1 /* 2 * Copyright (c) 2007-2011 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include "flow.h" 20 #include "datapath.h" 21 #include <linux/uaccess.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_vlan.h> 26 #include <net/llc_pdu.h> 27 #include <linux/kernel.h> 28 #include <linux/jhash.h> 29 #include <linux/jiffies.h> 30 #include <linux/llc.h> 31 #include <linux/module.h> 32 #include <linux/in.h> 33 #include <linux/rcupdate.h> 34 #include <linux/if_arp.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ipv6.h> 44 #include <net/ndisc.h> 45 46 static struct kmem_cache *flow_cache; 47 48 static int check_header(struct sk_buff *skb, int len) 49 { 50 if (unlikely(skb->len < len)) 51 return -EINVAL; 52 if (unlikely(!pskb_may_pull(skb, len))) 53 return -ENOMEM; 54 return 0; 55 } 56 57 static bool arphdr_ok(struct sk_buff *skb) 58 { 59 return pskb_may_pull(skb, skb_network_offset(skb) + 60 sizeof(struct arp_eth_header)); 61 } 62 63 static int check_iphdr(struct sk_buff *skb) 64 { 65 unsigned int nh_ofs = skb_network_offset(skb); 66 unsigned int ip_len; 67 int err; 68 69 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 70 if (unlikely(err)) 71 return err; 72 73 ip_len = ip_hdrlen(skb); 74 if (unlikely(ip_len < sizeof(struct iphdr) || 75 skb->len < nh_ofs + ip_len)) 76 return -EINVAL; 77 78 skb_set_transport_header(skb, nh_ofs + ip_len); 79 return 0; 80 } 81 82 static bool tcphdr_ok(struct sk_buff *skb) 83 { 84 int th_ofs = skb_transport_offset(skb); 85 int tcp_len; 86 87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 88 return false; 89 90 tcp_len = tcp_hdrlen(skb); 91 if (unlikely(tcp_len < sizeof(struct tcphdr) || 92 skb->len < th_ofs + tcp_len)) 93 return false; 94 95 return true; 96 } 97 98 static bool udphdr_ok(struct sk_buff *skb) 99 { 100 return pskb_may_pull(skb, skb_transport_offset(skb) + 101 sizeof(struct udphdr)); 102 } 103 104 static bool icmphdr_ok(struct sk_buff *skb) 105 { 106 return pskb_may_pull(skb, skb_transport_offset(skb) + 107 sizeof(struct icmphdr)); 108 } 109 110 u64 ovs_flow_used_time(unsigned long flow_jiffies) 111 { 112 struct timespec cur_ts; 113 u64 cur_ms, idle_ms; 114 115 ktime_get_ts(&cur_ts); 116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 118 cur_ts.tv_nsec / NSEC_PER_MSEC; 119 120 return cur_ms - idle_ms; 121 } 122 123 #define SW_FLOW_KEY_OFFSET(field) \ 124 (offsetof(struct sw_flow_key, field) + \ 125 FIELD_SIZEOF(struct sw_flow_key, field)) 126 127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, 128 int *key_lenp) 129 { 130 unsigned int nh_ofs = skb_network_offset(skb); 131 unsigned int nh_len; 132 int payload_ofs; 133 struct ipv6hdr *nh; 134 uint8_t nexthdr; 135 __be16 frag_off; 136 int err; 137 138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); 139 140 err = check_header(skb, nh_ofs + sizeof(*nh)); 141 if (unlikely(err)) 142 return err; 143 144 nh = ipv6_hdr(skb); 145 nexthdr = nh->nexthdr; 146 payload_ofs = (u8 *)(nh + 1) - skb->data; 147 148 key->ip.proto = NEXTHDR_NONE; 149 key->ip.tos = ipv6_get_dsfield(nh); 150 key->ip.ttl = nh->hop_limit; 151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 152 key->ipv6.addr.src = nh->saddr; 153 key->ipv6.addr.dst = nh->daddr; 154 155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 156 if (unlikely(payload_ofs < 0)) 157 return -EINVAL; 158 159 if (frag_off) { 160 if (frag_off & htons(~0x7)) 161 key->ip.frag = OVS_FRAG_TYPE_LATER; 162 else 163 key->ip.frag = OVS_FRAG_TYPE_FIRST; 164 } 165 166 nh_len = payload_ofs - nh_ofs; 167 skb_set_transport_header(skb, nh_ofs + nh_len); 168 key->ip.proto = nexthdr; 169 return nh_len; 170 } 171 172 static bool icmp6hdr_ok(struct sk_buff *skb) 173 { 174 return pskb_may_pull(skb, skb_transport_offset(skb) + 175 sizeof(struct icmp6hdr)); 176 } 177 178 #define TCP_FLAGS_OFFSET 13 179 #define TCP_FLAG_MASK 0x3f 180 181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) 182 { 183 u8 tcp_flags = 0; 184 185 if ((flow->key.eth.type == htons(ETH_P_IP) || 186 flow->key.eth.type == htons(ETH_P_IPV6)) && 187 flow->key.ip.proto == IPPROTO_TCP && 188 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { 189 u8 *tcp = (u8 *)tcp_hdr(skb); 190 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; 191 } 192 193 spin_lock(&flow->lock); 194 flow->used = jiffies; 195 flow->packet_count++; 196 flow->byte_count += skb->len; 197 flow->tcp_flags |= tcp_flags; 198 spin_unlock(&flow->lock); 199 } 200 201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) 202 { 203 int actions_len = nla_len(actions); 204 struct sw_flow_actions *sfa; 205 206 /* At least DP_MAX_PORTS actions are required to be able to flood a 207 * packet to every port. Factor of 2 allows for setting VLAN tags, 208 * etc. */ 209 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) 210 return ERR_PTR(-EINVAL); 211 212 