_RARP)) {
1755 		struct ovs_key_arp *arp_key;
1756 
1757 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1758 		if (!nla)
1759 			goto nla_put_failure;
1760 		arp_key = nla_data(nla);
1761 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1762 		arp_key->arp_sip = output->ipv4.addr.src;
1763 		arp_key->arp_tip = output->ipv4.addr.dst;
1764 		arp_key->arp_op = htons(output->ip.proto);
1765 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1766 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1767 	} else if (eth_p_mpls(swkey->eth.type)) {
1768 		struct ovs_key_mpls *mpls_key;
1769 
1770 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1771 		if (!nla)
1772 			goto nla_put_failure;
1773 		mpls_key = nla_data(nla);
1774 		mpls_key->mpls_lse = output->mpls.top_lse;
1775 	}
1776 
1777 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1778 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1779 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1780 
1781 		if (swkey->ip.proto == IPPROTO_TCP) {
1782 			struct ovs_key_tcp *tcp_key;
1783 
1784 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1785 			if (!nla)
1786 				goto nla_put_failure;
1787 			tcp_key = nla_data(nla);
1788 			tcp_key->tcp_src = output->tp.src;
1789 			tcp_key->tcp_dst = output->tp.dst;
1790 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1791 					 output->tp.flags))
1792 				goto nla_put_failure;
1793 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1794 			struct ovs_key_udp *udp_key;
1795 
1796 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1797 			if (!nla)
1798 				goto nla_put_failure;
1799 			udp_key = nla_data(nla);
1800 			udp_key->udp_src = output->tp.src;
1801 			udp_key->udp_dst = output->tp.dst;
1802 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1803 			struct ovs_key_sctp *sctp_key;
1804 
1805 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1806 			if (!nla)
1807 				goto nla_put_failure;
1808 			sctp_key = nla_data(nla);
1809 			sctp_key->sctp_src = output->tp.src;
1810 			sctp_key->sctp_dst = output->tp.dst;
1811 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1812 			   swkey->ip.proto == IPPROTO_ICMP) {
1813 			struct ovs_key_icmp *icmp_key;
1814 
1815 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1816 			if (!nla)
1817 				goto nla_put_failure;
1818 			icmp_key = nla_data(nla);
1819 			icmp_key->icmp_type = ntohs(output->tp.src);
1820 			icmp_key->icmp_code = ntohs(output->tp.dst);
1821 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1822 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1823 			struct ovs_key_icmpv6 *icmpv6_key;
1824 
1825 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1826 						sizeof(*icmpv6_key));
1827 			if (!nla)
1828 				goto nla_put_failure;
1829 			icmpv6_key = nla_data(nla);
1830 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1831 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1832 
1833 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1834 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1835 				struct ovs_key_nd *nd_key;
1836 
1837 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1838 				if (!nla)
1839 					goto nla_put_failure;
1840 				nd_key = nla_data(nla);
1841 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1842 							sizeof(nd_key->nd_target));
1843 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1844 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1845 			}
1846 		}
1847 	}
1848 
1849 unencap:
1850 	if (in_encap)
1851 		nla_nest_end(skb, in_encap);
1852 	if (encap)
1853 		nla_nest_end(skb, encap);
1854 
1855 	return 0;
1856 
1857 nla_put_failure:
1858 	return -EMSGSIZE;
1859 }
1860 
1861 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1862 		    const struct sw_flow_key *output, int attr, bool is_mask,
1863 		    struct sk_buff *skb)
1864 {
1865 	int err;
1866 	struct nlattr *nla;
1867 
1868 	nla = nla_nest_start(skb, attr);
1869 	if (!nla)
1870 		return -EMSGSIZE;
