1 /* 2 * Copyright (c) 2007-2011 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include "flow.h" 20 #include "datapath.h" 21 #include <linux/uaccess.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_vlan.h> 26 #include <net/llc_pdu.h> 27 #include <linux/kernel.h> 28 #include <linux/jhash.h> 29 #include <linux/jiffies.h> 30 #include <linux/llc.h> 31 #include <linux/module.h> 32 #include <linux/in.h> 33 #include <linux/rcupdate.h> 34 #include <linux/if_arp.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ipv6.h> 44 #include <net/ndisc.h> 45 46 static struct kmem_cache *flow_cache; 47 48 static int check_header(struct sk_buff *skb, int len) 49 { 50 if (unlikely(skb->len < len)) 51 return -EINVAL; 52 if (unlikely(!pskb_may_pull(skb, len))) 53 return -ENOMEM; 54 return 0; 55 } 56 57 static bool arphdr_ok(struct sk_buff *skb) 58 { 59 return pskb_may_pull(skb, skb_network_offset(skb) + 60 sizeof(struct arp_eth_header)); 61 } 62 63 static int check_iphdr(struct sk_buff *skb) 64 { 65 unsigned int nh_ofs = skb_network_offset(skb); 66 unsigned int ip_len; 67 int err; 68 69 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 70 if (unlikely(err)) 71 return err; 72 73 ip_len = ip_hdrlen(skb); 74 if (unlikely(ip_len < sizeof(struct iphdr) || 75 skb->len < nh_ofs + ip_len)) 76 return -EINVAL; 77 78 skb_set_transport_header(skb, nh_ofs + ip_len); 79 return 0; 80 } 81 82 static bool tcphdr_ok(struct sk_buff *skb) 83 { 84 int th_ofs = skb_transport_offset(skb); 85 int tcp_len; 86 87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 88 return false; 89 90 tcp_len = tcp_hdrlen(skb); 91 if (unlikely(tcp_len < sizeof(struct tcphdr) || 92 skb->len < th_ofs + tcp_len)) 93 return false; 94 95 return true; 96 } 97 98 static bool udphdr_ok(struct sk_buff *skb) 99 { 100 return pskb_may_pull(skb, skb_transport_offset(skb) + 101 sizeof(struct udphdr)); 102 } 103 104 static bool icmphdr_ok(struct sk_buff *skb) 105 { 106 return pskb_may_pull(skb, skb_transport_offset(skb) + 107 sizeof(struct icmphdr)); 108 } 109 110 u64 ovs_flow_used_time(unsigned long flow_jiffies) 111 { 112 struct timespec cur_ts; 113 u64 cur_ms, idle_ms; 114 115 ktime_get_ts(&cur_ts); 116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 118 cur_ts.tv_nsec / NSEC_PER_MSEC; 119 120 return cur_ms - idle_ms; 121 } 122 123 #define SW_FLOW_KEY_OFFSET(field) \ 124 (offsetof(struct sw_flow_key, field) + \ 125 FIELD_SIZEOF(struct sw_flow_key, field)) 126 127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, 128 int *key_lenp) 129 { 130 unsigned int nh_ofs = skb_network_offset(skb); 131 unsigned int nh_len; 132 int payload_ofs; 133 struct ipv6hdr *nh; 134 uint8_t nexthdr; 135 __be16 frag_off; 136 int err; 137 138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); 139 140 err = check_header(skb, nh_ofs + sizeof(*nh)); 141 if (unlikely(err)) 142 return err; 143 144 nh = ipv6_hdr(skb); 145 nexthdr = nh->nexthdr; 146 payload_ofs = (u8 *)(nh + 1) - skb->data; 147 148 key->ip.proto = NEXTHDR_NONE; 149 key->ip.tos = ipv6_get_dsfield(nh); 150 key->ip.ttl = nh->hop_limit; 151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 152 key->ipv6.addr.src = nh->saddr; 153 key->ipv6.addr.dst = nh->daddr; 154 155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 156 if (unlikely(payload_ofs < 0)) 157 return -EINVAL; 158 159 if (frag_off) { 160 if (frag_off & htons(~0x7)) 161 key->ip.frag = OVS_FRAG_TYPE_LATER; 162 else 163 key->ip.frag = OVS_FRAG_TYPE_FIRST; 164 } 165 166 nh_len = payload_ofs - nh_ofs; 167 skb_set_transport_header(skb, nh_ofs + nh_len); 168 key->ip.proto = nexthdr; 169 return nh_len; 170 } 171 172 static bool icmp6hdr_ok(struct sk_buff *skb) 173 { 174 return pskb_may_pull(skb, skb_transport_offset(skb) + 175 sizeof(struct icmp6hdr)); 176 } 177 178 #define TCP_FLAGS_OFFSET 13 179 #define TCP_FLAG_MASK 0x3f 180 181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) 182 { 183 u8 tcp_flags = 0; 184 185 if ((flow->key.eth.type == htons(ETH_P_IP) || 186 flow->key.eth.type == htons(ETH_P_IPV6)) && 187 flow->key.ip.proto == IPPROTO_TCP && 188 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { 189 u8 *tcp = (u8 *)tcp_hdr(skb); 190 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; 191 } 192 193 spin_lock(&flow->lock); 194 flow->used = jiffies; 195 flow->packet_count++; 196 flow->byte_count += skb->len; 197 flow->tcp_flags |= tcp_flags; 198 spin_unlock(&flow->lock); 199 } 200 201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) 202 { 203 int actions_len = nla_len(actions); 204 struct sw_flow_actions *sfa; 205 206 if (actions_len > MAX_ACTIONS_BUFSIZE) 207 return ERR_PTR(-EINVAL); 208 209 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); 210 if (!sfa) 211 return ERR_PTR(-ENOMEM); 212 213 sfa->actions_len = actions_len; 214 nla_memcpy(sfa->actions, actions, actions_len); 215 return sfa; 216 } 217 