1 /* 2 * Copyright (c) 2007-2011 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include "flow.h" 20 #include "datapath.h" 21 #include <linux/uaccess.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_vlan.h> 26 #include <net/llc_pdu.h> 27 #include <linux/kernel.h> 28 #include <linux/jhash.h> 29 #include <linux/jiffies.h> 30 #include <linux/llc.h> 31 #include <linux/module.h> 32 #include <linux/in.h> 33 #include <linux/rcupdate.h> 34 #include <linux/if_arp.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/tcp.h> 38 #include <linux/udp.h> 39 #include <linux/icmp.h> 40 #include <linux/icmpv6.h> 41 #include <linux/rculist.h> 42 #include <net/ip.h> 43 #include <net/ipv6.h> 44 #include <net/ndisc.h> 45 46 static struct kmem_cache *flow_cache; 47 48 static int check_header(struct sk_buff *skb, int len) 49 { 50 if (unlikely(skb->len < len)) 51 return -EINVAL; 52 if (unlikely(!pskb_may_pull(skb, len))) 53 return -ENOMEM; 54 return 0; 55 } 56 57 static bool arphdr_ok(struct sk_buff *skb) 58 { 59 return pskb_may_pull(skb, skb_network_offset(skb) + 60 sizeof(struct arp_eth_header)); 61 } 62 63 static int check_iphdr(struct sk_buff *skb) 64 { 65 unsigned int nh_ofs = skb_network_offset(skb); 66 unsigned int ip_len; 67 int err; 68 69 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 70 if (unlikely(err)) 71 return err; 72 73 ip_len = ip_hdrlen(skb); 74 if (unlikely(ip_len < sizeof(struct iphdr) || 75 skb->len < nh_ofs + ip_len)) 76 return -EINVAL; 77 78 skb_set_transport_header(skb, nh_ofs + ip_len); 79 return 0; 80 } 81 82 static bool tcphdr_ok(struct sk_buff *skb) 83 { 84 int th_ofs = skb_transport_offset(skb); 85 int tcp_len; 86 87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 88 return false; 89 90 tcp_len = tcp_hdrlen(skb); 91 if (unlikely(tcp_len < sizeof(struct tcphdr) || 92 skb->len < th_ofs + tcp_len)) 93 return false; 94 95 return true; 96 } 97 98 static bool udphdr_ok(struct sk_buff *skb) 99 { 100 return pskb_may_pull(skb, skb_transport_offset(skb) + 101 sizeof(struct udphdr)); 102 } 103 104 static bool icmphdr_ok(struct sk_buff *skb) 105 { 106 return pskb_may_pull(skb, skb_transport_offset(skb) + 107 sizeof(struct icmphdr)); 108 } 109 110 u64 ovs_flow_used_time(unsigned long flow_jiffies) 111 { 112 struct timespec cur_ts; 113 u64 cur_ms, idle_ms; 114 115 ktime_get_ts(&cur_ts); 116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 118 cur_ts.tv_nsec / NSEC_PER_MSEC; 119 120 return cur_ms - idle_ms; 121 } 122 123 #define SW_FLOW_KEY_OFFSET(field) \ 124 (offsetof(struct sw_flow_key, field) + \ 125 FIELD_SIZEOF(struct sw_flow_key, field)) 126 127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, 128 int *key_lenp) 129 { 130 unsigned int nh_ofs = skb_network_offset(skb); 131 unsigned int nh_len; 132 int payload_ofs; 133 struct ipv6hdr *nh; 134 uint8_t nexthdr; 135 __be16 frag_off; 136 int err; 137 138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); 139 140 err = check_header(skb, nh_ofs + sizeof(*nh)); 141 if (unlikely(err)) 142 return err; 143 144 nh = ipv6_hdr(skb); 145 nexthdr = nh->nexthdr; 146 payload_ofs = (u8 *)(nh + 1) - skb->data; 147 148 key->ip.proto = NEXTHDR_NONE; 149 key->ip.tos = ipv6_get_dsfield(nh); 150 key->ip.ttl = nh->hop_limit; 151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 152 key->ipv6.addr.src = nh->saddr; 153 key->ipv6.addr.dst = nh->daddr; 154 155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 156 if (unlikely(payload_ofs < 0)) 157 return -EINVAL; 158 159 if (frag_off) { 160 if (frag_off & htons(~0x7)) 161 key->ip.frag = OVS_FRAG_TYPE_LATER; 162 else 163 key->ip.frag = OVS_FRAG_TYPE_FIRST; 164 } 165 166 nh_len = payload_ofs - nh_ofs; 167 skb_set_transport_header(skb, nh_ofs + nh_len); 168 key->ip.proto = nexthdr; 169 return nh_len; 170 } 171 172 static bool icmp6hdr_ok(struct sk_buff *skb) 173 { 174 return pskb_may_pull(skb, skb_transport_offset(skb) + 175 sizeof(struct icmp6hdr)); 176 } 177 178 #define TCP_FLAGS_OFFSET 13 179 #define TCP_FLAG_MASK 0x3f 180 181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) 182 { 183 u8 tcp_flags = 0; 184 185 if ((flow->key.eth.type == htons(ETH_P_IP) || 186 flow->key.eth.type == htons(ETH_P_IPV6)) && 187 flow->key.ip.proto == IPPROTO_TCP && 188 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { 189 u8 *tcp = (u8 *)tcp_hdr(skb); 190 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; 191 } 192 193 spin_lock(&flow->lock); 194 flow->used = jiffies; 195 flow->packet_count++; 196 flow->byte_count += skb->len; 197 flow->tcp_flags |= tcp_flags; 198 spin_unlock(&flow->lock); 199 } 200 201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) 202 { 203 int actions_len = nla_len(actions); 204 struct sw_flow_actions *sfa; 205 206 if (actions_len > MAX_ACTIONS_BUFSIZE) 207 return ERR_PTR(-EINVAL); 208 209 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); 210 