1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 #include <net/nsh.h> 50 51 #include "conntrack.h" 52 #include "datapath.h" 53 #include "flow.h" 54 #include "flow_netlink.h" 55 #include "vport.h" 56 57 u64 ovs_flow_used_time(unsigned long flow_jiffies) 58 { 59 struct timespec64 cur_ts; 60 u64 cur_ms, idle_ms; 61 62 ktime_get_ts64(&cur_ts); 63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 64 cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + 65 cur_ts.tv_nsec / NSEC_PER_MSEC; 66 67 return cur_ms - idle_ms; 68 } 69 70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 71 72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 73 const struct sk_buff *skb) 74 { 75 struct flow_stats *stats; 76 unsigned int cpu = smp_processor_id(); 77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 78 79 stats = rcu_dereference(flow->stats[cpu]); 80 81 /* Check if already have CPU-specific stats. */ 82 if (likely(stats)) { 83 spin_lock(&stats->lock); 84 /* Mark if we write on the pre-allocated stats. */ 85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 86 flow->stats_last_writer = cpu; 87 } else { 88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 89 spin_lock(&stats->lock); 90 91 /* If the current CPU is the only writer on the 92 * pre-allocated stats keep using them. 93 */ 94 if (unlikely(flow->stats_last_writer != cpu)) { 95 /* A previous locker may have already allocated the 96 * stats, so we need to check again. If CPU-specific 97 * stats were already allocated, we update the pre- 98 * allocated stats as we have already locked them. 99 */ 100 if (likely(flow->stats_last_writer != -1) && 101 likely(!rcu_access_pointer(flow->stats[cpu]))) { 102 /* Try to allocate CPU-specific stats. */ 103 struct flow_stats *new_stats; 104 105 new_stats = 106 kmem_cache_alloc_node(flow_stats_cache, 107 GFP_NOWAIT | 108 __GFP_THISNODE | 109 __GFP_NOWARN | 110 __GFP_NOMEMALLOC, 111 numa_node_id()); 112 if (likely(new_stats)) { 113 new_stats->used = jiffies; 114 new_stats->packet_count = 1; 115 new_stats->byte_count = len; 116 new_stats->tcp_flags = tcp_flags; 117 spin_lock_init(&new_stats->lock); 118 119 rcu_assign_pointer(flow->stats[cpu], 120 new_stats); 121 cpumask_set_cpu(cpu, &flow->cpu_used_mask); 122 goto unlock; 123 } 124 } 125 flow->stats_last_writer = cpu; 126 } 127 } 128 129 stats->used = jiffies; 130 stats->packet_count++; 131 stats->byte_count += len; 132 stats->tcp_flags |= tcp_flags; 133 unlock: 134 spin_unlock(&stats->lock); 135 } 136 137 /* Must be called with rcu_read_lock or ovs_mutex. */ 138 void ovs_flow_stats_get(const struct sw_flow *flow, 139 struct ovs_flow_stats *ovs_stats, 140 unsigned long *used, __be16 *tcp_flags) 141 { 142 int cpu; 143 144 *used = 0; 145 *tcp_flags = 0; 146 memset(ovs_stats, 0, sizeof(*ovs_stats)); 147 148 /* We open code this to make sure cpu 0 is always considered */ 149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 151 152 if (stats) { 153 /* Local CPU may write on non-local stats, so we must 154 * block bottom-halves here. 155 */ 156 spin_lock_bh(&stats->lock); 157 if (!