xref: /openbmc/linux/net/openvswitch/flow.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 
50 #include "conntrack.h"
51 #include "datapath.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "vport.h"
55 
56 u64 ovs_flow_used_time(unsigned long flow_jiffies)
57 {
58 	struct timespec cur_ts;
59 	u64 cur_ms, idle_ms;
60 
61 	ktime_get_ts(&cur_ts);
62 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
63 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
64 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
65 
66 	return cur_ms - idle_ms;
67 }
68 
69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
70 
71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
72 			   const struct sk_buff *skb)
73 {
74 	struct flow_stats *stats;
75 	int node = numa_node_id();
76 	int cpu = smp_processor_id();
77 	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78 
79 	stats = rcu_dereference(flow->stats[cpu]);
80 
81 	/* Check if already have CPU-specific stats. */
82 	if (likely(stats)) {
83 		spin_lock(&stats->lock);
84 		/* Mark if we write on the pre-allocated stats. */
85 		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 			flow->stats_last_writer = cpu;
87 	} else {
88 		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 		spin_lock(&stats->lock);
90 
91 		/* If the current CPU is the only writer on the
92 		 * pre-allocated stats keep using them.
93 		 */
94 		if (unlikely(flow->stats_last_writer != cpu)) {
95 			/* A previous locker may have already allocated the
96 			 * stats, so we need to check again.  If CPU-specific
97 			 * stats were already allocated, we update the pre-
98 			 * allocated stats as we have already locked them.
99 			 */
100 			if (likely(flow->stats_last_writer != -1) &&
101 			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 				/* Try to allocate CPU-specific stats. */
103 				struct flow_stats *new_stats;
104 
105 				new_stats =
106 					kmem_cache_alloc_node(flow_stats_cache,
107 							      GFP_NOWAIT |
108 							      __GFP_THISNODE |
109 							      __GFP_NOWARN |
110 							      __GFP_NOMEMALLOC,
111 							      node);
112 				if (likely(new_stats)) {
113 					new_stats->used = jiffies;
114 					new_stats->packet_count = 1;
115 					new_stats->byte_count = len;
116 					new_stats->tcp_flags = tcp_flags;
117 					spin_lock_init(&new_stats->lock);
118 
119 					rcu_assign_pointer(flow->stats[cpu],
120 							   new_stats);
121 					goto unlock;
122 				}
123 			}
124 			flow->stats_last_writer = cpu;
125 		}
126 	}
127 
128 	stats->used = jiffies;
129 	stats->packet_count++;
130 	stats->byte_count += len;
131 	stats->tcp_flags |= tcp_flags;
132 unlock:
133 	spin_unlock(&stats->lock);
134 }
135 
136 /* Must be called with rcu_read_lock or ovs_mutex. */
137 void ovs_flow_stats_get(const struct sw_flow *flow,
138 			struct ovs_flow_stats *ovs_stats,
139 			unsigned long *used, __be16 *tcp_flags)
140 {
141 	int cpu;
142 
143 	*used = 0;
144 	*tcp_flags = 0;
145 	memset(ovs_stats, 0, sizeof(*ovs_stats));
146 
147 	/* We open code this to make sure cpu 0 is always considered */
148 	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
149 		struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
150 
151 		if (stats) {
152 			/* Local CPU may write on non-local stats, so we must
153 			 * block bottom-halves here.