1871 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1872 	if (err)
1873 		return err;
1874 	nla_nest_end(skb, nla);
1875 
1876 	return 0;
1877 }
1878 
1879 /* Called with ovs_mutex or RCU read lock. */
1880 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1881 {
1882 	if (ovs_identifier_is_ufid(&flow->id))
1883 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1884 			       flow->id.ufid);
1885 
1886 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1887 			       OVS_FLOW_ATTR_KEY, false, skb);
1888 }
1889 
1890 /* Called with ovs_mutex or RCU read lock. */
1891 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1892 {
1893 	return ovs_nla_put_key(&flow->key, &flow->key,
1894 				OVS_FLOW_ATTR_KEY, false, skb);
1895 }
1896 
1897 /* Called with ovs_mutex or RCU read lock. */
1898 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1899 {
1900 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1901 				OVS_FLOW_ATTR_MASK, true, skb);
1902 }
1903 
1904 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1905 
1906 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1907 {
1908 	struct sw_flow_actions *sfa;
1909 
1910 	if (size > MAX_ACTIONS_BUFSIZE) {
1911 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1912 		return ERR_PTR(-EINVAL);
1913 	}
1914 
1915 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1916 	if (!sfa)
1917 		return ERR_PTR(-ENOMEM);
1918 
1919 	sfa->actions_len = 0;
1920 	return sfa;
1921 }
1922 
1923 static void ovs_nla_free_set_action(const struct nlattr *a)
1924 {
1925 	const struct nlattr *ovs_key = nla_data(a);
1926 	struct ovs_tunnel_info *ovs_tun;
1927 
1928 	switch (nla_type(ovs_key)) {
1929 	case OVS_KEY_ATTR_TUNNEL_INFO:
1930 		ovs_tun = nla_data(ovs_key);
1931 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1932 		break;
1933 	}
1934 }
1935 
1936 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1937 {
1938 	const struct nlattr *a;
1939 	int rem;
1940 
1941 	if (!sf_acts)
1942 		return;
1943 
1944 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1945 		switch (nla_type(a)) {
1946 		case OVS_ACTION_ATTR_SET:
1947 			ovs_nla_free_set_action(a);
1948 			break;
1949 		case OVS_ACTION_ATTR_CT:
1950 			ovs_ct_free_action(a);
1951 			break;
1952 		}
1953 	}
1954 
1955 	kfree(sf_acts);
1956 }
1957 
1958 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1959 {
1960 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1961 }
1962 
1963 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1964  * The caller must hold rcu_read_lock for this to be sensible. */
1965 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1966 {
1967 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1968 }
1969 
1970 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1971 				       int attr_len, bool log)
1972 {
1973 
1974 	struct sw_flow_actions *acts;
1975 	int new_acts_size;
1976 	int req_size = NLA_ALIGN(attr_len);
1977 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1978 					(*sfa)->actions_len;
1979 
1980 	if (req_size <= (ksize(*sfa) - next_offset))
1981 		goto out;
1982 
1983 	new_acts_size = ksize(*sfa) * 2;
1984 
1985 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1986 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1987 			return ERR_PTR(-EMSGSIZE);
1988 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1989 	}
1990 
1991 	acts = nla_alloc_flow_actions(new_acts_size, log);
1992 	if (IS_ERR(acts))
1993 		return (void *)acts;
1994 
1995 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1996 	acts->actions_len = (*sfa)->actions_len;
1997 	acts->orig_len = (*sfa)->orig_len;
1998 	kfree(*sfa);
1999 	*sfa = acts;
2000 
2001 out:
2002 	(*sfa)->actions_len += req_size;
2003 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2004 }
2005 
2006 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2007 				   int attrtype, void *data, int len, bool log)
2008 {
2009 	struct nlattr *a;
2010 
