1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 52 #include "flow_netlink.h" 53 54 struct ovs_len_tbl { 55 int len; 56 const struct ovs_len_tbl *next; 57 }; 58 59 #define OVS_ATTR_NESTED -1 60 #define OVS_ATTR_VARIABLE -2 61 62 static void update_range(struct sw_flow_match *match, 63 size_t offset, size_t size, bool is_mask) 64 { 65 struct sw_flow_key_range *range; 66 size_t start = rounddown(offset, sizeof(long)); 67 size_t end = roundup(offset + size, sizeof(long)); 68 69 if (!is_mask) 70 range = &match->range; 71 else 72 range = &match->mask->range; 73 74 if (range->start == range->end) { 75 range->start = start; 76 range->end = end; 77 return; 78 } 79 80 if (range->start > start) 81 range->start = start; 82 83 if (range->end < end) 84 range->end = end; 85 } 86 87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 88 do { \ 89 update_range(match, offsetof(struct sw_flow_key, field), \ 90 sizeof((match)->key->field), is_mask); \ 91 if (is_mask) \ 92 (match)->mask->key.field = value; \ 93 else \ 94 (match)->key->field = value; \ 95 } while (0) 96 97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 98 do { \ 99 update_range(match, offset, len, is_mask); \ 100 if (is_mask) \ 101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 102 len); \ 103 else \ 104 memcpy((u8 *)(match)->key + offset, value_p, len); \ 105 } while (0) 106 107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 109 value_p, len, is_mask) 110 111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 112 do { \ 113 update_range(match, offsetof(struct sw_flow_key, field), \ 114 sizeof((match)->key->field), is_mask); \ 115 if (is_mask) \ 116 memset((u8 *)&(match)->mask->key.field, value, \ 117 sizeof((match)->mask->key.field)); \ 118 else \ 119 memset((u8 *)&(match)->key->field, value, \ 120 sizeof((match)->key->field)); \ 121 } while (0) 122 123 static bool match_validate(const struct sw_flow_match *match, 124 u64 key_attrs, u64 mask_attrs, bool log) 125 { 126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; 127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 128 129 /* The following mask attributes allowed only if they 130 * pass the validation tests. */ 131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 132 | (1 << OVS_KEY_ATTR_IPV6) 133 | (1 << OVS_KEY_ATTR_TCP) 134 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 135 | (1 << OVS_KEY_ATTR_UDP) 136 | (1 << OVS_KEY_ATTR_SCTP) 137 | (1 << OVS_KEY_ATTR_ICMP) 138 | (1 << OVS_KEY_ATTR_ICMPV6) 139 | (1 << OVS_KEY_ATTR_ARP) 140 | (1 << OVS_KEY_ATTR_ND) 141 | (1 << OVS_KEY_ATTR_MPLS)); 142 143 /* Always allowed mask fields. */ 144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 145 | (1 << OVS_KEY_ATTR_IN_PORT) 146 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 147 148 /* Check key attributes. */ 149 if (match->key->eth.type == htons(ETH_P_ARP) 150 || match->key->eth.type == htons(ETH_P_RARP)) { 151 key_expected |= 1 << OVS_KEY_ATTR_ARP; 152 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 154 } 155 156 if (eth_p_mpls(match->key->eth.type)) { 157 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 158 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 160 } 161 162 if (match->key->eth.type == htons(ETH_P_IP)) { 163 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 164 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 166 167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 168 if (match->key->ip.proto == IPPROTO_UDP) { 169 key_expected |= 1 << OVS_KEY_ATTR_UDP; 170 if (match->mask && (match->mask->key.ip.proto == 0xff)) 171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 172 } 173 174 if (match->key->ip.proto == IPPROTO_SCTP) { 175 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 176 if (match->mask && (match->mask->key.ip.proto == 0xff)) 177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 178 } 179 180 if (match->key->ip.proto == IPPROTO_TCP) { 181 key_expected |= 1 << OVS_KEY_ATTR_TCP; 182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 183 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 186 } 187 } 188 189 if (match->key->ip.proto == IPPROTO_ICMP) { 190 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 191 if (match->mask && (match->mask->key.ip.proto == 0xff)) 192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 193 } 194 } 195 } 196 197 if (match->key->eth.type == htons(ETH_P_IPV6)) { 198 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 199 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 201 202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 203 if (match->key->ip.proto == IPPROTO_UDP) { 204 key_expected |= 1 << OVS_KEY_ATTR_UDP; 205 if (match->mask && (match->mask->key.ip.proto == 0xff)) 206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 207 } 208 209 if (match->key->ip.proto == IPPROTO_SCTP) { 210 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 211 if (match->mask && (match->mask->key.ip.proto == 0xff)) 212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 213 } 214 215 if (match->key->ip.proto == IPPROTO_TCP) { 216 key_expected |= 1 << OVS_KEY_ATTR_TCP; 217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 218 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 221 } 222 } 223 224 if (match->key->ip.proto == IPPROTO_ICMPV6) { 225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 226 if (match->mask && (match->mask->key.ip.proto == 0xff)) 227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 228 229 if (match->key->tp.src == 230 htons(NDISC_NEIGHBOUR_SOLICITATION) || 231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 232 key_expected |= 1 << OVS_KEY_ATTR_ND; 233 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 234 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 235 } 236 } 237 } 238 } 239 240 if ((key_attrs & key_expected) != key_expected) { 241 /* Key attributes check failed. */ 242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 243 (unsigned long long)key_attrs, 244 (unsigned long long)key_expected); 245 return false; 246 } 247 248 if ((mask_attrs & mask_allowed) != mask_attrs) { 249 /* Mask attributes check failed. */ 250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 251 (unsigned long long)mask_attrs, 252 (unsigned long long)mask_allowed); 253 return false; 254 } 255 256 return true; 257 } 258 259 size_t ovs_tun_key_attr_size(void) 260 { 261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 262 * updating this function. 263 */ 264 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 275 */ 276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 278 } 279 280 size_t ovs_key_attr_size(void) 281 { 282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 283 * updating this function. 284 */ 285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26); 286 287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 289 + ovs_tun_key_attr_size() 290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 306 } 307 308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 310 }; 311 312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 325 .next = ovs_vxlan_ext_key_lens }, 326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 328 }; 329 330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 352 .next = ovs_tunnel_key_lens, }, 353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 358 }; 359 360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 361 { 362 return expected_len == attr_len || 363 expected_len == OVS_ATTR_NESTED || 364 expected_len == OVS_ATTR_VARIABLE; 365 } 366 367 static bool is_all_zero(const u8 *fp, size_t size) 368 { 369 int i; 370 371 if (!fp) 372 return false; 373 374 for (i = 0; i < size; i++) 375 if (fp[i]) 376 return false; 377 378 return true; 379 } 380 381 static int __parse_flow_nlattrs(const struct nlattr *attr, 382 const struct nlattr *a[], 383 u64 *attrsp, bool log, bool nz) 384 { 385 const struct nlattr *nla; 386 u64 attrs; 387 int rem; 388 389 attrs = *attrsp; 390 nla_for_each_nested(nla, attr, rem) { 391 u16 type = nla_type(nla); 392 int expected_len; 393 394 if (type > OVS_KEY_ATTR_MAX) { 395 OVS_NLERR(log, "Key type %d is out of range max %d", 396 type, OVS_KEY_ATTR_MAX); 397 return -EINVAL; 398 } 399 400 if (attrs & (1 << type)) { 401 OVS_NLERR(log, "Duplicate key (type %d).", type); 402 return -EINVAL; 403 } 404 405 expected_len = ovs_key_lens[type].len; 406 if (!check_attr_len(nla_len(nla), expected_len)) { 407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 408 type, nla_len(nla), expected_len); 409 return -EINVAL; 410 } 411 412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 413 attrs |= 1 << type; 414 a[type] = nla; 415 } 416 } 417 if (rem) { 418 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 419 return -EINVAL; 420 } 421 422 *attrsp = attrs; 423 return 0; 424 } 425 426 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 427 const struct nlattr *a[], u64 *attrsp, 428 bool log) 429 { 430 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 431 } 432 433 static int parse_flow_nlattrs(const struct nlattr *attr, 434 const struct nlattr *a[], u64 *attrsp, 435 bool log) 436 { 437 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 438 } 439 440 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 441 struct sw_flow_match *match, bool is_mask, 442 bool log) 443 { 444 unsigned long opt_key_offset; 445 446 if (nla_len(a) > sizeof(match->key->tun_opts)) { 447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 448 nla_len(a), sizeof(match->key->tun_opts)); 449 return -EINVAL; 450 } 451 452 if (nla_len(a) % 4 != 0) { 453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 454 nla_len(a)); 455 return -EINVAL; 456 } 457 458 /* We need to record the length of the options passed 459 * down, otherwise packets with the same format but 460 * additional options will be silently matched. 