154 			 */
155 			spin_lock_bh(&stats->lock);
156 			if (!*used || time_after(stats->used, *used))
157 				*used = stats->used;
158 			*tcp_flags |= stats->tcp_flags;
159 			ovs_stats->n_packets += stats->packet_count;
160 			ovs_stats->n_bytes += stats->byte_count;
161 			spin_unlock_bh(&stats->lock);
162 		}
163 	}
164 }
165 
166 /* Called with ovs_mutex. */
167 void ovs_flow_stats_clear(struct sw_flow *flow)
168 {
169 	int cpu;
170 
171 	/* We open code this to make sure cpu 0 is always considered */
172 	for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
173 		struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
174 
175 		if (stats) {
176 			spin_lock_bh(&stats->lock);
177 			stats->used = 0;
178 			stats->packet_count = 0;
179 			stats->byte_count = 0;
180 			stats->tcp_flags = 0;
181 			spin_unlock_bh(&stats->lock);
182 		}
183 	}
184 }
185 
186 static int check_header(struct sk_buff *skb, int len)
187 {
188 	if (unlikely(skb->len < len))
189 		return -EINVAL;
190 	if (unlikely(!pskb_may_pull(skb, len)))
191 		return -ENOMEM;
192 	return 0;
193 }
194 
195 static bool arphdr_ok(struct sk_buff *skb)
196 {
197 	return pskb_may_pull(skb, skb_network_offset(skb) +
198 				  sizeof(struct arp_eth_header));
199 }
200 
201 static int check_iphdr(struct sk_buff *skb)
202 {
203 	unsigned int nh_ofs = skb_network_offset(skb);
204 	unsigned int ip_len;
205 	int err;
206 
207 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208 	if (unlikely(err))
209 		return err;
210 
211 	ip_len = ip_hdrlen(skb);
212 	if (unlikely(ip_len < sizeof(struct iphdr) ||
213 		     skb->len < nh_ofs + ip_len))
214 		return -EINVAL;
215 
216 	skb_set_transport_header(skb, nh_ofs + ip_len);
217 	return 0;
218 }
219 
220 static bool tcphdr_ok(struct sk_buff *skb)
221 {
222 	int th_ofs = skb_transport_offset(skb);
223 	int tcp_len;
224 
225 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226 		return false;
227 
228 	tcp_len = tcp_hdrlen(skb);
229 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230 		     skb->len < th_ofs + tcp_len))
231 		return false;
232 
233 	return true;
234 }
235 
236 static bool udphdr_ok(struct sk_buff *skb)
237 {
238 	return pskb_may_pull(skb, skb_transport_offset(skb) +
239 				  sizeof(struct udphdr));
240 }
241 
242 static bool sctphdr_ok(struct sk_buff *skb)
243 {
244 	return pskb_may_pull(skb, skb_transport_offset(skb) +
245 				  sizeof(struct sctphdr));
246 }
247 
248 static bool icmphdr_ok(struct sk_buff *skb)
249 {
250 	return pskb_may_pull(skb, skb_transport_offset(skb) +
251 				  sizeof(struct icmphdr));
252 }
253 
254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256 	unsigned int nh_ofs = skb_network_offset(skb);
257 	unsigned int nh_len;
258 	int payload_ofs;
259 	struct ipv6hdr *nh;
260 	uint8_t nexthdr;
261 	__be16 frag_off;
262 	int err;
263 
264 	err = check_header(skb, nh_ofs + sizeof(*nh));
265 	if (unlikely(err))
266 		return err;
267 
268 	nh = ipv6_hdr(skb);
269 	nexthdr = nh->nexthdr;
270 	payload_ofs = (u8 *)(nh + 1) - skb->data;
271 
272 	key->ip.proto = NEXTHDR_NONE;
273 	key->ip.tos = ipv6_get_dsfield(nh);
274 	key->ip.ttl = nh->hop_limit;
275 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276 	key->ipv6.addr.src = nh->saddr;
277 	key->ipv6.addr.dst = nh->daddr;
278 
279 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
280 
281 	if (frag_off) {
282 		if (frag_off & htons(~0x7))
283 			key->ip.frag = OVS_FRAG_TYPE_LATER;
284 		else
285 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
286 	} else {
287 		key->ip.frag = OVS_FRAG_TYPE_NONE;
288 	}
289 
290 	/* Delayed handling of error in ipv6_skip_exthdr() as it
291 	 * always sets frag_off to a valid value which may be
292 	 * used to set key->ip.frag above.
293 	 */
294 	if (unlikely(payload_ofs < 0))
295 		return -EPROTO;
296 
297 	nh_len = payload_ofs - nh_ofs;
298 	skb_set_transport_header(skb, nh_ofs + nh_len);
299 	key->ip.proto = nexthdr;
300 	return nh_len;
301 }
302 
303 static bool icmp6hdr_ok(struct sk_buff *skb)
304 {
305 	return pskb_may_pull(skb, skb_transport_offset(skb) +
306 				  sizeof(struct icmp6hdr));
307 }
308 
309 /**
310  * Parse vlan tag from vlan header.
311  * Returns ERROR on memory error.
312  * Returns 0 if it encounters a non-vlan or incomplete packet.
313  * Returns 1 after successfully parsing vlan tag.
