1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/cpumask.h> 33 #include <linux/if_arp.h> 34 #include <linux/ip.h> 35 #include <linux/ipv6.h> 36 #include <linux/mpls.h> 37 #include <linux/sctp.h> 38 #include <linux/smp.h> 39 #include <linux/tcp.h> 40 #include <linux/udp.h> 41 #include <linux/icmp.h> 42 #include <linux/icmpv6.h> 43 #include <linux/rculist.h> 44 #include <net/ip.h> 45 #include <net/ip_tunnels.h> 46 #include <net/ipv6.h> 47 #include <net/mpls.h> 48 #include <net/ndisc.h> 49 50 #include "conntrack.h" 51 #include "datapath.h" 52 #include "flow.h" 53 #include "flow_netlink.h" 54 #include "vport.h" 55 56 u64 ovs_flow_used_time(unsigned long flow_jiffies) 57 { 58 struct timespec cur_ts; 59 u64 cur_ms, idle_ms; 60 61 ktime_get_ts(&cur_ts); 62 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 63 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 64 cur_ts.tv_nsec / NSEC_PER_MSEC; 65 66 return cur_ms - idle_ms; 67 } 68 69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 70 71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 72 const struct sk_buff *skb) 73 { 74 struct flow_stats *stats; 75 int node = numa_node_id(); 76 int cpu = smp_processor_id(); 77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 78 79 stats = rcu_dereference(flow->stats[cpu]); 80 81 /* Check if already have CPU-specific stats. */ 82 if (likely(stats)) { 83 spin_lock(&stats->lock); 84 /* Mark if we write on the pre-allocated stats. */ 85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) 86 flow->stats_last_writer = cpu; 87 } else { 88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 89 spin_lock(&stats->lock); 90 91 /* If the current CPU is the only writer on the 92 * pre-allocated stats keep using them. 93 */ 94 if (unlikely(flow->stats_last_writer != cpu)) { 95 /* A previous locker may have already allocated the 96 * stats, so we need to check again. If CPU-specific 97 * stats were already allocated, we update the pre- 98 * allocated stats as we have already locked them. 99 */ 100 if (likely(flow->stats_last_writer != -1) && 101 likely(!rcu_access_pointer(flow->stats[cpu]))) { 102 /* Try to allocate CPU-specific stats. */ 103 struct flow_stats *new_stats; 104 105 new_stats = 106 kmem_cache_alloc_node(flow_stats_cache, 107 GFP_NOWAIT | 108 __GFP_THISNODE | 109 __GFP_NOWARN | 110 __GFP_NOMEMALLOC, 111 node); 112 if (likely(new_stats)) { 113 new_stats->used = jiffies; 114 new_stats->packet_count = 1; 115 new_stats->byte_count = len; 116 new_stats->tcp_flags = tcp_flags; 117 spin_lock_init(&new_stats->lock); 118 119 rcu_assign_pointer(flow->stats[cpu], 120 new_stats); 121 goto unlock; 122 } 123 } 124 flow->stats_last_writer = cpu; 125 } 126 } 127 128 stats->used = jiffies; 129 stats->packet_count++; 130 stats->byte_count += len; 131 stats->tcp_flags |= tcp_flags; 132 unlock: 133 spin_unlock(&stats->lock); 134 } 135 136 /* Must be called with rcu_read_lock or ovs_mutex. */ 137 void ovs_flow_stats_get(const struct sw_flow *flow, 138 struct ovs_flow_stats *ovs_stats, 139 unsigned long *used, __be16 *tcp_flags) 140 { 141 int cpu; 142 143 *used = 0; 144 *tcp_flags = 0; 145 memset(ovs_stats, 0, sizeof(*ovs_stats)); 146 147 /* We open code this to make sure cpu 0 is always considered */ 148 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) { 149 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); 150 151 if (stats) { 152 /* Local CPU may write on non-local stats, so we must 153 * block bottom-halves here. 154 */ 155 spin_lock_bh(&stats->lock); 156 if (!