2011 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2012 	if (IS_ERR(a))
2013 		return a;
2014 
2015 	a->nla_type = attrtype;
2016 	a->nla_len = nla_attr_size(len);
2017 
2018 	if (data)
2019 		memcpy(nla_data(a), data, len);
2020 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2021 
2022 	return a;
2023 }
2024 
2025 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2026 		       int len, bool log)
2027 {
2028 	struct nlattr *a;
2029 
2030 	a = __add_action(sfa, attrtype, data, len, log);
2031 
2032 	return PTR_ERR_OR_ZERO(a);
2033 }
2034 
2035 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2036 					  int attrtype, bool log)
2037 {
2038 	int used = (*sfa)->actions_len;
2039 	int err;
2040 
2041 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2042 	if (err)
2043 		return err;
2044 
2045 	return used;
2046 }
2047 
2048 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2049 					 int st_offset)
2050 {
2051 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2052 							       st_offset);
2053 
2054 	a->nla_len = sfa->actions_len - st_offset;
2055 }
2056 
2057 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2058 				  const struct sw_flow_key *key,
2059 				  struct sw_flow_actions **sfa,
2060 				  __be16 eth_type, __be16 vlan_tci, bool log);
2061 
2062 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2063 				    const struct sw_flow_key *key,
2064 				    struct sw_flow_actions **sfa,
2065 				    __be16 eth_type, __be16 vlan_tci,
2066 				    bool log, bool last)
2067 {
2068 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2069 	const struct nlattr *probability, *actions;
2070 	const struct nlattr *a;
2071 	int rem, start, err;
2072 	struct sample_arg arg;
2073 
2074 	memset(attrs, 0, sizeof(attrs));
2075 	nla_for_each_nested(a, attr, rem) {
2076 		int type = nla_type(a);
2077 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2078 			return -EINVAL;
2079 		attrs[type] = a;
2080 	}
2081 	if (rem)
2082 		return -EINVAL;
2083 
2084 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2085 	if (!probability || nla_len(probability) != sizeof(u32))
2086 		return -EINVAL;
2087 
2088 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2089 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2090 		return -EINVAL;
2091 
2092 	/* validation done, copy sample action. */
2093 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2094 	if (start < 0)
2095 		return start;
2096 
2097 	/* When both skb and flow may be changed, put the sample
2098 	 * into a deferred fifo. On the other hand, if only skb
2099 	 * may be modified, the actions can be executed in place.
2100 	 *
2101 	 * Do this analysis at the flow installation time.
2102 	 * Set 'clone_action->exec' to true if the actions can be
2103 	 * executed without being deferred.
2104 	 *
2105 	 * If the sample is the last action, it can always be excuted
2106 	 * rather than deferred.
2107 	 */
2108 	arg.exec = last || !actions_may_change_flow(actions);
2109 	arg.probability = nla_get_u32(probability);
2110 
2111 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2112 				 log);
2113 	if (err)
2114 		return err;
2115 
2116 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2117 				     eth_type, vlan_tci, log);
2118 
2119 	if (err)
2120 		return err;
2121 
2122 	add_nested_action_end(*sfa, start);
2123 
2124 	return 0;
2125 }
2126 
2127 void ovs_match_init(struct sw_flow_match *match,
2128 		    struct sw_flow_key *key,
2129 		    bool reset_key,
2130 		    struct sw_flow_mask *mask)
2131 {
2132 	memset(match, 0, sizeof(*match));
2133 	match->key = key;
2134 	match->mask = mask;
2135 
2136 	if (reset_key)
2137 		memset(key, 0, sizeof(*key));
2138 
2139 	if (mask) {
2140 		memset(&mask->key, 0, sizeof(mask->key));
2141 		mask->range.start = mask->range.end = 0;
2142 	}
2143 }
2144 
2145 static int validate_geneve_opts(struct sw_flow_key *key)
2146 {
2147 	struct geneve_opt *option;
2148 	int opts_len = key->tun_opts_len;
2149 	bool crit_opt = false;
