1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 
52 #include "flow_netlink.h"
53 
54 struct ovs_len_tbl {
55 	int len;
56 	const struct ovs_len_tbl *next;
57 };
58 
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61 
62 static void update_range(struct sw_flow_match *match,
63 			 size_t offset, size_t size, bool is_mask)
64 {
65 	struct sw_flow_key_range *range;
66 	size_t start = rounddown(offset, sizeof(long));
67 	size_t end = roundup(offset + size, sizeof(long));
68 
69 	if (!is_mask)
70 		range = &match->range;
71 	else
72 		range = &match->mask->range;
73 
74 	if (range->start == range->end) {
75 		range->start = start;
76 		range->end = end;
77 		return;
78 	}
79 
80 	if (range->start > start)
81 		range->start = start;
82 
83 	if (range->end < end)
84 		range->end = end;
85 }
86 
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 	do { \
89 		update_range(match, offsetof(struct sw_flow_key, field),    \
90 			     sizeof((match)->key->field), is_mask);	    \
91 		if (is_mask)						    \
92 			(match)->mask->key.field = value;		    \
93 		else							    \
94 			(match)->key->field = value;		            \
95 	} while (0)
96 
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
98 	do {								    \
99 		update_range(match, offset, len, is_mask);		    \
100 		if (is_mask)						    \
101 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 			       len);					   \
103 		else							    \
104 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
105 	} while (0)
106 
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
108 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 				  value_p, len, is_mask)
110 
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
112 	do {								    \
113 		update_range(match, offsetof(struct sw_flow_key, field),    \
114 			     sizeof((match)->key->field), is_mask);	    \
115 		if (is_mask)						    \
116 			memset((u8 *)&(match)->mask->key.field, value,      \
117 			       sizeof((match)->mask->key.field));	    \
118 		else							    \
119 			memset((u8 *)&(match)->key->field, value,           \
120 			       sizeof((match)->key->field));                \
121 	} while (0)
122 
123 static bool match_validate(const struct sw_flow_match *match,
124 			   u64 key_attrs, u64 mask_attrs, bool log)
125 {
126 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
128 
129 	/* The following mask attributes allowed only if they
130 	 * pass the validation tests. */
131 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 			| (1 << OVS_KEY_ATTR_IPV6)
133 			| (1 << OVS_KEY_ATTR_TCP)
134 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 			| (1 << OVS_KEY_ATTR_UDP)
136 			| (1 << OVS_KEY_ATTR_SCTP)
137 			| (1 << OVS_KEY_ATTR_ICMP)
138 			| (1 << OVS_KEY_ATTR_ICMPV6)
139 			| (1 << OVS_KEY_ATTR_ARP)
140 			| (1 << OVS_KEY_ATTR_ND)
141 			| (1 << OVS_KEY_ATTR_MPLS));
142 
143 	/* Always allowed mask fields. */
144 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 		       | (1 << OVS_KEY_ATTR_IN_PORT)
146 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
147 
148 	/* Check key attributes. */
149 	if (match->key->eth.type == htons(ETH_P_ARP)
150 			|| match->key->eth.type == htons(ETH_P_RARP)) {
151 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 	}
155 
156 	if (eth_p_mpls(match->key->eth.type)) {
157 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 	}
161 
162 	if (match->key->eth.type == htons(ETH_P_IP)) {
163 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166 
167 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 			if (match->key->ip.proto == IPPROTO_UDP) {
169 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 				if (match->mask && (match->mask->key.ip.proto == 0xff))
171 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 			}
173 
174 			if (match->key->ip.proto == IPPROTO_SCTP) {
175 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 				if (match->mask && (match->mask->key.ip.proto == 0xff))
177 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 			}
179 
180 			if (match->key->ip.proto == IPPROTO_TCP) {
181 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 				}
187 			}
188 
189 			if (match->key->ip.proto == IPPROTO_ICMP) {
190 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 				if (match->mask && (match->mask->key.ip.proto == 0xff))
192 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 			}
194 		}
195 	}
196 
197 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201 
202 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 			if (match->key->ip.proto == IPPROTO_UDP) {
204 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 				if (match->mask && (match->mask->key.ip.proto == 0xff))
206 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 			}
208 
209 			if (match->key->ip.proto == IPPROTO_SCTP) {
210 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 				if (match->mask && (match->mask->key.ip.proto == 0xff))
212 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 			}
214 
215 			if (match->key->ip.proto == IPPROTO_TCP) {
216 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 				}
222 			}
223 
224 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 				if (match->mask && (match->mask->key.ip.proto == 0xff))
227 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228 
229 				if (match->key->tp.src ==
230 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 					key_expected |= 1 << OVS_KEY_ATTR_ND;
233 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 				}
236 			}
237 		}
238 	}
239 
240 	if ((key_attrs & key_expected) != key_expected) {
241 		/* Key attributes check failed. */
242 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 			  (unsigned long long)key_attrs,
244 			  (unsigned long long)key_expected);
245 		return false;
246 	}
247 
248 	if ((mask_attrs & mask_allowed) != mask_attrs) {
249 		/* Mask attributes check failed. */
250 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 			  (unsigned long long)mask_attrs,
252 			  (unsigned long long)mask_allowed);
253 		return false;
254 	}
255 
256 	return true;
257 }
258 
259 size_t ovs_tun_key_attr_size(void)
260 {
261 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 	 * updating this function.
263 	 */
264 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
268 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
269 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
272 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 		 */
276 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278 }
279 
280 size_t ovs_key_attr_size(void)
281 {
282 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 	 * updating this function.
284 	 */
285 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286 
287 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
288 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
289 		  + ovs_tun_key_attr_size()
290 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
291 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
292 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
293 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
294 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
295 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
296 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
297 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
298 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
299 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
300 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
301 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
302 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
303 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
304 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
305 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
306 }
307 
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
310 };
311 
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
314 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
315 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
316 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
317 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
318 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
320 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
321 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
322 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
323 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
324 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
325 						.next = ovs_vxlan_ext_key_lens },
326 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
327 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
328 };
329 
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
333 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
334 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
335 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
336 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
337 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
338 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
340 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
341 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
342 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
344 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
345 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
346 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
347 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
348 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
349 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
351 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
352 				     .next = ovs_tunnel_key_lens, },
353 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
354 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
355 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
356 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
357 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358 };
359 
360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361 {
362 	return expected_len == attr_len ||
363 	       expected_len == OVS_ATTR_NESTED ||
364 	       expected_len == OVS_ATTR_VARIABLE;
365 }
366 
367 static bool is_all_zero(const u8 *fp, size_t size)
368 {
369 	int i;
370 
371 	if (!fp)
372 		return false;
373 
374 	for (i = 0; i < size; i++)
375 		if (fp[i])
376 			return false;
377 
378 	return true;
379 }
380 
381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382 				const struct nlattr *a[],
383 				u64 *attrsp, bool log, bool nz)
384 {
385 	const struct nlattr *nla;
386 	u64 attrs;
387 	int rem;
388 
389 	attrs = *attrsp;
390 	nla_for_each_nested(nla, attr, rem) {
391 		u16 type = nla_type(nla);
392 		int expected_len;
393 
394 		if (type > OVS_KEY_ATTR_MAX) {
395 			OVS_NLERR(log, "Key type %d is out of range max %d",
396 				  type, OVS_KEY_ATTR_MAX);
397 			return -EINVAL;
398 		}
399 
400 		if (attrs & (1 << type)) {
401 			OVS_NLERR(log, "Duplicate key (type %d).", type);
402 			return -EINVAL;
403 		}
404 
405 		expected_len = ovs_key_lens[type].len;
406 		if (!check_attr_len(nla_len(nla), expected_len)) {
407 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 				  type, nla_len(nla), expected_len);
409 			return -EINVAL;
410 		}
411 
412 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 			attrs |= 1 << type;
414 			a[type] = nla;
415 		}
416 	}
417 	if (rem) {
418 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 		return -EINVAL;
420 	}
421 
422 	*attrsp = attrs;
423 	return 0;
424 }
425 
426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 				   const struct nlattr *a[], u64 *attrsp,
428 				   bool log)
429 {
430 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431 }
432 
433 static int parse_flow_nlattrs(const struct nlattr *attr,
434 			      const struct nlattr *a[], u64 *attrsp,
435 			      bool log)
436 {
437 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438 }
439 
440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 				     struct sw_flow_match *match, bool is_mask,
442 				     bool log)
443 {
444 	unsigned long opt_key_offset;
445 
446 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 			  nla_len(a), sizeof(match->key->tun_opts));
449 		return -EINVAL;
450 	}
451 
452 	if (nla_len(a) % 4 != 0) {
453 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 			  nla_len(a));
455 		return -EINVAL;
456 	}
457 
458 	/* We need to record the length of the options passed
459 	 * down, otherwise packets with the same format but
460 	 * additional options will be silently matched.