if (!sfa) 211 return ERR_PTR(-ENOMEM); 212 213 sfa->actions_len = actions_len; 214 memcpy(sfa->actions, nla_data(actions), actions_len); 215 return sfa; 216 } 217 218 struct sw_flow *ovs_flow_alloc(void) 219 { 220 struct sw_flow *flow; 221 222 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); 223 if (!flow) 224 return ERR_PTR(-ENOMEM); 225 226 spin_lock_init(&flow->lock); 227 flow->sf_acts = NULL; 228 229 return flow; 230 } 231 232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) 233 { 234 hash = jhash_1word(hash, table->hash_seed); 235 return flex_array_get(table->buckets, 236 (hash & (table->n_buckets - 1))); 237 } 238 239 static struct flex_array *alloc_buckets(unsigned int n_buckets) 240 { 241 struct flex_array *buckets; 242 int i, err; 243 244 buckets = flex_array_alloc(sizeof(struct hlist_head *), 245 n_buckets, GFP_KERNEL); 246 if (!buckets) 247 return NULL; 248 249 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); 250 if (err) { 251 flex_array_free(buckets); 252 return NULL; 253 } 254 255 for (i = 0; i < n_buckets; i++) 256 INIT_HLIST_HEAD((struct hlist_head *) 257 flex_array_get(buckets, i)); 258 259 return buckets; 260 } 261 262 static void free_buckets(struct flex_array *buckets) 263 { 264 flex_array_free(buckets); 265 } 266 267 struct flow_table *ovs_flow_tbl_alloc(int new_size) 268 { 269 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); 270 271 if (!table) 272 return NULL; 273 274 table->buckets = alloc_buckets(new_size); 275 276 if (!table->buckets) { 277 kfree(table); 278 return NULL; 279 } 280 table->n_buckets = new_size; 281 table->count = 0; 282 table->node_ver = 0; 283 table->keep_flows = false; 284 get_random_bytes(&table->hash_seed, sizeof(u32)); 285 286 return table; 287 } 288 289 void ovs_flow_tbl_destroy(struct flow_table *table) 290 { 291 int i; 292 293 if (!table) 294 return; 295 296 if (table->keep_flows) 297 goto skip_flows; 298 299 for (i = 0; i < table->n_buckets; i++) { 300 struct sw_flow *flow; 301 struct hlist_head *head = flex_array_get(table->buckets, i); 302 struct hlist_node *n; 303 int ver = table->node_ver; 304 305 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { 306 hlist_del_rcu(&flow->hash_node[ver]); 307 ovs_flow_free(flow); 308 } 309 } 310 311 skip_flows: 312 free_buckets(table->buckets); 313 kfree(table); 314 } 315 316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) 317 { 318 struct flow_table *table = container_of(rcu, struct flow_table, rcu); 319 320 ovs_flow_tbl_destroy(table); 321 } 322 323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table) 324 { 325 if (!table) 326 return; 327 328 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); 329 } 330 331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) 332 { 333 struct sw_flow *flow; 334 struct hlist_head *head; 335 int ver; 336 int i; 337 338 ver = table->node_ver; 339 while (*bucket < table->n_buckets) { 340 i = 0; 341 head = flex_array_get(table->buckets, *bucket); 342 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { 343 if (i < *last) { 344 i++; 345 continue; 346 } 347 *last = i + 1; 348 return flow; 349 } 350 (*bucket)++; 351 *last = 0; 352 } 353 354 return NULL; 355 } 356 357 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) 358 { 359 int old_ver; 360 int i; 361 362 old_ver = old->node_ver; 363 new->node_ver = !old_ver; 364 365 /* Insert in new table. */ 366 for (i = 0; i < old->n_buckets; i++) { 367 struct sw_flow *flow; 368 struct hlist_head *head; 369 370 head = flex_array_get(old->buckets, i); 371 372 hlist_for_each_entry(flow, head, hash_node[old_ver]) 373 ovs_flow_tbl_insert(new, flow); 374 } 375 old->keep_flows = true; 376 } 377 378 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) 379 { 380 struct flow_table *new_table; 381 382 new_table = ovs_flow_tbl_alloc(n_buckets); 383 if (!new_table) 384 return ERR_PTR(-ENOMEM); 385 386 flow_table_copy_flows(table, new_table); 387 388 return new_table; 389 } 390 391 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) 392 { 393 return __flow_tbl_rehash(table, table->n_buckets); 394 } 395 396 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) 397 { 398 return __flow_tbl_rehash(table, table->n_buckets * 2); 399 } 400 401 void ovs_flow_free(struct sw_flow *flow) 402 { 403 if (unlikely(!flow)) 404 return; 405 406 kfree((struct sf_flow_acts __force *)flow->sf_acts); 407 kmem_cache_free(flow_cache, flow); 408 } 409 410 /* RCU callback used by ovs_flow_deferred_free. */ 411 static void rcu_free_flow_callback(struct rcu_head *rcu) 412 { 413 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); 414 415 ovs_flow_free(flow); 416 } 417 418 /* Schedules 'flow' to be freed after the next RCU grace period. 