xref: /openbmc/linux/net/openvswitch/flow.c (revision 95e9fd10)
1 /*
2  * Copyright (c) 2007-2011 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45 
46 static struct kmem_cache *flow_cache;
47 
48 static int check_header(struct sk_buff *skb, int len)
49 {
50 	if (unlikely(skb->len < len))
51 		return -EINVAL;
52 	if (unlikely(!pskb_may_pull(skb, len)))
53 		return -ENOMEM;
54 	return 0;
55 }
56 
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59 	return pskb_may_pull(skb, skb_network_offset(skb) +
60 				  sizeof(struct arp_eth_header));
61 }
62 
63 static int check_iphdr(struct sk_buff *skb)
64 {
65 	unsigned int nh_ofs = skb_network_offset(skb);
66 	unsigned int ip_len;
67 	int err;
68 
69 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70 	if (unlikely(err))
71 		return err;
72 
73 	ip_len = ip_hdrlen(skb);
74 	if (unlikely(ip_len < sizeof(struct iphdr) ||
75 		     skb->len < nh_ofs + ip_len))
76 		return -EINVAL;
77 
78 	skb_set_transport_header(skb, nh_ofs + ip_len);
79 	return 0;
80 }
81 
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84 	int th_ofs = skb_transport_offset(skb);
85 	int tcp_len;
86 
87 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88 		return false;
89 
90 	tcp_len = tcp_hdrlen(skb);
91 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92 		     skb->len < th_ofs + tcp_len))
93 		return false;
94 
95 	return true;
96 }
97 
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100 	return pskb_may_pull(skb, skb_transport_offset(skb) +
101 				  sizeof(struct udphdr));
102 }
103 
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106 	return pskb_may_pull(skb, skb_transport_offset(skb) +
107 				  sizeof(struct icmphdr));
108 }
109 
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112 	struct timespec cur_ts;
113 	u64 cur_ms, idle_ms;
114 
115 	ktime_get_ts(&cur_ts);
116 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
119 
120 	return cur_ms - idle_ms;
121 }
122 
123 #define SW_FLOW_KEY_OFFSET(field)		\
124 	(offsetof(struct sw_flow_key, field) +	\
125 	 FIELD_SIZEOF(struct sw_flow_key, field))
126 
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128 			 int *key_lenp)
129 {
130 	unsigned int nh_ofs = skb_network_offset(skb);
131 	unsigned int nh_len;
132 	int payload_ofs;
133 	struct ipv6hdr *nh;
134 	uint8_t nexthdr;
135 	__be16 frag_off;
136 	int err;
137 
138 	*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139 
140 	err = check_header(skb, nh_ofs + sizeof(*nh));
141 	if (unlikely(err))
142 		return err;
143 
144 	nh = ipv6_hdr(skb);
145 	nexthdr = nh->nexthdr;
146 	payload_ofs = (u8 *)(nh + 1) - skb->data;
147 
148 	key->ip.proto = NEXTHDR_NONE;
149 	key->ip.tos = ipv6_get_dsfield(nh);
150 	key->ip.ttl = nh->hop_limit;
151 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152 	key->ipv6.addr.src = nh->saddr;
153 	key->ipv6.addr.dst = nh->daddr;
154 
155 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156 	if (unlikely(payload_ofs < 0))
157 		return -EINVAL;
158 
159 	if (frag_off) {
160 		if (frag_off & htons(~0x7))
161 			key->ip.frag = OVS_FRAG_TYPE_LATER;
162 		else
163 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
164 	}
165 
166 	nh_len = payload_ofs - nh_ofs;
167 	skb_set_transport_header(skb, nh_ofs + nh_len);
168 	key->ip.proto = nexthdr;
169 	return nh_len;
170 }
171 
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174 	return pskb_may_pull(skb, skb_transport_offset(skb) +
175 				  sizeof(struct icmp6hdr));
176 }
177 
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180 
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183 	u8 tcp_flags = 0;
184 
185 	if ((flow->key.eth.type == htons(ETH_P_IP) ||
186 	     flow->key.eth.type == htons(ETH_P_IPV6)) &&
187 	    flow->key.ip.proto == IPPROTO_TCP &&
188 	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189 		u8 *tcp = (u8 *)tcp_hdr(skb);
190 		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191 	}
192 
193 	spin_lock(&flow->lock);
194 	flow->used = jiffies;
195 	flow->packet_count++;
196 	flow->byte_count += skb->len;
197 	flow->tcp_flags |= tcp_flags;
198 	spin_unlock(&flow->lock);
199 }
200 
201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
202 {
203 	int actions_len = nla_len(actions);
204 	struct sw_flow_actions *sfa;
205 
206 	/* At least DP_MAX_PORTS actions are required to be able to flood a
207 	 * packet to every port.  Factor of 2 allows for setting VLAN tags,
208 	 * etc. */
209 	if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
210 		return ERR_PTR(-EINVAL);
211 
212 	sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
213 	if (!sfa)
214 		return ERR_PTR(-ENOMEM);
215 
216 	sfa->actions_len = actions_len;
217 	memcpy(sfa->actions, nla_data(actions), actions_len);
218 	return sfa;
219 }
220 