*used || time_after(stats->used, *used)) 157 *used = stats->used; 158 *tcp_flags |= stats->tcp_flags; 159 ovs_stats->n_packets += stats->packet_count; 160 ovs_stats->n_bytes += stats->byte_count; 161 spin_unlock_bh(&stats->lock); 162 } 163 } 164 } 165 166 /* Called with ovs_mutex. */ 167 void ovs_flow_stats_clear(struct sw_flow *flow) 168 { 169 int cpu; 170 171 /* We open code this to make sure cpu 0 is always considered */ 172 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) { 173 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]); 174 175 if (stats) { 176 spin_lock_bh(&stats->lock); 177 stats->used = 0; 178 stats->packet_count = 0; 179 stats->byte_count = 0; 180 stats->tcp_flags = 0; 181 spin_unlock_bh(&stats->lock); 182 } 183 } 184 } 185 186 static int check_header(struct sk_buff *skb, int len) 187 { 188 if (unlikely(skb->len < len)) 189 return -EINVAL; 190 if (unlikely(!pskb_may_pull(skb, len))) 191 return -ENOMEM; 192 return 0; 193 } 194 195 static bool arphdr_ok(struct sk_buff *skb) 196 { 197 return pskb_may_pull(skb, skb_network_offset(skb) + 198 sizeof(struct arp_eth_header)); 199 } 200 201 static int check_iphdr(struct sk_buff *skb) 202 { 203 unsigned int nh_ofs = skb_network_offset(skb); 204 unsigned int ip_len; 205 int err; 206 207 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 208 if (unlikely(err)) 209 return err; 210 211 ip_len = ip_hdrlen(skb); 212 if (unlikely(ip_len < sizeof(struct iphdr) || 213 skb->len < nh_ofs + ip_len)) 214 return -EINVAL; 215 216 skb_set_transport_header(skb, nh_ofs + ip_len); 217 return 0; 218 } 219 220 static bool tcphdr_ok(struct sk_buff *skb) 221 { 222 int th_ofs = skb_transport_offset(skb); 223 int tcp_len; 224 225 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 226 return false; 227 228 tcp_len = tcp_hdrlen(skb); 229 if (unlikely(tcp_len < sizeof(struct tcphdr) || 230 skb->len < th_ofs + tcp_len)) 231 return false; 232 233 return true; 234 } 235 236 static bool udphdr_ok(struct sk_buff *skb) 237 { 238 return pskb_may_pull(skb, skb_transport_offset(skb) + 239 sizeof(struct udphdr)); 240 } 241 242 static bool sctphdr_ok(struct sk_buff *skb) 243 { 244 return pskb_may_pull(skb, skb_transport_offset(skb) + 245 sizeof(struct sctphdr)); 246 } 247 248 static bool icmphdr_ok(struct sk_buff *skb) 249 { 250 return pskb_may_pull(skb, skb_transport_offset(skb) + 251 sizeof(struct icmphdr)); 252 } 253 254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 255 { 256 unsigned int nh_ofs = skb_network_offset(skb); 257 unsigned int nh_len; 258 int payload_ofs; 259 struct ipv6hdr *nh; 260 uint8_t nexthdr; 261 __be16 frag_off; 262 int err; 263 264 err = check_header(skb, nh_ofs + sizeof(*nh)); 265 if (unlikely(err)) 266 return err; 267 268 nh = ipv6_hdr(skb); 269 nexthdr = nh->nexthdr; 270 payload_ofs = (u8 *)(nh + 1) - skb->data; 271 272 key->ip.proto = NEXTHDR_NONE; 273 key->ip.tos = ipv6_get_dsfield(nh); 274 key->ip.ttl = nh->hop_limit; 275 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 276 key->ipv6.addr.src = nh->saddr; 277 key->ipv6.addr.dst = nh->daddr; 278 279 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 280 281 if (frag_off) { 282 if (frag_off & htons(~0x7)) 283 key->ip.frag = OVS_FRAG_TYPE_LATER; 284 else 285 key->ip.frag = OVS_FRAG_TYPE_FIRST; 286 } else { 287 key->ip.frag = OVS_FRAG_TYPE_NONE; 288 } 289 290 /* Delayed handling of error in ipv6_skip_exthdr() as it 291 * always sets frag_off to a valid value which may be 292 * used to set key->ip.frag above. 