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); 213 if (!sfa) 214 return ERR_PTR(-ENOMEM); 215 216 sfa->actions_len = actions_len; 217 memcpy(sfa->actions, nla_data(actions), actions_len); 218 return sfa; 219 } 220 221 struct sw_flow *ovs_flow_alloc(void) 222 { 223 struct sw_flow *flow; 224 225 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); 226 if (!flow) 227 return ERR_PTR(-ENOMEM); 228 229 spin_lock_init(&flow->lock); 230 flow->sf_acts = NULL; 231 232 return flow; 233 } 234 235 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) 236 { 237 hash = jhash_1word(hash, table->hash_seed); 238 return flex_array_get(table->buckets, 239 (hash & (table->n_buckets - 1))); 240 } 241 242 static struct flex_array *alloc_buckets(unsigned int n_buckets) 243 { 244 struct flex_array *buckets; 245 int i, err; 246 247 buckets = flex_array_alloc(sizeof(struct hlist_head *), 248 n_buckets, GFP_KERNEL); 249 if (!buckets) 250 return NULL; 251 252 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); 253 if (err) { 254 flex_array_free(buckets); 255 return NULL; 256 } 257 258 for (i = 0; i < n_buckets; i++) 259 INIT_HLIST_HEAD((struct hlist_head *) 260 flex_array_get(buckets, i)); 261 262 return buckets; 263 } 264 265 static void free_buckets(struct flex_array *buckets) 266 { 267 flex_array_free(buckets); 268 } 269 270 struct flow_table *ovs_flow_tbl_alloc(int new_size) 271 { 272 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); 273 274 if (!table) 275 return NULL; 276 277 table->buckets = alloc_buckets(new_size); 278 279 if (!table->buckets) { 280 kfree(table); 281 return NULL; 282 } 283 table->n_buckets = new_size; 284 table->count = 0; 285 table->node_ver = 0; 286 table->keep_flows = false; 287 get_random_bytes(&table->hash_seed, sizeof(u32)); 288 289 return table; 290 } 291 292 void ovs_flow_tbl_destroy(struct flow_table *table) 293 { 294 int i; 295 296 if (!table) 297 return; 298 299 if (table->keep_flows) 300 goto skip_flows; 301 302 for (i = 0; i < table->n_buckets; i++) { 303 struct sw_flow *flow; 304 struct hlist_head *head = flex_array_get(table->buckets, i); 305 struct hlist_node *node, *n; 306 int ver = table->node_ver; 307 308 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { 309 hlist_del_rcu(&flow->hash_node[ver]); 310 ovs_flow_free(flow); 311 } 312 } 313 314 skip_flows: 315 free_buckets(table->buckets); 316 kfree(table); 317 } 318 319 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) 320 { 321 struct flow_table *table = container_of(rcu, struct flow_table, rcu); 322 323 ovs_flow_tbl_destroy(table); 324 } 325 326 void ovs_flow_tbl_deferred_destroy(struct flow_table *table) 327 { 328 if (!table) 329 return; 330 331 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); 332 } 333 334 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) 335 { 336 struct sw_flow *flow; 337 struct hlist_head *head; 338 struct hlist_node *n; 339 int ver; 340 int i; 341 342 ver = table->node_ver; 343 while (*bucket < table->n_buckets) { 344 i = 0; 345 head = flex_array_get(table->buckets, *bucket); 346 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { 347 if (i < *last) { 348 i++; 349 continue; 350 } 351 *last = i + 1; 352 return flow; 353 } 354 (*bucket)++; 355 *last = 0; 356 } 357 358 return NULL; 359 } 360 361 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) 362 { 363 int old_ver; 364 int i; 365 366 old_ver = old->node_ver; 367 new->node_ver = !old_ver; 368 369 /* Insert in new table. */ 370 for (i = 0; i < old->n_buckets; i++) { 371 struct sw_flow *flow; 372 struct hlist_head *head; 373 struct hlist_node *n; 374 375 head = flex_array_get(old->buckets, i); 376 377 hlist_for_each_entry(flow, n, head, hash_node[old_ver]) 378 ovs_flow_tbl_insert(new, flow); 379 } 380 old->keep_flows = true; 381 } 382 383 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) 384 { 385 struct flow_table *new_table; 386 387 new_table = ovs_flow_tbl_alloc(n_buckets); 388 if (!new_table) 389 return ERR_PTR(-ENOMEM); 390 391 flow_table_copy_flows(table, new_table); 392 393 return new_table; 394 } 395 396 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) 397 { 398 return __flow_tbl_rehash(table, table->n_buckets); 399 } 400 401 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) 402 { 403 return __flow_tbl_rehash(table, table->n_buckets * 2); 404 } 405 406 void ovs_flow_free(struct sw_flow *flow) 407 { 408 if (unlikely(!flow)) 409 return; 410 411 kfree((struct sf_flow_acts __force *)flow->sf_acts); 412 kmem_cache_free(flow_cache, flow); 413 } 414 415 /* RCU callback used by ovs_flow_deferred_free. */ 416 static void rcu_free_flow_callback(struct rcu_head *rcu) 417 { 418 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); 419 420 ovs_flow_free(flow); 421 } 422 423 /* Schedules 'flow' to be freed after the next RCU grace period. 