419 * The caller must hold rcu_read_lock for this to be sensible. */ 420 void ovs_flow_deferred_free(struct sw_flow *flow) 421 { 422 call_rcu(&flow->rcu, rcu_free_flow_callback); 423 } 424 425 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 426 * The caller must hold rcu_read_lock for this to be sensible. */ 427 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) 428 { 429 kfree_rcu(sf_acts, rcu); 430 } 431 432 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 433 { 434 struct qtag_prefix { 435 __be16 eth_type; /* ETH_P_8021Q */ 436 __be16 tci; 437 }; 438 struct qtag_prefix *qp; 439 440 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 441 return 0; 442 443 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 444 sizeof(__be16)))) 445 return -ENOMEM; 446 447 qp = (struct qtag_prefix *) skb->data; 448 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 449 __skb_pull(skb, sizeof(struct qtag_prefix)); 450 451 return 0; 452 } 453 454 static __be16 parse_ethertype(struct sk_buff *skb) 455 { 456 struct llc_snap_hdr { 457 u8 dsap; /* Always 0xAA */ 458 u8 ssap; /* Always 0xAA */ 459 u8 ctrl; 460 u8 oui[3]; 461 __be16 ethertype; 462 }; 463 struct llc_snap_hdr *llc; 464 __be16 proto; 465 466 proto = *(__be16 *) skb->data; 467 __skb_pull(skb, sizeof(__be16)); 468 469 if (ntohs(proto) >= 1536) 470 return proto; 471 472 if (skb->len < sizeof(struct llc_snap_hdr)) 473 return htons(ETH_P_802_2); 474 475 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 476 return htons(0); 477 478 llc = (struct llc_snap_hdr *) skb->data; 479 if (llc->dsap != LLC_SAP_SNAP || 480 llc->ssap != LLC_SAP_SNAP || 481 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 482 return htons(ETH_P_802_2); 483 484 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 485 return llc->ethertype; 486 } 487 488 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 489 int *key_lenp, int nh_len) 490 { 491 struct icmp6hdr *icmp = icmp6_hdr(skb); 492 int error = 0; 493 int key_len; 494 495 /* The ICMPv6 type and code fields use the 16-bit transport port 496 * fields, so we need to store them in 16-bit network byte order. 497 */ 498 key->ipv6.tp.src = htons(icmp->icmp6_type); 499 key->ipv6.tp.dst = htons(icmp->icmp6_code); 500 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 501 502 if (icmp->icmp6_code == 0 && 503 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 504 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 505 int icmp_len = skb->len - skb_transport_offset(skb); 506 struct nd_msg *nd; 507 int offset; 508 509 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 510 511 /* In order to process neighbor discovery options, we need the 512 * entire packet. 513 */ 514 if (unlikely(icmp_len < sizeof(*nd))) 515 goto out; 516 if (unlikely(skb_linearize(skb))) { 517 error = -ENOMEM; 518 goto out; 519 } 520 521 nd = (struct nd_msg *)skb_transport_header(skb); 522 key->ipv6.nd.target = nd->target; 523 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 524 525 icmp_len -= sizeof(*nd); 526 offset = 0; 527 while (icmp_len >= 8) { 528 struct nd_opt_hdr *nd_opt = 529 (struct nd_opt_hdr *)(nd->opt + offset); 530 int opt_len = nd_opt->nd_opt_len * 8; 531 532 if (unlikely(!opt_len || opt_len > icmp_len)) 533 goto invalid; 534 535 /* Store the link layer address if the appropriate 536 * option is provided. It is considered an error if 537 * the same link layer option is specified twice. 538 */ 539 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 540 && opt_len == 8) { 541 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 542 goto invalid; 543 memcpy(key->ipv6.nd.sll, 544 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 545 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 546 && opt_len == 8) { 547 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 548 goto invalid; 549 memcpy(key->ipv6.nd.tll, 550 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); 551 } 552 553 icmp_len -= opt_len; 554 offset += opt_len; 555 } 556 } 557 558 goto out; 559 560 invalid: 561 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 562 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 563 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 564 565 out: 566 *key_lenp = key_len; 567 return error; 568 } 569 570 /** 571 * ovs_flow_extract - extracts a flow key from an Ethernet frame. 572 * @skb: sk_buff that contains the frame, with skb->data pointing to the 573 * Ethernet header 574 * @in_port: port number on which @skb was received. 575 * @key: output flow key 576 * @key_lenp: length of output flow key 577 * 578 * The caller must ensure that skb->len >= ETH_HLEN. 579 * 580 * Returns 0 if successful, otherwise a negative errno value. 581 * 582 * Initializes @skb header pointers as follows: 583 * 584 * - skb->mac_header: the Ethernet header. 585 * 586 * - skb->network_header: just past the Ethernet header, or just past the 587 * VLAN header, to the first byte of the Ethernet payload. 