221 struct sw_flow *ovs_flow_alloc(void)
222 {
223 	struct sw_flow *flow;
224 
225 	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
226 	if (!flow)
227 		return ERR_PTR(-ENOMEM);
228 
229 	spin_lock_init(&flow->lock);
230 	flow->sf_acts = NULL;
231 
232 	return flow;
233 }
234 
235 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
236 {
237 	hash = jhash_1word(hash, table->hash_seed);
238 	return flex_array_get(table->buckets,
239 				(hash & (table->n_buckets - 1)));
240 }
241 
242 static struct flex_array *alloc_buckets(unsigned int n_buckets)
243 {
244 	struct flex_array *buckets;
245 	int i, err;
246 
247 	buckets = flex_array_alloc(sizeof(struct hlist_head *),
248 				   n_buckets, GFP_KERNEL);
249 	if (!buckets)
250 		return NULL;
251 
252 	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
253 	if (err) {
254 		flex_array_free(buckets);
255 		return NULL;
256 	}
257 
258 	for (i = 0; i < n_buckets; i++)
259 		INIT_HLIST_HEAD((struct hlist_head *)
260 					flex_array_get(buckets, i));
261 
262 	return buckets;
263 }
264 
265 static void free_buckets(struct flex_array *buckets)
266 {
267 	flex_array_free(buckets);
268 }
269 
270 struct flow_table *ovs_flow_tbl_alloc(int new_size)
271 {
272 	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
273 
274 	if (!table)
275 		return NULL;
276 
277 	table->buckets = alloc_buckets(new_size);
278 
279 	if (!table->buckets) {
280 		kfree(table);
281 		return NULL;
282 	}
283 	table->n_buckets = new_size;
284 	table->count = 0;
285 	table->node_ver = 0;
286 	table->keep_flows = false;
287 	get_random_bytes(&table->hash_seed, sizeof(u32));
288 
289 	return table;
290 }
291 
292 void ovs_flow_tbl_destroy(struct flow_table *table)
293 {
294 	int i;
295 
296 	if (!table)
297 		return;
298 
299 	if (table->keep_flows)
300 		goto skip_flows;
301 
302 	for (i = 0; i < table->n_buckets; i++) {
303 		struct sw_flow *flow;
304 		struct hlist_head *head = flex_array_get(table->buckets, i);
305 		struct hlist_node *node, *n;
306 		int ver = table->node_ver;
307 
308 		hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
309 			hlist_del_rcu(&flow->hash_node[ver]);
310 			ovs_flow_free(flow);
311 		}
312 	}
313 
314 skip_flows:
315 	free_buckets(table->buckets);
316 	kfree(table);
317 }
318 
319 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
320 {
321 	struct flow_table *table = container_of(rcu, struct flow_table, rcu);
322 
323 	ovs_flow_tbl_destroy(table);
324 }
325 
326 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
327 {
328 	if (!table)
329 		return;
330 
331 	call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
332 }
333 
334 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
335 {
336 	struct sw_flow *flow;
337 	struct hlist_head *head;
338 	struct hlist_node *n;
339 	int ver;
340 	int i;
341 
342 	ver = table->node_ver;
343 	while (*bucket < table->n_buckets) {
344 		i = 0;
345 		head = flex_array_get(table->buckets, *bucket);
346 		hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
347 			if (i < *last) {
348 				i++;
349 				continue;
350 			}
351 			*last = i + 1;
352 			return flow;
353 		}
354 		(*bucket)++;
355 		*last = 0;
356 	}
357 
358 	return NULL;
359 }
360 
361 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
362 {
363 	int old_ver;
364 	int i;
365 
366 	old_ver = old->node_ver;
367 	new->node_ver = !old_ver;
368 
369 	/* Insert in new table. */
370 	for (i = 0; i < old->n_buckets; i++) {
371 		struct sw_flow *flow;
372 		struct hlist_head *head;
373 		struct hlist_node *n;
374 
375 		head = flex_array_get(old->buckets, i);
376 
377 		hlist_for_each_entry(flow, n, head, hash_node[old_ver])
378 			ovs_flow_tbl_insert(new, flow);
379 	}
380 	old->keep_flows = true;
381 }
382 
383 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
384 {
385 	struct flow_table *new_table;
386 
387 	new_table = ovs_flow_tbl_alloc(n_buckets);
388 	if (!new_table)
389 		return ERR_PTR(-ENOMEM);
390 
391 	flow_table_copy_flows(table, new_table);
392 
393 	return new_table;
394 }
395 
396 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
397 {
398 	return __flow_tbl_rehash(table, table->n_buckets);
399 }
400 
401 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
402 {
403 	return __flow_tbl_rehash(table, table->n_buckets * 2);
404 }
405 
406 void ovs_flow_free(struct sw_flow *flow)
407 {
408 	if (unlikely(!flow))
409 		return;
410 
411 	kfree((struct sf_flow_acts __force *)flow->sf_acts);
412 	kmem_cache_free(flow_cache, flow);
413 }
414 
415 /* RCU callback used by ovs_flow_deferred_free. */
416 static void rcu_free_flow_callback(struct rcu_head *rcu)
417 {
418 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
419 
420 	ovs_flow_free(flow);
421 }
422 
423 /* Schedules 'flow' to be freed after the next RCU grace period.