*used || time_after(stats->used, *used)) 158 *used = stats->used; 159 *tcp_flags |= stats->tcp_flags; 160 ovs_stats->n_packets += stats->packet_count; 161 ovs_stats->n_bytes += stats->byte_count; 162 spin_unlock_bh(&stats->lock); 163 } 164 } 165 } 166 167 /* Called with ovs_mutex. */ 168 void ovs_flow_stats_clear(struct sw_flow *flow) 169 { 170 int cpu; 171 172 /* We open code this to make sure cpu 0 is always considered */ 173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) { 174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 175 176 if (stats) { 177 spin_lock_bh(&stats->lock); 178 stats->used = 0; 179 stats->packet_count = 0; 180 stats->byte_count = 0; 181 stats->tcp_flags = 0; 182 spin_unlock_bh(&stats->lock); 183 } 184 } 185 } 186 187 static int check_header(struct sk_buff *skb, int len) 188 { 189 if (unlikely(skb->len < len)) 190 return -EINVAL; 191 if (unlikely(!pskb_may_pull(skb, len))) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static bool arphdr_ok(struct sk_buff *skb) 197 { 198 return pskb_may_pull(skb, skb_network_offset(skb) + 199 sizeof(struct arp_eth_header)); 200 } 201 202 static int check_iphdr(struct sk_buff *skb) 203 { 204 unsigned int nh_ofs = skb_network_offset(skb); 205 unsigned int ip_len; 206 int err; 207 208 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 209 if (unlikely(err)) 210 return err; 211 212 ip_len = ip_hdrlen(skb); 213 if (unlikely(ip_len < sizeof(struct iphdr) || 214 skb->len < nh_ofs + ip_len)) 215 return -EINVAL; 216 217 skb_set_transport_header(skb, nh_ofs + ip_len); 218 return 0; 219 } 220 221 static bool tcphdr_ok(struct sk_buff *skb) 222 { 223 int th_ofs = skb_transport_offset(skb); 224 int tcp_len; 225 226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 227 return false; 228 229 tcp_len = tcp_hdrlen(skb); 230 if (unlikely(tcp_len < sizeof(struct tcphdr) || 231 skb->len < th_ofs + tcp_len)) 232 return false; 233 234 return true; 235 } 236 237 static bool udphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct udphdr)); 241 } 242 243 static bool sctphdr_ok(struct sk_buff *skb) 244 { 245 return pskb_may_pull(skb, skb_transport_offset(skb) + 246 sizeof(struct sctphdr)); 247 } 248 249 static bool icmphdr_ok(struct sk_buff *skb) 250 { 251 return pskb_may_pull(skb, skb_transport_offset(skb) + 252 sizeof(struct icmphdr)); 253 } 254 255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 256 { 257 unsigned short frag_off; 258 unsigned int payload_ofs = 0; 259 unsigned int nh_ofs = skb_network_offset(skb); 260 unsigned int nh_len; 261 struct ipv6hdr *nh; 262 int err, nexthdr, flags = 0; 263 264 err = check_header(skb, nh_ofs + sizeof(*nh)); 265 if (unlikely(err)) 266 return err; 267 268 nh = ipv6_hdr(skb); 269 270 key->ip.proto = NEXTHDR_NONE; 271 key->ip.tos = ipv6_get_dsfield(nh); 272 key->ip.ttl = nh->hop_limit; 273 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 274 key->ipv6.addr.src = nh->saddr; 275 key->ipv6.addr.dst = nh->daddr; 276 277 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 278 if (flags & IP6_FH_F_FRAG) { 279 if (frag_off) 280 key->ip.frag = OVS_FRAG_TYPE_LATER; 281 else 282 key->ip.frag = OVS_FRAG_TYPE_FIRST; 283 } else { 284 key->ip.frag = OVS_FRAG_TYPE_NONE; 285 } 286 287 /* Delayed handling of error in ipv6_find_hdr() as it 288 * always sets flags and frag_off to a valid value which may be 289 * used to set key->ip.frag above. 290 */ 291 if (unlikely(nexthdr < 0)) 292 return -EPROTO; 293 294 nh_len = payload_ofs - nh_ofs; 295 skb_set_transport_header(skb, nh_ofs + nh_len); 296 key->ip.proto = nexthdr; 297 return nh_len; 298 } 299 300 static bool icmp6hdr_ok(struct sk_buff *skb) 301 { 302 return pskb_may_pull(skb, skb_transport_offset(skb) + 303 sizeof(struct icmp6hdr)); 304 } 305 306 /** 307 * Parse vlan tag from vlan header. 