1 /* 2 * Copyright (c) 2007-2011 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include "flow.h" 20 #include "datapath.h" 21 #include <linux/uaccess.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_vlan.h> 26 #include <net/llc_pdu.h> 27 #include <linux/kernel.h> 28 #include <linux/jhash.h> 29 #include <linux/jiffies.h> 30 #include <linux/llc.h> 31 #include <linux/module.h> 32 #include <linux/in.h> 33 #include <linux/rcupdate.h> 34 #include <linux/if_arp.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ipv6.h> 44 #include <net/ndisc.h> 45 46 static struct kmem_cache *flow_cache; 47 48 static int check_header(struct sk_buff *skb, int len) 49 { 50 if (unlikely(skb->len < len)) 51 return -EINVAL; 52 if (unlikely(!pskb_may_pull(skb, len))) 53 return -ENOMEM; 54 return 0; 55 } 56 57 static bool arphdr_ok(struct sk_buff *skb) 58 { 59 return pskb_may_pull(skb, skb_network_offset(skb) + 60 sizeof(struct arp_eth_header)); 61 } 62 63 static int check_iphdr(struct sk_buff *skb) 64 { 65 unsigned int nh_ofs = skb_network_offset(skb); 66 unsigned int ip_len; 67 int err; 68 69 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 70 if (unlikely(err)) 71 return err; 72 73 ip_len = ip_hdrlen(skb); 74 if (unlikely(ip_len < sizeof(struct iphdr) || 75 skb->len < nh_ofs + ip_len)) 76 return -EINVAL; 77 78 skb_set_transport_header(skb, nh_ofs + ip_len); 79 return 0; 80 } 81 82 static bool tcphdr_ok(struct sk_buff *skb) 83 { 84 int th_ofs = skb_transport_offset(skb); 85 int tcp_len; 86 87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 88 return false; 89 90 tcp_len = tcp_hdrlen(skb); 91 if (unlikely(tcp_len < sizeof(struct tcphdr) || 92 skb->len < th_ofs + tcp_len)) 93 return false; 94 95 return true; 96 } 97 98 static bool udphdr_ok(struct sk_buff *skb) 99 { 100 return pskb_may_pull(skb, skb_transport_offset(skb) + 101 sizeof(struct udphdr)); 102 } 103 104 static bool icmphdr_ok(struct sk_buff *skb) 105 { 106 return pskb_may_pull(skb, skb_transport_offset(skb) + 107 sizeof(struct icmphdr)); 108 } 109 110 u64 ovs_flow_used_time(unsigned long flow_jiffies) 111 { 112 struct timespec cur_ts; 113 u64 cur_ms, idle_ms; 114 115 ktime_get_ts(&cur_ts); 116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 118 cur_ts.tv_nsec / NSEC_PER_MSEC; 119 120 return cur_ms - idle_ms; 121 } 122 123 #define SW_FLOW_KEY_OFFSET(field) \ 124 (offsetof(struct sw_flow_key, field) + \ 125 FIELD_SIZEOF(struct sw_flow_key, field)) 126 127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, 128 int *key_lenp) 129 { 130 unsigned int nh_ofs = skb_network_offset(skb); 131 unsigned int nh_len; 132 int payload_ofs; 133 struct ipv6hdr *nh; 134 uint8_t nexthdr; 135 __be16 frag_off; 136 int err; 137 138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); 139 140 err = check_header(skb, nh_ofs + sizeof(*nh)); 141 if (unlikely(err)) 142 return err; 143 144 nh = ipv6_hdr(skb); 145 nexthdr = nh->nexthdr; 146 payload_ofs = (u8 *)(nh + 1) - skb->data; 147 148 key->ip.proto = NEXTHDR_NONE; 149 key->ip.tos = ipv6_get_dsfield(nh); 150 key->ip.ttl = nh->hop_limit; 151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 152 key->ipv6.addr.src = nh->saddr; 153 key->ipv6.addr.dst = nh->daddr; 154 155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 156 if (unlikely(payload_ofs < 0)) 157 return -EINVAL; 158 159 if (frag_off) { 160 if (frag_off & htons(~0x7)) 161 key->ip.frag = OVS_FRAG_TYPE_LATER; 162 else 163 key->ip.frag = OVS_FRAG_TYPE_FIRST; 164 } 165 166 nh_len = payload_ofs - nh_ofs; 167 skb_set_transport_header(skb, nh_ofs + nh_len); 168 key->ip.proto = nexthdr; 169 return nh_len; 170 } 171 172 static bool icmp6hdr_ok(struct sk_buff *skb) 173 { 174 return pskb_may_pull(skb, skb_transport_offset(skb) + 175 sizeof(struct icmp6hdr)); 176 } 177 178 #define TCP_FLAGS_OFFSET 13 179 #define TCP_FLAG_MASK 0x3f 180 181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) 182 { 183 u8 tcp_flags = 0; 184 185 if ((flow->key.eth.type == htons(ETH_P_IP) || 186 flow->key.eth.type == htons(ETH_P_IPV6)) && 187 flow->key.ip.proto == IPPROTO_TCP && 188 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { 189 u8 *tcp = (u8 *)tcp_hdr(skb); 190 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; 191 } 192 193 spin_lock(&flow->lock); 194 flow->used = jiffies; 195 flow->packet_count++; 196 flow->byte_count += skb->len; 197 flow->tcp_flags |= tcp_flags; 198 spin_unlock(&flow->lock); 199 } 200 201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) 202 { 203 int actions_len = nla_len(actions); 204 struct sw_flow_actions *sfa; 205 206 if (actions_len > MAX_ACTIONS_BUFSIZE) 207 return ERR_PTR(-EINVAL); 208 209 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); 210 if (!sfa) 211 return ERR_PTR(-ENOMEM); 212 213 sfa->actions_len = actions_len; 214 nla_memcpy(sfa->actions, actions, actions_len); 215 return sfa; 216 } 217 218 struct sw_flow *ovs_flow_alloc(void) 219 { 220 struct sw_flow *flow; 221 222 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); 223 if (!flow) 224 return ERR_PTR(-ENOMEM); 225 226 spin_lock_init(&flow->lock); 227 flow->sf_acts = NULL; 228 229 return flow; 230 } 231 232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) 233 { 234 hash = jhash_1word(hash, table->hash_seed); 235 return flex_array_get(table->buckets, 236 (hash & (table->n_buckets - 1))); 237 } 238 239 static struct flex_array *alloc_buckets(unsigned int n_buckets) 240 { 241 struct flex_array *buckets; 242 int i, err; 243 244 buckets = flex_array_alloc(sizeof(struct hlist_head *), 245 n_buckets, GFP_KERNEL); 246 if (!buckets) 247 return NULL; 248 249 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); 250 if (err) { 251 flex_array_free(buckets); 252 return NULL; 253 } 254 255 for (i = 0; i < n_buckets; i++) 256 INIT_HLIST_HEAD((struct hlist_head *) 257 flex_array_get(buckets, i)); 258 259 return buckets; 260 } 261 262 static void free_buckets(struct flex_array *buckets) 263 { 264 flex_array_free(buckets); 265 } 266 267 struct flow_table *ovs_flow_tbl_alloc(int new_size) 268 { 269 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); 270 271 if (!table) 272 return NULL; 273 274 table->buckets = alloc_buckets(new_size); 275 276 if (!table->buckets) { 277 kfree(table); 278 return NULL; 279 } 280 table->n_buckets = new_size; 281 table->count = 0; 282 table->node_ver = 0; 283 table->keep_flows = false; 284 get_random_bytes(&table->hash_seed, sizeof(u32)); 285 286 return table; 287 } 288 289 void ovs_flow_tbl_destroy(struct flow_table *table) 290 { 291 int i; 292 293 if (!table) 294 return; 295 296 if (table->keep_flows) 297 goto skip_flows; 298 299 for (i = 0; i < table->n_buckets; i++) { 300 struct sw_flow *flow; 301 struct hlist_head *head = flex_array_get(table->buckets, i); 302 struct hlist_node *n; 303 int ver = table->node_ver; 304 305 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { 306 hlist_del_rcu(&flow->hash_node[ver]); 307 ovs_flow_free(flow); 308 } 309 } 310 311 skip_flows: 312 free_buckets(table->buckets); 313 kfree(table); 314 } 315 316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) 317 { 318 struct flow_table *table = container_of(rcu, struct flow_table, rcu); 319 320 ovs_flow_tbl_destroy(table); 321 } 322 323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table) 324 { 325 if (!table) 326 return; 327 328 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); 329 } 330 331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) 332 { 333 struct sw_flow *flow; 334 struct hlist_head *head; 335 int ver; 336 int i; 337 338 ver = table->node_ver; 339 while (*bucket < table->n_buckets) { 340 i = 0; 341 head = flex_array_get(table->buckets, *bucket); 342 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { 343 if (i < *last) { 344 i++; 345 continue; 346 } 347 *last = i + 1; 348 return flow; 349 } 350 (*bucket)++; 351 *last = 0; 352 } 353 354 return NULL; 355 } 356 357 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) 358 { 359 int old_ver; 360 int i; 361 362 old_ver = old->node_ver; 363 new->node_ver = !old_ver; 364 365 /* Insert in new table. */ 366 for (i = 0; i < old->n_buckets; i++) { 367 struct sw_flow *flow; 368 struct hlist_head *head; 369 370 head = flex_array_get(old->buckets, i); 371 372 hlist_for_each_entry(flow, head, hash_node[old_ver]) 373 ovs_flow_tbl_insert(new, flow); 374 } 375 old->keep_flows = true; 376 } 377 378 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) 379 { 380 struct flow_table *new_table; 381 382 new_table = ovs_flow_tbl_alloc(n_buckets); 383 if (!new_table) 384 return ERR_PTR(-ENOMEM); 385 386 flow_table_copy_flows(table, new_table); 387 388 return new_table; 389 } 390 391 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) 392 { 393 return __flow_tbl_rehash(table, table->n_buckets); 394 } 395 396 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) 397 { 398 return __flow_tbl_rehash(table, table->n_buckets * 2); 399 } 400 401 void ovs_flow_free(struct sw_flow *flow) 402 { 403 if (unlikely(!flow)) 404 return; 405 406 kfree((struct sf_flow_acts __force *)flow->sf_acts); 407 kmem_cache_free(flow_cache, flow); 408 } 409 410 /* RCU callback used by ovs_flow_deferred_free. */ 411 static void rcu_free_flow_callback(struct rcu_head *rcu) 412 { 413 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); 414 415 ovs_flow_free(flow); 416 } 417 418 /* Schedules 'flow' to be freed after the next RCU grace period. 