461 */ 462 if (!is_mask) { 463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 464 false); 465 } else { 466 /* This is somewhat unusual because it looks at 467 * both the key and mask while parsing the 468 * attributes (and by extension assumes the key 469 * is parsed first). Normally, we would verify 470 * that each is the correct length and that the 471 * attributes line up in the validate function. 472 * However, that is difficult because this is 473 * variable length and we won't have the 474 * information later. 475 */ 476 if (match->key->tun_opts_len != nla_len(a)) { 477 OVS_NLERR(log, "Geneve option len %d != mask len %d", 478 match->key->tun_opts_len, nla_len(a)); 479 return -EINVAL; 480 } 481 482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 483 } 484 485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 487 nla_len(a), is_mask); 488 return 0; 489 } 490 491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 492 struct sw_flow_match *match, bool is_mask, 493 bool log) 494 { 495 struct nlattr *a; 496 int rem; 497 unsigned long opt_key_offset; 498 struct vxlan_metadata opts; 499 500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 501 502 memset(&opts, 0, sizeof(opts)); 503 nla_for_each_nested(a, attr, rem) { 504 int type = nla_type(a); 505 506 if (type > OVS_VXLAN_EXT_MAX) { 507 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 508 type, OVS_VXLAN_EXT_MAX); 509 return -EINVAL; 510 } 511 512 if (!check_attr_len(nla_len(a), 513 ovs_vxlan_ext_key_lens[type].len)) { 514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 515 type, nla_len(a), 516 ovs_vxlan_ext_key_lens[type].len); 517 return -EINVAL; 518 } 519 520 switch (type) { 521 case OVS_VXLAN_EXT_GBP: 522 opts.gbp = nla_get_u32(a); 523 break; 524 default: 525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 526 type); 527 return -EINVAL; 528 } 529 } 530 if (rem) { 531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 532 rem); 533 return -EINVAL; 534 } 535 536 if (!is_mask) 537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 538 else 539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 540 541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 543 is_mask); 544 return 0; 545 } 546 547 static int ip_tun_from_nlattr(const struct nlattr *attr, 548 struct sw_flow_match *match, bool is_mask, 549 bool log) 550 { 551 bool ttl = false, ipv4 = false, ipv6 = false; 552 __be16 tun_flags = 0; 553 int opts_type = 0; 554 struct nlattr *a; 555 int rem; 556 557 nla_for_each_nested(a, attr, rem) { 558 int type = nla_type(a); 559 int err; 560 561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 562 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 563 type, OVS_TUNNEL_KEY_ATTR_MAX); 564 return -EINVAL; 565 } 566 567 if (!check_attr_len(nla_len(a), 568 ovs_tunnel_key_lens[type].len)) { 569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 570 type, nla_len(a), ovs_tunnel_key_lens[type].len); 571 return -EINVAL; 572 } 573 574 switch (type) { 575 case OVS_TUNNEL_KEY_ATTR_ID: 576 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 577 nla_get_be64(a), is_mask); 578 tun_flags |= TUNNEL_KEY; 579 break; 580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 582 nla_get_in_addr(a), is_mask); 583 ipv4 = true; 584 break; 585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 587 nla_get_in_addr(a), is_mask); 588 ipv4 = true; 589 break; 590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 592 nla_get_in6_addr(a), is_mask); 593 ipv6 = true; 594 break; 595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 597 nla_get_in6_addr(a), is_mask); 598 ipv6 = true; 599 break; 600 case OVS_TUNNEL_KEY_ATTR_TOS: 601 SW_FLOW_KEY_PUT(match, tun_key.tos, 602 nla_get_u8(a), is_mask); 603 break; 604 case OVS_TUNNEL_KEY_ATTR_TTL: 605 SW_FLOW_KEY_PUT(match, tun_key.ttl, 606 nla_get_u8(a), is_mask); 607 ttl = true; 608 break; 609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 610 tun_flags |= TUNNEL_DONT_FRAGMENT; 611 break; 612 case OVS_TUNNEL_KEY_ATTR_CSUM: 613 tun_flags |= TUNNEL_CSUM; 614 break; 615 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 616 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 617 nla_get_be16(a), is_mask); 618 break; 619 case OVS_TUNNEL_KEY_ATTR_TP_DST: 620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 621 nla_get_be16(a), is_mask); 622 break; 623 case OVS_TUNNEL_KEY_ATTR_OAM: 624 tun_flags |= TUNNEL_OAM; 625 break; 626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 627 if (opts_type) { 628 OVS_NLERR(log, "Multiple metadata blocks provided"); 629 return -EINVAL; 630 } 631 632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 633 if (err) 634 return err; 635 636 tun_flags |= TUNNEL_GENEVE_OPT; 637 opts_type = type; 638 break; 639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 640 if (opts_type) { 641 OVS_NLERR(log, "Multiple metadata blocks provided"); 642 return -EINVAL; 643 } 644 645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 646 if (err) 647 return err; 648 649 tun_flags |= TUNNEL_VXLAN_OPT; 650 opts_type = type; 651 break; 652 default: 653 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 654 type); 655 return -EINVAL; 656 } 657 } 658 659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 660 if (is_mask) 661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 662 else 663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 664 false); 665 666 if (rem > 0) { 667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 668 rem); 669 return -EINVAL; 670 } 671 672 if (ipv4 && ipv6) { 673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 674 return -EINVAL; 675 } 676 677 if (!is_mask) { 678 if (!ipv4 && !ipv6) { 679 OVS_NLERR(log, "IP tunnel dst address not specified"); 680 return -EINVAL; 681 } 682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 683 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 684 return -EINVAL; 685 } 686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 687 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 688 return -EINVAL; 689 } 690 691 if (!ttl) { 692 OVS_NLERR(log, "IP tunnel TTL not specified."); 693 return -EINVAL; 694 } 695 } 696 697 return opts_type; 698 } 699 700 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 701 const void *tun_opts, int swkey_tun_opts_len) 702 { 703 const struct vxlan_metadata *opts = tun_opts; 704 struct nlattr *nla; 705 706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 707 if (!nla) 708 return -EMSGSIZE; 709 710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 711 return -EMSGSIZE; 712 713 nla_nest_end(skb, nla); 714 return 0; 715 } 716 717 static int __ip_tun_to_nlattr(struct sk_buff *skb, 718 const struct ip_tunnel_key *output, 719 const void *tun_opts, int swkey_tun_opts_len, 720 unsigned short tun_proto) 721 { 722 if (output->tun_flags & TUNNEL_KEY && 723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 724 OVS_TUNNEL_KEY_ATTR_PAD)) 725 return -EMSGSIZE; 726 switch (tun_proto) { 727 case AF_INET: 728 if (output->u.ipv4.src && 729 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 730 output->u.ipv4.src)) 731 return -EMSGSIZE; 732 if (output->u.ipv4.dst && 733 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 734 output->u.ipv4.dst)) 735 return -EMSGSIZE; 736 break; 737 case AF_INET6: 738 if (!ipv6_addr_any(&output->u.ipv6.src) && 739 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 740 &output->u.ipv6.src)) 741 return -EMSGSIZE; 742 if (!ipv6_addr_any(&output->u.ipv6.dst) && 743 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 744 &output->u.ipv6.dst)) 745 return -EMSGSIZE; 746 break; 747 } 748 