1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/mpls.h> 36 #include <linux/sctp.h> 37 #include <linux/smp.h> 38 #include <linux/tcp.h> 39 #include <linux/udp.h> 40 #include <linux/icmp.h> 41 #include <linux/icmpv6.h> 42 #include <linux/rculist.h> 43 #include <net/ip.h> 44 #include <net/ip_tunnels.h> 45 #include <net/ipv6.h> 46 #include <net/mpls.h> 47 #include <net/ndisc.h> 48 49 #include "conntrack.h" 50 #include "datapath.h" 51 #include "flow.h" 52 #include "flow_netlink.h" 53 #include "vport.h" 54 55 u64 ovs_flow_used_time(unsigned long flow_jiffies) 56 { 57 struct timespec cur_ts; 58 u64 cur_ms, idle_ms; 59 60 ktime_get_ts(&cur_ts); 61 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 62 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 63 cur_ts.tv_nsec / NSEC_PER_MSEC; 64 65 return cur_ms - idle_ms; 66 } 67 68 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 69 70 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 71 const struct sk_buff *skb) 72 { 73 struct flow_stats *stats; 74 int node = numa_node_id(); 75 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 76 77 stats = rcu_dereference(flow->stats[node]); 78 79 /* Check if already have node-specific stats. */ 80 if (likely(stats)) { 81 spin_lock(&stats->lock); 82 /* Mark if we write on the pre-allocated stats. */ 83 if (node == 0 && unlikely(flow->stats_last_writer != node)) 84 flow->stats_last_writer = node; 85 } else { 86 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 87 spin_lock(&stats->lock); 88 89 /* If the current NUMA-node is the only writer on the 90 * pre-allocated stats keep using them. 91 */ 92 if (unlikely(flow->stats_last_writer != node)) { 93 /* A previous locker may have already allocated the 94 * stats, so we need to check again. If node-specific 95 * stats were already allocated, we update the pre- 96 * allocated stats as we have already locked them. 97 */ 98 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 99 && likely(!rcu_access_pointer(flow->stats[node]))) { 100 /* Try to allocate node-specific stats. */ 101 struct flow_stats *new_stats; 102 103 new_stats = 104 kmem_cache_alloc_node(flow_stats_cache, 105 GFP_NOWAIT | 106 __GFP_THISNODE | 107 __GFP_NOWARN | 108 __GFP_NOMEMALLOC, 109 node); 110 if (likely(new_stats)) { 111 new_stats->used = jiffies; 112 new_stats->packet_count = 1; 113 new_stats->byte_count = len; 114 new_stats->tcp_flags = tcp_flags; 115 spin_lock_init(&new_stats->lock); 116 117 rcu_assign_pointer(flow->stats[node], 118 new_stats); 119 goto unlock; 120 } 121 } 122 flow->stats_last_writer = node; 123 } 124 } 125 126 stats->used = jiffies; 127 stats->packet_count++; 128 stats->byte_count += len; 129 stats->tcp_flags |= tcp_flags; 130 unlock: 131 spin_unlock(&stats->lock); 132 } 133 134 /* Must be called with rcu_read_lock or ovs_mutex. */ 135 void ovs_flow_stats_get(const struct sw_flow *flow, 136 struct ovs_flow_stats *ovs_stats, 137 unsigned long *used, __be16 *tcp_flags) 138 { 139 int node; 140 141 *used = 0; 142 *tcp_flags = 0; 143 memset(ovs_stats, 0, sizeof(*ovs_stats)); 144 145 for_each_node(node) { 146 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 147 148 if (stats) { 149 /* Local CPU may write on non-local stats, so we must 150 * block bottom-halves here. 151 */ 152 spin_lock_bh(&stats->lock); 153 if (!*used || time_after(stats->used, *used)) 154 *used = stats->used; 155 *tcp_flags |= stats->tcp_flags; 156 ovs_stats->n_packets += stats->packet_count; 157 ovs_stats->n_bytes += stats->byte_count; 158 spin_unlock_bh(&stats->lock); 159 } 160 } 161 } 162 163 /* Called with ovs_mutex. */ 164 void ovs_flow_stats_clear(struct sw_flow *flow) 165 { 166 int node; 167 168 for_each_node(node) { 169 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 170 171 if (stats) { 172 spin_lock_bh(&stats->lock); 173 stats->used = 0; 174 stats->packet_count = 0; 175 stats->byte_count = 0; 176 stats->tcp_flags = 0; 