1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 #include <net/tun_proto.h>
52 #include <net/erspan.h>
53 
54 #include "flow_netlink.h"
55 
56 struct ovs_len_tbl {
57 	int len;
58 	const struct ovs_len_tbl *next;
59 };
60 
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
63 
64 static bool actions_may_change_flow(const struct nlattr *actions)
65 {
66 	struct nlattr *nla;
67 	int rem;
68 
69 	nla_for_each_nested(nla, actions, rem) {
70 		u16 action = nla_type(nla);
71 
72 		switch (action) {
73 		case OVS_ACTION_ATTR_OUTPUT:
74 		case OVS_ACTION_ATTR_RECIRC:
75 		case OVS_ACTION_ATTR_TRUNC:
76 		case OVS_ACTION_ATTR_USERSPACE:
77 			break;
78 
79 		case OVS_ACTION_ATTR_CT:
80 		case OVS_ACTION_ATTR_CT_CLEAR:
81 		case OVS_ACTION_ATTR_HASH:
82 		case OVS_ACTION_ATTR_POP_ETH:
83 		case OVS_ACTION_ATTR_POP_MPLS:
84 		case OVS_ACTION_ATTR_POP_NSH:
85 		case OVS_ACTION_ATTR_POP_VLAN:
86 		case OVS_ACTION_ATTR_PUSH_ETH:
87 		case OVS_ACTION_ATTR_PUSH_MPLS:
88 		case OVS_ACTION_ATTR_PUSH_NSH:
89 		case OVS_ACTION_ATTR_PUSH_VLAN:
90 		case OVS_ACTION_ATTR_SAMPLE:
91 		case OVS_ACTION_ATTR_SET:
92 		case OVS_ACTION_ATTR_SET_MASKED:
93 		case OVS_ACTION_ATTR_METER:
94 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
95 		default:
96 			return true;
97 		}
98 	}
99 	return false;
100 }
101 
102 static void update_range(struct sw_flow_match *match,
103 			 size_t offset, size_t size, bool is_mask)
104 {
105 	struct sw_flow_key_range *range;
106 	size_t start = rounddown(offset, sizeof(long));
107 	size_t end = roundup(offset + size, sizeof(long));
108 
109 	if (!is_mask)
110 		range = &match->range;
111 	else
112 		range = &match->mask->range;
113 
114 	if (range->start == range->end) {
115 		range->start = start;
116 		range->end = end;
117 		return;
118 	}
119 
120 	if (range->start > start)
121 		range->start = start;
122 
123 	if (range->end < end)
124 		range->end = end;
125 }
126 
127 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
128 	do { \
129 		update_range(match, offsetof(struct sw_flow_key, field),    \
130 			     sizeof((match)->key->field), is_mask);	    \
131 		if (is_mask)						    \
132 			(match)->mask->key.field = value;		    \
133 		else							    \
134 			(match)->key->field = value;		            \
135 	} while (0)
136 
137 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
138 	do {								    \
139 		update_range(match, offset, len, is_mask);		    \
140 		if (is_mask)						    \
141 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
142 			       len);					   \
143 		else							    \
144 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
145 	} while (0)
146 
147 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
148 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
149 				  value_p, len, is_mask)
150 
151 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
152 	do {								    \
153 		update_range(match, offsetof(struct sw_flow_key, field),    \
154 			     sizeof((match)->key->field), is_mask);	    \
155 		if (is_mask)						    \
156 			memset((u8 *)&(match)->mask->key.field, value,      \
157 			       sizeof((match)->mask->key.field));	    \
158 		else							    \
159 			memset((u8 *)&(match)->key->field, value,           \
160 			       sizeof((match)->key->field));                \
161 	} while (0)
162 
163 static bool match_validate(const struct sw_flow_match *match,
164 			   u64 key_attrs, u64 mask_attrs, bool log)
165 {
166 	u64 key_expected = 0;
167 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
168 
169 	/* The following mask attributes allowed only if they
170 	 * pass the validation tests. */
171 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
172 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
173 			| (1 << OVS_KEY_ATTR_IPV6)
174 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
175 			| (1 << OVS_KEY_ATTR_TCP)
176 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
177 			| (1 << OVS_KEY_ATTR_UDP)
178 			| (1 << OVS_KEY_ATTR_SCTP)
179 			| (1 << OVS_KEY_ATTR_ICMP)
180 			| (1 << OVS_KEY_ATTR_ICMPV6)
181 			| (1 << OVS_KEY_ATTR_ARP)
182 			| (1 << OVS_KEY_ATTR_ND)
183 			| (1 << OVS_KEY_ATTR_MPLS)
184 			| (1 << OVS_KEY_ATTR_NSH));
185 
186 	/* Always allowed mask fields. */
187 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
188 		       | (1 << OVS_KEY_ATTR_IN_PORT)
189 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
190 
191 	/* Check key attributes. */
192 	if (match->key->eth.type == htons(ETH_P_ARP)
193 			|| match->key->eth.type == htons(ETH_P_RARP)) {
194 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
195 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
196 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
197 	}
198 
199 	if (eth_p_mpls(match->key->eth.type)) {
200 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
201 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
203 	}
204 
205 	if (match->key->eth.type == htons(ETH_P_IP)) {
206 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
207 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
208 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
209 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
210 		}
211 
212 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
213 			if (match->key->ip.proto == IPPROTO_UDP) {
214 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
215 				if (match->mask && (match->mask->key.ip.proto == 0xff))
216 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
217 			}
218 
219 			if (match->key->ip.proto == IPPROTO_SCTP) {
220 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
221 				if (match->mask && (match->mask->key.ip.proto == 0xff))
222 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
223 			}
224 
225 			if (match->key->ip.proto == IPPROTO_TCP) {
226 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
227 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
228 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
229 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
230 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
231 				}
232 			}
233 
234 			if (match->key->ip.proto == IPPROTO_ICMP) {
235 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
236 				if (match->mask && (match->mask->key.ip.proto == 0xff))
237 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
238 			}
239 		}
240 	}
241 
242 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
243 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
244 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
245 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
246 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
247 		}
248 
249 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
250 			if (match->key->ip.proto == IPPROTO_UDP) {
251 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
252 				if (match->mask && (match->mask->key.ip.proto == 0xff))
253 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
254 			}
255 
256 			if (match->key->ip.proto == IPPROTO_SCTP) {
257 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
258 				if (match->mask && (match->mask->key.ip.proto == 0xff))
259 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
260 			}
261 
262 			if (match->key->ip.proto == IPPROTO_TCP) {
263 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
264 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
265 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
266 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
267 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
268 				}
269 			}
270 
271 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
272 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
273 				if (match->mask && (match->mask->key.ip.proto == 0xff))
274 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
275 
276 				if (match->key->tp.src ==
277 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
278 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
279 					key_expected |= 1 << OVS_KEY_ATTR_ND;
280 					/* Original direction conntrack tuple
281 					 * uses the same space as the ND fields
282 					 * in the key, so both are not allowed
283 					 * at the same time.
284 					 */
285 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
286 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
287 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
288 				}
289 			}
290 		}
291 	}
292 
293 	if (match->key->eth.type == htons(ETH_P_NSH)) {
294 		key_expected |= 1 << OVS_KEY_ATTR_NSH;
295 		if (match->mask &&
296 		    match->mask->key.eth.type == htons(0xffff)) {
297 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
298 		}
299 	}
300 
301 	if ((key_attrs & key_expected) != key_expected) {
302 		/* Key attributes check failed. */
303 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
304 			  (unsigned long long)key_attrs,
305 			  (unsigned long long)key_expected);
306 		return false;
307 	}
308 
309 	if ((mask_attrs & mask_allowed) != mask_attrs) {
310 		/* Mask attributes check failed. */
311 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
312 			  (unsigned long long)mask_attrs,
313 			  (unsigned long long)mask_allowed);
314 		return false;
315 	}
316 
317 	return true;
318 }
319 
320 size_t ovs_tun_key_attr_size(void)
321 {
322 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
323 	 * updating this function.
324 	 */
325 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
326 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
327 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
328 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
329 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
330 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
331 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
332 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
333 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
334 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
335 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
336 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
337 		 */
338 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
339 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
340 }
341 
342 static size_t ovs_nsh_key_attr_size(void)
343 {
344 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
345 	 * updating this function.
346 	 */
347 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
348 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
349 		 * mutually exclusive, so the bigger one can cover
350 		 * the small one.
351 		 */
352 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
353 }
354 
355 size_t ovs_key_attr_size(void)
356 {
357 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
358 	 * updating this function.
359 	 */
360 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
361 
362 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
363 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
364 		  + ovs_tun_key_attr_size()
365 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
366 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
367 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
368 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
369 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
370 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
371 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
372 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
373 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
374 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
375 		  + ovs_nsh_key_attr_size()
376 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
377 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
378 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
379 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
380 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
381 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
382 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
383 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
384 }
385 
386 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
387 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
388 };
389 
390 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
391 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
392 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
393 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
394 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
395 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
396 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
397 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
398 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
399 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
400 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
401 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
402 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
403 						.next = ovs_vxlan_ext_key_lens },
404 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
405 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
406 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
407 	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
408 };
409 
410 static const struct ovs_len_tbl
411 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
412 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
413 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
414 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
415 };
416 
417 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
418 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
419 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
420 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
421 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
422 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
423 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
424 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
425 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
426 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
427 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
428 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
429 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
430 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
431 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
432 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
433 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
434 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
435 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
436 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
437 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
438 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
439 				     .next = ovs_tunnel_key_lens, },
440 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
441 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
442 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
443 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
444 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
445 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
446 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
447 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
448 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
449 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
450 				     .next = ovs_nsh_key_attr_lens, },
451 };
452 
453 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
454 {
455 	return expected_len == attr_len ||
456 	       expected_len == OVS_ATTR_NESTED ||
457 	       expected_len == OVS_ATTR_VARIABLE;
458 }
459 
460 static bool is_all_zero(const u8 *fp, size_t size)
461 {
462 	int i;
463 
464 	if (!fp)
465 		return false;
466 
467 	for (i = 0; i < size; i++)
468 		if (fp[i])
469 			return false;
470 
471 	return true;
472 }
473 
474 static int __parse_flow_nlattrs(const struct nlattr *attr,
475 				const struct nlattr *a[],
476 				u64 *attrsp, bool log, bool nz)
477 {
478 	const struct nlattr *nla;
479 	u64 attrs;
480 	int rem;
481 
482 	attrs = *attrsp;
483 	nla_for_each_nested(nla, attr, rem) {
484 		u16 type = nla_type(nla);
485 		int expected_len;
486 
487 		if (type > OVS_KEY_ATTR_MAX) {
488 			OVS_NLERR(log, "Key type %d is out of range max %d",
489 				  type, OVS_KEY_ATTR_MAX);
490 			return -EINVAL;
491 		}
492 
493 		if (attrs & (1 << type)) {
494 			OVS_NLERR(log, "Duplicate key (type %d).", type);
495 			return -EINVAL;
496 		}
497 
498 		expected_len = ovs_key_lens[type].len;
499 		if (!check_attr_len(nla_len(nla), expected_len)) {
500 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
501 				  type, nla_len(nla), expected_len);
502 			return -EINVAL;
503 		}
504 
505 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
506 			attrs |= 1 << type;
507 			a[type] = nla;
508 		}
509 	}
510 	if (rem) {
511 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
512 		return -EINVAL;
513 	}
514 
515 	*attrsp = attrs;
516 	return 0;
517 }
518 
519 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
520 				   const struct nlattr *a[], u64 *attrsp,
521 				   bool log)
522 {
523 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
524 }
525 
526 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
527 		       u64 *attrsp, bool log)
528 {
529 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
530 }
531 
532 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
533 				     struct sw_flow_match *match, bool is_mask,
534 				     bool log)
535 {
536 	unsigned long opt_key_offset;
537 
538 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
539 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
540 			  nla_len(a), sizeof(match->key->tun_opts));
541 		return -EINVAL;
542 	}
543 
544 	if (nla_len(a) % 4 != 0) {
545 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
546 			  nla_len(a));
547 		return -EINVAL;
548 	}
549 
550 	/* We need to record the length of the options passed
551 	 * down, otherwise packets with the same format but
552 	 * additional options will be silently matched.