461 	 */
462 	if (!is_mask) {
463 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 				false);
465 	} else {
466 		/* This is somewhat unusual because it looks at
467 		 * both the key and mask while parsing the
468 		 * attributes (and by extension assumes the key
469 		 * is parsed first). Normally, we would verify
470 		 * that each is the correct length and that the
471 		 * attributes line up in the validate function.
472 		 * However, that is difficult because this is
473 		 * variable length and we won't have the
474 		 * information later.
475 		 */
476 		if (match->key->tun_opts_len != nla_len(a)) {
477 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 				  match->key->tun_opts_len, nla_len(a));
479 			return -EINVAL;
480 		}
481 
482 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 	}
484 
485 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 				  nla_len(a), is_mask);
488 	return 0;
489 }
490 
491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 				     struct sw_flow_match *match, bool is_mask,
493 				     bool log)
494 {
495 	struct nlattr *a;
496 	int rem;
497 	unsigned long opt_key_offset;
498 	struct vxlan_metadata opts;
499 
500 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501 
502 	memset(&opts, 0, sizeof(opts));
503 	nla_for_each_nested(a, attr, rem) {
504 		int type = nla_type(a);
505 
506 		if (type > OVS_VXLAN_EXT_MAX) {
507 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 				  type, OVS_VXLAN_EXT_MAX);
509 			return -EINVAL;
510 		}
511 
512 		if (!check_attr_len(nla_len(a),
513 				    ovs_vxlan_ext_key_lens[type].len)) {
514 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 				  type, nla_len(a),
516 				  ovs_vxlan_ext_key_lens[type].len);
517 			return -EINVAL;
518 		}
519 
520 		switch (type) {
521 		case OVS_VXLAN_EXT_GBP:
522 			opts.gbp = nla_get_u32(a);
523 			break;
524 		default:
525 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 				  type);
527 			return -EINVAL;
528 		}
529 	}
530 	if (rem) {
531 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 			  rem);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_mask)
537 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 	else
539 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540 
541 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 				  is_mask);
544 	return 0;
545 }
546 
547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548 			      struct sw_flow_match *match, bool is_mask,
549 			      bool log)
550 {
551 	bool ttl = false, ipv4 = false, ipv6 = false;
552 	__be16 tun_flags = 0;
553 	int opts_type = 0;
554 	struct nlattr *a;
555 	int rem;
556 
557 	nla_for_each_nested(a, attr, rem) {
558 		int type = nla_type(a);
559 		int err;
560 
561 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
564 			return -EINVAL;
565 		}
566 
567 		if (!check_attr_len(nla_len(a),
568 				    ovs_tunnel_key_lens[type].len)) {
569 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 			return -EINVAL;
572 		}
573 
574 		switch (type) {
575 		case OVS_TUNNEL_KEY_ATTR_ID:
576 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 					nla_get_be64(a), is_mask);
578 			tun_flags |= TUNNEL_KEY;
579 			break;
580 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 					nla_get_in_addr(a), is_mask);
583 			ipv4 = true;
584 			break;
585 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 					nla_get_in_addr(a), is_mask);
588 			ipv4 = true;
589 			break;
590 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592 					nla_get_in6_addr(a), is_mask);
593 			ipv6 = true;
594 			break;
595 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 					nla_get_in6_addr(a), is_mask);
598 			ipv6 = true;
599 			break;
600 		case OVS_TUNNEL_KEY_ATTR_TOS:
601 			SW_FLOW_KEY_PUT(match, tun_key.tos,
602 					nla_get_u8(a), is_mask);
603 			break;
604 		case OVS_TUNNEL_KEY_ATTR_TTL:
605 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 					nla_get_u8(a), is_mask);
607 			ttl = true;
608 			break;
609 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 			tun_flags |= TUNNEL_DONT_FRAGMENT;
611 			break;
612 		case OVS_TUNNEL_KEY_ATTR_CSUM:
613 			tun_flags |= TUNNEL_CSUM;
614 			break;
615 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 					nla_get_be16(a), is_mask);
618 			break;
619 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 					nla_get_be16(a), is_mask);
622 			break;
623 		case OVS_TUNNEL_KEY_ATTR_OAM:
624 			tun_flags |= TUNNEL_OAM;
625 			break;
626 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 			if (opts_type) {
628 				OVS_NLERR(log, "Multiple metadata blocks provided");
629 				return -EINVAL;
630 			}
631 
632 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 			if (err)
634 				return err;
635 
636 			tun_flags |= TUNNEL_GENEVE_OPT;
637 			opts_type = type;
638 			break;
639 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 			if (opts_type) {
641 				OVS_NLERR(log, "Multiple metadata blocks provided");
642 				return -EINVAL;
643 			}
644 
645 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 			if (err)
647 				return err;
648 
649 			tun_flags |= TUNNEL_VXLAN_OPT;
650 			opts_type = type;
651 			break;
652 		default:
653 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654 				  type);
655 			return -EINVAL;
656 		}
657 	}
658 
659 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660 	if (is_mask)
661 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662 	else
663 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664 				false);
665 
666 	if (rem > 0) {
667 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668 			  rem);
669 		return -EINVAL;
670 	}
671 
672 	if (ipv4 && ipv6) {
673 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674 		return -EINVAL;
675 	}
676 
677 	if (!is_mask) {
678 		if (!ipv4 && !ipv6) {
679 			OVS_NLERR(log, "IP tunnel dst address not specified");
680 			return -EINVAL;
681 		}
682 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684 			return -EINVAL;
685 		}
686 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688 			return -EINVAL;
689 		}
690 
691 		if (!ttl) {
692 			OVS_NLERR(log, "IP tunnel TTL not specified.");
693 			return -EINVAL;
694 		}
695 	}
696 
697 	return opts_type;
698 }
699 
700 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701 			       const void *tun_opts, int swkey_tun_opts_len)
702 {
703 	const struct vxlan_metadata *opts = tun_opts;
704 	struct nlattr *nla;
705 
706 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707 	if (!nla)
708 		return -EMSGSIZE;
709 
710 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711 		return -EMSGSIZE;
712 
713 	nla_nest_end(skb, nla);
714 	return 0;
715 }
716 
717 static int __ip_tun_to_nlattr(struct sk_buff *skb,
718 			      const struct ip_tunnel_key *output,
719 			      const void *tun_opts, int swkey_tun_opts_len,
720 			      unsigned short tun_proto)
721 {
722 	if (output->tun_flags & TUNNEL_KEY &&
723 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
724 			 OVS_TUNNEL_KEY_ATTR_PAD))
725 		return -EMSGSIZE;
726 	switch (tun_proto) {
727 	case AF_INET:
728 		if (output->u.ipv4.src &&
729 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
730 				    output->u.ipv4.src))
731 			return -EMSGSIZE;
732 		if (output->u.ipv4.dst &&
733 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
734 				    output->u.ipv4.dst))
735 			return -EMSGSIZE;
736 		break;
737 	case AF_INET6:
738 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
739 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
740 				     &output->u.ipv6.src))
741 			return -EMSGSIZE;
742 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
743 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
744 				     &output->u.ipv6.dst))
745 			return -EMSGSIZE;
746 		break;
747 	}
748 	if (output->tos &&
749 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
750 		return -EMSGSIZE;
751 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
752 		return -EMSGSIZE;
753 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
754 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
755 		return -EMSGSIZE;
756 	if ((output->tun_flags & TUNNEL_CSUM) &&
757 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
758 		return -EMSGSIZE;
759 	if (output->tp_src &&
760 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
761 		return -EMSGSIZE;
762 	if (output->tp_dst &&
763 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
764 		return -EMSGSIZE;
765 	if ((output->tun_flags & TUNNEL_OAM) &&
766 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
767 		return -EMSGSIZE;
768 	if (swkey_tun_opts_len) {
769 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
770 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
771 			    swkey_tun_opts_len, tun_opts))
772 			return -EMSGSIZE;
773 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
774 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
775 			return -EMSGSIZE;
776 	}
777 
778 	return 0;
779 }
780 
781 static int ip_tun_to_nlattr(struct sk_buff *skb,
782 			    const struct ip_tunnel_key *output,
783 			    const void *tun_opts, int swkey_tun_opts_len,
784 			    unsigned short tun_proto)
785 {
786 	struct nlattr *nla;
787 	int err;
788 
789 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
790 	if (!nla)
791 		return -EMSGSIZE;
792 
793 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
794 				 tun_proto);
795 	if (err)
796 		return err;
797 
798 	nla_nest_end(skb, nla);
799 	return 0;
800 }
801 
802 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
803 			    struct ip_tunnel_info *tun_info)
804 {
805 	return __ip_tun_to_nlattr(skb, &tun_info->key,
806 				  ip_tunnel_info_opts(tun_info),
807 				  tun_info->options_len,
808 				  ip_tunnel_info_af(tun_info));
809 }
810 
811 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
812 				 u64 *attrs, const struct nlattr **a,
813 				 bool is_mask, bool log)
814 {
815 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
816 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
817 
818 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
819 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
820 	}
821 
822 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
823 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
824 
825 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
826 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
827 	}
828 
829 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
830 		SW_FLOW_KEY_PUT(match, phy.priority,
831 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
832 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
833 	}
834 
835 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
836 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
837 
838 		if (is_mask) {
839 			in_port = 0xffffffff; /* Always exact match in_port. */
840 		} else if (in_port >= DP_MAX_PORTS) {
841 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
842 				  in_port, DP_MAX_PORTS);
843 			return -EINVAL;
844 		}
845 
846 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
847 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
848 	} else if (!is_mask) {
849 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
850 	}
851 