177 spin_unlock_bh(&stats->lock); 178 } 179 } 180 } 181 182 static int check_header(struct sk_buff *skb, int len) 183 { 184 if (unlikely(skb->len < len)) 185 return -EINVAL; 186 if (unlikely(!pskb_may_pull(skb, len))) 187 return -ENOMEM; 188 return 0; 189 } 190 191 static bool arphdr_ok(struct sk_buff *skb) 192 { 193 return pskb_may_pull(skb, skb_network_offset(skb) + 194 sizeof(struct arp_eth_header)); 195 } 196 197 static int check_iphdr(struct sk_buff *skb) 198 { 199 unsigned int nh_ofs = skb_network_offset(skb); 200 unsigned int ip_len; 201 int err; 202 203 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 204 if (unlikely(err)) 205 return err; 206 207 ip_len = ip_hdrlen(skb); 208 if (unlikely(ip_len < sizeof(struct iphdr) || 209 skb->len < nh_ofs + ip_len)) 210 return -EINVAL; 211 212 skb_set_transport_header(skb, nh_ofs + ip_len); 213 return 0; 214 } 215 216 static bool tcphdr_ok(struct sk_buff *skb) 217 { 218 int th_ofs = skb_transport_offset(skb); 219 int tcp_len; 220 221 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 222 return false; 223 224 tcp_len = tcp_hdrlen(skb); 225 if (unlikely(tcp_len < sizeof(struct tcphdr) || 226 skb->len < th_ofs + tcp_len)) 227 return false; 228 229 return true; 230 } 231 232 static bool udphdr_ok(struct sk_buff *skb) 233 { 234 return pskb_may_pull(skb, skb_transport_offset(skb) + 235 sizeof(struct udphdr)); 236 } 237 238 static bool sctphdr_ok(struct sk_buff *skb) 239 { 240 return pskb_may_pull(skb, skb_transport_offset(skb) + 241 sizeof(struct sctphdr)); 242 } 243 244 static bool icmphdr_ok(struct sk_buff *skb) 245 { 246 return pskb_may_pull(skb, skb_transport_offset(skb) + 247 sizeof(struct icmphdr)); 248 } 249 250 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 251 { 252 unsigned int nh_ofs = skb_network_offset(skb); 253 unsigned int nh_len; 254 int payload_ofs; 255 struct ipv6hdr *nh; 256 uint8_t nexthdr; 257 __be16 frag_off; 258 int err; 259 260 err = check_header(skb, nh_ofs + sizeof(*nh)); 261 if (unlikely(err)) 262 return err; 263 264 nh = ipv6_hdr(skb); 265 nexthdr = nh->nexthdr; 266 payload_ofs = (u8 *)(nh + 1) - skb->data; 267 268 key->ip.proto = NEXTHDR_NONE; 269 key->ip.tos = ipv6_get_dsfield(nh); 270 key->ip.ttl = nh->hop_limit; 271 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 272 key->ipv6.addr.src = nh->saddr; 273 key->ipv6.addr.dst = nh->daddr; 274 275 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 276 277 if (frag_off) { 278 if (frag_off & htons(~0x7)) 279 key->ip.frag = OVS_FRAG_TYPE_LATER; 280 else 281 key->ip.frag = OVS_FRAG_TYPE_FIRST; 282 } else { 283 key->ip.frag = OVS_FRAG_TYPE_NONE; 284 } 285 286 /* Delayed handling of error in ipv6_skip_exthdr() as it 287 * always sets frag_off to a valid value which may be 288 * used to set key->ip.frag above. 289 */ 290 if (unlikely(payload_ofs < 0)) 291 return -EPROTO; 292 293 nh_len = payload_ofs - nh_ofs; 294 skb_set_transport_header(skb, nh_ofs + nh_len); 295 key->ip.proto = nexthdr; 296 return nh_len; 297 } 298 299 static bool icmp6hdr_ok(struct sk_buff *skb) 300 { 301 return pskb_may_pull(skb, skb_transport_offset(skb) + 302 sizeof(struct icmp6hdr)); 303 } 304 305 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 306 { 307 struct qtag_prefix { 308 __be16 eth_type; /* ETH_P_8021Q */ 309 __be16 tci; 310 }; 311 struct qtag_prefix *qp; 312 313 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 314 return 0; 315 316 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 317 sizeof(__be16)))) 318 return -ENOMEM; 319 320 qp = (struct qtag_prefix *) skb->data; 321 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 322 __skb_pull(skb, sizeof(struct qtag_prefix)); 323 324 return 0; 325 } 326 327 static __be16 parse_ethertype(struct sk_buff *skb) 328 { 329 struct llc_snap_hdr { 330 u8 dsap; /* Always 0xAA */ 331 u8 ssap; /* Always 0xAA */ 332 u8 ctrl; 333 u8 oui[3]; 334 __be16 ethertype; 335 }; 336 struct