1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/mpls.h> 36 #include <linux/sctp.h> 37 #include <linux/smp.h> 38 #include <linux/tcp.h> 39 #include <linux/udp.h> 40 #include <linux/icmp.h> 41 #include <linux/icmpv6.h> 42 #include <linux/rculist.h> 43 #include <net/ip.h> 44 #include <net/ip_tunnels.h> 45 #include <net/ipv6.h> 46 #include <net/mpls.h> 47 #include <net/ndisc.h> 48 49 #include "datapath.h" 50 #include "flow.h" 51 #include "flow_netlink.h" 52 53 u64 ovs_flow_used_time(unsigned long flow_jiffies) 54 { 55 struct timespec cur_ts; 56 u64 cur_ms, idle_ms; 57 58 ktime_get_ts(&cur_ts); 59 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 60 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 61 cur_ts.tv_nsec / NSEC_PER_MSEC; 62 63 return cur_ms - idle_ms; 64 } 65 66 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 67 68 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 69 const struct sk_buff *skb) 70 { 71 struct flow_stats *stats; 72 int node = numa_node_id(); 73 74 stats = rcu_dereference(flow->stats[node]); 75 76 /* Check if already have node-specific stats. */ 77 if (likely(stats)) { 78 spin_lock(&stats->lock); 79 /* Mark if we write on the pre-allocated stats. */ 80 if (node == 0 && unlikely(flow->stats_last_writer != node)) 81 flow->stats_last_writer = node; 82 } else { 83 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 84 spin_lock(&stats->lock); 85 86 /* If the current NUMA-node is the only writer on the 87 * pre-allocated stats keep using them. 88 */ 89 if (unlikely(flow->stats_last_writer != node)) { 90 /* A previous locker may have already allocated the 91 * stats, so we need to check again. If node-specific 92 * stats were already allocated, we update the pre- 93 * allocated stats as we have already locked them. 94 */ 95 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 96 && likely(!rcu_access_pointer(flow->stats[node]))) { 97 /* Try to allocate node-specific stats. */ 98 struct flow_stats *new_stats; 99 100 new_stats = 101 kmem_cache_alloc_node(flow_stats_cache, 102 GFP_THISNODE | 103 __GFP_NOMEMALLOC, 104 node); 105 if (likely(new_stats)) { 106 new_stats->used = jiffies; 107 new_stats->packet_count = 1; 108 new_stats->byte_count = skb->len; 109 new_stats->tcp_flags = tcp_flags; 110 spin_lock_init(&new_stats->lock); 111 112 rcu_assign_pointer(flow->stats[node], 113 new_stats); 114 goto unlock; 115 } 116 } 117 flow->stats_last_writer = node; 118 } 119 } 120 121 stats->used = jiffies; 122 stats->packet_count++; 123 stats->byte_count += skb->len; 124 stats->tcp_flags |= tcp_flags; 125 unlock: 126 spin_unlock(&stats->lock); 127 } 128 129 /* Must be called with rcu_read_lock or ovs_mutex. */ 130 void ovs_flow_stats_get(const struct sw_flow *flow, 131 struct ovs_flow_stats *ovs_stats, 132 unsigned long *used, __be16 *tcp_flags) 133 { 134 int node; 135 136 *used = 0; 137 *tcp_flags = 0; 138 memset(ovs_stats, 0, sizeof(*ovs_stats)); 139 140 for_each_node(node) { 141 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 142 143 if (stats) { 144 /* Local CPU may write on non-local stats, so we must 145 * block bottom-halves here. 146 */ 147 spin_lock_bh(&stats->lock); 148 if (!*used || time_after(stats->used, *used)) 149 *used = stats->used; 150 *tcp_flags |= stats->tcp_flags; 151 ovs_stats->n_packets += stats->packet_count; 152 ovs_stats->n_bytes += stats->byte_count; 153 spin_unlock_bh(&stats->lock); 154 } 155 } 156 } 157 158 /* Called with ovs_mutex. */ 159 void ovs_flow_stats_clear(struct sw_flow *flow) 160 { 161 int node; 162 163 for_each_node(node) { 164 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 165 166 if (stats) { 167 spin_lock_bh(&stats->lock); 168 stats->used = 0; 169 stats->packet_count = 0; 170 stats->byte_count = 0; 171 stats->tcp_flags = 0; 172 spin_unlock_bh(&stats->lock); 