if (output->tos && 749 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 750 return -EMSGSIZE; 751 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 752 return -EMSGSIZE; 753 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 754 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 755 return -EMSGSIZE; 756 if ((output->tun_flags & TUNNEL_CSUM) && 757 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 758 return -EMSGSIZE; 759 if (output->tp_src && 760 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 761 return -EMSGSIZE; 762 if (output->tp_dst && 763 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 764 return -EMSGSIZE; 765 if ((output->tun_flags & TUNNEL_OAM) && 766 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 767 return -EMSGSIZE; 768 if (swkey_tun_opts_len) { 769 if (output->tun_flags & TUNNEL_GENEVE_OPT && 770 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 771 swkey_tun_opts_len, tun_opts)) 772 return -EMSGSIZE; 773 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 774 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 775 return -EMSGSIZE; 776 } 777 778 return 0; 779 } 780 781 static int ip_tun_to_nlattr(struct sk_buff *skb, 782 const struct ip_tunnel_key *output, 783 const void *tun_opts, int swkey_tun_opts_len, 784 unsigned short tun_proto) 785 { 786 struct nlattr *nla; 787 int err; 788 789 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 790 if (!nla) 791 return -EMSGSIZE; 792 793 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 794 tun_proto); 795 if (err) 796 return err; 797 798 nla_nest_end(skb, nla); 799 return 0; 800 } 801 802 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 803 struct ip_tunnel_info *tun_info) 804 { 805 return __ip_tun_to_nlattr(skb, &tun_info->key, 806 ip_tunnel_info_opts(tun_info), 807 tun_info->options_len, 808 ip_tunnel_info_af(tun_info)); 809 } 810 811 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 812 u64 *attrs, const struct nlattr **a, 813 bool is_mask, bool log) 814 { 815 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 816 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 817 818 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 819 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 820 } 821 822 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 823 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 824 825 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 826 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 827 } 828 829 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 830 SW_FLOW_KEY_PUT(match, phy.priority, 831 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 832 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 833 } 834 835 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 836 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 837 838 if (is_mask) { 839 in_port = 0xffffffff; /* Always exact match in_port. */ 840 } else if (in_port >= DP_MAX_PORTS) { 841 OVS_NLERR(log, "Port %d exceeds max allowable %d", 842 in_port, DP_MAX_PORTS); 843 return -EINVAL; 844 } 845 846 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 847 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 848 } else if (!is_mask) { 849 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 850 } 851 852 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 853 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 854 855 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 856 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 857 } 858 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 859 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 860 is_mask, log) < 0) 861 return -EINVAL; 862 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 863 } 864 865 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 866 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 867 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 868 869 if (ct_state & ~CT_SUPPORTED_MASK) { 870 OVS_NLERR(log, "ct_state flags %08x unsupported", 871 ct_state); 872 return -EINVAL; 873 } 874 875 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask); 876 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 877 } 878 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 879 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 880 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 881 882 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask); 883 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 884 } 885 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 886 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 887 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 888 889 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 890 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 891 } 892 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 893 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 894 const struct ovs_key_ct_labels *cl; 895 896 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 897 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 898 sizeof(*cl), is_mask); 899 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 900 } 901 return 0; 902 } 903 904 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 905 u64 attrs, const struct nlattr **a, 906 bool is_mask, bool log) 907 { 908 int err; 909 910 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 911 if (err) 912 return err; 913 914 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 915 const struct ovs_key_ethernet *eth_key; 916 917 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 918 SW_FLOW_KEY_MEMCPY(match, eth.src, 919 eth_key->eth_src, ETH_ALEN, is_mask); 920 SW_FLOW_KEY_MEMCPY(match, eth.dst, 921 eth_key->eth_dst, ETH_ALEN, is_mask); 922 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 923 } 924 925 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 926 __be16 tci; 927 928 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 929 if (!(tci & htons(VLAN_TAG_PRESENT))) { 930 if (is_mask) 931 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit."); 932 else 933 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set."); 934 935 return -EINVAL; 936 } 937 938 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); 939 attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 940 } 941 942 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 943 __be16 eth_type; 944 945 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 946 if (is_mask) { 947 /* Always exact match EtherType. */ 948 eth_type = htons(0xffff); 949 } else if (!eth_proto_is_802_3(eth_type)) { 950 OVS_NLERR(log, "EtherType %x is less than min %x", 951 ntohs(eth_type), ETH_P_802_3_MIN); 952 return -EINVAL; 953 } 954 955 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 956 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 957 } else if (!is_mask) { 958 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 959 } 960 961 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 962 const struct ovs_key_ipv4 *ipv4_key; 963 964 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 965 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 966 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 967 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 968 return -EINVAL; 969 } 970 SW_FLOW_KEY_PUT(match, ip.proto, 971 ipv4_key->ipv4_proto, is_mask); 972 SW_FLOW_KEY_PUT(match, ip.tos, 973 ipv4_key->ipv4_tos, is_mask); 974 SW_FLOW_KEY_PUT(match, ip.ttl, 975 ipv4_key->ipv4_ttl, is_mask); 976 SW_FLOW_KEY_PUT(match, ip.frag, 977 ipv4_key->ipv4_frag, is_mask); 978 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 979 ipv4_key->ipv4_src, is_mask); 980 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 981 ipv4_key->ipv4_dst, is_mask); 982 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 983 } 984 985 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 986 const struct ovs_key_ipv6 *ipv6_key; 987 988 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 989 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 990 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 991 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 992 return -EINVAL; 993 } 994 995 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 996 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n", 997 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 998 return -EINVAL; 999 } 1000 1001 SW_FLOW_KEY_PUT(match, ipv6.label, 1002 ipv6_key->ipv6_label, is_mask); 1003 SW_FLOW_KEY_PUT(match, ip.proto, 1004 ipv6_key->ipv6_proto, is_mask); 1005 SW_FLOW_KEY_PUT(match, ip.tos, 1006 ipv6_key->ipv6_tclass, is_mask); 1007 SW_FLOW_KEY_PUT(match, ip.ttl, 1008 ipv6_key->ipv6_hlimit, is_mask); 