419 * The caller must hold rcu_read_lock for this to be sensible. */ 420 void ovs_flow_deferred_free(struct sw_flow *flow) 421 { 422 call_rcu(&flow->rcu, rcu_free_flow_callback); 423 } 424 425 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 426 * The caller must hold rcu_read_lock for this to be sensible. */ 427 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) 428 { 429 kfree_rcu(sf_acts, rcu); 430 } 431 432 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 433 { 434 struct qtag_prefix { 435 __be16 eth_type; /* ETH_P_8021Q */ 436 __be16 tci; 437 }; 438 struct qtag_prefix *qp; 439 440 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 441 return 0; 442 443 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 444 sizeof(__be16)))) 445 return -ENOMEM; 446 447 qp = (struct qtag_prefix *) skb->data; 448 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 449 __skb_pull(skb, sizeof(struct qtag_prefix)); 450 451 return 0; 452 } 453 454 static __be16 parse_ethertype(struct sk_buff *skb) 455 { 456 struct llc_snap_hdr { 457 u8 dsap; /* Always 0xAA */ 458 u8 ssap; /* Always 0xAA */ 459 u8 ctrl; 460 u8 oui[3]; 461 __be16 ethertype; 462 }; 463 struct llc_snap_hdr *llc; 464 __be16 proto; 465 466 proto = *(__be16 *) skb->data; 467 __skb_pull(skb, sizeof(__be16)); 468 469 if (ntohs(proto) >= ETH_P_802_3_MIN) 470 return proto; 471 472 if (skb->len < sizeof(struct llc_snap_hdr)) 473 return htons(ETH_P_802_2); 474 475 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 476 return htons(0); 477 478 llc = (struct llc_snap_hdr *) skb->data; 479 if (llc->dsap != LLC_SAP_SNAP || 480 llc->ssap != LLC_SAP_SNAP || 481 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 482 return htons(ETH_P_802_2); 483 484 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 485 486 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) 487 return llc->ethertype; 488 489 return htons(ETH_P_802_2); 490 } 491 492 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 493 int *key_lenp, int nh_len) 494 { 495 struct icmp6hdr *icmp = icmp6_hdr(skb); 496 int error = 0; 497 int key_len; 498 499 /* The ICMPv6 type and code fields use the 16-bit transport port 500 * fields, so we need to store them in 16-bit network byte order. 501 */ 502 key->ipv6.tp.src = htons(icmp->icmp6_type); 503 key->ipv6.tp.dst = htons(icmp->icmp6_code); 504 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 505 506 if (icmp->icmp6_code == 0 && 507 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 508 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 509 int icmp_len = skb->len - skb_transport_offset(skb); 510 struct nd_msg *nd; 511 int offset; 512 513 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 514 515 /* In order to process neighbor discovery options, we need the 516 * entire packet. 517 */ 518 if (unlikely(icmp_len < sizeof(*nd))) 519 goto out; 520 if (unlikely(skb_linearize(skb))) { 521 error = -ENOMEM; 522 goto out; 523 } 524 525 nd = (struct nd_msg *)skb_transport_header(skb); 526 key->ipv6.nd.target = nd->target; 527 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 528 529 icmp_len -= sizeof(*nd); 530 offset = 0; 531 while (icmp_len >= 8) { 532 struct nd_opt_hdr *nd_opt = 533 (struct nd_opt_hdr *)(nd->opt + offset); 534 int opt_len = nd_opt->nd_opt_len * 8; 535 536 if (unlikely(!opt_len || opt_len > icmp_len)) 537 goto invalid; 538 539 /* Store the link layer address if the appropriate 540 * option is provided. It is considered an error if 541 * the same link layer option is specified twice. 542 */ 543 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 544 && opt_len == 8) { 545 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 546 goto invalid; 547 memcpy(key->ipv6.nd.sll, 548 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 549 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 550 && opt_len == 8) { 551 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 552 goto invalid; 553 memcpy(key->ipv6.nd.tll, 554 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 555 } 556 557 icmp_len -= opt_len; 558 offset += opt_len; 559 } 560 } 561 562 goto out; 563 564 invalid: 565 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 566 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 567 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 568 569 out: 570 *key_lenp = key_len; 571 return error; 572 } 573 574 /** 575 * ovs_flow_extract - extracts a flow key from an Ethernet frame. 576 * @skb: sk_buff that contains the frame, with skb->data pointing to the 577 * Ethernet header 578 * @in_port: port number on which @skb was received. 579 * @key: output flow key 580 * @key_lenp: length of output flow key 581 * 582 * The caller must ensure that skb->len >= ETH_HLEN. 583 * 584 * Returns 0 if successful, otherwise a negative errno value. 585 * 586 * Initializes @skb header pointers as follows: 587 * 588 * - skb->mac_header: the Ethernet header. 589 * 590 * - skb->network_header: just past the Ethernet header, or just past the 591 * VLAN header, to the first byte of the Ethernet payload. 592 * 593 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 594 * on output, then just past the IP header, if one is present and 595 * of a correct length, otherwise the same as skb->network_header. 