173 } 174 } 175 } 176 177 static int check_header(struct sk_buff *skb, int len) 178 { 179 if (unlikely(skb->len < len)) 180 return -EINVAL; 181 if (unlikely(!pskb_may_pull(skb, len))) 182 return -ENOMEM; 183 return 0; 184 } 185 186 static bool arphdr_ok(struct sk_buff *skb) 187 { 188 return pskb_may_pull(skb, skb_network_offset(skb) + 189 sizeof(struct arp_eth_header)); 190 } 191 192 static int check_iphdr(struct sk_buff *skb) 193 { 194 unsigned int nh_ofs = skb_network_offset(skb); 195 unsigned int ip_len; 196 int err; 197 198 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 199 if (unlikely(err)) 200 return err; 201 202 ip_len = ip_hdrlen(skb); 203 if (unlikely(ip_len < sizeof(struct iphdr) || 204 skb->len < nh_ofs + ip_len)) 205 return -EINVAL; 206 207 skb_set_transport_header(skb, nh_ofs + ip_len); 208 return 0; 209 } 210 211 static bool tcphdr_ok(struct sk_buff *skb) 212 { 213 int th_ofs = skb_transport_offset(skb); 214 int tcp_len; 215 216 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 217 return false; 218 219 tcp_len = tcp_hdrlen(skb); 220 if (unlikely(tcp_len < sizeof(struct tcphdr) || 221 skb->len < th_ofs + tcp_len)) 222 return false; 223 224 return true; 225 } 226 227 static bool udphdr_ok(struct sk_buff *skb) 228 { 229 return pskb_may_pull(skb, skb_transport_offset(skb) + 230 sizeof(struct udphdr)); 231 } 232 233 static bool sctphdr_ok(struct sk_buff *skb) 234 { 235 return pskb_may_pull(skb, skb_transport_offset(skb) + 236 sizeof(struct sctphdr)); 237 } 238 239 static bool icmphdr_ok(struct sk_buff *skb) 240 { 241 return pskb_may_pull(skb, skb_transport_offset(skb) + 242 sizeof(struct icmphdr)); 243 } 244 245 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 246 { 247 unsigned int nh_ofs = skb_network_offset(skb); 248 unsigned int nh_len; 249 int payload_ofs; 250 struct ipv6hdr *nh; 251 uint8_t nexthdr; 252 __be16 frag_off; 253 int err; 254 255 err = check_header(skb, nh_ofs + sizeof(*nh)); 256 if (unlikely(err)) 257 return err; 258 259 nh = ipv6_hdr(skb); 260 nexthdr = nh->nexthdr; 261 payload_ofs = (u8 *)(nh + 1) - skb->data; 262 263 key->ip.proto = NEXTHDR_NONE; 264 key->ip.tos = ipv6_get_dsfield(nh); 265 key->ip.ttl = nh->hop_limit; 266 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 267 key->ipv6.addr.src = nh->saddr; 268 key->ipv6.addr.dst = nh->daddr; 269 270 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 271 if (unlikely(payload_ofs < 0)) 272 return -EINVAL; 273 274 if (frag_off) { 275 if (frag_off & htons(~0x7)) 276 key->ip.frag = OVS_FRAG_TYPE_LATER; 277 else 278 key->ip.frag = OVS_FRAG_TYPE_FIRST; 279 } else { 280 key->ip.frag = OVS_FRAG_TYPE_NONE; 281 } 282 283 nh_len = payload_ofs - nh_ofs; 284 skb_set_transport_header(skb, nh_ofs + nh_len); 285 key->ip.proto = nexthdr; 286 return nh_len; 287 } 288 289 static bool icmp6hdr_ok(struct sk_buff *skb) 290 { 291 return pskb_may_pull(skb, skb_transport_offset(skb) + 292 sizeof(struct icmp6hdr)); 293 } 294 295 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 296 { 297 struct qtag_prefix { 298 __be16 eth_type; /* ETH_P_8021Q */ 299 __be16 tci; 300 }; 301 struct qtag_prefix *qp; 302 303 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 304 return 0; 305 306 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 307 sizeof(__be16)))) 308 return -ENOMEM; 309 310 qp = (struct qtag_prefix *) skb->data; 311 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 312 __skb_pull(skb, sizeof(struct qtag_prefix)); 313 314 return 0; 315 } 316 317 static __be16 parse_ethertype(struct sk_buff *skb) 318 { 319 struct llc_snap_hdr { 320 u8 dsap; /* Always 0xAA */ 321 u8 ssap; /* Always 0xAA */ 322 u8 ctrl; 323 u8 oui[3]; 324 __be16 ethertype; 325 }; 326 struct llc_snap_hdr *llc; 327 __be16 proto; 328 329 proto = *(__be16 *) skb->data; 330 __skb_pull(skb, sizeof(__be16)); 