553 	 */
554 	if (!is_mask) {
555 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
556 				false);
557 	} else {
558 		/* This is somewhat unusual because it looks at
559 		 * both the key and mask while parsing the
560 		 * attributes (and by extension assumes the key
561 		 * is parsed first). Normally, we would verify
562 		 * that each is the correct length and that the
563 		 * attributes line up in the validate function.
564 		 * However, that is difficult because this is
565 		 * variable length and we won't have the
566 		 * information later.
567 		 */
568 		if (match->key->tun_opts_len != nla_len(a)) {
569 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
570 				  match->key->tun_opts_len, nla_len(a));
571 			return -EINVAL;
572 		}
573 
574 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
575 	}
576 
577 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
578 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
579 				  nla_len(a), is_mask);
580 	return 0;
581 }
582 
583 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
584 				     struct sw_flow_match *match, bool is_mask,
585 				     bool log)
586 {
587 	struct nlattr *a;
588 	int rem;
589 	unsigned long opt_key_offset;
590 	struct vxlan_metadata opts;
591 
592 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
593 
594 	memset(&opts, 0, sizeof(opts));
595 	nla_for_each_nested(a, attr, rem) {
596 		int type = nla_type(a);
597 
598 		if (type > OVS_VXLAN_EXT_MAX) {
599 			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
600 				  type, OVS_VXLAN_EXT_MAX);
601 			return -EINVAL;
602 		}
603 
604 		if (!check_attr_len(nla_len(a),
605 				    ovs_vxlan_ext_key_lens[type].len)) {
606 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
607 				  type, nla_len(a),
608 				  ovs_vxlan_ext_key_lens[type].len);
609 			return -EINVAL;
610 		}
611 
612 		switch (type) {
613 		case OVS_VXLAN_EXT_GBP:
614 			opts.gbp = nla_get_u32(a);
615 			break;
616 		default:
617 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
618 				  type);
619 			return -EINVAL;
620 		}
621 	}
622 	if (rem) {
623 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
624 			  rem);
625 		return -EINVAL;
626 	}
627 
628 	if (!is_mask)
629 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
630 	else
631 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
632 
633 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
634 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
635 				  is_mask);
636 	return 0;
637 }
638 
639 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
640 				      struct sw_flow_match *match, bool is_mask,
641 				      bool log)
642 {
643 	unsigned long opt_key_offset;
644 
645 	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
646 		     sizeof(match->key->tun_opts));
647 
648 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
649 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
650 			  nla_len(a), sizeof(match->key->tun_opts));
651 		return -EINVAL;
652 	}
653 
654 	if (!is_mask)
655 		SW_FLOW_KEY_PUT(match, tun_opts_len,
656 				sizeof(struct erspan_metadata), false);
657 	else
658 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
659 
660 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
661 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
662 				  nla_len(a), is_mask);
663 	return 0;
664 }
665 
666 static int ip_tun_from_nlattr(const struct nlattr *attr,
667 			      struct sw_flow_match *match, bool is_mask,
668 			      bool log)
669 {
670 	bool ttl = false, ipv4 = false, ipv6 = false;
671 	bool info_bridge_mode = false;
672 	__be16 tun_flags = 0;
673 	int opts_type = 0;
674 	struct nlattr *a;
675 	int rem;
676 
677 	nla_for_each_nested(a, attr, rem) {
678 		int type = nla_type(a);
679 		int err;
680 
681 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
682 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
683 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
684 			return -EINVAL;
685 		}
686 
687 		if (!check_attr_len(nla_len(a),
688 				    ovs_tunnel_key_lens[type].len)) {
689 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
690 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
691 			return -EINVAL;
692 		}
693 
694 		switch (type) {
695 		case OVS_TUNNEL_KEY_ATTR_ID:
696 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
697 					nla_get_be64(a), is_mask);
698 			tun_flags |= TUNNEL_KEY;
699 			break;
700 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
701 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
702 					nla_get_in_addr(a), is_mask);
703 			ipv4 = true;
704 			break;
705 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
706 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
707 					nla_get_in_addr(a), is_mask);
708 			ipv4 = true;
709 			break;
710 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
711 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
712 					nla_get_in6_addr(a), is_mask);
713 			ipv6 = true;
714 			break;
715 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
716 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
717 					nla_get_in6_addr(a), is_mask);
718 			ipv6 = true;
719 			break;
720 		case OVS_TUNNEL_KEY_ATTR_TOS:
721 			SW_FLOW_KEY_PUT(match, tun_key.tos,
722 					nla_get_u8(a), is_mask);
723 			break;
724 		case OVS_TUNNEL_KEY_ATTR_TTL:
725 			SW_FLOW_KEY_PUT(match, tun_key.ttl,
726 					nla_get_u8(a), is_mask);
727 			ttl = true;
728 			break;
729 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
730 			tun_flags |= TUNNEL_DONT_FRAGMENT;
731 			break;
732 		case OVS_TUNNEL_KEY_ATTR_CSUM:
733 			tun_flags |= TUNNEL_CSUM;
734 			break;
735 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
736 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
737 					nla_get_be16(a), is_mask);
738 			break;
739 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
740 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
741 					nla_get_be16(a), is_mask);
742 			break;
743 		case OVS_TUNNEL_KEY_ATTR_OAM:
744 			tun_flags |= TUNNEL_OAM;
745 			break;
746 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
747 			if (opts_type) {
748 				OVS_NLERR(log, "Multiple metadata blocks provided");
749 				return -EINVAL;
750 			}
751 
752 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
753 			if (err)
754 				return err;
755 
756 			tun_flags |= TUNNEL_GENEVE_OPT;
757 			opts_type = type;
758 			break;
759 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
760 			if (opts_type) {
761 				OVS_NLERR(log, "Multiple metadata blocks provided");
762 				return -EINVAL;
763 			}
764 
765 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
766 			if (err)
767 				return err;
768 
769 			tun_flags |= TUNNEL_VXLAN_OPT;
770 			opts_type = type;
771 			break;
772 		case OVS_TUNNEL_KEY_ATTR_PAD:
773 			break;
774 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
775 			if (opts_type) {
776 				OVS_NLERR(log, "Multiple metadata blocks provided");
777 				return -EINVAL;
778 			}
779 
780 			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
781 							 log);
782 			if (err)
783 				return err;
784 
785 			tun_flags |= TUNNEL_ERSPAN_OPT;
786 			opts_type = type;
787 			break;
788 		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
789 			info_bridge_mode = true;
790 			ipv4 = true;
791 			break;
792 		default:
793 			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
794 				  type);
795 			return -EINVAL;
796 		}
797 	}
798 
799 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
800 	if (is_mask)
801 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
802 	else
803 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
804 				false);
805 
806 	if (rem > 0) {
807 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
808 			  rem);
809 		return -EINVAL;
810 	}
811 
812 	if (ipv4 && ipv6) {
813 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
814 		return -EINVAL;
815 	}
816 
817 	if (!is_mask) {
818 		if (!ipv4 && !ipv6) {
819 			OVS_NLERR(log, "IP tunnel dst address not specified");
820 			return -EINVAL;
821 		}
822 		if (ipv4) {
823 			if (info_bridge_mode) {
824 				if (match->key->tun_key.u.ipv4.src ||
825 				    match->key->tun_key.u.ipv4.dst ||
826 				    match->key->tun_key.tp_src ||
827 				    match->key->tun_key.tp_dst ||
828 				    match->key->tun_key.ttl ||
829 				    match->key->tun_key.tos ||
830 				    tun_flags & ~TUNNEL_KEY) {
831 					OVS_NLERR(log, "IPv4 tun info is not correct");
832 					return -EINVAL;
833 				}
834 			} else if (!match->key->tun_key.u.ipv4.dst) {
835 				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
836 				return -EINVAL;
837 			}
838 		}
839 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
840 			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
841 			return -EINVAL;
842 		}
843 
844 		if (!ttl && !info_bridge_mode) {
845 			OVS_NLERR(log, "IP tunnel TTL not specified.");
846 			return -EINVAL;
847 		}
848 	}
849 
850 	return opts_type;
851 }
852 
853 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
854 			       const void *tun_opts, int swkey_tun_opts_len)
855 {
856 	const struct vxlan_metadata *opts = tun_opts;
857 	struct nlattr *nla;
858 
859 	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
860 	if (!nla)
861 		return -EMSGSIZE;
862 
863 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
864 		return -EMSGSIZE;
865 
866 	nla_nest_end(skb, nla);
867 	return 0;
868 }
869 
870 static int __ip_tun_to_nlattr(struct sk_buff *skb,
871 			      const struct ip_tunnel_key *output,
872 			      const void *tun_opts, int swkey_tun_opts_len,
873 			      unsigned short tun_proto, u8 mode)
874 {
875 	if (output->tun_flags & TUNNEL_KEY &&
876 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
877 			 OVS_TUNNEL_KEY_ATTR_PAD))
878 		return -EMSGSIZE;
879 
880 	if (mode & IP_TUNNEL_INFO_BRIDGE)
881 		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
882 		       ? -EMSGSIZE : 0;
883 
884 	switch (tun_proto) {
885 	case AF_INET:
886 		if (output->u.ipv4.src &&
887 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
888 				    output->u.ipv4.src))
889 			return -EMSGSIZE;
890 		if (output->u.ipv4.dst &&
891 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
892 				    output->u.ipv4.dst))
893 			return -EMSGSIZE;
894 		break;
895 	case AF_INET6:
896 		if (!ipv6_addr_any(&output->u.ipv6.src) &&
897 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
898 				     &output->u.ipv6.src))
899 			return -EMSGSIZE;
900 		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
901 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
902 				     &output->u.ipv6.dst))
903 			return -EMSGSIZE;
904 		break;
905 	}
906 	if (output->tos &&
907 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
908 		return -EMSGSIZE;
909 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
910 		return -EMSGSIZE;
911 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
912 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
913 		return -EMSGSIZE;
914 	if ((output->tun_flags & TUNNEL_CSUM) &&
915 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
916 		return -EMSGSIZE;
917 	if (output->tp_src &&
918 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
919 		return -EMSGSIZE;
920 	if (output->tp_dst &&
921 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
922 		return -EMSGSIZE;
923 	if ((output->tun_flags & TUNNEL_OAM) &&
924 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
925 		return -EMSGSIZE;
926 	if (swkey_tun_opts_len) {
927 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
928 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
929 			    swkey_tun_opts_len, tun_opts))
930 			return -EMSGSIZE;
931 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
932 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
933 			return -EMSGSIZE;
934 		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
935 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
936 				 swkey_tun_opts_len, tun_opts))
937 			return -EMSGSIZE;
938 	}
939 
940 	return 0;
941 }
942 
943 static int ip_tun_to_nlattr(struct sk_buff *skb,
944 			    const struct ip_tunnel_key *output,
945 			    const void *tun_opts, int swkey_tun_opts_len,
946 			    unsigned short tun_proto, u8 mode)
947 {
948 	struct nlattr *nla;
949 	int err;
950 
951 	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
952 	if (!nla)
953 		return -EMSGSIZE;
954 
955 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
956 				 tun_proto, mode);
957 	if (err)
958 		return err;
959 
960 	nla_nest_end(skb, nla);
961 	return 0;
962 }
963 
964 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
965 			    struct ip_tunnel_info *tun_info)
966 {
967 	return __ip_tun_to_nlattr(skb, &tun_info->key,
968 				  ip_tunnel_info_opts(tun_info),
969 				  tun_info->options_len,
970 				  ip_tunnel_info_af(tun_info), tun_info->mode);
971 }
972 
973 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
974 				    const struct nlattr *a[],
975 				    bool is_mask, bool inner)
976 {
977 	__be16 tci = 0;
978 	__be16 tpid = 0;
979 
980 	if (a[OVS_KEY_ATTR_VLAN])
981 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
982 
983 	if (a[OVS_KEY_ATTR_ETHERTYPE])
984 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
985 
986 	if (likely(!inner)) {
987 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
988 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
989 	} else {
990 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
991 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
992 	}
993 	return 0;
994 }
995 
996 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
997 				      u64 key_attrs, bool inner,
998 				      const struct nlattr **a, bool log)
999 {
1000 	__be16 tci = 0;
1001 
1002 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1003 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1004 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1005 		/* Not a VLAN. */
1006 		return 0;
1007 	}
1008 
1009 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1010 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1011 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1012 		return -EINVAL;
1013 	}
1014 
1015 	if (a[OVS_KEY_ATTR_VLAN])
1016 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1017 
1018 	if (!(tci & htons(VLAN_CFI_MASK))) {