424  * The caller must hold rcu_read_lock for this to be sensible. */
425 void ovs_flow_deferred_free(struct sw_flow *flow)
426 {
427 	call_rcu(&flow->rcu, rcu_free_flow_callback);
428 }
429 
430 /* RCU callback used by ovs_flow_deferred_free_acts. */
431 static void rcu_free_acts_callback(struct rcu_head *rcu)
432 {
433 	struct sw_flow_actions *sf_acts = container_of(rcu,
434 			struct sw_flow_actions, rcu);
435 	kfree(sf_acts);
436 }
437 
438 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
439  * The caller must hold rcu_read_lock for this to be sensible. */
440 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
441 {
442 	call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
443 }
444 
445 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
446 {
447 	struct qtag_prefix {
448 		__be16 eth_type; /* ETH_P_8021Q */
449 		__be16 tci;
450 	};
451 	struct qtag_prefix *qp;
452 
453 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
454 		return 0;
455 
456 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
457 					 sizeof(__be16))))
458 		return -ENOMEM;
459 
460 	qp = (struct qtag_prefix *) skb->data;
461 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
462 	__skb_pull(skb, sizeof(struct qtag_prefix));
463 
464 	return 0;
465 }
466 
467 static __be16 parse_ethertype(struct sk_buff *skb)
468 {
469 	struct llc_snap_hdr {
470 		u8  dsap;  /* Always 0xAA */
471 		u8  ssap;  /* Always 0xAA */
472 		u8  ctrl;
473 		u8  oui[3];
474 		__be16 ethertype;
475 	};
476 	struct llc_snap_hdr *llc;
477 	__be16 proto;
478 
479 	proto = *(__be16 *) skb->data;
480 	__skb_pull(skb, sizeof(__be16));
481 
482 	if (ntohs(proto) >= 1536)
483 		return proto;
484 
485 	if (skb->len < sizeof(struct llc_snap_hdr))
486 		return htons(ETH_P_802_2);
487 
488 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
489 		return htons(0);
490 
491 	llc = (struct llc_snap_hdr *) skb->data;
492 	if (llc->dsap != LLC_SAP_SNAP ||
493 	    llc->ssap != LLC_SAP_SNAP ||
494 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
495 		return htons(ETH_P_802_2);
496 
497 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
498 	return llc->ethertype;
499 }
500 
501 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
502 			int *key_lenp, int nh_len)
503 {
504 	struct icmp6hdr *icmp = icmp6_hdr(skb);
505 	int error = 0;
506 	int key_len;
507 
508 	/* The ICMPv6 type and code fields use the 16-bit transport port
509 	 * fields, so we need to store them in 16-bit network byte order.
510 	 */
511 	key->ipv6.tp.src = htons(icmp->icmp6_type);
512 	key->ipv6.tp.dst = htons(icmp->icmp6_code);
513 	key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
514 
515 	if (icmp->icmp6_code == 0 &&
516 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
517 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
518 		int icmp_len = skb->len - skb_transport_offset(skb);
519 		struct nd_msg *nd;
520 		int offset;
521 
522 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
523 
524 		/* In order to process neighbor discovery options, we need the
525 		 * entire packet.
526 		 */
527 		if (unlikely(icmp_len < sizeof(*nd)))
528 			goto out;
529 		if (unlikely(skb_linearize(skb))) {
530 			error = -ENOMEM;
531 			goto out;
532 		}
533 
534 		nd = (struct nd_msg *)skb_transport_header(skb);
535 		key->ipv6.nd.target = nd->target;
536 		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
537 
538 		icmp_len -= sizeof(*nd);
539 		offset = 0;
540 		while (icmp_len >= 8) {
541 			struct nd_opt_hdr *nd_opt =
542 				 (struct nd_opt_hdr *)(nd->opt + offset);
543 			int opt_len = nd_opt->nd_opt_len * 8;
544 
545 			if (unlikely(!opt_len || opt_len > icmp_len))
546 				goto invalid;
547 
548 			/* Store the link layer address if the appropriate
549 			 * option is provided.  It is considered an error if
550 			 * the same link layer option is specified twice.