314  */
315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
316 			  bool untag_vlan)
317 {
318 	struct vlan_head *vh = (struct vlan_head *)skb->data;
319 
320 	if (likely(!eth_type_vlan(vh->tpid)))
321 		return 0;
322 
323 	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
324 		return 0;
325 
326 	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
327 				 sizeof(__be16))))
328 		return -ENOMEM;
329 
330 	vh = (struct vlan_head *)skb->data;
331 	key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
332 	key_vh->tpid = vh->tpid;
333 
334 	if (unlikely(untag_vlan)) {
335 		int offset = skb->data - skb_mac_header(skb);
336 		u16 tci;
337 		int err;
338 
339 		__skb_push(skb, offset);
340 		err = __skb_vlan_pop(skb, &tci);
341 		__skb_pull(skb, offset);
342 		if (err)
343 			return err;
344 		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
345 	} else {
346 		__skb_pull(skb, sizeof(struct vlan_head));
347 	}
348 	return 1;
349 }
350 
351 static void clear_vlan(struct sw_flow_key *key)
352 {
353 	key->eth.vlan.tci = 0;
354 	key->eth.vlan.tpid = 0;
355 	key->eth.cvlan.tci = 0;
356 	key->eth.cvlan.tpid = 0;
357 }
358 
359 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
360 {
361 	int res;
362 
363 	if (skb_vlan_tag_present(skb)) {
364 		key->eth.vlan.tci = htons(skb->vlan_tci);
365 		key->eth.vlan.tpid = skb->vlan_proto;
366 	} else {
367 		/* Parse outer vlan tag in the non-accelerated case. */
368 		res = parse_vlan_tag(skb, &key->eth.vlan, true);
369 		if (res <= 0)
370 			return res;
371 	}
372 
373 	/* Parse inner vlan tag. */
374 	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
375 	if (res <= 0)
376 		return res;
377 
378 	return 0;
379 }
380 
381 static __be16 parse_ethertype(struct sk_buff *skb)
382 {
383 	struct llc_snap_hdr {
384 		u8  dsap;  /* Always 0xAA */
385 		u8  ssap;  /* Always 0xAA */
386 		u8  ctrl;
387 		u8  oui[3];
388 		__be16 ethertype;
389 	};
390 	struct llc_snap_hdr *llc;
391 	__be16 proto;
392 
393 	proto = *(__be16 *) skb->data;
394 	__skb_pull(skb, sizeof(__be16));
395 
396 	if (eth_proto_is_802_3(proto))
397 		return proto;
398 
399 	if (skb->len < sizeof(struct llc_snap_hdr))
400 		return htons(ETH_P_802_2);
401 
402 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
403 		return htons(0);
404 
405 	llc = (struct llc_snap_hdr *) skb->data;
406 	if (llc->dsap != LLC_SAP_SNAP ||
407 	    llc->ssap != LLC_SAP_SNAP ||
408 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
409 		return htons(ETH_P_802_2);
410 
411 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
412 
413 	if (eth_proto_is_802_3(llc->ethertype))
414 		return llc->ethertype;
415 
416 	return htons(ETH_P_802_2);
417 }
418 
419 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
420 			int nh_len)
421 {
422 	struct icmp6hdr *icmp = icmp6_hdr(skb);
423 
424 	/* The ICMPv6 type and code fields use the 16-bit transport port
425 	 * fields, so we need to store them in 16-bit network byte order.
426 	 */
427 	key->tp.src = htons(icmp->icmp6_type);
428 	key->tp.dst = htons(icmp->icmp6_code);
429 	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
430 
431 	if (icmp->icmp6_code == 0 &&
432 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
433 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
434 		int icmp_len = skb->len - skb_transport_offset(skb);
435 		struct nd_msg *nd;
436 		int offset;
437 
438 		/* In order to process neighbor discovery options, we need the
439 		 * entire packet.
440 		 */
441 		if (unlikely(icmp_len < sizeof(*nd)))
442 			return 0;
443 
444 		if (unlikely(skb_linearize(skb)))
445 			return -ENOMEM;
446 
447 		nd = (struct nd_msg *)skb_transport_header(skb);
448 		key->ipv6.nd.target = nd->target;
449 
450 		icmp_len -= sizeof(*nd);
451 		offset = 0;
452 		while (icmp_len >= 8) {
453 			struct nd_opt_hdr *nd_opt =
454 				 (struct nd_opt_hdr *)(nd->opt + offset);
455 			int opt_len = nd_opt->nd_opt_len * 8;
456 
457 			if (unlikely(!opt_len || opt_len > icmp_len))
458 				return 0;
459 
460 			/* Store the link layer address if the appropriate
461 			 * option is provided.  It is considered an error if
462 			 * the same link layer option is specified twice.