1019 		if (tci) {
1020 			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1021 				  (inner) ? "C-VLAN" : "VLAN");
1022 			return -EINVAL;
1023 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1024 			/* Corner case for truncated VLAN header. */
1025 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1026 				  (inner) ? "C-VLAN" : "VLAN");
1027 			return -EINVAL;
1028 		}
1029 	}
1030 
1031 	return 1;
1032 }
1033 
1034 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1035 					   u64 key_attrs, bool inner,
1036 					   const struct nlattr **a, bool log)
1037 {
1038 	__be16 tci = 0;
1039 	__be16 tpid = 0;
1040 	bool encap_valid = !!(match->key->eth.vlan.tci &
1041 			      htons(VLAN_CFI_MASK));
1042 	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1043 				htons(VLAN_CFI_MASK));
1044 
1045 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1046 		/* Not a VLAN. */
1047 		return 0;
1048 	}
1049 
1050 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1051 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1052 			  (inner) ? "C-VLAN" : "VLAN");
1053 		return -EINVAL;
1054 	}
1055 
1056 	if (a[OVS_KEY_ATTR_VLAN])
1057 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1058 
1059 	if (a[OVS_KEY_ATTR_ETHERTYPE])
1060 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1061 
1062 	if (tpid != htons(0xffff)) {
1063 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1064 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1065 		return -EINVAL;
1066 	}
1067 	if (!(tci & htons(VLAN_CFI_MASK))) {
1068 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1069 			  (inner) ? "C-VLAN" : "VLAN");
1070 		return -EINVAL;
1071 	}
1072 
1073 	return 1;
1074 }
1075 
1076 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1077 				     u64 *key_attrs, bool inner,
1078 				     const struct nlattr **a, bool is_mask,
1079 				     bool log)
1080 {
1081 	int err;
1082 	const struct nlattr *encap;
1083 
1084 	if (!is_mask)
1085 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1086 						 a, log);
1087 	else
1088 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1089 						      a, log);
1090 	if (err <= 0)
1091 		return err;
1092 
1093 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1094 	if (err)
1095 		return err;
1096 
1097 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1098 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1099 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1100 
1101 	encap = a[OVS_KEY_ATTR_ENCAP];
1102 
1103 	if (!is_mask)
1104 		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1105 	else
1106 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1107 
1108 	return err;
1109 }
1110 
1111 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1112 				   u64 *key_attrs, const struct nlattr **a,
1113 				   bool is_mask, bool log)
1114 {
1115 	int err;
1116 	bool encap_valid = false;
1117 
1118 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1119 					is_mask, log);
1120 	if (err)
1121 		return err;
1122 
1123 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1124 	if (encap_valid) {
1125 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1126 						is_mask, log);
1127 		if (err)
1128 			return err;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1135 				       u64 *attrs, const struct nlattr **a,
1136 				       bool is_mask, bool log)
1137 {
1138 	__be16 eth_type;
1139 
1140 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1141 	if (is_mask) {
1142 		/* Always exact match EtherType. */
1143 		eth_type = htons(0xffff);
1144 	} else if (!eth_proto_is_802_3(eth_type)) {
1145 		OVS_NLERR(log, "EtherType %x is less than min %x",
1146 				ntohs(eth_type), ETH_P_802_3_MIN);
1147 		return -EINVAL;
1148 	}
1149 
1150 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1151 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1152 	return 0;
1153 }
1154 
1155 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1156 				 u64 *attrs, const struct nlattr **a,
1157 				 bool is_mask, bool log)
1158 {
1159 	u8 mac_proto = MAC_PROTO_ETHERNET;
1160 
1161 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1162 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1163 
1164 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1165 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1166 	}
1167 
1168 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1169 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1170 
1171 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1172 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1173 	}
1174 
1175 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1176 		SW_FLOW_KEY_PUT(match, phy.priority,
1177 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1178 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1179 	}
1180 
1181 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1182 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1183 
1184 		if (is_mask) {
1185 			in_port = 0xffffffff; /* Always exact match in_port. */
1186 		} else if (in_port >= DP_MAX_PORTS) {
1187 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1188 				  in_port, DP_MAX_PORTS);
1189 			return -EINVAL;
1190 		}
1191 
1192 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1193 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1194 	} else if (!is_mask) {
1195 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1196 	}
1197 
1198 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1199 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1200 
1201 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1202 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1203 	}
1204 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1205 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1206 				       is_mask, log) < 0)
1207 			return -EINVAL;
1208 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1209 	}
1210 
1211 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1212 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1213 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1214 
1215 		if (ct_state & ~CT_SUPPORTED_MASK) {
1216 			OVS_NLERR(log, "ct_state flags %08x unsupported",
1217 				  ct_state);
1218 			return -EINVAL;
1219 		}
1220 
1221 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1222 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1223 	}
1224 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1225 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1226 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1227 
1228 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1229 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1230 	}
1231 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1232 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1233 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1234 
1235 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1236 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1237 	}
1238 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1239 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1240 		const struct ovs_key_ct_labels *cl;
1241 
1242 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1243 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1244 				   sizeof(*cl), is_mask);
1245 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1246 	}
1247 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1248 		const struct ovs_key_ct_tuple_ipv4 *ct;
1249 
1250 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1251 
1252 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1253 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1254 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1255 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1256 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1257 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1258 	}
1259 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1260 		const struct ovs_key_ct_tuple_ipv6 *ct;
1261 
1262 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1263 
1264 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1265 				   sizeof(match->key->ipv6.ct_orig.src),
1266 				   is_mask);
1267 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1268 				   sizeof(match->key->ipv6.ct_orig.dst),
1269 				   is_mask);
1270 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1271 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1272 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1273 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1274 	}
1275 
1276 	/* For layer 3 packets the Ethernet type is provided
1277 	 * and treated as metadata but no MAC addresses are provided.
1278 	 */
1279 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1280 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1281 		mac_proto = MAC_PROTO_NONE;
1282 
1283 	/* Always exact match mac_proto */
1284 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1285 
1286 	if (mac_proto == MAC_PROTO_NONE)
1287 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1288 						   log);
1289 
1290 	return 0;
1291 }
1292 
1293 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1294 			struct nshhdr *nh, size_t size)
1295 {
1296 	struct nlattr *a;
1297 	int rem;
1298 	u8 flags = 0;
1299 	u8 ttl = 0;
1300 	int mdlen = 0;
1301 
1302 	/* validate_nsh has check this, so we needn't do duplicate check here
1303 	 */
1304 	if (size < NSH_BASE_HDR_LEN)
1305 		return -ENOBUFS;
1306 
1307 	nla_for_each_nested(a, attr, rem) {
1308 		int type = nla_type(a);
1309 
1310 		switch (type) {
1311 		case OVS_NSH_KEY_ATTR_BASE: {
1312 			const struct ovs_nsh_key_base *base = nla_data(a);
1313 
1314 			flags = base->flags;
1315 			ttl = base->ttl;
1316 			nh->np = base->np;
1317 			nh->mdtype = base->mdtype;
1318 			nh->path_hdr = base->path_hdr;
1319 			break;
1320 		}
1321 		case OVS_NSH_KEY_ATTR_MD1:
1322 			mdlen = nla_len(a);
1323 			if (mdlen > size - NSH_BASE_HDR_LEN)
1324 				return -ENOBUFS;
1325 			memcpy(&nh->md1, nla_data(a), mdlen);
1326 			break;
1327 
1328 		case OVS_NSH_KEY_ATTR_MD2:
1329 			mdlen = nla_len(a);
1330 			if (mdlen > size - NSH_BASE_HDR_LEN)
1331 				return -ENOBUFS;
1332 			memcpy(&nh->md2, nla_data(a), mdlen);
1333 			break;
1334 
1335 		default:
1336 			return -EINVAL;
1337 		}
1338 	}
1339 
1340 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1341 	nh->ver_flags_ttl_len = 0;
1342 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1343 
1344 	return 0;
1345 }
1346 
1347 int nsh_key_from_nlattr(const struct nlattr *attr,
1348 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1349 {
1350 	struct nlattr *a;
1351 	int rem;
1352 
1353 	/* validate_nsh has check this, so we needn't do duplicate check here
1354 	 */
1355 	nla_for_each_nested(a, attr, rem) {
1356 		int type = nla_type(a);
1357 
1358 		switch (type) {
1359 		case OVS_NSH_KEY_ATTR_BASE: {
1360 			const struct ovs_nsh_key_base *base = nla_data(a);
1361 			const struct ovs_nsh_key_base *base_mask = base + 1;
1362 
1363 			nsh->base = *base;
1364 			nsh_mask->base = *base_mask;
1365 			break;
1366 		}
1367 		case OVS_NSH_KEY_ATTR_MD1: {
1368 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1369 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1370 
1371 			memcpy(nsh->context, md1->context, sizeof(*md1));
1372 			memcpy(nsh_mask->context, md1_mask->context,
1373 			       sizeof(*md1_mask));
1374 			break;
1375 		}
1376 		case OVS_NSH_KEY_ATTR_MD2:
1377 			/* Not supported yet */
1378 			return -ENOTSUPP;
1379 		default:
1380 			return -EINVAL;
1381 		}
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1388 				   struct sw_flow_match *match, bool is_mask,
1389 				   bool is_push_nsh, bool log)
1390 {
1391 	struct nlattr *a;
1392 	int rem;
1393 	bool has_base = false;
1394 	bool has_md1 = false;
1395 	bool has_md2 = false;
1396 	u8 mdtype = 0;
1397 	int mdlen = 0;
1398 
1399 	if (WARN_ON(is_push_nsh && is_mask))
1400 		return -EINVAL;
1401 
1402 	nla_for_each_nested(a, attr, rem) {
1403 		int type = nla_type(a);
1404 		int i;
1405 
1406 		if (type > OVS_NSH_KEY_ATTR_MAX) {
1407 			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1408 				  type, OVS_NSH_KEY_ATTR_MAX);
1409 			return -EINVAL;
1410 		}
1411 
1412 		if (!check_attr_len(nla_len(a),
1413 				    ovs_nsh_key_attr_lens[type].len)) {
1414 			OVS_NLERR(
1415 			    log,
1416 			    "nsh attr %d has unexpected len %d expected %d",
1417 			    type,
1418 			    nla_len(a),
1419 			    ovs_nsh_key_attr_lens[type].len
1420 			);
1421 			return -EINVAL;
1422 		}
1423 
1424 		switch (type) {
1425 		case OVS_NSH_KEY_ATTR_BASE: {
1426 			const struct ovs_nsh_key_base *base = nla_data(a);
1427 
1428 			has_base = true;
1429 			mdtype = base->mdtype;
1430 			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1431 					base->flags, is_mask);
1432 			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1433 					base->ttl, is_mask);
1434 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1435 					base->mdtype, is_mask);
1436 			SW_FLOW_KEY_PUT(match, nsh.base.np,
1437 					base->np, is_mask);
1438 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1439 					base->path_hdr, is_mask);
1440 			break;
1441 		}
1442 		case OVS_NSH_KEY_ATTR_MD1: {
1443 			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1444 
1445 			has_md1 = true;
1446 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1447 				SW_FLOW_KEY_PUT(match, nsh.context[i],
1448 						md1->context[i], is_mask);
1449 			break;
1450 		}
1451 		case OVS_NSH_KEY_ATTR_MD2:
1452 			if (!is_push_nsh) /* Not supported MD type 2 yet */
1453 				return -ENOTSUPP;
1454 
1455 			has_md2 = true;
1456 			mdlen = nla_len(a);
1457 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1458 				OVS_NLERR(
1459 				    log,
1460 				    "Invalid MD length %d for MD type %d",
1461 				    mdlen,
1462 				    mdtype
1463 				);
1464 				return -EINVAL;
1465 			}
1466 			break;
1467 		default:
1468 			OVS_NLERR(log, "Unknown nsh attribute %d",
1469 				  type);
1470 			return -EINVAL;
1471 		}
1472 	}
1473 
1474 	if (rem > 0) {
1475 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1476 		return -EINVAL;
1477 	}
1478 
1479 	if (has_md1 && has_md2) {
1480 		OVS_NLERR(
1481 		    1,
1482 		    "invalid nsh attribute: md1 and md2 are exclusive."