331 332 if (ntohs(proto) >= ETH_P_802_3_MIN) 333 return proto; 334 335 if (skb->len < sizeof(struct llc_snap_hdr)) 336 return htons(ETH_P_802_2); 337 338 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 339 return htons(0); 340 341 llc = (struct llc_snap_hdr *) skb->data; 342 if (llc->dsap != LLC_SAP_SNAP || 343 llc->ssap != LLC_SAP_SNAP || 344 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 345 return htons(ETH_P_802_2); 346 347 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 348 349 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) 350 return llc->ethertype; 351 352 return htons(ETH_P_802_2); 353 } 354 355 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 356 int nh_len) 357 { 358 struct icmp6hdr *icmp = icmp6_hdr(skb); 359 360 /* The ICMPv6 type and code fields use the 16-bit transport port 361 * fields, so we need to store them in 16-bit network byte order. 362 */ 363 key->tp.src = htons(icmp->icmp6_type); 364 key->tp.dst = htons(icmp->icmp6_code); 365 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 366 367 if (icmp->icmp6_code == 0 && 368 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 369 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 370 int icmp_len = skb->len - skb_transport_offset(skb); 371 struct nd_msg *nd; 372 int offset; 373 374 /* In order to process neighbor discovery options, we need the 375 * entire packet. 376 */ 377 if (unlikely(icmp_len < sizeof(*nd))) 378 return 0; 379 380 if (unlikely(skb_linearize(skb))) 381 return -ENOMEM; 382 383 nd = (struct nd_msg *)skb_transport_header(skb); 384 key->ipv6.nd.target = nd->target; 385 386 icmp_len -= sizeof(*nd); 387 offset = 0; 388 while (icmp_len >= 8) { 389 struct nd_opt_hdr *nd_opt = 390 (struct nd_opt_hdr *)(nd->opt + offset); 391 int opt_len = nd_opt->nd_opt_len * 8; 392 393 if (unlikely(!opt_len || opt_len > icmp_len)) 394 return 0; 395 396 /* Store the link layer address if the appropriate 397 * option is provided. It is considered an error if 398 * the same link layer option is specified twice. 399 */ 400 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 401 && opt_len == 8) { 402 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 403 goto invalid; 404 ether_addr_copy(key->ipv6.nd.sll, 405 &nd->opt[offset+sizeof(*nd_opt)]); 406 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 407 && opt_len == 8) { 408 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 409 goto invalid; 410 ether_addr_copy(key->ipv6.nd.tll, 411 &nd->opt[offset+sizeof(*nd_opt)]); 412 } 413 414 icmp_len -= opt_len; 415 offset += opt_len; 416 } 417 } 418 419 return 0; 420 421 invalid: 422 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 423 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 424 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 425 426 return 0; 427 } 428 429 /** 430 * key_extract - extracts a flow key from an Ethernet frame. 431 * @skb: sk_buff that contains the frame, with skb->data pointing to the 432 * Ethernet header 433 * @key: output flow key 434 * 435 * The caller must ensure that skb->len >= ETH_HLEN. 436 * 437 * Returns 0 if successful, otherwise a negative errno value. 438 * 439 * Initializes @skb header pointers as follows: 440 * 441 * - skb->mac_header: the Ethernet header. 442 * 443 * - skb->network_header: just past the Ethernet header, or just past the 444 * VLAN header, to the first byte of the Ethernet payload. 445 * 446 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 447 * on output, then just past the IP header, if one is present and 448 * of a correct length, otherwise the same as skb->network_header. 449 * For other key->eth.type values it is left untouched. 