1009 SW_FLOW_KEY_PUT(match, ip.frag, 1010 ipv6_key->ipv6_frag, is_mask); 1011 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1012 ipv6_key->ipv6_src, 1013 sizeof(match->key->ipv6.addr.src), 1014 is_mask); 1015 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1016 ipv6_key->ipv6_dst, 1017 sizeof(match->key->ipv6.addr.dst), 1018 is_mask); 1019 1020 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1021 } 1022 1023 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1024 const struct ovs_key_arp *arp_key; 1025 1026 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1027 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1028 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1029 arp_key->arp_op); 1030 return -EINVAL; 1031 } 1032 1033 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1034 arp_key->arp_sip, is_mask); 1035 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1036 arp_key->arp_tip, is_mask); 1037 SW_FLOW_KEY_PUT(match, ip.proto, 1038 ntohs(arp_key->arp_op), is_mask); 1039 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1040 arp_key->arp_sha, ETH_ALEN, is_mask); 1041 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1042 arp_key->arp_tha, ETH_ALEN, is_mask); 1043 1044 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1045 } 1046 1047 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1048 const struct ovs_key_mpls *mpls_key; 1049 1050 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1051 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1052 mpls_key->mpls_lse, is_mask); 1053 1054 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1055 } 1056 1057 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1058 const struct ovs_key_tcp *tcp_key; 1059 1060 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1061 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1062 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1063 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1064 } 1065 1066 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1067 SW_FLOW_KEY_PUT(match, tp.flags, 1068 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1069 is_mask); 1070 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1071 } 1072 1073 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1074 const struct ovs_key_udp *udp_key; 1075 1076 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1077 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1078 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1079 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1080 } 1081 1082 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1083 const struct ovs_key_sctp *sctp_key; 1084 1085 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1086 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1087 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1088 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1089 } 1090 1091 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1092 const struct ovs_key_icmp *icmp_key; 1093 1094 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1095 SW_FLOW_KEY_PUT(match, tp.src, 1096 htons(icmp_key->icmp_type), is_mask); 1097 SW_FLOW_KEY_PUT(match, tp.dst, 1098 htons(icmp_key->icmp_code), is_mask); 1099 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1100 } 1101 1102 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1103 const struct ovs_key_icmpv6 *icmpv6_key; 1104 1105 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1106 SW_FLOW_KEY_PUT(match, tp.src, 1107 htons(icmpv6_key->icmpv6_type), is_mask); 1108 SW_FLOW_KEY_PUT(match, tp.dst, 1109 htons(icmpv6_key->icmpv6_code), is_mask); 1110 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1111 } 1112 1113 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1114 const struct ovs_key_nd *nd_key; 1115 1116 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1117 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1118 nd_key->nd_target, 1119 sizeof(match->key->ipv6.nd.target), 1120 is_mask); 1121 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1122 nd_key->nd_sll, ETH_ALEN, is_mask); 1123 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1124 nd_key->nd_tll, ETH_ALEN, is_mask); 1125 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1126 } 1127 1128 if (attrs != 0) { 1129 OVS_NLERR(log, "Unknown key attributes %llx", 1130 (unsigned long long)attrs); 1131 return -EINVAL; 1132 } 1133 1134 return 0; 1135 } 1136 1137 static void nlattr_set(struct nlattr *attr, u8 val, 1138 const struct ovs_len_tbl *tbl) 1139 { 1140 struct nlattr *nla; 1141 int rem; 1142 1143 /* The nlattr stream should already have been validated */ 1144 nla_for_each_nested(nla, attr, rem) { 1145 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1146 if (tbl[nla_type(nla)].next) 1147 tbl = tbl[nla_type(nla)].next; 1148 nlattr_set(nla, val, tbl); 1149 } else { 1150 memset(nla_data(nla), val, nla_len(nla)); 1151 } 1152 1153 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1154 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1155 } 1156 } 1157 1158 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1159 { 1160 nlattr_set(attr, val, ovs_key_lens); 1161 } 1162 1163 /** 1164 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1165 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1166 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1167 * does not include any don't care bit. 1168 * @net: Used to determine per-namespace field support. 1169 * @match: receives the extracted flow match information. 1170 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1171 * sequence. The fields should of the packet that triggered the creation 1172 * of this flow. 1173 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1174 * attribute specifies the mask field of the wildcarded flow. 1175 * @log: Boolean to allow kernel error logging. Normally true, but when 1176 * probing for feature compatibility this should be passed in as false to 1177 * suppress unnecessary error logging. 1178 */ 1179 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1180 const struct nlattr *nla_key, 1181 const struct nlattr *nla_mask, 1182 bool log) 1183 { 1184 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1185 const struct nlattr *encap; 1186 struct nlattr *newmask = NULL; 1187 u64 key_attrs = 0; 1188 u64 mask_attrs = 0; 1189 bool encap_valid = false; 1190 int err; 1191 1192 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1193 if (err) 1194 return err; 1195 1196 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 1197 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 1198 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { 1199 __be16 tci; 1200 1201 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 1202 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 1203 OVS_NLERR(log, "Invalid Vlan frame."); 1204 return -EINVAL; 1205 } 1206 1207 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1208 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1209 encap = a[OVS_KEY_ATTR_ENCAP]; 1210 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1211 encap_valid = true; 1212 1213 if (tci & htons(VLAN_TAG_PRESENT)) { 1214 err = parse_flow_nlattrs(encap, a, &key_attrs, log); 1215 if (err) 1216 return err; 1217 } else if (!tci) { 1218 /* Corner case for truncated 802.1Q header. */ 1219 if (nla_len(encap)) { 1220 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute."); 1221 return -EINVAL; 1222 } 1223 } else { 1224 OVS_NLERR(log, "Encap attr is set for non-VLAN frame"); 1225 return -EINVAL; 1226 } 1227 } 1228 1229 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1230 if (err) 1231 return err; 1232 1233 if (match->mask) { 1234 if (!nla_mask) { 1235 /* Create an exact match mask. We need to set to 0xff 1236 * all the 'match->mask' fields that have been touched 1237 * in 'match->key'. We cannot simply memset 1238 * 'match->mask', because padding bytes and fields not 1239 * specified in 'match->key' should be left to 0. 1240 * Instead, we use a stream of netlink attributes, 1241 * copied from 'key' and set to 0xff. 1242 * ovs_key_from_nlattrs() will take care of filling 1243 * 'match->mask' appropriately. 1244 */ 1245 newmask = kmemdup(nla_key, 1246 nla_total_size(nla_len(nla_key)), 1247 GFP_KERNEL); 1248 if (!newmask) 1249 return -ENOMEM; 1250 1251 mask_set_nlattr(newmask, 0xff); 1252 1253 /* The userspace does not send tunnel attributes that 1254 * are 0, but we should not wildcard them nonetheless. 