596 * For other key->eth.type values it is left untouched. 597 */ 598 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, 599 int *key_lenp) 600 { 601 int error = 0; 602 int key_len = SW_FLOW_KEY_OFFSET(eth); 603 struct ethhdr *eth; 604 605 memset(key, 0, sizeof(*key)); 606 607 key->phy.priority = skb->priority; 608 key->phy.in_port = in_port; 609 key->phy.skb_mark = skb->mark; 610 611 skb_reset_mac_header(skb); 612 613 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 614 * header in the linear data area. 615 */ 616 eth = eth_hdr(skb); 617 memcpy(key->eth.src, eth->h_source, ETH_ALEN); 618 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); 619 620 __skb_pull(skb, 2 * ETH_ALEN); 621 /* We are going to push all headers that we pull, so no need to 622 * update skb->csum here. 623 */ 624 625 if (vlan_tx_tag_present(skb)) 626 key->eth.tci = htons(skb->vlan_tci); 627 else if (eth->h_proto == htons(ETH_P_8021Q)) 628 if (unlikely(parse_vlan(skb, key))) 629 return -ENOMEM; 630 631 key->eth.type = parse_ethertype(skb); 632 if (unlikely(key->eth.type == htons(0))) 633 return -ENOMEM; 634 635 skb_reset_network_header(skb); 636 __skb_push(skb, skb->data - skb_mac_header(skb)); 637 638 /* Network layer. */ 639 if (key->eth.type == htons(ETH_P_IP)) { 640 struct iphdr *nh; 641 __be16 offset; 642 643 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 644 645 error = check_iphdr(skb); 646 if (unlikely(error)) { 647 if (error == -EINVAL) { 648 skb->transport_header = skb->network_header; 649 error = 0; 650 } 651 goto out; 652 } 653 654 nh = ip_hdr(skb); 655 key->ipv4.addr.src = nh->saddr; 656 key->ipv4.addr.dst = nh->daddr; 657 658 key->ip.proto = nh->protocol; 659 key->ip.tos = nh->tos; 660 key->ip.ttl = nh->ttl; 661 662 offset = nh->frag_off & htons(IP_OFFSET); 663 if (offset) { 664 key->ip.frag = OVS_FRAG_TYPE_LATER; 665 goto out; 666 } 667 if (nh->frag_off & htons(IP_MF) || 668 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 669 key->ip.frag = OVS_FRAG_TYPE_FIRST; 670 671 /* Transport layer. */ 672 if (key->ip.proto == IPPROTO_TCP) { 673 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 674 if (tcphdr_ok(skb)) { 675 struct tcphdr *tcp = tcp_hdr(skb); 676 key->ipv4.tp.src = tcp->source; 677 key->ipv4.tp.dst = tcp->dest; 678 } 679 } else if (key->ip.proto == IPPROTO_UDP) { 680 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 681 if (udphdr_ok(skb)) { 682 struct udphdr *udp = udp_hdr(skb); 683 key->ipv4.tp.src = udp->source; 684 key->ipv4.tp.dst = udp->dest; 685 } 686 } else if (key->ip.proto == IPPROTO_ICMP) { 687 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 688 if (icmphdr_ok(skb)) { 689 struct icmphdr *icmp = icmp_hdr(skb); 690 /* The ICMP type and code fields use the 16-bit 691 * transport port fields, so we need to store 692 * them in 16-bit network byte order. */ 693 key->ipv4.tp.src = htons(icmp->type); 694 key->ipv4.tp.dst = htons(icmp->code); 695 } 696 } 697 698 } else if ((key->eth.type == htons(ETH_P_ARP) || 699 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { 700 struct arp_eth_header *arp; 701 702 arp = (struct arp_eth_header *)skb_network_header(skb); 703 704 if (arp->ar_hrd == htons(ARPHRD_ETHER) 705 && arp->ar_pro == htons(ETH_P_IP) 706 && arp->ar_hln == ETH_ALEN 707 && arp->ar_pln == 4) { 708 709 /* We only match on the lower 8 bits of the opcode. */ 710 if (ntohs(arp->ar_op) <= 0xff) 711 key->ip.proto = ntohs(arp->ar_op); 712 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 713 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 714 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); 715 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); 716 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 717 } 718 } else if (key->eth.type == htons(ETH_P_IPV6)) { 719 int nh_len; /* IPv6 Header + Extensions */ 720 721 nh_len = parse_ipv6hdr(skb, key, &key_len); 722 if (unlikely(nh_len < 0)) { 723 if (nh_len == -EINVAL) 724 skb->transport_header = skb->network_header; 725 else 726 error = nh_len; 727 goto out; 728 } 729 730 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 731 goto out; 732 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 733 key->ip.frag = OVS_FRAG_TYPE_FIRST; 734 735 /* Transport layer. */ 736 if (key->ip.proto == NEXTHDR_TCP) { 737 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 738 if (tcphdr_ok(skb)) { 739 struct tcphdr *tcp = tcp_hdr(skb); 740 key->ipv6.tp.src = tcp->source; 741 key->ipv6.tp.dst = tcp->dest; 742 } 743 } else if (key->ip.proto == NEXTHDR_UDP) { 744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 745 if (udphdr_ok(skb)) { 746 struct udphdr *udp = udp_hdr(skb); 747 key->ipv6.tp.src = udp->source; 748 key->ipv6.tp.dst = udp->dest; 749 } 750 } else if (key->ip.proto == NEXTHDR_ICMP) { 751 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 752 if (icmp6hdr_ok(skb)) { 753 error = parse_icmpv6(skb, key, &key_len, nh_len); 754 if (error < 0) 755 goto out; 756 } 757 } 758 } 759 760 out: 761 *key_lenp = key_len; 762 return error; 763 } 764 765 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) 766 { 767 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); 768 } 769 770 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, 771 struct sw_flow_key *key, int key_len) 772 { 773 struct sw_flow *flow; 774 struct hlist_head *head; 775 u32 hash; 776 777 hash = ovs_flow_hash(key, key_len); 778 779 head = find_bucket(table, hash); 780 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { 781 782 if (flow->hash == hash && 783 !memcmp(&flow->key, key, key_len)) { 784 return flow; 785 } 786 } 787 return NULL; 788 } 789 790 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) 791 { 792 struct hlist_head *head; 793 794 head = find_bucket(table, flow->hash); 795 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); 796 table->count++; 797 } 798 799 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) 800 { 801 BUG_ON(table->count == 0); 802 hlist_del_rcu(&flow->hash_node[table->node_ver]); 803 table->count--; 804 } 805 806 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 807 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 808 [OVS_KEY_ATTR_ENCAP] = -1, 809 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), 810 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), 811 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), 812 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), 813 [OVS_KEY_ATTR_VLAN] = sizeof(__be16), 814 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), 815 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), 816 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), 817 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), 818 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), 819 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), 820 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), 821 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), 822 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), 823 }; 824 825 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 826 const struct nlattr *a[], u32 *attrs) 827 { 828 const struct ovs_key_icmp *icmp_key; 829 const struct ovs_key_tcp *tcp_key; 830 const struct ovs_key_udp *udp_key; 831 832 switch (swkey->ip.proto) { 833 case IPPROTO_TCP: 834 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 835 return -EINVAL; 836 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 837 838 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 839 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 840 swkey->ipv4.tp.src = tcp_key->tcp_src; 841 swkey->ipv4.tp.dst = tcp_key->tcp_dst; 842 break; 843 844 case IPPROTO_UDP: 845 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 846 return -EINVAL; 847 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 848 849 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 850 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 851 swkey->ipv4.tp.src = udp_key->udp_src; 852 swkey->ipv4.tp.dst = udp_key->udp_dst; 853 break; 854 855 case IPPROTO_ICMP: 856 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) 857 return -EINVAL; 858 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 859 860 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 861 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 862 swkey->ipv4.tp.src = htons(icmp_key->icmp_type); 863 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); 864 break; 865 } 866 867 return 0; 868 } 869 870 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 871 const struct nlattr *a[], u32 *attrs) 872 { 873 const struct ovs_key_icmpv6 *icmpv6_key; 874 const struct ovs_key_tcp *tcp_key; 875 const struct ovs_key_udp *udp_key; 876 877 switch (swkey->ip.proto) { 878 case IPPROTO_TCP: 879 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 880 return -EINVAL; 881 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 882 883 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 884 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 885 swkey->ipv6.tp.src = tcp_key->tcp_src; 886 swkey->ipv6.tp.dst = tcp_key->tcp_dst; 887 break; 888 889 case IPPROTO_UDP: 890 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 891 return -EINVAL; 892 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 893 894 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 895 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 896 swkey->ipv6.tp.src = udp_key->udp_src; 897 swkey->ipv6.tp.dst = udp_key->udp_dst; 898 break; 899 900 case IPPROTO_ICMPV6: 901 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) 902 return -EINVAL; 903 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 904 905 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 906 