450 */ 451 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 452 { 453 int error; 454 struct ethhdr *eth; 455 456 /* Flags are always used as part of stats */ 457 key->tp.flags = 0; 458 459 skb_reset_mac_header(skb); 460 461 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 462 * header in the linear data area. 463 */ 464 eth = eth_hdr(skb); 465 ether_addr_copy(key->eth.src, eth->h_source); 466 ether_addr_copy(key->eth.dst, eth->h_dest); 467 468 __skb_pull(skb, 2 * ETH_ALEN); 469 /* We are going to push all headers that we pull, so no need to 470 * update skb->csum here. 471 */ 472 473 key->eth.tci = 0; 474 if (vlan_tx_tag_present(skb)) 475 key->eth.tci = htons(skb->vlan_tci); 476 else if (eth->h_proto == htons(ETH_P_8021Q)) 477 if (unlikely(parse_vlan(skb, key))) 478 return -ENOMEM; 479 480 key->eth.type = parse_ethertype(skb); 481 if (unlikely(key->eth.type == htons(0))) 482 return -ENOMEM; 483 484 skb_reset_network_header(skb); 485 skb_reset_mac_len(skb); 486 __skb_push(skb, skb->data - skb_mac_header(skb)); 487 488 /* Network layer. */ 489 if (key->eth.type == htons(ETH_P_IP)) { 490 struct iphdr *nh; 491 __be16 offset; 492 493 error = check_iphdr(skb); 494 if (unlikely(error)) { 495 memset(&key->ip, 0, sizeof(key->ip)); 496 memset(&key->ipv4, 0, sizeof(key->ipv4)); 497 if (error == -EINVAL) { 498 skb->transport_header = skb->network_header; 499 error = 0; 500 } 501 return error; 502 } 503 504 nh = ip_hdr(skb); 505 key->ipv4.addr.src = nh->saddr; 506 key->ipv4.addr.dst = nh->daddr; 507 508 key->ip.proto = nh->protocol; 509 key->ip.tos = nh->tos; 510 key->ip.ttl = nh->ttl; 511 512 offset = nh->frag_off & htons(IP_OFFSET); 513 if (offset) { 514 key->ip.frag = OVS_FRAG_TYPE_LATER; 515 return 0; 516 } 517 if (nh->frag_off & htons(IP_MF) || 518 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 519 key->ip.frag = OVS_FRAG_TYPE_FIRST; 520 else 521 key->ip.frag = OVS_FRAG_TYPE_NONE; 522 523 /* Transport layer. */ 524 if (key->ip.proto == IPPROTO_TCP) { 525 if (tcphdr_ok(skb)) { 526 struct tcphdr *tcp = tcp_hdr(skb); 527 key->tp.src = tcp->source; 528 key->tp.dst = tcp->dest; 529 key->tp.flags = TCP_FLAGS_BE16(tcp); 530 } else { 531 memset(&key->tp, 0, sizeof(key->tp)); 532 } 533 534 } else if (key->ip.proto == IPPROTO_UDP) { 535 if (udphdr_ok(skb)) { 536 struct udphdr *udp = udp_hdr(skb); 537 key->tp.src = udp->source; 538 key->tp.dst = udp->dest; 539 } else { 540 memset(&key->tp, 0, sizeof(key->tp)); 541 } 542 } else if (key->ip.proto == IPPROTO_SCTP) { 543 if (sctphdr_ok(skb)) { 544 struct sctphdr *sctp = sctp_hdr(skb); 545 key->tp.src = sctp->source; 546 key->tp.dst = sctp->dest; 547 } else { 548 memset(&key->tp, 0, sizeof(key->tp)); 549 } 550 } else if (key->ip.proto == IPPROTO_ICMP) { 551 if (icmphdr_ok(skb)) { 552 struct icmphdr *icmp = icmp_hdr(skb); 553 /* The ICMP type and code fields use the 16-bit 554 * transport port fields, so we need to store 555 * them in 16-bit network byte order. */ 556 key->tp.src = htons(icmp->type); 557 key->tp.dst = htons(icmp->code); 558 } else { 559 memset(&key->tp, 0, sizeof(key->tp)); 560 } 561 } 562 563 } else if (key->eth.type == htons(ETH_P_ARP) || 564 key->eth.type == htons(ETH_P_RARP)) { 565 struct arp_eth_header *arp; 566 bool arp_available = arphdr_ok(skb); 567 568 arp = (struct arp_eth_header *)skb_network_header(skb); 569 570 if (arp_available && 571 arp->ar_hrd == htons(ARPHRD_ETHER) && 572 arp->ar_pro == htons(ETH_P_IP) && 573 arp->ar_hln == ETH_ALEN && 574 arp->ar_pln == 4) { 575 576 /* We only match on the lower 8 bits of the opcode. */ 577 if (ntohs(arp->ar_op) <= 0xff) 578 key->ip.proto = ntohs(arp->ar_op); 579 else 580 key->ip.proto = 0; 581 582 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 583 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 584 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 585 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 586 } else { 587 memset(&key->ip, 0, sizeof(key->ip)); 588 memset(&key->ipv4, 0, sizeof(key->ipv4)); 589 } 590 } else if (eth_p_mpls(key->eth.type)) { 591 size_t stack_len = MPLS_HLEN; 592 593 /* In the presence of an MPLS label stack the end of the L2 594 * header and the beginning of the L3 header differ. 