1255 */ 1256 if (match->key->tun_proto) 1257 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1258 0xff, true); 1259 1260 nla_mask = newmask; 1261 } 1262 1263 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1264 if (err) 1265 goto free_newmask; 1266 1267 /* Always match on tci. */ 1268 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); 1269 1270 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { 1271 __be16 eth_type = 0; 1272 __be16 tci = 0; 1273 1274 if (!encap_valid) { 1275 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame."); 1276 err = -EINVAL; 1277 goto free_newmask; 1278 } 1279 1280 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1281 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1282 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1283 1284 if (eth_type == htons(0xffff)) { 1285 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1286 encap = a[OVS_KEY_ATTR_ENCAP]; 1287 err = parse_flow_mask_nlattrs(encap, a, 1288 &mask_attrs, log); 1289 if (err) 1290 goto free_newmask; 1291 } else { 1292 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).", 1293 ntohs(eth_type)); 1294 err = -EINVAL; 1295 goto free_newmask; 1296 } 1297 1298 if (a[OVS_KEY_ATTR_VLAN]) 1299 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1300 1301 if (!(tci & htons(VLAN_TAG_PRESENT))) { 1302 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).", 1303 ntohs(tci)); 1304 err = -EINVAL; 1305 goto free_newmask; 1306 } 1307 } 1308 1309 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1310 log); 1311 if (err) 1312 goto free_newmask; 1313 } 1314 1315 if (!match_validate(match, key_attrs, mask_attrs, log)) 1316 err = -EINVAL; 1317 1318 free_newmask: 1319 kfree(newmask); 1320 return err; 1321 } 1322 1323 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1324 { 1325 size_t len; 1326 1327 if (!attr) 1328 return 0; 1329 1330 len = nla_len(attr); 1331 if (len < 1 || len > MAX_UFID_LENGTH) { 1332 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1333 nla_len(attr), MAX_UFID_LENGTH); 1334 return 0; 1335 } 1336 1337 return len; 1338 } 1339 1340 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1341 * or false otherwise. 1342 */ 1343 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1344 bool log) 1345 { 1346 sfid->ufid_len = get_ufid_len(attr, log); 1347 if (sfid->ufid_len) 1348 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1349 1350 return sfid->ufid_len; 1351 } 1352 1353 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1354 const struct sw_flow_key *key, bool log) 1355 { 1356 struct sw_flow_key *new_key; 1357 1358 if (ovs_nla_get_ufid(sfid, ufid, log)) 1359 return 0; 1360 1361 /* If UFID was not provided, use unmasked key. */ 1362 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1363 if (!new_key) 1364 return -ENOMEM; 1365 memcpy(new_key, key, sizeof(*key)); 1366 sfid->unmasked_key = new_key; 1367 1368 return 0; 1369 } 1370 1371 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1372 { 1373 return attr ? nla_get_u32(attr) : 0; 1374 } 1375 1376 /** 1377 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1378 * @key: Receives extracted in_port, priority, tun_key and skb_mark. 1379 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1380 * sequence. 1381 * @log: Boolean to allow kernel error logging. Normally true, but when 1382 * probing for feature compatibility this should be passed in as false to 1383 * suppress unnecessary error logging. 1384 * 1385 * This parses a series of Netlink attributes that form a flow key, which must 1386 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1387 * get the metadata, that is, the parts of the flow key that cannot be 1388 * extracted from the packet itself. 1389 */ 1390 1391 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr, 1392 struct sw_flow_key *key, 1393 bool log) 1394 { 1395 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1396 struct sw_flow_match match; 1397 u64 attrs = 0; 1398 int err; 1399 1400 err = parse_flow_nlattrs(attr, a, &attrs, log); 1401 if (err) 1402 return -EINVAL; 1403 1404 memset(&match, 0, sizeof(match)); 1405 match.key = key; 1406 1407 memset(&key->ct, 0, sizeof(key->ct)); 1408 key->phy.in_port = DP_MAX_PORTS; 1409 1410 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1411 } 1412 1413 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1414 const struct sw_flow_key *output, bool is_mask, 1415 struct sk_buff *skb) 1416 { 1417 struct ovs_key_ethernet *eth_key; 1418 struct nlattr *nla, *encap; 1419 1420 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1421 goto nla_put_failure; 1422 1423 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1424 goto nla_put_failure; 1425 1426 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1427 goto nla_put_failure; 1428 1429 if ((swkey->tun_proto || is_mask)) { 1430 const void *opts = NULL; 1431 1432 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1433 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1434 1435 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1436 swkey->tun_opts_len, swkey->tun_proto)) 1437 goto nla_put_failure; 1438 } 1439 1440 if (swkey->phy.in_port == DP_MAX_PORTS) { 1441 if (is_mask && (output->phy.in_port == 0xffff)) 1442 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1443 goto nla_put_failure; 1444 } else { 1445 u16 upper_u16; 1446 upper_u16 = !is_mask ? 0 : 0xffff; 1447 1448 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1449 (upper_u16 << 16) | output->phy.in_port)) 1450 goto nla_put_failure; 1451 } 1452 1453 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 1454 goto nla_put_failure; 1455 1456 if (ovs_ct_put_key(output, skb)) 1457 goto nla_put_failure; 1458 1459 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1460 if (!nla) 1461 goto nla_put_failure; 1462 1463 eth_key = nla_data(nla); 1464 ether_addr_copy(eth_key->eth_src, output->eth.src); 1465 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 1466 1467 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1468 __be16 eth_type; 1469 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); 1470 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1471 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) 1472 goto nla_put_failure; 1473 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1474 if (!swkey->eth.tci) 1475 goto unencap; 1476 } else 1477 encap = NULL; 1478 1479 if (swkey->eth.type == htons(ETH_P_802_2)) { 1480 /* 1481 * Ethertype 802.2 is represented in the netlink with omitted 1482 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 1483 * 0xffff in the mask attribute. Ethertype can also 1484 * be wildcarded. 1485 */ 1486 if (is_mask && output->eth.type) 1487 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 1488 output->eth.type)) 1489 goto nla_put_failure; 1490 goto unencap; 1491 } 1492 1493 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 1494 goto nla_put_failure; 1495 1496 if (swkey->eth.type == htons(ETH_P_IP)) { 1497 struct ovs_key_ipv4 *ipv4_key; 1498 1499 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1500 if (!nla) 1501 goto nla_put_failure; 1502 ipv4_key = nla_data(nla); 1503 ipv4_key->ipv4_src = output->ipv4.addr.src; 1504 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 1505 ipv4_key->ipv4_proto = output->ip.proto; 1506 ipv4_key->ipv4_tos = output->ip.tos; 1507 ipv4_key->ipv4_ttl = output->ip.ttl; 1508 ipv4_key->ipv4_frag = output->ip.frag; 1509 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1510 struct ovs_key_ipv6 *ipv6_key; 1511 1512 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1513 if (!nla) 1514 goto nla_put_failure; 1515 ipv6_key = nla_data(nla); 1516 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 1517 sizeof(ipv6_key->ipv6_src)); 1518 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 1519 sizeof(ipv6_key->ipv6_dst)); 1520 ipv6_key->ipv6_label = output->ipv6.label; 1521 ipv6_key->ipv6_proto = output->ip.proto; 1522 ipv6_key->ipv6_tclass = output->ip.tos; 1523 ipv6_key->ipv6_hlimit = output->ip.ttl; 1524 ipv6_key->ipv6_frag = output->ip.frag; 1525 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1526 swkey->eth.type == htons(ETH_P_RARP)) { 1527 struct ovs_key_arp *arp_key; 1528 1529 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1530 if (!nla) 1531 goto nla_put_failure; 1532 arp_key = nla_data(nla); 1533 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1534 arp_key->arp_sip = output->ipv4.addr.src; 1535 arp_key->arp_tip = output->ipv4.addr.dst; 1536 arp_key->arp_op = htons(output->ip.proto); 1537 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 1538 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 1539 } else if (eth_p_mpls(swkey->eth.type)) { 1540 struct ovs_key_mpls *mpls_key; 1541 1542 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 1543 if (!nla) 1544 goto nla_put_failure; 1545 mpls_key = nla_data(nla); 1546 mpls_key->mpls_lse = output->mpls.top_lse; 1547 } 1548 1549 if ((swkey->eth.type == htons(ETH_P_IP) || 