1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/mpls.h> 36 #include <linux/sctp.h> 37 #include <linux/smp.h> 38 #include <linux/tcp.h> 39 #include <linux/udp.h> 40 #include <linux/icmp.h> 41 #include <linux/icmpv6.h> 42 #include <linux/rculist.h> 43 #include <net/ip.h> 44 #include <net/ip_tunnels.h> 45 #include <net/ipv6.h> 46 #include <net/mpls.h> 47 #include <net/ndisc.h> 48 49 #include "datapath.h" 50 #include "flow.h" 51 #include "flow_netlink.h" 52 53 u64 ovs_flow_used_time(unsigned long flow_jiffies) 54 { 55 struct timespec cur_ts; 56 u64 cur_ms, idle_ms; 57 58 ktime_get_ts(&cur_ts); 59 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 60 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 61 cur_ts.tv_nsec / NSEC_PER_MSEC; 62 63 return cur_ms - idle_ms; 64 } 65 66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 67 68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 69 const struct sk_buff *skb) 70 { 71 struct flow_stats *stats; 72 int node = numa_node_id(); 73 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 74 75 stats = rcu_dereference(flow->stats[node]); 76 77 /* Check if already have node-specific stats. */ 78 if (likely(stats)) { 79 spin_lock(&stats->lock); 80 /* Mark if we write on the pre-allocated stats. */ 81 if (node == 0 && unlikely(flow->stats_last_writer != node)) 82 flow->stats_last_writer = node; 83 } else { 84 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 85 spin_lock(&stats->lock); 86 87 /* If the current NUMA-node is the only writer on the 88 * pre-allocated stats keep using them. 89 */ 90 if (unlikely(flow->stats_last_writer != node)) { 91 /* A previous locker may have already allocated the 92 * stats, so we need to check again. If node-specific 93 * stats were already allocated, we update the pre- 94 * allocated stats as we have already locked them. 95 */ 96 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 97 && likely(!rcu_access_pointer(flow->stats[node]))) { 98 /* Try to allocate node-specific stats. */ 99 struct flow_stats *new_stats; 100 101 new_stats = 102 kmem_cache_alloc_node(flow_stats_cache, 103 GFP_THISNODE | 104 __GFP_NOMEMALLOC, 105 node); 106 if (likely(new_stats)) { 107 new_stats->used = jiffies; 108 new_stats->packet_count = 1; 109 new_stats->byte_count = len; 110 new_stats->tcp_flags = tcp_flags; 111 spin_lock_init(&new_stats->lock); 112 113 rcu_assign_pointer(flow->stats[node], 114 new_stats); 115 goto unlock; 116 } 117 } 118 flow->stats_last_writer = node; 119 } 120 } 121 122 stats->used = jiffies; 123 stats->packet_count++; 124 stats->byte_count += len; 125 stats->tcp_flags |= tcp_flags; 126 unlock: 127 spin_unlock(&stats->lock); 128 } 129 130 /* Must be called with rcu_read_lock or ovs_mutex. */ 131 void ovs_flow_stats_get(const struct sw_flow *flow, 132 struct ovs_flow_stats *ovs_stats, 133 unsigned long *used, __be16 *tcp_flags) 134 { 135 int node; 136 137 *used = 0; 138 *tcp_flags = 0; 139 memset(ovs_stats, 0, sizeof(*ovs_stats)); 140 141 for_each_node(node) { 142 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 143 144 if (stats) { 145 /* Local CPU may write on non-local stats, so we must 146 * block bottom-halves here. 147 */ 148 spin_lock_bh(&stats->lock); 149 if (!*used || time_after(stats->used, *used)) 150 *used = stats->used; 151 *tcp_flags |= stats->tcp_flags; 152 ovs_stats->n_packets += stats->packet_count; 153 ovs_stats->n_bytes += stats->byte_count; 154 spin_unlock_bh(&stats->lock); 155 } 156 } 157 } 158 159 /* Called with ovs_mutex. */ 160 void ovs_flow_stats_clear(struct sw_flow *flow) 161 { 162 int node; 163 164 for_each_node(node) { 165 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 166 167 if (stats) { 168 spin_lock_bh(&stats->lock); 169 stats->used = 0; 170 stats->packet_count = 0; 171 stats->byte_count = 0; 172 stats->tcp_flags = 0; 