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 907 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); 908 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); 909 910 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 911 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 912 const struct ovs_key_nd *nd_key; 913 914 if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) 915 return -EINVAL; 916 *attrs &= ~(1 << OVS_KEY_ATTR_ND); 917 918 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 919 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 920 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, 921 sizeof(swkey->ipv6.nd.target)); 922 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); 923 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); 924 } 925 break; 926 } 927 928 return 0; 929 } 930 931 static int parse_flow_nlattrs(const struct nlattr *attr, 932 const struct nlattr *a[], u32 *attrsp) 933 { 934 const struct nlattr *nla; 935 u32 attrs; 936 int rem; 937 938 attrs = 0; 939 nla_for_each_nested(nla, attr, rem) { 940 u16 type = nla_type(nla); 941 int expected_len; 942 943 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) 944 return -EINVAL; 945 946 expected_len = ovs_key_lens[type]; 947 if (nla_len(nla) != expected_len && expected_len != -1) 948 return -EINVAL; 949 950 attrs |= 1 << type; 951 a[type] = nla; 952 } 953 if (rem) 954 return -EINVAL; 955 956 *attrsp = attrs; 957 return 0; 958 } 959 960 /** 961 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. 962 * @swkey: receives the extracted flow key. 963 * @key_lenp: number of bytes used in @swkey. 964 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 965 * sequence. 966 */ 967 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, 968 const struct nlattr *attr) 969 { 970 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 971 const struct ovs_key_ethernet *eth_key; 972 int key_len; 973 u32 attrs; 974 int err; 975 976 memset(swkey, 0, sizeof(struct sw_flow_key)); 977 key_len = SW_FLOW_KEY_OFFSET(eth); 978 979 err = parse_flow_nlattrs(attr, a, &attrs); 980 if (err) 981 return err; 982 983 /* Metadata attributes. */ 984 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 985 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); 986 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 987 } 988 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 989 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 990 if (in_port >= DP_MAX_PORTS) 991 return -EINVAL; 992 swkey->phy.in_port = in_port; 993 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 994 } else { 995 swkey->phy.in_port = DP_MAX_PORTS; 996 } 997 if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 998 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 999 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1000 } 1001 1002 /* Data attributes. */ 1003 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) 1004 return -EINVAL; 1005 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1006 1007 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1008 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); 1009 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); 1010 1011 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && 1012 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { 1013 const struct nlattr *encap; 1014 __be16 tci; 1015 1016 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | 1017 (1 << OVS_KEY_ATTR_ETHERTYPE) | 1018 (1 << OVS_KEY_ATTR_ENCAP))) 1019 return -EINVAL; 1020 1021 encap = a[OVS_KEY_ATTR_ENCAP]; 1022 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1023 if (tci & htons(VLAN_TAG_PRESENT)) { 1024 swkey->eth.tci = tci; 1025 1026 err = parse_flow_nlattrs(encap, a, &attrs); 1027 if (err) 1028 return err; 1029 } else if (!tci) { 1030 /* Corner case for truncated 802.1Q header. */ 1031 if (nla_len(encap)) 1032 return -EINVAL; 1033 1034 swkey->eth.type = htons(ETH_P_8021Q); 1035 *key_lenp = key_len; 1036 return 0; 1037 } else { 1038 return -EINVAL; 1039 } 1040 } 1041 1042 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1043 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1044 if (ntohs(swkey->eth.type) < ETH_P_802_3_MIN) 1045 return -EINVAL; 1046 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1047 } else { 1048 swkey->eth.type = htons(ETH_P_802_2); 1049 } 1050 1051 if (swkey->eth.type == htons(ETH_P_IP)) { 1052 const struct ovs_key_ipv4 *ipv4_key; 1053 1054 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) 1055 return -EINVAL; 1056 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1057 1058 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 1059 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1060 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) 1061 return -EINVAL; 1062 swkey->ip.proto = ipv4_key->ipv4_proto; 1063 swkey->ip.tos = ipv4_key->ipv4_tos; 