551 			 */
552 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
553 			    && opt_len == 8) {
554 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
555 					goto invalid;
556 				memcpy(key->ipv6.nd.sll,
557 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
558 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
559 				   && opt_len == 8) {
560 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
561 					goto invalid;
562 				memcpy(key->ipv6.nd.tll,
563 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
564 			}
565 
566 			icmp_len -= opt_len;
567 			offset += opt_len;
568 		}
569 	}
570 
571 	goto out;
572 
573 invalid:
574 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
575 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
576 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
577 
578 out:
579 	*key_lenp = key_len;
580 	return error;
581 }
582 
583 /**
584  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
585  * @skb: sk_buff that contains the frame, with skb->data pointing to the
586  * Ethernet header
587  * @in_port: port number on which @skb was received.
588  * @key: output flow key
589  * @key_lenp: length of output flow key
590  *
591  * The caller must ensure that skb->len >= ETH_HLEN.
592  *
593  * Returns 0 if successful, otherwise a negative errno value.
594  *
595  * Initializes @skb header pointers as follows:
596  *
597  *    - skb->mac_header: the Ethernet header.
598  *
599  *    - skb->network_header: just past the Ethernet header, or just past the
600  *      VLAN header, to the first byte of the Ethernet payload.
601  *
602  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
603  *      on output, then just past the IP header, if one is present and
604  *      of a correct length, otherwise the same as skb->network_header.
605  *      For other key->dl_type values it is left untouched.
606  */
607 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
608 		 int *key_lenp)
609 {
610 	int error = 0;
611 	int key_len = SW_FLOW_KEY_OFFSET(eth);
612 	struct ethhdr *eth;
613 
614 	memset(key, 0, sizeof(*key));
615 
616 	key->phy.priority = skb->priority;
617 	key->phy.in_port = in_port;
618 
619 	skb_reset_mac_header(skb);
620 
621 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
622 	 * header in the linear data area.
623 	 */
624 	eth = eth_hdr(skb);
625 	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
626 	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
627 
628 	__skb_pull(skb, 2 * ETH_ALEN);
629 
630 	if (vlan_tx_tag_present(skb))
631 		key->eth.tci = htons(skb->vlan_tci);
632 	else if (eth->h_proto == htons(ETH_P_8021Q))
633 		if (unlikely(parse_vlan(skb, key)))
634 			return -ENOMEM;
635 
636 	key->eth.type = parse_ethertype(skb);
637 	if (unlikely(key->eth.type == htons(0)))
638 		return -ENOMEM;
639 
640 	skb_reset_network_header(skb);
641 	__skb_push(skb, skb->data - skb_mac_header(skb));
642 
643 	/* Network layer. */
644 	if (key->eth.type == htons(ETH_P_IP)) {
645 		struct iphdr *nh;
646 		__be16 offset;
647 
648 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
649 
650 		error = check_iphdr(skb);
651 		if (unlikely(error)) {
652 			if (error == -EINVAL) {
653 				skb->transport_header = skb->network_header;
654 				error = 0;
655 			}
656 			goto out;
657 		}
658 
659 		nh = ip_hdr(skb);
660 		key->ipv4.addr.src = nh->saddr;
661 		key->ipv4.addr.dst = nh->daddr;
662 
663 		key->ip.proto = nh->protocol;
664 		key->ip.tos = nh->tos;
665 		key->ip.ttl = nh->ttl;
666 
667 		offset = nh->frag_off & htons(IP_OFFSET);
668 		if (offset) {
669 			key->ip.frag = OVS_FRAG_TYPE_LATER;
670 			goto out;
671 		}
672 		if (nh->frag_off & htons(IP_MF) ||
673 			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
674 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
675 
676 		/* Transport layer. */
677 		if (key->ip.proto == IPPROTO_TCP) {
678 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
679 			if (tcphdr_ok(skb)) {
680 				struct tcphdr *tcp = tcp_hdr(skb);
681 				key->ipv4.tp.src = tcp->source;
682 				key->ipv4.tp.dst = tcp->dest;
683 			}
684 		} else if (key->ip.proto == IPPROTO_UDP) {
685 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
686 			if (udphdr_ok(skb)) {
687 				struct udphdr *udp = udp_hdr(skb);
688 				key->ipv4.tp.src = udp->source;
689 				key->ipv4.tp.dst = udp->dest;
690 			}
691 		} else if (key->ip.proto == IPPROTO_ICMP) {
692 			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
693 			if (icmphdr_ok(skb)) {
694 				struct icmphdr *icmp = icmp_hdr(skb);
695 				/* The ICMP type and code fields use the 16-bit
696 				 * transport port fields, so we need to store
697 				 * them in 16-bit network byte order. */
698 				key->ipv4.tp.src = htons(icmp->type);
699 				key->ipv4.tp.dst = htons(icmp->code);
700 			}
701 		}
702 
703 	} else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
704 		struct arp_eth_header *arp;
705 
706 		arp = (struct arp_eth_header *)skb_network_header(skb);
707 
708 		if (arp->ar_hrd == htons(ARPHRD_ETHER)
709 				&& arp->ar_pro == htons(ETH_P_IP)
710 				&& arp->ar_hln == ETH_ALEN
711 				&& arp->ar_pln == 4) {
712 
713 			/* We only match on the lower 8 bits of the opcode. */
714 			if (ntohs(arp->ar_op) <= 0xff)
715 				key->ip.proto = ntohs(arp->ar_op);
716 
717 			if (key->ip.proto == ARPOP_REQUEST