2150 
2151 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2152 	while (opts_len > 0) {
2153 		int len;
2154 
2155 		if (opts_len < sizeof(*option))
2156 			return -EINVAL;
2157 
2158 		len = sizeof(*option) + option->length * 4;
2159 		if (len > opts_len)
2160 			return -EINVAL;
2161 
2162 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2163 
2164 		option = (struct geneve_opt *)((u8 *)option + len);
2165 		opts_len -= len;
2166 	};
2167 
2168 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2169 
2170 	return 0;
2171 }
2172 
2173 static int validate_and_copy_set_tun(const struct nlattr *attr,
2174 				     struct sw_flow_actions **sfa, bool log)
2175 {
2176 	struct sw_flow_match match;
2177 	struct sw_flow_key key;
2178 	struct metadata_dst *tun_dst;
2179 	struct ip_tunnel_info *tun_info;
2180 	struct ovs_tunnel_info *ovs_tun;
2181 	struct nlattr *a;
2182 	int err = 0, start, opts_type;
2183 
2184 	ovs_match_init(&match, &key, true, NULL);
2185 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2186 	if (opts_type < 0)
2187 		return opts_type;
2188 
2189 	if (key.tun_opts_len) {
2190 		switch (opts_type) {
2191 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2192 			err = validate_geneve_opts(&key);
2193 			if (err < 0)
2194 				return err;
2195 			break;
2196 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2197 			break;
2198 		}
2199 	};
2200 
2201 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2202 	if (start < 0)
2203 		return start;
2204 
2205 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2206 				     GFP_KERNEL);
2207 
2208 	if (!tun_dst)
2209 		return -ENOMEM;
2210 
2211 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2212 	if (err) {
2213 		dst_release((struct dst_entry *)tun_dst);
2214 		return err;
2215 	}
2216 
2217 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2218 			 sizeof(*ovs_tun), log);
2219 	if (IS_ERR(a)) {
2220 		dst_release((struct dst_entry *)tun_dst);
2221 		return PTR_ERR(a);
2222 	}
2223 
2224 	ovs_tun = nla_data(a);
2225 	ovs_tun->tun_dst = tun_dst;
2226 
2227 	tun_info = &tun_dst->u.tun_info;
2228 	tun_info->mode = IP_TUNNEL_INFO_TX;
2229 	if (key.tun_proto == AF_INET6)
2230 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2231 	tun_info->key = key.tun_key;
2232 
2233 	/* We need to store the options in the action itself since
2234 	 * everything else will go away after flow setup. We can append
2235 	 * it to tun_info and then point there.
2236 	 */
2237 	ip_tunnel_info_opts_set(tun_info,
2238 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2239 				key.tun_opts_len);
2240 	add_nested_action_end(*sfa, start);
2241 
2242 	return err;
2243 }
2244 
2245 /* Return false if there are any non-masked bits set.
2246  * Mask follows data immediately, before any netlink padding.
2247  */
2248 static bool validate_masked(u8 *data, int len)
2249 {
2250 	u8 *mask = data + len;
2251 
2252 	while (len--)
2253 		if (*data++ & ~*mask++)
2254 			return false;
2255 
2256 	return true;
2257 }
2258 
2259 static int validate_set(const struct nlattr *a,
2260 			const struct sw_flow_key *flow_key,
2261 			struct sw_flow_actions **sfa, bool *skip_copy,
2262 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2263 {
2264 	const struct nlattr *ovs_key = nla_data(a);
2265 	int key_type = nla_type(ovs_key);
2266 	size_t key_len;
2267 
2268 	/* There can be only one key in a action */
2269 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2270 		return -EINVAL;
2271 
2272 	key_len = nla_len(ovs_key);
2273 	if (masked)
2274 		key_len /= 2;
2275 
2276 	if (key_type > OVS_KEY_ATTR_MAX ||
2277 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2278 		return -EINVAL;
2279 
2280 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2281 		return -EINVAL;
2282 
2283 	switch (key_type) {
2284 	const struct ovs_key_ipv4 *ipv4_key;
2285 	const struct ovs_key_ipv6 *ipv6_key;
2286 	int err;
2287 
2288 	case OVS_KEY_ATTR_PRIORITY:
2289 	case OVS_KEY_ATTR_SKB_MARK:
2290 	case OVS_KEY_ATTR_CT_MARK:
2291 	case OVS_KEY_ATTR_CT_LABELS:
2292 		break;
2293 
2294 	case OVS_KEY_ATTR_ETHERNET:
2295 		if (mac_proto != MAC_PROTO_ETHERNET)
2296 			return -EINVAL;
2297 		break;
2298 
2299 	case OVS_KEY_ATTR_TUNNEL:
2300 		if (masked)
2301 			return -EINVAL; /* Masked tunnel set not supported. */
2302 
2303 		*skip_copy = true;
2304 		err = validate_and_copy_set_tun(a, sfa, log);
2305 		if (err)
2306 			return err;
2307 		break;
2308 
2309 	case OVS_KEY_ATTR_IPV4:
2310 		if (eth_type != htons(ETH_P_IP))
2311 			return -EINVAL;
2312 
2313 		ipv4_key = nla_data(ovs_key);
2314 
2315 		if (masked) {
2316 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2317 
2318 			/* Non-writeable fields. */
2319 			if (mask->ipv4_proto || mask->ipv4_frag)
2320 				return -EINVAL;
2321 		} else {
2322 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2323 				return -EINVAL;
2324 
2325 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2326 				return -EINVAL;
2327 		}
2328 		break;
2329 
2330 	case OVS_KEY_ATTR_IPV6:
2331 		if (eth_type != htons(ETH_P_IPV6))
2332 			return -EINVAL;
2333 
2334 		ipv6_key = nla_data(ovs_key);
2335 
2336 		if (masked) {
2337 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2338 
2339 			/* Non-writeable fields. */
2340 			if (mask->ipv6_proto || mask->ipv6_frag)
2341 				return -EINVAL;
2342 
2343 			/* Invalid bits in the flow label mask? */
2344 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2345 				return -EINVAL;
2346 		} else {
2347 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2348 				return -EINVAL;
2349 
2350 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2351 				return -EINVAL;
2352 		}
2353 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2354 			return -EINVAL;
2355 
2356 		break;
2357 
2358 	case OVS_KEY_ATTR_TCP:
2359 		if ((eth_type != htons(ETH_P_IP) &&
2360 		     eth_type != htons(ETH_P_IPV6)) ||
2361 		    flow_key->ip.proto != IPPROTO_TCP)
2362 			return -EINVAL;
2363 
2364 		break;
2365 
2366 	case OVS_KEY_ATTR_UDP:
2367 		if ((eth_type != htons(ETH_P_IP) &&
2368 		     eth_type != htons(ETH_P_IPV6)) ||
2369 		    flow_key->ip.proto != IPPROTO_UDP)
2370 			return -EINVAL;
2371 
2372 		break;
2373 
2374 	case OVS_KEY_ATTR_MPLS:
2375 		if (!eth_p_mpls(eth_type))
2376 			return -EINVAL;
2377 		break;
2378 
2379 	case OVS_KEY_ATTR_SCTP:
2380 		if ((eth_type != htons(ETH_P_IP) &&
2381 		     eth_type != htons(ETH_P_IPV6)) ||
2382 		    flow_key->ip.proto != IPPROTO_SCTP)
2383 			return -EINVAL;
2384 
2385 		break;
2386 
2387 	default:
2388 		return -EINVAL;
2389 	}
2390 
2391 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2392 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2393 		int start, len = key_len * 2;
2394 		struct nlattr *at;
2395 
2396 		*skip_copy = true;
2397 
2398 		start = add_nested_action_start(sfa,
2399 						OVS_ACTION_ATTR_SET_TO_MASKED,
2400 						log);
2401 		if (start < 0)
2402 			return start;
2403 
2404 		at = __add_action(sfa, key_type, NULL, len, log);
2405 		if (IS_ERR(at))
2406 			return PTR_ERR(at);
2407 
2408 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2409 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2410 		/* Clear non-writeable bits from otherwise writeable fields. */
2411 		if (key_type == OVS_KEY_ATTR_IPV6) {
2412 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2413 
2414 			mask->ipv6_label &= htonl(0x000FFFFF);
2415 		}
2416 		add_nested_action_end(*sfa, start);
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int validate_userspace(const struct nlattr *attr)
2423 {
2424 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2425 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2426 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2427 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2428 	};
2429 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2430 	int error;
2431 