588 * 589 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 590 * on output, then just past the IP header, if one is present and 591 * of a correct length, otherwise the same as skb->network_header. 592 * For other key->dl_type values it is left untouched. 593 */ 594 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, 595 int *key_lenp) 596 { 597 int error = 0; 598 int key_len = SW_FLOW_KEY_OFFSET(eth); 599 struct ethhdr *eth; 600 601 memset(key, 0, sizeof(*key)); 602 603 key->phy.priority = skb->priority; 604 key->phy.in_port = in_port; 605 key->phy.skb_mark = skb->mark; 606 607 skb_reset_mac_header(skb); 608 609 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 610 * header in the linear data area. 611 */ 612 eth = eth_hdr(skb); 613 memcpy(key->eth.src, eth->h_source, ETH_ALEN); 614 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); 615 616 __skb_pull(skb, 2 * ETH_ALEN); 617 618 if (vlan_tx_tag_present(skb)) 619 key->eth.tci = htons(skb->vlan_tci); 620 else if (eth->h_proto == htons(ETH_P_8021Q)) 621 if (unlikely(parse_vlan(skb, key))) 622 return -ENOMEM; 623 624 key->eth.type = parse_ethertype(skb); 625 if (unlikely(key->eth.type == htons(0))) 626 return -ENOMEM; 627 628 skb_reset_network_header(skb); 629 __skb_push(skb, skb->data - skb_mac_header(skb)); 630 631 /* Network layer. */ 632 if (key->eth.type == htons(ETH_P_IP)) { 633 struct iphdr *nh; 634 __be16 offset; 635 636 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 637 638 error = check_iphdr(skb); 639 if (unlikely(error)) { 640 if (error == -EINVAL) { 641 skb->transport_header = skb->network_header; 642 error = 0; 643 } 644 goto out; 645 } 646 647 nh = ip_hdr(skb); 648 key->ipv4.addr.src = nh->saddr; 649 key->ipv4.addr.dst = nh->daddr; 650 651 key->ip.proto = nh->protocol; 652 key->ip.tos = nh->tos; 653 key->ip.ttl = nh->ttl; 654 655 offset = nh->frag_off & htons(IP_OFFSET); 656 if (offset) { 657 key->ip.frag = OVS_FRAG_TYPE_LATER; 658 goto out; 659 } 660 if (nh->frag_off & htons(IP_MF) || 661 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 662 key->ip.frag = OVS_FRAG_TYPE_FIRST; 663 664 /* Transport layer. */ 665 if (key->ip.proto == IPPROTO_TCP) { 666 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 667 if (tcphdr_ok(skb)) { 668 struct tcphdr *tcp = tcp_hdr(skb); 669 key->ipv4.tp.src = tcp->source; 670 key->ipv4.tp.dst = tcp->dest; 671 } 672 } else if (key->ip.proto == IPPROTO_UDP) { 673 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 674 if (udphdr_ok(skb)) { 675 struct udphdr *udp = udp_hdr(skb); 676 key->ipv4.tp.src = udp->source; 677 key->ipv4.tp.dst = udp->dest; 678 } 679 } else if (key->ip.proto == IPPROTO_ICMP) { 680 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 681 if (icmphdr_ok(skb)) { 682 struct icmphdr *icmp = icmp_hdr(skb); 683 /* The ICMP type and code fields use the 16-bit 684 * transport port fields, so we need to store 685 * them in 16-bit network byte order. */ 686 key->ipv4.tp.src = htons(icmp->type); 687 key->ipv4.tp.dst = htons(icmp->code); 688 } 689 } 690 691 } else if ((key->eth.type == htons(ETH_P_ARP) || 692 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { 693 struct arp_eth_header *arp; 694 695 arp = (struct arp_eth_header *)skb_network_header(skb); 696 697 if (arp->ar_hrd == htons(ARPHRD_ETHER) 698 && arp->ar_pro == htons(ETH_P_IP) 699 && arp->ar_hln == ETH_ALEN 700 && arp->ar_pln == 4) { 701 702 /* We only match on the lower 8 bits of the opcode. */ 703 if (ntohs(arp->ar_op) <= 0xff) 704 key->ip.proto = ntohs(arp->ar_op); 705 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 706 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 707 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); 708 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); 709 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 710 } 711 } else if (key->eth.type == htons(ETH_P_IPV6)) { 712 int nh_len; /* IPv6 Header + Extensions */ 713 714 nh_len = parse_ipv6hdr(skb, key, &key_len); 715 if (unlikely(nh_len < 0)) { 716 if (nh_len == -EINVAL) 717 skb->transport_header = skb->network_header; 718 else 719 error = nh_len; 720 goto out; 721 } 722 723 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 724 goto out; 725 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 726 key->ip.frag = OVS_FRAG_TYPE_FIRST; 727 728 /* Transport layer. */ 729 if (key->ip.proto == NEXTHDR_TCP) { 730 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 731 if (tcphdr_ok(skb)) { 732 struct tcphdr *tcp = tcp_hdr(skb); 733 key->ipv6.tp.src = tcp->source; 734 key->ipv6.tp.dst = tcp->dest; 735 } 736 } else if (key->ip.proto == NEXTHDR_UDP) { 737 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 738 if (udphdr_ok(skb)) { 739 struct udphdr *udp = udp_hdr(skb); 740 key->ipv6.tp.src = udp->source; 741 key->ipv6.tp.dst = udp->dest; 742 } 743 } else if (key->ip.proto == NEXTHDR_ICMP) { 744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 