1483 		);
1484 		return -EINVAL;
1485 	}
1486 
1487 	if (!is_mask) {
1488 		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1489 		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1490 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1491 				  mdtype);
1492 			return -EINVAL;
1493 		}
1494 
1495 		if (is_push_nsh &&
1496 		    (!has_base || (!has_md1 && !has_md2))) {
1497 			OVS_NLERR(
1498 			    1,
1499 			    "push_nsh: missing base or metadata attributes"
1500 			);
1501 			return -EINVAL;
1502 		}
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1509 				u64 attrs, const struct nlattr **a,
1510 				bool is_mask, bool log)
1511 {
1512 	int err;
1513 
1514 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1515 	if (err)
1516 		return err;
1517 
1518 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1519 		const struct ovs_key_ethernet *eth_key;
1520 
1521 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1522 		SW_FLOW_KEY_MEMCPY(match, eth.src,
1523 				eth_key->eth_src, ETH_ALEN, is_mask);
1524 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1525 				eth_key->eth_dst, ETH_ALEN, is_mask);
1526 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1527 
1528 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1529 			/* VLAN attribute is always parsed before getting here since it
1530 			 * may occur multiple times.
1531 			 */
1532 			OVS_NLERR(log, "VLAN attribute unexpected.");
1533 			return -EINVAL;
1534 		}
1535 
1536 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1537 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1538 							  log);
1539 			if (err)
1540 				return err;
1541 		} else if (!is_mask) {
1542 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1543 		}
1544 	} else if (!match->key->eth.type) {
1545 		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1546 		return -EINVAL;
1547 	}
1548 
1549 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1550 		const struct ovs_key_ipv4 *ipv4_key;
1551 
1552 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1553 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1554 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1555 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1556 			return -EINVAL;
1557 		}
1558 		SW_FLOW_KEY_PUT(match, ip.proto,
1559 				ipv4_key->ipv4_proto, is_mask);
1560 		SW_FLOW_KEY_PUT(match, ip.tos,
1561 				ipv4_key->ipv4_tos, is_mask);
1562 		SW_FLOW_KEY_PUT(match, ip.ttl,
1563 				ipv4_key->ipv4_ttl, is_mask);
1564 		SW_FLOW_KEY_PUT(match, ip.frag,
1565 				ipv4_key->ipv4_frag, is_mask);
1566 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1567 				ipv4_key->ipv4_src, is_mask);
1568 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1569 				ipv4_key->ipv4_dst, is_mask);
1570 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1571 	}
1572 
1573 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1574 		const struct ovs_key_ipv6 *ipv6_key;
1575 
1576 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1577 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1578 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1579 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1580 			return -EINVAL;
1581 		}
1582 
1583 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1584 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1585 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1586 			return -EINVAL;
1587 		}
1588 
1589 		SW_FLOW_KEY_PUT(match, ipv6.label,
1590 				ipv6_key->ipv6_label, is_mask);
1591 		SW_FLOW_KEY_PUT(match, ip.proto,
1592 				ipv6_key->ipv6_proto, is_mask);
1593 		SW_FLOW_KEY_PUT(match, ip.tos,
1594 				ipv6_key->ipv6_tclass, is_mask);
1595 		SW_FLOW_KEY_PUT(match, ip.ttl,
1596 				ipv6_key->ipv6_hlimit, is_mask);
1597 		SW_FLOW_KEY_PUT(match, ip.frag,
1598 				ipv6_key->ipv6_frag, is_mask);
1599 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1600 				ipv6_key->ipv6_src,
1601 				sizeof(match->key->ipv6.addr.src),
1602 				is_mask);
1603 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1604 				ipv6_key->ipv6_dst,
1605 				sizeof(match->key->ipv6.addr.dst),
1606 				is_mask);
1607 
1608 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1609 	}
1610 
1611 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1612 		const struct ovs_key_arp *arp_key;
1613 
1614 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1615 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1616 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1617 				  arp_key->arp_op);
1618 			return -EINVAL;
1619 		}
1620 
1621 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1622 				arp_key->arp_sip, is_mask);
1623 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1624 			arp_key->arp_tip, is_mask);
1625 		SW_FLOW_KEY_PUT(match, ip.proto,
1626 				ntohs(arp_key->arp_op), is_mask);
1627 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1628 				arp_key->arp_sha, ETH_ALEN, is_mask);
1629 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1630 				arp_key->arp_tha, ETH_ALEN, is_mask);
1631 
1632 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1633 	}
1634 
1635 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1636 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1637 					    is_mask, false, log) < 0)
1638 			return -EINVAL;
1639 		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1640 	}
1641 
1642 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1643 		const struct ovs_key_mpls *mpls_key;
1644 
1645 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1646 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1647 				mpls_key->mpls_lse, is_mask);
1648 
1649 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1650 	 }
1651 
1652 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1653 		const struct ovs_key_tcp *tcp_key;
1654 
1655 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1656 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1657 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1658 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1659 	}
1660 
1661 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1662 		SW_FLOW_KEY_PUT(match, tp.flags,
1663 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1664 				is_mask);
1665 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1666 	}
1667 
1668 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1669 		const struct ovs_key_udp *udp_key;
1670 
1671 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1672 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1673 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1674 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1675 	}
1676 
1677 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1678 		const struct ovs_key_sctp *sctp_key;
1679 
1680 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1681 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1682 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1683 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1684 	}
1685 
1686 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1687 		const struct ovs_key_icmp *icmp_key;
1688 
1689 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1690 		SW_FLOW_KEY_PUT(match, tp.src,
1691 				htons(icmp_key->icmp_type), is_mask);
1692 		SW_FLOW_KEY_PUT(match, tp.dst,
1693 				htons(icmp_key->icmp_code), is_mask);
1694 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1695 	}
1696 
1697 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1698 		const struct ovs_key_icmpv6 *icmpv6_key;
1699 
1700 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1701 		SW_FLOW_KEY_PUT(match, tp.src,
1702 				htons(icmpv6_key->icmpv6_type), is_mask);
1703 		SW_FLOW_KEY_PUT(match, tp.dst,
1704 				htons(icmpv6_key->icmpv6_code), is_mask);
1705 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1706 	}
1707 
1708 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1709 		const struct ovs_key_nd *nd_key;
1710 
1711 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1712 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1713 			nd_key->nd_target,
1714 			sizeof(match->key->ipv6.nd.target),
1715 			is_mask);
1716 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1717 			nd_key->nd_sll, ETH_ALEN, is_mask);
1718 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1719 				nd_key->nd_tll, ETH_ALEN, is_mask);
1720 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1721 	}
1722 
1723 	if (attrs != 0) {
1724 		OVS_NLERR(log, "Unknown key attributes %llx",
1725 			  (unsigned long long)attrs);
1726 		return -EINVAL;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static void nlattr_set(struct nlattr *attr, u8 val,
1733 		       const struct ovs_len_tbl *tbl)
1734 {
1735 	struct nlattr *nla;
1736 	int rem;
1737 
1738 	/* The nlattr stream should already have been validated */
1739 	nla_for_each_nested(nla, attr, rem) {
1740 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1741 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1742 		else
1743 			memset(nla_data(nla), val, nla_len(nla));
1744 
1745 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1746 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1747 	}
1748 }
1749 
1750 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1751 {
1752 	nlattr_set(attr, val, ovs_key_lens);
1753 }
1754 
1755 /**
1756  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1757  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1758  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1759  * does not include any don't care bit.
1760  * @net: Used to determine per-namespace field support.
1761  * @match: receives the extracted flow match information.
1762  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1763  * sequence. The fields should of the packet that triggered the creation
1764  * of this flow.
1765  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1766  * attribute specifies the mask field of the wildcarded flow.
1767  * @log: Boolean to allow kernel error logging.  Normally true, but when
1768  * probing for feature compatibility this should be passed in as false to
1769  * suppress unnecessary error logging.
1770  */
1771 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1772 		      const struct nlattr *nla_key,
1773 		      const struct nlattr *nla_mask,
1774 		      bool log)
1775 {
1776 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1777 	struct nlattr *newmask = NULL;
1778 	u64 key_attrs = 0;
1779 	u64 mask_attrs = 0;
1780 	int err;
1781 
1782 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1783 	if (err)
1784 		return err;
1785 
1786 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1787 	if (err)
1788 		return err;
1789 
1790 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1791 	if (err)
1792 		return err;
1793 
1794 	if (match->mask) {
1795 		if (!nla_mask) {
1796 			/* Create an exact match mask. We need to set to 0xff
1797 			 * all the 'match->mask' fields that have been touched
1798 			 * in 'match->key'. We cannot simply memset
1799 			 * 'match->mask', because padding bytes and fields not
1800 			 * specified in 'match->key' should be left to 0.
1801 			 * Instead, we use a stream of netlink attributes,
1802 			 * copied from 'key' and set to 0xff.
1803 			 * ovs_key_from_nlattrs() will take care of filling
1804 			 * 'match->mask' appropriately.
1805 			 */
1806 			newmask = kmemdup(nla_key,
1807 					  nla_total_size(nla_len(nla_key)),
1808 					  GFP_KERNEL);
1809 			if (!newmask)
1810 				return -ENOMEM;
1811 
1812 			mask_set_nlattr(newmask, 0xff);
1813 
1814 			/* The userspace does not send tunnel attributes that
1815 			 * are 0, but we should not wildcard them nonetheless.
1816 			 */
1817 			if (match->key->tun_proto)
1818 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1819 							 0xff, true);
1820 
1821 			nla_mask = newmask;
1822 		}
1823 
1824 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1825 		if (err)
1826 			goto free_newmask;
1827 
1828 		/* Always match on tci. */
1829 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1830 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1831 
1832 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1833 		if (err)
1834 			goto free_newmask;
1835 
1836 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1837 					   log);
1838 		if (err)
1839 			goto free_newmask;
1840 	}
1841 
1842 	if (!match_validate(match, key_attrs, mask_attrs, log))
1843 		err = -EINVAL;
1844 
1845 free_newmask:
1846 	kfree(newmask);
1847 	return err;
1848 }
1849 
1850 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1851 {
1852 	size_t len;
1853 
1854 	if (!attr)
1855 		return 0;
1856 
1857 	len = nla_len(attr);
1858 	if (len < 1 || len > MAX_UFID_LENGTH) {
1859 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1860 			  nla_len(attr), MAX_UFID_LENGTH);
1861 		return 0;
1862 	}
1863 
1864 	return len;
1865 }
1866 
1867 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1868  * or false otherwise.
1869  */
1870 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1871 		      bool log)
1872 {
1873 	sfid->ufid_len = get_ufid_len(attr, log);
1874 	if (sfid->ufid_len)
1875 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1876 
1877 	return sfid->ufid_len;
1878 }
1879 
1880 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1881 			   const struct sw_flow_key *key, bool log)
1882 {
1883 	struct sw_flow_key *new_key;
1884 
1885 	if (ovs_nla_get_ufid(sfid, ufid, log))
1886 		return 0;
1887 
1888 	/* If UFID was not provided, use unmasked key. */
1889 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1890 	if (!new_key)
1891 		return -ENOMEM;
1892 	memcpy(new_key, key, sizeof(*key));
1893 	sfid->unmasked_key = new_key;
1894 
1895 	return 0;
1896 }
1897 
1898 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1899 {
1900 	return attr ? nla_get_u32(attr) : 0;
1901 }
1902 
1903 /**
1904  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1905  * @net: Network namespace.