2432 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2433 				 userspace_policy, NULL);
2434 	if (error)
2435 		return error;
2436 
2437 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2438 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2439 		return -EINVAL;
2440 
2441 	return 0;
2442 }
2443 
2444 static int copy_action(const struct nlattr *from,
2445 		       struct sw_flow_actions **sfa, bool log)
2446 {
2447 	int totlen = NLA_ALIGN(from->nla_len);
2448 	struct nlattr *to;
2449 
2450 	to = reserve_sfa_size(sfa, from->nla_len, log);
2451 	if (IS_ERR(to))
2452 		return PTR_ERR(to);
2453 
2454 	memcpy(to, from, totlen);
2455 	return 0;
2456 }
2457 
2458 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2459 				  const struct sw_flow_key *key,
2460 				  struct sw_flow_actions **sfa,
2461 				  __be16 eth_type, __be16 vlan_tci, bool log)
2462 {
2463 	u8 mac_proto = ovs_key_mac_proto(key);
2464 	const struct nlattr *a;
2465 	int rem, err;
2466 
2467 	nla_for_each_nested(a, attr, rem) {
2468 		/* Expected argument lengths, (u32)-1 for variable length. */
2469 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2470 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2471 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2472 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2473 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2474 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2475 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2476 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2477 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2478 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2479 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2480 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2481 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2482 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2483 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2484 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2485 		};
2486 		const struct ovs_action_push_vlan *vlan;
2487 		int type = nla_type(a);
2488 		bool skip_copy;
2489 
2490 		if (type > OVS_ACTION_ATTR_MAX ||
2491 		    (action_lens[type] != nla_len(a) &&
2492 		     action_lens[type] != (u32)-1))
2493 			return -EINVAL;
2494 
2495 		skip_copy = false;
2496 		switch (type) {
2497 		case OVS_ACTION_ATTR_UNSPEC:
2498 			return -EINVAL;
2499 
2500 		case OVS_ACTION_ATTR_USERSPACE:
2501 			err = validate_userspace(a);
2502 			if (err)
2503 				return err;
2504 			break;
2505 
2506 		case OVS_ACTION_ATTR_OUTPUT:
2507 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2508 				return -EINVAL;
2509 			break;
2510 
2511 		case OVS_ACTION_ATTR_TRUNC: {
2512 			const struct ovs_action_trunc *trunc = nla_data(a);
2513 
2514 			if (trunc->max_len < ETH_HLEN)
2515 				return -EINVAL;
2516 			break;
2517 		}
2518 
2519 		case OVS_ACTION_ATTR_HASH: {
2520 			const struct ovs_action_hash *act_hash = nla_data(a);
2521 
2522 			switch (act_hash->hash_alg) {
2523 			case OVS_HASH_ALG_L4:
2524 				break;
2525 			default:
2526 				return  -EINVAL;
2527 			}
2528 
2529 			break;
2530 		}
2531 
2532 		case OVS_ACTION_ATTR_POP_VLAN:
2533 			if (mac_proto != MAC_PROTO_ETHERNET)
2534 				return -EINVAL;
2535 			vlan_tci = htons(0);
2536 			break;
2537 
2538 		case OVS_ACTION_ATTR_PUSH_VLAN:
2539 			if (mac_proto != MAC_PROTO_ETHERNET)
2540 				return -EINVAL;
2541 			vlan = nla_data(a);
2542 			if (!eth_type_vlan(vlan->vlan_tpid))
2543 				return -EINVAL;
2544 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2545 				return -EINVAL;
2546 			vlan_tci = vlan->vlan_tci;
2547 			break;
2548 
2549 		case OVS_ACTION_ATTR_RECIRC:
2550 			break;
2551 
2552 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2553 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2554 
2555 			if (!eth_p_mpls(mpls->mpls_ethertype))
2556 				return -EINVAL;
2557 			/* Prohibit push MPLS other than to a white list
2558 			 * for packets that have a known tag order.