1064 swkey->ip.ttl = ipv4_key->ipv4_ttl; 1065 swkey->ip.frag = ipv4_key->ipv4_frag; 1066 swkey->ipv4.addr.src = ipv4_key->ipv4_src; 1067 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; 1068 1069 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1070 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1071 if (err) 1072 return err; 1073 } 1074 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1075 const struct ovs_key_ipv6 *ipv6_key; 1076 1077 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) 1078 return -EINVAL; 1079 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1080 1081 key_len = SW_FLOW_KEY_OFFSET(ipv6.label); 1082 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1083 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) 1084 return -EINVAL; 1085 swkey->ipv6.label = ipv6_key->ipv6_label; 1086 swkey->ip.proto = ipv6_key->ipv6_proto; 1087 swkey->ip.tos = ipv6_key->ipv6_tclass; 1088 swkey->ip.ttl = ipv6_key->ipv6_hlimit; 1089 swkey->ip.frag = ipv6_key->ipv6_frag; 1090 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, 1091 sizeof(swkey->ipv6.addr.src)); 1092 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, 1093 sizeof(swkey->ipv6.addr.dst)); 1094 1095 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1096 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1097 if (err) 1098 return err; 1099 } 1100 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1101 swkey->eth.type == htons(ETH_P_RARP)) { 1102 const struct ovs_key_arp *arp_key; 1103 1104 if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) 1105 return -EINVAL; 1106 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1107 1108 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 1109 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1110 swkey->ipv4.addr.src = arp_key->arp_sip; 1111 swkey->ipv4.addr.dst = arp_key->arp_tip; 1112 if (arp_key->arp_op & htons(0xff00)) 1113 return -EINVAL; 1114 swkey->ip.proto = ntohs(arp_key->arp_op); 1115 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); 1116 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); 1117 } 1118 1119 if (attrs) 1120 return -EINVAL; 1121 *key_lenp = key_len; 1122 1123 return 0; 1124 } 1125 1126 /** 1127 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. 1128 * @flow: Receives extracted in_port, priority, tun_key and skb_mark. 1129 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1130 * sequence. 1131 * 1132 * This parses a series of Netlink attributes that form a flow key, which must 1133 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1134 * get the metadata, that is, the parts of the flow key that cannot be 1135 * extracted from the packet itself. 1136 */ 1137 int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, 1138 const struct nlattr *attr) 1139 { 1140 const struct nlattr *nla; 1141 int rem; 1142 1143 flow->key.phy.in_port = DP_MAX_PORTS; 1144 flow->key.phy.priority = 0; 1145 flow->key.phy.skb_mark = 0; 1146 1147 nla_for_each_nested(nla, attr, rem) { 1148 int type = nla_type(nla); 1149 1150 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { 1151 if (nla_len(nla) != ovs_key_lens[type]) 1152 return -EINVAL; 1153 1154 switch (type) { 1155 case OVS_KEY_ATTR_PRIORITY: 1156 flow->key.phy.priority = nla_get_u32(nla); 1157 break; 1158 1159 case OVS_KEY_ATTR_IN_PORT: 1160 if (nla_get_u32(nla) >= DP_MAX_PORTS) 1161 return -EINVAL; 1162 flow->key.phy.in_port = nla_get_u32(nla); 1163 break; 1164 1165 case OVS_KEY_ATTR_SKB_MARK: 1166 flow->key.phy.skb_mark = nla_get_u32(nla); 1167 break; 1168 } 1169 } 1170 } 1171 if (rem) 1172 return -EINVAL; 1173 return 0; 1174 } 1175 1176 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) 1177 { 1178 struct ovs_key_ethernet *eth_key; 1179 struct nlattr *nla, *encap; 1180 1181 if (swkey->phy.priority && 1182 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) 1183 goto nla_put_failure; 1184 1185 if (swkey->phy.in_port != DP_MAX_PORTS && 1186 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) 1187 goto nla_put_failure; 1188 1189 if (swkey->phy.skb_mark && 1190 nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark)) 1191 goto nla_put_failure; 1192 1193 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1194 if (!nla) 1195 goto nla_put_failure; 1196 eth_key = nla_data(nla); 1197 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); 1198 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); 1199 1200 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1201 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || 1202 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) 1203 goto nla_put_failure; 1204 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1205 if (!swkey->eth.tci) 1206 goto unencap; 1207 } else { 1208 encap = NULL; 1209 } 1210 1211 if (swkey->eth.type == htons(ETH_P_802_2)) 1212 goto unencap; 1213 1214 