463 			 */
464 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
465 			    && opt_len == 8) {
466 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
467 					goto invalid;
468 				ether_addr_copy(key->ipv6.nd.sll,
469 						&nd->opt[offset+sizeof(*nd_opt)]);
470 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
471 				   && opt_len == 8) {
472 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
473 					goto invalid;
474 				ether_addr_copy(key->ipv6.nd.tll,
475 						&nd->opt[offset+sizeof(*nd_opt)]);
476 			}
477 
478 			icmp_len -= opt_len;
479 			offset += opt_len;
480 		}
481 	}
482 
483 	return 0;
484 
485 invalid:
486 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
487 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
488 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
489 
490 	return 0;
491 }
492 
493 /**
494  * key_extract - extracts a flow key from an Ethernet frame.
495  * @skb: sk_buff that contains the frame, with skb->data pointing to the
496  * Ethernet header
497  * @key: output flow key
498  *
499  * The caller must ensure that skb->len >= ETH_HLEN.
500  *
501  * Returns 0 if successful, otherwise a negative errno value.
502  *
503  * Initializes @skb header fields as follows:
504  *
505  *    - skb->mac_header: the L2 header.
506  *
507  *    - skb->network_header: just past the L2 header, or just past the
508  *      VLAN header, to the first byte of the L2 payload.
509  *
510  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
511  *      on output, then just past the IP header, if one is present and
512  *      of a correct length, otherwise the same as skb->network_header.
513  *      For other key->eth.type values it is left untouched.
514  *
515  *    - skb->protocol: the type of the data starting at skb->network_header.
516  *      Equals to key->eth.type.
517  */
518 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
519 {
520 	int error;
521 	struct ethhdr *eth;
522 
523 	/* Flags are always used as part of stats */
524 	key->tp.flags = 0;
525 
526 	skb_reset_mac_header(skb);
527 
528 	/* Link layer. */
529 	clear_vlan(key);
530 	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
531 		if (unlikely(eth_type_vlan(skb->protocol)))
532 			return -EINVAL;
533 
534 		skb_reset_network_header(skb);
535 	} else {
536 		eth = eth_hdr(skb);
537 		ether_addr_copy(key->eth.src, eth->h_source);
538 		ether_addr_copy(key->eth.dst, eth->h_dest);
539 
540 		__skb_pull(skb, 2 * ETH_ALEN);
541 		/* We are going to push all headers that we pull, so no need to
542 		* update skb->csum here.
543 		*/
544 
545 		if (unlikely(parse_vlan(skb, key)))
546 			return -ENOMEM;
547 
548 		skb->protocol = parse_ethertype(skb);
549 		if (unlikely(skb->protocol == htons(0)))
550 			return -ENOMEM;
551 
552 		skb_reset_network_header(skb);
553 		__skb_push(skb, skb->data - skb_mac_header(skb));
554 	}
555 	skb_reset_mac_len(skb);
556 	key->eth.type = skb->protocol;
557 
558 	/* Network layer. */
559 	if (key->eth.type == htons(ETH_P_IP)) {
560 		struct iphdr *nh;
561 		__be16 offset;
562 
563 		error = check_iphdr(skb);
564 		if (unlikely(error)) {
565 			memset(&key->ip, 0, sizeof(key->ip));
566 			memset(&key->ipv4, 0, sizeof(key->ipv4));
567 			if (error == -EINVAL) {
568 				skb->transport_header = skb->network_header;
569 				error = 0;
570 			}
571 			return error;
572 		}
573 
574 		nh = ip_hdr(skb);
575 		key->ipv4.addr.src = nh->saddr;
576 		key->ipv4.addr.dst = nh->daddr;
577 
578 		key->ip.proto = nh->protocol;
579 		key->ip.tos = nh->tos;
580 		key->ip.ttl = nh->ttl;
581 
582 		offset = nh->frag_off & htons(IP_OFFSET);
583 		if (offset) {
584 			key->ip.frag = OVS_FRAG_TYPE_LATER;
585 			return 0;
586 		}
587 		if (nh->frag_off & htons(IP_MF) ||
588 			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
589 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
590 		else
591 			key->ip.frag = OVS_FRAG_TYPE_NONE;
592 
593 		/* Transport layer. */
594 		if (key->ip.proto == IPPROTO_TCP) {
595 			if (tcphdr_ok(skb)) {