293 */ 294 if (unlikely(payload_ofs < 0)) 295 return -EPROTO; 296 297 nh_len = payload_ofs - nh_ofs; 298 skb_set_transport_header(skb, nh_ofs + nh_len); 299 key->ip.proto = nexthdr; 300 return nh_len; 301 } 302 303 static bool icmp6hdr_ok(struct sk_buff *skb) 304 { 305 return pskb_may_pull(skb, skb_transport_offset(skb) + 306 sizeof(struct icmp6hdr)); 307 } 308 309 /** 310 * Parse vlan tag from vlan header. 311 * Returns ERROR on memory error. 312 * Returns 0 if it encounters a non-vlan or incomplete packet. 313 * Returns 1 after successfully parsing vlan tag. 314 */ 315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh) 316 { 317 struct vlan_head *vh = (struct vlan_head *)skb->data; 318 319 if (likely(!eth_type_vlan(vh->tpid))) 320 return 0; 321 322 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) 323 return 0; 324 325 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + 326 sizeof(__be16)))) 327 return -ENOMEM; 328 329 vh = (struct vlan_head *)skb->data; 330 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT); 331 key_vh->tpid = vh->tpid; 332 333 __skb_pull(skb, sizeof(struct vlan_head)); 334 return 1; 335 } 336 337 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 338 { 339 int res; 340 341 key->eth.vlan.tci = 0; 342 key->eth.vlan.tpid = 0; 343 key->eth.cvlan.tci = 0; 344 key->eth.cvlan.tpid = 0; 345 346 if (skb_vlan_tag_present(skb)) { 347 key->eth.vlan.tci = htons(skb->vlan_tci); 348 key->eth.vlan.tpid = skb->vlan_proto; 349 } else { 350 /* Parse outer vlan tag in the non-accelerated case. */ 351 res = parse_vlan_tag(skb, &key->eth.vlan); 352 if (res <= 0) 353 return res; 354 } 355 356 /* Parse inner vlan tag. */ 357 res = parse_vlan_tag(skb, &key->eth.cvlan); 358 if (res <= 0) 359 return res; 360 361 return 0; 362 } 363 364 static __be16 parse_ethertype(struct sk_buff *skb) 365 { 366 struct llc_snap_hdr { 367 u8 dsap; /* Always 0xAA */ 368 u8 ssap; /* Always 0xAA */ 369 u8 ctrl; 370 u8 oui[3]; 371 __be16 ethertype; 372 }; 373 struct llc_snap_hdr *llc; 374 __be16 proto; 375 376 proto = *(__be16 *) skb->data; 377 __skb_pull(skb, sizeof(__be16)); 378 379 if (eth_proto_is_802_3(proto)) 380 return proto; 381 382 if (skb->len < sizeof(struct llc_snap_hdr)) 383 return htons(ETH_P_802_2); 384 385 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 386 return htons(0); 387 388 llc = (struct llc_snap_hdr *) skb->data; 389 if (llc->dsap != LLC_SAP_SNAP || 390 llc->ssap != LLC_SAP_SNAP || 391 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 392 return htons(ETH_P_802_2); 393 394 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 395 396 if (eth_proto_is_802_3(llc->ethertype)) 397 return llc->ethertype; 398 399 return htons(ETH_P_802_2); 400 } 401 402 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 403 int nh_len) 404 { 405 struct icmp6hdr *icmp = icmp6_hdr(skb); 406 407 /* The ICMPv6 type and code fields use the 16-bit transport port 408 * fields, so we need to store them in 16-bit network byte order. 