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) 1215 goto nla_put_failure; 1216 1217 if (swkey->eth.type == htons(ETH_P_IP)) { 1218 struct ovs_key_ipv4 *ipv4_key; 1219 1220 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1221 if (!nla) 1222 goto nla_put_failure; 1223 ipv4_key = nla_data(nla); 1224 ipv4_key->ipv4_src = swkey->ipv4.addr.src; 1225 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; 1226 ipv4_key->ipv4_proto = swkey->ip.proto; 1227 ipv4_key->ipv4_tos = swkey->ip.tos; 1228 ipv4_key->ipv4_ttl = swkey->ip.ttl; 1229 ipv4_key->ipv4_frag = swkey->ip.frag; 1230 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1231 struct ovs_key_ipv6 *ipv6_key; 1232 1233 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1234 if (!nla) 1235 goto nla_put_failure; 1236 ipv6_key = nla_data(nla); 1237 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, 1238 sizeof(ipv6_key->ipv6_src)); 1239 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, 1240 sizeof(ipv6_key->ipv6_dst)); 1241 ipv6_key->ipv6_label = swkey->ipv6.label; 1242 ipv6_key->ipv6_proto = swkey->ip.proto; 1243 ipv6_key->ipv6_tclass = swkey->ip.tos; 1244 ipv6_key->ipv6_hlimit = swkey->ip.ttl; 1245 ipv6_key->ipv6_frag = swkey->ip.frag; 1246 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1247 swkey->eth.type == htons(ETH_P_RARP)) { 1248 struct ovs_key_arp *arp_key; 1249 1250 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1251 if (!nla) 1252 goto nla_put_failure; 1253 arp_key = nla_data(nla); 1254 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1255 arp_key->arp_sip = swkey->ipv4.addr.src; 1256 arp_key->arp_tip = swkey->ipv4.addr.dst; 1257 arp_key->arp_op = htons(swkey->ip.proto); 1258 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); 1259 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); 1260 } 1261 1262 if ((swkey->eth.type == htons(ETH_P_IP) || 1263 swkey->eth.type == htons(ETH_P_IPV6)) && 1264 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1265 1266 if (swkey->ip.proto == IPPROTO_TCP) { 1267 struct ovs_key_tcp *tcp_key; 1268 1269 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1270 if (!nla) 1271 goto nla_put_failure; 1272 tcp_key = nla_data(nla); 1273 if (swkey->eth.type == htons(ETH_P_IP)) { 1274 tcp_key->tcp_src = swkey->ipv4.tp.src; 1275 tcp_key->tcp_dst = swkey->ipv4.tp.dst; 1276 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1277 tcp_key->tcp_src = swkey->ipv6.tp.src; 1278 tcp_key->tcp_dst = swkey->ipv6.tp.dst; 1279 } 1280 } else if (swkey->ip.proto == IPPROTO_UDP) { 1281 struct ovs_key_udp *udp_key; 1282 1283 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1284 if (!nla) 1285 goto nla_put_failure; 1286 udp_key = nla_data(nla); 1287 if (swkey->eth.type == htons(ETH_P_IP)) { 1288 udp_key->udp_src = swkey->ipv4.tp.src; 1289 udp_key->udp_dst = swkey->ipv4.tp.dst; 1290 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1291 udp_key->udp_src = swkey->ipv6.tp.src; 1292 udp_key->udp_dst = swkey->ipv6.tp.dst; 1293 } 1294 } else if (swkey->eth.type == htons(ETH_P_IP) && 1295 swkey->ip.proto == IPPROTO_ICMP) { 1296 struct ovs_key_icmp *icmp_key; 1297 1298 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1299 if (!nla) 1300 goto nla_put_failure; 1301 icmp_key = nla_data(nla); 1302 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); 1303 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); 1304 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1305 swkey->ip.proto == IPPROTO_ICMPV6) { 1306 struct ovs_key_icmpv6 *icmpv6_key; 1307 1308 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1309 sizeof(*icmpv6_key)); 1310 if (!nla) 1311 goto nla_put_failure; 1312 icmpv6_key = nla_data(nla); 1313 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); 1314 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); 1315 1316 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1317 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1318 struct ovs_key_nd *nd_key; 1319 1320 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1321 if (!nla) 1322 goto nla_put_failure; 1323 nd_key = nla_data(nla); 1324 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, 1325 sizeof(nd_key->nd_target)); 1326 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); 1327 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); 1328 } 1329 } 1330 } 1331 1332 unencap: 1333 if (encap) 1334 nla_nest_end(skb, encap); 1335 1336 return 0; 1337 1338 nla_put_failure: 1339 return -EMSGSIZE; 1340 } 1341 1342 /* Initializes the flow module. 1343 * Returns zero if successful or a negative error code. */ 1344 int ovs_flow_init(void) 1345 { 1346 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 1347 0, NULL); 1348 if (flow_cache == NULL) 1349 return -ENOMEM; 1350 1351 return 0; 1352 } 1353 1354 /* Uninitializes the flow module. */ 1355 void ovs_flow_exit(void) 1356 { 1357 kmem_cache_destroy(flow_cache); 1358 } 1359