424 * The caller must hold rcu_read_lock for this to be sensible. */ 425 void ovs_flow_deferred_free(struct sw_flow *flow) 426 { 427 call_rcu(&flow->rcu, rcu_free_flow_callback); 428 } 429 430 /* RCU callback used by ovs_flow_deferred_free_acts. */ 431 static void rcu_free_acts_callback(struct rcu_head *rcu) 432 { 433 struct sw_flow_actions *sf_acts = container_of(rcu, 434 struct sw_flow_actions, rcu); 435 kfree(sf_acts); 436 } 437 438 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 439 * The caller must hold rcu_read_lock for this to be sensible. */ 440 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) 441 { 442 call_rcu(&sf_acts->rcu, rcu_free_acts_callback); 443 } 444 445 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 446 { 447 struct qtag_prefix { 448 __be16 eth_type; /* ETH_P_8021Q */ 449 __be16 tci; 450 }; 451 struct qtag_prefix *qp; 452 453 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 454 return 0; 455 456 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 457 sizeof(__be16)))) 458 return -ENOMEM; 459 460 qp = (struct qtag_prefix *) skb->data; 461 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 462 __skb_pull(skb, sizeof(struct qtag_prefix)); 463 464 return 0; 465 } 466 467 static __be16 parse_ethertype(struct sk_buff *skb) 468 { 469 struct llc_snap_hdr { 470 u8 dsap; /* Always 0xAA */ 471 u8 ssap; /* Always 0xAA */ 472 u8 ctrl; 473 u8 oui[3]; 474 __be16 ethertype; 475 }; 476 struct llc_snap_hdr *llc; 477 __be16 proto; 478 479 proto = *(__be16 *) skb->data; 480 __skb_pull(skb, sizeof(__be16)); 481 482 if (ntohs(proto) >= 1536) 483 return proto; 484 485 if (skb->len < sizeof(struct llc_snap_hdr)) 486 return htons(ETH_P_802_2); 487 488 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 489 return htons(0); 490 491 llc = (struct llc_snap_hdr *) skb->data; 492 if (llc->dsap != LLC_SAP_SNAP || 493 llc->ssap != LLC_SAP_SNAP || 494 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 495 return htons(ETH_P_802_2); 496 497 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 498 return llc->ethertype; 499 } 500 501 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 502 int *key_lenp, int nh_len) 503 { 504 struct icmp6hdr *icmp = icmp6_hdr(skb); 505 int error = 0; 506 int key_len; 507 508 /* The ICMPv6 type and code fields use the 16-bit transport port 509 * fields, so we need to store them in 16-bit network byte order. 510 */ 511 key->ipv6.tp.src = htons(icmp->icmp6_type); 512 key->ipv6.tp.dst = htons(icmp->icmp6_code); 513 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 514 515 if (icmp->icmp6_code == 0 && 516 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 517 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 518 int icmp_len = skb->len - skb_transport_offset(skb); 519 struct nd_msg *nd; 520 int offset; 521 522 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 523 524 /* In order to process neighbor discovery options, we need the 525 * entire packet. 526 */ 527 if (unlikely(icmp_len < sizeof(*nd))) 528 goto out; 529 if (unlikely(skb_linearize(skb))) { 530 error = -ENOMEM; 531 goto out; 532 } 533 534 nd = (struct nd_msg *)skb_transport_header(skb); 535 key->ipv6.nd.target = nd->target; 536 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 537 538 icmp_len -= sizeof(*nd); 539 offset = 0; 540 while (icmp_len >= 8) { 541 struct nd_opt_hdr *nd_opt = 542 (struct nd_opt_hdr *)(nd->opt + offset); 543 int opt_len = nd_opt->nd_opt_len * 8; 544 545 if (unlikely(!opt_len || opt_len > icmp_len)) 546 goto invalid; 547 548 /* Store the link layer address if the appropriate 549 * option is provided. It is considered an error if 550 * the same link layer option is specified twice. 551 */ 552 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 553 && opt_len == 8) { 554 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 555 goto invalid; 556 memcpy(key->ipv6.nd.sll, 557 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 558 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 559 && opt_len == 8) { 560 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 561 goto invalid; 562 memcpy(key->ipv6.nd.tll, 563 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 564 } 565 566 icmp_len -= opt_len; 567 offset += opt_len; 568 } 569 } 570 571 goto out; 572 573 invalid: 574 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 575 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 576 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 577 578 out: 579 *key_lenp = key_len; 580 return error; 581 } 582 583 /** 584 * ovs_flow_extract - extracts a flow key from an Ethernet frame. 585 * @skb: sk_buff that contains the frame, with skb->data pointing to the 586 * Ethernet header 587 * @in_port: port number on which @skb was received. 