1550 swkey->eth.type == htons(ETH_P_IPV6)) && 1551 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1552 1553 if (swkey->ip.proto == IPPROTO_TCP) { 1554 struct ovs_key_tcp *tcp_key; 1555 1556 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1557 if (!nla) 1558 goto nla_put_failure; 1559 tcp_key = nla_data(nla); 1560 tcp_key->tcp_src = output->tp.src; 1561 tcp_key->tcp_dst = output->tp.dst; 1562 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 1563 output->tp.flags)) 1564 goto nla_put_failure; 1565 } else if (swkey->ip.proto == IPPROTO_UDP) { 1566 struct ovs_key_udp *udp_key; 1567 1568 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1569 if (!nla) 1570 goto nla_put_failure; 1571 udp_key = nla_data(nla); 1572 udp_key->udp_src = output->tp.src; 1573 udp_key->udp_dst = output->tp.dst; 1574 } else if (swkey->ip.proto == IPPROTO_SCTP) { 1575 struct ovs_key_sctp *sctp_key; 1576 1577 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 1578 if (!nla) 1579 goto nla_put_failure; 1580 sctp_key = nla_data(nla); 1581 sctp_key->sctp_src = output->tp.src; 1582 sctp_key->sctp_dst = output->tp.dst; 1583 } else if (swkey->eth.type == htons(ETH_P_IP) && 1584 swkey->ip.proto == IPPROTO_ICMP) { 1585 struct ovs_key_icmp *icmp_key; 1586 1587 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1588 if (!nla) 1589 goto nla_put_failure; 1590 icmp_key = nla_data(nla); 1591 icmp_key->icmp_type = ntohs(output->tp.src); 1592 icmp_key->icmp_code = ntohs(output->tp.dst); 1593 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1594 swkey->ip.proto == IPPROTO_ICMPV6) { 1595 struct ovs_key_icmpv6 *icmpv6_key; 1596 1597 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1598 sizeof(*icmpv6_key)); 1599 if (!nla) 1600 goto nla_put_failure; 1601 icmpv6_key = nla_data(nla); 1602 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 1603 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 1604 1605 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1606 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1607 struct ovs_key_nd *nd_key; 1608 1609 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1610 if (!nla) 1611 goto nla_put_failure; 1612 nd_key = nla_data(nla); 1613 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 1614 sizeof(nd_key->nd_target)); 1615 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 1616 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 1617 } 1618 } 1619 } 1620 1621 unencap: 1622 if (encap) 1623 nla_nest_end(skb, encap); 1624 1625 return 0; 1626 1627 nla_put_failure: 1628 return -EMSGSIZE; 1629 } 1630 1631 int ovs_nla_put_key(const struct sw_flow_key *swkey, 1632 const struct sw_flow_key *output, int attr, bool is_mask, 1633 struct sk_buff *skb) 1634 { 1635 int err; 1636 struct nlattr *nla; 1637 1638 nla = nla_nest_start(skb, attr); 1639 if (!nla) 1640 return -EMSGSIZE; 1641 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 1642 if (err) 1643 return err; 1644 nla_nest_end(skb, nla); 1645 1646 return 0; 1647 } 1648 1649 /* Called with ovs_mutex or RCU read lock. */ 1650 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 1651 { 1652 if (ovs_identifier_is_ufid(&flow->id)) 1653 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 1654 flow->id.ufid); 1655 1656 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 1657 OVS_FLOW_ATTR_KEY, false, skb); 1658 } 1659 1660 /* Called with ovs_mutex or RCU read lock. */ 1661 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 1662 { 1663 return ovs_nla_put_key(&flow->key, &flow->key, 1664 OVS_FLOW_ATTR_KEY, false, skb); 1665 } 1666 1667 /* Called with ovs_mutex or RCU read lock. */ 1668 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 1669 { 1670 return ovs_nla_put_key(&flow->key, &flow->mask->key, 1671 OVS_FLOW_ATTR_MASK, true, skb); 1672 } 1673 1674 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 1675 1676 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 1677 { 1678 struct sw_flow_actions *sfa; 1679 1680 if (size > MAX_ACTIONS_BUFSIZE) { 1681 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 1682 return ERR_PTR(-EINVAL); 1683 } 1684 1685 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 1686 if (!sfa) 1687 return ERR_PTR(-ENOMEM); 1688 1689 sfa->actions_len = 0; 1690 return sfa; 1691 } 1692 1693 static void ovs_nla_free_set_action(const struct nlattr *a) 1694 { 1695 const struct nlattr *ovs_key = nla_data(a); 1696 struct ovs_tunnel_info *ovs_tun; 1697 1698 switch (nla_type(ovs_key)) { 1699 case OVS_KEY_ATTR_TUNNEL_INFO: 1700 ovs_tun = nla_data(ovs_key); 1701 dst_release((struct dst_entry *)ovs_tun->tun_dst); 1702 break; 1703 } 1704 } 1705 1706 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 1707 { 1708 const struct nlattr *a; 1709 int rem; 1710 1711 if (!sf_acts) 1712 return; 1713 1714 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 1715 switch (nla_type(a)) { 1716 case OVS_ACTION_ATTR_SET: 1717 ovs_nla_free_set_action(a); 1718 break; 1719 case OVS_ACTION_ATTR_CT: 1720 ovs_ct_free_action(a); 1721 break; 1722 } 1723 } 1724 1725 kfree(sf_acts); 1726 } 1727 1728 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 1729 { 1730 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 1731 } 1732 1733 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 1734 * The caller must hold rcu_read_lock for this to be sensible. */ 1735 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 1736 { 1737 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 1738 } 1739 1740 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 1741 int attr_len, bool log) 1742 { 1743 1744 struct sw_flow_actions *acts; 1745 int new_acts_size; 1746 int req_size = NLA_ALIGN(attr_len); 1747 int next_offset = offsetof(struct sw_flow_actions, actions) + 1748 (*sfa)->actions_len; 1749 1750 if (req_size <= (ksize(*sfa) - next_offset)) 1751 goto out; 1752 1753 new_acts_size = ksize(*sfa) * 2; 1754 1755 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 1756 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 1757 return ERR_PTR(-EMSGSIZE); 1758 new_acts_size = MAX_ACTIONS_BUFSIZE; 1759 } 1760 1761 acts = nla_alloc_flow_actions(new_acts_size, log); 1762 if (IS_ERR(acts)) 1763 return (void *)acts; 1764 1765 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 1766 acts->actions_len = (*sfa)->actions_len; 1767 acts->orig_len = (*sfa)->orig_len; 1768 kfree(*sfa); 1769 *sfa = acts; 1770 1771 out: 1772 (*sfa)->actions_len += req_size; 1773 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 1774 } 1775 1776 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 1777 int attrtype, void *data, int len, bool log) 1778 { 1779 struct nlattr *a; 1780 1781 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 1782 if (IS_ERR(a)) 1783 return a; 1784 1785 a->nla_type = attrtype; 1786 a->nla_len = nla_attr_size(len); 1787 1788 if (data) 1789 memcpy(nla_data(a), data, len); 1790 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 1791 1792 return a; 1793 } 1794 1795 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 1796 int len, bool log) 1797 { 1798 struct nlattr *a; 1799 1800 a = __add_action(sfa, attrtype, data, len, log); 1801 1802 return PTR_ERR_OR_ZERO(a); 1803 } 1804 1805 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 1806 int attrtype, bool log) 1807 { 1808 int used = (*sfa)->actions_len; 1809 int err; 1810 1811 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 1812 if (err) 1813 return err; 1814 1815 return used; 1816 } 1817 1818 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 1819 int st_offset) 1820 { 1821 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 1822 st_offset); 1823 1824 a->nla_len = sfa->actions_len - st_offset; 1825 } 1826 1827 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 1828 const struct sw_flow_key *key, 1829 int depth, struct sw_flow_actions **sfa, 1830 __be16 eth_type, __be16 vlan_tci, bool log); 1831 1832 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 1833 const struct sw_flow_key *key, int depth, 1834 struct sw_flow_actions **sfa, 1835 __be16 eth_type, __be16 vlan_tci, bool log) 1836 { 1837 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 1838 const struct nlattr *probability, *actions; 1839 const struct nlattr *a; 1840 int rem, start, err, st_acts; 1841 1842 memset(attrs, 0, sizeof(attrs)); 1843 nla_for_each_nested(a, attr, rem) { 1844 int type = nla_type(a); 1845 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 1846 return -EINVAL; 1847 attrs[type] = a; 1848 } 1849 if (rem) 1850 return -EINVAL; 1851 1852 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 1853 if (!probability || nla_len(probability) != sizeof(u32)) 1854 return -EINVAL; 1855 1856 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 