218 struct sw_flow *ovs_flow_alloc(void) 219 { 220 struct sw_flow *flow; 221 222 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); 223 if (!flow) 224 return ERR_PTR(-ENOMEM); 225 226 spin_lock_init(&flow->lock); 227 flow->sf_acts = NULL; 228 229 return flow; 230 } 231 232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) 233 { 234 hash = jhash_1word(hash, table->hash_seed); 235 return flex_array_get(table->buckets, 236 (hash & (table->n_buckets - 1))); 237 } 238 239 static struct flex_array *alloc_buckets(unsigned int n_buckets) 240 { 241 struct flex_array *buckets; 242 int i, err; 243 244 buckets = flex_array_alloc(sizeof(struct hlist_head *), 245 n_buckets, GFP_KERNEL); 246 if (!buckets) 247 return NULL; 248 249 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); 250 if (err) { 251 flex_array_free(buckets); 252 return NULL; 253 } 254 255 for (i = 0; i < n_buckets; i++) 256 INIT_HLIST_HEAD((struct hlist_head *) 257 flex_array_get(buckets, i)); 258 259 return buckets; 260 } 261 262 static void free_buckets(struct flex_array *buckets) 263 { 264 flex_array_free(buckets); 265 } 266 267 struct flow_table *ovs_flow_tbl_alloc(int new_size) 268 { 269 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); 270 271 if (!table) 272 return NULL; 273 274 table->buckets = alloc_buckets(new_size); 275 276 if (!table->buckets) { 277 kfree(table); 278 return NULL; 279 } 280 table->n_buckets = new_size; 281 table->count = 0; 282 table->node_ver = 0; 283 table->keep_flows = false; 284 get_random_bytes(&table->hash_seed, sizeof(u32)); 285 286 return table; 287 } 288 289 void ovs_flow_tbl_destroy(struct flow_table *table) 290 { 291 int i; 292 293 if (!table) 294 return; 295 296 if (table->keep_flows) 297 goto skip_flows; 298 299 for (i = 0; i < table->n_buckets; i++) { 300 struct sw_flow *flow; 301 struct hlist_head *head = flex_array_get(table->buckets, i); 302 struct hlist_node *n; 303 int ver = table->node_ver; 304 305 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { 306 hlist_del_rcu(&flow->hash_node[ver]); 307 ovs_flow_free(flow); 308 } 309 } 310 311 skip_flows: 312 free_buckets(table->buckets); 313 kfree(table); 314 } 315 316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) 317 { 318 struct flow_table *table = container_of(rcu, struct flow_table, rcu); 319 320 ovs_flow_tbl_destroy(table); 321 } 322 323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table) 324 { 325 if (!table) 326 return; 327 328 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); 329 } 330 331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) 332 { 333 struct sw_flow *flow; 334 struct hlist_head *head; 335 int ver; 336 int i; 337 338 ver = table->node_ver; 339 while (*bucket < table->n_buckets) { 340 i = 0; 341 head = flex_array_get(table->buckets, *bucket); 342 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { 343 if (i < *last) { 344 i++; 345 continue; 346 } 347 *last = i + 1; 348 return flow; 349 } 350 (*bucket)++; 351 *last = 0; 352 } 353 354 return NULL; 355 } 356 357 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) 358 { 359 int old_ver; 360 int i; 361 362 old_ver = old->node_ver; 363 new->node_ver = !old_ver; 364 365 /* Insert in new table. */ 366 for (i = 0; i < old->n_buckets; i++) { 367 struct sw_flow *flow; 368 struct hlist_head *head; 369 370 head = flex_array_get(old->buckets, i); 371 372 hlist_for_each_entry(flow, head, hash_node[old_ver]) 373 ovs_flow_tbl_insert(new, flow); 374 } 375 old->keep_flows = true; 376 } 377 378 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) 379 { 380 struct flow_table *new_table; 381 382 new_table = ovs_flow_tbl_alloc(n_buckets); 383 if (!new_table) 384 return ERR_PTR(-ENOMEM); 385 386 flow_table_copy_flows(table, new_table); 387 388 return new_table; 389 } 390 391 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) 392 { 393 return __flow_tbl_rehash(table, table->n_buckets); 394 } 395 396 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) 397 { 398 return __flow_tbl_rehash(table, table->n_buckets * 2); 399 } 400 401 void ovs_flow_free(struct sw_flow *flow) 402 { 403 if (unlikely(!flow)) 404 return; 405 406 kfree((struct sf_flow_acts __force *)flow->sf_acts); 407 kmem_cache_free(flow_cache, flow); 408 } 409 410 /* RCU callback used by ovs_flow_deferred_free. */ 411 static void rcu_free_flow_callback(struct rcu_head *rcu) 412 { 413 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); 414 415 ovs_flow_free(flow); 416 } 417 418 /* Schedules 'flow' to be freed after the next RCU grace period. 