852 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
853 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
854 
855 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
856 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
857 	}
858 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
859 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
860 				       is_mask, log) < 0)
861 			return -EINVAL;
862 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
863 	}
864 
865 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
866 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
867 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
868 
869 		if (ct_state & ~CT_SUPPORTED_MASK) {
870 			OVS_NLERR(log, "ct_state flags %08x unsupported",
871 				  ct_state);
872 			return -EINVAL;
873 		}
874 
875 		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
876 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
877 	}
878 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
879 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
880 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
881 
882 		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
883 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
884 	}
885 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
886 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
887 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
888 
889 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
890 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
891 	}
892 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
893 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
894 		const struct ovs_key_ct_labels *cl;
895 
896 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
897 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
898 				   sizeof(*cl), is_mask);
899 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
900 	}
901 	return 0;
902 }
903 
904 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
905 				u64 attrs, const struct nlattr **a,
906 				bool is_mask, bool log)
907 {
908 	int err;
909 
910 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
911 	if (err)
912 		return err;
913 
914 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
915 		const struct ovs_key_ethernet *eth_key;
916 
917 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
918 		SW_FLOW_KEY_MEMCPY(match, eth.src,
919 				eth_key->eth_src, ETH_ALEN, is_mask);
920 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
921 				eth_key->eth_dst, ETH_ALEN, is_mask);
922 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
923 	}
924 
925 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
926 		__be16 tci;
927 
928 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
929 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
930 			if (is_mask)
931 				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
932 			else
933 				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
934 
935 			return -EINVAL;
936 		}
937 
938 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
939 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
940 	}
941 
942 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
943 		__be16 eth_type;
944 
945 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
946 		if (is_mask) {
947 			/* Always exact match EtherType. */
948 			eth_type = htons(0xffff);
949 		} else if (!eth_proto_is_802_3(eth_type)) {
950 			OVS_NLERR(log, "EtherType %x is less than min %x",
951 				  ntohs(eth_type), ETH_P_802_3_MIN);
952 			return -EINVAL;
953 		}
954 
955 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
956 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
957 	} else if (!is_mask) {
958 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
959 	}
960 
961 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
962 		const struct ovs_key_ipv4 *ipv4_key;
963 
964 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
965 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
966 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
967 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
968 			return -EINVAL;
969 		}
970 		SW_FLOW_KEY_PUT(match, ip.proto,
971 				ipv4_key->ipv4_proto, is_mask);
972 		SW_FLOW_KEY_PUT(match, ip.tos,
973 				ipv4_key->ipv4_tos, is_mask);
974 		SW_FLOW_KEY_PUT(match, ip.ttl,
975 				ipv4_key->ipv4_ttl, is_mask);
976 		SW_FLOW_KEY_PUT(match, ip.frag,
977 				ipv4_key->ipv4_frag, is_mask);
978 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
979 				ipv4_key->ipv4_src, is_mask);
980 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
981 				ipv4_key->ipv4_dst, is_mask);
982 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
983 	}
984 
985 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
986 		const struct ovs_key_ipv6 *ipv6_key;
987 
988 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
989 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
990 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
991 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
992 			return -EINVAL;
993 		}
994 
995 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
996 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
997 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
998 			return -EINVAL;
999 		}
1000 
1001 		SW_FLOW_KEY_PUT(match, ipv6.label,
1002 				ipv6_key->ipv6_label, is_mask);
1003 		SW_FLOW_KEY_PUT(match, ip.proto,
1004 				ipv6_key->ipv6_proto, is_mask);
1005 		SW_FLOW_KEY_PUT(match, ip.tos,
1006 				ipv6_key->ipv6_tclass, is_mask);
1007 		SW_FLOW_KEY_PUT(match, ip.ttl,
1008 				ipv6_key->ipv6_hlimit, is_mask);
1009 		SW_FLOW_KEY_PUT(match, ip.frag,
1010 				ipv6_key->ipv6_frag, is_mask);
1011 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1012 				ipv6_key->ipv6_src,
1013 				sizeof(match->key->ipv6.addr.src),
1014 				is_mask);
1015 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1016 				ipv6_key->ipv6_dst,
1017 				sizeof(match->key->ipv6.addr.dst),
1018 				is_mask);
1019 
1020 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1021 	}
1022 
1023 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1024 		const struct ovs_key_arp *arp_key;
1025 
1026 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1027 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1028 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1029 				  arp_key->arp_op);
1030 			return -EINVAL;
1031 		}
1032 
1033 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1034 				arp_key->arp_sip, is_mask);
1035 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1036 			arp_key->arp_tip, is_mask);
1037 		SW_FLOW_KEY_PUT(match, ip.proto,
1038 				ntohs(arp_key->arp_op), is_mask);
1039 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1040 				arp_key->arp_sha, ETH_ALEN, is_mask);
1041 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1042 				arp_key->arp_tha, ETH_ALEN, is_mask);
1043 
1044 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1045 	}
1046 
1047 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1048 		const struct ovs_key_mpls *mpls_key;
1049 
1050 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1051 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1052 				mpls_key->mpls_lse, is_mask);
1053 
1054 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1055 	 }
1056 
1057 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1058 		const struct ovs_key_tcp *tcp_key;
1059 
1060 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1061 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1062 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1063 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1064 	}
1065 
1066 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1067 		SW_FLOW_KEY_PUT(match, tp.flags,
1068 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1069 				is_mask);
1070 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1071 	}
1072 
1073 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1074 		const struct ovs_key_udp *udp_key;
1075 
1076 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1077 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1078 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1079 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1080 	}
1081 
1082 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1083 		const struct ovs_key_sctp *sctp_key;
1084 
1085 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1086 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1087 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1088 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1089 	}
1090 
1091 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1092 		const struct ovs_key_icmp *icmp_key;
1093 
1094 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1095 		SW_FLOW_KEY_PUT(match, tp.src,
1096 				htons(icmp_key->icmp_type), is_mask);
1097 		SW_FLOW_KEY_PUT(match, tp.dst,
1098 				htons(icmp_key->icmp_code), is_mask);
1099 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1100 	}
1101 
1102 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1103 		const struct ovs_key_icmpv6 *icmpv6_key;
1104 
1105 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1106 		SW_FLOW_KEY_PUT(match, tp.src,
1107 				htons(icmpv6_key->icmpv6_type), is_mask);
1108 		SW_FLOW_KEY_PUT(match, tp.dst,
1109 				htons(icmpv6_key->icmpv6_code), is_mask);
1110 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1111 	}
1112 
1113 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1114 		const struct ovs_key_nd *nd_key;
1115 
1116 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1117 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1118 			nd_key->nd_target,
1119 			sizeof(match->key->ipv6.nd.target),
1120 			is_mask);
1121 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1122 			nd_key->nd_sll, ETH_ALEN, is_mask);
1123 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1124 				nd_key->nd_tll, ETH_ALEN, is_mask);
1125 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1126 	}
1127 
1128 	if (attrs != 0) {
1129 		OVS_NLERR(log, "Unknown key attributes %llx",
1130 			  (unsigned long long)attrs);
1131 		return -EINVAL;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static void nlattr_set(struct nlattr *attr, u8 val,
1138 		       const struct ovs_len_tbl *tbl)
1139 {
1140 	struct nlattr *nla;
1141 	int rem;
1142 
1143 	/* The nlattr stream should already have been validated */
1144 	nla_for_each_nested(nla, attr, rem) {
1145 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1146 			if (tbl[nla_type(nla)].next)
1147 				tbl = tbl[nla_type(nla)].next;
1148 			nlattr_set(nla, val, tbl);
1149 		} else {
1150 			memset(nla_data(nla), val, nla_len(nla));
1151 		}
1152 
1153 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1154 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1155 	}
1156 }
1157 
1158 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1159 {
1160 	nlattr_set(attr, val, ovs_key_lens);
1161 }
1162 
1163 /**
1164  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1165  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1166  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1167  * does not include any don't care bit.