745 if (icmp6hdr_ok(skb)) { 746 error = parse_icmpv6(skb, key, &key_len, nh_len); 747 if (error < 0) 748 goto out; 749 } 750 } 751 } 752 753 out: 754 *key_lenp = key_len; 755 return error; 756 } 757 758 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) 759 { 760 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); 761 } 762 763 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, 764 struct sw_flow_key *key, int key_len) 765 { 766 struct sw_flow *flow; 767 struct hlist_head *head; 768 u32 hash; 769 770 hash = ovs_flow_hash(key, key_len); 771 772 head = find_bucket(table, hash); 773 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { 774 775 if (flow->hash == hash && 776 !memcmp(&flow->key, key, key_len)) { 777 return flow; 778 } 779 } 780 return NULL; 781 } 782 783 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) 784 { 785 struct hlist_head *head; 786 787 head = find_bucket(table, flow->hash); 788 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); 789 table->count++; 790 } 791 792 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) 793 { 794 hlist_del_rcu(&flow->hash_node[table->node_ver]); 795 table->count--; 796 BUG_ON(table->count < 0); 797 } 798 799 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 800 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 801 [OVS_KEY_ATTR_ENCAP] = -1, 802 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), 803 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), 804 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), 805 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), 806 [OVS_KEY_ATTR_VLAN] = sizeof(__be16), 807 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), 808 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), 809 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), 810 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), 811 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), 812 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), 813 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), 814 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), 815 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), 816 }; 817 818 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 819 const struct nlattr *a[], u32 *attrs) 820 { 821 const struct ovs_key_icmp *icmp_key; 822 const struct ovs_key_tcp *tcp_key; 823 const struct ovs_key_udp *udp_key; 824 825 switch (swkey->ip.proto) { 826 case IPPROTO_TCP: 827 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 828 return -EINVAL; 829 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 830 831 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 832 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 833 swkey->ipv4.tp.src = tcp_key->tcp_src; 834 swkey->ipv4.tp.dst = tcp_key->tcp_dst; 835 break; 836 837 case IPPROTO_UDP: 838 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 839 return -EINVAL; 840 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 841 842 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 843 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 844 swkey->ipv4.tp.src = udp_key->udp_src; 845 swkey->ipv4.tp.dst = udp_key->udp_dst; 846 break; 847 848 case IPPROTO_ICMP: 849 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) 850 return -EINVAL; 851 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 852 853 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); 854 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 855 swkey->ipv4.tp.src = htons(icmp_key->icmp_type); 856 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); 857 break; 858 } 859 860 return 0; 861 } 862 863 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, 864 const struct nlattr *a[], u32 *attrs) 865 { 866 const struct ovs_key_icmpv6 *icmpv6_key; 867 const struct ovs_key_tcp *tcp_key; 868 const struct ovs_key_udp *udp_key; 869 870 switch (swkey->ip.proto) { 871 case IPPROTO_TCP: 872 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) 873 return -EINVAL; 874 *attrs &= ~(1 << OVS_KEY_ATTR_TCP); 875 876 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 877 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 878 swkey->ipv6.tp.src = tcp_key->tcp_src; 879 swkey->ipv6.tp.dst = tcp_key->tcp_dst; 880 break; 881 882 case IPPROTO_UDP: 883 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) 884 return -EINVAL; 885 *attrs &= ~(1 << OVS_KEY_ATTR_UDP); 886 887 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 888 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 889 swkey->ipv6.tp.src = udp_key->udp_src; 890 swkey->ipv6.tp.dst = udp_key->udp_dst; 891 break; 892 893 case IPPROTO_ICMPV6: 894 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) 895 return -EINVAL; 896 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 897 898 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); 899 