419 * The caller must hold rcu_read_lock for this to be sensible. */ 420 void ovs_flow_deferred_free(struct sw_flow *flow) 421 { 422 call_rcu(&flow->rcu, rcu_free_flow_callback); 423 } 424 425 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 426 * The caller must hold rcu_read_lock for this to be sensible. */ 427 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) 428 { 429 kfree_rcu(sf_acts, rcu); 430 } 431 432 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 433 { 434 struct qtag_prefix { 435 __be16 eth_type; /* ETH_P_8021Q */ 436 __be16 tci; 437 }; 438 struct qtag_prefix *qp; 439 440 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 441 return 0; 442 443 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 444 sizeof(__be16)))) 445 return -ENOMEM; 446 447 qp = (struct qtag_prefix *) skb->data; 448 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 449 __skb_pull(skb, sizeof(struct qtag_prefix)); 450 451 return 0; 452 } 453 454 static __be16 parse_ethertype(struct sk_buff *skb) 455 { 456 struct llc_snap_hdr { 457 u8 dsap; /* Always 0xAA */ 458 u8 ssap; /* Always 0xAA */ 459 u8 ctrl; 460 u8 oui[3]; 461 __be16 ethertype; 462 }; 463 struct llc_snap_hdr *llc; 464 __be16 proto; 465 466 proto = *(__be16 *) skb->data; 467 __skb_pull(skb, sizeof(__be16)); 468 469 if (ntohs(proto) >= ETH_P_802_3_MIN) 470 return proto; 471 472 if (skb->len < sizeof(struct llc_snap_hdr)) 473 return htons(ETH_P_802_2); 474 475 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 476 return htons(0); 477 478 llc = (struct llc_snap_hdr *) skb->data; 479 if (llc->dsap != LLC_SAP_SNAP || 480 llc->ssap != LLC_SAP_SNAP || 481 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 482 return htons(ETH_P_802_2); 483 484 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 485 486 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) 487 return llc->ethertype; 488 489 return htons(ETH_P_802_2); 490 } 491 492 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 493 int *key_lenp, int nh_len) 494 { 495 struct icmp6hdr *icmp = icmp6_hdr(skb); 496 int error = 0; 497 int key_len; 498 499 /* The ICMPv6 type and code fields use the 16-bit transport port 500 * fields, so we need to store them in 16-bit network byte order. 501 */ 502 key->ipv6.tp.src = htons(icmp->icmp6_type); 503 key->ipv6.tp.dst = htons(icmp->icmp6_code); 504 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 505 506 if (icmp->icmp6_code == 0 && 507 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 508 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 509 int icmp_len = skb->len - skb_transport_offset(skb); 510 struct nd_msg *nd; 511 int offset; 512 513 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 514 515 /* In order to process neighbor discovery options, we need the 516 * entire packet. 517 */ 518 if (unlikely(icmp_len < sizeof(*nd))) 519 goto out; 520 if (unlikely(skb_linearize(skb))) { 521 error = -ENOMEM; 522 goto out; 523 } 524 525 nd = (struct nd_msg *)skb_transport_header(skb); 526 key->ipv6.nd.target = nd->target; 527 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 528 529 icmp_len -= sizeof(*nd); 530 offset = 0; 531 while (icmp_len >= 8) { 532 struct nd_opt_hdr *nd_opt = 533 (struct nd_opt_hdr *)(nd->opt + offset); 534 int opt_len = nd_opt->nd_opt_len * 8; 535 536 if (unlikely(!opt_len || opt_len > icmp_len)) 537 goto invalid; 538 539 /* Store the link layer address if the appropriate 540 * option is provided. It is considered an error if 541 * the same link layer option is specified twice. 542 */ 543 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 544 && opt_len == 8) { 545 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 546 goto invalid; 547 memcpy(key->ipv6.nd.sll, 548 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 549 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 550 && opt_len == 8) { 551 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 552 goto invalid; 553 memcpy(key->ipv6.nd.tll, 554 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 555 } 556 557 icmp_len -= opt_len; 558 offset += opt_len; 559 } 560 } 561 562 goto out; 563 564 invalid: 565 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 566 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 567 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 568 569 out: 570 *key_lenp = key_len; 571 return error; 572 } 573 574 /** 575 * ovs_flow_extract - extracts a flow key from an Ethernet frame. 576 * @skb: sk_buff that contains the frame, with skb->data pointing to the 577 * Ethernet header 578 * @in_port: port number on which @skb was received. 579 * @key: output flow key 580 * @key_lenp: length of output flow key 581 * 582 * The caller must ensure that skb->len >= ETH_HLEN. 583 * 584 * Returns 0 if successful, otherwise a negative errno value. 585 * 586 * Initializes @skb header pointers as follows: 587 * 588 * - skb->mac_header: the Ethernet header. 589 * 590 * - skb->network_header: just past the Ethernet header, or just past the 591 * VLAN header, to the first byte of the Ethernet payload. 592 * 593 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 594 * on output, then just past the IP header, if one is present and 595 * of a correct length, otherwise the same as skb->network_header. 