409 */ 410 key->tp.src = htons(icmp->icmp6_type); 411 key->tp.dst = htons(icmp->icmp6_code); 412 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 413 414 if (icmp->icmp6_code == 0 && 415 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 416 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 417 int icmp_len = skb->len - skb_transport_offset(skb); 418 struct nd_msg *nd; 419 int offset; 420 421 /* In order to process neighbor discovery options, we need the 422 * entire packet. 423 */ 424 if (unlikely(icmp_len < sizeof(*nd))) 425 return 0; 426 427 if (unlikely(skb_linearize(skb))) 428 return -ENOMEM; 429 430 nd = (struct nd_msg *)skb_transport_header(skb); 431 key->ipv6.nd.target = nd->target; 432 433 icmp_len -= sizeof(*nd); 434 offset = 0; 435 while (icmp_len >= 8) { 436 struct nd_opt_hdr *nd_opt = 437 (struct nd_opt_hdr *)(nd->opt + offset); 438 int opt_len = nd_opt->nd_opt_len * 8; 439 440 if (unlikely(!opt_len || opt_len > icmp_len)) 441 return 0; 442 443 /* Store the link layer address if the appropriate 444 * option is provided. It is considered an error if 445 * the same link layer option is specified twice. 446 */ 447 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 448 && opt_len == 8) { 449 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 450 goto invalid; 451 ether_addr_copy(key->ipv6.nd.sll, 452 &nd->opt[offset+sizeof(*nd_opt)]); 453 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 454 && opt_len == 8) { 455 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 456 goto invalid; 457 ether_addr_copy(key->ipv6.nd.tll, 458 &nd->opt[offset+sizeof(*nd_opt)]); 459 } 460 461 icmp_len -= opt_len; 462 offset += opt_len; 463 } 464 } 465 466 return 0; 467 468 invalid: 469 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 470 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 471 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 472 473 return 0; 474 } 475 476 /** 477 * key_extract - extracts a flow key from an Ethernet frame. 478 * @skb: sk_buff that contains the frame, with skb->data pointing to the 479 * Ethernet header 480 * @key: output flow key 481 * 482 * The caller must ensure that skb->len >= ETH_HLEN. 483 * 484 * Returns 0 if successful, otherwise a negative errno value. 485 * 486 * Initializes @skb header pointers as follows: 487 * 488 * - skb->mac_header: the Ethernet header. 489 * 490 * - skb->network_header: just past the Ethernet header, or just past the 491 * VLAN header, to the first byte of the Ethernet payload. 492 * 493 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 494 * on output, then just past the IP header, if one is present and 495 * of a correct length, otherwise the same as skb->network_header. 496 * For other key->eth.type values it is left untouched. 497 */ 498 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 499 { 500 int error; 501 struct ethhdr *eth; 502 503 /* Flags are always used as part of stats */ 504 key->tp.flags = 0; 505 506 skb_reset_mac_header(skb); 507 508 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 509 * header in the linear data area. 510 */ 511 eth = eth_hdr(skb); 512 ether_addr_copy(key->eth.src, eth->h_source); 513 ether_addr_copy(key->eth.dst, eth->h_dest); 514 515 __skb_pull(skb, 2 * ETH_ALEN); 516 /* We are going to push all headers that we pull, so no need to 517 * update skb->csum here. 518 */ 519 520 if (unlikely(parse_vlan(skb, key))) 521 return -ENOMEM; 522 523 key->eth.type = parse_ethertype(skb); 524 if (unlikely(key->eth.type == htons(0))) 525 return -ENOMEM; 526 527 