1 /* 2 * Copyright (c) 2007-2017 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include "flow.h" 22 #include "datapath.h" 23 #include <linux/uaccess.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/if_vlan.h> 28 #include <net/llc_pdu.h> 29 #include <linux/kernel.h> 30 #include <linux/jhash.h> 31 #include <linux/jiffies.h> 32 #include <linux/llc.h> 33 #include <linux/module.h> 34 #include <linux/in.h> 35 #include <linux/rcupdate.h> 36 #include <linux/if_arp.h> 37 #include <linux/ip.h> 38 #include <linux/ipv6.h> 39 #include <linux/sctp.h> 40 #include <linux/tcp.h> 41 #include <linux/udp.h> 42 #include <linux/icmp.h> 43 #include <linux/icmpv6.h> 44 #include <linux/rculist.h> 45 #include <net/geneve.h> 46 #include <net/ip.h> 47 #include <net/ipv6.h> 48 #include <net/ndisc.h> 49 #include <net/mpls.h> 50 #include <net/vxlan.h> 51 #include <net/tun_proto.h> 52 #include <net/erspan.h> 53 54 #include "flow_netlink.h" 55 56 struct ovs_len_tbl { 57 int len; 58 const struct ovs_len_tbl *next; 59 }; 60 61 #define OVS_ATTR_NESTED -1 62 #define OVS_ATTR_VARIABLE -2 63 64 static bool actions_may_change_flow(const struct nlattr *actions) 65 { 66 struct nlattr *nla; 67 int rem; 68 69 nla_for_each_nested(nla, actions, rem) { 70 u16 action = nla_type(nla); 71 72 switch (action) { 73 case OVS_ACTION_ATTR_OUTPUT: 74 case OVS_ACTION_ATTR_RECIRC: 75 case OVS_ACTION_ATTR_TRUNC: 76 case OVS_ACTION_ATTR_USERSPACE: 77 break; 78 79 case OVS_ACTION_ATTR_CT: 80 case OVS_ACTION_ATTR_CT_CLEAR: 81 case OVS_ACTION_ATTR_HASH: 82 case OVS_ACTION_ATTR_POP_ETH: 83 case OVS_ACTION_ATTR_POP_MPLS: 84 case OVS_ACTION_ATTR_POP_NSH: 85 case OVS_ACTION_ATTR_POP_VLAN: 86 case OVS_ACTION_ATTR_PUSH_ETH: 87 case OVS_ACTION_ATTR_PUSH_MPLS: 88 case OVS_ACTION_ATTR_PUSH_NSH: 89 case OVS_ACTION_ATTR_PUSH_VLAN: 90 case OVS_ACTION_ATTR_SAMPLE: 91 case OVS_ACTION_ATTR_SET: 92 case OVS_ACTION_ATTR_SET_MASKED: 93 case OVS_ACTION_ATTR_METER: 94 default: 95 return true; 96 } 97 } 98 return false; 99 } 100 101 static void update_range(struct sw_flow_match *match, 102 size_t offset, size_t size, bool is_mask) 103 { 104 struct sw_flow_key_range *range; 105 size_t start = rounddown(offset, sizeof(long)); 106 size_t end = roundup(offset + size, sizeof(long)); 107 108 if (!is_mask) 109 range = &match->range; 110 else 111 range = &match->mask->range; 112 113 if (range->start == range->end) { 114 range->start = start; 115 range->end = end; 116 return; 117 } 118 119 if (range->start > start) 120 range->start = start; 121 122 if (range->end < end) 123 range->end = end; 124 } 125 126 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 127 do { \ 128 update_range(match, offsetof(struct sw_flow_key, field), \ 129 sizeof((match)->key->field), is_mask); \ 130 if (is_mask) \ 131 (match)->mask->key.field = value; \ 132 else \ 133 (match)->key->field = value; \ 134 } while (0) 135 136 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 137 do { \ 138 update_range(match, offset, len, is_mask); \ 139 if (is_mask) \ 140 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 141 len); \ 142 else \ 143 memcpy((u8 *)(match)->key + offset, value_p, len); \ 144 } while (0) 145 146 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 147 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 148 value_p, len, is_mask) 149 150 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 151 do { \ 152 update_range(match, offsetof(struct sw_flow_key, field), \ 153 sizeof((match)->key->field), is_mask); \ 154 if (is_mask) \ 155 memset((u8 *)&(match)->mask->key.field, value, \ 156 sizeof((match)->mask->key.field)); \ 157 else \ 158 memset((u8 *)&(match)->key->field, value, \ 159 sizeof((match)->key->field)); \ 160 } while (0) 161 162 static bool match_validate(const struct sw_flow_match *match, 163 u64 key_attrs, u64 mask_attrs, bool log) 164 { 165 u64 key_expected = 0; 166 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 167 168 /* The following mask attributes allowed only if they 169 * pass the validation tests. */ 170 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 171 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) 172 | (1 << OVS_KEY_ATTR_IPV6) 173 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) 174 | (1 << OVS_KEY_ATTR_TCP) 175 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 176 | (1 << OVS_KEY_ATTR_UDP) 177 | (1 << OVS_KEY_ATTR_SCTP) 178 | (1 << OVS_KEY_ATTR_ICMP) 179 | (1 << OVS_KEY_ATTR_ICMPV6) 180 | (1 << OVS_KEY_ATTR_ARP) 181 | (1 << OVS_KEY_ATTR_ND) 182 | (1 << OVS_KEY_ATTR_MPLS) 183 | (1 << OVS_KEY_ATTR_NSH)); 184 185 /* Always allowed mask fields. */ 186 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 187 | (1 << OVS_KEY_ATTR_IN_PORT) 188 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 189 190 /* Check key attributes. */ 191 if (match->key->eth.type == htons(ETH_P_ARP) 192 || match->key->eth.type == htons(ETH_P_RARP)) { 193 key_expected |= 1 << OVS_KEY_ATTR_ARP; 194 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 195 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 196 } 197 198 if (eth_p_mpls(match->key->eth.type)) { 199 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 200 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 201 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 202 } 203 204 if (match->key->eth.type == htons(ETH_P_IP)) { 205 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 206 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 207 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 208 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; 209 } 210 211 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 212 if (match->key->ip.proto == IPPROTO_UDP) { 213 key_expected |= 1 << OVS_KEY_ATTR_UDP; 214 if (match->mask && (match->mask->key.ip.proto == 0xff)) 215 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 216 } 217 218 if (match->key->ip.proto == IPPROTO_SCTP) { 219 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 220 if (match->mask && (match->mask->key.ip.proto == 0xff)) 221 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 222 } 223 224 if (match->key->ip.proto == IPPROTO_TCP) { 225 key_expected |= 1 << OVS_KEY_ATTR_TCP; 226 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 227 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 228 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 229 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 230 } 231 } 232 233 if (match->key->ip.proto == IPPROTO_ICMP) { 234 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 235 if (match->mask && (match->mask->key.ip.proto == 0xff)) 236 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 237 } 238 } 239 } 240 241 if (match->key->eth.type == htons(ETH_P_IPV6)) { 242 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 243 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 244 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 245 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; 246 } 247 248 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 249 if (match->key->ip.proto == IPPROTO_UDP) { 250 key_expected |= 1 << OVS_KEY_ATTR_UDP; 251 if (match->mask && (match->mask->key.ip.proto == 0xff)) 252 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 253 } 254 255 if (match->key->ip.proto == IPPROTO_SCTP) { 256 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 257 if (match->mask && (match->mask->key.ip.proto == 0xff)) 258 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 259 } 260 261 if (match->key->ip.proto == IPPROTO_TCP) { 262 key_expected |= 1 << OVS_KEY_ATTR_TCP; 263 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 264 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 265 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 266 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 267 } 268 } 269 270 if (match->key->ip.proto == IPPROTO_ICMPV6) { 271 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 272 if (match->mask && (match->mask->key.ip.proto == 0xff)) 273 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 274 275 if (match->key->tp.src == 276 htons(NDISC_NEIGHBOUR_SOLICITATION) || 277 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 278 key_expected |= 1 << OVS_KEY_ATTR_ND; 279 /* Original direction conntrack tuple 280 * uses the same space as the ND fields 281 * in the key, so both are not allowed 282 * at the same time. 283 */ 284 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 285 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 286 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 287 } 288 } 289 } 290 } 291 292 if (match->key->eth.type == htons(ETH_P_NSH)) { 293 key_expected |= 1 << OVS_KEY_ATTR_NSH; 294 if (match->mask && 295 match->mask->key.eth.type == htons(0xffff)) { 296 mask_allowed |= 1 << OVS_KEY_ATTR_NSH; 297 } 298 } 299 300 if ((key_attrs & key_expected) != key_expected) { 301 /* Key attributes check failed. */ 302 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 303 (unsigned long long)key_attrs, 304 (unsigned long long)key_expected); 305 return false; 306 } 307 308 if ((mask_attrs & mask_allowed) != mask_attrs) { 309 /* Mask attributes check failed. */ 310 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 311 (unsigned long long)mask_attrs, 312 (unsigned long long)mask_allowed); 313 return false; 314 } 315 316 return true; 317 } 318 319 size_t ovs_tun_key_attr_size(void) 320 { 321 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 322 * updating this function. 323 */ 324 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 325 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 326 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 327 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 328 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 329 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 330 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 331 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 332 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 333 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with 334 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 335 */ 336 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 337 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 338 + nla_total_size(4); /* OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS */ 339 } 340 341 static size_t ovs_nsh_key_attr_size(void) 342 { 343 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider 344 * updating this function. 345 */ 346 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ 347 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are 348 * mutually exclusive, so the bigger one can cover 349 * the small one. 350 */ 351 + nla_total_size(NSH_CTX_HDRS_MAX_LEN); 352 } 353 354 size_t ovs_key_attr_size(void) 355 { 356 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 357 * updating this function. 