308 * Returns ERROR on memory error. 309 * Returns 0 if it encounters a non-vlan or incomplete packet. 310 * Returns 1 after successfully parsing vlan tag. 311 */ 312 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, 313 bool untag_vlan) 314 { 315 struct vlan_head *vh = (struct vlan_head *)skb->data; 316 317 if (likely(!eth_type_vlan(vh->tpid))) 318 return 0; 319 320 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 321 return 0; 322 323 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 324 sizeof(__be16)))) 325 return -ENOMEM; 326 327 vh = (struct vlan_head *)skb->data; 328 key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); 329 key_vh->tpid = vh->tpid; 330 331 if (unlikely(untag_vlan)) { 332 int offset = skb->data - skb_mac_header(skb); 333 u16 tci; 334 int err; 335 336 __skb_push(skb, offset); 337 err = __skb_vlan_pop(skb, &tci); 338 __skb_pull(skb, offset); 339 if (err) 340 return err; 341 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); 342 } else { 343 __skb_pull(skb, sizeof(struct vlan_head)); 344 } 345 return 1; 346 } 347 348 static void clear_vlan(struct sw_flow_key *key) 349 { 350 key->eth.vlan.tci = 0; 351 key->eth.vlan.tpid = 0; 352 key->eth.cvlan.tci = 0; 353 key->eth.cvlan.tpid = 0; 354 } 355 356 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 357 { 358 int res; 359 360 if (skb_vlan_tag_present(skb)) { 361 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); 362 key->eth.vlan.tpid = skb->vlan_proto; 363 } else { 364 /* Parse outer vlan tag in the non-accelerated case. */ 365 res = parse_vlan_tag(skb, &key->eth.vlan, true); 366 if (res <= 0) 367 return res; 368 } 369 370 /* Parse inner vlan tag. */ 371 res = parse_vlan_tag(skb, &key->eth.cvlan, false); 372 if (res <= 0) 373 return res; 374 375 return 0; 376 } 377 378 static __be16 parse_ethertype(struct sk_buff *skb) 379 { 380 struct llc_snap_hdr { 381 u8 dsap; /* Always 0xAA */ 382 u8 ssap; /* Always 0xAA */ 383 u8 ctrl; 384 u8 oui[3]; 385 __be16 ethertype; 386 }; 387 struct llc_snap_hdr *llc; 388 __be16 proto; 389 390 proto = *(__be16 *) skb->data; 391 __skb_pull(skb, sizeof(__be16)); 392 393 if (eth_proto_is_802_3(proto)) 394 return proto; 395 396 if (skb->len < sizeof(struct llc_snap_hdr)) 397 return htons(ETH_P_802_2); 398 399 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 400 return htons(0); 401 402 llc = (struct llc_snap_hdr *) skb->data; 403 if (llc->dsap != LLC_SAP_SNAP || 404 llc->ssap != LLC_SAP_SNAP || 405 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 406 return htons(ETH_P_802_2); 407 408 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 409 410 if (eth_proto_is_802_3(llc->ethertype)) 411 return llc->ethertype; 412 413 return htons(ETH_P_802_2); 414 } 415 416 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 417 int nh_len) 418 { 419 struct icmp6hdr *icmp = icmp6_hdr(skb); 420 421 /* The ICMPv6 type and code fields use the 16-bit transport port 422 * fields, so we need to store them in 16-bit network byte order. 423 */ 424 key->tp.src = htons(icmp->icmp6_type); 425 key->tp.dst = htons(icmp->icmp6_code); 426 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 427 428 if (icmp->icmp6_code == 0 && 429 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 430 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 431 int icmp_len = skb->len - skb_transport_offset(skb); 432 struct nd_msg *nd; 433 int offset; 434 435 /* In order to process neighbor discovery options, we need the 436 * entire packet. 