173 spin_unlock_bh(&stats->lock); 174 } 175 } 176 } 177 178 static int check_header(struct sk_buff *skb, int len) 179 { 180 if (unlikely(skb->len < len)) 181 return -EINVAL; 182 if (unlikely(!pskb_may_pull(skb, len))) 183 return -ENOMEM; 184 return 0; 185 } 186 187 static bool arphdr_ok(struct sk_buff *skb) 188 { 189 return pskb_may_pull(skb, skb_network_offset(skb) + 190 sizeof(struct arp_eth_header)); 191 } 192 193 static int check_iphdr(struct sk_buff *skb) 194 { 195 unsigned int nh_ofs = skb_network_offset(skb); 196 unsigned int ip_len; 197 int err; 198 199 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 200 if (unlikely(err)) 201 return err; 202 203 ip_len = ip_hdrlen(skb); 204 if (unlikely(ip_len < sizeof(struct iphdr) || 205 skb->len < nh_ofs + ip_len)) 206 return -EINVAL; 207 208 skb_set_transport_header(skb, nh_ofs + ip_len); 209 return 0; 210 } 211 212 static bool tcphdr_ok(struct sk_buff *skb) 213 { 214 int th_ofs = skb_transport_offset(skb); 215 int tcp_len; 216 217 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 218 return false; 219 220 tcp_len = tcp_hdrlen(skb); 221 if (unlikely(tcp_len < sizeof(struct tcphdr) || 222 skb->len < th_ofs + tcp_len)) 223 return false; 224 225 return true; 226 } 227 228 static bool udphdr_ok(struct sk_buff *skb) 229 { 230 return pskb_may_pull(skb, skb_transport_offset(skb) + 231 sizeof(struct udphdr)); 232 } 233 234 static bool sctphdr_ok(struct sk_buff *skb) 235 { 236 return pskb_may_pull(skb, skb_transport_offset(skb) + 237 sizeof(struct sctphdr)); 238 } 239 240 static bool icmphdr_ok(struct sk_buff *skb) 241 { 242 return pskb_may_pull(skb, skb_transport_offset(skb) + 243 sizeof(struct icmphdr)); 244 } 245 246 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 247 { 248 unsigned int nh_ofs = skb_network_offset(skb); 249 unsigned int nh_len; 250 int payload_ofs; 251 struct ipv6hdr *nh; 252 uint8_t nexthdr; 253 __be16 frag_off; 254 int err; 255 256 err = check_header(skb, nh_ofs + sizeof(*nh)); 257 if (unlikely(err)) 258 return err; 259 260 nh = ipv6_hdr(skb); 261 nexthdr = nh->nexthdr; 262 payload_ofs = (u8 *)(nh + 1) - skb->data; 263 264 key->ip.proto = NEXTHDR_NONE; 265 key->ip.tos = ipv6_get_dsfield(nh); 266 key->ip.ttl = nh->hop_limit; 267 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 268 key->ipv6.addr.src = nh->saddr; 269 key->ipv6.addr.dst = nh->daddr; 270 271 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 272 if (unlikely(payload_ofs < 0)) 273 return -EINVAL; 274 275 if (frag_off) { 276 if (frag_off & htons(~0x7)) 277 key->ip.frag = OVS_FRAG_TYPE_LATER; 278 else 279 key->ip.frag = OVS_FRAG_TYPE_FIRST; 280 } else { 281 key->ip.frag = OVS_FRAG_TYPE_NONE; 282 } 283 284 nh_len = payload_ofs - nh_ofs; 285 skb_set_transport_header(skb, nh_ofs + nh_len); 286 key->ip.proto = nexthdr; 287 return nh_len; 288 } 289 290 static bool icmp6hdr_ok(struct sk_buff *skb) 291 { 292 return pskb_may_pull(skb, skb_transport_offset(skb) + 293 sizeof(struct icmp6hdr)); 294 } 295 296 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 297 { 298 struct qtag_prefix { 299 __be16 eth_type; /* ETH_P_8021Q */ 300 __be16 tci; 301 }; 302 struct qtag_prefix *qp; 303 304 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 305 return 0; 306 307 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 308 sizeof(__be16)))) 309 return -ENOMEM; 310 311 qp = (struct qtag_prefix *) skb->data; 312 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 313 __skb_pull(skb, sizeof(struct qtag_prefix)); 314 315 return 0; 316 } 317 318 static __be16 parse_ethertype(struct sk_buff *skb) 319 { 320 struct llc_snap_hdr { 321 u8 dsap; /* Always 0xAA */ 322 u8 ssap; /* Always 0xAA */ 323 u8 ctrl; 324 u8 oui[3]; 325 __be16 ethertype; 326 }; 327 struct llc_snap_hdr *llc; 328 __be16 proto; 329 330 proto = *(__be16 *) skb->data; 