718 					|| key->ip.proto == ARPOP_REPLY) {
719 				memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
720 				memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
721 				memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
722 				memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
723 				key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
724 			}
725 		}
726 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
727 		int nh_len;             /* IPv6 Header + Extensions */
728 
729 		nh_len = parse_ipv6hdr(skb, key, &key_len);
730 		if (unlikely(nh_len < 0)) {
731 			if (nh_len == -EINVAL)
732 				skb->transport_header = skb->network_header;
733 			else
734 				error = nh_len;
735 			goto out;
736 		}
737 
738 		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
739 			goto out;
740 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
741 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
742 
743 		/* Transport layer. */
744 		if (key->ip.proto == NEXTHDR_TCP) {
745 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
746 			if (tcphdr_ok(skb)) {
747 				struct tcphdr *tcp = tcp_hdr(skb);
748 				key->ipv6.tp.src = tcp->source;
749 				key->ipv6.tp.dst = tcp->dest;
750 			}
751 		} else if (key->ip.proto == NEXTHDR_UDP) {
752 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
753 			if (udphdr_ok(skb)) {
754 				struct udphdr *udp = udp_hdr(skb);
755 				key->ipv6.tp.src = udp->source;
756 				key->ipv6.tp.dst = udp->dest;
757 			}
758 		} else if (key->ip.proto == NEXTHDR_ICMP) {
759 			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
760 			if (icmp6hdr_ok(skb)) {
761 				error = parse_icmpv6(skb, key, &key_len, nh_len);
762 				if (error < 0)
763 					goto out;
764 			}
765 		}
766 	}
767 
768 out:
769 	*key_lenp = key_len;
770 	return error;
771 }
772 
773 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
774 {
775 	return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
776 }
777 
778 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
779 				struct sw_flow_key *key, int key_len)
780 {
781 	struct sw_flow *flow;
782 	struct hlist_node *n;
783 	struct hlist_head *head;
784 	u32 hash;
785 
786 	hash = ovs_flow_hash(key, key_len);
787 
788 	head = find_bucket(table, hash);
789 	hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
790 
791 		if (flow->hash == hash &&
792 		    !memcmp(&flow->key, key, key_len)) {
793 			return flow;
794 		}
795 	}
796 	return NULL;
797 }
798 
799 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
800 {
801 	struct hlist_head *head;
802 
803 	head = find_bucket(table, flow->hash);
804 	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
805 	table->count++;
806 }
807 
808 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
809 {
810 	hlist_del_rcu(&flow->hash_node[table->node_ver]);
811 	table->count--;
812 	BUG_ON(table->count < 0);
813 }
814 
815 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
816 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
817 	[OVS_KEY_ATTR_ENCAP] = -1,
818 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
819 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
820 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
821 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
822 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
823 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
824 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
825 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
826 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
827 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
828 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
829 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
830 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
831 };
832 
833 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
834 				  const struct nlattr *a[], u32 *attrs)
835 {
836 	const struct ovs_key_icmp *icmp_key;
837 	const struct ovs_key_tcp *tcp_key;
838 	const struct ovs_key_udp *udp_key;
839 
840 	switch (swkey->ip.proto) {
841 	case IPPROTO_TCP:
842 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
843 			return -EINVAL;
844 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
845 
846 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
847 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
848 		swkey->ipv4.tp.src = tcp_key->tcp_src;
849 		swkey->ipv4.tp.dst = tcp_key->tcp_dst;
850 		break;
851 
852 	case IPPROTO_UDP:
853 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
854 			return -EINVAL;
855 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
856 
857 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
858 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
859 		swkey->ipv4.tp.src = udp_key->udp_src;
860 		swkey->ipv4.tp.dst = udp_key->udp_dst;
861 		break;
862 
863 	case IPPROTO_ICMP:
864 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
865 			return -EINVAL;
866 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
867 
868 		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
869 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
870 		swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
871 		swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
872 		break;
873 	}
874 
875 	return 0;
876 }
877 
878 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