llc_snap_hdr *llc; 337 __be16 proto; 338 339 proto = *(__be16 *) skb->data; 340 __skb_pull(skb, sizeof(__be16)); 341 342 if (eth_proto_is_802_3(proto)) 343 return proto; 344 345 if (skb->len < sizeof(struct llc_snap_hdr)) 346 return htons(ETH_P_802_2); 347 348 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 349 return htons(0); 350 351 llc = (struct llc_snap_hdr *) skb->data; 352 if (llc->dsap != LLC_SAP_SNAP || 353 llc->ssap != LLC_SAP_SNAP || 354 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 355 return htons(ETH_P_802_2); 356 357 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 358 359 if (eth_proto_is_802_3(llc->ethertype)) 360 return llc->ethertype; 361 362 return htons(ETH_P_802_2); 363 } 364 365 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 366 int nh_len) 367 { 368 struct icmp6hdr *icmp = icmp6_hdr(skb); 369 370 /* The ICMPv6 type and code fields use the 16-bit transport port 371 * fields, so we need to store them in 16-bit network byte order. 372 */ 373 key->tp.src = htons(icmp->icmp6_type); 374 key->tp.dst = htons(icmp->icmp6_code); 375 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 376 377 if (icmp->icmp6_code == 0 && 378 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 379 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 380 int icmp_len = skb->len - skb_transport_offset(skb); 381 struct nd_msg *nd; 382 int offset; 383 384 /* In order to process neighbor discovery options, we need the 385 * entire packet. 386 */ 387 if (unlikely(icmp_len < sizeof(*nd))) 388 return 0; 389 390 if (unlikely(skb_linearize(skb))) 391 return -ENOMEM; 392 393 nd = (struct nd_msg *)skb_transport_header(skb); 394 key->ipv6.nd.target = nd->target; 395 396 icmp_len -= sizeof(*nd); 397 offset = 0; 398 while (icmp_len >= 8) { 399 struct nd_opt_hdr *nd_opt = 400 (struct nd_opt_hdr *)(nd->opt + offset); 401 int opt_len = nd_opt->nd_opt_len * 8; 402 403 if (unlikely(!opt_len || opt_len > icmp_len)) 404 return 0; 405 406 /* Store the link layer address if the appropriate 407 * option is provided. It is considered an error if 408 * the same link layer option is specified twice. 409 */ 410 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 411 && opt_len == 8) { 412 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 413 goto invalid; 414 ether_addr_copy(key->ipv6.nd.sll, 415 &nd->opt[offset+sizeof(*nd_opt)]); 416 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 417 && opt_len == 8) { 418 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 419 goto invalid; 420 ether_addr_copy(key->ipv6.nd.tll, 421 &nd->opt[offset+sizeof(*nd_opt)]); 422 } 423 424 icmp_len -= opt_len; 425 offset += opt_len; 426 } 427 } 428 429 return 0; 430 431 invalid: 432 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 433 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 434 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 435 436 return 0; 437 } 438 439 /** 440 * key_extract - extracts a flow key from an Ethernet frame. 441 * @skb: sk_buff that contains the frame, with skb->data pointing to the 442 * Ethernet header 443 * @key: output flow key 444 * 445 * The caller must ensure that skb->len >= ETH_HLEN. 446 * 447 * Returns 0 if successful, otherwise a negative errno value. 448 * 449 * Initializes @skb header pointers as follows: 450 * 451 * - skb->mac_header: the Ethernet header. 452 * 453 * - skb->network_header: just past the Ethernet header, or just past the 454 * VLAN header, to the first byte of the Ethernet payload. 455 * 456 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 457 * on output, then just past the IP header, if one is present and 458 * of a correct length, otherwise the same as skb->network_header. 459 * For other key->eth.type values it is left untouched. 