596 				struct tcphdr *tcp = tcp_hdr(skb);
597 				key->tp.src = tcp->source;
598 				key->tp.dst = tcp->dest;
599 				key->tp.flags = TCP_FLAGS_BE16(tcp);
600 			} else {
601 				memset(&key->tp, 0, sizeof(key->tp));
602 			}
603 
604 		} else if (key->ip.proto == IPPROTO_UDP) {
605 			if (udphdr_ok(skb)) {
606 				struct udphdr *udp = udp_hdr(skb);
607 				key->tp.src = udp->source;
608 				key->tp.dst = udp->dest;
609 			} else {
610 				memset(&key->tp, 0, sizeof(key->tp));
611 			}
612 		} else if (key->ip.proto == IPPROTO_SCTP) {
613 			if (sctphdr_ok(skb)) {
614 				struct sctphdr *sctp = sctp_hdr(skb);
615 				key->tp.src = sctp->source;
616 				key->tp.dst = sctp->dest;
617 			} else {
618 				memset(&key->tp, 0, sizeof(key->tp));
619 			}
620 		} else if (key->ip.proto == IPPROTO_ICMP) {
621 			if (icmphdr_ok(skb)) {
622 				struct icmphdr *icmp = icmp_hdr(skb);
623 				/* The ICMP type and code fields use the 16-bit
624 				 * transport port fields, so we need to store
625 				 * them in 16-bit network byte order. */
626 				key->tp.src = htons(icmp->type);
627 				key->tp.dst = htons(icmp->code);
628 			} else {
629 				memset(&key->tp, 0, sizeof(key->tp));
630 			}
631 		}
632 
633 	} else if (key->eth.type == htons(ETH_P_ARP) ||
634 		   key->eth.type == htons(ETH_P_RARP)) {
635 		struct arp_eth_header *arp;
636 		bool arp_available = arphdr_ok(skb);
637 
638 		arp = (struct arp_eth_header *)skb_network_header(skb);
639 
640 		if (arp_available &&
641 		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
642 		    arp->ar_pro == htons(ETH_P_IP) &&
643 		    arp->ar_hln == ETH_ALEN &&
644 		    arp->ar_pln == 4) {
645 
646 			/* We only match on the lower 8 bits of the opcode. */
647 			if (ntohs(arp->ar_op) <= 0xff)
648 				key->ip.proto = ntohs(arp->ar_op);
649 			else
650 				key->ip.proto = 0;
651 
652 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
653 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
654 			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
655 			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
656 		} else {
657 			memset(&key->ip, 0, sizeof(key->ip));
658 			memset(&key->ipv4, 0, sizeof(key->ipv4));
659 		}
660 	} else if (eth_p_mpls(key->eth.type)) {
661 		size_t stack_len = MPLS_HLEN;
662 
663 		skb_set_inner_network_header(skb, skb->mac_len);
664 		while (1) {
665 			__be32 lse;
666 
667 			error = check_header(skb, skb->mac_len + stack_len);
668 			if (unlikely(error))
669 				return 0;
670 
671 			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
672 
673 			if (stack_len == MPLS_HLEN)
674 				memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
675 
676 			skb_set_inner_network_header(skb, skb->mac_len + stack_len);
677 			if (lse & htonl(MPLS_LS_S_MASK))
678 				break;
679 
680 			stack_len += MPLS_HLEN;
681 		}
682 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
683 		int nh_len;             /* IPv6 Header + Extensions */
684 
685 		nh_len = parse_ipv6hdr(skb, key);
686 		if (unlikely(nh_len < 0)) {
687 			switch (nh_len) {
688 			case -EINVAL:
689 				memset(&key->ip, 0, sizeof(key->ip));
690 				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
691 				/* fall-through */
692 			case -EPROTO:
693 				skb->transport_header = skb->network_header;
694 				error = 0;
695 				break;
696 			default:
697 				error = nh_len;
698 			}
699 			return error;
700 		}
701 
702 		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
703 			return 0;
704 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
705 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
706 
707 		/* Transport layer. */
708 		if (key->ip.proto == NEXTHDR_TCP) {
709 			if (tcphdr_ok(skb)) {
710 				struct tcphdr *tcp = tcp_hdr(skb);
711 				key->tp.src = tcp->source;
712 				key->tp.dst = tcp->dest;
713 				key->tp.flags = TCP_FLAGS_BE16(tcp);
714 			} else {
715 				memset(&key->tp, 0, sizeof(key->tp));
716 			}
717 		} else if (key->ip.proto == NEXTHDR_UDP) {
718 			if (udphdr_ok(skb)) {