879 				  const struct nlattr *a[], u32 *attrs)
880 {
881 	const struct ovs_key_icmpv6 *icmpv6_key;
882 	const struct ovs_key_tcp *tcp_key;
883 	const struct ovs_key_udp *udp_key;
884 
885 	switch (swkey->ip.proto) {
886 	case IPPROTO_TCP:
887 		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
888 			return -EINVAL;
889 		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
890 
891 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
892 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
893 		swkey->ipv6.tp.src = tcp_key->tcp_src;
894 		swkey->ipv6.tp.dst = tcp_key->tcp_dst;
895 		break;
896 
897 	case IPPROTO_UDP:
898 		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
899 			return -EINVAL;
900 		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
901 
902 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
903 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
904 		swkey->ipv6.tp.src = udp_key->udp_src;
905 		swkey->ipv6.tp.dst = udp_key->udp_dst;
906 		break;
907 
908 	case IPPROTO_ICMPV6:
909 		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
910 			return -EINVAL;
911 		*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
912 
913 		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
914 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
915 		swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
916 		swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
917 
918 		if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
919 		    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
920 			const struct ovs_key_nd *nd_key;
921 
922 			if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
923 				return -EINVAL;
924 			*attrs &= ~(1 << OVS_KEY_ATTR_ND);
925 
926 			*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
927 			nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
928 			memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
929 			       sizeof(swkey->ipv6.nd.target));
930 			memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
931 			memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
932 		}
933 		break;
934 	}
935 
936 	return 0;
937 }
938 
939 static int parse_flow_nlattrs(const struct nlattr *attr,
940 			      const struct nlattr *a[], u32 *attrsp)
941 {
942 	const struct nlattr *nla;
943 	u32 attrs;
944 	int rem;
945 
946 	attrs = 0;
947 	nla_for_each_nested(nla, attr, rem) {
948 		u16 type = nla_type(nla);
949 		int expected_len;
950 
951 		if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
952 			return -EINVAL;
953 
954 		expected_len = ovs_key_lens[type];
955 		if (nla_len(nla) != expected_len && expected_len != -1)
956 			return -EINVAL;
957 
958 		attrs |= 1 << type;
959 		a[type] = nla;
960 	}
961 	if (rem)
962 		return -EINVAL;
963 
964 	*attrsp = attrs;
965 	return 0;
966 }
967 
968 /**
969  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
970  * @swkey: receives the extracted flow key.
971  * @key_lenp: number of bytes used in @swkey.
972  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
973  * sequence.
974  */
975 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
976 		      const struct nlattr *attr)
977 {
978 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
979 	const struct ovs_key_ethernet *eth_key;
980 	int key_len;
981 	u32 attrs;
982 	int err;
983 
984 	memset(swkey, 0, sizeof(struct sw_flow_key));
985 	key_len = SW_FLOW_KEY_OFFSET(eth);
986 
987 	err = parse_flow_nlattrs(attr, a, &attrs);
988 	if (err)
989 		return err;
990 
991 	/* Metadata attributes. */
992 	if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
993 		swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
994 		attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
995 	}
996 	if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
997 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
998 		if (in_port >= DP_MAX_PORTS)
999 			return -EINVAL;
1000 		swkey->phy.in_port = in_port;
1001 		attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1002 	} else {
1003 		swkey->phy.in_port = USHRT_MAX;
1004 	}
1005 
1006 	/* Data attributes. */
1007 	if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1008 		return -EINVAL;
1009 	attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1010 
1011 	eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1012 	memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1013 	memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1014 
1015 	if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1016 	    nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1017 		const struct nlattr *encap;
1018 		__be16 tci;
1019 
1020 		if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1021 			      (1 << OVS_KEY_ATTR_ETHERTYPE) |
1022 			      (1 << OVS_KEY_ATTR_ENCAP)))
1023 			return -EINVAL;
1024 
1025 		encap = a[OVS_KEY_ATTR_ENCAP];
1026 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1027 		if (tci & htons(VLAN_TAG_PRESENT)) {
1028 			swkey->eth.tci = tci;
1029 
1030 			err = parse_flow_nlattrs(encap, a, &attrs);
1031 			if (err)
1032 				return err;
1033 		} else if (!tci) {
1034 			/* Corner case for truncated 802.1Q header. */
1035 			if (nla_len(encap))
1036 				return -EINVAL;
1037 
1038 			swkey->eth.type = htons(ETH_P_8021Q);
1039 			*key_lenp = key_len;
1040 			return 0;
1041 		} else {
1042 			return -EINVAL;
1043 		}
1044 	}
1045 