460 */ 461 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 462 { 463 int error; 464 struct ethhdr *eth; 465 466 /* Flags are always used as part of stats */ 467 key->tp.flags = 0; 468 469 skb_reset_mac_header(skb); 470 471 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 472 * header in the linear data area. 473 */ 474 eth = eth_hdr(skb); 475 ether_addr_copy(key->eth.src, eth->h_source); 476 ether_addr_copy(key->eth.dst, eth->h_dest); 477 478 __skb_pull(skb, 2 * ETH_ALEN); 479 /* We are going to push all headers that we pull, so no need to 480 * update skb->csum here. 481 */ 482 483 key->eth.tci = 0; 484 if (skb_vlan_tag_present(skb)) 485 key->eth.tci = htons(skb->vlan_tci); 486 else if (eth->h_proto == htons(ETH_P_8021Q)) 487 if (unlikely(parse_vlan(skb, key))) 488 return -ENOMEM; 489 490 key->eth.type = parse_ethertype(skb); 491 if (unlikely(key->eth.type == htons(0))) 492 return -ENOMEM; 493 494 skb_reset_network_header(skb); 495 skb_reset_mac_len(skb); 496 __skb_push(skb, skb->data - skb_mac_header(skb)); 497 498 /* Network layer. */ 499 if (key->eth.type == htons(ETH_P_IP)) { 500 struct iphdr *nh; 501 __be16 offset; 502 503 error = check_iphdr(skb); 504 if (unlikely(error)) { 505 memset(&key->ip, 0, sizeof(key->ip)); 506 memset(&key->ipv4, 0, sizeof(key->ipv4)); 507 if (error == -EINVAL) { 508 skb->transport_header = skb->network_header; 509 error = 0; 510 } 511 return error; 512 } 513 514 nh = ip_hdr(skb); 515 key->ipv4.addr.src = nh->saddr; 516 key->ipv4.addr.dst = nh->daddr; 517 518 key->ip.proto = nh->protocol; 519 key->ip.tos = nh->tos; 520 key->ip.ttl = nh->ttl; 521 522 offset = nh->frag_off & htons(IP_OFFSET); 523 if (offset) { 524 key->ip.frag = OVS_FRAG_TYPE_LATER; 525 return 0; 526 } 527 if (nh->frag_off & htons(IP_MF) || 528 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 529 key->ip.frag = OVS_FRAG_TYPE_FIRST; 530 else 531 key->ip.frag = OVS_FRAG_TYPE_NONE; 532 533 /* Transport layer. */ 534 if (key->ip.proto == IPPROTO_TCP) { 535 if (tcphdr_ok(skb)) { 536 struct tcphdr *tcp = tcp_hdr(skb); 537 key->tp.src = tcp->source; 538 key->tp.dst = tcp->dest; 539 key->tp.flags = TCP_FLAGS_BE16(tcp); 540 } else { 541 memset(&key->tp, 0, sizeof(key->tp)); 542 } 543 544 } else if (key->ip.proto == IPPROTO_UDP) { 545 if (udphdr_ok(skb)) { 546 struct udphdr *udp = udp_hdr(skb); 547 key->tp.src = udp->source; 548 key->tp.dst = udp->dest; 549 } else { 550 memset(&key->tp, 0, sizeof(key->tp)); 551 } 552 } else if (key->ip.proto == IPPROTO_SCTP) { 553 if (sctphdr_ok(skb)) { 554 struct sctphdr *sctp = sctp_hdr(skb); 555 key->tp.src = sctp->source; 556 key->tp.dst = sctp->dest; 557 } else { 558 memset(&key->tp, 0, sizeof(key->tp)); 559 } 560 } else if (key->ip.proto == IPPROTO_ICMP) { 561 if (icmphdr_ok(skb)) { 562 struct icmphdr *icmp = icmp_hdr(skb); 563 /* The ICMP type and code fields use the 16-bit 564 * transport port fields, so we need to store 565 * them in 16-bit network byte order. */ 566 key->tp.src = htons(icmp->type); 567 key->tp.dst = htons(icmp->code); 568 } else { 569 memset(&key->tp, 0, sizeof(key->tp)); 570 } 571 } 572 573 } else if (key->eth.type == htons(ETH_P_ARP) || 574 key->eth.type == htons(ETH_P_RARP)) { 575 struct arp_eth_header *arp; 576 bool arp_available = arphdr_ok(skb); 577 578 arp = (struct arp_eth_header *)skb_network_header(skb); 579 580 if (arp_available && 581 arp->ar_hrd == htons(ARPHRD_ETHER) && 582 arp->ar_pro == htons(ETH_P_IP) && 583 arp->ar_hln == ETH_ALEN && 584 arp->ar_pln == 4) { 585 586 /* We only match on the lower 8 bits of the opcode. */ 587 if (ntohs(arp->ar_op) <= 0xff) 588 key->ip.proto = ntohs(arp->ar_op); 589 else 590 key->ip.proto = 0; 591 592 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 593 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 594 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 595 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 596 } else { 597 memset(&key->ip, 0, sizeof(key->ip)); 598 memset(&key->ipv4, 0, sizeof(key->ipv4)); 599 } 600 } else if (eth_p_mpls(key->eth.type)) { 601 size_t stack_len = MPLS_HLEN; 602 603 /* In the presence of an MPLS label stack the end of the L2 604 * header and the beginning of the L3 header differ. 