1857 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 1858 return -EINVAL; 1859 1860 /* validation done, copy sample action. */ 1861 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 1862 if (start < 0) 1863 return start; 1864 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, 1865 nla_data(probability), sizeof(u32), log); 1866 if (err) 1867 return err; 1868 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log); 1869 if (st_acts < 0) 1870 return st_acts; 1871 1872 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa, 1873 eth_type, vlan_tci, log); 1874 if (err) 1875 return err; 1876 1877 add_nested_action_end(*sfa, st_acts); 1878 add_nested_action_end(*sfa, start); 1879 1880 return 0; 1881 } 1882 1883 void ovs_match_init(struct sw_flow_match *match, 1884 struct sw_flow_key *key, 1885 struct sw_flow_mask *mask) 1886 { 1887 memset(match, 0, sizeof(*match)); 1888 match->key = key; 1889 match->mask = mask; 1890 1891 memset(key, 0, sizeof(*key)); 1892 1893 if (mask) { 1894 memset(&mask->key, 0, sizeof(mask->key)); 1895 mask->range.start = mask->range.end = 0; 1896 } 1897 } 1898 1899 static int validate_geneve_opts(struct sw_flow_key *key) 1900 { 1901 struct geneve_opt *option; 1902 int opts_len = key->tun_opts_len; 1903 bool crit_opt = false; 1904 1905 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 1906 while (opts_len > 0) { 1907 int len; 1908 1909 if (opts_len < sizeof(*option)) 1910 return -EINVAL; 1911 1912 len = sizeof(*option) + option->length * 4; 1913 if (len > opts_len) 1914 return -EINVAL; 1915 1916 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 1917 1918 option = (struct geneve_opt *)((u8 *)option + len); 1919 opts_len -= len; 1920 }; 1921 1922 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 1923 1924 return 0; 1925 } 1926 1927 static int validate_and_copy_set_tun(const struct nlattr *attr, 1928 struct sw_flow_actions **sfa, bool log) 1929 { 1930 struct sw_flow_match match; 1931 struct sw_flow_key key; 1932 struct metadata_dst *tun_dst; 1933 struct ip_tunnel_info *tun_info; 1934 struct ovs_tunnel_info *ovs_tun; 1935 struct nlattr *a; 1936 int err = 0, start, opts_type; 1937 1938 ovs_match_init(&match, &key, NULL); 1939 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 1940 if (opts_type < 0) 1941 return opts_type; 1942 1943 if (key.tun_opts_len) { 1944 switch (opts_type) { 1945 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 1946 err = validate_geneve_opts(&key); 1947 if (err < 0) 1948 return err; 1949 break; 1950 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 1951 break; 1952 } 1953 }; 1954 1955 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 1956 if (start < 0) 1957 return start; 1958 1959 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL); 1960 if (!tun_dst) 1961 return -ENOMEM; 1962 1963 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 1964 if (err) { 1965 dst_release((struct dst_entry *)tun_dst); 1966 return err; 1967 } 1968 1969 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 1970 sizeof(*ovs_tun), log); 1971 if (IS_ERR(a)) { 1972 dst_release((struct dst_entry *)tun_dst); 1973 return PTR_ERR(a); 1974 } 1975 1976 ovs_tun = nla_data(a); 1977 ovs_tun->tun_dst = tun_dst; 1978 1979 tun_info = &tun_dst->u.tun_info; 1980 tun_info->mode = IP_TUNNEL_INFO_TX; 1981 if (key.tun_proto == AF_INET6) 1982 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 1983 tun_info->key = key.tun_key; 1984 1985 /* We need to store the options in the action itself since 1986 * everything else will go away after flow setup. We can append 1987 * it to tun_info and then point there. 1988 */ 1989 ip_tunnel_info_opts_set(tun_info, 1990 TUN_METADATA_OPTS(&key, key.tun_opts_len), 1991 key.tun_opts_len); 1992 add_nested_action_end(*sfa, start); 1993 1994 return err; 1995 } 1996 1997 /* Return false if there are any non-masked bits set. 1998 * Mask follows data immediately, before any netlink padding. 1999 */ 2000 static bool validate_masked(u8 *data, int len) 2001 { 2002 u8 *mask = data + len; 2003 2004 while (len--) 2005 if (*data++ & ~*mask++) 2006 return false; 2007 2008 return true; 2009 } 2010 2011 static int validate_set(const struct nlattr *a, 2012 const struct sw_flow_key *flow_key, 2013 struct sw_flow_actions **sfa, 2014 bool *skip_copy, __be16 eth_type, bool masked, bool log) 2015 { 2016 const struct nlattr *ovs_key = nla_data(a); 2017 int key_type = nla_type(ovs_key); 2018 size_t key_len; 2019 2020 /* There can be only one key in a action */ 2021 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2022 return -EINVAL; 2023 2024 key_len = nla_len(ovs_key); 2025 if (masked) 2026 key_len /= 2; 2027 2028 if (key_type > OVS_KEY_ATTR_MAX || 2029 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2030 return -EINVAL; 2031 2032 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2033 return -EINVAL; 2034 2035 switch (key_type) { 2036 const struct ovs_key_ipv4 *ipv4_key; 2037 const struct ovs_key_ipv6 *ipv6_key; 2038 int err; 2039 2040 case OVS_KEY_ATTR_PRIORITY: 2041 case OVS_KEY_ATTR_SKB_MARK: 2042 case OVS_KEY_ATTR_CT_MARK: 2043 case OVS_KEY_ATTR_CT_LABELS: 2044 case OVS_KEY_ATTR_ETHERNET: 2045 break; 2046 2047 case OVS_KEY_ATTR_TUNNEL: 2048 if (masked) 2049 return -EINVAL; /* Masked tunnel set not supported. */ 2050 2051 *skip_copy = true; 2052 err = validate_and_copy_set_tun(a, sfa, log); 2053 if (err) 2054 return err; 2055 break; 2056 2057 case OVS_KEY_ATTR_IPV4: 2058 if (eth_type != htons(ETH_P_IP)) 2059 return -EINVAL; 2060 2061 ipv4_key = nla_data(ovs_key); 2062 2063 if (masked) { 2064 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2065 2066 /* Non-writeable fields. */ 2067 if (mask->ipv4_proto || mask->ipv4_frag) 2068 return -EINVAL; 2069 } else { 2070 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2071 return -EINVAL; 2072 2073 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2074 return -EINVAL; 2075 } 2076 break; 2077 2078 case OVS_KEY_ATTR_IPV6: 2079 if (eth_type != htons(ETH_P_IPV6)) 2080 return -EINVAL; 2081 2082 ipv6_key = nla_data(ovs_key); 2083 2084 if (masked) { 2085 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2086 2087 /* Non-writeable fields. */ 2088 if (mask->ipv6_proto || mask->ipv6_frag) 2089 return -EINVAL; 2090 2091 /* Invalid bits in the flow label mask? */ 2092 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2093 return -EINVAL; 2094 } else { 2095 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2096 return -EINVAL; 2097 2098 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2099 return -EINVAL; 2100 } 2101 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2102 return -EINVAL; 2103 2104 break; 2105 2106 case OVS_KEY_ATTR_TCP: 2107 if ((eth_type != htons(ETH_P_IP) && 2108 eth_type != htons(ETH_P_IPV6)) || 2109 flow_key->ip.proto != IPPROTO_TCP) 2110 return -EINVAL; 2111 2112 break; 2113 2114 case OVS_KEY_ATTR_UDP: 2115 if ((eth_type != htons(ETH_P_IP) && 2116 eth_type != htons(ETH_P_IPV6)) || 2117 flow_key->ip.proto != IPPROTO_UDP) 2118 return -EINVAL; 2119 2120 break; 2121 2122 case OVS_KEY_ATTR_MPLS: 2123 if (!eth_p_mpls(eth_type)) 2124 return -EINVAL; 2125 break; 2126 2127 case OVS_KEY_ATTR_SCTP: 2128 if ((eth_type != htons(ETH_P_IP) && 2129 eth_type != htons(ETH_P_IPV6)) || 2130 flow_key->ip.proto != IPPROTO_SCTP) 2131 return -EINVAL; 2132 2133 break; 2134 2135 default: 2136 return -EINVAL; 2137 } 2138 2139 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2140 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2141 int start, len = key_len * 2; 2142 struct nlattr *at; 2143 2144 *skip_copy = true; 2145 2146 start = add_nested_action_start(sfa, 2147 OVS_ACTION_ATTR_SET_TO_MASKED, 2148 log); 2149 if (start < 0) 2150 return start; 2151 2152 at = __add_action(sfa, key_type, NULL, len, log); 2153 if (IS_ERR(at)) 2154 return PTR_ERR(at); 2155 2156 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2157 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2158 /* Clear non-writeable bits from otherwise writeable fields. */ 2159 if (key_type == OVS_KEY_ATTR_IPV6) { 2160 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2161 2162 mask->ipv6_label &= htonl(0x000FFFFF); 2163 } 2164 add_nested_action_end(*sfa, start); 2165 } 2166 2167 return 0; 2168 } 2169 2170 static int validate_userspace(const struct nlattr *attr) 2171 { 2172 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2173 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2174 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2175 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2176 }; 2177 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2178 int error; 2179 2180 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, 2181 attr, userspace_policy); 