1046 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1047 		swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1048 		if (ntohs(swkey->eth.type) < 1536)
1049 			return -EINVAL;
1050 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1051 	} else {
1052 		swkey->eth.type = htons(ETH_P_802_2);
1053 	}
1054 
1055 	if (swkey->eth.type == htons(ETH_P_IP)) {
1056 		const struct ovs_key_ipv4 *ipv4_key;
1057 
1058 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1059 			return -EINVAL;
1060 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1061 
1062 		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1063 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1064 		if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1065 			return -EINVAL;
1066 		swkey->ip.proto = ipv4_key->ipv4_proto;
1067 		swkey->ip.tos = ipv4_key->ipv4_tos;
1068 		swkey->ip.ttl = ipv4_key->ipv4_ttl;
1069 		swkey->ip.frag = ipv4_key->ipv4_frag;
1070 		swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1071 		swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1072 
1073 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1074 			err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1075 			if (err)
1076 				return err;
1077 		}
1078 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1079 		const struct ovs_key_ipv6 *ipv6_key;
1080 
1081 		if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1082 			return -EINVAL;
1083 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1084 
1085 		key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1086 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1087 		if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1088 			return -EINVAL;
1089 		swkey->ipv6.label = ipv6_key->ipv6_label;
1090 		swkey->ip.proto = ipv6_key->ipv6_proto;
1091 		swkey->ip.tos = ipv6_key->ipv6_tclass;
1092 		swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1093 		swkey->ip.frag = ipv6_key->ipv6_frag;
1094 		memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1095 		       sizeof(swkey->ipv6.addr.src));
1096 		memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1097 		       sizeof(swkey->ipv6.addr.dst));
1098 
1099 		if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1100 			err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1101 			if (err)
1102 				return err;
1103 		}
1104 	} else if (swkey->eth.type == htons(ETH_P_ARP)) {
1105 		const struct ovs_key_arp *arp_key;
1106 
1107 		if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1108 			return -EINVAL;
1109 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1110 
1111 		key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1112 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1113 		swkey->ipv4.addr.src = arp_key->arp_sip;
1114 		swkey->ipv4.addr.dst = arp_key->arp_tip;
1115 		if (arp_key->arp_op & htons(0xff00))
1116 			return -EINVAL;
1117 		swkey->ip.proto = ntohs(arp_key->arp_op);
1118 		memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1119 		memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1120 	}
1121 
1122 	if (attrs)
1123 		return -EINVAL;
1124 	*key_lenp = key_len;
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1131  * @in_port: receives the extracted input port.
1132  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1133  * sequence.
1134  *
1135  * This parses a series of Netlink attributes that form a flow key, which must
1136  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1137  * get the metadata, that is, the parts of the flow key that cannot be
1138  * extracted from the packet itself.
1139  */
1140 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1141 			       const struct nlattr *attr)
1142 {
1143 	const struct nlattr *nla;
1144 	int rem;
1145 
1146 	*in_port = USHRT_MAX;
1147 	*priority = 0;
1148 
1149 	nla_for_each_nested(nla, attr, rem) {
1150 		int type = nla_type(nla);
1151 
1152 		if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1153 			if (nla_len(nla) != ovs_key_lens[type])
1154 				return -EINVAL;
1155 
1156 			switch (type) {
1157 			case OVS_KEY_ATTR_PRIORITY:
1158 				*priority = nla_get_u32(nla);
1159 				break;
1160 
1161 			case OVS_KEY_ATTR_IN_PORT:
1162 				if (nla_get_u32(nla) >= DP_MAX_PORTS)
1163 					return -EINVAL;
1164 				*in_port = nla_get_u32(nla);
1165 				break;
1166 			}
1167 		}
1168 	}
1169 	if (rem)
1170 		return -EINVAL;
1171 	return 0;
1172 }
1173 
1174 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1175 {
1176 	struct ovs_key_ethernet *eth_key;
1177 	struct nlattr *nla, *encap;
1178 
1179 	if (swkey->phy.priority &&
1180 	    nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1181 		goto nla_put_failure;
1182 
1183 	if (swkey->phy.in_port != USHRT_MAX &&
1184 	    nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1185 		goto nla_put_failure;
1186 
1187 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1188 	if (!nla)
1189 		goto nla_put_failure;
1190 	eth_key = nla_data(nla);
1191 	memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1192 	memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1193 
1194 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1195 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1196 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1197 			goto nla_put_failure;
1198 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1199 		if (!swkey->eth.tci)