588 * @key: output flow key 589 * @key_lenp: length of output flow key 590 * 591 * The caller must ensure that skb->len >= ETH_HLEN. 592 * 593 * Returns 0 if successful, otherwise a negative errno value. 594 * 595 * Initializes @skb header pointers as follows: 596 * 597 * - skb->mac_header: the Ethernet header. 598 * 599 * - skb->network_header: just past the Ethernet header, or just past the 600 * VLAN header, to the first byte of the Ethernet payload. 601 * 602 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 603 * on output, then just past the IP header, if one is present and 604 * of a correct length, otherwise the same as skb->network_header. 605 * For other key->dl_type values it is left untouched. 606 */ 607 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, 608 int *key_lenp) 609 { 610 int error = 0; 611 int key_len = SW_FLOW_KEY_OFFSET(eth); 612 struct ethhdr *eth; 613 614 memset(key, 0, sizeof(*key)); 615 616 key->phy.priority = skb->priority; 617 key->phy.in_port = in_port; 618 619 skb_reset_mac_header(skb); 620 621 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 622 * header in the linear data area. 623 */ 624 eth = eth_hdr(skb); 625 memcpy(key->eth.src, eth->h_source, ETH_ALEN); 626 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); 627 628 __skb_pull(skb, 2 * ETH_ALEN); 629 630 if (vlan_tx_tag_present(skb)) 631 key->eth.tci = htons(skb->vlan_tci); 632 else if (eth->h_proto == htons(ETH_P_8021Q)) 633 if (unlikely(parse_vlan(skb, key))) 634 return -ENOMEM; 635 636 key->eth.type = parse_ethertype(skb); 637 if (unlikely(key->eth.type == htons(0))) 638 return -ENOMEM; 639 640 skb_reset_network_header(skb); 641 __skb_push(skb, skb->data - skb_mac_header(skb)); 642 643 /* Network layer. */ 644 if (key->eth.type == htons(ETH_P_IP)) { 645 struct iphdr *nh; 646 __be16 offset; 647 648 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 649 650 error = check_iphdr(skb); 651 if (unlikely(error)) { 652 if (error == -EINVAL) { 653 skb->transport_header = skb->network_header; 654 error = 0; 655 } 656 goto out; 657 } 658 659 nh = ip_hdr(skb); 660 key->ipv4.addr.src = nh->saddr; 661 key->ipv4.addr.dst = nh->daddr; 662 663 key->ip.proto = nh->protocol; 664 key->ip.tos = nh->tos; 665 key->ip.ttl = nh->ttl; 666 667 offset = nh->frag_off & htons(IP_OFFSET); 668 if (offset) { 669 key->ip.frag = OVS_FRAG_TYPE_LATER; 670 goto out; 671 } 672 if (nh->frag_off & htons(IP_MF) || 673 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 674 key->ip.frag = OVS_FRAG_TYPE_FIRST; 675 676 /* Transport layer. */ 677 if (key->ip.proto == IPPROTO_TCP) { 678 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 679 if (tcphdr_ok(skb)) { 680 struct tcphdr *tcp = tcp_hdr(skb); 681 key->ipv4.tp.src = tcp->source; 682 key->ipv4.tp.dst = tcp->dest; 683 } 684 } else if (key->ip.proto == IPPROTO_UDP) { 685 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 686 if (udphdr_ok(skb)) { 687 struct udphdr *udp = udp_hdr(skb); 688 key->ipv4.tp.src = udp->source; 689 key->ipv4.tp.dst = udp->dest; 690 } 691 } else if (key->ip.proto == IPPROTO_ICMP) { 692 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 693 if (icmphdr_ok(skb)) { 694 struct icmphdr *icmp = icmp_hdr(skb); 695 /* The ICMP type and code fields use the 16-bit 696 * transport port fields, so we need to store 697 * them in 16-bit network byte order. */ 698 key->ipv4.tp.src = htons(icmp->type); 699 key->ipv4.tp.dst = htons(icmp->code); 700 } 701 } 702 703 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { 704 struct arp_eth_header *arp; 705 706 arp = (struct arp_eth_header *)skb_network_header(skb); 707 708 if (arp->ar_hrd == htons(ARPHRD_ETHER) 709 && arp->ar_pro == htons(ETH_P_IP) 710 && arp->ar_hln == ETH_ALEN 711 && arp->ar_pln == 4) { 712 713 /* We only match on the lower 8 bits of the opcode. */ 714 if (ntohs(arp->ar_op) <= 0xff) 715 key->ip.proto = ntohs(arp->ar_op); 716 717 if (key->ip.proto == ARPOP_REQUEST 718 || key->ip.proto == ARPOP_REPLY) { 719 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 720 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 721 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); 722 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); 723 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 724 } 725 } 726 } else if (key->eth.type == htons(ETH_P_IPV6)) { 727 int nh_len; /* IPv6 Header + Extensions */ 728 729 nh_len = parse_ipv6hdr(skb, key, &key_len); 730 if (unlikely(nh_len < 0)) { 731 if (nh_len == -EINVAL) 732 skb->transport_header = skb->network_header; 733 else 734 error = nh_len; 735 goto out; 736 } 737 738 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 739 goto out; 740 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 741 key->ip.frag = OVS_FRAG_TYPE_FIRST; 742 743 /* Transport layer. */ 744 if (key->ip.proto == NEXTHDR_TCP) { 745 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 746 if (tcphdr_ok(skb)) { 747 struct tcphdr *tcp = tcp_hdr(skb); 748 key->ipv6.tp.src = tcp->source; 749 key->ipv6.tp.dst = tcp->dest; 750 } 751 } else if (key->ip.proto == NEXTHDR_UDP) { 752 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 753 if (udphdr_ok(skb)) { 754 struct udphdr *udp = udp_hdr(skb); 755 key->ipv6.tp.src = udp->source; 756 key->ipv6.tp.dst = udp->dest; 757 } 758 } else if (key->ip.proto == NEXTHDR_ICMP) { 759 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 760 if (icmp6hdr_ok(skb)) { 761 error = parse_icmpv6(skb, key, &key_len, nh_len); 762 if (error < 0) 763 goto out; 764 } 765 } 766 } 767 768 out: 769 *key_lenp = key_len; 770 return error; 771 } 772 773 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) 774 { 775 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); 776 } 777 778 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, 779 struct sw_flow_key *key, int key_len) 780 { 781 struct sw_flow *flow; 782 struct hlist_node *n; 783 struct hlist_head *head; 784 u32 hash; 785 786 hash = ovs_flow_hash(key, key_len); 787 788 head = find_bucket(table, hash); 789 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { 790 791 if (flow->hash == hash && 792 !memcmp(&flow->key, key, key_len)) { 793 return flow; 794 } 795 } 796 return NULL; 797 } 798 799 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) 800 { 801 struct hlist_head *head; 802 803 head = find_bucket(table, flow->hash); 804 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); 805 table->count++; 806 } 807 808 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) 809 { 810 hlist_del_rcu(&flow->hash_node[table->node_ver]); 811 table->count--; 812 BUG_ON(table->count < 0); 813 } 814 815 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 816 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 817 [OVS_KEY_ATTR_ENCAP] = -1, 818 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), 819 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), 820 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), 821 [OVS_KEY_ATTR_VLAN] = sizeof(__be16), 822 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), 823 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), 824 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), 825 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), 826 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), 827 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), 828 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), 829 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), 830 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), 831 }; 832 833 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 834 const struct nlattr *a[], u32 *attrs) 835 { 836 const struct ovs_key_icmp *icmp_key; 837 const struct ovs_key_tcp *tcp_key; 838 const struct ovs_key_udp *udp_key; 839 840 switch (swkey->ip.proto) { 841 case IPPROTO_TCP: 842 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 843 return -EINVAL; 844 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 845 846 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 847 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 848 swkey->ipv4.tp.src = tcp_key->tcp_src; 849 swkey->ipv4.tp.dst = tcp_key->tcp_dst; 850 break; 851 852 case IPPROTO_UDP: 853 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 854 return -EINVAL; 855 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 856 857 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 858 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 859 swkey->ipv4.tp.src = udp_key->udp_src; 860 swkey->ipv4.tp.dst = udp_key->udp_dst; 861 break; 862 863 case IPPROTO_ICMP: 864 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) 865 return -EINVAL; 866 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 867 868 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 869 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 870 swkey->ipv4.tp.src = htons(icmp_key->icmp_type); 871 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); 872 break; 873 } 874 875 return 0; 876 } 877 878 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 879 const struct nlattr *a[], u32 *attrs) 880 { 881 const struct ovs_key_icmpv6 *icmpv6_key; 882 const struct ovs_key_tcp *tcp_key; 883 const struct ovs_key_udp *udp_key; 884 885 switch (swkey->ip.proto) { 886 case IPPROTO_TCP: 887 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 888 return -EINVAL; 889 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 890 891 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 892 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 893 swkey->ipv6.tp.src = tcp_key->tcp_src; 894 swkey->ipv6.tp.dst = tcp_key->tcp_dst; 895 break; 896 897 case IPPROTO_UDP: 898 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 899 return -EINVAL; 900 