2559 			 */
2560 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2561 			    (eth_type != htons(ETH_P_IP) &&
2562 			     eth_type != htons(ETH_P_IPV6) &&
2563 			     eth_type != htons(ETH_P_ARP) &&
2564 			     eth_type != htons(ETH_P_RARP) &&
2565 			     !eth_p_mpls(eth_type)))
2566 				return -EINVAL;
2567 			eth_type = mpls->mpls_ethertype;
2568 			break;
2569 		}
2570 
2571 		case OVS_ACTION_ATTR_POP_MPLS:
2572 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2573 			    !eth_p_mpls(eth_type))
2574 				return -EINVAL;
2575 
2576 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2577 			 * as there is no check here to ensure that the new
2578 			 * eth_type is valid and thus set actions could
2579 			 * write off the end of the packet or otherwise
2580 			 * corrupt it.
2581 			 *
2582 			 * Support for these actions is planned using packet
2583 			 * recirculation.
2584 			 */
2585 			eth_type = htons(0);
2586 			break;
2587 
2588 		case OVS_ACTION_ATTR_SET:
2589 			err = validate_set(a, key, sfa,
2590 					   &skip_copy, mac_proto, eth_type,
2591 					   false, log);
2592 			if (err)
2593 				return err;
2594 			break;
2595 
2596 		case OVS_ACTION_ATTR_SET_MASKED:
2597 			err = validate_set(a, key, sfa,
2598 					   &skip_copy, mac_proto, eth_type,
2599 					   true, log);
2600 			if (err)
2601 				return err;
2602 			break;
2603 
2604 		case OVS_ACTION_ATTR_SAMPLE: {
2605 			bool last = nla_is_last(a, rem);
2606 
2607 			err = validate_and_copy_sample(net, a, key, sfa,
2608 						       eth_type, vlan_tci,
2609 						       log, last);
2610 			if (err)
2611 				return err;
2612 			skip_copy = true;
2613 			break;
2614 		}
2615 
2616 		case OVS_ACTION_ATTR_CT:
2617 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2618 			if (err)
2619 				return err;
2620 			skip_copy = true;
2621 			break;
2622 
2623 		case OVS_ACTION_ATTR_PUSH_ETH:
2624 			/* Disallow pushing an Ethernet header if one
2625 			 * is already present */
2626 			if (mac_proto != MAC_PROTO_NONE)
2627 				return -EINVAL;
2628 			mac_proto = MAC_PROTO_NONE;
2629 			break;
2630 
2631 		case OVS_ACTION_ATTR_POP_ETH:
2632 			if (mac_proto != MAC_PROTO_ETHERNET)
2633 				return -EINVAL;
2634 			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2635 				return -EINVAL;
2636 			mac_proto = MAC_PROTO_ETHERNET;
2637 			break;
2638 
2639 		default:
2640 			OVS_NLERR(log, "Unknown Action type %d", type);
2641 			return -EINVAL;
2642 		}
2643 		if (!skip_copy) {
2644 			err = copy_action(a, sfa, log);
2645 			if (err)
2646 				return err;
2647 		}
2648 	}
2649 
2650 	if (rem > 0)
2651 		return -EINVAL;
2652 
2653 	return 0;
2654 }
2655 
2656 /* 'key' must be the masked key. */
2657 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2658 			 const struct sw_flow_key *key,
2659 			 struct sw_flow_actions **sfa, bool log)
2660 {
2661 	int err;
2662 
2663 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2664 	if (IS_ERR(*sfa))
2665 		return PTR_ERR(*sfa);
2666 
2667 	(*sfa)->orig_len = nla_len(attr);
2668 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
2669 				     key->eth.vlan.tci, log);
2670 	if (err)
2671 		ovs_nla_free_flow_actions(*sfa);
2672 
2673 	return err;
2674 }
2675 
2676 static int sample_action_to_attr(const struct nlattr *attr,
2677 				 struct sk_buff *skb)
2678 {
2679 	struct nlattr *start, *ac_start = NULL, *sample_arg;