437 */ 438 if (unlikely(icmp_len < sizeof(*nd))) 439 return 0; 440 441 if (unlikely(skb_linearize(skb))) 442 return -ENOMEM; 443 444 nd = (struct nd_msg *)skb_transport_header(skb); 445 key->ipv6.nd.target = nd->target; 446 447 icmp_len -= sizeof(*nd); 448 offset = 0; 449 while (icmp_len >= 8) { 450 struct nd_opt_hdr *nd_opt = 451 (struct nd_opt_hdr *)(nd->opt + offset); 452 int opt_len = nd_opt->nd_opt_len * 8; 453 454 if (unlikely(!opt_len || opt_len > icmp_len)) 455 return 0; 456 457 /* Store the link layer address if the appropriate 458 * option is provided. It is considered an error if 459 * the same link layer option is specified twice. 460 */ 461 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 462 && opt_len == 8) { 463 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 464 goto invalid; 465 ether_addr_copy(key->ipv6.nd.sll, 466 &nd->opt[offset+sizeof(*nd_opt)]); 467 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 468 && opt_len == 8) { 469 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 470 goto invalid; 471 ether_addr_copy(key->ipv6.nd.tll, 472 &nd->opt[offset+sizeof(*nd_opt)]); 473 } 474 475 icmp_len -= opt_len; 476 offset += opt_len; 477 } 478 } 479 480 return 0; 481 482 invalid: 483 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 484 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 485 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 486 487 return 0; 488 } 489 490 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) 491 { 492 struct nshhdr *nh; 493 unsigned int nh_ofs = skb_network_offset(skb); 494 u8 version, length; 495 int err; 496 497 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); 498 if (unlikely(err)) 499 return err; 500 501 nh = nsh_hdr(skb); 502 version = nsh_get_ver(nh); 503 length = nsh_hdr_len(nh); 504 505 if (version != 0) 506 return -EINVAL; 507 508 err = check_header(skb, nh_ofs + length); 509 if (unlikely(err)) 510 return err; 511 512 nh = nsh_hdr(skb); 513 key->nsh.base.flags = nsh_get_flags(nh); 514 key->nsh.base.ttl = nsh_get_ttl(nh); 515 key->nsh.base.mdtype = nh->mdtype; 516 key->nsh.base.np = nh->np; 517 key->nsh.base.path_hdr = nh->path_hdr; 518 switch (key->nsh.base.mdtype) { 519 case NSH_M_TYPE1: 520 if (length != NSH_M_TYPE1_LEN) 521 return -EINVAL; 522 memcpy(key->nsh.context, nh->md1.context, 523 sizeof(nh->md1)); 524 break; 525 case NSH_M_TYPE2: 526 memset(key->nsh.context, 0, 527 sizeof(nh->md1)); 528 break; 529 default: 530 return -EINVAL; 531 } 532 533 return 0; 534 } 535 536 /** 537 * key_extract - extracts a flow key from an Ethernet frame. 538 * @skb: sk_buff that contains the frame, with skb->data pointing to the 539 * Ethernet header 540 * @key: output flow key 541 * 542 * The caller must ensure that skb->len >= ETH_HLEN. 543 * 544 * Returns 0 if successful, otherwise a negative errno value. 545 * 546 * Initializes @skb header fields as follows: 547 * 548 * - skb->mac_header: the L2 header. 549 * 550 * - skb->network_header: just past the L2 header, or just past the 551 * VLAN header, to the first byte of the L2 payload. 