skb_reset_network_header(skb); 528 skb_reset_mac_len(skb); 529 __skb_push(skb, skb->data - skb_mac_header(skb)); 530 531 /* Network layer. */ 532 if (key->eth.type == htons(ETH_P_IP)) { 533 struct iphdr *nh; 534 __be16 offset; 535 536 error = check_iphdr(skb); 537 if (unlikely(error)) { 538 memset(&key->ip, 0, sizeof(key->ip)); 539 memset(&key->ipv4, 0, sizeof(key->ipv4)); 540 if (error == -EINVAL) { 541 skb->transport_header = skb->network_header; 542 error = 0; 543 } 544 return error; 545 } 546 547 nh = ip_hdr(skb); 548 key->ipv4.addr.src = nh->saddr; 549 key->ipv4.addr.dst = nh->daddr; 550 551 key->ip.proto = nh->protocol; 552 key->ip.tos = nh->tos; 553 key->ip.ttl = nh->ttl; 554 555 offset = nh->frag_off & htons(IP_OFFSET); 556 if (offset) { 557 key->ip.frag = OVS_FRAG_TYPE_LATER; 558 return 0; 559 } 560 if (nh->frag_off & htons(IP_MF) || 561 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 562 key->ip.frag = OVS_FRAG_TYPE_FIRST; 563 else 564 key->ip.frag = OVS_FRAG_TYPE_NONE; 565 566 /* Transport layer. */ 567 if (key->ip.proto == IPPROTO_TCP) { 568 if (tcphdr_ok(skb)) { 569 struct tcphdr *tcp = tcp_hdr(skb); 570 key->tp.src = tcp->source; 571 key->tp.dst = tcp->dest; 572 key->tp.flags = TCP_FLAGS_BE16(tcp); 573 } else { 574 memset(&key->tp, 0, sizeof(key->tp)); 575 } 576 577 } else if (key->ip.proto == IPPROTO_UDP) { 578 if (udphdr_ok(skb)) { 579 struct udphdr *udp = udp_hdr(skb); 580 key->tp.src = udp->source; 581 key->tp.dst = udp->dest; 582 } else { 583 memset(&key->tp, 0, sizeof(key->tp)); 584 } 585 } else if (key->ip.proto == IPPROTO_SCTP) { 586 if (sctphdr_ok(skb)) { 587 struct sctphdr *sctp = sctp_hdr(skb); 588 key->tp.src = sctp->source; 589 key->tp.dst = sctp->dest; 590 } else { 591 memset(&key->tp, 0, sizeof(key->tp)); 592 } 593 } else if (key->ip.proto == IPPROTO_ICMP) { 594 if (icmphdr_ok(skb)) { 595 struct icmphdr *icmp = icmp_hdr(skb); 596 /* The ICMP type and code fields use the 16-bit 597 * transport port fields, so we need to store 598 * them in 16-bit network byte order. */ 599 key->tp.src = htons(icmp->type); 600 key->tp.dst = htons(icmp->code); 601 } else { 602 memset(&key->tp, 0, sizeof(key->tp)); 603 } 604 } 605 606 } else if (key->eth.type == htons(ETH_P_ARP) || 607 key->eth.type == htons(ETH_P_RARP)) { 608 struct arp_eth_header *arp; 609 bool arp_available = arphdr_ok(skb); 610 611 arp = (struct arp_eth_header *)skb_network_header(skb); 612 613 if (arp_available && 614 arp->ar_hrd == htons(ARPHRD_ETHER) && 615 arp->ar_pro == htons(ETH_P_IP) && 616 arp->ar_hln == ETH_ALEN && 617 arp->ar_pln == 4) { 618 619 /* We only match on the lower 8 bits of the opcode. */ 620 if (ntohs(arp->ar_op) <= 0xff) 621 key->ip.proto = ntohs(arp->ar_op); 622 else 623 key->ip.proto = 0; 624 625 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 626 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 627 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 628 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 629 } else { 630 memset(&key->ip, 0, sizeof(key->ip)); 631 memset(&key->ipv4, 0, sizeof(key->ipv4)); 632 } 633 } else if (eth_p_mpls(key->eth.type)) { 634 size_t stack_len = MPLS_HLEN; 635 636 skb_set_inner_network_header(skb, skb->mac_len); 637 while (1) { 638 __be32 lse; 639 640 error = check_header(skb, skb->mac_len + stack_len); 641 if (unlikely(error)) 642 return 0; 643 644 