596 * For other key->dl_type values it is left untouched. 597 */ 598 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, 599 int *key_lenp) 600 { 601 int error = 0; 602 int key_len = SW_FLOW_KEY_OFFSET(eth); 603 struct ethhdr *eth; 604 605 memset(key, 0, sizeof(*key)); 606 607 key->phy.priority = skb->priority; 608 key->phy.in_port = in_port; 609 key->phy.skb_mark = skb->mark; 610 611 skb_reset_mac_header(skb); 612 613 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 614 * header in the linear data area. 615 */ 616 eth = eth_hdr(skb); 617 memcpy(key->eth.src, eth->h_source, ETH_ALEN); 618 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); 619 620 __skb_pull(skb, 2 * ETH_ALEN); 621 622 if (vlan_tx_tag_present(skb)) 623 key->eth.tci = htons(skb->vlan_tci); 624 else if (eth->h_proto == htons(ETH_P_8021Q)) 625 if (unlikely(parse_vlan(skb, key))) 626 return -ENOMEM; 627 628 key->eth.type = parse_ethertype(skb); 629 if (unlikely(key->eth.type == htons(0))) 630 return -ENOMEM; 631 632 skb_reset_network_header(skb); 633 __skb_push(skb, skb->data - skb_mac_header(skb)); 634 635 /* Network layer. */ 636 if (key->eth.type == htons(ETH_P_IP)) { 637 struct iphdr *nh; 638 __be16 offset; 639 640 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 641 642 error = check_iphdr(skb); 643 if (unlikely(error)) { 644 if (error == -EINVAL) { 645 skb->transport_header = skb->network_header; 646 error = 0; 647 } 648 goto out; 649 } 650 651 nh = ip_hdr(skb); 652 key->ipv4.addr.src = nh->saddr; 653 key->ipv4.addr.dst = nh->daddr; 654 655 key->ip.proto = nh->protocol; 656 key->ip.tos = nh->tos; 657 key->ip.ttl = nh->ttl; 658 659 offset = nh->frag_off & htons(IP_OFFSET); 660 if (offset) { 661 key->ip.frag = OVS_FRAG_TYPE_LATER; 662 goto out; 663 } 664 if (nh->frag_off & htons(IP_MF) || 665 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 666 key->ip.frag = OVS_FRAG_TYPE_FIRST; 667 668 /* Transport layer. */ 669 if (key->ip.proto == IPPROTO_TCP) { 670 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 671 if (tcphdr_ok(skb)) { 672 struct tcphdr *tcp = tcp_hdr(skb); 673 key->ipv4.tp.src = tcp->source; 674 key->ipv4.tp.dst = tcp->dest; 675 } 676 } else if (key->ip.proto == IPPROTO_UDP) { 677 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 678 if (udphdr_ok(skb)) { 679 struct udphdr *udp = udp_hdr(skb); 680 key->ipv4.tp.src = udp->source; 681 key->ipv4.tp.dst = udp->dest; 682 } 683 } else if (key->ip.proto == IPPROTO_ICMP) { 684 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 685 if (icmphdr_ok(skb)) { 686 struct icmphdr *icmp = icmp_hdr(skb); 687 /* The ICMP type and code fields use the 16-bit 688 * transport port fields, so we need to store 689 * them in 16-bit network byte order. */ 690 key->ipv4.tp.src = htons(icmp->type); 691 key->ipv4.tp.dst = htons(icmp->code); 692 } 693 } 694 695 } else if ((key->eth.type == htons(ETH_P_ARP) || 696 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { 697 struct arp_eth_header *arp; 698 699 arp = (struct arp_eth_header *)skb_network_header(skb); 700 701 if (arp->ar_hrd == htons(ARPHRD_ETHER) 702 && arp->ar_pro == htons(ETH_P_IP) 703 && arp->ar_hln == ETH_ALEN 704 && arp->ar_pln == 4) { 705 706 /* We only match on the lower 8 bits of the opcode. */ 707 if (ntohs(arp->ar_op) <= 0xff) 708 key->ip.proto = ntohs(arp->ar_op); 709 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 710 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 711 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); 712 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); 713 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 714 } 715 } else if (key->eth.type == htons(ETH_P_IPV6)) { 716 int nh_len; /* IPv6 Header + Extensions */ 717 718 nh_len = parse_ipv6hdr(skb, key, &key_len); 719 if (unlikely(nh_len < 0)) { 720 if (nh_len == -EINVAL) 721 skb->transport_header = skb->network_header; 722 else 723 error = nh_len; 724 goto out; 725 } 726 727 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 728 goto out; 729 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 730 key->ip.frag = OVS_FRAG_TYPE_FIRST; 731 732 /* Transport layer. */ 733 if (key->ip.proto == NEXTHDR_TCP) { 734 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 735 if (tcphdr_ok(skb)) { 736 struct tcphdr *tcp = tcp_hdr(skb); 737 key->ipv6.tp.src = tcp->source; 738 key->ipv6.tp.dst = tcp->dest; 739 } 740 } else if (key->ip.proto == NEXTHDR_UDP) { 741 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 742 if (udphdr_ok(skb)) { 743 struct udphdr *udp = udp_hdr(skb); 744 key->ipv6.tp.src = udp->source; 745 key->ipv6.tp.dst = udp->dest; 746 } 747 } else if (key->ip.proto == NEXTHDR_ICMP) { 748 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 749 if (icmp6hdr_ok(skb)) { 750 error = parse_icmpv6(skb, key, &key_len, nh_len); 751 if (error < 0) 752 goto out; 753 } 754 } 755 } 756 757 out: 758 *key_lenp = key_len; 759 return error; 760 } 761 762 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) 763 { 764 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); 765 } 766 767 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, 768 struct sw_flow_key *key, int key_len) 769 { 770 struct sw_flow *flow; 771 struct hlist_head *head; 772 u32 hash; 773 774 hash = ovs_flow_hash(key, key_len); 775 776 head = find_bucket(table, hash); 777 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { 778 779 if (flow->hash == hash && 780 !memcmp(&flow->key, key, key_len)) { 781 return flow; 782 } 783 } 784 return NULL; 785 } 786 787 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) 788 { 789 struct hlist_head *head; 790 791 head = find_bucket(table, flow->hash); 792 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); 793 table->count++; 794 } 795 796 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) 797 { 798 BUG_ON(table->count == 0); 799 hlist_del_rcu(&flow->hash_node[table->node_ver]); 800 table->count--; 801 } 802 803 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 804 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 805 [OVS_KEY_ATTR_ENCAP] = -1, 806 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), 807 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), 808 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), 809 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), 810 [OVS_KEY_ATTR_VLAN] = sizeof(__be16), 811 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), 812 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), 813 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), 814 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), 815 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), 816 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), 817 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), 818 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), 819 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), 820 }; 821 822 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 823 const struct nlattr *a[], u32 *attrs) 824 { 825 const struct ovs_key_icmp *icmp_key; 826 const struct ovs_key_tcp *tcp_key; 827 const struct ovs_key_udp *udp_key; 828 829 switch (swkey->ip.proto) { 830 case IPPROTO_TCP: 831 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 832 return -EINVAL; 833 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 834 835 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 836 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 837 swkey->ipv4.tp.src = tcp_key->tcp_src; 838 swkey->ipv4.tp.dst = tcp_key->tcp_dst; 839 break; 840 841 case IPPROTO_UDP: 842 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 843 return -EINVAL; 844 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 845 846 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 847 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 848 swkey->ipv4.tp.src = udp_key->udp_src; 849 swkey->ipv4.tp.dst = udp_key->udp_dst; 850 break; 851 852 case IPPROTO_ICMP: 853 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) 854 return -EINVAL; 855 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 856 857 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 858 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 859 swkey->ipv4.tp.src = htons(icmp_key->icmp_type); 860 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); 861 break; 862 } 863 864 return 0; 865 } 866 867 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 868 const struct nlattr *a[], u32 *attrs) 869 { 870 const struct ovs_key_icmpv6 *icmpv6_key; 871 const struct ovs_key_tcp *tcp_key; 872 const struct ovs_key_udp *udp_key; 873 874 switch (swkey->ip.proto) { 875 case IPPROTO_TCP: 876 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 877 return -EINVAL; 878 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 879 880 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 881 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 882 swkey->ipv6.tp.src = tcp_key->tcp_src; 883 swkey->ipv6.tp.dst = tcp_key->tcp_dst; 884 break; 885 886 case IPPROTO_UDP: 887 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 888 return -EINVAL; 889 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 890 891 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 892 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 893 swkey->ipv6.tp.src = udp_key->udp_src; 894 swkey->ipv6.tp.dst = udp_key->udp_dst; 895 break; 896 897 case IPPROTO_ICMPV6: 898 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) 899 return -EINVAL; 900 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 901 902 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 903 