719 				struct udphdr *udp = udp_hdr(skb);
720 				key->tp.src = udp->source;
721 				key->tp.dst = udp->dest;
722 			} else {
723 				memset(&key->tp, 0, sizeof(key->tp));
724 			}
725 		} else if (key->ip.proto == NEXTHDR_SCTP) {
726 			if (sctphdr_ok(skb)) {
727 				struct sctphdr *sctp = sctp_hdr(skb);
728 				key->tp.src = sctp->source;
729 				key->tp.dst = sctp->dest;
730 			} else {
731 				memset(&key->tp, 0, sizeof(key->tp));
732 			}
733 		} else if (key->ip.proto == NEXTHDR_ICMP) {
734 			if (icmp6hdr_ok(skb)) {
735 				error = parse_icmpv6(skb, key, nh_len);
736 				if (error)
737 					return error;
738 			} else {
739 				memset(&key->tp, 0, sizeof(key->tp));
740 			}
741 		}
742 	}
743 	return 0;
744 }
745 
746 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
747 {
748 	int res;
749 
750 	res = key_extract(skb, key);
751 	if (!res)
752 		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
753 
754 	return res;
755 }
756 
757 static int key_extract_mac_proto(struct sk_buff *skb)
758 {
759 	switch (skb->dev->type) {
760 	case ARPHRD_ETHER:
761 		return MAC_PROTO_ETHERNET;
762 	case ARPHRD_NONE:
763 		if (skb->protocol == htons(ETH_P_TEB))
764 			return MAC_PROTO_ETHERNET;
765 		return MAC_PROTO_NONE;
766 	}
767 	WARN_ON_ONCE(1);
768 	return -EINVAL;
769 }
770 
771 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
772 			 struct sk_buff *skb, struct sw_flow_key *key)
773 {
774 	int res, err;
775 
776 	/* Extract metadata from packet. */
777 	if (tun_info) {
778 		key->tun_proto = ip_tunnel_info_af(tun_info);
779 		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
780 
781 		if (tun_info->options_len) {
782 			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
783 						   8)) - 1
784 					> sizeof(key->tun_opts));
785 
786 			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
787 						tun_info);
788 			key->tun_opts_len = tun_info->options_len;
789 		} else {
790 			key->tun_opts_len = 0;
791 		}
792 	} else  {
793 		key->tun_proto = 0;
794 		key->tun_opts_len = 0;
795 		memset(&key->tun_key, 0, sizeof(key->tun_key));
796 	}
797 
798 	key->phy.priority = skb->priority;
799 	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
800 	key->phy.skb_mark = skb->mark;
801 	key->ovs_flow_hash = 0;
802 	res = key_extract_mac_proto(skb);
803 	if (res < 0)
804 		return res;
805 	key->mac_proto = res;
806 	key->recirc_id = 0;
807 
808 	err = key_extract(skb, key);
809 	if (!err)
810 		ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
811 	return err;
812 }
813 
814 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
815 				   struct sk_buff *skb,
816 				   struct sw_flow_key *key, bool log)
817 {
818 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
819 	u64 attrs = 0;
820 	int err;
821 
822 	err = parse_flow_nlattrs(attr, a, &attrs, log);
823 	if (err)
824 		return -EINVAL;
825 
826 	/* Extract metadata from netlink attributes. */
827 	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
828 	if (err)
829 		return err;
830 
831 	/* key_extract assumes that skb->protocol is set-up for
832 	 * layer 3 packets which is the case for other callers,
833 	 * in particular packets received from the network stack.
834 	 * Here the correct value can be set from the metadata
835 	 * extracted above.
836 	 * For L2 packet key eth type would be zero. skb protocol
837 	 * would be set to correct value later during key-extact.
838 	 */
839 
840 	skb->protocol = key->eth.type;
841 	err = key_extract(skb, key);
842 	if (err)
843 		return err;
844 
845 	/* Check that we have conntrack original direction tuple metadata only
846 	 * for packets for which it makes sense.  Otherwise the key may be
847 	 * corrupted due to overlapping key fields.
848 	 */
849 	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
850 	    key->eth.type != htons(ETH_P_IP))
851 		return -EINVAL;
852 	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
853 	    (key->eth.type != htons(ETH_P_IPV6) ||
854 	     sw_flow_key_is_nd(key)))
855 		return -EINVAL;
856 
857 	return 0;
858 }
859