595 * 596 * Advance network_header to the beginning of the L3 597 * header. mac_len corresponds to the end of the L2 header. 598 */ 599 while (1) { 600 __be32 lse; 601 602 error = check_header(skb, skb->mac_len + stack_len); 603 if (unlikely(error)) 604 return 0; 605 606 memcpy(&lse, skb_network_header(skb), MPLS_HLEN); 607 608 if (stack_len == MPLS_HLEN) 609 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 610 611 skb_set_network_header(skb, skb->mac_len + stack_len); 612 if (lse & htonl(MPLS_LS_S_MASK)) 613 break; 614 615 stack_len += MPLS_HLEN; 616 } 617 } else if (key->eth.type == htons(ETH_P_IPV6)) { 618 int nh_len; /* IPv6 Header + Extensions */ 619 620 nh_len = parse_ipv6hdr(skb, key); 621 if (unlikely(nh_len < 0)) { 622 memset(&key->ip, 0, sizeof(key->ip)); 623 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 624 if (nh_len == -EINVAL) { 625 skb->transport_header = skb->network_header; 626 error = 0; 627 } else { 628 error = nh_len; 629 } 630 return error; 631 } 632 633 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 634 return 0; 635 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 636 key->ip.frag = OVS_FRAG_TYPE_FIRST; 637 638 /* Transport layer. */ 639 if (key->ip.proto == NEXTHDR_TCP) { 640 if (tcphdr_ok(skb)) { 641 struct tcphdr *tcp = tcp_hdr(skb); 642 key->tp.src = tcp->source; 643 key->tp.dst = tcp->dest; 644 key->tp.flags = TCP_FLAGS_BE16(tcp); 645 } else { 646 memset(&key->tp, 0, sizeof(key->tp)); 647 } 648 } else if (key->ip.proto == NEXTHDR_UDP) { 649 if (udphdr_ok(skb)) { 650 struct udphdr *udp = udp_hdr(skb); 651 key->tp.src = udp->source; 652 key->tp.dst = udp->dest; 653 } else { 654 memset(&key->tp, 0, sizeof(key->tp)); 655 } 656 } else if (key->ip.proto == NEXTHDR_SCTP) { 657 if (sctphdr_ok(skb)) { 658 struct sctphdr *sctp = sctp_hdr(skb); 659 key->tp.src = sctp->source; 660 key->tp.dst = sctp->dest; 661 } else { 662 memset(&key->tp, 0, sizeof(key->tp)); 663 } 664 } else if (key->ip.proto == NEXTHDR_ICMP) { 665 if (icmp6hdr_ok(skb)) { 666 error = parse_icmpv6(skb, key, nh_len); 667 if (error) 668 return error; 669 } else { 670 memset(&key->tp, 0, sizeof(key->tp)); 671 } 672 } 673 } 674 return 0; 675 } 676 677 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 678 { 679 return key_extract(skb, key); 680 } 681 682 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info, 683 struct sk_buff *skb, struct sw_flow_key *key) 684 { 685 /* Extract metadata from packet. */ 686 if (tun_info) { 687 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key)); 688 689 if (tun_info->options) { 690 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 691 8)) - 1 692 > sizeof(key->tun_opts)); 693 memcpy(GENEVE_OPTS(key, tun_info->options_len), 694 tun_info->options, tun_info->options_len); 695 key->tun_opts_len = tun_info->options_len; 696 } else { 697 key->tun_opts_len = 0; 698 } 699 } else { 700 key->tun_opts_len = 0; 701 memset(&key->tun_key, 0, sizeof(key->tun_key)); 702 } 703 704 key->phy.priority = skb->priority; 705 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 706 key->phy.skb_mark = skb->mark; 707 key->ovs_flow_hash = 0; 708 key->recirc_id = 0; 709 710 return key_extract(skb, key); 711 } 712 713 int ovs_flow_key_extract_userspace(const struct nlattr *attr, 714 struct sk_buff *skb, 715 struct sw_flow_key *key, bool log) 716 { 717 int err; 718 719 /* Extract metadata from netlink attributes. */ 720 err = ovs_nla_get_flow_metadata(attr, key, log); 721 if (err) 722 return err; 723 724 return key_extract(skb, key); 725 } 726