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 900 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); 901 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); 902 903 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 904 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 905 const struct ovs_key_nd *nd_key; 906 907 if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) 908 return -EINVAL; 909 *attrs &= ~(1 << OVS_KEY_ATTR_ND); 910 911 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); 912 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 913 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, 914 sizeof(swkey->ipv6.nd.target)); 915 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); 916 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); 917 } 918 break; 919 } 920 921 return 0; 922 } 923 924 static int parse_flow_nlattrs(const struct nlattr *attr, 925 const struct nlattr *a[], u32 *attrsp) 926 { 927 const struct nlattr *nla; 928 u32 attrs; 929 int rem; 930 931 attrs = 0; 932 nla_for_each_nested(nla, attr, rem) { 933 u16 type = nla_type(nla); 934 int expected_len; 935 936 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) 937 return -EINVAL; 938 939 expected_len = ovs_key_lens[type]; 940 if (nla_len(nla) != expected_len && expected_len != -1) 941 return -EINVAL; 942 943 attrs |= 1 << type; 944 a[type] = nla; 945 } 946 if (rem) 947 return -EINVAL; 948 949 *attrsp = attrs; 950 return 0; 951 } 952 953 /** 954 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. 955 * @swkey: receives the extracted flow key. 956 * @key_lenp: number of bytes used in @swkey. 957 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 958 * sequence. 959 */ 960 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, 961 const struct nlattr *attr) 962 { 963 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 964 const struct ovs_key_ethernet *eth_key; 965 int key_len; 966 u32 attrs; 967 int err; 968 969 memset(swkey, 0, sizeof(struct sw_flow_key)); 970 key_len = SW_FLOW_KEY_OFFSET(eth); 971 972 err = parse_flow_nlattrs(attr, a, &attrs); 973 if (err) 974 return err; 975 976 /* Metadata attributes. */ 977 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 978 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); 979 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 980 } 981 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 982 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 983 if (in_port >= DP_MAX_PORTS) 984 return -EINVAL; 985 swkey->phy.in_port = in_port; 986 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 987 } else { 988 swkey->phy.in_port = DP_MAX_PORTS; 989 } 990 if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 991 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 992 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 993 } 994 995 /* Data attributes. */ 996 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) 997 return -EINVAL; 998 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 999 1000 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1001 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); 1002 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); 1003 1004 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && 1005 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { 1006 const struct nlattr *encap; 1007 __be16 tci; 1008 1009 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | 1010 (1 << OVS_KEY_ATTR_ETHERTYPE) | 1011 (1 << OVS_KEY_ATTR_ENCAP))) 1012 return -EINVAL; 1013 1014 encap = a[OVS_KEY_ATTR_ENCAP]; 1015 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1016 if (tci & htons(VLAN_TAG_PRESENT)) { 1017 swkey->eth.tci = tci; 1018 1019 err = parse_flow_nlattrs(encap, a, &attrs); 1020 if (err) 1021 return err; 1022 } else if (!tci) { 1023 /* Corner case for truncated 802.1Q header. */ 1024 if (nla_len(encap)) 1025 return -EINVAL; 1026 1027 swkey->eth.type = htons(ETH_P_8021Q); 1028 *key_lenp = key_len; 1029 return 0; 1030 } else { 1031 return -EINVAL; 1032 } 1033 } 1034 1035 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1036 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1037 if (ntohs(swkey->eth.type) < 1536) 1038 return -EINVAL; 1039 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1040 } else { 1041 swkey->eth.type = htons(ETH_P_802_2); 1042 } 1043 1044 if (swkey->eth.type == htons(ETH_P_IP)) { 1045 const struct ovs_key_ipv4 *ipv4_key; 1046 1047 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) 1048 return -EINVAL; 1049 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1050 1051 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); 1052 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1053 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) 1054 return -EINVAL; 1055 swkey->ip.proto = ipv4_key->ipv4_proto; 1056 swkey->ip.tos = ipv4_key->ipv4_tos; 