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 904 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); 905 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); 906 907 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 908 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 909 const struct ovs_key_nd *nd_key; 910 911 if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) 912 return -EINVAL; 913 *attrs &= ~(1 << OVS_KEY_ATTR_ND); 914 915 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 916 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 917 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, 918 sizeof(swkey->ipv6.nd.target)); 919 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); 920 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); 921 } 922 break; 923 } 924 925 return 0; 926 } 927 928 static int parse_flow_nlattrs(const struct nlattr *attr, 929 const struct nlattr *a[], u32 *attrsp) 930 { 931 const struct nlattr *nla; 932 u32 attrs; 933 int rem; 934 935 attrs = 0; 936 nla_for_each_nested(nla, attr, rem) { 937 u16 type = nla_type(nla); 938 int expected_len; 939 940 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) 941 return -EINVAL; 942 943 expected_len = ovs_key_lens[type]; 944 if (nla_len(nla) != expected_len && expected_len != -1) 945 return -EINVAL; 946 947 attrs |= 1 << type; 948 a[type] = nla; 949 } 950 if (rem) 951 return -EINVAL; 952 953 *attrsp = attrs; 954 return 0; 955 } 956 957 /** 958 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. 959 * @swkey: receives the extracted flow key. 960 * @key_lenp: number of bytes used in @swkey. 961 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 962 * sequence. 963 */ 964 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, 965 const struct nlattr *attr) 966 { 967 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 968 const struct ovs_key_ethernet *eth_key; 969 int key_len; 970 u32 attrs; 971 int err; 972 973 memset(swkey, 0, sizeof(struct sw_flow_key)); 974 key_len = SW_FLOW_KEY_OFFSET(eth); 975 976 err = parse_flow_nlattrs(attr, a, &attrs); 977 if (err) 978 return err; 979 980 /* Metadata attributes. */ 981 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 982 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); 983 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 984 } 985 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 986 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 987 if (in_port >= DP_MAX_PORTS) 988 return -EINVAL; 989 swkey->phy.in_port = in_port; 990 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 991 } else { 992 swkey->phy.in_port = DP_MAX_PORTS; 993 } 994 if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 995 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 996 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 997 } 998 999 /* Data attributes. */ 1000 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) 1001 return -EINVAL; 1002 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1003 1004 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1005 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); 1006 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); 1007 1008 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && 1009 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { 1010 const struct nlattr *encap; 1011 __be16 tci; 1012 1013 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | 1014 (1 << OVS_KEY_ATTR_ETHERTYPE) | 1015 (1 << OVS_KEY_ATTR_ENCAP))) 1016 return -EINVAL; 1017 1018 encap = a[OVS_KEY_ATTR_ENCAP]; 1019 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1020 if (tci & htons(VLAN_TAG_PRESENT)) { 1021 swkey->eth.tci = tci; 1022 1023 err = parse_flow_nlattrs(encap, a, &attrs); 1024 if (err) 1025 return err; 1026 } else if (!tci) { 1027 /* Corner case for truncated 802.1Q header. */ 1028 if (nla_len(encap)) 1029 return -EINVAL; 1030 1031 swkey->eth.type = htons(ETH_P_8021Q); 1032 *key_lenp = key_len; 1033 return 0; 1034 } else { 1035 return -EINVAL; 1036 } 1037 } 1038 1039 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1040 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1041 if (ntohs(swkey->eth.type) < ETH_P_802_3_MIN) 1042 return -EINVAL; 1043 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1044 } else { 1045 swkey->eth.type = htons(ETH_P_802_2); 1046 } 1047 1048 if (swkey->eth.type == htons(ETH_P_IP)) { 1049 const struct ovs_key_ipv4 *ipv4_key; 1050 1051 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) 1052 return -EINVAL; 1053 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1054 1055 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 1056 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1057 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) 1058 return -EINVAL; 1059 swkey->ip.proto = ipv4_key->ipv4_proto; 1060 swkey->ip.tos = ipv4_key->ipv4_tos; 