1168  * @net: Used to determine per-namespace field support.
1169  * @match: receives the extracted flow match information.
1170  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1171  * sequence. The fields should of the packet that triggered the creation
1172  * of this flow.
1173  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1174  * attribute specifies the mask field of the wildcarded flow.
1175  * @log: Boolean to allow kernel error logging.  Normally true, but when
1176  * probing for feature compatibility this should be passed in as false to
1177  * suppress unnecessary error logging.
1178  */
1179 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1180 		      const struct nlattr *nla_key,
1181 		      const struct nlattr *nla_mask,
1182 		      bool log)
1183 {
1184 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1185 	const struct nlattr *encap;
1186 	struct nlattr *newmask = NULL;
1187 	u64 key_attrs = 0;
1188 	u64 mask_attrs = 0;
1189 	bool encap_valid = false;
1190 	int err;
1191 
1192 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1193 	if (err)
1194 		return err;
1195 
1196 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1197 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1198 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1199 		__be16 tci;
1200 
1201 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1202 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1203 			OVS_NLERR(log, "Invalid Vlan frame.");
1204 			return -EINVAL;
1205 		}
1206 
1207 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1208 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1209 		encap = a[OVS_KEY_ATTR_ENCAP];
1210 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1211 		encap_valid = true;
1212 
1213 		if (tci & htons(VLAN_TAG_PRESENT)) {
1214 			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1215 			if (err)
1216 				return err;
1217 		} else if (!tci) {
1218 			/* Corner case for truncated 802.1Q header. */
1219 			if (nla_len(encap)) {
1220 				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1221 				return -EINVAL;
1222 			}
1223 		} else {
1224 			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1225 			return  -EINVAL;
1226 		}
1227 	}
1228 
1229 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1230 	if (err)
1231 		return err;
1232 
1233 	if (match->mask) {
1234 		if (!nla_mask) {
1235 			/* Create an exact match mask. We need to set to 0xff
1236 			 * all the 'match->mask' fields that have been touched
1237 			 * in 'match->key'. We cannot simply memset
1238 			 * 'match->mask', because padding bytes and fields not
1239 			 * specified in 'match->key' should be left to 0.
1240 			 * Instead, we use a stream of netlink attributes,
1241 			 * copied from 'key' and set to 0xff.
1242 			 * ovs_key_from_nlattrs() will take care of filling
1243 			 * 'match->mask' appropriately.
1244 			 */
1245 			newmask = kmemdup(nla_key,
1246 					  nla_total_size(nla_len(nla_key)),
1247 					  GFP_KERNEL);
1248 			if (!newmask)
1249 				return -ENOMEM;
1250 
1251 			mask_set_nlattr(newmask, 0xff);
1252 
1253 			/* The userspace does not send tunnel attributes that
1254 			 * are 0, but we should not wildcard them nonetheless.
1255 			 */
1256 			if (match->key->tun_proto)
1257 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1258 							 0xff, true);
1259 
1260 			nla_mask = newmask;
1261 		}
1262 
1263 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1264 		if (err)
1265 			goto free_newmask;
1266 
1267 		/* Always match on tci. */
1268 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1269 
1270 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1271 			__be16 eth_type = 0;
1272 			__be16 tci = 0;
1273 
1274 			if (!encap_valid) {
1275 				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1276 				err = -EINVAL;
1277 				goto free_newmask;
1278 			}
1279 
1280 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1281 			if (a[OVS_KEY_ATTR_ETHERTYPE])
1282 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1283 
1284 			if (eth_type == htons(0xffff)) {
1285 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1286 				encap = a[OVS_KEY_ATTR_ENCAP];
1287 				err = parse_flow_mask_nlattrs(encap, a,
1288 							      &mask_attrs, log);
1289 				if (err)
1290 					goto free_newmask;
1291 			} else {
1292 				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1293 					  ntohs(eth_type));
1294 				err = -EINVAL;
1295 				goto free_newmask;
1296 			}
1297 
1298 			if (a[OVS_KEY_ATTR_VLAN])
1299 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1300 
1301 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1302 				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1303 					  ntohs(tci));
1304 				err = -EINVAL;
1305 				goto free_newmask;
1306 			}
1307 		}
1308 
1309 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1310 					   log);
1311 		if (err)
1312 			goto free_newmask;
1313 	}
1314 
1315 	if (!match_validate(match, key_attrs, mask_attrs, log))
1316 		err = -EINVAL;
1317 
1318 free_newmask:
1319 	kfree(newmask);
1320 	return err;
1321 }
1322 
1323 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1324 {
1325 	size_t len;
1326 
1327 	if (!attr)
1328 		return 0;
1329 
1330 	len = nla_len(attr);
1331 	if (len < 1 || len > MAX_UFID_LENGTH) {
1332 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1333 			  nla_len(attr), MAX_UFID_LENGTH);
1334 		return 0;
1335 	}
1336 
1337 	return len;
1338 }
1339 
1340 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1341  * or false otherwise.
1342  */
1343 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1344 		      bool log)
1345 {
1346 	sfid->ufid_len = get_ufid_len(attr, log);
1347 	if (sfid->ufid_len)
1348 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1349 
1350 	return sfid->ufid_len;
1351 }
1352 
1353 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1354 			   const struct sw_flow_key *key, bool log)
1355 {
1356 	struct sw_flow_key *new_key;
1357 
1358 	if (ovs_nla_get_ufid(sfid, ufid, log))
1359 		return 0;
1360 
1361 	/* If UFID was not provided, use unmasked key. */
1362 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1363 	if (!new_key)
1364 		return -ENOMEM;
1365 	memcpy(new_key, key, sizeof(*key));
1366 	sfid->unmasked_key = new_key;
1367 
1368 	return 0;
1369 }
1370 
1371 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1372 {
1373 	return attr ? nla_get_u32(attr) : 0;
1374 }
1375 
1376 /**
1377  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1378  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1379  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1380  * sequence.
1381  * @log: Boolean to allow kernel error logging.  Normally true, but when
1382  * probing for feature compatibility this should be passed in as false to
1383  * suppress unnecessary error logging.
1384  *
1385  * This parses a series of Netlink attributes that form a flow key, which must
1386  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1387  * get the metadata, that is, the parts of the flow key that cannot be
1388  * extracted from the packet itself.