1906  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1907  * metadata.
1908  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1909  * attributes.
1910  * @attrs: Bit mask for the netlink attributes included in @a.
1911  * @log: Boolean to allow kernel error logging.  Normally true, but when
1912  * probing for feature compatibility this should be passed in as false to
1913  * suppress unnecessary error logging.
1914  *
1915  * This parses a series of Netlink attributes that form a flow key, which must
1916  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1917  * get the metadata, that is, the parts of the flow key that cannot be
1918  * extracted from the packet itself.
1919  *
1920  * This must be called before the packet key fields are filled in 'key'.
1921  */
1922 
1923 int ovs_nla_get_flow_metadata(struct net *net,
1924 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1925 			      u64 attrs, struct sw_flow_key *key, bool log)
1926 {
1927 	struct sw_flow_match match;
1928 
1929 	memset(&match, 0, sizeof(match));
1930 	match.key = key;
1931 
1932 	key->ct_state = 0;
1933 	key->ct_zone = 0;
1934 	key->ct_orig_proto = 0;
1935 	memset(&key->ct, 0, sizeof(key->ct));
1936 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1937 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1938 
1939 	key->phy.in_port = DP_MAX_PORTS;
1940 
1941 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1942 }
1943 
1944 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1945 			    bool is_mask)
1946 {
1947 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1948 
1949 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1950 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1951 		return -EMSGSIZE;
1952 	return 0;
1953 }
1954 
1955 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1956 			     struct sk_buff *skb)
1957 {
1958 	struct nlattr *start;
1959 
1960 	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1961 	if (!start)
1962 		return -EMSGSIZE;
1963 
1964 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1965 		goto nla_put_failure;
1966 
1967 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1968 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1969 			    sizeof(nsh->context), nsh->context))
1970 			goto nla_put_failure;
1971 	}
1972 
1973 	/* Don't support MD type 2 yet */
1974 
1975 	nla_nest_end(skb, start);
1976 
1977 	return 0;
1978 
1979 nla_put_failure:
1980 	return -EMSGSIZE;
1981 }
1982 
1983 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1984 			     const struct sw_flow_key *output, bool is_mask,
1985 			     struct sk_buff *skb)
1986 {
1987 	struct ovs_key_ethernet *eth_key;
1988 	struct nlattr *nla;
1989 	struct nlattr *encap = NULL;
1990 	struct nlattr *in_encap = NULL;
1991 
1992 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1993 		goto nla_put_failure;
1994 
1995 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1996 		goto nla_put_failure;
1997 
1998 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1999 		goto nla_put_failure;
2000 
2001 	if ((swkey->tun_proto || is_mask)) {
2002 		const void *opts = NULL;
2003 
2004 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2005 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2006 
2007 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2008 				     swkey->tun_opts_len, swkey->tun_proto, 0))
2009 			goto nla_put_failure;
2010 	}
2011 
2012 	if (swkey->phy.in_port == DP_MAX_PORTS) {
2013 		if (is_mask && (output->phy.in_port == 0xffff))
2014 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2015 				goto nla_put_failure;
2016 	} else {
2017 		u16 upper_u16;
2018 		upper_u16 = !is_mask ? 0 : 0xffff;
2019 
2020 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2021 				(upper_u16 << 16) | output->phy.in_port))
2022 			goto nla_put_failure;
2023 	}
2024 
2025 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2026 		goto nla_put_failure;
2027 
2028 	if (ovs_ct_put_key(swkey, output, skb))
2029 		goto nla_put_failure;
2030 
2031 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2032 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2033 		if (!nla)
2034 			goto nla_put_failure;
2035 
2036 		eth_key = nla_data(nla);
2037 		ether_addr_copy(eth_key->eth_src, output->eth.src);
2038 		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2039 
2040 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2041 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2042 				goto nla_put_failure;
2043 			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2044 			if (!swkey->eth.vlan.tci)
2045 				goto unencap;
2046 
2047 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2048 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2049 					goto nla_put_failure;
2050 				in_encap = nla_nest_start_noflag(skb,
2051 								 OVS_KEY_ATTR_ENCAP);
2052 				if (!swkey->eth.cvlan.tci)
2053 					goto unencap;
2054 			}
2055 		}
2056 
2057 		if (swkey->eth.type == htons(ETH_P_802_2)) {
2058 			/*
2059 			* Ethertype 802.2 is represented in the netlink with omitted
2060 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2061 			* 0xffff in the mask attribute.  Ethertype can also
2062 			* be wildcarded.
2063 			*/
2064 			if (is_mask && output->eth.type)
2065 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2066 							output->eth.type))
2067 					goto nla_put_failure;
2068 			goto unencap;
2069 		}
2070 	}
2071 
2072 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2073 		goto nla_put_failure;
2074 
2075 	if (eth_type_vlan(swkey->eth.type)) {
2076 		/* There are 3 VLAN tags, we don't know anything about the rest
2077 		 * of the packet, so truncate here.
2078 		 */
2079 		WARN_ON_ONCE(!(encap && in_encap));
2080 		goto unencap;
2081 	}
2082 
2083 	if (swkey->eth.type == htons(ETH_P_IP)) {
2084 		struct ovs_key_ipv4 *ipv4_key;
2085 
2086 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2087 		if (!nla)
2088 			goto nla_put_failure;
2089 		ipv4_key = nla_data(nla);
2090 		ipv4_key->ipv4_src = output->ipv4.addr.src;
2091 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2092 		ipv4_key->ipv4_proto = output->ip.proto;
2093 		ipv4_key->ipv4_tos = output->ip.tos;
2094 		ipv4_key->ipv4_ttl = output->ip.ttl;
2095 		ipv4_key->ipv4_frag = output->ip.frag;
2096 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2097 		struct ovs_key_ipv6 *ipv6_key;
2098 
2099 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2100 		if (!nla)
2101 			goto nla_put_failure;
2102 		ipv6_key = nla_data(nla);
2103 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2104 				sizeof(ipv6_key->ipv6_src));
2105 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2106 				sizeof(ipv6_key->ipv6_dst));
2107 		ipv6_key->ipv6_label = output->ipv6.label;
2108 		ipv6_key->ipv6_proto = output->ip.proto;
2109 		ipv6_key->ipv6_tclass = output->ip.tos;
2110 		ipv6_key->ipv6_hlimit = output->ip.ttl;
2111 		ipv6_key->ipv6_frag = output->ip.frag;
2112 	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2113 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2114 			goto nla_put_failure;
2115 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2116 		   swkey->eth.type == htons(ETH_P_RARP)) {
2117 		struct ovs_key_arp *arp_key;
2118 
2119 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2120 		if (!nla)
2121 			goto nla_put_failure;
2122 		arp_key = nla_data(nla);
2123 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2124 		arp_key->arp_sip = output->ipv4.addr.src;
2125 		arp_key->arp_tip = output->ipv4.addr.dst;
2126 		arp_key->arp_op = htons(output->ip.proto);
2127 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2128 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2129 	} else if (eth_p_mpls(swkey->eth.type)) {
2130 		struct ovs_key_mpls *mpls_key;
2131 
2132 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2133 		if (!nla)
2134 			goto nla_put_failure;
2135 		mpls_key = nla_data(nla);
2136 		mpls_key->mpls_lse = output->mpls.top_lse;
2137 	}
2138 
2139 	if ((swkey->eth.type == htons(ETH_P_IP) ||
2140 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2141 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2142 
2143 		if (swkey->ip.proto == IPPROTO_TCP) {
2144 			struct ovs_key_tcp *tcp_key;
2145 
2146 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2147 			if (!nla)
2148 				goto nla_put_failure;
2149 			tcp_key = nla_data(nla);
2150 			tcp_key->tcp_src = output->tp.src;
2151 			tcp_key->tcp_dst = output->tp.dst;
2152 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2153 					 output->tp.flags))
2154 				goto nla_put_failure;
2155 		} else if (swkey->ip.proto == IPPROTO_UDP) {
2156 			struct ovs_key_udp *udp_key;
2157 
2158 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2159 			if (!nla)
2160 				goto nla_put_failure;
2161 			udp_key = nla_data(nla);
2162 			udp_key->udp_src = output->tp.src;
2163 			udp_key->udp_dst = output->tp.dst;
2164 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2165 			struct ovs_key_sctp *sctp_key;
2166 
2167 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2168 			if (!nla)
2169 				goto nla_put_failure;
2170 			sctp_key = nla_data(nla);
2171 			sctp_key->sctp_src = output->tp.src;
2172 			sctp_key->sctp_dst = output->tp.dst;
2173 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2174 			   swkey->ip.proto == IPPROTO_ICMP) {
2175 			struct ovs_key_icmp *icmp_key;
2176 
2177 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2178 			if (!nla)
2179 				goto nla_put_failure;
2180 			icmp_key = nla_data(nla);
2181 			icmp_key->icmp_type = ntohs(output->tp.src);
2182 			icmp_key->icmp_code = ntohs(output->tp.dst);
2183 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2184 			   swkey->ip.proto == IPPROTO_ICMPV6) {
2185 			struct ovs_key_icmpv6 *icmpv6_key;
2186 
2187 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2188 						sizeof(*icmpv6_key));
2189 			if (!nla)
2190 				goto nla_put_failure;
2191 			icmpv6_key = nla_data(nla);
2192 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2193 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2194 
2195 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2196 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2197 				struct ovs_key_nd *nd_key;
2198 
2199 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2200 				if (!nla)
2201 					goto nla_put_failure;
2202 				nd_key = nla_data(nla);
2203 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2204 							sizeof(nd_key->nd_target));
2205 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2206 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2207 			}
2208 		}
2209 	}
2210 
2211 unencap:
2212 	if (in_encap)
2213 		nla_nest_end(skb, in_encap);
2214 	if (encap)
2215 		nla_nest_end(skb, encap);
2216 
2217 	return 0;
2218 
2219 nla_put_failure:
2220 	return -EMSGSIZE;
2221 }
2222 
2223 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2224 		    const struct sw_flow_key *output, int attr, bool is_mask,
2225 		    struct sk_buff *skb)
2226 {
2227 	int err;
2228 	struct nlattr *nla;
2229 
2230 	nla = nla_nest_start_noflag(skb, attr);
2231 	if (!nla)
2232 		return -EMSGSIZE;
2233 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2234 	if (err)
2235 		return err;
2236 	nla_nest_end(skb, nla);
2237 
2238 	return 0;
2239 }
2240 
2241 /* Called with ovs_mutex or RCU read lock. */
2242 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2243 {
2244 	if (ovs_identifier_is_ufid(&flow->id))
2245 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2246 			       flow->id.ufid);
2247 
2248 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2249 			       OVS_FLOW_ATTR_KEY, false, skb);
2250 }
2251 
2252 /* Called with ovs_mutex or RCU read lock. */
2253 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2254 {