1061 swkey->ip.ttl = ipv4_key->ipv4_ttl; 1062 swkey->ip.frag = ipv4_key->ipv4_frag; 1063 swkey->ipv4.addr.src = ipv4_key->ipv4_src; 1064 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; 1065 1066 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1067 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1068 if (err) 1069 return err; 1070 } 1071 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1072 const struct ovs_key_ipv6 *ipv6_key; 1073 1074 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) 1075 return -EINVAL; 1076 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1077 1078 key_len = SW_FLOW_KEY_OFFSET(ipv6.label); 1079 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1080 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) 1081 return -EINVAL; 1082 swkey->ipv6.label = ipv6_key->ipv6_label; 1083 swkey->ip.proto = ipv6_key->ipv6_proto; 1084 swkey->ip.tos = ipv6_key->ipv6_tclass; 1085 swkey->ip.ttl = ipv6_key->ipv6_hlimit; 1086 swkey->ip.frag = ipv6_key->ipv6_frag; 1087 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, 1088 sizeof(swkey->ipv6.addr.src)); 1089 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, 1090 sizeof(swkey->ipv6.addr.dst)); 1091 1092 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1093 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1094 if (err) 1095 return err; 1096 } 1097 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1098 swkey->eth.type == htons(ETH_P_RARP)) { 1099 const struct ovs_key_arp *arp_key; 1100 1101 if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) 1102 return -EINVAL; 1103 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1104 1105 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 1106 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1107 swkey->ipv4.addr.src = arp_key->arp_sip; 1108 swkey->ipv4.addr.dst = arp_key->arp_tip; 1109 if (arp_key->arp_op & htons(0xff00)) 1110 return -EINVAL; 1111 swkey->ip.proto = ntohs(arp_key->arp_op); 1112 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); 1113 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); 1114 } 1115 1116 if (attrs) 1117 return -EINVAL; 1118 *key_lenp = key_len; 1119 1120 return 0; 1121 } 1122 1123 /** 1124 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. 1125 * @priority: receives the skb priority 1126 * @mark: receives the skb mark 1127 * @in_port: receives the extracted input port. 1128 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1129 * sequence. 1130 * 1131 * This parses a series of Netlink attributes that form a flow key, which must 1132 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1133 * get the metadata, that is, the parts of the flow key that cannot be 1134 * extracted from the packet itself. 1135 */ 1136 int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port, 1137 const struct nlattr *attr) 1138 { 1139 const struct nlattr *nla; 1140 int rem; 1141 1142 *in_port = DP_MAX_PORTS; 1143 *priority = 0; 1144 *mark = 0; 1145 1146 nla_for_each_nested(nla, attr, rem) { 1147 int type = nla_type(nla); 1148 1149 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { 1150 if (nla_len(nla) != ovs_key_lens[type]) 1151 return -EINVAL; 1152 1153 switch (type) { 1154 case OVS_KEY_ATTR_PRIORITY: 1155 *priority = nla_get_u32(nla); 1156 break; 1157 1158 case OVS_KEY_ATTR_IN_PORT: 1159 if (nla_get_u32(nla) >= DP_MAX_PORTS) 1160 return -EINVAL; 1161 *in_port = nla_get_u32(nla); 1162 break; 1163 1164 case OVS_KEY_ATTR_SKB_MARK: 1165 *mark = nla_get_u32(nla); 1166 break; 1167 } 1168 } 1169 } 1170 if (rem) 1171 return -EINVAL; 1172 return 0; 1173 } 1174 1175 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) 1176 { 1177 struct ovs_key_ethernet *eth_key; 1178 struct nlattr *nla, *encap; 1179 1180 if (swkey->phy.priority && 1181 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) 1182 goto nla_put_failure; 1183 1184 if (swkey->phy.in_port != DP_MAX_PORTS && 1185 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) 1186 goto nla_put_failure; 1187 1188 if (swkey->phy.skb_mark && 1189 nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark)) 1190 goto nla_put_failure; 1191 1192 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1193 if (!nla) 1194 goto nla_put_failure; 1195 eth_key = nla_data(nla); 1196 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); 1197 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); 1198 1199 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1200 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || 1201 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) 1202 goto nla_put_failure; 1203 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1204 if (!swkey->eth.tci) 1205 goto unencap; 1206 } else { 1207 encap = NULL; 1208 } 1209 1210 if (swkey->eth.type == htons(ETH_P_802_2)) 1211 goto unencap; 1212 1213 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) 