1389  */
1390 
1391 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1392 			      struct sw_flow_key *key,
1393 			      bool log)
1394 {
1395 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1396 	struct sw_flow_match match;
1397 	u64 attrs = 0;
1398 	int err;
1399 
1400 	err = parse_flow_nlattrs(attr, a, &attrs, log);
1401 	if (err)
1402 		return -EINVAL;
1403 
1404 	memset(&match, 0, sizeof(match));
1405 	match.key = key;
1406 
1407 	memset(&key->ct, 0, sizeof(key->ct));
1408 	key->phy.in_port = DP_MAX_PORTS;
1409 
1410 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1411 }
1412 
1413 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1414 			     const struct sw_flow_key *output, bool is_mask,
1415 			     struct sk_buff *skb)
1416 {
1417 	struct ovs_key_ethernet *eth_key;
1418 	struct nlattr *nla, *encap;
1419 
1420 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1421 		goto nla_put_failure;
1422 
1423 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1424 		goto nla_put_failure;
1425 
1426 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1427 		goto nla_put_failure;
1428 
1429 	if ((swkey->tun_proto || is_mask)) {
1430 		const void *opts = NULL;
1431 
1432 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1433 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1434 
1435 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1436 				     swkey->tun_opts_len, swkey->tun_proto))
1437 			goto nla_put_failure;
1438 	}
1439 
1440 	if (swkey->phy.in_port == DP_MAX_PORTS) {
1441 		if (is_mask && (output->phy.in_port == 0xffff))
1442 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1443 				goto nla_put_failure;
1444 	} else {
1445 		u16 upper_u16;
1446 		upper_u16 = !is_mask ? 0 : 0xffff;
1447 
1448 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1449 				(upper_u16 << 16) | output->phy.in_port))
1450 			goto nla_put_failure;
1451 	}
1452 
1453 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1454 		goto nla_put_failure;
1455 
1456 	if (ovs_ct_put_key(output, skb))
1457 		goto nla_put_failure;
1458 
1459 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1460 	if (!nla)
1461 		goto nla_put_failure;
1462 
1463 	eth_key = nla_data(nla);
1464 	ether_addr_copy(eth_key->eth_src, output->eth.src);
1465 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1466 
1467 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1468 		__be16 eth_type;
1469 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1470 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1471 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1472 			goto nla_put_failure;
1473 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1474 		if (!swkey->eth.tci)
1475 			goto unencap;
1476 	} else
1477 		encap = NULL;
1478 
1479 	if (swkey->eth.type == htons(ETH_P_802_2)) {
1480 		/*
1481 		 * Ethertype 802.2 is represented in the netlink with omitted
1482 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1483 		 * 0xffff in the mask attribute.  Ethertype can also
1484 		 * be wildcarded.
1485 		 */
1486 		if (is_mask && output->eth.type)
1487 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1488 						output->eth.type))
1489 				goto nla_put_failure;
1490 		goto unencap;
1491 	}
1492 
1493 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1494 		goto nla_put_failure;
1495 
1496 	if (swkey->eth.type == htons(ETH_P_IP)) {
1497 		struct ovs_key_ipv4 *ipv4_key;
1498 
1499 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1500 		if (!nla)
1501 			goto nla_put_failure;
1502 		ipv4_key = nla_data(nla);
1503 		ipv4_key->ipv4_src = output->ipv4.addr.src;
1504 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1505 		ipv4_key->ipv4_proto = output->ip.proto;
1506 		ipv4_key->ipv4_tos = output->ip.tos;
1507 		ipv4_key->ipv4_ttl = output->ip.ttl;
1508 		ipv4_key->ipv4_frag = output->ip.frag;
1509 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1510 		struct ovs_key_ipv6 *ipv6_key;
1511 
1512 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1513 		if (!nla)
1514 			goto nla_put_failure;
1515 		ipv6_key = nla_data(nla);
1516 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1517 				sizeof(ipv6_key->ipv6_src));
1518 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1519 				sizeof(ipv6_key->ipv6_dst));
1520 		ipv6_key->ipv6_label = output->ipv6.label;
1521 		ipv6_key->ipv6_proto = output->ip.proto;
1522 		ipv6_key->ipv6_tclass = output->ip.tos;
1523 		ipv6_key->ipv6_hlimit = output->ip.ttl;
1524 		ipv6_key->ipv6_frag = output->ip.frag;
1525 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1526 		   swkey->eth.type == htons(ETH_P_RARP)) {
1527 		struct ovs_key_arp *arp_key;
1528 
1529 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1530 		if (!nla)
1531 			goto nla_put_failure;
1532 		arp_key = nla_data(nla);
1533 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1534 		arp_key->arp_sip = output->ipv4.addr.src;
1535 		arp_key->arp_tip = output->ipv4.addr.dst;
1536 		arp_key->arp_op = htons(output->ip.proto);
1537 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1538 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1539 	} else if (eth_p_mpls(swkey->eth.type)) {
1540 		struct ovs_key_mpls *mpls_key;
1541 
1542 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1543 		if (!nla)
1544 			goto nla_put_failure;
1545 		mpls_key = nla_data(nla);
1546 		mpls_key->mpls_lse = output->mpls.top_lse;
1547 	}
1548 
1549 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1550 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1551 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1552 
1553 		if (swkey->ip.proto == IPPROTO_TCP) {
1554 			struct ovs_key_tcp *tcp_key;
1555 
1556 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1557 			if (!nla)
1558 				goto nla_put_failure;
1559 			tcp_key = nla_data(nla);
1560 			tcp_key->tcp_src = output->tp.src;
1561 			tcp_key->tcp_dst = output->tp.dst;
1562 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1563 					 output->tp.flags))
1564 				goto nla_put_failure;
1565 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1566 			struct ovs_key_udp *udp_key;
1567 
1568 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1569 			if (!nla)
1570 				goto nla_put_failure;
1571 			udp_key = nla_data(nla);
1572 			udp_key->udp_src = output->tp.src;
1573 			udp_key->udp_dst = output->tp.dst;
1574 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1575 			struct ovs_key_sctp *sctp_key;
1576 
1577 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1578 			if (!nla)
1579 				goto nla_put_failure;
1580 			sctp_key = nla_data(nla);
1581 			sctp_key->sctp_src = output->tp.src;
1582 			sctp_key->sctp_dst = output->tp.dst;
1583 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1584 			   swkey->ip.proto == IPPROTO_ICMP) {
1585 			struct ovs_key_icmp *icmp_key;
1586 
1587 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1588 			if (!nla)
1589 				goto nla_put_failure;
1590 			icmp_key = nla_data(nla);
1591 			icmp_key->icmp_type = ntohs(output->tp.src);
1592 			icmp_key->icmp_code = ntohs(output->tp.dst);
1593 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1594 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1595 			struct ovs_key_icmpv6 *icmpv6_key;
1596 
1597 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1598 						sizeof(*icmpv6_key));
1599 			if (!nla)
1600 				goto nla_put_failure;
1601 			icmpv6_key = nla_data(nla);
1602 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1603 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1604 
1605 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1606 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1607 				struct ovs_key_nd *nd_key;
1608 
1609 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1610 				if (!nla)
1611 					goto nla_put_failure;
1612 				nd_key = nla_data(nla);
1613 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1614 							sizeof(nd_key->nd_target));
1615 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1616 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1617 			}
1618 		}
1619 	}
1620 
1621 unencap:
1622 	if (encap)
1623 		nla_nest_end(skb, encap);
1624 
1625 	return 0;
1626 
1627 nla_put_failure:
1628 	return -EMSGSIZE;
1629 }
1630 
1631 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1632 		    const struct sw_flow_key *output, int attr, bool is_mask,
1633 		    struct sk_buff *skb)
1634 {
1635 	int err;
1636 	struct nlattr *nla;
1637 
1638 	nla = nla_nest_start(skb, attr);
1639 	if (!nla)
1640 		return -EMSGSIZE;
1641 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1642 	if (err)
1643 		return err;
1644 	nla_nest_end(skb, nla);
1645 
1646 	return 0;
1647 }
1648 
1649 /* Called with ovs_mutex or RCU read lock. */
1650 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1651 {
1652 	if (ovs_identifier_is_ufid(&flow->id))
1653 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1654 			       flow->id.ufid);
1655 
1656 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1657 			       OVS_FLOW_ATTR_KEY, false, skb);
1658 }
1659 
1660 /* Called with ovs_mutex or RCU read lock. */
1661 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1662 {