331 __skb_pull(skb, sizeof(__be16)); 332 333 if (ntohs(proto) >= ETH_P_802_3_MIN) 334 return proto; 335 336 if (skb->len < sizeof(struct llc_snap_hdr)) 337 return htons(ETH_P_802_2); 338 339 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 340 return htons(0); 341 342 llc = (struct llc_snap_hdr *) skb->data; 343 if (llc->dsap != LLC_SAP_SNAP || 344 llc->ssap != LLC_SAP_SNAP || 345 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 346 return htons(ETH_P_802_2); 347 348 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 349 350 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) 351 return llc->ethertype; 352 353 return htons(ETH_P_802_2); 354 } 355 356 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 357 int nh_len) 358 { 359 struct icmp6hdr *icmp = icmp6_hdr(skb); 360 361 /* The ICMPv6 type and code fields use the 16-bit transport port 362 * fields, so we need to store them in 16-bit network byte order. 363 */ 364 key->tp.src = htons(icmp->icmp6_type); 365 key->tp.dst = htons(icmp->icmp6_code); 366 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 367 368 if (icmp->icmp6_code == 0 && 369 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 370 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 371 int icmp_len = skb->len - skb_transport_offset(skb); 372 struct nd_msg *nd; 373 int offset; 374 375 /* In order to process neighbor discovery options, we need the 376 * entire packet. 377 */ 378 if (unlikely(icmp_len < sizeof(*nd))) 379 return 0; 380 381 if (unlikely(skb_linearize(skb))) 382 return -ENOMEM; 383 384 nd = (struct nd_msg *)skb_transport_header(skb); 385 key->ipv6.nd.target = nd->target; 386 387 icmp_len -= sizeof(*nd); 388 offset = 0; 389 while (icmp_len >= 8) { 390 struct nd_opt_hdr *nd_opt = 391 (struct nd_opt_hdr *)(nd->opt + offset); 392 int opt_len = nd_opt->nd_opt_len * 8; 393 394 if (unlikely(!opt_len || opt_len > icmp_len)) 395 return 0; 396 397 /* Store the link layer address if the appropriate 398 * option is provided. It is considered an error if 399 * the same link layer option is specified twice. 400 */ 401 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 402 && opt_len == 8) { 403 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 404 goto invalid; 405 ether_addr_copy(key->ipv6.nd.sll, 406 &nd->opt[offset+sizeof(*nd_opt)]); 407 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 408 && opt_len == 8) { 409 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 410 goto invalid; 411 ether_addr_copy(key->ipv6.nd.tll, 412 &nd->opt[offset+sizeof(*nd_opt)]); 413 } 414 415 icmp_len -= opt_len; 416 offset += opt_len; 417 } 418 } 419 420 return 0; 421 422 invalid: 423 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 424 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 425 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 426 427 return 0; 428 } 429 430 /** 431 * key_extract - extracts a flow key from an Ethernet frame. 432 * @skb: sk_buff that contains the frame, with skb->data pointing to the 433 * Ethernet header 434 * @key: output flow key 435 * 436 * The caller must ensure that skb->len >= ETH_HLEN. 437 * 438 * Returns 0 if successful, otherwise a negative errno value. 439 * 440 * Initializes @skb header pointers as follows: 441 * 442 * - skb->mac_header: the Ethernet header. 443 * 444 * - skb->network_header: just past the Ethernet header, or just past the 445 * VLAN header, to the first byte of the Ethernet payload. 446 * 447 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 448 * on output, then just past the IP header, if one is present and 449 * of a correct length, otherwise the same as skb->network_header. 450 * For other key->eth.type values it is left untouched. 