1057 swkey->ip.ttl = ipv4_key->ipv4_ttl; 1058 swkey->ip.frag = ipv4_key->ipv4_frag; 1059 swkey->ipv4.addr.src = ipv4_key->ipv4_src; 1060 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; 1061 1062 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1063 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1064 if (err) 1065 return err; 1066 } 1067 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1068 const struct ovs_key_ipv6 *ipv6_key; 1069 1070 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) 1071 return -EINVAL; 1072 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1073 1074 key_len = SW_FLOW_KEY_OFFSET(ipv6.label); 1075 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1076 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) 1077 return -EINVAL; 1078 swkey->ipv6.label = ipv6_key->ipv6_label; 1079 swkey->ip.proto = ipv6_key->ipv6_proto; 1080 swkey->ip.tos = ipv6_key->ipv6_tclass; 1081 swkey->ip.ttl = ipv6_key->ipv6_hlimit; 1082 swkey->ip.frag = ipv6_key->ipv6_frag; 1083 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, 1084 sizeof(swkey->ipv6.addr.src)); 1085 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, 1086 sizeof(swkey->ipv6.addr.dst)); 1087 1088 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1089 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); 1090 if (err) 1091 return err; 1092 } 1093 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1094 swkey->eth.type == htons(ETH_P_RARP)) { 1095 const struct ovs_key_arp *arp_key; 1096 1097 if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) 1098 return -EINVAL; 1099 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1100 1101 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); 1102 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1103 swkey->ipv4.addr.src = arp_key->arp_sip; 1104 swkey->ipv4.addr.dst = arp_key->arp_tip; 1105 if (arp_key->arp_op & htons(0xff00)) 1106 return -EINVAL; 1107 swkey->ip.proto = ntohs(arp_key->arp_op); 1108 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); 1109 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); 1110 } 1111 1112 if (attrs) 1113 return -EINVAL; 1114 *key_lenp = key_len; 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. 1121 * @priority: receives the skb priority 1122 * @mark: receives the skb mark 1123 * @in_port: receives the extracted input port. 1124 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1125 * sequence. 1126 * 1127 * This parses a series of Netlink attributes that form a flow key, which must 1128 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1129 * get the metadata, that is, the parts of the flow key that cannot be 1130 * extracted from the packet itself. 1131 */ 1132 int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port, 1133 const struct nlattr *attr) 1134 { 1135 const struct nlattr *nla; 1136 int rem; 1137 1138 *in_port = DP_MAX_PORTS; 1139 *priority = 0; 1140 *mark = 0; 1141 1142 nla_for_each_nested(nla, attr, rem) { 1143 int type = nla_type(nla); 1144 1145 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { 1146 if (nla_len(nla) != ovs_key_lens[type]) 1147 return -EINVAL; 1148 1149 switch (type) { 1150 case OVS_KEY_ATTR_PRIORITY: 1151 *priority = nla_get_u32(nla); 1152 break; 1153 1154 case OVS_KEY_ATTR_IN_PORT: 1155 if (nla_get_u32(nla) >= DP_MAX_PORTS) 1156 return -EINVAL; 1157 *in_port = nla_get_u32(nla); 1158 break; 1159 1160 case OVS_KEY_ATTR_SKB_MARK: 1161 *mark = nla_get_u32(nla); 1162 break; 1163 } 1164 } 1165 } 1166 if (rem) 1167 return -EINVAL; 1168 return 0; 1169 } 1170 1171 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) 1172 { 1173 struct ovs_key_ethernet *eth_key; 1174 struct nlattr *nla, *encap; 1175 1176 if (swkey->phy.priority && 1177 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority)) 1178 goto nla_put_failure; 1179 1180 if (swkey->phy.in_port != DP_MAX_PORTS && 1181 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port)) 1182 goto nla_put_failure; 1183 1184 if (swkey->phy.skb_mark && 1185 nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark)) 1186 goto nla_put_failure; 1187 1188 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 1189 if (!nla) 1190 goto nla_put_failure; 1191 eth_key = nla_data(nla); 1192 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); 1193 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); 1194 1195 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { 1196 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) || 1197 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci)) 1198 goto nla_put_failure; 1199 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); 1200 if (!swkey->eth.tci) 1201 goto unencap; 1202 } else { 1203 encap = NULL; 1204 } 1205 1206 if (swkey->eth.type == htons(ETH_P_802_2)) 1207 goto unencap; 1208 1209 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type)) 