605 * 606 * Advance network_header to the beginning of the L3 607 * header. mac_len corresponds to the end of the L2 header. 608 */ 609 while (1) { 610 __be32 lse; 611 612 error = check_header(skb, skb->mac_len + stack_len); 613 if (unlikely(error)) 614 return 0; 615 616 memcpy(&lse, skb_network_header(skb), MPLS_HLEN); 617 618 if (stack_len == MPLS_HLEN) 619 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 620 621 skb_set_network_header(skb, skb->mac_len + stack_len); 622 if (lse & htonl(MPLS_LS_S_MASK)) 623 break; 624 625 stack_len += MPLS_HLEN; 626 } 627 } else if (key->eth.type == htons(ETH_P_IPV6)) { 628 int nh_len; /* IPv6 Header + Extensions */ 629 630 nh_len = parse_ipv6hdr(skb, key); 631 if (unlikely(nh_len < 0)) { 632 switch (nh_len) { 633 case -EINVAL: 634 memset(&key->ip, 0, sizeof(key->ip)); 635 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 636 /* fall-through */ 637 case -EPROTO: 638 skb->transport_header = skb->network_header; 639 error = 0; 640 break; 641 default: 642 error = nh_len; 643 } 644 return error; 645 } 646 647 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 648 return 0; 649 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 650 key->ip.frag = OVS_FRAG_TYPE_FIRST; 651 652 /* Transport layer. */ 653 if (key->ip.proto == NEXTHDR_TCP) { 654 if (tcphdr_ok(skb)) { 655 struct tcphdr *tcp = tcp_hdr(skb); 656 key->tp.src = tcp->source; 657 key->tp.dst = tcp->dest; 658 key->tp.flags = TCP_FLAGS_BE16(tcp); 659 } else { 660 memset(&key->tp, 0, sizeof(key->tp)); 661 } 662 } else if (key->ip.proto == NEXTHDR_UDP) { 663 if (udphdr_ok(skb)) { 664 struct udphdr *udp = udp_hdr(skb); 665 key->tp.src = udp->source; 666 key->tp.dst = udp->dest; 667 } else { 668 memset(&key->tp, 0, sizeof(key->tp)); 669 } 670 } else if (key->ip.proto == NEXTHDR_SCTP) { 671 if (sctphdr_ok(skb)) { 672 struct sctphdr *sctp = sctp_hdr(skb); 673 key->tp.src = sctp->source; 674 key->tp.dst = sctp->dest; 675 } else { 676 memset(&key->tp, 0, sizeof(key->tp)); 677 } 678 } else if (key->ip.proto == NEXTHDR_ICMP) { 679 if (icmp6hdr_ok(skb)) { 680 error = parse_icmpv6(skb, key, nh_len); 681 if (error) 682 return error; 683 } else { 684 memset(&key->tp, 0, sizeof(key->tp)); 685 } 686 } 687 } 688 return 0; 689 } 690 691 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 692 { 693 return key_extract(skb, key); 694 } 695 696 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 697 struct sk_buff *skb, struct sw_flow_key *key) 698 { 699 /* Extract metadata from packet. */ 700 if (tun_info) { 701 if (ip_tunnel_info_af(tun_info) != AF_INET) 702 return -EINVAL; 703 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 704 705 if (tun_info->options) { 706 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 707 8)) - 1 708 > sizeof(key->tun_opts)); 709 memcpy(TUN_METADATA_OPTS(key, tun_info->options_len), 710 tun_info->options, tun_info->options_len); 711 key->tun_opts_len = tun_info->options_len; 712 } else { 713 key->tun_opts_len = 0; 714 } 715 } else { 716 key->tun_opts_len = 0; 717 memset(&key->tun_key, 0, sizeof(key->tun_key)); 718 } 719 720 key->phy.priority = skb->priority; 721 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 722 key->phy.skb_mark = skb->mark; 723 ovs_ct_fill_key(skb, key); 724 key->ovs_flow_hash = 0; 725 key->recirc_id = 0; 726 727 return key_extract(skb, key); 728 } 729 730 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 731 struct sk_buff *skb, 732 struct sw_flow_key *key, bool log) 733 { 734 int err; 735 736 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE); 737 738 /* Extract metadata from netlink attributes. */ 739 err = ovs_nla_get_flow_metadata(net, attr, key, log); 740 if (err) 741 return err; 742 743 return key_extract(skb, key); 744 } 745