2182 if (error) 2183 return error; 2184 2185 if (!a[OVS_USERSPACE_ATTR_PID] || 2186 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2187 return -EINVAL; 2188 2189 return 0; 2190 } 2191 2192 static int copy_action(const struct nlattr *from, 2193 struct sw_flow_actions **sfa, bool log) 2194 { 2195 int totlen = NLA_ALIGN(from->nla_len); 2196 struct nlattr *to; 2197 2198 to = reserve_sfa_size(sfa, from->nla_len, log); 2199 if (IS_ERR(to)) 2200 return PTR_ERR(to); 2201 2202 memcpy(to, from, totlen); 2203 return 0; 2204 } 2205 2206 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2207 const struct sw_flow_key *key, 2208 int depth, struct sw_flow_actions **sfa, 2209 __be16 eth_type, __be16 vlan_tci, bool log) 2210 { 2211 const struct nlattr *a; 2212 int rem, err; 2213 2214 if (depth >= SAMPLE_ACTION_DEPTH) 2215 return -EOVERFLOW; 2216 2217 nla_for_each_nested(a, attr, rem) { 2218 /* Expected argument lengths, (u32)-1 for variable length. */ 2219 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2220 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2221 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2222 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2223 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2224 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2225 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2226 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2227 [OVS_ACTION_ATTR_SET] = (u32)-1, 2228 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2229 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2230 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2231 [OVS_ACTION_ATTR_CT] = (u32)-1, 2232 }; 2233 const struct ovs_action_push_vlan *vlan; 2234 int type = nla_type(a); 2235 bool skip_copy; 2236 2237 if (type > OVS_ACTION_ATTR_MAX || 2238 (action_lens[type] != nla_len(a) && 2239 action_lens[type] != (u32)-1)) 2240 return -EINVAL; 2241 2242 skip_copy = false; 2243 switch (type) { 2244 case OVS_ACTION_ATTR_UNSPEC: 2245 return -EINVAL; 2246 2247 case OVS_ACTION_ATTR_USERSPACE: 2248 err = validate_userspace(a); 2249 if (err) 2250 return err; 2251 break; 2252 2253 case OVS_ACTION_ATTR_OUTPUT: 2254 if (nla_get_u32(a) >= DP_MAX_PORTS) 2255 return -EINVAL; 2256 break; 2257 2258 case OVS_ACTION_ATTR_HASH: { 2259 const struct ovs_action_hash *act_hash = nla_data(a); 2260 2261 switch (act_hash->hash_alg) { 2262 case OVS_HASH_ALG_L4: 2263 break; 2264 default: 2265 return -EINVAL; 2266 } 2267 2268 break; 2269 } 2270 2271 case OVS_ACTION_ATTR_POP_VLAN: 2272 vlan_tci = htons(0); 2273 break; 2274 2275 case OVS_ACTION_ATTR_PUSH_VLAN: 2276 vlan = nla_data(a); 2277 if (vlan->vlan_tpid != htons(ETH_P_8021Q)) 2278 return -EINVAL; 2279 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2280 return -EINVAL; 2281 vlan_tci = vlan->vlan_tci; 2282 break; 2283 2284 case OVS_ACTION_ATTR_RECIRC: 2285 break; 2286 2287 case OVS_ACTION_ATTR_PUSH_MPLS: { 2288 const struct ovs_action_push_mpls *mpls = nla_data(a); 2289 2290 if (!eth_p_mpls(mpls->mpls_ethertype)) 2291 return -EINVAL; 2292 /* Prohibit push MPLS other than to a white list 2293 * for packets that have a known tag order. 2294 */ 2295 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2296 (eth_type != htons(ETH_P_IP) && 2297 eth_type != htons(ETH_P_IPV6) && 2298 eth_type != htons(ETH_P_ARP) && 2299 eth_type != htons(ETH_P_RARP) && 2300 !eth_p_mpls(eth_type))) 2301 return -EINVAL; 2302 eth_type = mpls->mpls_ethertype; 2303 break; 2304 } 2305 2306 case OVS_ACTION_ATTR_POP_MPLS: 2307 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2308 !eth_p_mpls(eth_type)) 2309 return -EINVAL; 2310 2311 /* Disallow subsequent L2.5+ set and mpls_pop actions 2312 * as there is no check here to ensure that the new 2313 * eth_type is valid and thus set actions could 2314 * write off the end of the packet or otherwise 2315 * corrupt it. 2316 * 2317 * Support for these actions is planned using packet 2318 * recirculation. 2319 */ 2320 eth_type = htons(0); 2321 break; 2322 2323 case OVS_ACTION_ATTR_SET: 2324 err = validate_set(a, key, sfa, 2325 &skip_copy, eth_type, false, log); 2326 if (err) 2327 return err; 2328 break; 2329 2330 case OVS_ACTION_ATTR_SET_MASKED: 2331 err = validate_set(a, key, sfa, 2332 &skip_copy, eth_type, true, log); 2333 if (err) 2334 return err; 2335 break; 2336 2337 case OVS_ACTION_ATTR_SAMPLE: 2338 err = validate_and_copy_sample(net, a, key, depth, sfa, 2339 eth_type, vlan_tci, log); 2340 if (err) 2341 return err; 2342 skip_copy = true; 2343 break; 2344 2345 case OVS_ACTION_ATTR_CT: 2346 err = ovs_ct_copy_action(net, a, key, sfa, log); 2347 if (err) 2348 return err; 2349 skip_copy = true; 2350 break; 2351 2352 default: 2353 OVS_NLERR(log, "Unknown Action type %d", type); 2354 return -EINVAL; 2355 } 2356 if (!skip_copy) { 2357 err = copy_action(a, sfa, log); 2358 if (err) 2359 return err; 2360 } 2361 } 2362 2363 if (rem > 0) 2364 return -EINVAL; 2365 2366 return 0; 2367 } 2368 2369 /* 'key' must be the masked key. */ 2370 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2371 const struct sw_flow_key *key, 2372 struct sw_flow_actions **sfa, bool log) 2373 { 2374 int err; 2375 2376 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 2377 if (IS_ERR(*sfa)) 2378 return PTR_ERR(*sfa); 2379 2380 (*sfa)->orig_len = nla_len(attr); 2381 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, 2382 key->eth.tci, log); 2383 if (err) 2384 ovs_nla_free_flow_actions(*sfa); 2385 2386 return err; 2387 } 2388 2389 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) 2390 { 2391 const struct nlattr *a; 2392 struct nlattr *start; 2393 int err = 0, rem; 2394 2395 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 2396 if (!start) 2397 return -EMSGSIZE; 2398 2399 nla_for_each_nested(a, attr, rem) { 2400 int type = nla_type(a); 2401 struct nlattr *st_sample; 2402 2403 switch (type) { 2404 case OVS_SAMPLE_ATTR_PROBABILITY: 2405 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, 2406 sizeof(u32), nla_data(a))) 2407 return -EMSGSIZE; 2408 break; 2409 case OVS_SAMPLE_ATTR_ACTIONS: 2410 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 2411 if (!st_sample) 2412 return -EMSGSIZE; 2413 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 2414 if (err) 2415 return err; 2416 nla_nest_end(skb, st_sample); 2417 break; 2418 } 2419 } 2420 2421 nla_nest_end(skb, start); 2422 return err; 2423 } 2424 2425 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 2426 { 2427 const struct nlattr *ovs_key = nla_data(a); 2428 int key_type = nla_type(ovs_key); 2429 struct nlattr *start; 2430 int err; 2431 2432 switch (key_type) { 2433 case OVS_KEY_ATTR_TUNNEL_INFO: { 2434 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 2435 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 2436 2437 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2438 if (!start) 2439 return -EMSGSIZE; 2440 2441 err = ip_tun_to_nlattr(skb, &tun_info->key, 2442 ip_tunnel_info_opts(tun_info), 2443 tun_info->options_len, 2444 ip_tunnel_info_af(tun_info)); 2445 if (err) 2446 return err; 2447 nla_nest_end(skb, start); 2448 break; 2449 } 2450 default: 2451 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 2452 return -EMSGSIZE; 2453 break; 2454 } 2455 2456 return 0; 2457 } 2458 2459 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 2460 struct sk_buff *skb) 2461 { 2462 const struct nlattr *ovs_key = nla_data(a); 2463 struct nlattr *nla; 2464 size_t key_len = nla_len(ovs_key) / 2; 2465 2466 /* Revert the conversion we did from a non-masked set action to 2467 * masked set action. 2468 */ 2469 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 2470 if (!nla) 2471 return -EMSGSIZE; 2472 2473 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 2474 return -EMSGSIZE; 2475 2476 nla_nest_end(skb, nla); 2477 return 0; 2478 } 2479 2480 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 2481 { 2482 const struct nlattr *a; 2483 int rem, err; 2484 2485 nla_for_each_attr(a, attr, len, rem) { 2486 int type = nla_type(a); 2487 2488 switch (type) { 2489 case OVS_ACTION_ATTR_SET: 2490 err = set_action_to_attr(a, skb); 2491 if (err) 2492 return err; 2493 break; 2494 2495 case OVS_ACTION_ATTR_SET_TO_MASKED: 2496 err = masked_set_action_to_set_action_attr(a, skb); 2497 if (err) 2498 return err; 2499 break; 2500 2501 case OVS_ACTION_ATTR_SAMPLE: 2502 err = sample_action_to_attr(a, skb); 2503 if (err) 2504 return err; 2505 break; 2506 2507 case OVS_ACTION_ATTR_CT: 2508 err = ovs_ct_action_to_attr(nla_data(a), skb); 2509 if (err) 2510 return err; 2511 break; 2512 2513 default: 2514 if (nla_put(skb, type, nla_len(a), nla_data(a))) 2515 return -EMSGSIZE; 2516 break; 2517 } 2518 } 2519 2520 return 0; 2521 } 2522