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); 645 646 if (stack_len == MPLS_HLEN) 647 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 648 649 skb_set_inner_network_header(skb, skb->mac_len + stack_len); 650 if (lse & htonl(MPLS_LS_S_MASK)) 651 break; 652 653 stack_len += MPLS_HLEN; 654 } 655 } else if (key->eth.type == htons(ETH_P_IPV6)) { 656 int nh_len; /* IPv6 Header + Extensions */ 657 658 nh_len = parse_ipv6hdr(skb, key); 659 if (unlikely(nh_len < 0)) { 660 switch (nh_len) { 661 case -EINVAL: 662 memset(&key->ip, 0, sizeof(key->ip)); 663 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 664 /* fall-through */ 665 case -EPROTO: 666 skb->transport_header = skb->network_header; 667 error = 0; 668 break; 669 default: 670 error = nh_len; 671 } 672 return error; 673 } 674 675 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 676 return 0; 677 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 678 key->ip.frag = OVS_FRAG_TYPE_FIRST; 679 680 /* Transport layer. */ 681 if (key->ip.proto == NEXTHDR_TCP) { 682 if (tcphdr_ok(skb)) { 683 struct tcphdr *tcp = tcp_hdr(skb); 684 key->tp.src = tcp->source; 685 key->tp.dst = tcp->dest; 686 key->tp.flags = TCP_FLAGS_BE16(tcp); 687 } else { 688 memset(&key->tp, 0, sizeof(key->tp)); 689 } 690 } else if (key->ip.proto == NEXTHDR_UDP) { 691 if (udphdr_ok(skb)) { 692 struct udphdr *udp = udp_hdr(skb); 693 key->tp.src = udp->source; 694 key->tp.dst = udp->dest; 695 } else { 696 memset(&key->tp, 0, sizeof(key->tp)); 697 } 698 } else if (key->ip.proto == NEXTHDR_SCTP) { 699 if (sctphdr_ok(skb)) { 700 struct sctphdr *sctp = sctp_hdr(skb); 701 key->tp.src = sctp->source; 702 key->tp.dst = sctp->dest; 703 } else { 704 memset(&key->tp, 0, sizeof(key->tp)); 705 } 706 } else if (key->ip.proto == NEXTHDR_ICMP) { 707 if (icmp6hdr_ok(skb)) { 708 error = parse_icmpv6(skb, key, nh_len); 709 if (error) 710 return error; 711 } else { 712 memset(&key->tp, 0, sizeof(key->tp)); 713 } 714 } 715 } 716 return 0; 717 } 718 719 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 720 { 721 return key_extract(skb, key); 722 } 723 724 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 725 struct sk_buff *skb, struct sw_flow_key *key) 726 { 727 /* Extract metadata from packet. */ 728 if (tun_info) { 729 key->tun_proto = ip_tunnel_info_af(tun_info); 730 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 731 732 if (tun_info->options_len) { 733 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 734 8)) - 1 735 > sizeof(key->tun_opts)); 736 737 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), 738 tun_info); 739 key->tun_opts_len = tun_info->options_len; 740 } else { 741 key->tun_opts_len = 0; 742 } 743 } else { 744 key->tun_proto = 0; 745 key->tun_opts_len = 0; 746 memset(&key->tun_key, 0, sizeof(key->tun_key)); 747 } 748 749 key->phy.priority = skb->priority; 750 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 751 key->phy.skb_mark = skb->mark; 752 ovs_ct_fill_key(skb, key); 753 key->ovs_flow_hash = 0; 754 key->recirc_id = 0; 755 756 return key_extract(skb, key); 757 } 758 759 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 760 struct sk_buff *skb, 761 struct sw_flow_key *key, bool log) 762 { 763 int err; 764 765 /* Extract metadata from netlink attributes. */ 766 err = ovs_nla_get_flow_metadata(net, attr, key, log); 767 if (err) 768 return err; 769 770 return key_extract(skb, key); 771 } 772