1663 	return ovs_nla_put_key(&flow->key, &flow->key,
1664 				OVS_FLOW_ATTR_KEY, false, skb);
1665 }
1666 
1667 /* Called with ovs_mutex or RCU read lock. */
1668 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1669 {
1670 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1671 				OVS_FLOW_ATTR_MASK, true, skb);
1672 }
1673 
1674 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1675 
1676 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1677 {
1678 	struct sw_flow_actions *sfa;
1679 
1680 	if (size > MAX_ACTIONS_BUFSIZE) {
1681 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1682 		return ERR_PTR(-EINVAL);
1683 	}
1684 
1685 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1686 	if (!sfa)
1687 		return ERR_PTR(-ENOMEM);
1688 
1689 	sfa->actions_len = 0;
1690 	return sfa;
1691 }
1692 
1693 static void ovs_nla_free_set_action(const struct nlattr *a)
1694 {
1695 	const struct nlattr *ovs_key = nla_data(a);
1696 	struct ovs_tunnel_info *ovs_tun;
1697 
1698 	switch (nla_type(ovs_key)) {
1699 	case OVS_KEY_ATTR_TUNNEL_INFO:
1700 		ovs_tun = nla_data(ovs_key);
1701 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1702 		break;
1703 	}
1704 }
1705 
1706 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1707 {
1708 	const struct nlattr *a;
1709 	int rem;
1710 
1711 	if (!sf_acts)
1712 		return;
1713 
1714 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1715 		switch (nla_type(a)) {
1716 		case OVS_ACTION_ATTR_SET:
1717 			ovs_nla_free_set_action(a);
1718 			break;
1719 		case OVS_ACTION_ATTR_CT:
1720 			ovs_ct_free_action(a);
1721 			break;
1722 		}
1723 	}
1724 
1725 	kfree(sf_acts);
1726 }
1727 
1728 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1729 {
1730 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1731 }
1732 
1733 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1734  * The caller must hold rcu_read_lock for this to be sensible. */
1735 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1736 {
1737 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1738 }
1739 
1740 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1741 				       int attr_len, bool log)
1742 {
1743 
1744 	struct sw_flow_actions *acts;
1745 	int new_acts_size;
1746 	int req_size = NLA_ALIGN(attr_len);
1747 	int next_offset = offsetof(struct sw_flow_actions, actions) +
1748 					(*sfa)->actions_len;
1749 
1750 	if (req_size <= (ksize(*sfa) - next_offset))
1751 		goto out;
1752 
1753 	new_acts_size = ksize(*sfa) * 2;
1754 
1755 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1756 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1757 			return ERR_PTR(-EMSGSIZE);
1758 		new_acts_size = MAX_ACTIONS_BUFSIZE;
1759 	}
1760 
1761 	acts = nla_alloc_flow_actions(new_acts_size, log);
1762 	if (IS_ERR(acts))
1763 		return (void *)acts;
1764 
1765 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1766 	acts->actions_len = (*sfa)->actions_len;
1767 	acts->orig_len = (*sfa)->orig_len;
1768 	kfree(*sfa);
1769 	*sfa = acts;
1770 
1771 out:
1772 	(*sfa)->actions_len += req_size;
1773 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1774 }
1775 
1776 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1777 				   int attrtype, void *data, int len, bool log)
1778 {
1779 	struct nlattr *a;
1780 
1781 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1782 	if (IS_ERR(a))
1783 		return a;
1784 
1785 	a->nla_type = attrtype;
1786 	a->nla_len = nla_attr_size(len);
1787 
1788 	if (data)
1789 		memcpy(nla_data(a), data, len);
1790 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1791 
1792 	return a;
1793 }
1794 
1795 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1796 		       int len, bool log)
1797 {
1798 	struct nlattr *a;
1799 
1800 	a = __add_action(sfa, attrtype, data, len, log);
1801 
1802 	return PTR_ERR_OR_ZERO(a);
1803 }
1804 
1805 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1806 					  int attrtype, bool log)
1807 {
1808 	int used = (*sfa)->actions_len;
1809 	int err;
1810 
1811 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1812 	if (err)
1813 		return err;
1814 
1815 	return used;
1816 }
1817 
1818 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1819 					 int st_offset)
1820 {
1821 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1822 							       st_offset);
1823 
1824 	a->nla_len = sfa->actions_len - st_offset;
1825 }
1826 
1827 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1828 				  const struct sw_flow_key *key,
1829 				  int depth, struct sw_flow_actions **sfa,
1830 				  __be16 eth_type, __be16 vlan_tci, bool log);
1831 
1832 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1833 				    const struct sw_flow_key *key, int depth,
1834 				    struct sw_flow_actions **sfa,
1835 				    __be16 eth_type, __be16 vlan_tci, bool log)
1836 {
1837 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1838 	const struct nlattr *probability, *actions;
1839 	const struct nlattr *a;
1840 	int rem, start, err, st_acts;
1841 
1842 	memset(attrs, 0, sizeof(attrs));
1843 	nla_for_each_nested(a, attr, rem) {
1844 		int type = nla_type(a);
1845 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1846 			return -EINVAL;
1847 		attrs[type] = a;
1848 	}
1849 	if (rem)
1850 		return -EINVAL;
1851 
1852 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1853 	if (!probability || nla_len(probability) != sizeof(u32))
1854 		return -EINVAL;
1855 
1856 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1857 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1858 		return -EINVAL;
1859 
1860 	/* validation done, copy sample action. */
1861 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1862 	if (start < 0)
1863 		return start;
1864 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1865 				 nla_data(probability), sizeof(u32), log);
1866 	if (err)
1867 		return err;
1868 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1869 	if (st_acts < 0)
1870 		return st_acts;
1871 
1872 	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1873 				     eth_type, vlan_tci, log);
1874 	if (err)
1875 		return err;
1876 
1877 	add_nested_action_end(*sfa, st_acts);
1878 	add_nested_action_end(*sfa, start);
1879 
1880 	return 0;
1881 }
1882 
1883 void ovs_match_init(struct sw_flow_match *match,
1884 		    struct sw_flow_key *key,
1885 		    struct sw_flow_mask *mask)
1886 {
1887 	memset(match, 0, sizeof(*match));
1888 	match->key = key;
1889 	match->mask = mask;
1890 
1891 	memset(key, 0, sizeof(*key));
1892 
1893 	if (mask) {
1894 		memset(&mask->key, 0, sizeof(mask->key));
1895 		mask->range.start = mask->range.end = 0;
1896 	}
1897 }
1898 
1899 static int validate_geneve_opts(struct sw_flow_key *key)
1900 {
1901 	struct geneve_opt *option;
1902 	int opts_len = key->tun_opts_len;
1903 	bool crit_opt = false;
1904 
1905 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1906 	while (opts_len > 0) {
1907 		int len;
1908 
1909 		if (opts_len < sizeof(*option))
1910 			return -EINVAL;
1911 
1912 		len = sizeof(*option) + option->length * 4;
1913 		if (len > opts_len)
1914 			return -EINVAL;
1915 
1916 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1917 
1918 		option = (struct geneve_opt *)((u8 *)option + len);
1919 		opts_len -= len;
1920 	};
1921 
1922 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1923 
1924 	return 0;
1925 }
1926 
1927 static int validate_and_copy_set_tun(const struct nlattr *attr,
1928 				     struct sw_flow_actions **sfa, bool log)
1929 {
1930 	struct sw_flow_match match;
1931 	struct sw_flow_key key;
1932 	struct metadata_dst *tun_dst;
1933 	struct ip_tunnel_info *tun_info;
1934 	struct ovs_tunnel_info *ovs_tun;
1935 	struct nlattr *a;
1936 	int err = 0, start, opts_type;
1937 
1938 	ovs_match_init(&match, &key, NULL);
1939 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1940 	if (opts_type < 0)
1941 		return opts_type;
1942 
1943 	if (key.tun_opts_len) {
1944 		switch (opts_type) {
1945 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1946 			err = validate_geneve_opts(&key);
1947 			if (err < 0)
1948 				return err;
1949 			break;
1950 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1951 			break;
1952 		}
1953 	};
1954 
1955 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1956 	if (start < 0)
1957 		return start;
1958 
1959 	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1960 	if (!tun_dst)
1961 		return -ENOMEM;
1962 
1963 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1964 	if (err) {
1965 		dst_release((struct dst_entry *)tun_dst);
1966 		return err;
1967 	}
1968 
1969 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1970 			 sizeof(*ovs_tun), log);
1971 	if (IS_ERR(a)) {
1972 		dst_release((struct dst_entry *)tun_dst);
1973 		return PTR_ERR(a);
1974 	}
1975 
1976 	ovs_tun = nla_data(a);
1977 	ovs_tun->tun_dst = tun_dst;
1978 
1979 	tun_info = &tun_dst->u.tun_info;
1980 	tun_info->mode = IP_TUNNEL_INFO_TX;
1981 	if (key.tun_proto == AF_INET6)
1982 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1983 	tun_info->key = key.tun_key;
1984 
1985 	/* We need to store the options in the action itself since
1986 	 * everything else will go away after flow setup. We can append
1987 	 * it to tun_info and then point there.