1210 goto nla_put_failure; 1211 1212 if (swkey->eth.type == htons(ETH_P_IP)) { 1213 struct ovs_key_ipv4 *ipv4_key; 1214 1215 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 1216 if (!nla) 1217 goto nla_put_failure; 1218 ipv4_key = nla_data(nla); 1219 ipv4_key->ipv4_src = swkey->ipv4.addr.src; 1220 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; 1221 ipv4_key->ipv4_proto = swkey->ip.proto; 1222 ipv4_key->ipv4_tos = swkey->ip.tos; 1223 ipv4_key->ipv4_ttl = swkey->ip.ttl; 1224 ipv4_key->ipv4_frag = swkey->ip.frag; 1225 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1226 struct ovs_key_ipv6 *ipv6_key; 1227 1228 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 1229 if (!nla) 1230 goto nla_put_failure; 1231 ipv6_key = nla_data(nla); 1232 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, 1233 sizeof(ipv6_key->ipv6_src)); 1234 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, 1235 sizeof(ipv6_key->ipv6_dst)); 1236 ipv6_key->ipv6_label = swkey->ipv6.label; 1237 ipv6_key->ipv6_proto = swkey->ip.proto; 1238 ipv6_key->ipv6_tclass = swkey->ip.tos; 1239 ipv6_key->ipv6_hlimit = swkey->ip.ttl; 1240 ipv6_key->ipv6_frag = swkey->ip.frag; 1241 } else if (swkey->eth.type == htons(ETH_P_ARP) || 1242 swkey->eth.type == htons(ETH_P_RARP)) { 1243 struct ovs_key_arp *arp_key; 1244 1245 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 1246 if (!nla) 1247 goto nla_put_failure; 1248 arp_key = nla_data(nla); 1249 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 1250 arp_key->arp_sip = swkey->ipv4.addr.src; 1251 arp_key->arp_tip = swkey->ipv4.addr.dst; 1252 arp_key->arp_op = htons(swkey->ip.proto); 1253 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); 1254 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); 1255 } 1256 1257 if ((swkey->eth.type == htons(ETH_P_IP) || 1258 swkey->eth.type == htons(ETH_P_IPV6)) && 1259 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 1260 1261 if (swkey->ip.proto == IPPROTO_TCP) { 1262 struct ovs_key_tcp *tcp_key; 1263 1264 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 1265 if (!nla) 1266 goto nla_put_failure; 1267 tcp_key = nla_data(nla); 1268 if (swkey->eth.type == htons(ETH_P_IP)) { 1269 tcp_key->tcp_src = swkey->ipv4.tp.src; 1270 tcp_key->tcp_dst = swkey->ipv4.tp.dst; 1271 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1272 tcp_key->tcp_src = swkey->ipv6.tp.src; 1273 tcp_key->tcp_dst = swkey->ipv6.tp.dst; 1274 } 1275 } else if (swkey->ip.proto == IPPROTO_UDP) { 1276 struct ovs_key_udp *udp_key; 1277 1278 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 1279 if (!nla) 1280 goto nla_put_failure; 1281 udp_key = nla_data(nla); 1282 if (swkey->eth.type == htons(ETH_P_IP)) { 1283 udp_key->udp_src = swkey->ipv4.tp.src; 1284 udp_key->udp_dst = swkey->ipv4.tp.dst; 1285 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 1286 udp_key->udp_src = swkey->ipv6.tp.src; 1287 udp_key->udp_dst = swkey->ipv6.tp.dst; 1288 } 1289 } else if (swkey->eth.type == htons(ETH_P_IP) && 1290 swkey->ip.proto == IPPROTO_ICMP) { 1291 struct ovs_key_icmp *icmp_key; 1292 1293 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 1294 if (!nla) 1295 goto nla_put_failure; 1296 icmp_key = nla_data(nla); 1297 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); 1298 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); 1299 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 1300 swkey->ip.proto == IPPROTO_ICMPV6) { 1301 struct ovs_key_icmpv6 *icmpv6_key; 1302 1303 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 1304 sizeof(*icmpv6_key)); 1305 if (!nla) 1306 goto nla_put_failure; 1307 icmpv6_key = nla_data(nla); 1308 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); 1309 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); 1310 1311 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || 1312 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { 1313 struct ovs_key_nd *nd_key; 1314 1315 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 1316 if (!nla) 1317 goto nla_put_failure; 1318 nd_key = nla_data(nla); 1319 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, 1320 sizeof(nd_key->nd_target)); 1321 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); 1322 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); 1323 } 1324 } 1325 } 1326 1327 unencap: 1328 if (encap) 1329 nla_nest_end(skb, encap); 1330 1331 return 0; 1332 1333 nla_put_failure: 1334 return -EMSGSIZE; 1335 } 1336 1337 /* Initializes the flow module. 1338 * Returns zero if successful or a negative error code. */ 1339 int ovs_flow_init(void) 1340 { 1341 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 1342 0, NULL); 1343 if (flow_cache == NULL) 1344 return -ENOMEM; 1345 1346 return 0; 1347 } 1348 1349 /* Uninitializes the flow module. */ 1350 void ovs_flow_exit(void) 1351 { 1352 kmem_cache_destroy(flow_cache); 1353 } 1354