1200 			goto unencap;
1201 	} else {
1202 		encap = NULL;
1203 	}
1204 
1205 	if (swkey->eth.type == htons(ETH_P_802_2))
1206 		goto unencap;
1207 
1208 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1209 		goto nla_put_failure;
1210 
1211 	if (swkey->eth.type == htons(ETH_P_IP)) {
1212 		struct ovs_key_ipv4 *ipv4_key;
1213 
1214 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1215 		if (!nla)
1216 			goto nla_put_failure;
1217 		ipv4_key = nla_data(nla);
1218 		ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1219 		ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1220 		ipv4_key->ipv4_proto = swkey->ip.proto;
1221 		ipv4_key->ipv4_tos = swkey->ip.tos;
1222 		ipv4_key->ipv4_ttl = swkey->ip.ttl;
1223 		ipv4_key->ipv4_frag = swkey->ip.frag;
1224 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1225 		struct ovs_key_ipv6 *ipv6_key;
1226 
1227 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1228 		if (!nla)
1229 			goto nla_put_failure;
1230 		ipv6_key = nla_data(nla);
1231 		memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1232 				sizeof(ipv6_key->ipv6_src));
1233 		memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1234 				sizeof(ipv6_key->ipv6_dst));
1235 		ipv6_key->ipv6_label = swkey->ipv6.label;
1236 		ipv6_key->ipv6_proto = swkey->ip.proto;
1237 		ipv6_key->ipv6_tclass = swkey->ip.tos;
1238 		ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1239 		ipv6_key->ipv6_frag = swkey->ip.frag;
1240 	} else if (swkey->eth.type == htons(ETH_P_ARP)) {
1241 		struct ovs_key_arp *arp_key;
1242 
1243 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1244 		if (!nla)
1245 			goto nla_put_failure;
1246 		arp_key = nla_data(nla);
1247 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1248 		arp_key->arp_sip = swkey->ipv4.addr.src;
1249 		arp_key->arp_tip = swkey->ipv4.addr.dst;
1250 		arp_key->arp_op = htons(swkey->ip.proto);
1251 		memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1252 		memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1253 	}
1254 
1255 	if ((swkey->eth.type == htons(ETH_P_IP) ||
1256 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1257 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1258 
1259 		if (swkey->ip.proto == IPPROTO_TCP) {
1260 			struct ovs_key_tcp *tcp_key;
1261 
1262 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1263 			if (!nla)
1264 				goto nla_put_failure;
1265 			tcp_key = nla_data(nla);
1266 			if (swkey->eth.type == htons(ETH_P_IP)) {
1267 				tcp_key->tcp_src = swkey->ipv4.tp.src;
1268 				tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1269 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1270 				tcp_key->tcp_src = swkey->ipv6.tp.src;
1271 				tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1272 			}
1273 		} else if (swkey->ip.proto == IPPROTO_UDP) {
1274 			struct ovs_key_udp *udp_key;
1275 
1276 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1277 			if (!nla)
1278 				goto nla_put_failure;
1279 			udp_key = nla_data(nla);
1280 			if (swkey->eth.type == htons(ETH_P_IP)) {
1281 				udp_key->udp_src = swkey->ipv4.tp.src;
1282 				udp_key->udp_dst = swkey->ipv4.tp.dst;
1283 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1284 				udp_key->udp_src = swkey->ipv6.tp.src;
1285 				udp_key->udp_dst = swkey->ipv6.tp.dst;
1286 			}
1287 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1288 			   swkey->ip.proto == IPPROTO_ICMP) {
1289 			struct ovs_key_icmp *icmp_key;
1290 
1291 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1292 			if (!nla)
1293 				goto nla_put_failure;
1294 			icmp_key = nla_data(nla);
1295 			icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1296 			icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1297 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1298 			   swkey->ip.proto == IPPROTO_ICMPV6) {
1299 			struct ovs_key_icmpv6 *icmpv6_key;
1300 
1301 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1302 						sizeof(*icmpv6_key));
1303 			if (!nla)
1304 				goto nla_put_failure;
1305 			icmpv6_key = nla_data(nla);
1306 			icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1307 			icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1308 
1309 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1310 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1311 				struct ovs_key_nd *nd_key;
1312 
1313 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1314 				if (!nla)
1315 					goto nla_put_failure;
1316 				nd_key = nla_data(nla);
1317 				memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1318 							sizeof(nd_key->nd_target));
1319 				memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1320 				memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1321 			}
1322 		}
1323 	}
1324 
1325 unencap:
1326 	if (encap)
1327 		nla_nest_end(skb, encap);
1328 
1329 	return 0;
1330 
1331 nla_put_failure:
1332 	return -EMSGSIZE;
1333 }
1334 
1335 /* Initializes the flow module.
1336  * Returns zero if successful or a negative error code. */
1337 int ovs_flow_init(void)
1338 {
1339 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1340 					0, NULL);
1341 	if (flow_cache == NULL)
1342 		return -ENOMEM;
1343 
1344 	return 0;
1345 }
1346 
1347 /* Uninitializes the flow module. */
1348 void ovs_flow_exit(void)
1349 {
1350 	kmem_cache_destroy(flow_cache);
1351 }
1352