358 */ 359 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29); 360 361 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 362 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 363 + ovs_tun_key_attr_size() 364 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 365 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 366 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 367 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 368 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 369 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 370 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 371 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 372 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ 373 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ 374 + ovs_nsh_key_attr_size() 375 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 376 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 377 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 378 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 379 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 380 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 381 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 382 + nla_total_size(28); /* OVS_KEY_ATTR_ND */ 383 } 384 385 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 386 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 387 }; 388 389 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 390 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 391 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 392 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 393 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 394 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 395 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 396 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 397 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 398 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 399 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 400 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 401 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 402 .next = ovs_vxlan_ext_key_lens }, 403 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 404 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 405 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = sizeof(u32) }, 406 }; 407 408 static const struct ovs_len_tbl 409 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { 410 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, 411 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, 412 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, 413 }; 414 415 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 416 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 417 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 418 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 419 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 420 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 421 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 422 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 423 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 424 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 425 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 426 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 427 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 428 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 429 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 430 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 431 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 432 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 433 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 434 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 435 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 436 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 437 .next = ovs_tunnel_key_lens, }, 438 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) }, 439 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 440 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 441 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 442 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 443 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { 444 .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, 445 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { 446 .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, 447 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, 448 .next = ovs_nsh_key_attr_lens, }, 449 }; 450 451 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 452 { 453 return expected_len == attr_len || 454 expected_len == OVS_ATTR_NESTED || 455 expected_len == OVS_ATTR_VARIABLE; 456 } 457 458 static bool is_all_zero(const u8 *fp, size_t size) 459 { 460 int i; 461 462 if (!fp) 463 return false; 464 465 for (i = 0; i < size; i++) 466 if (fp[i]) 467 return false; 468 469 return true; 470 } 471 472 static int __parse_flow_nlattrs(const struct nlattr *attr, 473 const struct nlattr *a[], 474 u64 *attrsp, bool log, bool nz) 475 { 476 const struct nlattr *nla; 477 u64 attrs; 478 int rem; 479 480 attrs = *attrsp; 481 nla_for_each_nested(nla, attr, rem) { 482 u16 type = nla_type(nla); 483 int expected_len; 484 485 if (type > OVS_KEY_ATTR_MAX) { 486 OVS_NLERR(log, "Key type %d is out of range max %d", 487 type, OVS_KEY_ATTR_MAX); 488 return -EINVAL; 489 } 490 491 if (attrs & (1 << type)) { 492 OVS_NLERR(log, "Duplicate key (type %d).", type); 493 return -EINVAL; 494 } 495 496 expected_len = ovs_key_lens[type].len; 497 if (!check_attr_len(nla_len(nla), expected_len)) { 498 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 499 type, nla_len(nla), expected_len); 500 return -EINVAL; 501 } 502 503 if (!nz || !is_all_zero(nla_data(nla), expected_len)) { 504 attrs |= 1 << type; 505 a[type] = nla; 506 } 507 } 508 if (rem) { 509 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 510 return -EINVAL; 511 } 512 513 *attrsp = attrs; 514 return 0; 515 } 516 517 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 518 const struct nlattr *a[], u64 *attrsp, 519 bool log) 520 { 521 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 522 } 523 524 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], 525 u64 *attrsp, bool log) 526 { 527 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 528 } 529 530 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 531 struct sw_flow_match *match, bool is_mask, 532 bool log) 533 { 534 unsigned long opt_key_offset; 535 536 if (nla_len(a) > sizeof(match->key->tun_opts)) { 537 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 538 nla_len(a), sizeof(match->key->tun_opts)); 539 return -EINVAL; 540 } 541 542 if (nla_len(a) % 4 != 0) { 543 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 544 nla_len(a)); 545 return -EINVAL; 546 } 547 548 /* We need to record the length of the options passed 549 * down, otherwise packets with the same format but 550 * additional options will be silently matched. 551 */ 552 if (!is_mask) { 553 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 554 false); 555 } else { 556 /* This is somewhat unusual because it looks at 557 * both the key and mask while parsing the 558 * attributes (and by extension assumes the key 559 * is parsed first). Normally, we would verify 560 * that each is the correct length and that the 561 * attributes line up in the validate function. 562 * However, that is difficult because this is 563 * variable length and we won't have the 564 * information later. 565 */ 566 if (match->key->tun_opts_len != nla_len(a)) { 567 OVS_NLERR(log, "Geneve option len %d != mask len %d", 568 match->key->tun_opts_len, nla_len(a)); 569 return -EINVAL; 570 } 571 572 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 573 } 574 575 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 576 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 577 nla_len(a), is_mask); 578 return 0; 579 } 580 581 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 582 struct sw_flow_match *match, bool is_mask, 583 bool log) 584 { 585 struct nlattr *a; 586 int rem; 587 unsigned long opt_key_offset; 588 struct vxlan_metadata opts; 589 590 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 591 592 memset(&opts, 0, sizeof(opts)); 593 nla_for_each_nested(a, attr, rem) { 594 int type = nla_type(a); 595 596 if (type > OVS_VXLAN_EXT_MAX) { 597 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 598 type, OVS_VXLAN_EXT_MAX); 599 return -EINVAL; 600 } 601 602 if (!check_attr_len(nla_len(a), 603 ovs_vxlan_ext_key_lens[type].len)) { 604 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 605 type, nla_len(a), 606 ovs_vxlan_ext_key_lens[type].len); 607 return -EINVAL; 608 } 609 610 switch (type) { 611 case OVS_VXLAN_EXT_GBP: 612 opts.gbp = nla_get_u32(a); 613 break; 614 default: 615 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 616 type); 617 return -EINVAL; 618 } 619 } 620 if (rem) { 621 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 622 rem); 623 return -EINVAL; 624 } 625 626 if (!is_mask) 627 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 628 else 629 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 630 631 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 632 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 633 is_mask); 634 return 0; 635 } 636 637 static int erspan_tun_opt_from_nlattr(const struct nlattr *attr, 638 struct sw_flow_match *match, bool is_mask, 639 bool log) 640 { 641 unsigned long opt_key_offset; 642 struct erspan_metadata opts; 643 644 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 645 646 memset(&opts, 0, sizeof(opts)); 647 opts.index = nla_get_be32(attr); 648 649 /* Index has only 20-bit */ 650 if (ntohl(opts.index) & ~INDEX_MASK) { 651 OVS_NLERR(log, "ERSPAN index number %x too large.", 652 ntohl(opts.index)); 653 return -EINVAL; 654 } 655 656 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), is_mask); 657 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 658 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 659 is_mask); 660 661 return 0; 662 } 663 664 static int ip_tun_from_nlattr(const struct nlattr *attr, 665 struct sw_flow_match *match, bool is_mask, 666 bool log) 667 { 668 bool ttl = false, ipv4 = false, ipv6 = false; 669 __be16 tun_flags = 0; 670 int opts_type = 0; 671 struct nlattr *a; 672 int rem; 673 674 nla_for_each_nested(a, attr, rem) { 675 int type = nla_type(a); 676 int err; 677 678 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 679 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 680 type, OVS_TUNNEL_KEY_ATTR_MAX); 681 return -EINVAL; 682 } 683 684 if (!check_attr_len(nla_len(a), 685 ovs_tunnel_key_lens[type].len)) { 686 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 687 type, nla_len(a), ovs_tunnel_key_lens[type].len); 688 return -EINVAL; 689 } 690 691 switch (type) { 692 case OVS_TUNNEL_KEY_ATTR_ID: 693 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 694 nla_get_be64(a), is_mask); 695 tun_flags |= TUNNEL_KEY; 696 break; 697 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 698 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 699 nla_get_in_addr(a), is_mask); 700 ipv4 = true; 701 break; 702 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 703 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 704 nla_get_in_addr(a), is_mask); 705 ipv4 = true; 706 break; 707 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 708 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, 709 nla_get_in6_addr(a), is_mask); 710 ipv6 = true; 711 break; 712 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 713 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 714 nla_get_in6_addr(a), is_mask); 715 ipv6 = true; 716 break; 717 case OVS_TUNNEL_KEY_ATTR_TOS: 718 SW_FLOW_KEY_PUT(match, tun_key.tos, 719 nla_get_u8(a), is_mask); 720 break; 721 case OVS_TUNNEL_KEY_ATTR_TTL: 722 SW_FLOW_KEY_PUT(match, tun_key.ttl, 723 nla_get_u8(a), is_mask); 724 ttl = true; 725 break; 726 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 727 tun_flags |= TUNNEL_DONT_FRAGMENT; 728 break; 729 case OVS_TUNNEL_KEY_ATTR_CSUM: 730 tun_flags |= TUNNEL_CSUM; 731 break; 732 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 733 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 734 nla_get_be16(a), is_mask); 735 break; 736 case OVS_TUNNEL_KEY_ATTR_TP_DST: 737 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 738 nla_get_be16(a), is_mask); 739 break; 740 case OVS_TUNNEL_KEY_ATTR_OAM: 741 tun_flags |= TUNNEL_OAM; 742 break; 743 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 744 if (opts_type) { 745 OVS_NLERR(log, "Multiple metadata blocks provided"); 746 return -EINVAL; 747 } 748 749 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 750 if (err) 751 return err; 752 753 tun_flags |= TUNNEL_GENEVE_OPT; 754 opts_type = type; 755 break; 756 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 757 if (opts_type) { 758 OVS_NLERR(log, "Multiple metadata blocks provided"); 759 return -EINVAL; 760 } 761 762 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 763 if (err) 764 return err; 765 766 tun_flags |= TUNNEL_VXLAN_OPT; 767 opts_type = type; 768 break; 769 case OVS_TUNNEL_KEY_ATTR_PAD: 770 break; 771 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 772 if (opts_type) { 773 OVS_NLERR(log, "Multiple metadata blocks provided"); 774 return -EINVAL; 775 } 776 777 err = erspan_tun_opt_from_nlattr(a, match, is_mask, log); 778 if (err) 779 return err; 780 781 tun_flags |= TUNNEL_ERSPAN_OPT; 782 opts_type = type; 783 break; 784 default: 785 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 786 type); 787 return -EINVAL; 788 } 789 } 790 791 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 792 if (is_mask) 793 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 794 else 795 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 796 false); 797 798 if (rem > 0) { 799 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 800 rem); 801 return -EINVAL; 802 } 803 804 if (ipv4 && ipv6) { 805 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 806 return -EINVAL; 807 } 808 809 if (!is_mask) { 810 if (!ipv4 && !ipv6) { 811 OVS_NLERR(log, "IP tunnel dst address not specified"); 812 return -EINVAL; 813 } 814 if (ipv4 && !match->key->tun_key.u.ipv4.dst) { 815 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 816 return -EINVAL; 817 } 818 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 819 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 820 return -EINVAL; 821 } 822 823 if (!ttl) { 824 OVS_NLERR(log, "IP tunnel TTL not specified."); 825 return -EINVAL; 826 } 827 } 828 829 return opts_type; 830 } 831 832 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 833 const void *tun_opts, int swkey_tun_opts_len) 834 { 835 const struct vxlan_metadata *opts = tun_opts; 836 struct nlattr *nla; 837 838 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 839 if (!nla) 840 return -EMSGSIZE; 841 842 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 843 return -EMSGSIZE; 844 845 nla_nest_end(skb, nla); 846 return 0; 847 } 848 849 static int __ip_tun_to_nlattr(struct sk_buff *skb, 850 const struct ip_tunnel_key *output, 851 const void *tun_opts, int swkey_tun_opts_len, 852 unsigned short tun_proto) 853 { 854 if (output->tun_flags & TUNNEL_KEY && 855 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 856 OVS_TUNNEL_KEY_ATTR_PAD)) 857 return -EMSGSIZE; 858 switch (tun_proto) { 859 case AF_INET: 860 if (output->u.ipv4.src && 861 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 862 output->u.ipv4.src)) 863 return -EMSGSIZE; 864 if (output->u.ipv4.dst && 865 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 866 output->u.ipv4.dst)) 867 return -EMSGSIZE; 868 break; 869 case AF_INET6: 870 if (!ipv6_addr_any(&output->u.ipv6.src) && 871 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 872 &output->u.ipv6.src)) 873 return -EMSGSIZE; 874 if (!ipv6_addr_any(&output->u.ipv6.dst) && 875 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 876 &output->u.ipv6.dst)) 877 return -EMSGSIZE; 878 break; 879 } 880 if (output->tos && 881 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 882 return -EMSGSIZE; 883 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 884 return -EMSGSIZE; 885 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 886 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 887 return -EMSGSIZE; 888 if ((output->tun_flags & TUNNEL_CSUM) && 889 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 890 return -EMSGSIZE; 891 if (output->tp_src && 892 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 893 return -EMSGSIZE; 894 if (output->tp_dst && 895 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 896 return -EMSGSIZE; 897 if ((output->tun_flags & TUNNEL_OAM) && 898 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 899 return -EMSGSIZE; 900 if (swkey_tun_opts_len) { 901 if (output->tun_flags & TUNNEL_GENEVE_OPT && 902 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 903 swkey_tun_opts_len, tun_opts)) 904 return -EMSGSIZE; 905 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 906 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 907 return -EMSGSIZE; 908 else if (output->tun_flags & TUNNEL_ERSPAN_OPT && 909 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, 910 ((struct erspan_metadata *)tun_opts)->index)) 911 return -EMSGSIZE; 912 } 913 914 return 0; 915 } 916 917 static int ip_tun_to_nlattr(struct sk_buff *skb, 918 const struct ip_tunnel_key *output, 919 const void *tun_opts, int swkey_tun_opts_len, 920 unsigned short tun_proto) 921 { 922 struct nlattr *nla; 923 int err; 924 925 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); 926 if (!nla) 927 return -EMSGSIZE; 928 929 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 930 tun_proto); 931 if (err) 932 return err; 933 934 nla_nest_end(skb, nla); 935 return 0; 936 } 937 938 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 939 struct ip_tunnel_info *tun_info) 940 { 941 return __ip_tun_to_nlattr(skb, &tun_info->key, 942 ip_tunnel_info_opts(tun_info), 943 tun_info->options_len, 944 ip_tunnel_info_af(tun_info)); 945 } 946 947 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 948 const struct nlattr *a[], 949 bool is_mask, bool inner) 950 { 951 __be16 tci = 0; 952 __be16 tpid = 0; 953 954 if (a[OVS_KEY_ATTR_VLAN]) 955 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 956 957 if (a[OVS_KEY_ATTR_ETHERTYPE]) 958 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 959 960 if (likely(!inner)) { 961 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 962 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 963 } else { 964 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 965 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 966 } 967 return 0; 968 } 969 970 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 971 u64 key_attrs, bool inner, 972 const struct nlattr **a, bool log) 973 { 974 __be16 tci = 0; 975 976 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 977 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 978 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 979 /* Not a VLAN. */ 980 return 0; 981 } 982 983 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 984 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 985 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 986 return -EINVAL; 987 } 988 989 if (a[OVS_KEY_ATTR_VLAN]) 990 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 991 992 if (!(tci & htons(VLAN_TAG_PRESENT))) { 993 if (tci) { 994 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.", 995 (inner) ? "C-VLAN" : "VLAN"); 996 return -EINVAL; 997 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 998 /* Corner case for truncated VLAN header. */ 999 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 1000 (inner) ? "C-VLAN" : "VLAN"); 1001 return -EINVAL; 1002 } 1003 } 1004 1005 return 1; 1006 } 1007 1008 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 1009 u64 key_attrs, bool inner, 1010 const struct nlattr **a, bool log) 1011 { 1012 __be16 tci = 0; 1013 __be16 tpid = 0; 1014 bool encap_valid = !!(match->key->eth.vlan.tci & 1015 htons(VLAN_TAG_PRESENT)); 1016 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 1017 htons(VLAN_TAG_PRESENT)); 1018 1019 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 1020 /* Not a VLAN. */ 1021 return 0; 1022 } 1023 1024 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 1025 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 1026 (inner) ? "C-VLAN" : "VLAN"); 1027 return -EINVAL; 1028 } 1029 1030 if (a[OVS_KEY_ATTR_VLAN]) 1031 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1032 1033 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1034 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1035 1036 if (tpid != htons(0xffff)) { 1037 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 1038 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 1039 return -EINVAL; 1040 } 1041 if (!(tci & htons(VLAN_TAG_PRESENT))) { 1042 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.", 1043 (inner) ? "C-VLAN" : "VLAN"); 1044 return -EINVAL; 1045 } 1046 1047 return 1; 1048 } 1049 1050 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 1051 u64 *key_attrs, bool inner, 1052 const struct nlattr **a, bool is_mask, 1053 bool log) 1054 { 1055 int err; 1056 const struct nlattr *encap; 1057 1058 if (!is_mask) 1059 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 1060 a, log); 1061 else 1062 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 1063 a, log); 1064 if (err <= 0) 1065 return err; 1066 1067 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 1068 if (err) 1069 return err; 1070 1071 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1072 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 1073 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1074 1075 encap = a[OVS_KEY_ATTR_ENCAP]; 1076 1077 if (!is_mask) 1078 err = parse_flow_nlattrs(encap, a, key_attrs, log); 1079 else 1080 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 1081 1082 return err; 1083 } 1084 1085 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 1086 u64 *key_attrs, const struct nlattr **a, 1087 bool is_mask, bool log) 1088 { 1089 int err; 1090 bool encap_valid = false; 1091 1092 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 1093 is_mask, log); 1094 if (err) 1095 return err; 1096 1097 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT)); 1098 if (encap_valid) { 1099 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 1100 is_mask, log); 1101 if (err) 1102 return err; 1103 } 1104 1105 return 0; 1106 } 1107 1108 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, 1109 u64 *attrs, const struct nlattr **a, 1110 bool is_mask, bool log) 1111 { 1112 __be16 eth_type; 1113 1114 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1115 if (is_mask) { 1116 /* Always exact match EtherType. */ 1117 eth_type = htons(0xffff); 1118 } else if (!eth_proto_is_802_3(eth_type)) { 1119 OVS_NLERR(log, "EtherType %x is less than min %x", 1120 ntohs(eth_type), ETH_P_802_3_MIN); 1121 return -EINVAL; 1122 } 1123 1124 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1125 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1126 return 0; 1127 } 1128 1129 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 1130 u64 *attrs, const struct nlattr **a, 1131 bool is_mask, bool log) 1132 { 1133 u8 mac_proto = MAC_PROTO_ETHERNET; 1134 1135 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 1136 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 1137 1138 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 1139 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 1140 } 1141 1142 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 1143 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 1144 1145 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 1146 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 1147 } 1148 1149 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 1150 SW_FLOW_KEY_PUT(match, phy.priority, 1151 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 1152 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 1153 } 1154 1155 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 1156 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 1157 1158 if (is_mask) { 1159 in_port = 0xffffffff; /* Always exact match in_port. */ 1160 } else if (in_port >= DP_MAX_PORTS) { 1161 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1162 