2255 	return ovs_nla_put_key(&flow->key, &flow->key,
2256 				OVS_FLOW_ATTR_KEY, false, skb);
2257 }
2258 
2259 /* Called with ovs_mutex or RCU read lock. */
2260 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2261 {
2262 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2263 				OVS_FLOW_ATTR_MASK, true, skb);
2264 }
2265 
2266 #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2267 
2268 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2269 {
2270 	struct sw_flow_actions *sfa;
2271 
2272 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2273 
2274 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2275 	if (!sfa)
2276 		return ERR_PTR(-ENOMEM);
2277 
2278 	sfa->actions_len = 0;
2279 	return sfa;
2280 }
2281 
2282 static void ovs_nla_free_set_action(const struct nlattr *a)
2283 {
2284 	const struct nlattr *ovs_key = nla_data(a);
2285 	struct ovs_tunnel_info *ovs_tun;
2286 
2287 	switch (nla_type(ovs_key)) {
2288 	case OVS_KEY_ATTR_TUNNEL_INFO:
2289 		ovs_tun = nla_data(ovs_key);
2290 		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2291 		break;
2292 	}
2293 }
2294 
2295 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2296 {
2297 	const struct nlattr *a;
2298 	int rem;
2299 
2300 	if (!sf_acts)
2301 		return;
2302 
2303 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2304 		switch (nla_type(a)) {
2305 		case OVS_ACTION_ATTR_SET:
2306 			ovs_nla_free_set_action(a);
2307 			break;
2308 		case OVS_ACTION_ATTR_CT:
2309 			ovs_ct_free_action(a);
2310 			break;
2311 		}
2312 	}
2313 
2314 	kfree(sf_acts);
2315 }
2316 
2317 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2318 {
2319 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2320 }
2321 
2322 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2323  * The caller must hold rcu_read_lock for this to be sensible. */
2324 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2325 {
2326 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2327 }
2328 
2329 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2330 				       int attr_len, bool log)
2331 {
2332 
2333 	struct sw_flow_actions *acts;
2334 	int new_acts_size;
2335 	size_t req_size = NLA_ALIGN(attr_len);
2336 	int next_offset = offsetof(struct sw_flow_actions, actions) +
2337 					(*sfa)->actions_len;
2338 
2339 	if (req_size <= (ksize(*sfa) - next_offset))
2340 		goto out;
2341 
2342 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2343 
2344 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2345 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2346 			OVS_NLERR(log, "Flow action size exceeds max %u",
2347 				  MAX_ACTIONS_BUFSIZE);
2348 			return ERR_PTR(-EMSGSIZE);
2349 		}
2350 		new_acts_size = MAX_ACTIONS_BUFSIZE;
2351 	}
2352 
2353 	acts = nla_alloc_flow_actions(new_acts_size);
2354 	if (IS_ERR(acts))
2355 		return (void *)acts;
2356 
2357 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2358 	acts->actions_len = (*sfa)->actions_len;
2359 	acts->orig_len = (*sfa)->orig_len;
2360 	kfree(*sfa);
2361 	*sfa = acts;
2362 
2363 out:
2364 	(*sfa)->actions_len += req_size;
2365 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2366 }
2367 
2368 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2369 				   int attrtype, void *data, int len, bool log)
2370 {
2371 	struct nlattr *a;
2372 
2373 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2374 	if (IS_ERR(a))
2375 		return a;
2376 
2377 	a->nla_type = attrtype;
2378 	a->nla_len = nla_attr_size(len);
2379 
2380 	if (data)
2381 		memcpy(nla_data(a), data, len);
2382 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2383 
2384 	return a;
2385 }
2386 
2387 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2388 		       int len, bool log)
2389 {
2390 	struct nlattr *a;
2391 
2392 	a = __add_action(sfa, attrtype, data, len, log);
2393 
2394 	return PTR_ERR_OR_ZERO(a);
2395 }
2396 
2397 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2398 					  int attrtype, bool log)
2399 {
2400 	int used = (*sfa)->actions_len;
2401 	int err;
2402 
2403 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2404 	if (err)
2405 		return err;
2406 
2407 	return used;
2408 }
2409 
2410 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2411 					 int st_offset)
2412 {
2413 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2414 							       st_offset);
2415 
2416 	a->nla_len = sfa->actions_len - st_offset;
2417 }
2418 
2419 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2420 				  const struct sw_flow_key *key,
2421 				  struct sw_flow_actions **sfa,
2422 				  __be16 eth_type, __be16 vlan_tci, bool log);
2423 
2424 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2425 				    const struct sw_flow_key *key,
2426 				    struct sw_flow_actions **sfa,
2427 				    __be16 eth_type, __be16 vlan_tci,
2428 				    bool log, bool last)
2429 {
2430 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2431 	const struct nlattr *probability, *actions;
2432 	const struct nlattr *a;
2433 	int rem, start, err;
2434 	struct sample_arg arg;
2435 
2436 	memset(attrs, 0, sizeof(attrs));
2437 	nla_for_each_nested(a, attr, rem) {
2438 		int type = nla_type(a);
2439 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2440 			return -EINVAL;
2441 		attrs[type] = a;
2442 	}
2443 	if (rem)
2444 		return -EINVAL;
2445 
2446 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2447 	if (!probability || nla_len(probability) != sizeof(u32))
2448 		return -EINVAL;
2449 
2450 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2451 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2452 		return -EINVAL;
2453 
2454 	/* validation done, copy sample action. */
2455 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2456 	if (start < 0)
2457 		return start;
2458 
2459 	/* When both skb and flow may be changed, put the sample
2460 	 * into a deferred fifo. On the other hand, if only skb
2461 	 * may be modified, the actions can be executed in place.
2462 	 *
2463 	 * Do this analysis at the flow installation time.
2464 	 * Set 'clone_action->exec' to true if the actions can be
2465 	 * executed without being deferred.
2466 	 *
2467 	 * If the sample is the last action, it can always be excuted
2468 	 * rather than deferred.
2469 	 */
2470 	arg.exec = last || !actions_may_change_flow(actions);
2471 	arg.probability = nla_get_u32(probability);
2472 
2473 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2474 				 log);
2475 	if (err)
2476 		return err;
2477 
2478 	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2479 				     eth_type, vlan_tci, log);
2480 
2481 	if (err)
2482 		return err;
2483 
2484 	add_nested_action_end(*sfa, start);
2485 
2486 	return 0;
2487 }
2488 
2489 static int validate_and_copy_clone(struct net *net,
2490 				   const struct nlattr *attr,
2491 				   const struct sw_flow_key *key,
2492 				   struct sw_flow_actions **sfa,
2493 				   __be16 eth_type, __be16 vlan_tci,
2494 				   bool log, bool last)
2495 {
2496 	int start, err;
2497 	u32 exec;
2498 
2499 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2500 		return -EINVAL;
2501 
2502 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2503 	if (start < 0)
2504 		return start;
2505 
2506 	exec = last || !actions_may_change_flow(attr);
2507 
2508 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2509 				 sizeof(exec), log);
2510 	if (err)
2511 		return err;
2512 
2513 	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2514 				     eth_type, vlan_tci, log);
2515 	if (err)
2516 		return err;
2517 
2518 	add_nested_action_end(*sfa, start);
2519 
2520 	return 0;
2521 }
2522 
2523 void ovs_match_init(struct sw_flow_match *match,
2524 		    struct sw_flow_key *key,
2525 		    bool reset_key,
2526 		    struct sw_flow_mask *mask)
2527 {
2528 	memset(match, 0, sizeof(*match));
2529 	match->key = key;
2530 	match->mask = mask;
2531 
2532 	if (reset_key)
2533 		memset(key, 0, sizeof(*key));
2534 
2535 	if (mask) {
2536 		memset(&mask->key, 0, sizeof(mask->key));
2537 		mask->range.start = mask->range.end = 0;
2538 	}
2539 }
2540 
2541 static int validate_geneve_opts(struct sw_flow_key *key)
2542 {
2543 	struct geneve_opt *option;
2544 	int opts_len = key->tun_opts_len;
2545 	bool crit_opt = false;
2546 
2547 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2548 	while (opts_len > 0) {
2549 		int len;
2550 
2551 		if (opts_len < sizeof(*option))
2552 			return -EINVAL;
2553 
2554 		len = sizeof(*option) + option->length * 4;
2555 		if (len > opts_len)
2556 			return -EINVAL;
2557 
2558 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2559 
2560 		option = (struct geneve_opt *)((u8 *)option + len);
2561 		opts_len -= len;
2562 	}
2563 
2564 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2565 
2566 	return 0;
2567 }
2568 
2569 static int validate_and_copy_set_tun(const struct nlattr *attr,
2570 				     struct sw_flow_actions **sfa, bool log)
2571 {
2572 	struct sw_flow_match match;
2573 	struct sw_flow_key key;
2574 	struct metadata_dst *tun_dst;
2575 	struct ip_tunnel_info *tun_info;
2576 	struct ovs_tunnel_info *ovs_tun;
2577 	struct nlattr *a;
2578 	int err = 0, start, opts_type;
2579 	__be16 dst_opt_type;
2580 
2581 	dst_opt_type = 0;
2582 	ovs_match_init(&match, &key, true, NULL);
2583 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2584 	if (opts_type < 0)
2585 		return opts_type;
2586 
2587 	if (key.tun_opts_len) {
2588 		switch (opts_type) {
2589 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2590 			err = validate_geneve_opts(&key);
2591 			if (err < 0)
2592 				return err;
2593 			dst_opt_type = TUNNEL_GENEVE_OPT;
2594 			break;
2595 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2596 			dst_opt_type = TUNNEL_VXLAN_OPT;
2597 			break;
2598 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2599 			dst_opt_type = TUNNEL_ERSPAN_OPT;
2600 			break;
2601 		}
2602 	}
2603 
2604 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2605 	if (start < 0)
2606 		return start;
2607 
2608 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2609 				     GFP_KERNEL);
2610 
2611 	if (!tun_dst)
2612 		return -ENOMEM;
2613 
2614 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2615 	if (err) {
2616 		dst_release((struct dst_entry *)tun_dst);
2617 		return err;
2618 	}
2619 
2620 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2621 			 sizeof(*ovs_tun), log);
2622 	if (IS_ERR(a)) {
2623 		dst_release((struct dst_entry *)tun_dst);
2624 		return PTR_ERR(a);
2625 	}
2626 
2627 	ovs_tun = nla_data(a);
2628 	ovs_tun->tun_dst = tun_dst;
2629 
2630 	tun_info = &tun_dst->u.tun_info;
2631 	tun_info->mode = IP_TUNNEL_INFO_TX;
2632 	if (key.tun_proto == AF_INET6)
2633 		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2634 	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2635 		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2636 	tun_info->key = key.tun_key;
2637 
2638 	/* We need to store the options in the action itself since
2639 	 * everything else will go away after flow setup. We can append
2640 	 * it to tun_info and then point there.
2641 	 */
2642 	ip_tunnel_info_opts_set(tun_info,
2643 				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2644 				key.tun_opts_len, dst_opt_type);
2645 	add_nested_action_end(*sfa, start);
2646 
2647 	return err;
2648 }
2649 
2650 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2651 			 bool is_push_nsh, bool log)
2652 {
2653 	struct sw_flow_match match;
2654 	struct sw_flow_key key;
2655 	int ret = 0;
2656 
2657 	ovs_match_init(&match, &key, true, NULL);
2658 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2659 				      is_push_nsh, log);
2660 	return !ret;
2661 }
2662 
2663 /* Return false if there are any non-masked bits set.
2664  * Mask follows data immediately, before any netlink padding.