552 * 553 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 554 * on output, then just past the IP header, if one is present and 555 * of a correct length, otherwise the same as skb->network_header. 556 * For other key->eth.type values it is left untouched. 557 * 558 * - skb->protocol: the type of the data starting at skb->network_header. 559 * Equals to key->eth.type. 560 */ 561 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 562 { 563 int error; 564 struct ethhdr *eth; 565 566 /* Flags are always used as part of stats */ 567 key->tp.flags = 0; 568 569 skb_reset_mac_header(skb); 570 571 /* Link layer. */ 572 clear_vlan(key); 573 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { 574 if (unlikely(eth_type_vlan(skb->protocol))) 575 return -EINVAL; 576 577 skb_reset_network_header(skb); 578 key->eth.type = skb->protocol; 579 } else { 580 eth = eth_hdr(skb); 581 ether_addr_copy(key->eth.src, eth->h_source); 582 ether_addr_copy(key->eth.dst, eth->h_dest); 583 584 __skb_pull(skb, 2 * ETH_ALEN); 585 /* We are going to push all headers that we pull, so no need to 586 * update skb->csum here. 587 */ 588 589 if (unlikely(parse_vlan(skb, key))) 590 return -ENOMEM; 591 592 key->eth.type = parse_ethertype(skb); 593 if (unlikely(key->eth.type == htons(0))) 594 return -ENOMEM; 595 596 /* Multiple tagged packets need to retain TPID to satisfy 597 * skb_vlan_pop(), which will later shift the ethertype into 598 * skb->protocol. 599 */ 600 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) 601 skb->protocol = key->eth.cvlan.tpid; 602 else 603 skb->protocol = key->eth.type; 604 605 skb_reset_network_header(skb); 606 __skb_push(skb, skb->data - skb_mac_header(skb)); 607 } 608 skb_reset_mac_len(skb); 609 610 /* Network layer. */ 611 if (key->eth.type == htons(ETH_P_IP)) { 612 struct iphdr *nh; 613 __be16 offset; 614 615 error = check_iphdr(skb); 616 if (unlikely(error)) { 617 memset(&key->ip, 0, sizeof(key->ip)); 618 memset(&key->ipv4, 0, sizeof(key->ipv4)); 619 if (error == -EINVAL) { 620 skb->transport_header = skb->network_header; 621 error = 0; 622 } 623 return error; 624 } 625 626 nh = ip_hdr(skb); 627 key->ipv4.addr.src = nh->saddr; 628 key->ipv4.addr.dst = nh->daddr; 629 630 key->ip.proto = nh->protocol; 631 key->ip.tos = nh->tos; 632 key->ip.ttl = nh->ttl; 633 634 offset = nh->frag_off & htons(IP_OFFSET); 635 if (offset) { 636 key->ip.frag = OVS_FRAG_TYPE_LATER; 637 return 0; 638 } 639 if (nh->frag_off & htons(IP_MF) || 640 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 641 key->ip.frag = OVS_FRAG_TYPE_FIRST; 642 else 643 key->ip.frag = OVS_FRAG_TYPE_NONE; 644 645 /* Transport layer. */ 646 if (key->ip.proto == IPPROTO_TCP) { 647 if (tcphdr_ok(skb)) { 648 struct tcphdr *tcp = tcp_hdr(skb); 649 key->tp.src = tcp->source; 650 key->tp.dst = tcp->dest; 651 key->tp.flags = TCP_FLAGS_BE16(tcp); 652 } else { 653 memset(&key->tp, 0, sizeof(key->tp)); 654 } 655 656 } else if (key->ip.proto == IPPROTO_UDP) { 657 if (udphdr_ok(skb)) { 658 struct udphdr *udp = udp_hdr(skb); 659 key->tp.src = udp->source; 660 key->tp.dst = udp->dest; 661 } else { 662 memset(&key->tp, 0, sizeof(key->tp)); 663 } 664 } else if (key->ip.proto == IPPROTO_SCTP) { 665 if (sctphdr_ok(skb)) { 666 struct sctphdr *sctp = sctp_hdr(skb); 667 key->tp.src = sctp->source; 668 key->tp.dst = sctp->dest; 669 } else { 670 memset(&key->tp, 0, sizeof(key->tp)); 671 } 672 } else if (key->ip.proto == IPPROTO_ICMP) { 673 if (icmphdr_ok(skb)) { 674 struct icmphdr *icmp = icmp_hdr(skb); 675 /* The ICMP type and code fields use the 16-bit 676 * transport port fields, so we need to store 677 * them in 16-bit network byte order. */ 678 key->tp.src = htons(icmp->type); 679 key->tp.dst = htons(icmp->code); 680 } else { 681 memset(&key->tp, 0, sizeof(key->tp)); 682 } 683 } 684 685 } else if (key->eth.type == htons(ETH_P_ARP) || 686 key->eth.type == htons(ETH_P_RARP)) { 687 struct arp_eth_header *arp; 688 bool arp_available = arphdr_ok(skb); 689 690 arp = (struct arp_eth_header *)skb_network_header(skb); 691 692 if (arp_available && 693 arp->ar_hrd == htons(ARPHRD_ETHER) && 694 arp->ar_pro == htons(ETH_P_IP) && 695 arp->ar_hln == ETH_ALEN && 696 arp->ar_pln == 4) { 697 698 /* We only match on the lower 8 bits of the opcode. */ 699 if (ntohs(arp->ar_op) <= 0xff) 700 key->ip.proto = ntohs(arp->ar_op); 701 else 702 key->ip.proto = 0; 703 704 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 705 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 706 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 707 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 708 } else { 709 memset(&key->ip, 0, sizeof(key->ip)); 710 memset(&key->ipv4, 0, sizeof(key->ipv4)); 711 } 712 } else if (eth_p_mpls(key->eth.type)) { 713 size_t stack_len = MPLS_HLEN; 714 715 skb_set_inner_network_header(skb, skb->mac_len); 716 while (1) { 717 __be32 lse; 718 719 error = check_header(skb, skb->mac_len + stack_len); 720 if (unlikely(error)) 721 return 0; 722 723 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 724 725 if (stack_len == MPLS_HLEN) 726 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 727 728 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 729 if (lse & htonl(MPLS_LS_S_MASK)) 730 break; 731 732 stack_len += MPLS_HLEN; 733 } 734 } else if (key->eth.type == htons(ETH_P_IPV6)) { 735 int nh_len; /* IPv6 Header + Extensions */ 736 737 nh_len = parse_ipv6hdr(skb, key); 738 if (unlikely(nh_len < 0)) { 739 switch (nh_len) { 740 case -EINVAL: 741 memset(&key->ip, 0, sizeof(key->ip)); 742 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 743 /* fall-through */ 744 case -EPROTO: 745 skb->transport_header = skb->network_header; 746 error = 0; 747 break; 748 default: 749 error = nh_len; 750 } 751 return error; 752 } 753 754 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 755 return 0; 756 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 757 key->ip.frag = OVS_FRAG_TYPE_FIRST; 758 759 /* Transport layer. */ 760 if (key->ip.proto == NEXTHDR_TCP) { 761 if (tcphdr_ok(skb)) { 762 struct tcphdr *tcp = tcp_hdr(skb); 763 key->tp.src = tcp->source; 764 key->tp.dst = tcp->dest; 765 key->tp.flags = TCP_FLAGS_BE16(tcp); 766 } else { 767 memset(&key->tp, 0, sizeof(key->tp)); 768 } 769 } else if (key->ip.proto == NEXTHDR_UDP) { 770 if (udphdr_ok(skb)) { 771 struct udphdr *udp = udp_hdr(skb); 772 key->tp.src = udp->source; 773 key->tp.dst = udp->dest; 774 } else { 775 memset(&key->tp, 0, sizeof(key->tp)); 776 } 777 } else if (key->ip.proto == NEXTHDR_SCTP) { 778 if (sctphdr_ok(skb)) { 779 struct sctphdr *sctp = sctp_hdr(skb); 780 key->tp.src = sctp->source; 781 key->tp.dst = sctp->dest; 782 } else { 783 memset(&key->tp, 0, sizeof(key->tp)); 784 } 785 } else if (key->ip.proto == NEXTHDR_ICMP) { 786 if (icmp6hdr_ok(skb)) { 787 error = parse_icmpv6(skb, key, nh_len); 