in_port, DP_MAX_PORTS); 1163 return -EINVAL; 1164 } 1165 1166 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1167 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1168 } else if (!is_mask) { 1169 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1170 } 1171 1172 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1173 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1174 1175 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1176 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1177 } 1178 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1179 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1180 is_mask, log) < 0) 1181 return -EINVAL; 1182 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1183 } 1184 1185 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1186 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1187 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1188 1189 if (ct_state & ~CT_SUPPORTED_MASK) { 1190 OVS_NLERR(log, "ct_state flags %08x unsupported", 1191 ct_state); 1192 return -EINVAL; 1193 } 1194 1195 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); 1196 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1197 } 1198 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1199 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1200 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1201 1202 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); 1203 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1204 } 1205 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1206 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1207 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1208 1209 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1210 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1211 } 1212 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1213 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1214 const struct ovs_key_ct_labels *cl; 1215 1216 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1217 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1218 sizeof(*cl), is_mask); 1219 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1220 } 1221 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { 1222 const struct ovs_key_ct_tuple_ipv4 *ct; 1223 1224 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); 1225 1226 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); 1227 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); 1228 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1229 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1230 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); 1231 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); 1232 } 1233 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { 1234 const struct ovs_key_ct_tuple_ipv6 *ct; 1235 1236 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); 1237 1238 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, 1239 sizeof(match->key->ipv6.ct_orig.src), 1240 is_mask); 1241 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, 1242 sizeof(match->key->ipv6.ct_orig.dst), 1243 is_mask); 1244 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1245 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1246 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); 1247 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 1248 } 1249 1250 /* For layer 3 packets the Ethernet type is provided 1251 * and treated as metadata but no MAC addresses are provided. 1252 */ 1253 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && 1254 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) 1255 mac_proto = MAC_PROTO_NONE; 1256 1257 /* Always exact match mac_proto */ 1258 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); 1259 1260 if (mac_proto == MAC_PROTO_NONE) 1261 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, 1262 log); 1263 1264 return 0; 1265 } 1266 1267 int nsh_hdr_from_nlattr(const struct nlattr *attr, 1268 struct nshhdr *nh, size_t size) 1269 { 1270 struct nlattr *a; 1271 int rem; 1272 u8 flags = 0; 1273 u8 ttl = 0; 1274 int mdlen = 0; 1275 1276 /* validate_nsh has check this, so we needn't do duplicate check here 1277 */ 1278 if (size < NSH_BASE_HDR_LEN) 1279 return -ENOBUFS; 1280 1281 nla_for_each_nested(a, attr, rem) { 1282 int type = nla_type(a); 1283 1284 switch (type) { 1285 case OVS_NSH_KEY_ATTR_BASE: { 1286 const struct ovs_nsh_key_base *base = nla_data(a); 1287 1288 flags = base->flags; 1289 ttl = base->ttl; 1290 nh->np = base->np; 1291 nh->mdtype = base->mdtype; 1292 nh->path_hdr = base->path_hdr; 1293 break; 1294 } 1295 case OVS_NSH_KEY_ATTR_MD1: 1296 mdlen = nla_len(a); 1297 if (mdlen > size - NSH_BASE_HDR_LEN) 1298 return -ENOBUFS; 1299 memcpy(&nh->md1, nla_data(a), mdlen); 1300 break; 1301 1302 case OVS_NSH_KEY_ATTR_MD2: 1303 mdlen = nla_len(a); 1304 if (mdlen > size - NSH_BASE_HDR_LEN) 1305 return -ENOBUFS; 1306 memcpy(&nh->md2, nla_data(a), mdlen); 1307 break; 1308 1309 default: 1310 return -EINVAL; 1311 } 1312 } 1313 1314 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ 1315 nh->ver_flags_ttl_len = 0; 1316 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); 1317 1318 return 0; 1319 } 1320 1321 int nsh_key_from_nlattr(const struct nlattr *attr, 1322 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) 1323 { 1324 struct nlattr *a; 1325 int rem; 1326 1327 /* validate_nsh has check this, so we needn't do duplicate check here 1328 */ 1329 nla_for_each_nested(a, attr, rem) { 1330 int type = nla_type(a); 1331 1332 switch (type) { 1333 case OVS_NSH_KEY_ATTR_BASE: { 1334 const struct ovs_nsh_key_base *base = nla_data(a); 1335 const struct ovs_nsh_key_base *base_mask = base + 1; 1336 1337 nsh->base = *base; 1338 nsh_mask->base = *base_mask; 1339 break; 1340 } 1341 case OVS_NSH_KEY_ATTR_MD1: { 1342 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1343 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; 1344 1345 memcpy(nsh->context, md1->context, sizeof(*md1)); 1346 memcpy(nsh_mask->context, md1_mask->context, 1347 sizeof(*md1_mask)); 1348 break; 1349 } 1350 case OVS_NSH_KEY_ATTR_MD2: 1351 /* Not supported yet */ 1352 return -ENOTSUPP; 1353 default: 1354 return -EINVAL; 1355 } 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int nsh_key_put_from_nlattr(const struct nlattr *attr, 1362 struct sw_flow_match *match, bool is_mask, 1363 bool is_push_nsh, bool log) 1364 { 1365 struct nlattr *a; 1366 int rem; 1367 bool has_base = false; 1368 bool has_md1 = false; 1369 bool has_md2 = false; 1370 u8 mdtype = 0; 1371 int mdlen = 0; 1372 1373 if (WARN_ON(is_push_nsh && is_mask)) 1374 return -EINVAL; 1375 1376 nla_for_each_nested(a, attr, rem) { 1377 int type = nla_type(a); 1378 int i; 1379 1380 if (type > OVS_NSH_KEY_ATTR_MAX) { 1381 OVS_NLERR(log, "nsh attr %d is out of range max %d", 1382 type, OVS_NSH_KEY_ATTR_MAX); 1383 return -EINVAL; 1384 } 1385 1386 if (!check_attr_len(nla_len(a), 1387 ovs_nsh_key_attr_lens[type].len)) { 1388 OVS_NLERR( 1389 log, 1390 "nsh attr %d has unexpected len %d expected %d", 1391 type, 1392 nla_len(a), 1393 ovs_nsh_key_attr_lens[type].len 1394 ); 1395 return -EINVAL; 1396 } 1397 1398 switch (type) { 1399 case OVS_NSH_KEY_ATTR_BASE: { 1400 const struct ovs_nsh_key_base *base = nla_data(a); 1401 1402 has_base = true; 1403 mdtype = base->mdtype; 1404 SW_FLOW_KEY_PUT(match, nsh.base.flags, 1405 base->flags, is_mask); 1406 SW_FLOW_KEY_PUT(match, nsh.base.ttl, 1407 base->ttl, is_mask); 1408 SW_FLOW_KEY_PUT(match, nsh.base.mdtype, 1409 base->mdtype, is_mask); 1410 SW_FLOW_KEY_PUT(match, nsh.base.np, 1411 base->np, is_mask); 1412 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, 1413 base->path_hdr, is_mask); 1414 break; 1415 } 1416 case OVS_NSH_KEY_ATTR_MD1: { 1417 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1418 1419 has_md1 = true; 1420 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) 1421 SW_FLOW_KEY_PUT(match, nsh.context[i], 1422 md1->context[i], is_mask); 1423 break; 1424 } 1425 case OVS_NSH_KEY_ATTR_MD2: 1426 if (!is_push_nsh) /* Not supported MD type 2 yet */ 1427 return -ENOTSUPP; 1428 1429 has_md2 = true; 1430 mdlen = nla_len(a); 1431 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { 1432 OVS_NLERR( 1433 log, 1434 "Invalid MD length %d for MD type %d", 1435 mdlen, 1436 mdtype 1437 ); 1438 return -EINVAL; 1439 } 1440 break; 1441 default: 1442 OVS_NLERR(log, "Unknown nsh attribute %d", 1443 type); 1444 return -EINVAL; 1445 } 1446 } 1447 1448 if (rem > 0) { 1449 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); 1450 return -EINVAL; 1451 } 1452 1453 if (has_md1 && has_md2) { 1454 OVS_NLERR( 1455 1, 1456 "invalid nsh attribute: md1 and md2 are exclusive." 1457 ); 1458 return -EINVAL; 1459 } 1460 1461 if (!is_mask) { 1462 if ((has_md1 && mdtype != NSH_M_TYPE1) || 1463 (has_md2 && mdtype != NSH_M_TYPE2)) { 1464 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", 1465 mdtype); 1466 return -EINVAL; 1467 } 1468 1469 if (is_push_nsh && 1470 (!has_base || (!has_md1 && !has_md2))) { 1471 OVS_NLERR( 1472 1, 1473 "push_nsh: missing base or metadata attributes" 1474 ); 1475 return -EINVAL; 1476 } 1477 } 1478 1479 return 0; 1480 } 1481 1482 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1483 u64 attrs, const struct nlattr **a, 1484 bool is_mask, bool log) 1485 { 1486 int err; 1487 1488 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1489 if (err) 1490 return err; 1491 1492 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1493 const struct ovs_key_ethernet *eth_key; 1494 1495 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1496 SW_FLOW_KEY_MEMCPY(match, eth.src, 1497 eth_key->eth_src, ETH_ALEN, is_mask); 1498 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1499 eth_key->eth_dst, ETH_ALEN, is_mask); 1500 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1501 1502 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1503 /* VLAN attribute is always parsed before getting here since it 1504 * may occur multiple times. 1505 */ 1506 OVS_NLERR(log, "VLAN attribute unexpected."); 1507 return -EINVAL; 1508 } 1509 1510 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1511 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, 1512 log); 1513 if (err) 1514 return err; 1515 } else if (!is_mask) { 1516 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1517 } 1518 } else if (!match->key->eth.type) { 1519 OVS_NLERR(log, "Either Ethernet header or EtherType is required."); 1520 return -EINVAL; 1521 } 1522 1523 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1524 const struct ovs_key_ipv4 *ipv4_key; 1525 1526 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1527 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1528 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1529 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1530 return -EINVAL; 1531 } 1532 SW_FLOW_KEY_PUT(match, ip.proto, 1533 ipv4_key->ipv4_proto, is_mask); 1534 SW_FLOW_KEY_PUT(match, ip.tos, 1535 ipv4_key->ipv4_tos, is_mask); 1536 SW_FLOW_KEY_PUT(match, ip.ttl, 1537 ipv4_key->ipv4_ttl, is_mask); 1538 SW_FLOW_KEY_PUT(match, ip.frag, 1539 ipv4_key->ipv4_frag, is_mask); 1540 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1541 ipv4_key->ipv4_src, is_mask); 1542 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1543 ipv4_key->ipv4_dst, is_mask); 1544 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1545 } 1546 1547 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1548 const struct ovs_key_ipv6 *ipv6_key; 1549 1550 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1551 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1552 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1553 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1554 return -EINVAL; 1555 } 1556 1557 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1558 