1988 	 */
1989 	ip_tunnel_info_opts_set(tun_info,
1990 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
1991 				key.tun_opts_len);
1992 	add_nested_action_end(*sfa, start);
1993 
1994 	return err;
1995 }
1996 
1997 /* Return false if there are any non-masked bits set.
1998  * Mask follows data immediately, before any netlink padding.
1999  */
2000 static bool validate_masked(u8 *data, int len)
2001 {
2002 	u8 *mask = data + len;
2003 
2004 	while (len--)
2005 		if (*data++ & ~*mask++)
2006 			return false;
2007 
2008 	return true;
2009 }
2010 
2011 static int validate_set(const struct nlattr *a,
2012 			const struct sw_flow_key *flow_key,
2013 			struct sw_flow_actions **sfa,
2014 			bool *skip_copy, __be16 eth_type, bool masked, bool log)
2015 {
2016 	const struct nlattr *ovs_key = nla_data(a);
2017 	int key_type = nla_type(ovs_key);
2018 	size_t key_len;
2019 
2020 	/* There can be only one key in a action */
2021 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2022 		return -EINVAL;
2023 
2024 	key_len = nla_len(ovs_key);
2025 	if (masked)
2026 		key_len /= 2;
2027 
2028 	if (key_type > OVS_KEY_ATTR_MAX ||
2029 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2030 		return -EINVAL;
2031 
2032 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2033 		return -EINVAL;
2034 
2035 	switch (key_type) {
2036 	const struct ovs_key_ipv4 *ipv4_key;
2037 	const struct ovs_key_ipv6 *ipv6_key;
2038 	int err;
2039 
2040 	case OVS_KEY_ATTR_PRIORITY:
2041 	case OVS_KEY_ATTR_SKB_MARK:
2042 	case OVS_KEY_ATTR_CT_MARK:
2043 	case OVS_KEY_ATTR_CT_LABELS:
2044 	case OVS_KEY_ATTR_ETHERNET:
2045 		break;
2046 
2047 	case OVS_KEY_ATTR_TUNNEL:
2048 		if (masked)
2049 			return -EINVAL; /* Masked tunnel set not supported. */
2050 
2051 		*skip_copy = true;
2052 		err = validate_and_copy_set_tun(a, sfa, log);
2053 		if (err)
2054 			return err;
2055 		break;
2056 
2057 	case OVS_KEY_ATTR_IPV4:
2058 		if (eth_type != htons(ETH_P_IP))
2059 			return -EINVAL;
2060 
2061 		ipv4_key = nla_data(ovs_key);
2062 
2063 		if (masked) {
2064 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2065 
2066 			/* Non-writeable fields. */
2067 			if (mask->ipv4_proto || mask->ipv4_frag)
2068 				return -EINVAL;
2069 		} else {
2070 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2071 				return -EINVAL;
2072 
2073 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2074 				return -EINVAL;
2075 		}
2076 		break;
2077 
2078 	case OVS_KEY_ATTR_IPV6:
2079 		if (eth_type != htons(ETH_P_IPV6))
2080 			return -EINVAL;
2081 
2082 		ipv6_key = nla_data(ovs_key);
2083 
2084 		if (masked) {
2085 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2086 
2087 			/* Non-writeable fields. */
2088 			if (mask->ipv6_proto || mask->ipv6_frag)
2089 				return -EINVAL;
2090 
2091 			/* Invalid bits in the flow label mask? */
2092 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2093 				return -EINVAL;
2094 		} else {
2095 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2096 				return -EINVAL;
2097 
2098 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2099 				return -EINVAL;
2100 		}
2101 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2102 			return -EINVAL;
2103 
2104 		break;
2105 
2106 	case OVS_KEY_ATTR_TCP:
2107 		if ((eth_type != htons(ETH_P_IP) &&
2108 		     eth_type != htons(ETH_P_IPV6)) ||
2109 		    flow_key->ip.proto != IPPROTO_TCP)
2110 			return -EINVAL;
2111 
2112 		break;
2113 
2114 	case OVS_KEY_ATTR_UDP:
2115 		if ((eth_type != htons(ETH_P_IP) &&
2116 		     eth_type != htons(ETH_P_IPV6)) ||
2117 		    flow_key->ip.proto != IPPROTO_UDP)
2118 			return -EINVAL;
2119 
2120 		break;
2121 
2122 	case OVS_KEY_ATTR_MPLS:
2123 		if (!eth_p_mpls(eth_type))
2124 			return -EINVAL;
2125 		break;
2126 
2127 	case OVS_KEY_ATTR_SCTP:
2128 		if ((eth_type != htons(ETH_P_IP) &&
2129 		     eth_type != htons(ETH_P_IPV6)) ||
2130 		    flow_key->ip.proto != IPPROTO_SCTP)
2131 			return -EINVAL;
2132 
2133 		break;
2134 
2135 	default:
2136 		return -EINVAL;
2137 	}
2138 
2139 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2140 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2141 		int start, len = key_len * 2;
2142 		struct nlattr *at;
2143 
2144 		*skip_copy = true;
2145 
2146 		start = add_nested_action_start(sfa,
2147 						OVS_ACTION_ATTR_SET_TO_MASKED,
2148 						log);
2149 		if (start < 0)
2150 			return start;
2151 
2152 		at = __add_action(sfa, key_type, NULL, len, log);
2153 		if (IS_ERR(at))
2154 			return PTR_ERR(at);
2155 
2156 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2157 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2158 		/* Clear non-writeable bits from otherwise writeable fields. */
2159 		if (key_type == OVS_KEY_ATTR_IPV6) {
2160 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2161 
2162 			mask->ipv6_label &= htonl(0x000FFFFF);
2163 		}
2164 		add_nested_action_end(*sfa, start);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int validate_userspace(const struct nlattr *attr)
2171 {
2172 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2173 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2174 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2175 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2176 	};
2177 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2178 	int error;
2179 
2180 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2181 				 attr, userspace_policy);
2182 	if (error)
2183 		return error;
2184 
2185 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2186 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2187 		return -EINVAL;
2188 
2189 	return 0;
2190 }
2191 
2192 static int copy_action(const struct nlattr *from,
2193 		       struct sw_flow_actions **sfa, bool log)
2194 {
2195 	int totlen = NLA_ALIGN(from->nla_len);
2196 	struct nlattr *to;
2197 
2198 	to = reserve_sfa_size(sfa, from->nla_len, log);
2199 	if (IS_ERR(to))
2200 		return PTR_ERR(to);
2201 
2202 	memcpy(to, from, totlen);
2203 	return 0;
2204 }
2205 
2206 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2207 				  const struct sw_flow_key *key,
2208 				  int depth, struct sw_flow_actions **sfa,
2209 				  __be16 eth_type, __be16 vlan_tci, bool log)
2210 {
2211 	const struct nlattr *a;
2212 	int rem, err;
2213 
2214 	if (depth >= SAMPLE_ACTION_DEPTH)
2215 		return -EOVERFLOW;
2216 
2217 	nla_for_each_nested(a, attr, rem) {
2218 		/* Expected argument lengths, (u32)-1 for variable length. */
2219 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2220 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2221 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2222 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2223 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2224 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2225 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2226 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2227 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2228 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2229 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2230 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2231 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2232 		};
2233 		const struct ovs_action_push_vlan *vlan;
2234 		int type = nla_type(a);
2235 		bool skip_copy;
2236 
2237 		if (type > OVS_ACTION_ATTR_MAX ||
2238 		    (action_lens[type] != nla_len(a) &&
2239 		     action_lens[type] != (u32)-1))
2240 			return -EINVAL;
2241 
2242 		skip_copy = false;
2243 		switch (type) {
2244 		case OVS_ACTION_ATTR_UNSPEC:
2245 			return -EINVAL;
2246 
2247 		case OVS_ACTION_ATTR_USERSPACE:
2248 			err = validate_userspace(a);
2249 			if (err)
2250 				return err;
2251 			break;
2252 
2253 		case OVS_ACTION_ATTR_OUTPUT:
2254 			if (nla_get_u32(a) >= DP_MAX_PORTS)
2255 				return -EINVAL;
2256 			break;
2257 
2258 		case OVS_ACTION_ATTR_HASH: {
2259 			const struct ovs_action_hash *act_hash = nla_data(a);
2260 
2261 			switch (act_hash->hash_alg) {
2262 			case OVS_HASH_ALG_L4:
2263 				break;
2264 			default:
2265 				return  -EINVAL;
2266 			}
2267 
2268 			break;
2269 		}
2270 
2271 		case OVS_ACTION_ATTR_POP_VLAN:
2272 			vlan_tci = htons(0);
2273 			break;
2274 
2275 		case OVS_ACTION_ATTR_PUSH_VLAN:
2276 			vlan = nla_data(a);
2277 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2278 				return -EINVAL;
2279 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2280 				return -EINVAL;
2281 			vlan_tci = vlan->vlan_tci;
2282 			break;
2283 
2284 		case OVS_ACTION_ATTR_RECIRC:
2285 			break;
2286 
2287 		case OVS_ACTION_ATTR_PUSH_MPLS: {
2288 			const struct ovs_action_push_mpls *mpls = nla_data(a);
2289 
2290 			if (!eth_p_mpls(mpls->mpls_ethertype))
2291 				return -EINVAL;
2292 			/* Prohibit push MPLS other than to a white list
2293 			 * for packets that have a known tag order.