451 */ 452 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 453 { 454 int error; 455 struct ethhdr *eth; 456 457 /* Flags are always used as part of stats */ 458 key->tp.flags = 0; 459 460 skb_reset_mac_header(skb); 461 462 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 463 * header in the linear data area. 464 */ 465 eth = eth_hdr(skb); 466 ether_addr_copy(key->eth.src, eth->h_source); 467 ether_addr_copy(key->eth.dst, eth->h_dest); 468 469 __skb_pull(skb, 2 * ETH_ALEN); 470 /* We are going to push all headers that we pull, so no need to 471 * update skb->csum here. 472 */ 473 474 key->eth.tci = 0; 475 if (skb_vlan_tag_present(skb)) 476 key->eth.tci = htons(skb->vlan_tci); 477 else if (eth->h_proto == htons(ETH_P_8021Q)) 478 if (unlikely(parse_vlan(skb, key))) 479 return -ENOMEM; 480 481 key->eth.type = parse_ethertype(skb); 482 if (unlikely(key->eth.type == htons(0))) 483 return -ENOMEM; 484 485 skb_reset_network_header(skb); 486 skb_reset_mac_len(skb); 487 __skb_push(skb, skb->data - skb_mac_header(skb)); 488 489 /* Network layer. */ 490 if (key->eth.type == htons(ETH_P_IP)) { 491 struct iphdr *nh; 492 __be16 offset; 493 494 error = check_iphdr(skb); 495 if (unlikely(error)) { 496 memset(&key->ip, 0, sizeof(key->ip)); 497 memset(&key->ipv4, 0, sizeof(key->ipv4)); 498 if (error == -EINVAL) { 499 skb->transport_header = skb->network_header; 500 error = 0; 501 } 502 return error; 503 } 504 505 nh = ip_hdr(skb); 506 key->ipv4.addr.src = nh->saddr; 507 key->ipv4.addr.dst = nh->daddr; 508 509 key->ip.proto = nh->protocol; 510 key->ip.tos = nh->tos; 511 key->ip.ttl = nh->ttl; 512 513 offset = nh->frag_off & htons(IP_OFFSET); 514 if (offset) { 515 key->ip.frag = OVS_FRAG_TYPE_LATER; 516 return 0; 517 } 518 if (nh->frag_off & htons(IP_MF) || 519 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 520 key->ip.frag = OVS_FRAG_TYPE_FIRST; 521 else 522 key->ip.frag = OVS_FRAG_TYPE_NONE; 523 524 /* Transport layer. */ 525 if (key->ip.proto == IPPROTO_TCP) { 526 if (tcphdr_ok(skb)) { 527 struct tcphdr *tcp = tcp_hdr(skb); 528 key->tp.src = tcp->source; 529 key->tp.dst = tcp->dest; 530 key->tp.flags = TCP_FLAGS_BE16(tcp); 531 } else { 532 memset(&key->tp, 0, sizeof(key->tp)); 533 } 534 535 } else if (key->ip.proto == IPPROTO_UDP) { 536 if (udphdr_ok(skb)) { 537 struct udphdr *udp = udp_hdr(skb); 538 key->tp.src = udp->source; 539 key->tp.dst = udp->dest; 540 } else { 541 memset(&key->tp, 0, sizeof(key->tp)); 542 } 543 } else if (key->ip.proto == IPPROTO_SCTP) { 544 if (sctphdr_ok(skb)) { 545 struct sctphdr *sctp = sctp_hdr(skb); 546 key->tp.src = sctp->source; 547 key->tp.dst = sctp->dest; 548 } else { 549 memset(&key->tp, 0, sizeof(key->tp)); 550 } 551 } else if (key->ip.proto == IPPROTO_ICMP) { 552 if (icmphdr_ok(skb)) { 553 struct icmphdr *icmp = icmp_hdr(skb); 554 /* The ICMP type and code fields use the 16-bit 555 * transport port fields, so we need to store 556 * them in 16-bit network byte order. */ 557 key->tp.src = htons(icmp->type); 558 key->tp.dst = htons(icmp->code); 559 } else { 560 memset(&key->tp, 0, sizeof(key->tp)); 561 } 562 } 563 564 } else if (key->eth.type == htons(ETH_P_ARP) || 565 key->eth.type == htons(ETH_P_RARP)) { 566 struct arp_eth_header *arp; 567 bool arp_available = arphdr_ok(skb); 568 569 arp = (struct arp_eth_header *)skb_network_header(skb); 570 571 if (arp_available && 572 arp->ar_hrd == htons(ARPHRD_ETHER) && 573 arp->ar_pro == htons(ETH_P_IP) && 574 arp->ar_hln == ETH_ALEN && 575 arp->ar_pln == 4) { 576 577 /* We only match on the lower 8 bits of the opcode. */ 578 if (ntohs(arp->ar_op) <= 0xff) 579 key->ip.proto = ntohs(arp->ar_op); 580 else 581 key->ip.proto = 0; 582 583 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 584 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 585 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 586 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 587 } else { 588 memset(&key->ip, 0, sizeof(key->ip)); 589 memset(&key->ipv4, 0, sizeof(key->ipv4)); 590 } 591 } else if (eth_p_mpls(key->eth.type)) { 592 size_t stack_len = MPLS_HLEN; 593 594 /* In the presence of an MPLS label stack the end of the L2 595 * header and the beginning of the L3 header differ. 