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", 1559 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1560 return -EINVAL; 1561 } 1562 1563 SW_FLOW_KEY_PUT(match, ipv6.label, 1564 ipv6_key->ipv6_label, is_mask); 1565 SW_FLOW_KEY_PUT(match, ip.proto, 1566 ipv6_key->ipv6_proto, is_mask); 1567 SW_FLOW_KEY_PUT(match, ip.tos, 1568 ipv6_key->ipv6_tclass, is_mask); 1569 SW_FLOW_KEY_PUT(match, ip.ttl, 1570 ipv6_key->ipv6_hlimit, is_mask); 1571 SW_FLOW_KEY_PUT(match, ip.frag, 1572 ipv6_key->ipv6_frag, is_mask); 1573 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1574 ipv6_key->ipv6_src, 1575 sizeof(match->key->ipv6.addr.src), 1576 is_mask); 1577 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1578 ipv6_key->ipv6_dst, 1579 sizeof(match->key->ipv6.addr.dst), 1580 is_mask); 1581 1582 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1583 } 1584 1585 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1586 const struct ovs_key_arp *arp_key; 1587 1588 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1589 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1590 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1591 arp_key->arp_op); 1592 return -EINVAL; 1593 } 1594 1595 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1596 arp_key->arp_sip, is_mask); 1597 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1598 arp_key->arp_tip, is_mask); 1599 SW_FLOW_KEY_PUT(match, ip.proto, 1600 ntohs(arp_key->arp_op), is_mask); 1601 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1602 arp_key->arp_sha, ETH_ALEN, is_mask); 1603 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1604 arp_key->arp_tha, ETH_ALEN, is_mask); 1605 1606 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1607 } 1608 1609 if (attrs & (1 << OVS_KEY_ATTR_NSH)) { 1610 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, 1611 is_mask, false, log) < 0) 1612 return -EINVAL; 1613 attrs &= ~(1 << OVS_KEY_ATTR_NSH); 1614 } 1615 1616 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1617 const struct ovs_key_mpls *mpls_key; 1618 1619 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1620 SW_FLOW_KEY_PUT(match, mpls.top_lse, 1621 mpls_key->mpls_lse, is_mask); 1622 1623 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1624 } 1625 1626 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1627 const struct ovs_key_tcp *tcp_key; 1628 1629 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1630 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1631 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1632 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1633 } 1634 1635 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1636 SW_FLOW_KEY_PUT(match, tp.flags, 1637 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1638 is_mask); 1639 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1640 } 1641 1642 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1643 const struct ovs_key_udp *udp_key; 1644 1645 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1646 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1647 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1648 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1649 } 1650 1651 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1652 const struct ovs_key_sctp *sctp_key; 1653 1654 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1655 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1656 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1657 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1658 } 1659 1660 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1661 const struct ovs_key_icmp *icmp_key; 1662 1663 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1664 SW_FLOW_KEY_PUT(match, tp.src, 1665 htons(icmp_key->icmp_type), is_mask); 1666 SW_FLOW_KEY_PUT(match, tp.dst, 1667 htons(icmp_key->icmp_code), is_mask); 1668 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1669 } 1670 1671 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1672 const struct ovs_key_icmpv6 *icmpv6_key; 1673 1674 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1675 SW_FLOW_KEY_PUT(match, tp.src, 1676 htons(icmpv6_key->icmpv6_type), is_mask); 1677 SW_FLOW_KEY_PUT(match, tp.dst, 1678 htons(icmpv6_key->icmpv6_code), is_mask); 1679 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1680 } 1681 1682 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1683 const struct ovs_key_nd *nd_key; 1684 1685 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1686 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1687 nd_key->nd_target, 1688 sizeof(match->key->ipv6.nd.target), 1689 is_mask); 1690 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1691 nd_key->nd_sll, ETH_ALEN, is_mask); 1692 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1693 nd_key->nd_tll, ETH_ALEN, is_mask); 1694 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1695 } 1696 1697 if (attrs != 0) { 1698 OVS_NLERR(log, "Unknown key attributes %llx", 1699 (unsigned long long)attrs); 1700 return -EINVAL; 1701 } 1702 1703 return 0; 1704 } 1705 1706 static void nlattr_set(struct nlattr *attr, u8 val, 1707 const struct ovs_len_tbl *tbl) 1708 { 1709 struct nlattr *nla; 1710 int rem; 1711 1712 /* The nlattr stream should already have been validated */ 1713 nla_for_each_nested(nla, attr, rem) { 1714 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) { 1715 if (tbl[nla_type(nla)].next) 1716 tbl = tbl[nla_type(nla)].next; 1717 nlattr_set(nla, val, tbl); 1718 } else { 1719 memset(nla_data(nla), val, nla_len(nla)); 1720 } 1721 1722 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1723 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1724 } 1725 } 1726 1727 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1728 { 1729 nlattr_set(attr, val, ovs_key_lens); 1730 } 1731 1732 /** 1733 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1734 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1735 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1736 * does not include any don't care bit. 1737 * @net: Used to determine per-namespace field support. 1738 * @match: receives the extracted flow match information. 1739 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1740 * sequence. The fields should of the packet that triggered the creation 1741 * of this flow. 1742 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink 1743 * attribute specifies the mask field of the wildcarded flow. 1744 * @log: Boolean to allow kernel error logging. Normally true, but when 1745 * probing for feature compatibility this should be passed in as false to 1746 * suppress unnecessary error logging. 1747 */ 1748 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1749 const struct nlattr *nla_key, 1750 const struct nlattr *nla_mask, 1751 bool log) 1752 { 1753 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1754 struct nlattr *newmask = NULL; 1755 u64 key_attrs = 0; 1756 u64 mask_attrs = 0; 1757 int err; 1758 1759 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1760 if (err) 1761 return err; 1762 1763 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1764 if (err) 1765 return err; 1766 1767 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1768 if (err) 1769 return err; 1770 1771 if (match->mask) { 1772 if (!nla_mask) { 1773 /* Create an exact match mask. We need to set to 0xff 1774 * all the 'match->mask' fields that have been touched 1775 * in 'match->key'. We cannot simply memset 1776 * 'match->mask', because padding bytes and fields not 1777 * specified in 'match->key' should be left to 0. 1778 * Instead, we use a stream of netlink attributes, 1779 * copied from 'key' and set to 0xff. 1780 * ovs_key_from_nlattrs() will take care of filling 1781 * 'match->mask' appropriately. 1782 */ 1783 newmask = kmemdup(nla_key, 1784 nla_total_size(nla_len(nla_key)), 1785 GFP_KERNEL); 1786 if (!newmask) 1787 return -ENOMEM; 1788 1789 mask_set_nlattr(newmask, 0xff); 1790 1791 /* The userspace does not send tunnel attributes that 1792 * are 0, but we should not wildcard them nonetheless. 1793 */ 1794 if (match->key->tun_proto) 1795 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1796 0xff, true); 1797 1798 nla_mask = newmask; 1799 } 1800 1801 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1802 if (err) 1803 goto free_newmask; 1804 1805 /* Always match on tci. */ 1806 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1807 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1808 1809 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1810 if (err) 1811 goto free_newmask; 1812 1813 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1814 log); 1815 if (err) 1816 goto free_newmask; 1817 } 1818 1819 if (!match_validate(match, key_attrs, mask_attrs, log)) 1820 err = -EINVAL; 1821 1822 free_newmask: 1823 kfree(newmask); 1824 return err; 1825 } 1826 1827 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1828 { 1829 size_t len; 1830 1831 if (!attr) 1832 return 0; 1833 1834 len = nla_len(attr); 1835 if (len < 1 || len > MAX_UFID_LENGTH) { 1836 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1837 nla_len(attr), MAX_UFID_LENGTH); 1838 return 0; 1839 } 1840 1841 return len; 1842 } 1843 1844 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1845 * or false otherwise. 1846 */ 1847 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1848 bool log) 1849 { 1850 sfid->ufid_len = get_ufid_len(attr, log); 1851 if (sfid->ufid_len) 1852 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1853 1854 return sfid->ufid_len; 1855 } 1856 1857 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1858 const struct sw_flow_key *key, bool log) 1859 { 1860 struct sw_flow_key *new_key; 1861 1862 if (ovs_nla_get_ufid(sfid, ufid, log)) 1863 return 0; 1864 1865 /* If UFID was not provided, use unmasked key. */ 1866 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1867 if (!new_key) 1868 return -ENOMEM; 1869 memcpy(new_key, key, sizeof(*key)); 1870 sfid->unmasked_key = new_key; 1871 1872 return 0; 1873 } 1874 1875 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1876 { 1877 return attr ? nla_get_u32(attr) : 0; 1878 } 1879 1880 /** 1881 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1882 * @net: Network namespace. 1883 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack 1884 * metadata. 1885 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink 1886 * attributes. 1887 * @attrs: Bit mask for the netlink attributes included in @a. 1888 * @log: Boolean to allow kernel error logging. Normally true, but when 1889 * probing for feature compatibility this should be passed in as false to 1890 * suppress unnecessary error logging. 1891 * 1892 * This parses a series of Netlink attributes that form a flow key, which must 1893 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1894 * get the metadata, that is, the parts of the flow key that cannot be 1895 * extracted from the packet itself. 1896 * 1897 * This must be called before the packet key fields are filled in 'key'. 