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 901 902 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 903 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 904 swkey->ipv6.tp.src = udp_key->udp_src; 905 swkey->ipv6.tp.dst = udp_key->udp_dst; 906 break; 907 908 case IPPROTO_ICMPV6: 909 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) 910 return -EINVAL; 911 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 912 913 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 914 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 915 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); 916 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); 917 918 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 919 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 920 const struct ovs_key_nd *nd_key; 921 922 if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) 923 return -EINVAL; 924 *attrs &= ~(1 << OVS_KEY_ATTR_ND); 925 926 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 927 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 928 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, 929 sizeof(swkey->ipv6.nd.target)); 930 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); 931 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); 932 } 933 break; 934 } 935 936 return 0; 937 } 938 939 static int parse_flow_nlattrs(const struct nlattr *attr, 940 const struct nlattr *a[], u32 *attrsp) 941 { 942 const struct nlattr *nla; 943 u32 attrs; 944 int rem; 945 946 attrs = 0; 947 nla_for_each_nested(nla, attr, rem) { 948 u16 type = nla_type(nla); 949 int expected_len; 950 951 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) 952 return -EINVAL; 953 954 expected_len = ovs_key_lens[type]; 955 if (nla_len(nla) != expected_len && expected_len != -1) 956 return -EINVAL; 957 958 attrs |= 1 << type; 959 a[type] = nla; 960 } 961 if (rem) 962 return -EINVAL; 963 964 *attrsp = attrs; 965 return 0; 966 } 967 968 /** 969 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. 970 * @swkey: receives the extracted flow key. 971 * @key_lenp: number of bytes used in @swkey. 972 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 973 * sequence. 974 */ 975 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, 976 const struct nlattr *attr) 977 { 978 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 979 const struct ovs_key_ethernet *eth_key; 980 int key_len; 981 u32 attrs; 982 int err; 983 984 memset(swkey, 0, sizeof(struct sw_flow_key)); 985 key_len = SW_FLOW_KEY_OFFSET(eth); 986 987 err = parse_flow_nlattrs(attr, a, &attrs); 988 if (err) 989 return err; 990 991 /* Metadata attributes. */ 992 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 993 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); 994 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 995 } 996 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 997 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 998 if (in_port >= DP_MAX_PORTS) 999 return -EINVAL; 1000 swkey->phy.in_port = in_port; 1001 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1002 } else { 1003 swkey->phy.in_port = USHRT_MAX; 1004 } 1005 1006 /* Data attributes. */ 1007 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) 1008 return -EINVAL; 1009 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1010 1011 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1012 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); 1013 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); 1014 1015 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && 1016 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { 1017 const struct nlattr *encap; 1018 __be16 tci; 1019 1020 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | 1021 (1 << OVS_KEY_ATTR_ETHERTYPE) | 1022 (1 << OVS_KEY_ATTR_ENCAP))) 1023 return -EINVAL; 1024 1025 encap = a[OVS_KEY_ATTR_ENCAP]; 1026 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1027 if (tci & htons(VLAN_TAG_PRESENT)) { 1028 swkey->eth.tci = tci; 1029 1030 err = parse_flow_nlattrs(encap, a, &attrs); 1031 if (err) 1032 return err; 1033 } else if (!tci) { 1034 /* Corner case for truncated 802.1Q header. */ 1035 if (nla_len(encap)) 1036 return -EINVAL; 1037 1038 swkey->eth.type = htons(ETH_P_8021Q); 1039 *key_lenp = key_len; 1040 return 0; 1041 } else { 1042 return -EINVAL; 1043 } 1044 } 1045 1046 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1047 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1048 if (ntohs(swkey->eth.type) < 1536) 1049 return -EINVAL; 1050 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1051 } else { 1052 swkey->eth.type = htons(ETH_P_802_2); 1053 } 1054 1055 if (swkey->eth.type == htons(ETH_P_IP)) { 1056 const struct ovs_key_ipv4 *ipv4_key; 1057 1058 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) 1059 return -EINVAL; 1060 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1061 1062 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 1063 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1064 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) 1065 return -EINVAL; 1066 swkey->ip.proto = ipv4_key->ipv4_proto; 1067 swkey->ip.tos = ipv4_key->ipv4_tos; 1068 swkey->ip.ttl = ipv4_key->ipv4_ttl; 1069 swkey->ip.frag = ipv4_key->ipv4_frag; 1070 swkey->ipv4.addr.src = ipv4_key->ipv4_src; 1071 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; 1072 1073 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1074 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1075 if (err) 1076 return err; 1077 } 1078 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1079 const struct ovs_key_ipv6 *ipv6_key; 1080 1081 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) 1082 return -EINVAL; 1083 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1084 1085 key_len = SW_FLOW_KEY_OFFSET(ipv6.label); 1086 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1087 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) 1088 return -EINVAL; 1089 swkey->ipv6.label = ipv6_key->ipv6_label; 1090 swkey->ip.proto = ipv6_key->ipv6_proto; 1091 swkey->ip.tos = ipv6_key->ipv6_tclass; 1092 swkey->ip.ttl = ipv6_key->ipv6_hlimit; 1093 swkey->ip.frag = ipv6_key->ipv6_frag; 1094 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, 1095 sizeof(swkey->ipv6.addr.src)); 1096 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, 1097 sizeof(swkey->ipv6.addr.dst)); 1098 1099 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1100 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1101 if (err) 1102 return err; 1103 } 1104 } else if (swkey->eth.type == htons(ETH_P_ARP)) { 1105 const struct ovs_key_arp *arp_key; 1106 1107 if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) 1108 return -EINVAL; 1109 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1110 1111 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 1112 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1113 swkey->ipv4.addr.src = arp_key->arp_sip; 1114 swkey->ipv4.addr.dst = arp_key->arp_tip; 1115 if (arp_key->arp_op & htons(0xff00)) 1116 return -EINVAL; 1117 swkey->ip.proto = ntohs(arp_key->arp_op); 1118 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); 1119 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); 1120 } 1121 1122 if (attrs) 1123 return -EINVAL; 1124 *key_lenp = key_len; 1125 1126 return 0; 1127 } 1128 1129 /** 1130 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. 1131 * @in_port: receives the extracted input port. 1132 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1133 * sequence. 1134 * 1135 * This parses a series of Netlink attributes that form a flow key, which must 1136 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1137 * get the metadata, that is, the parts of the flow key that cannot be 1138 * extracted from the packet itself. 1139 */ 1140 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, 1141 const struct nlattr *attr) 1142 { 1143 const struct nlattr *nla; 1144 int rem; 1145 1146 *in_port = USHRT_MAX; 1147 *priority = 0; 1148 1149 nla_for_each_nested(nla, attr, rem) { 1150 int type = nla_type(nla); 1151 1152 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { 1153 if (nla_len(nla) != ovs_key_lens[type]) 1154 return -EINVAL; 1155 1156 switch (type) { 1157 case OVS_KEY_ATTR_PRIORITY: 1158 *priority = nla_get_u32(nla); 1159 break; 1160 1161 case OVS_KEY_ATTR_IN_PORT: 1162 if (nla_get_u32(nla) >= DP_MAX_PORTS) 1163 return -EINVAL; 1164 *in_port = nla_get_u32(nla); 1165 break; 1166 } 1167 } 1168 } 1169 if (rem) 1170 return -EINVAL; 1171 return 0; 1172 } 1173 1174 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) 1175 { 1176 struct ovs_key_ethernet *eth_key; 1177 struct nlattr *nla, *encap; 1178 1179 if (swkey->phy.priority && 1180 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) 1181 goto nla_put_failure; 1182 1183 if (swkey->phy.in_port != USHRT_MAX && 1184 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) 1185 goto nla_put_failure; 1186 1187 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1188 if (!nla) 1189 goto nla_put_failure; 1190 eth_key = nla_data(nla); 1191 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); 1192 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); 1193 1194 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1195 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || 1196 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) 1197 goto nla_put_failure; 1198 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1199 if (!swkey->eth.tci) 1200 goto unencap; 1201 } else { 1202 encap = NULL; 1203 } 1204 1205 if (swkey->eth.type == htons(ETH_P_802_2)) 1206 goto unencap; 1207 1208 