596 * 597 * Advance network_header to the beginning of the L3 598 * header. mac_len corresponds to the end of the L2 header. 599 */ 600 while (1) { 601 __be32 lse; 602 603 error = check_header(skb, skb->mac_len + stack_len); 604 if (unlikely(error)) 605 return 0; 606 607 memcpy(&lse, skb_network_header(skb), MPLS_HLEN); 608 609 if (stack_len == MPLS_HLEN) 610 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 611 612 skb_set_network_header(skb, skb->mac_len + stack_len); 613 if (lse & htonl(MPLS_LS_S_MASK)) 614 break; 615 616 stack_len += MPLS_HLEN; 617 } 618 } else if (key->eth.type == htons(ETH_P_IPV6)) { 619 int nh_len; /* IPv6 Header + Extensions */ 620 621 nh_len = parse_ipv6hdr(skb, key); 622 if (unlikely(nh_len < 0)) { 623 memset(&key->ip, 0, sizeof(key->ip)); 624 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 625 if (nh_len == -EINVAL) { 626 skb->transport_header = skb->network_header; 627 error = 0; 628 } else { 629 error = nh_len; 630 } 631 return error; 632 } 633 634 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 635 return 0; 636 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 637 key->ip.frag = OVS_FRAG_TYPE_FIRST; 638 639 /* Transport layer. */ 640 if (key->ip.proto == NEXTHDR_TCP) { 641 if (tcphdr_ok(skb)) { 642 struct tcphdr *tcp = tcp_hdr(skb); 643 key->tp.src = tcp->source; 644 key->tp.dst = tcp->dest; 645 key->tp.flags = TCP_FLAGS_BE16(tcp); 646 } else { 647 memset(&key->tp, 0, sizeof(key->tp)); 648 } 649 } else if (key->ip.proto == NEXTHDR_UDP) { 650 if (udphdr_ok(skb)) { 651 struct udphdr *udp = udp_hdr(skb); 652 key->tp.src = udp->source; 653 key->tp.dst = udp->dest; 654 } else { 655 memset(&key->tp, 0, sizeof(key->tp)); 656 } 657 } else if (key->ip.proto == NEXTHDR_SCTP) { 658 if (sctphdr_ok(skb)) { 659 struct sctphdr *sctp = sctp_hdr(skb); 660 key->tp.src = sctp->source; 661 key->tp.dst = sctp->dest; 662 } else { 663 memset(&key->tp, 0, sizeof(key->tp)); 664 } 665 } else if (key->ip.proto == NEXTHDR_ICMP) { 666 if (icmp6hdr_ok(skb)) { 667 error = parse_icmpv6(skb, key, nh_len); 668 if (error) 669 return error; 670 } else { 671 memset(&key->tp, 0, sizeof(key->tp)); 672 } 673 } 674 } 675 return 0; 676 } 677 678 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 679 { 680 return key_extract(skb, key); 681 } 682 683 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info, 684 struct sk_buff *skb, struct sw_flow_key *key) 685 { 686 /* Extract metadata from packet. */ 687 if (tun_info) { 688 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key)); 689 690 if (tun_info->options) { 691 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 692 8)) - 1 693 > sizeof(key->tun_opts)); 694 memcpy(GENEVE_OPTS(key, tun_info->options_len), 695 tun_info->options, tun_info->options_len); 696 key->tun_opts_len = tun_info->options_len; 697 } else { 698 key->tun_opts_len = 0; 699 } 700 } else { 701 key->tun_opts_len = 0; 702 memset(&key->tun_key, 0, sizeof(key->tun_key)); 703 } 704 705 key->phy.priority = skb->priority; 706 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 707 key->phy.skb_mark = skb->mark; 708 key->ovs_flow_hash = 0; 709 key->recirc_id = 0; 710 711 return key_extract(skb, key); 712 } 713 714 int ovs_flow_key_extract_userspace(const struct nlattr *attr, 715 struct sk_buff *skb, 716 struct sw_flow_key *key, bool log) 717 { 718 int err; 719 720 /* Extract metadata from netlink attributes. */ 721 err = ovs_nla_get_flow_metadata(attr, key, log); 722 if (err) 723 return err; 724 725 return key_extract(skb, key); 726 } 727