1898 */ 1899 1900 int ovs_nla_get_flow_metadata(struct net *net, 1901 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], 1902 u64 attrs, struct sw_flow_key *key, bool log) 1903 { 1904 struct sw_flow_match match; 1905 1906 memset(&match, 0, sizeof(match)); 1907 match.key = key; 1908 1909 key->ct_state = 0; 1910 key->ct_zone = 0; 1911 key->ct_orig_proto = 0; 1912 memset(&key->ct, 0, sizeof(key->ct)); 1913 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); 1914 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); 1915 1916 key->phy.in_port = DP_MAX_PORTS; 1917 1918 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1919 } 1920 1921 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1922 bool is_mask) 1923 { 1924 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1925 1926 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1927 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1928 return -EMSGSIZE; 1929 return 0; 1930 } 1931 1932 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, 1933 struct sk_buff *skb) 1934 { 1935 struct nlattr *start; 1936 1937 start = nla_nest_start(skb, OVS_KEY_ATTR_NSH); 1938 if (!start) 1939 return -EMSGSIZE; 1940 1941 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) 1942 goto nla_put_failure; 1943 1944 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { 1945 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, 1946 sizeof(nsh->context), nsh->context)) 1947 goto nla_put_failure; 1948 } 1949 1950 /* Don't support MD type 2 yet */ 1951 1952 nla_nest_end(skb, start); 1953 1954 return 0; 1955 1956 nla_put_failure: 1957 return -EMSGSIZE; 1958 } 1959 1960 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 1961 const struct sw_flow_key *output, bool is_mask, 1962 struct sk_buff *skb) 1963 { 1964 struct ovs_key_ethernet *eth_key; 1965 struct nlattr *nla; 1966 struct nlattr *encap = NULL; 1967 struct nlattr *in_encap = NULL; 1968 1969 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 1970 goto nla_put_failure; 1971 1972 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 1973 goto nla_put_failure; 1974 1975 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 1976 goto nla_put_failure; 1977 1978 if ((swkey->tun_proto || is_mask)) { 1979 const void *opts = NULL; 1980 1981 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 1982 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 1983 1984 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 1985 swkey->tun_opts_len, swkey->tun_proto)) 1986 goto nla_put_failure; 1987 } 1988 1989 if (swkey->phy.in_port == DP_MAX_PORTS) { 1990 if (is_mask && (output->phy.in_port == 0xffff)) 1991 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 1992 goto nla_put_failure; 1993 } else { 1994 u16 upper_u16; 1995 upper_u16 = !is_mask ? 0 : 0xffff; 1996 1997 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 1998 (upper_u16 << 16) | output->phy.in_port)) 1999 goto nla_put_failure; 2000 } 2001 2002 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 2003 goto nla_put_failure; 2004 2005 if (ovs_ct_put_key(swkey, output, skb)) 2006 goto nla_put_failure; 2007 2008 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { 2009 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 2010 if (!nla) 2011 goto nla_put_failure; 2012 2013 eth_key = nla_data(nla); 2014 ether_addr_copy(eth_key->eth_src, output->eth.src); 2015 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 2016 2017 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 2018 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 2019 goto nla_put_failure; 2020 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 2021 if (!swkey->eth.vlan.tci) 2022 goto unencap; 2023 2024 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 2025 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 2026 goto nla_put_failure; 2027 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 2028 if (!swkey->eth.cvlan.tci) 2029 goto unencap; 2030 } 2031 } 2032 2033 if (swkey->eth.type == htons(ETH_P_802_2)) { 2034 /* 2035 * Ethertype 802.2 is represented in the netlink with omitted 2036 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 2037 * 0xffff in the mask attribute. Ethertype can also 2038 * be wildcarded. 2039 */ 2040 if (is_mask && output->eth.type) 2041 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 2042 output->eth.type)) 2043 goto nla_put_failure; 2044 goto unencap; 2045 } 2046 } 2047 2048 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 2049 goto nla_put_failure; 2050 2051 if (eth_type_vlan(swkey->eth.type)) { 2052 /* There are 3 VLAN tags, we don't know anything about the rest 2053 * of the packet, so truncate here. 2054 */ 2055 WARN_ON_ONCE(!(encap && in_encap)); 2056 goto unencap; 2057 } 2058 2059 if (swkey->eth.type == htons(ETH_P_IP)) { 2060 struct ovs_key_ipv4 *ipv4_key; 2061 2062 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 2063 if (!nla) 2064 goto nla_put_failure; 2065 ipv4_key = nla_data(nla); 2066 ipv4_key->ipv4_src = output->ipv4.addr.src; 2067 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 2068 ipv4_key->ipv4_proto = output->ip.proto; 2069 ipv4_key->ipv4_tos = output->ip.tos; 2070 ipv4_key->ipv4_ttl = output->ip.ttl; 2071 ipv4_key->ipv4_frag = output->ip.frag; 2072 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 2073 struct ovs_key_ipv6 *ipv6_key; 2074 2075 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 2076 if (!nla) 2077 goto nla_put_failure; 2078 ipv6_key = nla_data(nla); 2079 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 2080 sizeof(ipv6_key->ipv6_src)); 2081 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 2082 sizeof(ipv6_key->ipv6_dst)); 2083 ipv6_key->ipv6_label = output->ipv6.label; 2084 ipv6_key->ipv6_proto = output->ip.proto; 2085 ipv6_key->ipv6_tclass = output->ip.tos; 2086 ipv6_key->ipv6_hlimit = output->ip.ttl; 2087 ipv6_key->ipv6_frag = output->ip.frag; 2088 } else if (swkey->eth.type == htons(ETH_P_NSH)) { 2089 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) 2090 goto nla_put_failure; 2091 } else if (swkey->eth.type == htons(ETH_P_ARP) || 2092 swkey->eth.type == htons(ETH_P_RARP)) { 2093 struct ovs_key_arp *arp_key; 2094 2095 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 2096 if (!nla) 2097 goto nla_put_failure; 2098 arp_key = nla_data(nla); 2099 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 2100 arp_key->arp_sip = output->ipv4.addr.src; 2101 arp_key->arp_tip = output->ipv4.addr.dst; 2102 arp_key->arp_op = htons(output->ip.proto); 2103 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 2104 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 2105 } else if (eth_p_mpls(swkey->eth.type)) { 2106 struct ovs_key_mpls *mpls_key; 2107 2108 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); 2109 if (!nla) 2110 goto nla_put_failure; 2111 mpls_key = nla_data(nla); 2112 mpls_key->mpls_lse = output->mpls.top_lse; 2113 } 2114 2115 if ((swkey->eth.type == htons(ETH_P_IP) || 2116 swkey->eth.type == htons(ETH_P_IPV6)) && 2117 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 2118 2119 if (swkey->ip.proto == IPPROTO_TCP) { 2120 struct ovs_key_tcp *tcp_key; 2121 2122 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 2123 if (!nla) 2124 goto nla_put_failure; 2125 tcp_key = nla_data(nla); 2126 tcp_key->tcp_src = output->tp.src; 2127 tcp_key->tcp_dst = output->tp.dst; 2128 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 2129 output->tp.flags)) 2130 goto nla_put_failure; 2131 } else if (swkey->ip.proto == IPPROTO_UDP) { 2132 struct ovs_key_udp *udp_key; 2133 2134 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 2135 if (!nla) 2136 goto nla_put_failure; 2137 udp_key = nla_data(nla); 2138 udp_key->udp_src = output->tp.src; 2139 udp_key->udp_dst = output->tp.dst; 2140 } else if (swkey->ip.proto == IPPROTO_SCTP) { 2141 struct ovs_key_sctp *sctp_key; 2142 2143 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 2144 if (!nla) 2145 goto nla_put_failure; 2146 sctp_key = nla_data(nla); 2147 sctp_key->sctp_src = output->tp.src; 2148 sctp_key->sctp_dst = output->tp.dst; 2149 } else if (swkey->eth.type == htons(ETH_P_IP) && 2150 swkey->ip.proto == IPPROTO_ICMP) { 2151 struct ovs_key_icmp *icmp_key; 2152 2153 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 2154 if (!nla) 2155 goto nla_put_failure; 2156 icmp_key = nla_data(nla); 2157 icmp_key->icmp_type = ntohs(output->tp.src); 2158 icmp_key->icmp_code = ntohs(output->tp.dst); 2159 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 2160 swkey->ip.proto == IPPROTO_ICMPV6) { 2161 struct ovs_key_icmpv6 *icmpv6_key; 2162 2163 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 2164 sizeof(*icmpv6_key)); 2165 if (!nla) 2166 goto nla_put_failure; 2167 icmpv6_key = nla_data(nla); 2168 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 2169 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 2170 2171 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 2172 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 2173 struct ovs_key_nd *nd_key; 2174 2175 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 2176 if (!nla) 2177 goto nla_put_failure; 2178 nd_key = nla_data(nla); 2179 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 2180 sizeof(nd_key->nd_target)); 2181 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 2182 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 2183 } 2184 } 2185 } 2186 2187 unencap: 2188 if (in_encap) 2189 nla_nest_end(skb, in_encap); 2190 if (encap) 2191 nla_nest_end(skb, encap); 2192 2193 return 0; 2194 2195 nla_put_failure: 2196 return -EMSGSIZE; 2197 } 2198 2199 int ovs_nla_put_key(const struct sw_flow_key *swkey, 2200 const struct sw_flow_key *output, int attr, bool is_mask, 2201 struct sk_buff *skb) 2202 { 2203 int err; 2204 struct nlattr *nla; 2205 2206 nla = nla_nest_start(skb, attr); 2207 if (!nla) 2208 return -EMSGSIZE; 2209 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 2210 if (err) 2211 return err; 2212 nla_nest_end(skb, nla); 2213 2214 return 0; 2215 } 2216 2217 /* Called with ovs_mutex or RCU read lock. */ 2218 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 2219 { 2220 if (ovs_identifier_is_ufid(&flow->id)) 2221 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 2222 flow->id.ufid); 2223 2224 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 2225 OVS_FLOW_ATTR_KEY, false, skb); 2226 } 2227 2228 /* Called with ovs_mutex or RCU read lock. */ 2229 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 2230 { 2231 return ovs_nla_put_key(&flow->key, &flow->key, 2232 OVS_FLOW_ATTR_KEY, false, skb); 2233 } 2234 2235 /* Called with ovs_mutex or RCU read lock. */ 2236 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 2237 { 2238 return ovs_nla_put_key(&flow->key, &flow->mask->key, 2239 OVS_FLOW_ATTR_MASK, true, skb); 2240 } 2241 2242 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 2243 2244 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log) 2245 { 2246 struct sw_flow_actions *sfa; 2247 2248 if (size > MAX_ACTIONS_BUFSIZE) { 2249 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size); 2250 return ERR_PTR(-EINVAL); 2251 } 2252 2253 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 2254 if (!sfa) 2255 return ERR_PTR(-ENOMEM); 2256 2257 sfa->actions_len = 0; 2258 return sfa; 2259 } 2260 2261 static void ovs_nla_free_set_action(const struct nlattr *a) 2262 { 2263 const struct nlattr *ovs_key = nla_data(a); 2264 struct ovs_tunnel_info *ovs_tun; 2265 2266 switch (nla_type(ovs_key)) { 2267 case OVS_KEY_ATTR_TUNNEL_INFO: 2268 ovs_tun = nla_data(ovs_key); 2269 dst_release((struct dst_entry *)ovs_tun->tun_dst); 2270 break; 2271 } 2272 } 2273 2274 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 2275 { 2276 const struct nlattr *a; 2277 int rem; 2278 2279 if (!sf_acts) 2280 return; 2281 2282 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 2283 switch (nla_type(a)) { 2284 case OVS_ACTION_ATTR_SET: 2285 ovs_nla_free_set_action(a); 2286 break; 2287 case OVS_ACTION_ATTR_CT: 2288 ovs_ct_free_action(a); 2289 break; 2290 } 2291 } 2292 2293 kfree(sf_acts); 2294 } 2295 2296 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 2297 { 2298 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 2299 } 2300 2301 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 2302 * The caller must hold rcu_read_lock for this to be sensible. */ 2303 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 2304 { 2305 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 2306 } 2307 2308 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 2309 int attr_len, bool log) 2310 { 2311 2312 struct sw_flow_actions *acts; 2313 int new_acts_size; 2314 int req_size = NLA_ALIGN(attr_len); 2315 int next_offset = offsetof(struct sw_flow_actions, actions) + 2316 (*sfa)->actions_len; 2317 2318 if (req_size <= (ksize(*sfa) - next_offset)) 2319 goto out; 2320 2321 new_acts_size = ksize(*sfa) * 2; 2322 2323 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 2324 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) 2325 return ERR_PTR(-EMSGSIZE); 2326 new_acts_size = MAX_ACTIONS_BUFSIZE; 2327 } 2328 2329 acts = nla_alloc_flow_actions(new_acts_size, log); 2330 if (IS_ERR(acts)) 2331 return (void *)acts; 2332 2333 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 2334 acts->actions_len = (*sfa)->actions_len; 2335 acts->orig_len = (*sfa)->orig_len; 2336 kfree(*sfa); 2337 *sfa = acts; 2338 2339 out: 2340 (*sfa)->actions_len += req_size; 2341 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 2342 } 2343 2344 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 2345 int attrtype, void *data, int len, bool log) 2346 { 2347 struct nlattr *a; 2348 2349 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 2350 if (IS_ERR(a)) 2351 return a; 2352 2353 a->nla_type = attrtype; 2354 a->nla_len = nla_attr_size(len); 2355 2356 if (data) 2357 memcpy(nla_data(a), data, len); 2358 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 2359 2360 return a; 2361 } 2362 2363 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 2364 int len, bool log) 2365 { 2366 struct nlattr *a; 2367 2368 a = __add_action(sfa, attrtype, data, len, log); 2369 2370 return PTR_ERR_OR_ZERO(a); 2371 } 2372 2373 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 2374 int attrtype, bool log) 2375 { 2376 int used = (*sfa)->actions_len; 2377 int err; 2378 2379 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 2380 if (err) 2381 return err; 2382 2383 return used; 2384 } 2385 2386 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 2387 int st_offset) 2388 { 2389 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 2390 st_offset); 2391 2392 a->nla_len = sfa->actions_len - st_offset; 2393 } 2394 2395 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2396 const struct sw_flow_key *key, 2397 struct sw_flow_actions **sfa, 2398 __be16 eth_type, __be16 vlan_tci, bool log); 2399 2400 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 2401 const struct sw_flow_key *key, 2402 struct sw_flow_actions **sfa, 2403 __be16 eth_type, __be16 vlan_tci, 2404 bool log, bool last) 2405 { 2406 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 2407 const struct nlattr *probability, *actions; 2408 const struct nlattr *a; 2409 int rem, start, err; 2410 struct sample_arg arg; 2411 2412 memset(attrs, 0, sizeof(attrs)); 2413 nla_for_each_nested(a, attr, rem) { 2414 int type = nla_type(a); 2415 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 2416 return -EINVAL; 2417 attrs[type] = a; 2418 } 2419 if (rem) 2420 return -EINVAL; 2421 2422 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 2423 if (!probability || nla_len(probability) != sizeof(u32)) 2424 return -EINVAL; 2425 2426 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 2427 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 2428 return -EINVAL; 2429 2430 /* validation done, copy sample action. */ 2431 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 2432 if (start < 0) 2433 return start; 2434 2435 /* When both skb and flow may be changed, put the sample 2436 * into a deferred fifo. On the other hand, if only skb 2437 * may be modified, the actions can be executed in place. 2438 * 2439 * Do this analysis at the flow installation time. 2440 * Set 'clone_action->exec' to true if the actions can be 2441 * executed without being deferred. 2442 * 2443 * If the sample is the last action, it can always be excuted 2444 * rather than deferred. 2445 */ 2446 arg.exec = last || !actions_may_change_flow(actions); 2447 arg.probability = nla_get_u32(probability); 2448 2449 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), 2450 log); 2451 if (err) 2452 return err; 2453 2454 err = __ovs_nla_copy_actions(net, actions, key, sfa, 2455 eth_type, vlan_tci, log); 2456 2457 if (err) 2458 return err; 2459 2460 add_nested_action_end(*sfa, start); 2461 2462 return 0; 2463 } 2464 2465 void ovs_match_init(struct sw_flow_match *match, 2466 struct sw_flow_key *key, 2467 bool reset_key, 2468 struct sw_flow_mask *mask) 2469 { 2470 memset(match, 0, sizeof(*match)); 2471 match->key = key; 2472 match->mask = mask; 2473 2474 if (reset_key) 2475 memset(key, 0, sizeof(*key)); 2476 2477 if (mask) { 2478 memset(&mask->key, 0, sizeof(mask->key)); 2479 mask->range.start = mask->range.end = 0; 2480 } 2481 } 2482 2483 static int validate_geneve_opts(struct sw_flow_key *key) 2484 { 2485 struct geneve_opt *option; 2486 int opts_len = key->tun_opts_len; 2487 bool crit_opt = false; 2488 2489 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2490 while (opts_len > 0) { 2491 int len; 2492 2493 if (opts_len < sizeof(*option)) 2494 return -EINVAL; 2495 2496 len = sizeof(*option) + option->length * 4; 2497 if (len > opts_len) 2498 return -EINVAL; 2499 2500 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2501 2502 option = (struct geneve_opt *)((u8 *)option + len); 2503 opts_len -= len; 2504 }; 2505 2506 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 2507 2508 return 0; 2509 } 2510 2511 static int validate_and_copy_set_tun(const struct nlattr *attr, 2512 struct sw_flow_actions **sfa, bool log) 2513 { 2514 struct sw_flow_match match; 2515 struct sw_flow_key key; 2516 struct metadata_dst *tun_dst; 2517 struct ip_tunnel_info *tun_info; 2518 struct ovs_tunnel_info *ovs_tun; 2519 struct nlattr *a; 2520 int err = 0, start, opts_type; 2521 2522 ovs_match_init(&match, &key, true, NULL); 2523 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2524 if (opts_type < 0) 2525 return opts_type; 2526 2527 if (key.tun_opts_len) { 2528 switch (opts_type) { 2529 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2530 err = validate_geneve_opts(&key); 2531 if (err < 0) 2532 return err; 2533 break; 2534 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2535 break; 2536 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 2537 break; 2538 } 2539 }; 2540 2541 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2542 if (start < 0) 2543 return start; 2544 2545 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, 2546 GFP_KERNEL); 2547 2548 if (!tun_dst) 2549 return -ENOMEM; 2550 2551 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2552 if (err) { 2553 dst_release((struct dst_entry *)tun_dst); 2554 return err; 2555 } 2556 2557 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2558 sizeof(*ovs_tun), log); 2559 if (IS_ERR(a)) { 2560 dst_release((struct dst_entry *)tun_dst); 2561 return PTR_ERR(a); 2562 } 2563 2564 ovs_tun = nla_data(a); 2565 ovs_tun->tun_dst = tun_dst; 2566 2567 tun_info = &tun_dst->u.tun_info; 2568 tun_info->mode = IP_TUNNEL_INFO_TX; 2569 if (key.tun_proto == AF_INET6) 2570 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2571 tun_info->key = key.tun_key; 2572 2573 /* We need to store the options in the action itself since 2574 * everything else will go away after flow setup. We can append 2575 * it to tun_info and then point there. 2576 */ 2577 ip_tunnel_info_opts_set(tun_info, 2578 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2579 key.tun_opts_len); 2580 add_nested_action_end(*sfa, start); 2581 2582 return err; 2583 } 2584 2585 static bool validate_nsh(const struct nlattr *attr, bool is_mask, 2586 bool is_push_nsh, bool log) 2587 { 2588 struct sw_flow_match match; 2589 struct sw_flow_key key; 2590 int ret = 0; 2591 2592 ovs_match_init(&match, &key, true, NULL); 2593 ret = nsh_key_put_from_nlattr(attr, &match, is_mask, 2594 is_push_nsh, log); 2595 return !ret; 2596 } 2597 2598 /* Return false if there are any non-masked bits set. 2599 * Mask follows data immediately, before any netlink padding. 2600 */ 2601 static bool validate_masked(u8 *data, int len) 2602 { 2603 u8 *mask = data + len; 2604 2605 while (len--) 2606 if (*data++ & ~*mask++) 2607 return false; 2608 2609 return true; 2610 } 2611 2612 static int validate_set(const struct nlattr *a, 2613 const struct sw_flow_key *flow_key, 2614 struct sw_flow_actions **sfa, bool *skip_copy, 2615 u8 mac_proto, __be16 eth_type, bool masked, bool log) 2616 { 2617 const struct nlattr *ovs_key = nla_data(a); 2618 int key_type = nla_type(ovs_key); 2619 size_t key_len; 2620 2621 /* There can be only one key in a action */ 2622 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2623 return -EINVAL; 2624 2625 key_len = nla_len(ovs_key); 2626 if (masked) 2627 key_len /= 2; 2628 2629 if (key_type > OVS_KEY_ATTR_MAX || 2630 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2631 return -EINVAL; 2632 2633 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2634 return -EINVAL; 2635 2636 switch (key_type) { 2637 const struct ovs_key_ipv4 *ipv4_key; 2638 const struct ovs_key_ipv6 *ipv6_key; 2639 int err; 2640 2641 case OVS_KEY_ATTR_PRIORITY: 2642 case OVS_KEY_ATTR_SKB_MARK: 2643 case OVS_KEY_ATTR_CT_MARK: 2644 case OVS_KEY_ATTR_CT_LABELS: 2645 break; 2646 2647 case OVS_KEY_ATTR_ETHERNET: 2648 if (mac_proto != MAC_PROTO_ETHERNET) 2649 return -EINVAL; 2650 break; 2651 2652 case OVS_KEY_ATTR_TUNNEL: 2653 if (masked) 2654 return -EINVAL; /* Masked tunnel set not supported. */ 2655 2656 *skip_copy = true; 2657 err = validate_and_copy_set_tun(a, sfa, log); 2658 if (err) 2659 return err; 2660 break; 2661 2662 case OVS_KEY_ATTR_IPV4: 2663 if (eth_type != htons(ETH_P_IP)) 2664 return -EINVAL; 2665 2666 ipv4_key = nla_data(ovs_key); 2667 2668 if (masked) { 2669 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2670 2671 /* Non-writeable fields. */ 2672 if (mask->ipv4_proto || mask->ipv4_frag) 2673 return -EINVAL; 2674 } else { 2675 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2676 return -EINVAL; 2677 2678 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2679 return -EINVAL; 2680 } 2681 break; 2682 2683 case OVS_KEY_ATTR_IPV6: 2684 if (eth_type != htons(ETH_P_IPV6)) 2685 return -EINVAL; 2686 2687 ipv6_key = nla_data(ovs_key); 2688 2689 if (masked) { 2690 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2691 2692 /* Non-writeable fields. */ 2693 if (mask->ipv6_proto || mask->ipv6_frag) 2694 return -EINVAL; 2695 2696 /* Invalid bits in the flow label mask? */ 2697 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2698 return -EINVAL; 2699 } else { 2700 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2701 return -EINVAL; 2702 2703 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2704 return -EINVAL; 2705 } 2706 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2707 return -EINVAL; 2708 2709 break; 2710 2711 case OVS_KEY_ATTR_TCP: 2712 if ((eth_type != htons(ETH_P_IP) && 2713 eth_type != htons(ETH_P_IPV6)) || 2714 flow_key->ip.proto != IPPROTO_TCP) 2715 return -EINVAL; 2716 2717 break; 2718 2719 case OVS_KEY_ATTR_UDP: 2720 if ((eth_type != htons(ETH_P_IP) && 2721 eth_type != htons(ETH_P_IPV6)) || 2722 flow_key->ip.proto != IPPROTO_UDP) 2723 return -EINVAL; 2724 2725 break; 2726 2727 case OVS_KEY_ATTR_MPLS: 2728 if (!eth_p_mpls(eth_type)) 2729 return -EINVAL; 2730 break; 2731 2732 case OVS_KEY_ATTR_SCTP: 2733 if ((eth_type != htons(ETH_P_IP) && 2734 eth_type != htons(ETH_P_IPV6)) || 2735 flow_key->ip.proto != IPPROTO_SCTP) 2736 return -EINVAL; 2737 2738 break; 2739 2740 case OVS_KEY_ATTR_NSH: 2741 if (eth_type != htons(ETH_P_NSH)) 2742 return -EINVAL; 2743 if (!validate_nsh(nla_data(a), masked, false, log)) 2744 return -EINVAL; 2745 break; 2746 2747 default: 2748 return -EINVAL; 2749 } 2750 2751 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2752 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2753 int start, len = key_len * 2; 2754 struct nlattr *at; 2755 2756 *skip_copy = true; 2757 2758 start = add_nested_action_start(sfa, 2759 