788 if (error) 789 return error; 790 } else { 791 memset(&key->tp, 0, sizeof(key->tp)); 792 } 793 } 794 } else if (key->eth.type == htons(ETH_P_NSH)) { 795 error = parse_nsh(skb, key); 796 if (error) 797 return error; 798 } 799 return 0; 800 } 801 802 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 803 { 804 int res; 805 806 res = key_extract(skb, key); 807 if (!res) 808 key->mac_proto &= ~SW_FLOW_KEY_INVALID; 809 810 return res; 811 } 812 813 static int key_extract_mac_proto(struct sk_buff *skb) 814 { 815 switch (skb->dev->type) { 816 case ARPHRD_ETHER: 817 return MAC_PROTO_ETHERNET; 818 case ARPHRD_NONE: 819 if (skb->protocol == htons(ETH_P_TEB)) 820 return MAC_PROTO_ETHERNET; 821 return MAC_PROTO_NONE; 822 } 823 WARN_ON_ONCE(1); 824 return -EINVAL; 825 } 826 827 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 828 struct sk_buff *skb, struct sw_flow_key *key) 829 { 830 int res, err; 831 832 /* Extract metadata from packet. */ 833 if (tun_info) { 834 key->tun_proto = ip_tunnel_info_af(tun_info); 835 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 836 837 if (tun_info->options_len) { 838 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 839 8)) - 1 840 > sizeof(key->tun_opts)); 841 842 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 843 tun_info); 844 key->tun_opts_len = tun_info->options_len; 845 } else { 846 key->tun_opts_len = 0; 847 } 848 } else { 849 key->tun_proto = 0; 850 key->tun_opts_len = 0; 851 memset(&key->tun_key, 0, sizeof(key->tun_key)); 852 } 853 854 key->phy.priority = skb->priority; 855 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 856 key->phy.skb_mark = skb->mark; 857 key->ovs_flow_hash = 0; 858 res = key_extract_mac_proto(skb); 859 if (res < 0) 860 return res; 861 key->mac_proto = res; 862 key->recirc_id = 0; 863 864 err = key_extract(skb, key); 865 if (!err) 866 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */ 867 return err; 868 } 869 870 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 871 struct sk_buff *skb, 872 struct sw_flow_key *key, bool log) 873 { 874 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 875 u64 attrs = 0; 876 int err; 877 878 err = parse_flow_nlattrs(attr, a, &attrs, log); 879 if (err) 880 return -EINVAL; 881 882 /* Extract metadata from netlink attributes. */ 883 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); 884 if (err) 885 return err; 886 887 /* key_extract assumes that skb->protocol is set-up for 888 * layer 3 packets which is the case for other callers, 889 * in particular packets received from the network stack. 890 * Here the correct value can be set from the metadata 891 * extracted above. 892 * For L2 packet key eth type would be zero. skb protocol 893 * would be set to correct value later during key-extact. 894 */ 895 896 skb->protocol = key->eth.type; 897 err = key_extract(skb, key); 898 if (err) 899 return err; 900 901 /* Check that we have conntrack original direction tuple metadata only 902 * for packets for which it makes sense. Otherwise the key may be 903 * corrupted due to overlapping key fields. 904 */ 905 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && 906 key->eth.type != htons(ETH_P_IP)) 907 return -EINVAL; 908 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && 909 (key->eth.type != htons(ETH_P_IPV6) || 910 sw_flow_key_is_nd(key))) 911 return -EINVAL; 912 913 return 0; 914 } 915