1214 goto nla_put_failure; 1215 1216 if (swkey->eth.type == htons(ETH_P_IP)) { 1217 struct ovs_key_ipv4 *ipv4_key; 1218 1219 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1220 if (!nla) 1221 goto nla_put_failure; 1222 ipv4_key = nla_data(nla); 1223 ipv4_key->ipv4_src = swkey->ipv4.addr.src; 1224 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; 1225 ipv4_key->ipv4_proto = swkey->ip.proto; 1226 ipv4_key->ipv4_tos = swkey->ip.tos; 1227 ipv4_key->ipv4_ttl = swkey->ip.ttl; 1228 ipv4_key->ipv4_frag = swkey->ip.frag; 1229 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1230 struct ovs_key_ipv6 *ipv6_key; 1231 1232 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1233 if (!nla) 1234 goto nla_put_failure; 1235 ipv6_key = nla_data(nla); 1236 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, 1237 sizeof(ipv6_key->ipv6_src)); 1238 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, 1239 sizeof(ipv6_key->ipv6_dst)); 1240 ipv6_key->ipv6_label = swkey->ipv6.label; 1241 ipv6_key->ipv6_proto = swkey->ip.proto; 1242 ipv6_key->ipv6_tclass = swkey->ip.tos; 1243 ipv6_key->ipv6_hlimit = swkey->ip.ttl; 1244 ipv6_key->ipv6_frag = swkey->ip.frag; 1245 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1246 swkey->eth.type == htons(ETH_P_RARP)) { 1247 struct ovs_key_arp *arp_key; 1248 1249 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1250 if (!nla) 1251 goto nla_put_failure; 1252 arp_key = nla_data(nla); 1253 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1254 arp_key->arp_sip = swkey->ipv4.addr.src; 1255 arp_key->arp_tip = swkey->ipv4.addr.dst; 1256 arp_key->arp_op = htons(swkey->ip.proto); 1257 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); 1258 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); 1259 } 1260 1261 if ((swkey->eth.type == htons(ETH_P_IP) || 1262 swkey->eth.type == htons(ETH_P_IPV6)) && 1263 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1264 1265 if (swkey->ip.proto == IPPROTO_TCP) { 1266 struct ovs_key_tcp *tcp_key; 1267 1268 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1269 if (!nla) 1270 goto nla_put_failure; 1271 tcp_key = nla_data(nla); 1272 if (swkey->eth.type == htons(ETH_P_IP)) { 1273 tcp_key->tcp_src = swkey->ipv4.tp.src; 1274 tcp_key->tcp_dst = swkey->ipv4.tp.dst; 1275 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1276 tcp_key->tcp_src = swkey->ipv6.tp.src; 1277 tcp_key->tcp_dst = swkey->ipv6.tp.dst; 1278 } 1279 } else if (swkey->ip.proto == IPPROTO_UDP) { 1280 struct ovs_key_udp *udp_key; 1281 1282 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1283 if (!nla) 1284 goto nla_put_failure; 1285 udp_key = nla_data(nla); 1286 if (swkey->eth.type == htons(ETH_P_IP)) { 1287 udp_key->udp_src = swkey->ipv4.tp.src; 1288 udp_key->udp_dst = swkey->ipv4.tp.dst; 1289 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1290 udp_key->udp_src = swkey->ipv6.tp.src; 1291 udp_key->udp_dst = swkey->ipv6.tp.dst; 1292 } 1293 } else if (swkey->eth.type == htons(ETH_P_IP) && 1294 swkey->ip.proto == IPPROTO_ICMP) { 1295 struct ovs_key_icmp *icmp_key; 1296 1297 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1298 if (!nla) 1299 goto nla_put_failure; 1300 icmp_key = nla_data(nla); 1301 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); 1302 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); 1303 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1304 swkey->ip.proto == IPPROTO_ICMPV6) { 1305 struct ovs_key_icmpv6 *icmpv6_key; 1306 1307 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1308 sizeof(*icmpv6_key)); 1309 if (!nla) 1310 goto nla_put_failure; 1311 icmpv6_key = nla_data(nla); 1312 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); 1313 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); 1314 1315 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1316 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1317 struct ovs_key_nd *nd_key; 1318 1319 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1320 if (!nla) 1321 goto nla_put_failure; 1322 nd_key = nla_data(nla); 1323 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, 1324 sizeof(nd_key->nd_target)); 1325 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); 1326 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); 1327 } 1328 } 1329 } 1330 1331 unencap: 1332 if (encap) 1333 nla_nest_end(skb, encap); 1334 1335 return 0; 1336 1337 nla_put_failure: 1338 return -EMSGSIZE; 1339 } 1340 1341 /* Initializes the flow module. 1342 * Returns zero if successful or a negative error code. */ 1343 int ovs_flow_init(void) 1344 { 1345 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 1346 0, NULL); 1347 if (flow_cache == NULL) 1348 return -ENOMEM; 1349 1350 return 0; 1351 } 1352 1353 /* Uninitializes the flow module. */ 1354 void ovs_flow_exit(void) 1355 { 1356 kmem_cache_destroy(flow_cache); 1357 } 1358