OVS_ACTION_ATTR_SET_TO_MASKED, 2760 log); 2761 if (start < 0) 2762 return start; 2763 2764 at = __add_action(sfa, key_type, NULL, len, log); 2765 if (IS_ERR(at)) 2766 return PTR_ERR(at); 2767 2768 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2769 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2770 /* Clear non-writeable bits from otherwise writeable fields. */ 2771 if (key_type == OVS_KEY_ATTR_IPV6) { 2772 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2773 2774 mask->ipv6_label &= htonl(0x000FFFFF); 2775 } 2776 add_nested_action_end(*sfa, start); 2777 } 2778 2779 return 0; 2780 } 2781 2782 static int validate_userspace(const struct nlattr *attr) 2783 { 2784 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2785 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2786 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2787 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2788 }; 2789 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2790 int error; 2791 2792 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr, 2793 userspace_policy, NULL); 2794 if (error) 2795 return error; 2796 2797 if (!a[OVS_USERSPACE_ATTR_PID] || 2798 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2799 return -EINVAL; 2800 2801 return 0; 2802 } 2803 2804 static int copy_action(const struct nlattr *from, 2805 struct sw_flow_actions **sfa, bool log) 2806 { 2807 int totlen = NLA_ALIGN(from->nla_len); 2808 struct nlattr *to; 2809 2810 to = reserve_sfa_size(sfa, from->nla_len, log); 2811 if (IS_ERR(to)) 2812 return PTR_ERR(to); 2813 2814 memcpy(to, from, totlen); 2815 return 0; 2816 } 2817 2818 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2819 const struct sw_flow_key *key, 2820 struct sw_flow_actions **sfa, 2821 __be16 eth_type, __be16 vlan_tci, bool log) 2822 { 2823 u8 mac_proto = ovs_key_mac_proto(key); 2824 const struct nlattr *a; 2825 int rem, err; 2826 2827 nla_for_each_nested(a, attr, rem) { 2828 /* Expected argument lengths, (u32)-1 for variable length. */ 2829 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 2830 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 2831 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 2832 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 2833 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 2834 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 2835 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 2836 [OVS_ACTION_ATTR_POP_VLAN] = 0, 2837 [OVS_ACTION_ATTR_SET] = (u32)-1, 2838 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 2839 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 2840 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 2841 [OVS_ACTION_ATTR_CT] = (u32)-1, 2842 [OVS_ACTION_ATTR_CT_CLEAR] = 0, 2843 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 2844 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), 2845 [OVS_ACTION_ATTR_POP_ETH] = 0, 2846 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, 2847 [OVS_ACTION_ATTR_POP_NSH] = 0, 2848 [OVS_ACTION_ATTR_METER] = sizeof(u32), 2849 }; 2850 const struct ovs_action_push_vlan *vlan; 2851 int type = nla_type(a); 2852 bool skip_copy; 2853 2854 if (type > OVS_ACTION_ATTR_MAX || 2855 (action_lens[type] != nla_len(a) && 2856 action_lens[type] != (u32)-1)) 2857 return -EINVAL; 2858 2859 skip_copy = false; 2860 switch (type) { 2861 case OVS_ACTION_ATTR_UNSPEC: 2862 return -EINVAL; 2863 2864 case OVS_ACTION_ATTR_USERSPACE: 2865 err = validate_userspace(a); 2866 if (err) 2867 return err; 2868 break; 2869 2870 case OVS_ACTION_ATTR_OUTPUT: 2871 if (nla_get_u32(a) >= DP_MAX_PORTS) 2872 return -EINVAL; 2873 break; 2874 2875 case OVS_ACTION_ATTR_TRUNC: { 2876 const struct ovs_action_trunc *trunc = nla_data(a); 2877 2878 if (trunc->max_len < ETH_HLEN) 2879 return -EINVAL; 2880 break; 2881 } 2882 2883 case OVS_ACTION_ATTR_HASH: { 2884 const struct ovs_action_hash *act_hash = nla_data(a); 2885 2886 switch (act_hash->hash_alg) { 2887 case OVS_HASH_ALG_L4: 2888 break; 2889 default: 2890 return -EINVAL; 2891 } 2892 2893 break; 2894 } 2895 2896 case OVS_ACTION_ATTR_POP_VLAN: 2897 if (mac_proto != MAC_PROTO_ETHERNET) 2898 return -EINVAL; 2899 vlan_tci = htons(0); 2900 break; 2901 2902 case OVS_ACTION_ATTR_PUSH_VLAN: 2903 if (mac_proto != MAC_PROTO_ETHERNET) 2904 return -EINVAL; 2905 vlan = nla_data(a); 2906 if (!eth_type_vlan(vlan->vlan_tpid)) 2907 return -EINVAL; 2908 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) 2909 return -EINVAL; 2910 vlan_tci = vlan->vlan_tci; 2911 break; 2912 2913 case OVS_ACTION_ATTR_RECIRC: 2914 break; 2915 2916 case OVS_ACTION_ATTR_PUSH_MPLS: { 2917 const struct ovs_action_push_mpls *mpls = nla_data(a); 2918 2919 if (!eth_p_mpls(mpls->mpls_ethertype)) 2920 return -EINVAL; 2921 /* Prohibit push MPLS other than to a white list 2922 * for packets that have a known tag order. 2923 */ 2924 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2925 (eth_type != htons(ETH_P_IP) && 2926 eth_type != htons(ETH_P_IPV6) && 2927 eth_type != htons(ETH_P_ARP) && 2928 eth_type != htons(ETH_P_RARP) && 2929 !eth_p_mpls(eth_type))) 2930 return -EINVAL; 2931 eth_type = mpls->mpls_ethertype; 2932 break; 2933 } 2934 2935 case OVS_ACTION_ATTR_POP_MPLS: 2936 if (vlan_tci & htons(VLAN_TAG_PRESENT) || 2937 !eth_p_mpls(eth_type)) 2938 return -EINVAL; 2939 2940 /* Disallow subsequent L2.5+ set and mpls_pop actions 2941 * as there is no check here to ensure that the new 2942 * eth_type is valid and thus set actions could 2943 * write off the end of the packet or otherwise 2944 * corrupt it. 2945 * 2946 * Support for these actions is planned using packet 2947 * recirculation. 2948 */ 2949 eth_type = htons(0); 2950 break; 2951 2952 case OVS_ACTION_ATTR_SET: 2953 err = validate_set(a, key, sfa, 2954 &skip_copy, mac_proto, eth_type, 2955 false, log); 2956 if (err) 2957 return err; 2958 break; 2959 2960 case OVS_ACTION_ATTR_SET_MASKED: 2961 err = validate_set(a, key, sfa, 2962 &skip_copy, mac_proto, eth_type, 2963 true, log); 2964 if (err) 2965 return err; 2966 break; 2967 2968 case OVS_ACTION_ATTR_SAMPLE: { 2969 bool last = nla_is_last(a, rem); 2970 2971 err = validate_and_copy_sample(net, a, key, sfa, 2972 eth_type, vlan_tci, 2973 log, last); 2974 if (err) 2975 return err; 2976 skip_copy = true; 2977 break; 2978 } 2979 2980 case OVS_ACTION_ATTR_CT: 2981 err = ovs_ct_copy_action(net, a, key, sfa, log); 2982 if (err) 2983 return err; 2984 skip_copy = true; 2985 break; 2986 2987 case OVS_ACTION_ATTR_CT_CLEAR: 2988 break; 2989 2990 case OVS_ACTION_ATTR_PUSH_ETH: 2991 /* Disallow pushing an Ethernet header if one 2992 * is already present */ 2993 if (mac_proto != MAC_PROTO_NONE) 2994 return -EINVAL; 2995 mac_proto = MAC_PROTO_NONE; 2996 break; 2997 2998 case OVS_ACTION_ATTR_POP_ETH: 2999 if (mac_proto != MAC_PROTO_ETHERNET) 3000 return -EINVAL; 3001 if (vlan_tci & htons(VLAN_TAG_PRESENT)) 3002 return -EINVAL; 3003 mac_proto = MAC_PROTO_ETHERNET; 3004 break; 3005 3006 case OVS_ACTION_ATTR_PUSH_NSH: 3007 if (mac_proto != MAC_PROTO_ETHERNET) { 3008 u8 next_proto; 3009 3010 next_proto = tun_p_from_eth_p(eth_type); 3011 if (!next_proto) 3012 return -EINVAL; 3013 } 3014 mac_proto = MAC_PROTO_NONE; 3015 if (!validate_nsh(nla_data(a), false, true, true)) 3016 return -EINVAL; 3017 break; 3018 3019 case OVS_ACTION_ATTR_POP_NSH: { 3020 __be16 inner_proto; 3021 3022 if (eth_type != htons(ETH_P_NSH)) 3023 return -EINVAL; 3024 inner_proto = tun_p_to_eth_p(key->nsh.base.np); 3025 if (!inner_proto) 3026 return -EINVAL; 3027 if (key->nsh.base.np == TUN_P_ETHERNET) 3028 mac_proto = MAC_PROTO_ETHERNET; 3029 else 3030 mac_proto = MAC_PROTO_NONE; 3031 break; 3032 } 3033 3034 case OVS_ACTION_ATTR_METER: 3035 /* Non-existent meters are simply ignored. */ 3036 break; 3037 3038 default: 3039 OVS_NLERR(log, "Unknown Action type %d", type); 3040 return -EINVAL; 3041 } 3042 if (!skip_copy) { 3043 err = copy_action(a, sfa, log); 3044 if (err) 3045 return err; 3046 } 3047 } 3048 3049 if (rem > 0) 3050 return -EINVAL; 3051 3052 return 0; 3053 } 3054 3055 /* 'key' must be the masked key. */ 3056 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3057 const struct sw_flow_key *key, 3058 struct sw_flow_actions **sfa, bool log) 3059 { 3060 int err; 3061 3062 *sfa = nla_alloc_flow_actions(nla_len(attr), log); 3063 if (IS_ERR(*sfa)) 3064 return PTR_ERR(*sfa); 3065 3066 (*sfa)->orig_len = nla_len(attr); 3067 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, 3068 key->eth.vlan.tci, log); 3069 if (err) 3070 ovs_nla_free_flow_actions(*sfa); 3071 3072 return err; 3073 } 3074 3075 static int sample_action_to_attr(const struct nlattr *attr, 3076 struct sk_buff *skb) 3077 { 3078 struct nlattr *start, *ac_start = NULL, *sample_arg; 3079 int err = 0, rem = nla_len(attr); 3080 const struct sample_arg *arg; 3081 struct nlattr *actions; 3082 3083 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); 3084 if (!start) 3085 return -EMSGSIZE; 3086 3087 sample_arg = nla_data(attr); 3088 arg = nla_data(sample_arg); 3089 actions = nla_next(sample_arg, &rem); 3090 3091 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { 3092 err = -EMSGSIZE; 3093 goto out; 3094 } 3095 3096 ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); 3097 if (!ac_start) { 3098 err = -EMSGSIZE; 3099 goto out; 3100 } 3101 3102 err = ovs_nla_put_actions(actions, rem, skb); 3103 3104 out: 3105 if (err) { 3106 nla_nest_cancel(skb, ac_start); 3107 nla_nest_cancel(skb, start); 3108 } else { 3109 nla_nest_end(skb, ac_start); 3110 nla_nest_end(skb, start); 3111 } 3112 3113 return err; 3114 } 3115 3116 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 3117 { 3118 const struct nlattr *ovs_key = nla_data(a); 3119 int key_type = nla_type(ovs_key); 3120 struct nlattr *start; 3121 int err; 3122 3123 switch (key_type) { 3124 case OVS_KEY_ATTR_TUNNEL_INFO: { 3125 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 3126 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 3127 3128 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 3129 if (!start) 3130 return -EMSGSIZE; 3131 3132 err = ip_tun_to_nlattr(skb, &tun_info->key, 3133 ip_tunnel_info_opts(tun_info), 3134 tun_info->options_len, 3135 ip_tunnel_info_af(tun_info)); 3136 if (err) 3137 return err; 3138 nla_nest_end(skb, start); 3139 break; 3140 } 3141 default: 3142 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 3143 return -EMSGSIZE; 3144 break; 3145 } 3146 3147 return 0; 3148 } 3149 3150 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 3151 struct sk_buff *skb) 3152 { 3153 const struct nlattr *ovs_key = nla_data(a); 3154 struct nlattr *nla; 3155 size_t key_len = nla_len(ovs_key) / 2; 3156 3157 /* Revert the conversion we did from a non-masked set action to 3158 * masked set action. 3159 */ 3160 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); 3161 if (!nla) 3162 return -EMSGSIZE; 3163 3164 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 3165 return -EMSGSIZE; 3166 3167 nla_nest_end(skb, nla); 3168 return 0; 3169 } 3170 3171 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 3172 { 3173 const struct nlattr *a; 3174 int rem, err; 3175 3176 nla_for_each_attr(a, attr, len, rem) { 3177 int type = nla_type(a); 3178 3179 switch (type) { 3180 case OVS_ACTION_ATTR_SET: 3181 err = set_action_to_attr(a, skb); 3182 if (err) 3183 return err; 3184 break; 3185 3186 case OVS_ACTION_ATTR_SET_TO_MASKED: 3187 err = masked_set_action_to_set_action_attr(a, skb); 3188 if (err) 3189 return err; 3190 break; 3191 3192 case OVS_ACTION_ATTR_SAMPLE: 3193 err = sample_action_to_attr(a, skb); 3194 if (err) 3195 return err; 3196 break; 3197 3198 case OVS_ACTION_ATTR_CT: 3199 err = ovs_ct_action_to_attr(nla_data(a), skb); 3200 if (err) 3201 return err; 3202 break; 3203 3204 default: 3205 if (nla_put(skb, type, nla_len(a), nla_data(a))) 3206 return -EMSGSIZE; 3207 break; 3208 } 3209 } 3210 3211 return 0; 3212 } 3213