2294 			 */
2295 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2296 			    (eth_type != htons(ETH_P_IP) &&
2297 			     eth_type != htons(ETH_P_IPV6) &&
2298 			     eth_type != htons(ETH_P_ARP) &&
2299 			     eth_type != htons(ETH_P_RARP) &&
2300 			     !eth_p_mpls(eth_type)))
2301 				return -EINVAL;
2302 			eth_type = mpls->mpls_ethertype;
2303 			break;
2304 		}
2305 
2306 		case OVS_ACTION_ATTR_POP_MPLS:
2307 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2308 			    !eth_p_mpls(eth_type))
2309 				return -EINVAL;
2310 
2311 			/* Disallow subsequent L2.5+ set and mpls_pop actions
2312 			 * as there is no check here to ensure that the new
2313 			 * eth_type is valid and thus set actions could
2314 			 * write off the end of the packet or otherwise
2315 			 * corrupt it.
2316 			 *
2317 			 * Support for these actions is planned using packet
2318 			 * recirculation.
2319 			 */
2320 			eth_type = htons(0);
2321 			break;
2322 
2323 		case OVS_ACTION_ATTR_SET:
2324 			err = validate_set(a, key, sfa,
2325 					   &skip_copy, eth_type, false, log);
2326 			if (err)
2327 				return err;
2328 			break;
2329 
2330 		case OVS_ACTION_ATTR_SET_MASKED:
2331 			err = validate_set(a, key, sfa,
2332 					   &skip_copy, eth_type, true, log);
2333 			if (err)
2334 				return err;
2335 			break;
2336 
2337 		case OVS_ACTION_ATTR_SAMPLE:
2338 			err = validate_and_copy_sample(net, a, key, depth, sfa,
2339 						       eth_type, vlan_tci, log);
2340 			if (err)
2341 				return err;
2342 			skip_copy = true;
2343 			break;
2344 
2345 		case OVS_ACTION_ATTR_CT:
2346 			err = ovs_ct_copy_action(net, a, key, sfa, log);
2347 			if (err)
2348 				return err;
2349 			skip_copy = true;
2350 			break;
2351 
2352 		default:
2353 			OVS_NLERR(log, "Unknown Action type %d", type);
2354 			return -EINVAL;
2355 		}
2356 		if (!skip_copy) {
2357 			err = copy_action(a, sfa, log);
2358 			if (err)
2359 				return err;
2360 		}
2361 	}
2362 
2363 	if (rem > 0)
2364 		return -EINVAL;
2365 
2366 	return 0;
2367 }
2368 
2369 /* 'key' must be the masked key. */
2370 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2371 			 const struct sw_flow_key *key,
2372 			 struct sw_flow_actions **sfa, bool log)
2373 {
2374 	int err;
2375 
2376 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2377 	if (IS_ERR(*sfa))
2378 		return PTR_ERR(*sfa);
2379 
2380 	(*sfa)->orig_len = nla_len(attr);
2381 	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2382 				     key->eth.tci, log);
2383 	if (err)
2384 		ovs_nla_free_flow_actions(*sfa);
2385 
2386 	return err;
2387 }
2388 
2389 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2390 {
2391 	const struct nlattr *a;
2392 	struct nlattr *start;
2393 	int err = 0, rem;
2394 
2395 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2396 	if (!start)
2397 		return -EMSGSIZE;
2398 
2399 	nla_for_each_nested(a, attr, rem) {
2400 		int type = nla_type(a);
2401 		struct nlattr *st_sample;
2402 
2403 		switch (type) {
2404 		case OVS_SAMPLE_ATTR_PROBABILITY:
2405 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2406 				    sizeof(u32), nla_data(a)))
2407 				return -EMSGSIZE;
2408 			break;
2409 		case OVS_SAMPLE_ATTR_ACTIONS:
2410 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2411 			if (!st_sample)
2412 				return -EMSGSIZE;
2413 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2414 			if (err)
2415 				return err;
2416 			nla_nest_end(skb, st_sample);
2417 			break;
2418 		}
2419 	}
2420 
2421 	nla_nest_end(skb, start);
2422 	return err;
2423 }
2424 
2425 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2426 {
2427 	const struct nlattr *ovs_key = nla_data(a);
2428 	int key_type = nla_type(ovs_key);
2429 	struct nlattr *start;
2430 	int err;
2431 
2432 	switch (key_type) {
2433 	case OVS_KEY_ATTR_TUNNEL_INFO: {
2434 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2435 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2436 
2437 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2438 		if (!start)
2439 			return -EMSGSIZE;
2440 
2441 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2442 					ip_tunnel_info_opts(tun_info),
2443 					tun_info->options_len,
2444 					ip_tunnel_info_af(tun_info));
2445 		if (err)
2446 			return err;
2447 		nla_nest_end(skb, start);
2448 		break;
2449 	}
2450 	default:
2451 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2452 			return -EMSGSIZE;
2453 		break;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2460 						struct sk_buff *skb)
2461 {
2462 	const struct nlattr *ovs_key = nla_data(a);
2463 	struct nlattr *nla;
2464 	size_t key_len = nla_len(ovs_key) / 2;
2465 
2466 	/* Revert the conversion we did from a non-masked set action to
2467 	 * masked set action.
2468 	 */
2469 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2470 	if (!nla)
2471 		return -EMSGSIZE;
2472 
2473 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2474 		return -EMSGSIZE;
2475 
2476 	nla_nest_end(skb, nla);
2477 	return 0;
2478 }
2479 
2480 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2481 {
2482 	const struct nlattr *a;
2483 	int rem, err;
2484 
2485 	nla_for_each_attr(a, attr, len, rem) {
2486 		int type = nla_type(a);
2487 
2488 		switch (type) {
2489 		case OVS_ACTION_ATTR_SET:
2490 			err = set_action_to_attr(a, skb);
2491 			if (err)
2492 				return err;
2493 			break;
2494 
2495 		case OVS_ACTION_ATTR_SET_TO_MASKED:
2496 			err = masked_set_action_to_set_action_attr(a, skb);
2497 			if (err)
2498 				return err;
2499 			break;
2500 
2501 		case OVS_ACTION_ATTR_SAMPLE:
2502 			err = sample_action_to_attr(a, skb);
2503 			if (err)
2504 				return err;
2505 			break;
2506 
2507 		case OVS_ACTION_ATTR_CT:
2508 			err = ovs_ct_action_to_attr(nla_data(a), skb);
2509 			if (err)
2510 				return err;
2511 			break;
2512 
2513 		default:
2514 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2515 				return -EMSGSIZE;
2516 			break;
2517 		}
2518 	}
2519 
2520 	return 0;
2521 }
2522