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) 1209 goto nla_put_failure; 1210 1211 if (swkey->eth.type == htons(ETH_P_IP)) { 1212 struct ovs_key_ipv4 *ipv4_key; 1213 1214 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1215 if (!nla) 1216 goto nla_put_failure; 1217 ipv4_key = nla_data(nla); 1218 ipv4_key->ipv4_src = swkey->ipv4.addr.src; 1219 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; 1220 ipv4_key->ipv4_proto = swkey->ip.proto; 1221 ipv4_key->ipv4_tos = swkey->ip.tos; 1222 ipv4_key->ipv4_ttl = swkey->ip.ttl; 1223 ipv4_key->ipv4_frag = swkey->ip.frag; 1224 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1225 struct ovs_key_ipv6 *ipv6_key; 1226 1227 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1228 if (!nla) 1229 goto nla_put_failure; 1230 ipv6_key = nla_data(nla); 1231 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, 1232 sizeof(ipv6_key->ipv6_src)); 1233 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, 1234 sizeof(ipv6_key->ipv6_dst)); 1235 ipv6_key->ipv6_label = swkey->ipv6.label; 1236 ipv6_key->ipv6_proto = swkey->ip.proto; 1237 ipv6_key->ipv6_tclass = swkey->ip.tos; 1238 ipv6_key->ipv6_hlimit = swkey->ip.ttl; 1239 ipv6_key->ipv6_frag = swkey->ip.frag; 1240 } else if (swkey->eth.type == htons(ETH_P_ARP)) { 1241 struct ovs_key_arp *arp_key; 1242 1243 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1244 if (!nla) 1245 goto nla_put_failure; 1246 arp_key = nla_data(nla); 1247 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1248 arp_key->arp_sip = swkey->ipv4.addr.src; 1249 arp_key->arp_tip = swkey->ipv4.addr.dst; 1250 arp_key->arp_op = htons(swkey->ip.proto); 1251 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); 1252 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); 1253 } 1254 1255 if ((swkey->eth.type == htons(ETH_P_IP) || 1256 swkey->eth.type == htons(ETH_P_IPV6)) && 1257 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1258 1259 if (swkey->ip.proto == IPPROTO_TCP) { 1260 struct ovs_key_tcp *tcp_key; 1261 1262 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1263 if (!nla) 1264 goto nla_put_failure; 1265 tcp_key = nla_data(nla); 1266 if (swkey->eth.type == htons(ETH_P_IP)) { 1267 tcp_key->tcp_src = swkey->ipv4.tp.src; 1268 tcp_key->tcp_dst = swkey->ipv4.tp.dst; 1269 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1270 tcp_key->tcp_src = swkey->ipv6.tp.src; 1271 tcp_key->tcp_dst = swkey->ipv6.tp.dst; 1272 } 1273 } else if (swkey->ip.proto == IPPROTO_UDP) { 1274 struct ovs_key_udp *udp_key; 1275 1276 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1277 if (!nla) 1278 goto nla_put_failure; 1279 udp_key = nla_data(nla); 1280 if (swkey->eth.type == htons(ETH_P_IP)) { 1281 udp_key->udp_src = swkey->ipv4.tp.src; 1282 udp_key->udp_dst = swkey->ipv4.tp.dst; 1283 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1284 udp_key->udp_src = swkey->ipv6.tp.src; 1285 udp_key->udp_dst = swkey->ipv6.tp.dst; 1286 } 1287 } else if (swkey->eth.type == htons(ETH_P_IP) && 1288 swkey->ip.proto == IPPROTO_ICMP) { 1289 struct ovs_key_icmp *icmp_key; 1290 1291 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1292 if (!nla) 1293 goto nla_put_failure; 1294 icmp_key = nla_data(nla); 1295 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); 1296 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); 1297 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1298 swkey->ip.proto == IPPROTO_ICMPV6) { 1299 struct ovs_key_icmpv6 *icmpv6_key; 1300 1301 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1302 sizeof(*icmpv6_key)); 1303 if (!nla) 1304 goto nla_put_failure; 1305 icmpv6_key = nla_data(nla); 1306 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); 1307 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); 1308 1309 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1310 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1311 struct ovs_key_nd *nd_key; 1312 1313 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1314 if (!nla) 1315 goto nla_put_failure; 1316 nd_key = nla_data(nla); 1317 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, 1318 sizeof(nd_key->nd_target)); 1319 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); 1320 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); 1321 } 1322 } 1323 } 1324 1325 unencap: 1326 if (encap) 1327 nla_nest_end(skb, encap); 1328 1329 return 0; 1330 1331 nla_put_failure: 1332 return -EMSGSIZE; 1333 } 1334 1335 /* Initializes the flow module. 1336 * Returns zero if successful or a negative error code. */ 1337 int ovs_flow_init(void) 1338 { 1339 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 1340 0, NULL); 1341 if (flow_cache == NULL) 1342 return -ENOMEM; 1343 1344 return 0; 1345 } 1346 1347 /* Uninitializes the flow module. */ 1348 void ovs_flow_exit(void) 1349 { 1350 kmem_cache_destroy(flow_cache); 1351 } 1352