2680 	int err = 0, rem = nla_len(attr);
2681 	const struct sample_arg *arg;
2682 	struct nlattr *actions;
2683 
2684 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2685 	if (!start)
2686 		return -EMSGSIZE;
2687 
2688 	sample_arg = nla_data(attr);
2689 	arg = nla_data(sample_arg);
2690 	actions = nla_next(sample_arg, &rem);
2691 
2692 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
2693 		err = -EMSGSIZE;
2694 		goto out;
2695 	}
2696 
2697 	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2698 	if (!ac_start) {
2699 		err = -EMSGSIZE;
2700 		goto out;
2701 	}
2702 
2703 	err = ovs_nla_put_actions(actions, rem, skb);
2704 
2705 out:
2706 	if (err) {
2707 		nla_nest_cancel(skb, ac_start);
2708 		nla_nest_cancel(skb, start);
2709 	} else {
2710 		nla_nest_end(skb, ac_start);
2711 		nla_nest_end(skb, start);
2712 	}
2713 
2714 	return err;
2715 }
2716 
2717 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2718 {
2719 	const struct nlattr *ovs_key = nla_data(a);
2720 	int key_type = nla_type(ovs_key);
2721 	struct nlattr *start;
2722 	int err;
2723 
2724 	switch (key_type) {
2725 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2726 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2727 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2728 
2729 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2730 		if (!start)
2731 			return -EMSGSIZE;
2732 
2733 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2734 					ip_tunnel_info_opts(tun_info),
2735 					tun_info->options_len,
2736 					ip_tunnel_info_af(tun_info));
2737 		if (err)
2738 			return err;
2739 		nla_nest_end(skb, start);
2740 		break;
2741 	}
2742 	default:
2743 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2744 			return -EMSGSIZE;
2745 		break;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2752 						struct sk_buff *skb)
2753 {
2754 	const struct nlattr *ovs_key = nla_data(a);
2755 	struct nlattr *nla;
2756 	size_t key_len = nla_len(ovs_key) / 2;
2757 
2758 	/* Revert the conversion we did from a non-masked set action to
2759 	 * masked set action.
2760 	 */
2761 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2762 	if (!nla)
2763 		return -EMSGSIZE;
2764 
2765 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2766 		return -EMSGSIZE;
2767 
2768 	nla_nest_end(skb, nla);
2769 	return 0;
2770 }
2771 
2772 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2773 {
2774 	const struct nlattr *a;
2775 	int rem, err;
2776 
2777 	nla_for_each_attr(a, attr, len, rem) {
2778 		int type = nla_type(a);
2779 
2780 		switch (type) {
2781 		case OVS_ACTION_ATTR_SET:
2782 			err = set_action_to_attr(a, skb);
2783 			if (err)
2784 				return err;
2785 			break;
2786 
2787 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2788 			err = masked_set_action_to_set_action_attr(a, skb);
2789 			if (err)
2790 				return err;
2791 			break;
2792 
2793 		case OVS_ACTION_ATTR_SAMPLE:
2794 			err = sample_action_to_attr(a, skb);
2795 			if (err)
2796 				return err;
2797 			break;
2798 
2799 		case OVS_ACTION_ATTR_CT:
2800 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2801 			if (err)
2802 				return err;
2803 			break;
2804 
2805 		default:
2806 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2807 				return -EMSGSIZE;
2808 			break;
2809 		}
2810 	}
2811 
2812 	return 0;
2813 }
2814