2665  */
2666 static bool validate_masked(u8 *data, int len)
2667 {
2668 	u8 *mask = data + len;
2669 
2670 	while (len--)
2671 		if (*data++ & ~*mask++)
2672 			return false;
2673 
2674 	return true;
2675 }
2676 
2677 static int validate_set(const struct nlattr *a,
2678 			const struct sw_flow_key *flow_key,
2679 			struct sw_flow_actions **sfa, bool *skip_copy,
2680 			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2681 {
2682 	const struct nlattr *ovs_key = nla_data(a);
2683 	int key_type = nla_type(ovs_key);
2684 	size_t key_len;
2685 
2686 	/* There can be only one key in a action */
2687 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2688 		return -EINVAL;
2689 
2690 	key_len = nla_len(ovs_key);
2691 	if (masked)
2692 		key_len /= 2;
2693 
2694 	if (key_type > OVS_KEY_ATTR_MAX ||
2695 	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2696 		return -EINVAL;
2697 
2698 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2699 		return -EINVAL;
2700 
2701 	switch (key_type) {
2702 	const struct ovs_key_ipv4 *ipv4_key;
2703 	const struct ovs_key_ipv6 *ipv6_key;
2704 	int err;
2705 
2706 	case OVS_KEY_ATTR_PRIORITY:
2707 	case OVS_KEY_ATTR_SKB_MARK:
2708 	case OVS_KEY_ATTR_CT_MARK:
2709 	case OVS_KEY_ATTR_CT_LABELS:
2710 		break;
2711 
2712 	case OVS_KEY_ATTR_ETHERNET:
2713 		if (mac_proto != MAC_PROTO_ETHERNET)
2714 			return -EINVAL;
2715 		break;
2716 
2717 	case OVS_KEY_ATTR_TUNNEL:
2718 		if (masked)
2719 			return -EINVAL; /* Masked tunnel set not supported. */
2720 
2721 		*skip_copy = true;
2722 		err = validate_and_copy_set_tun(a, sfa, log);
2723 		if (err)
2724 			return err;
2725 		break;
2726 
2727 	case OVS_KEY_ATTR_IPV4:
2728 		if (eth_type != htons(ETH_P_IP))
2729 			return -EINVAL;
2730 
2731 		ipv4_key = nla_data(ovs_key);
2732 
2733 		if (masked) {
2734 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2735 
2736 			/* Non-writeable fields. */
2737 			if (mask->ipv4_proto || mask->ipv4_frag)
2738 				return -EINVAL;
2739 		} else {
2740 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2741 				return -EINVAL;
2742 
2743 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2744 				return -EINVAL;
2745 		}
2746 		break;
2747 
2748 	case OVS_KEY_ATTR_IPV6:
2749 		if (eth_type != htons(ETH_P_IPV6))
2750 			return -EINVAL;
2751 
2752 		ipv6_key = nla_data(ovs_key);
2753 
2754 		if (masked) {
2755 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2756 
2757 			/* Non-writeable fields. */
2758 			if (mask->ipv6_proto || mask->ipv6_frag)
2759 				return -EINVAL;
2760 
2761 			/* Invalid bits in the flow label mask? */
2762 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2763 				return -EINVAL;
2764 		} else {
2765 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2766 				return -EINVAL;
2767 
2768 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2769 				return -EINVAL;
2770 		}
2771 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2772 			return -EINVAL;
2773 
2774 		break;
2775 
2776 	case OVS_KEY_ATTR_TCP:
2777 		if ((eth_type != htons(ETH_P_IP) &&
2778 		     eth_type != htons(ETH_P_IPV6)) ||
2779 		    flow_key->ip.proto != IPPROTO_TCP)
2780 			return -EINVAL;
2781 
2782 		break;
2783 
2784 	case OVS_KEY_ATTR_UDP:
2785 		if ((eth_type != htons(ETH_P_IP) &&
2786 		     eth_type != htons(ETH_P_IPV6)) ||
2787 		    flow_key->ip.proto != IPPROTO_UDP)
2788 			return -EINVAL;
2789 
2790 		break;
2791 
2792 	case OVS_KEY_ATTR_MPLS:
2793 		if (!eth_p_mpls(eth_type))
2794 			return -EINVAL;
2795 		break;
2796 
2797 	case OVS_KEY_ATTR_SCTP:
2798 		if ((eth_type != htons(ETH_P_IP) &&
2799 		     eth_type != htons(ETH_P_IPV6)) ||
2800 		    flow_key->ip.proto != IPPROTO_SCTP)
2801 			return -EINVAL;
2802 
2803 		break;
2804 
2805 	case OVS_KEY_ATTR_NSH:
2806 		if (eth_type != htons(ETH_P_NSH))
2807 			return -EINVAL;
2808 		if (!validate_nsh(nla_data(a), masked, false, log))
2809 			return -EINVAL;
2810 		break;
2811 
2812 	default:
2813 		return -EINVAL;
2814 	}
2815 
2816 	/* Convert non-masked non-tunnel set actions to masked set actions. */
2817 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2818 		int start, len = key_len * 2;
2819 		struct nlattr *at;
2820 
2821 		*skip_copy = true;
2822 
2823 		start = add_nested_action_start(sfa,
2824 						OVS_ACTION_ATTR_SET_TO_MASKED,
2825 						log);
2826 		if (start < 0)
2827 			return start;
2828 
2829 		at = __add_action(sfa, key_type, NULL, len, log);
2830 		if (IS_ERR(at))
2831 			return PTR_ERR(at);
2832 
2833 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2834 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2835 		/* Clear non-writeable bits from otherwise writeable fields. */
2836 		if (key_type == OVS_KEY_ATTR_IPV6) {
2837 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2838 
2839 			mask->ipv6_label &= htonl(0x000FFFFF);
2840 		}
2841 		add_nested_action_end(*sfa, start);
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 static int validate_userspace(const struct nlattr *attr)
2848 {
2849 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2850 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2851 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2852 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2853 	};
2854 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2855 	int error;
2856 
2857 	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2858 					    userspace_policy, NULL);
2859 	if (error)
2860 		return error;
2861 
2862 	if (!a[OVS_USERSPACE_ATTR_PID] ||
2863 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2864 		return -EINVAL;
2865 
2866 	return 0;
2867 }
2868 
2869 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2870 	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2871 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2872 	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2873 };
2874 
2875 static int validate_and_copy_check_pkt_len(struct net *net,
2876 					   const struct nlattr *attr,
2877 					   const struct sw_flow_key *key,
2878 					   struct sw_flow_actions **sfa,
2879 					   __be16 eth_type, __be16 vlan_tci,
2880 					   bool log, bool last)
2881 {
2882 	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2883 	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2884 	struct check_pkt_len_arg arg;
2885 	int nested_acts_start;
2886 	int start, err;
2887 
2888 	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2889 					  nla_data(attr), nla_len(attr),
2890 					  cpl_policy, NULL);
2891 	if (err)
2892 		return err;
2893 
2894 	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2895 	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2896 		return -EINVAL;
2897 
2898 	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2899 	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2900 
2901 	/* Both the nested action should be present. */
2902 	if (!acts_if_greater || !acts_if_lesser_eq)
2903 		return -EINVAL;
2904 
2905 	/* validation done, copy the nested actions. */
2906 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2907 					log);
2908 	if (start < 0)
2909 		return start;
2910 
2911 	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2912 	arg.exec_for_lesser_equal =
2913 		last || !actions_may_change_flow(acts_if_lesser_eq);
2914 	arg.exec_for_greater =
2915 		last || !actions_may_change_flow(acts_if_greater);
2916 
2917 	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2918 				 sizeof(arg), log);
2919 	if (err)
2920 		return err;
2921 
2922 	nested_acts_start = add_nested_action_start(sfa,
2923 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2924 	if (nested_acts_start < 0)
2925 		return nested_acts_start;
2926 
2927 	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2928 				     eth_type, vlan_tci, log);
2929 
2930 	if (err)
2931 		return err;
2932 
2933 	add_nested_action_end(*sfa, nested_acts_start);
2934 
2935 	nested_acts_start = add_nested_action_start(sfa,
2936 		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2937 	if (nested_acts_start < 0)
2938 		return nested_acts_start;
2939 
2940 	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2941 				     eth_type, vlan_tci, log);
2942 
2943 	if (err)
2944 		return err;
2945 
2946 	add_nested_action_end(*sfa, nested_acts_start);
2947 	add_nested_action_end(*sfa, start);
2948 	return 0;
2949 }
2950 
2951 static int copy_action(const struct nlattr *from,
2952 		       struct sw_flow_actions **sfa, bool log)
2953 {
2954 	int totlen = NLA_ALIGN(from->nla_len);
2955 	struct nlattr *to;
2956 
2957 	to = reserve_sfa_size(sfa, from->nla_len, log);
2958 	if (IS_ERR(to))
2959 		return PTR_ERR(to);
2960 
2961 	memcpy(to, from, totlen);
2962 	return 0;
2963 }
2964 
2965 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2966 				  const struct sw_flow_key *key,
2967 				  struct sw_flow_actions **sfa,
2968 				  __be16 eth_type, __be16 vlan_tci, bool log)
2969 {
2970 	u8 mac_proto = ovs_key_mac_proto(key);
2971 	const struct nlattr *a;
2972 	int rem, err;
2973 
2974 	nla_for_each_nested(a, attr, rem) {
2975 		/* Expected argument lengths, (u32)-1 for variable length. */
2976 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2977 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2978 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2979 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2980 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2981 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2982 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2983 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2984 			[OVS_ACTION_ATTR_SET] = (u32)-1,
2985 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2986 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2987 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2988 			[OVS_ACTION_ATTR_CT] = (u32)-1,
2989 			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
2990 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2991 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2992 			[OVS_ACTION_ATTR_POP_ETH] = 0,
2993 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2994 			[OVS_ACTION_ATTR_POP_NSH] = 0,
2995 			[OVS_ACTION_ATTR_METER] = sizeof(u32),
2996 			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
2997 			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
2998 		};
2999 		const struct ovs_action_push_vlan *vlan;
3000 		int type = nla_type(a);
3001 		bool skip_copy;
3002 
3003 		if (type > OVS_ACTION_ATTR_MAX ||
3004 		    (action_lens[type] != nla_len(a) &&
3005 		     action_lens[type] != (u32)-1))
3006 			return -EINVAL;
3007 
3008 		skip_copy = false;
3009 		switch (type) {
3010 		case OVS_ACTION_ATTR_UNSPEC:
3011 			return -EINVAL;
3012 
3013 		case OVS_ACTION_ATTR_USERSPACE:
3014 			err = validate_userspace(a);
3015 			if (err)
3016 				return err;
3017 			break;
3018 
3019 		case OVS_ACTION_ATTR_OUTPUT:
3020 			if (nla_get_u32(a) >= DP_MAX_PORTS)
3021 				return -EINVAL;
3022 			break;
3023 
3024 		case OVS_ACTION_ATTR_TRUNC: {
3025 			const struct ovs_action_trunc *trunc = nla_data(a);
3026 
3027 			if (trunc->max_len < ETH_HLEN)
3028 				return -EINVAL;
3029 			break;
3030 		}
3031 
3032 		case OVS_ACTION_ATTR_HASH: {
3033 			const struct ovs_action_hash *act_hash = nla_data(a);
3034 
3035 			switch (act_hash->hash_alg) {
3036 			case OVS_HASH_ALG_L4:
3037 				break;
3038 			default:
3039 				return  -EINVAL;
3040 			}
3041 
3042 			break;
3043 		}
3044 
3045 		case OVS_ACTION_ATTR_POP_VLAN:
3046 			if (mac_proto != MAC_PROTO_ETHERNET)
3047 				return -EINVAL;
3048 			vlan_tci = htons(0);
3049 			break;
3050 
3051 		case OVS_ACTION_ATTR_PUSH_VLAN:
3052 			if (mac_proto != MAC_PROTO_ETHERNET)
3053 				return -EINVAL;
3054 			vlan = nla_data(a);
3055 			if (!eth_type_vlan(vlan->vlan_tpid))
3056 				return -EINVAL;
3057 			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3058 				return -EINVAL;
3059 			vlan_tci = vlan->vlan_tci;
3060 			break;
3061 
3062 		case OVS_ACTION_ATTR_RECIRC:
3063 			break;
3064 
3065 		case OVS_ACTION_ATTR_PUSH_MPLS: {
3066 			const struct ovs_action_push_mpls *mpls = nla_data(a);
3067 
3068 			if (!eth_p_mpls(mpls->mpls_ethertype))
3069 				return -EINVAL;
3070 			/* Prohibit push MPLS other than to a white list
3071 			 * for packets that have a known tag order.
3072 			 */
3073 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3074 			    (eth_type != htons(ETH_P_IP) &&
3075 			     eth_type != htons(ETH_P_IPV6) &&
3076 			     eth_type != htons(ETH_P_ARP) &&
3077 			     eth_type != htons(ETH_P_RARP) &&
3078 			     !eth_p_mpls(eth_type)))
3079 				return -EINVAL;
3080 			eth_type = mpls->mpls_ethertype;
3081 			break;
3082 		}
3083 
3084 		case OVS_ACTION_ATTR_POP_MPLS:
3085 			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3086 			    !eth_p_mpls(eth_type))
3087 				return -EINVAL;
3088 
3089 			/* Disallow subsequent L2.5+ set and mpls_pop actions
3090 			 * as there is no check here to ensure that the new
3091 			 * eth_type is valid and thus set actions could
3092 			 * write off the end of the packet or otherwise
3093 			 * corrupt it.
3094 			 *
3095 			 * Support for these actions is planned using packet
3096 			 * recirculation.
3097 			 */
3098 			eth_type = htons(0);
3099 			break;
3100 
3101 		case OVS_ACTION_ATTR_SET:
3102 			err = validate_set(a, key, sfa,
3103 					   &skip_copy, mac_proto, eth_type,
3104 					   false, log);
3105 			if (err)
3106 				return err;
3107 			break;
3108 
3109 		case OVS_ACTION_ATTR_SET_MASKED:
3110 			err = validate_set(a, key, sfa,
3111 					   &skip_copy, mac_proto, eth_type,
3112 					   true, log);
3113 			if (err)
3114 				return err;
3115 			break;
3116 
3117 		case OVS_ACTION_ATTR_SAMPLE: {
3118 			bool last = nla_is_last(a, rem);
3119 
3120 			err = validate_and_copy_sample(net, a, key, sfa,
3121 						       eth_type, vlan_tci,
3122 						       log, last);
3123 			if (err)
3124 				return err;
3125 			skip_copy = true;
3126 			break;
3127 		}
3128 
3129 		case OVS_ACTION_ATTR_CT:
3130 			err = ovs_ct_copy_action(net, a, key, sfa, log);
3131 			if (err)
3132 				return err;
3133 			skip_copy = true;
3134 			break;
3135 
3136 		case OVS_ACTION_ATTR_CT_CLEAR:
3137 			break;
3138 
3139 		case OVS_ACTION_ATTR_PUSH_ETH:
3140 			/* Disallow pushing an Ethernet header if one
3141 			 * is already present */
3142 			if (mac_proto != MAC_PROTO_NONE)
3143 				return -EINVAL;
3144 			mac_proto = MAC_PROTO_ETHERNET;
3145 			break;
3146 
3147 		case OVS_ACTION_ATTR_POP_ETH:
3148 			if (mac_proto != MAC_PROTO_ETHERNET)
3149 				return -EINVAL;
3150 			if (vlan_tci & htons(VLAN_CFI_MASK))
3151 				return -EINVAL;
3152 			mac_proto = MAC_PROTO_NONE;
3153 			break;
3154 
3155 		case OVS_ACTION_ATTR_PUSH_NSH:
3156 			if (mac_proto != MAC_PROTO_ETHERNET) {
3157 				u8 next_proto;
3158 
3159 				next_proto = tun_p_from_eth_p(eth_type);
3160 				if (!next_proto)
3161 					return -EINVAL;
3162 			}
3163 			mac_proto = MAC_PROTO_NONE;
3164 			if (!validate_nsh(nla_data(a), false, true, true))
3165 				return -EINVAL;
3166 			break;
3167 
3168 		case OVS_ACTION_ATTR_POP_NSH: {
3169 			__be16 inner_proto;
3170 
3171 			if (eth_type != htons(ETH_P_NSH))
3172 				return -EINVAL;
3173 			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3174 			if (!inner_proto)
3175 				return -EINVAL;
3176 			if (key->nsh.base.np == TUN_P_ETHERNET)
3177 				mac_proto = MAC_PROTO_ETHERNET;
3178 			else
3179 				mac_proto = MAC_PROTO_NONE;
3180 			break;
3181 		}
3182 
3183 		case OVS_ACTION_ATTR_METER:
3184 			/* Non-existent meters are simply ignored.  */
3185 			break;
3186 
3187 		case OVS_ACTION_ATTR_CLONE: {
3188 			bool last = nla_is_last(a, rem);
3189 
3190 			err = validate_and_copy_clone(net, a, key, sfa,
3191 						      eth_type, vlan_tci,
3192 						      log, last);
3193 			if (err)
3194 				return err;
3195 			skip_copy = true;
3196 			break;
3197 		}
3198 
3199 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3200 			bool last = nla_is_last(a, rem);
3201 
3202 			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3203 							      eth_type,
3204 							      vlan_tci, log,
3205 							      last);
3206 			if (err)
3207 				return err;
3208 			skip_copy = true;
3209 			break;
3210 		}
3211 
3212 		default:
3213 			OVS_NLERR(log, "Unknown Action type %d", type);
3214 			return -EINVAL;
3215 		}
3216 		if (!skip_copy) {
3217 			err = copy_action(a, sfa, log);
3218 			if (err)
3219 				return err;
3220 		}
3221 	}
3222 
3223 	if (rem > 0)
3224 		return -EINVAL;
3225 
3226 	return 0;
3227 }
3228 
3229 /* 'key' must be the masked key. */
3230 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3231 			 const struct sw_flow_key *key,
3232 			 struct sw_flow_actions **sfa, bool log)
3233 {
3234 	int err;
3235 
3236 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3237 	if (IS_ERR(*sfa))
3238 		return PTR_ERR(*sfa);
3239 
3240 	(*sfa)->orig_len = nla_len(attr);
3241 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3242 				     key->eth.vlan.tci, log);
3243 	if (err)
3244 		ovs_nla_free_flow_actions(*sfa);
3245 
3246 	return err;
3247 }
3248 
3249 static int sample_action_to_attr(const struct nlattr *attr,
3250 				 struct sk_buff *skb)
3251 {
3252 	struct nlattr *start, *ac_start = NULL, *sample_arg;
3253 	int err = 0, rem = nla_len(attr);
3254 	const struct sample_arg *arg;
3255 	struct nlattr *actions;
3256 
3257 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3258 	if (!start)
3259 		return -EMSGSIZE;
3260 
3261 	sample_arg = nla_data(attr);
3262 	arg = nla_data(sample_arg);
3263 	actions = nla_next(sample_arg, &rem);
3264 
3265 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3266 		err = -EMSGSIZE;
3267 		goto out;
3268 	}
3269 
3270 	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3271 	if (!ac_start) {
3272 		err = -EMSGSIZE;
3273 		goto out;
3274 	}
3275 
3276 	err = ovs_nla_put_actions(actions, rem, skb);
3277 
3278 out:
3279 	if (err) {
3280 		nla_nest_cancel(skb, ac_start);
3281 		nla_nest_cancel(skb, start);
3282 	} else {
3283 		nla_nest_end(skb, ac_start);
3284 		nla_nest_end(skb, start);
3285 	}
3286 
3287 	return err;
3288 }
3289 
3290 static int clone_action_to_attr(const struct nlattr *attr,
3291 				struct sk_buff *skb)
3292 {
3293 	struct nlattr *start;
3294 	int err = 0, rem = nla_len(attr);
3295 
3296 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3297 	if (!start)
3298 		return -EMSGSIZE;
3299 
3300 	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3301 
3302 	if (err)
3303 		nla_nest_cancel(skb, start);
3304 	else
3305 		nla_nest_end(skb, start);
3306 
3307 	return err;
3308 }
3309 
3310 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3311 					struct sk_buff *skb)
3312 {
3313 	struct nlattr *start, *ac_start = NULL;
3314 	const struct check_pkt_len_arg *arg;
3315 	const struct nlattr *a, *cpl_arg;
3316 	int err = 0, rem = nla_len(attr);
3317 
3318 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3319 	if (!start)
3320 		return -EMSGSIZE;
3321 
3322 	/* The first nested attribute in 'attr' is always
3323 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3324 	 */
3325 	cpl_arg = nla_data(attr);
3326 	arg = nla_data(cpl_arg);
3327 
3328 	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3329 		err = -EMSGSIZE;
3330 		goto out;
3331 	}
3332 
3333 	/* Second nested attribute in 'attr' is always
3334 	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3335 	 */
3336 	a = nla_next(cpl_arg, &rem);
3337 	ac_start =  nla_nest_start_noflag(skb,
3338 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3339 	if (!ac_start) {
3340 		err = -EMSGSIZE;
3341 		goto out;
3342 	}
3343 
3344 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3345 	if (err) {
3346 		nla_nest_cancel(skb, ac_start);
3347 		goto out;
3348 	} else {
3349 		nla_nest_end(skb, ac_start);
3350 	}
3351 
3352 	/* Third nested attribute in 'attr' is always
3353 	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3354 	 */
3355 	a = nla_next(a, &rem);
3356 	ac_start =  nla_nest_start_noflag(skb,
3357 					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3358 	if (!ac_start) {
3359 		err = -EMSGSIZE;
3360 		goto out;
3361 	}
3362 
3363 	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3364 	if (err) {
3365 		nla_nest_cancel(skb, ac_start);
3366 		goto out;
3367 	} else {
3368 		nla_nest_end(skb, ac_start);
3369 	}
3370 
3371 	nla_nest_end(skb, start);
3372 	return 0;
3373 
3374 out:
3375 	nla_nest_cancel(skb, start);
3376 	return err;
3377 }
3378 
3379 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3380 {
3381 	const struct nlattr *ovs_key = nla_data(a);
3382 	int key_type = nla_type(ovs_key);
3383 	struct nlattr *start;
3384 	int err;
3385 
3386 	switch (key_type) {
3387 	case OVS_KEY_ATTR_TUNNEL_INFO: {
3388 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3389 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3390 
3391 		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3392 		if (!start)
3393 			return -EMSGSIZE;
3394 
3395 		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3396 					ip_tunnel_info_opts(tun_info),
3397 					tun_info->options_len,
3398 					ip_tunnel_info_af(tun_info), tun_info->mode);
3399 		if (err)
3400 			return err;
3401 		nla_nest_end(skb, start);
3402 		break;
3403 	}
3404 	default:
3405 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3406 			return -EMSGSIZE;
3407 		break;
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3414 						struct sk_buff *skb)
3415 {
3416 	const struct nlattr *ovs_key = nla_data(a);
3417 	struct nlattr *nla;
3418 	size_t key_len = nla_len(ovs_key) / 2;
3419 
3420 	/* Revert the conversion we did from a non-masked set action to
3421 	 * masked set action.
3422 	 */
3423 	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3424 	if (!nla)
3425 		return -EMSGSIZE;
3426 
3427 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3428 		return -EMSGSIZE;
3429 
3430 	nla_nest_end(skb, nla);
3431 	return 0;
3432 }
3433 
3434 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3435 {
3436 	const struct nlattr *a;
3437 	int rem, err;
3438 
3439 	nla_for_each_attr(a, attr, len, rem) {
3440 		int type = nla_type(a);
3441 
3442 		switch (type) {
3443 		case OVS_ACTION_ATTR_SET:
3444 			err = set_action_to_attr(a, skb);
3445 			if (err)
3446 				return err;
3447 			break;
3448 
3449 		case OVS_ACTION_ATTR_SET_TO_MASKED:
3450 			err = masked_set_action_to_set_action_attr(a, skb);
3451 			if (err)
3452 				return err;
3453 			break;
3454 
3455 		case OVS_ACTION_ATTR_SAMPLE:
3456 			err = sample_action_to_attr(a, skb);
3457 			if (err)
3458 				return err;
3459 			break;
3460 
3461 		case OVS_ACTION_ATTR_CT:
3462 			err = ovs_ct_action_to_attr(nla_data(a), skb);
3463 			if (err)
3464 				return err;
3465 			break;
3466 
3467 		case OVS_ACTION_ATTR_CLONE:
3468 			err = clone_action_to_attr(a, skb);
3469 			if (err)
3470 				return err;
3471 			break;
3472 
3473 		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3474 			err = check_pkt_len_action_to_attr(a, skb);
3475 			if (err)
3476 				return err;
3477 			break;
3478 
3479 		default:
3480 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3481 				return -EMSGSIZE;
3482 			break;
3483 		}
3484 	}
3485 
3486 	return 0;
3487 }
3488